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Abstract—A central line of inquiry in the study of
indistinguishability obfuscation (IO) is to minimize the
size of the obfuscation. Today we know how to obfuscate
programs represented as Turing machines, where the size
of the obfuscation grows only with the input size and not
with the machine’s running time. Jain and Jin [FOCS 2022]
showed how to remove the dependency on the input size for
functionally equivalent programs where equivalence can be
proven in Cook’s theory PV.

In this work we investigate the limits of the pursuit of
succinct obfuscation. We consider the task of obfuscating
a program with a large description, most of which can be
made public while some portion of the description is secret.
We put forth a new notion of fully succinct IO where the
size of obfuscated program only grows with the size of the
program’s secret part and not with the public part or with
the input size.

Starting with input-succinct IO for PV-equivalent ma-
chines, which is known from super-polynomially hard IO
for circuits and LWE, we construct fully succinct IO
for the same class of programs. We refer to such an
obfuscation as fully succinct pv-IO. Next, we show how
to bootstrap our fully succinct pv-IO to achieve full IO
security. Our bootstrapping theorems are based on succinct
cryptographic primitives with seemingly weaker function-
ality: either succinct witness encryption or SNARGs for NP
with unique proofs. We also require that the correctness
of these primitives can be proven in theory PV. We show
that these assumptions are sufficient and necessary.

We demonstrate several applications of fully succinct
IO and pv-IO:

(i) We give the first IO construction where the size of the
obfuscated program is less than twice the size of the
original program for a large class of useful programs.

(ii) We show how to avoid padding the program before
obfuscating it – a step often necessitated by security
analysis – by replacing the padding with a public
random string.

(iii) We give the first construction of succinct computa-
tional secret sharing for access structures represented
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by polynomial-size monotone circuits where the share
size does not grow with the size of the access structure.
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I. INTRODUCTION

The notion of indistinguishability obfuscation (IO)
[6], [28] guarantees that the obfuscations of any pair
of functionally equivalent programs are computationally
indistinguishable. In the last decade, IO has emerged as
the ultimate cryptographic magic wand that can be used
to build most cryptographic primitives. Moreover, recent
work has shown that this magic wand can be realized
from well-founded assumptions [43], [44], [60].

Beyond establishing feasibility, a central goal in the
study of IO is to minimize the overhead introduced
by obfuscation in terms of program size. Motivated by
understanding the very limits of this pursuit, we ask:

How small can an obfuscated program be?

In its simplest form, the notion of IO considers
obfuscating programs represented as circuits and the size
of the obfuscated circuit is required to be polynomial in
the size of the original circuit. A sequence of works
[9], [16], [51] constructed more efficient IO for Turing
machines, where the size of the obfuscated program
grows with the size of the Turing machine representation,
but not with its running time.

Input-succinct IO. A major limitation of existing IO
schemes for Turing machines is that the obfuscation
size grows with the size of the input to the program.
In more detail, these schemes set an a priori bound
on the size of the input to the obfuscated program,
and the obfuscation size grows with this bound. Ideally,
we would like to obfuscate Turing machines such that
the obfuscated program can be evaluated on inputs of

1706

2025 IEEE 66th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/25/$31.00 ©2025 IEEE
DOI 10.1109/FOCS63196.2025.00091



arbitrary polynomial size. We refer to this notion as
input-succinct IO.

A recent work of [41] gives a partial feasibility
result for this notion. Assuming (sub-exponentially hard)
IO for circuits and other standard assumptions, they
construct an input-succinct obfuscation with the fol-
lowing security property that we refer to as pv-IO:
obfuscations of two functionally equivalent programs are
guaranteed to be computationally indistinguishable only
if the equivalence of the two programs can be proven
in Cook’s theory PV [20]. From Gödel’s incompleteness
theorem, however, it follows that there exist functionally
equivalent programs without a PV proof of equivalence.
Furthermore, prior works [29], [41], [53] have described
an informal “input-size barrier” to achieving input suc-
cinct IO for general programs: Intuitively, the reduction
must run long enough to decide the equivalence of the
programs. Thus, the feasibility of this notion remains a
major open question.

Fully succinct IO: A New Frontier. While input-
succinctness is already an ambitious goal, we could go
a step further and ask:

Can the obfuscated program be shorter than the
program itself?

While the answer, in general, is clearly negative, we
observe that in many applications, the program we would
like to obfuscate has a large description, but the actual
secret code that we are aiming to protect is small. Is it
possible to obfuscate only the secret part of the program,
leaving the public part unchanged? For example, recall
the construction of witness encryption from IO [28]: to
encrypt a bit b under an NP statement x, we obfuscate
a program that contains x hardwired. Given an input w,
the program outputs b only if w is a valid witness for x.
In this example, the bit b is secret but the statement x is
public. Nonetheless, to protect b, we obfuscate a program
that includes x. Using any existing obfuscation scheme,
the obfuscated program grows with the description of x
which may be large. Is it possible to encrypt b under a
statement x via an obfuscated program whose size does
not grow with the size of x?

Motivated by this setting, we formalize a new notion
of description-succinct IO: Consider a program whose
description consists of a public part pub and a (poten-
tially) secret part M and denote by M [pub] the descrip-
tion of the program including both parts. We refer to such
programs as having a split description. A description-
succinct IO takes both M and pub as inputs and produces
an obfuscated program M̃ such that M [pub] and M̃ [pub]

have the same functionality. Importantly, M̃ should only
grow with the size of M and not with the size of pub. For
security, we require that for every M0,M1 of the same
size, and for every pub such that M0[pub] and M1[pub]
are functionally equivalent, the obfuscations M̃0 and M̃1

are computationally indistinguishable, even given pub.
We refer to an IO scheme that is both input-succinct

and description-succinct as fully succinct. Using this
terminology, the main question we tackle in this work
is:

Are input-succinct and fully succinct IO possible? If so,
under what assumptions?

While the notion of description-succinctness was not
previously considered,1 we observe that constructions
of description-succinct IO which are not input-succinct
can be realized from prior work [3], [24], [31]. Fully
succinct constructions, however, are not known even for
the weaker notion of pv-IO.

II. OUR RESULTS

In this work, we investigate the feasibility and appli-
cations of fully succinct IO:

• Upgrading to full succinctness. Our first result
focuses on pv-IO, where indistinguishability only
holds for pairs of programs with a PV-proof of
equivalence. We formalize the notion of fully suc-
cinct pv-IO and show how to upgrade any input-
succinct pv-IO to fully succinct pv-IO under stan-
dard assumptions.

• Upgrading to full IO security. Next, we show how
to upgrade any fully succinct (resp. input-succinct)
pv-IO to achieve full security, namely indistin-
guishability for any two functionally equivalent
programs. This bootstrapping theorem is based on
the existence of either succinct witness encryption
[13] or succinct non-interactive arguments for NP
(SNARGs) with unique proofs and short CRS where
the correctness of the scheme can be proven in
theory PV. While these are strong assumptions, we
argue they are necessary since they are implied by
fully succinct IO.

• Applications. We demonstrate several applications
of fully succinct pv-IO and IO. This includes the
first construction of succinct computational secret
sharing for general monotone access structures
where the share size does not grow with the size of

1A recent concurrent work [55] introduced the notion of IO for
database-aided circuits, which is similar to description-succinct IO
except that their focus is on the running time of the obfuscated program
and not its description size. See Section II-D for more details.
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the access structure, thus overcoming the so-called
“representation-size barrier” [4]. We also show how
to further reduce the size of the obfuscated pro-
grams in many applications of IO. For example,
we give the first IO construction with rate above
1/2 (i.e., where the obfuscated program is less than
twice as large as the original program) for a large
class of useful programs. Finally, we show how to
generically avoid the “program padding” necessary
in many IO applications [37] by replacing it with
a public random string.

Technical highlight: How to use pv-IO. The notion of
pv-IO is instrumental in our results on succinct obfusca-
tion. A central challenge that we encounter when using
pv-IO is that the programs we need to transition between
often do not have a PV-proof of equivalence. This
significantly limits the applicability of pv-IO; indeed, so
far, this notion has found only limited applications.

In this work, we demonstrate how to use pv-IO
in conjunction with other “PV-friendly” cryptographic
primitives (e.g. primitives with a PV-proof of correct-
ness) to transition between functionally equivalent pro-
grams that are not PV-equivalent. Using this new ap-
proach, we build new applications based on pv-IO, with-
out requiring full security. Our approach is reminiscent
of the work of [62] who demonstrated how cryptography
can be combined with IO security when obfuscating
programs that are not functionally equivalent. Our tech-
niques are also inspired by the recent line of work that
demonstrated how to use propositional proofs in the
context on SNARGs [46], [47].

Next we elaborate on each of our contributions.

A. Upgrading to Full Succinctness

We start by introducing the notion of fully succinct
pv-IO. The work of [41] introduced the notion of pv-IO
where security holds for all pairs of programs M0 and
M1 whose equivalence can be proven in Cook’s theory
PV. Following [56], we use an alternative formulation
of pv-IO based on the more general notion of uniform
EF-equivalence. Roughly, we require that there is a
uniform polynomial-time algorithm that given 1n outputs
a proof for the fact that M0 and M1 are equivalent
on all n-bit inputs in the extended Frege propositional
proof system. Cook’s propositional translation theorem
shows that every pair of PV-equivalent programs are also
uniform EF-equivalent [20], [22].

Let M0[pub] and M1[pub] be a pair of programs
with split description and the same public part. We say
that programs are (ρ, T )-EF equivalent for a constant
ρ and a polynomial T if they have the same size and

running time, and there exists a TMMΠ of size ρ that on
input n,M0,M1, pub runs in time T (n) and outputs an
extended Frege proof that ∀x ∈ {0, 1}n, M0[pub](x) =
M1[pub](x). In our formulation of pv-IO, the obfusca-
tion algorithm is parameterized by ρ and T , and the se-
curity guarantee is that the obfuscations of M0[pub] and
M1[pub] are indistinguishable assuming the programs
are (ρ, T )-EF equivalent. In input-succinct pv-IO, the
size of the obfuscated program depends polynomially on
ρ and on the size of the programs (both secret and public
parts). We also allow the obfuscated program running
time on size-n inputs to grow with poly(T (n)). The
obfuscation is fully succinct if the size of the obfuscated
program only depends on ρ and on the size of the
programs’ secret part, but not on the public part pub.

We show the following result:

Theorem II.1 (Informal). Assuming input-succinct pv-
IO and LWE, both with slightly super-polynomial secu-
rity, there exists fully succinct pv-IO.

Input-succinct pv-IO can be constructed from IO
and one-way functions with sub-exponential security
and LWE with slightly super-polynomial security [41].
Therefore, we achieve fully succinct pv-IO under the
same assumptions as known constructions of input-
succinct pv-IO.

B. Upgrading to Full IO security

In this section, we state our bootstrapping theorem
from pv-IO to full-fledged IO. We give two versions
of the theorem: one for input-succinctness and one for
full succinctness. The theorem requires either witness
encryption (WE) or SNARG for NP with unique proofs,
with matching succinctness. We also show that these
assumptions are implied by IO. We therefore state the
result as a conditional equivalence between the notions
of succinct IO, WE and unique SNARGs.

Theorem II.2. Assuming fully succinct pv-IO and LWE,
the following are equivalent:

1) There exists fully succinct IO (resp. input-succinct
IO) with a PV-proof of correctness.

2) There exists fully succinct WE (resp. witness-
succinct WE) with a PV-proof of correctness.

3) There exists fully succinct SNARG (resp. witness-
succinct SNARG) with a PV-proof of correctness
and uniqueness2.

In more detail, we show that:

2A previous version of this paper showed an equivalence to a weaker
version of fully succinct SNARGs. The result in the current version is
inspired by the construction in [45].
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• (3)⇒ (2) assuming one-way functions.
• (2) ⇒ (1) assuming one-way functions and fully

succinct pv-IO.
• (1)⇒ (3) assuming LWE.
• (1)⇒ (2) assuming one-way functions.

Next, we elaborate on the each of the components
of Theorem II.2. In witness encryption, we can encrypt
a message under an NP statement such that: (a) we can
decrypt the ciphertext using any valid witness, and (b)
if the statement is false, the message is computationally
hidden. We say that a WE scheme is witness-succinct if
the ciphertext only grows with the size of the message
and the statement and not with the size of its witness.3

The scheme is fully succinct if the ciphertext only grows
with the security parameter and message size and not
with the size of the statement or witness.

SNARGs are succinct non-interactive argument for
NP in the common reference string (CRS) model [8],
[57]. A SNARG is said to have unique proofs if for
every CRS and statement, the honest prover outputs the
same proof regardless of the witness [17]. We say that
a SNARG is witness-succinct if the CRS and proof only
grow with the size of the statement and not with the size
of a witness. The SNARG is fully succinct if the CRS
and proof only grow with the security parameter and not
with the size of the statement or witness.

As shown in prior works [41], [47], many crypto-
graphic schemes with perfect correctness have proofs of
correctness in theory PV. Therefore, we expect “natural”
candidate constructions of cryptographic primitives with
perfect correctness to have a PV-proof of correctness.

Discussion: The input-size barrier and succinct cryp-
tography. In the non-succinct setting, IO (for circuits)
is known to imply WE [29] and SNARGs with unique
proof [62], but an implication in the other direction
is not known. Nonetheless, Theorem II.2 states that
starting from fully succinct pv-IO (that follows from sub-
exponential IO for circuits and LWE with slightly super-
polynomial security), the notions are equivalent in both
the fully succinct and the input/witness-succinct settings,
assuming the correctness of the schemes is provable in
theory PV.

As mentioned earlier, we believe that constructing
fully succinct or even input-succinct IO requires new
techniques that cross the so-called “input-size barrier”.
We note that witness-succinct WE and SNARGs are

3I.e., the ciphertext size is bounded by a fixed polynomial in the
statement, message size and the security parameter and this polynomial
does not depend on the NP relation.

subject to similar barriers [29], [32].4 Therefore, we do
not interpret our result as crossing the input-size barrier.
Instead we show that if we overcome the barrier in any
one of these primitives, we can overcome it in all of
them.

Instantiations. While witness-succinct WE is currently
not known under standard cryptographic assumptions, a
very recent work of [13] proposed lattice-based construc-
tions of witness-succinct and fully succinct WE. While
the assumption of evasive LWE used in their construction
is subject to attacks [1], [13], [14], [26], [38], [64],
we are not aware of attacks to the WE construction
itself. Thus, it may potentially be proven secure under a
weaker assumption. As we show in the full version of
this paper, the correctness of the [13] construction can be
shown in theory PV. This therefore gives us a candidate
construction of fully succinct IO.

Witness-succinct SNARGs with unique proofs are
currently not known under standard cryptographic as-
sumptions. However, [66] recently constructed adaptive
SNARGs for NP with unique proofs assuming sub-
exponential IO for circuits. While their construction has
fully succinct proofs, the CRS grows with the size of
the instance and witness. By proving the correctness of
this construction in theory PV, and using a variant of
the above theorem, we obtain a fully succinct IO in the
CRS model. In this model, the same CRS can be used to
obfuscate multiple, adaptively chosen programs. The size
of the CRS bounds the size of the entire program (public
and secret part) as well as the the size of the input to the
program. However, the size of the obfuscated program
itself grows only with the security parameter and not
with the size of the input or the public part. Previously,
[5] constructed input-succinct IO in the CRS model,
where the obfuscated program grows with the security
parameter and the full description of the program, but
not with the input size.

C. Applications

Next, we describe applications of fully succinct IO
and pv-IO for overcoming the representation-size barrier
in computational secret sharing, and for further reducing
the size of obfuscated programs.

I. Overcoming the representation-size barrier in se-
cret sharing. In a secret sharing scheme [11], [40], [63],

4Roughly speaking, this is because the security of these notions is
predicated on a non-falsifiable premise: in the case of IO, it is whether
two programs are functionally equivalent, while in the case of WE
and SNARGs, it is whether an NP statement is false. The difficulty
of efficiently checking this premise presents a challenge in achieving
succinctness.
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a dealer distributes a secret between n parties such that
only authorized subsets of parties can reconstruct the
secret. In more detail, the access structure, which is the
collection of authorized subsets, is given by a monotone
function f : 2[n] → {0, 1}. The dealer shares a secret
s ∈ {0, 1} into shares s1, . . . , sn and we require that for
every subset T of the parties:

• Correctness: if f(T ) = 1, it is possible to recon-
struct s given the shares {si}i∈T .

• Secrecy: if f(T ) = 0, the shares {si}i∈T reveal
nothing about s.

In this work, we focus on the computational setting:
We assume that the access structure f has some effi-
cient representation, such as a polynomial-size monotone
circuit, and require that the sharing and reconstruction
procedures are efficient. Moreover, we only require com-
putational secrecy.

A central goal in secret sharing is to minimize the
share size. There is a vast body of literature on this topic,
and we refer the reader to II-D for discussion. In this
work, our focus is on overcoming a key challenge in
this area: Designing schemes where the size of the shares
does not grow with the representation-size of the access
structure f .

Succinct Computational Secret Sharing for Monotone
Circuits. Based on one-way functions, Yao [65], [68]
gave a construction where each share is small (grows
only with the security parameter), but parties need to
access some public information that grows linearly with
the size of the monotone circuit for f . Recently, [4]
improved the size of the public information to linear in
the number of ∧ gates in the circuit assuming either sub-
exponential RSA or a combination of subexponential IO
for circuits, and somewhere statistically binding hash.

As an application of fully succinct pv-IO (see The-
orem II.1), we show how to completely remove the
dependency on the circuit size in the shares. This yields
the first scheme that overcomes the representation-size
barrier for access structures described as monotone cir-
cuits.

Theorem II.3. Assuming fully succinct pv-IO and LWE,
there exists an n-party computational secret sharing
scheme for any access structure given by a polynomial-
size monotone circuit f where the size of the share is
poly(λ) and the public information is a uniform n-bit
string.

Our result is significantly more general: First, Theo-
rem II.3 can be generalized to support any access struc-
ture f for which monotonicity can be proven in theory

PV. This includes all polynomial size monotone circuits
(as we show in Lemma VII.10), but also structures for
which no efficient monotone circuit exists such as match-
ing in a bipartite graph [61]. Previously, no succinct
schemes were known for such access structures. Second,
we can further reduce the size of public information from
n to C if every unauthorized set has a zero certificate
with a description size at most C.5 For example, we get
succinct secret sharing for the bipartite matching access
structure where the public information is of size 2

√
n

(Corollary VII.16).

Succinct Computational Secret Sharing for all of NP.
If we instead start from fully succinct IO instead of pv-
IO, we can significantly increase the class of supported
access structures to include all monotone functions in
NP [50].

Theorem II.4. Assuming fully succinct IO and LWE,
there exists an n-party computational secret sharing
scheme for any access structure given by a monotone
function f in NP, where the size of the share is poly(λ)
and the public information is a uniform n-bit string.

Previously, [50] constructed secret sharing for all
monotone functions in NP based on WE and one-way
functions. Instantiating their scheme with fully succinc
WE (instead of IO) yields succinct secret sharing that
requires structured (as opposed to uniform) public in-
formation of size n · poly(λ).

II. Further reducing the obfuscated program size. In
fully succinct pv-IO and IO, the obfuscated program size
does not grow with the input size or with the public part
of the program. Next we tackle two additional sources
of blowup in the obfuscated program size:

• Rate: The rate of an obfuscation scheme is the ratio
between the description size of the original program
and the obfuscated program. The IO constructions
of [2], [10], [42] achieve rate 1/2 for circuits
and Turing machines (without input succinctness).
Crossing the rate 1/2 barrier for IO is an open
question [2], [10], [42], [55].

• Padding: In many applications of IO, the program
is padded before it is obfuscated to facilitate the
security proof where the program being obfuscated
is replaced by some larger program. [37] shows that
in some cases such padding is unavoidable.

As an application of fully succinct pv-IO and IO, we
give the first construction of IO with rate higher than

5A zero certificate for a set T such that f(T ) = 0 is any T ′ ⊇ T
satisfying f(T ′) = 0.
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1/2 for a large class of programs. Moreover, we show
how to generically replace padding before obfuscation
with a public random string of the same length. More
generally, we show how to reduce the size of the
obfuscated program in applications where IO security is
used for pairs of programs that are not only functionally
equivalent, but also close to each other in some sense.
For simplicity, we present our results below for programs
with no public part. However, our results also hold for
programs with split description.

ρ-closeness. Very roughly, we say that a pair of programs
are ρ-close if it is possible to transition between then
through a sequence of functionally equivalent programs
such that each program is of size at most ρ, and the
Hamming distance between each pair of consecutive
programs is constant.

We proceed to describe the notion of ρ-closeness
more formally. Let M1 = {M1,λ}λ and M2 = {M2,λ}λ
be a pair of Turing machine families.

• We say that M1 and M2 are adjacent if M1,λ and
M2,λ are of the same size, they are functionally
equivalent, and their descriptions only differ by a
constant number of bits.

• We say that M1 and M2 are close if we can
transition between them via a polynomial-size se-
quence of adjacent machines. That is, if there exists
ℓ = poly(λ) and M ′

1, . . . ,M
′
ℓ such that M1 = M ′

1,
M2 = M ′

ℓ and for every i, M ′
i and M ′

i+1 are
adjacent.

• We say that M1 and M2 are ρ-close for a function
ρ(λ) if M ′

1 and M ′
2 are close where M ′

i,λ is the
program Mi,λ padded to size ρ(λ).

For example, observe that any pair of program families
M1,M2 are ρ-close for ρ(λ) = |M1,λ|+ |M2,λ|+O(1):
Start with M1 padded to size ρ. Next, modify the
padding, bit by bit, to include the description of M2.
Then switch from executing M1 to M2 by changing only
the initial state. Finally, modify the padding, bit by bit,
to remove the description of M1.

Obfuscating ρ-close programs. Using fully succinct IO,
we show how to obfuscate pairs of programs that are
ρ-close such that the size of the obfuscated program
is roughly ρ. Moreover, if the original programs are
of size ℓ, then we can reduce the obfuscated program
to be of size roughly ℓ by using additional ρ − ℓ bits
of public randomness. More concretely, an obfuscation
algorithm with public randomness is given a program M
and a string r and it produces an obfuscated program M̃ .
Correctness states that for every M and r, we have that
M and M̃ [r] are functionally equivalent. We say that

the scheme is secure for a pair of machines M1,M2

with ℓ bits of public randomness, if the programs M̃1

and M̃2 obfuscated using a random ℓ-bit string r, are
indistinguishable, even given r.

Theorem II.5 (Informal). Assuming fully succinct IO
and one-way functions, there exists an obfuscation
scheme with public randomness that is secure for every
pair of ρ-close machine families of size ℓ with ρ− ℓ bits
of public randomness, where the obfuscated programs
are of size ℓ+ poly(λ).

Since every pair of program families M1,M2 of size
ℓ are (2ℓ + O(1))-close, we get IO with rate 1/2 as
an immediate corollary of the above theorem. Compared
with the result of [2], this construction has the advantage
that given public randomness of size ℓ, the obfuscated
program is only poly(λ) bits larger than the original
program. Moreover, the construction from [2] is not
input-succinct while our construction can be made fully
succinct.

We observe that in many IO based constructions, IO
security is used for programs that are close to each other.
In such applications we can use Theorem II.5 to get
higher rate. We give some concrete examples:

• The works of [34], [67] show that several applica-
tions of IO can be obtained based on the weaker
notion of null-IO where we only require security
for programs computing the all-zero function. Since
any program of size ℓ that is functionally equivalent
to the all-zero program is also (ℓ+O(1))-close to
it, we obtain a construction of null-IO with rate 1.

• In the setting of batch IO, we obfuscate together a
batch of k programs, each of size ℓ into a single
obfuscated program [2]. In this setting, we achieve
obfuscation of size (k + 1) · ℓ+ poly(λ) compared
to 2k ·ℓ+poly(λ, n) in [2] where n is the bound on
the input length to the TM. Moreover, given ℓ bits
of public randomness, the size of the obfuscation
can be reduced to k · ℓ+ poly(λ).

• In Theorem II.1, the security proof involves hard-
coding the uniform-EF-proof of equivalence be-
tween the obfuscated programs. For example, if
machines M0[pub] and M1[pub] have a uniform EF
proof of size ρ, then the size of our obfuscation
is poly(λ, |Mb|, ρ. Using Theorem II.5, we can
instead replace the padding with a public random
string of size γ, and reduce the obfuscation size to
poly(λ, |Mb|).
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D. Related work

Negative results in the circuit model. In a concurrent
work, [55] give an impossibility result for IO with rate
very close to 1. Their result considers IO for circuits
where the obfuscated program is also represented as a
circuit and the rate of the obfuscation is defined as the
ratio between the size of the original circuit and the
obfuscated one. In contrast, in this work the obfuscated
program is modeled as a Turing machine and the rate is
defined via the size of the program representation.

The work of [55] also gives an impossibility for a
notion of IO with access to a public database where
the obfuscated program (represented as a circuit) does
not grow with the database size. This notion is similar
to our notion of description-succinct IO, except that we
only restrict the size of the obfuscated program mod-
eled as Turing machine. In particular, in the notion of
[55] the obfuscated circuit cannot even touch the entire
public database. The result of [55] can be interpreted
as showing that extending our notion of fully succinct
obfuscation to also require sublinear running time is
unlikely.

Quasi-Linear pv-IO. In a recent work, Ma, Dai and
Shi [56] construct input-succinct pv-IO with quasi-linear
overhead, namely, where the running time of the obfus-
cated program grows quasi-linearly in the total size of
the Turing machine and the PV-proof of equivalence.
This improves upon the previous work of [41] which
achieved larger runtimes. While their work also aims to
improve the efficiency of obfuscation, their focus is on
minimizing the obfuscation overhead in terms of running
time while our focus in this work is on minimizing the
obfuscated program size.

Succinct Secret Sharing. There is a vast body of litera-
ture dedicated to the study of share size in secret sharing.
We highlight the most relevant prior work and refer the
reader to [4] for a more detailed survey. As mentioned
earlier, all prior schemes for polynomial-size monotone
circuits [4], [65], [68] require a share size that grows with
the size of the circuit. Assuming sub-exponential RSA,
or sub-exponential IO for circuits and SSB hash family,
the work of [4] also constructs succinct secret sharing
for CNF formulas where the share size is independent
of the number of clauses. This, in turn, yields a succinct
but inefficient secret sharing scheme for arbitrary access
structures represented by truth tables. A similar result
was recently obtained by [23] by constructing a succinct
secret sharing for DNFs based on witness encryption
and LWE (in the random oracle model). In contrast

to these schemes, our scheme has efficient sharing and
reconstruction for functions represented as monotone
circuits and more.

We also mention two generic results based on IO.
Assuming sub-exponential IO for circuits and SSB hash
family, one can generically compress the shares of any
non-succinct secret sharing scheme [12], [35]; the result-
ing scheme, however, requires large public information
whose size grows with the total share size of the underly-
ing non-succinct scheme. For uniform access structures
that are succinctly described by TMs, one can build
succinct secret-sharing by instantiating the approach of
[50] with a non-input-succinct IO for TMs [51].

In a concurrent work, Lu, Nassar and Waters [54]
provide a different construction of succinct computa-
tional secret sharing for monotone circuits matching the
efficiency of our scheme as stated in Theorem II.3.
Their scheme relies on weaker assumptions, namely IO
for circuits and injective one-way functions (while we
additionally require LWE). Our result, however, is more
general and applies to all monotone functions as long as
monotonicity can be proven in PV. We also reduce the
size of the public share blow n for some structures.

SNARGs from Propositional Proofs. A recent work of
[47] (JKLM) constructs SNARGs for NP from WE with
PV-proof of correctness, and other standard assumptions.
Given a witness-succinct (resp., fully succinct) WE,
the resulting SNARG is witness-succinct (resp., fully
succinct) SNARG. Unlike the SNARGs given by our
equivalence results, the SNARG constructed in JKLM
does not have unique proofs. Similar to JKLM, our work
also leverages PV-proofs of correctness. Furthermore,
we also demonstrate the usefulness of formalizing other
properties in theory PV such as PV-proof of binding and
PV-proof of monotonicity.

E. Organization

We first give a technical overview in Section III. In
Section IV, we give an overview of definitions, tools
and instantiations of cryptographic primitivies which we
will use throughout our work. In Section V, we construct
fully succinc pv-IO. In Section VI, we show a three-
way equivalence between succinct versions of IO, WE
and SNARGs. We then give our construction of succinct
computational secret sharing and analysis is Section VII.
We then show our “necessary padding” technique and
applications to high-rate IO in Section VIII. We include
more details on Cook’s theory PV proofs in Appendix A.
We defer many proofs to the full version of this work.
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III. TECHNICAL OVERVIEW

In this section, we provide an overview of the
main ideas underlying our results. In Section III-A, we
first describe an overview of Theorem II.1. Then, we
demonstrate how to obtain our three-way equivalence as
in Theorem II.2 in Section III-B. We then discuss our
construction of succinct secret sharing (Theorems II.3
and II.4) in Section III-C. Finally, we discuss our
padding results as in Theorem II.5 in Section III-D.

A. Upgrading to Full Succinctness

Before we show how to upgrade input-succinct pv-
IO to additionally be fully succinct, we will discuss how
to first construct IO satisfying description succinctness
(Section III-A1). Then, we will discuss our construction
and proof of security in Section III-A.

1) Warm-up: Description-Succinct IO: We start by
describing a simple construction of description-succinct
IO6 from somewhere statistically binding (SSB) hash
functions and IO for circuits with sub-exponential se-
curity. Looking ahead, we will use ideas from this
construction in our transformation from input-succinct
pv-IO to fully succinct pv-IO. The description-succinct
IO construction is based on the notion of succinct
randomized encoding [3], [9], [16], [31] where given
TM M and input x, we can generate an encoding of
(M,x) such that:
Correctness: Given the encoding we can decode the

output M(x).
Security: The encoding reveals nothing except the out-

put.
Succinctness: The time to generate the encoding grows

only with |M | and |x| and not with the running time
of M .

We focus on the succinct randomized encoding con-
struction of [31] where the encoding of (M,x) consists
of two parts:

• A short encoding M̂ that may depend on both M
and x, but whose size grows only with |M |.

• A long encoding x̂ that does not depend on M .
Furthermore, we observe that if only M is secret and
input x can be made public, the long encoding x̂ can
just be x itself and the encoding M̂ can be computed
given only M and a short digest dx of x without knowing
x. In the setting where x is public, the security guarantee
is that for every pair of TMs M0,M1 and public input x

6Recall that this means that the obfuscation size does not grow with
the public description of the program, but may still grow polynomially
with the input length.

such that M0(x) = M1(x) the short encodings M̂0 and
M̂1 are indistinguishable given x.

To turn this succinct randomized encoding into
description-succinct IO, we use the standard transfor-
mation from randomized encoding to IO for TMs that is
based on IO for circuits with sub-exponential security. To
obfuscate M and pub, we use IO for circuits to obfuscate
a program UM,dpub

that contains the description of M
and the digest dpub of pub hard-coded. Given an input
x, UM,dpub

proceeds as follows:

• Derive randomness r for the randomized encoding
by evaluating a puncturable PRF on x.

• Let Mx be the TM that has x hardcoded and given
input pub outputs M [pub](x).

• Using dpub, generate and output the short encoding
M̂x of (Mx, pub).

Given the public input pub, we evaluate the obfuscation
on input x by first evaluating the obfuscation of UM,dpub

on x obtaining the short encoding M̂x. Then we decode
(M̂x, pub) to obtain the output M [pub](x). The con-
struction is description-succinct since the size of UM,dpub

does not grow with pub or with the running time of M .
However, the construction is not input-succinct for two
reasons:

• Since we are using IO for circuits to obfuscate
UM,dpub

, the obfuscation grows with |x|.
• The security of the construction follows via a hybrid

argument with one hybrid experiment for every
input x. Therefore, we must rely on IO with sub-
exponential security and let the security parameter
grow with |x|.

2) Our approach: The above construction of de-
scription succinct IO suggest a natural approach for
upgrading input-succinct pv-IO to fully succinct pv-
IO7: simply obfuscate the program UM,dpub

using input-
succinct pv-IO instead of IO for circuits. The prob-
lem with this approach is that even if a given pair
of programs M0[pub],M1[pub] are EF-equivalent, the
programs UM0,dpub

and UM1,dpub
are not functionally

equivalent.
To achieve full succinctness, we combine input-

succinct pv-IO with succinct randomized encodings in
a much more careful manner. In a nutshell, we “open
up” the construction of succinct randomized encodings
based on IO for circuits and SSB hash, and re-prove its
security relying only on pv-IO security.

7As alluded to earlier, we only need to construct a fully succinct
scheme O satisfying ρ-R-PV security, but we will defer this detail to
the proof sketch.
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Our construction. We now describe our construction of
fully succinct pv-IO. Let O be any input-succinct pv-
IO scheme (whose parameters ρ′ and T ′ we will choose
later) and let Hash be a collision resistant hash.

pviO(1λ,M [pub]) : Given M and pub, we use O
to obfuscate the following program UM,hk,dpub

:
• The program contains a hash key hk and the

hash dpub = Hash(hk, pub) hardcoded.
• Given as input pub′ and x, UM,hk,dpub

outputs
M [pub′](x) if Hash(hk, pub′) = h and outputs
⊥ otherwise.

Output O(UM,hk,dpub
).

Note that while the obfuscated program takes pub as
an additional input, the size of the obfuscated program
does not need to grow with pub since O is input-
succinct.

To argue security, fix a pair of programs M0,M1 and
a public input pub such that M0[pub] and M1[pub] are
(ρ, T )-EF-equivalent. We cannot directly rely on the se-
curity of O since, while M0[pub] and M1[pub] are EF-
equivalent, the programs UM0,hk,dpub

and UM1,hk,dpub
may

not be functionally equivalent, let alone EF-equivalent.
Instead we transition from UM0,hk,dpub

and UM1,hk,dpub

trough a sequence of hybrids. In some of the hybrids we
transition between two PV-equivalent programs relying
on the security of O, while in other hybrids we argue
indistinguishability by invoking the security of other
cryptographic primitives.

Proof sketch. We denote by pviO the resulting scheme.
Suppose we would like to show security for (ρ, T )-
equivalent machines P0[pub] and P1[pub]. We will in
fact break our proof up into multiple hybrids. For
i ∈ {0, 1, . . . , N}, consider the following sequence of
programs:

P (i)[pub](x) =

{
P1[pub](x) if |x| ≤ i,
P0[pub](x) otherwise.

If we show that

pviO(1λ,M (i)[pub]) ≈c pviO(1
λ,M (i+1)[pub]),

it is easy to see that a standard hybrid argument gives
us that

pviO(1λ,M0[pub]) ≈c pviO(1
λ,MN [pub]).

Therefore, it suffices to consider the above special case.
Fix i ∈ {0, . . . , N − 1}, and let M0 = P (i) and

M1 = P (i+1). We now define the following relation R
(which has i and T hardcoded in it).

R(M0,M1, pub,MΠ):
• Verify that there exists P0 and P1 such that
Mb = P (i+b), where P (i) as defined above.

• Let τ ←MΠ(i+ 1, P0, P1, pub), where MΠ

is run for T (i+ 1) steps.
• Output 1 if τ is an EF proof that
M0[pub](x) = M1[pub](x) for all x ∈
{0, 1}i+1. Output 0 otherwise.

In our security proof, we will use this relation R.
Looking forward, we will use the fact that the following
claim can be proven in PV:

∀M0,M1, pub, x,

(R(P0, P1, pub, s) = 1)→ (M0[pub](x) = M1[pub](x).)
(1)

where s is a constant. The proof proceeds as follows:
• We consider three cases, x of length at most i,

length at least i+ 2, and length equal to i+ 1.
• For all x of length at most i, R certifies that

there exists P1[pub] such that both M0[pub](x)
and M1[pub](x) output P1[pub](x). Hence, one can
prove in PV that the two machines are equivalent
for |x| ≤ i.

• Similarly, for all x of length at least i+2, R certifies
that there exists P0[pub] such that M0[pub](x) and
M1[pub](x) output P1[pub](x). Hence, one can
prove in PV that they are also equivalent in this
case.

• Finally, if |x| = i + 1, M0[pub](x) = P0[pub](x)
and M1[pub](x) = P1[pub](x). Moreover, R certi-
fies that there exists an EF proof (given by MΠ)
that P0[pub](x) = P1[pub](x). As Cook showed,
PV can be used to prove the consistency of EF , as
shown by Cook [20]. Therefore, one can prove in
PV that they are also equivalent in this case.

Therefore, this demonstrates a PV proof of (1).
We are now ready to show security of our construc-

tion for M0 = P (i) and M1 = P (i+1).
H1 Output O(UM0,hk,dpub

) where UM0,hk,dpub
(padded

such that the size and runtimes accomodate the
proof) is the following machine which on input
pub′, x:
• If dpub ≠ Hash(hk, pub′), output ⊥.
• Else, output M0[pub

′](x).

H2 Output O(Q1) where the TM Q1 is defined as
follows:

a) If dpub ̸= Hash(hk, pub′), output ⊥.
b) Compute the computation tableau of R on input

M0,M1, pub
′,MΠ.

c) Else, output M0[pub
′](x).
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It is clear that UM0,k,dpub
and P1 are PV-equivalent

machines, and hence we can rely on O security.
In other words, Q1 additionally has M1, R and MΠ

hardcoded in it.
At this point, suppose for a moment that we are able

to show that H2 is indistinguishable from the following
program where we additionally check that the output of
R is 1 (e.g. as in H3), then we can hope to invoke the PV-
equivalence of M0[pub](·) and M1[pub](·). Concretely,
we can argue that the following hybrids are indistin-
guishable:
H3 Output (pub,O(Q2)) where the TM Q2 is defined

as follows:
a) If dpub ≠ Hash(hk, pub′), output ⊥.
b) Compute the computation tableau of R on input

M0,M1, pub
′,MΠ.

c) . . . (additional checks that we are ignoring for
now)

d) If the output of R in the computation tableau is
0, output ⊥.

e) Else, output M0[pub
′](x).

H4 Output (pub,O(Q3)) where the TM Q3 is defined
as follows:

a) If dpub ≠ Hash(hk, pub′), output ⊥.
b) Compute the computation tableau of R on input

M0,M1, pub
′,MΠ.

c) . . . (additional checks that we are ignoring for
now)

d) If the output of R in the computation tableau is
0, output ⊥.

e) Else, output M1[pub
′](x).

Here, we can argue EF-equivalence of the machines
Q2 and Q3 using the fact that the last line of Q2

and Q3 is only reached if R(M0,M1, pub
′,MΠ) = 1.

Then, we use (1) to prove in PV that M0[pub
′](x) =

M1[pub
′](x). Then, we can invoke Cook’s translation

to construct a machine M′
Π of size ρ′ = O(1) and

polynomial T ′ demonstrating that Q2 and Q3 are (ρ′, T )-
EF-equivalent. Therefore, the two hybrids are indistin-
guishable via O security with parameters ρ′ and T . After
reaching H4, we can argue the hybrids essentially in
reverse to argue that the above hybrid is indistinguishable
from (pub,O(UM1,hk,dpub

)), completing the proof.
Therefore, it suffices to argue that H2 is indistinguish-

able from a machine of the form specified in H3. How-
ever, as discussed earlier, these are not even functionally
equivalent (let alone PV-equivalent) programs! This is
the main technical challenge in this proof, and as alluded
to earlier, we will use “crypto hybrids” interspersed with
“PV hybrids”.

Informally, our goal is as follows: (cryptographically)
prove that given a digest dpub of pub, the output of
R in the obfuscated machine coincides with the output
of R(M0,M1, pub,MΠ). To argue this, we will draw
inspiration from the security analyses of succinct ran-
domized encoding constructions [3], [9], [16], [31], [51].

Somewhere statistically binding hash. We will rely on
a special type of collision-resistant hash family known as
a somewhere statistically binding hash (SSB) [39] (see
Section IV-F for full details). A somewhere statistically
binding hash family has a key with two computationally
indistinguishable modes: (i) In the normal mode, the key
is uniformly random and generated from SSB.Gen; and
(ii) in the trapdoor mode, the key is generated using
a trapdoor generation algorithm SSB.TGen according
to on an index i of the hashed message. In the trap-
door mode, one can use the trapdoor td to extract the
message on i. Note that this extraction property implies
a statistical binding property for the coordinates in S.
SSB functions have been shown to be very useful in
the construction of RAM delegation protocols [18], [48],
[49], and have also been shown to be “IO friendly” [31],
[39].

Intuitively, the reason SSB hashing pairs well with
IO is the statistical binding property. Here’s an example
of an argument one might make. Consider program P
with a hash key hk and digest dpub hardcoded in it, and
accepts a string x if Hash(hk, x) = dpub. Then, given
O(P ), we might want to reason as follows:

1) Switch hk to be binding on index i. This follows
from the index-hiding property of the SSB.

2) Change the obfuscated program P to only accept
bit b at index i. This follows from the statistical-
binding property as well as O security.

3) Switch SSB to be binding on some other index i′,
once again relying on the index-hiding property of
SSB.

To make the above argument, it was crucial that dig was
statistically binding rather than computationally binding
to assert that the program was functionally equivalent.

“PV-friendly SSB”. Since we would like to rely on pv-
IO security instead of IO security, we can no longer ar-
gue that (2) holds. Therefore, we will need the following
additional properties from SSB to make it “PV friendly”.

• PV proof of binding: Since we will be pairing
this SSB binding property with O security, we will
need a PV proof of the binding property of the hash

1715



family, i.e.:

⊢PV

 (hk, td)← SSB.TGen(i; r)
∧ h← SSB.Hash(hk, x)
∧ y = SSB.Ext(hk, td, h)

→ x[i] = y.

In words, it says that if a hash key hk and a trapdoor
td were generated with respect to index i, if h is
hash of a string x, then x[i] = SSB.Ext(hk, td, h).
As we show in the full version of the paper, the
construction of [25] via LWE has such a PV proof
of statistical binding8. Given this guarantee, it is
now clear how one might try to argue security in
(2) - prove that hk and td are generated honestly
(e.g. using the randomness r), and then use the PV
proof of binding to argue PV-equivalence.

• Hash-tree structure: Additionally, we will need a
SSB hash family that are constructed via a hash-tree
using two-to-one SSB (Two-SSB) hash (following
[48], [59]). At a high level, a Two-SSB hash takes
as input two blocks of size s, and outputs a hash
of size s+ poly(λ, log s) (i.e. is rate-1). This hash
can be made binding on either of the two blocks.
One can then use such a rate-1 two-to-one hash
to compute a hash on a string x via a hash-tree,
somewhat akin to a Merkle hash. If we implement
such a hash-tree with a Two-SSB hash at each
internal node, the hash value of each node binds
one of its two children. This hash-tree structure will
be crucial in our proof.

Back to our proof. With PV-friendly SSB hash fami-
lies in hand, we now describe the intermediate hybrids
between H2 and H3. Essentially, we will augment each
configuration cfpub

′

i of the tableau of R with a hash
tree computed via a two-to-one SSB. We then argue
inductively what the values of the internal nodes of the
hash tree should be.

Checking the hash of cfpub
′

1 . We change the machine
Q2 in H2 as follows.
H2,1 First, sample a new hash key hk′ for the ob-

fuscated program. Compute configuration cfpub1

of the starting configuration of the tableau of R
on the input M0, M1, pub and MΠ (recall that
the program is computing the same tableau on
M0,M1, pub

′,MΠ, where pub′ may not be equal
to pub). Compute ϕ1 = SSB.Hash(hk′, cfpub1 ).
We now compute the program Q2,1,ϕ1

as follows:

8This construction has a negl(λ) of outputting ⊥. However, it does
not output ⊥, there is a PV proof that the statistical binding property
holds. This weaker notion will be sufficient for us.

a) If dpub ≠ SSB.Hash(hk, pub′), output ⊥.
b) Compute the computation tableau of R on input

M0,M1, pub
′,MΠ.

c) Check that SSB.Hash(hk′, cfpub
′

1 ) = ϕ1, and
abort if does not hold.

d) Else, output M0[pub
′](x).

Clearly, H2 is not functionally equivalent to H2,1, since
SSB.Hash is compressing. We now describe the hybrid
in detail to illustrate how to use both ”PV” hybrids and
”Crypto” hybrids.

Recall that both the hash SSB.Hash(hk′, cfpub
′

1 ) and
ϕ1 = SSB.Hash(hk′, cfpub1 ) are constructed via hash-
trees. We inductively argue that the internal nodes of the
hash-tree are consistent between the two computations.

• Add check to leaf nodes. When computing
SSB.Hash(hk′, cfpub

′

1 ), recall that the bits of cfpub
′

1

either correspond to the hard-coded values of of
M0,M1 or MΠ, or the input pub′. It is easy to
argue that the hard-coded values are consistent.
When checking the leaf corresponding to the ith
bit of pub′, we argue in a few steps:
– ”Crypto hybrid”: Switch hk to be binding on the
ith bit of pub. This can be done by the index-
hiding property of the hash.

– ”PV hybrid”: Now, add the following check
to the program: if pub′[i] ≠ pub[i], out-
put ⊥. We can now argue using the PV-
proof of statistical binding of the SSB hash
to argue that if SSB.Hash(hk, pub′) = h and
SSB.Ext(td, dpub) = b, then pub′[i] = b. There-
fore, adding this check is PV-equivalent (and
hence EF-equivalent).

• Add check to an internal node. Suppose that there
is an internal node v of the tree, whose children
are checked against the hash values φL and φR.
Now, introduce a check that v is labeled by φ =
Two-SSB.Hash(hk′, (φL, φR)). This is clearly PV-
equivalent (and hence EF-equivalent) by definition
of the tree-based hash.

We can use this strategy to inductively argue that the
hash-tree must be consistent with the honest hash-tree.
However, the above argument, as is, will introduce
poly(|cfpub

′

1 |) hard-coded checks in the program, result-
ing in a program that is not succinct in pub. Therefore,
we need hybrids where we “forget” some checks while
maintaining indistinguishability.

• Forgetting checks on children nodes. Suppose a
node v, and its children uL and uR are checked
against the hash values ϕ, ϕL and ϕR respectively.
We argue as follows:
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– Set ϕ to be extracting on the left child. This
follows from the index-hiding property.

– Now, we can show that by PV-proof of statisti-
cal binding, if the check against ϕL fails, then
the check against ϕ must also fail. Therefore,
removing the check on the left child against ϕL

is PV-equivalent (and hence EF-equivalent), and
we can invoke O security.

– Set ϕ to be binding on the right child. This
follows from the index-hiding property9.

– Once again, by we can argue PV-equivalence and
remove the check against ϕR.

By inducting over the hash-tree carefully, we can ensure
that we hard-code at most O(| log cfpub

′

1 |) checks, there-
fore maintaining succinctness of the obfuscated program.

Checking the hash of cfpub
′

i . Now, suppose the hash of
cfpub

′

i is checked against the true hash of cfpubi , where
cfpubi is ith configuration of the tableau obtained from
running R on input M0,M1, pub

′,MΠ. Then, one can
show inductively on the hash-tree of cfpub

′

i+1 that the hash
must be consistent with the hash of cfpubi+1 by arguing
just as in the case of cfpub

′

1 . To argue consistency of the
leaf nodes, we use the fact that cfpub

′

i+1 is a deterministic
and local function of cfpub

′

i , so we can verify the leaf
nodes of the hash-tree on cfpub

′

i+1 by extracting only O(1)

locations of cfpub
′

i .

Checking the last hash. By iterating this argument, we
can reach the following hybrid:
H2,T Compute configurations cfpub1 and cfpubT of the

starting configuration and ending configuration
of the tableau of R on the input M0, M1, pub
and MΠ. Compute ϕ1 = SSB.Hash(hk′, cfpub1 )
and ϕT = SSB.Hash(hk′, cfpubT ). Construct the
program Q2,1,ϕ1,T,ϕT

:
a) If dpub ̸= SSB.Hash(hk, x), output ⊥.
b) Compute the computation tableau of R on

input M0,M1, pub
′,MΠ.

c) Check that SSB.Hash(hk′, cfpub
′

1 ) = ϕ1, and
abort if does not hold.

d) . . .
e) Check that SSB.Hash(hk′, cfpub

′

T ) = ϕT , and
abort if does not hold.

f) Else, output M0[pub
′](x).

At this point, we argue how to reach H3 as follows.
First, we set hk′ to bind ϕT on the position of cfpubT that

9We note that although the previous hybrid used the trapdoor of
the SSB in the security analysis, it is not used in the construction.
Therefore, we may invoke index-hiding.

corresponds to the output wire of R. This can be done
by the index-hiding property of the SSB hash key.

Since R(M0,M1, pub,MΠ) = 1, we have that
SSB.Ext(td, ϕT ) = 1. Therefore, using the fact that the
statistical binding property of the SSB hash has a PV
proof, we can show that: (hk′, td)← SSB.TGen(1λ, 1ℓ, i)

∧ h← SSB.Hash(hk, cfpub
′

T )
∧ 1 = SSB.Ext(hk′, td, h)

 ⊢PV cfpub
′

T [i] = 1.

In particular, we can prove that SSB.Hash(hk′, cfpub
′

T ) =
ϕT → R(M0,M1, pub

′,MΠ) = 1. Therefore, H2,T
(after switching where hk′ is binding) is PV-equivalent
to H3. This completes the outline of the proof.

Ordering the hybrids via a pebbling game. While we
have sketched the intuition behind the hybrids in the
proof, there is a problem in that we cannot afford to
hard-code the hash-value of every layer of the tableau
of R, as that will cause the obfuscation to grow with
size O(T ), and hence pub.

On the other hand, it is not clear that one can stop
hard-coding the check on cfpub

′

i after introducing the
check at layer cfpub

′

i+1 while remaining indistinguishable.
In particular, it was crucial in our proof that the configu-
ration cfpub

′

i+1 is uniquely determined by the configuration
cfpub

′

i . However, cfpub
′

i+1 does not necessarily determinis-
tically define cfpub

′

i . Therefore, our template only allows
us to argue hybrids in one of two ways:

• Introduce the check Hash(hk′, cfpub
′

i+1 ) = ϕi+1 if the
program is already checking Hash(hk′, cfpub

′

i ) =
ϕi.

• Remove the check Hash(hk′, cfpub
′

i+1 ) = ϕi+1 if the
program is already checking Hash(hk′, cfpub

′

i ) =
ϕi. (While we did not explicitly argue this can be
done, we can just reverse the same argument that
was used to introduce the check.)

How can we hard-code the Hash(hk′, cfpub
′

T ) = ϕT while
introducing as few intermediate checks as possible? To
remedy this, we take inspiration from succinct garbling
literature [30], [31] which use the so-called “pebbling
game” [7] to define the sequence of hybrids10 . Turns
out, the optimal strategy for the pebbling game gives us
a sequence of poly(T ) hybrids where we have to hard-
code at most O(log T ) checks. Therefore, this allows us
to argue the indistinguishability of the programs over

10An alternative view of this is that one can first make the compu-
tation of R reversible using the pebbling argument [7], at which point
we can argue that cfpub

′

i+1 deterministically defines cfpub
′

i .
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poly(T ) hybrids while maintaining the program size at
poly(λ, |M |, |s|, log T, log |pub|).

B. Bootstrapping to all TMs

In this section, we show how to bootstrap fully
succinct pv-IO (resp. input-succinct pv-IO) to fully suc-
cinct IO (resp. input-succinct IO). We first describe the
proof of Theorem II.2 based on fully succinct WE (resp.
witness-succinct WE) and then describe the proof based
on succinct SNARGs.

Weak IO from Witness Encryption. We first show
that WE implies a (significantly) weaker notion of IO
that we refer to as weak IO. Informally speaking, weak
IO is defined by changing the order of quantifiers in
the definition of IO. Specifically, instead of requiring
an obfuscator algorithm that works for all pairs of
functionally equivalent programs, we only require the
obfuscator to work for a specific pair of programs (say)
M0,M1, and public input pub. More formally, a weak IO
obfuscation scheme consists of two algorithms (O, E):

• The obfuscator O takes as input a pair of machines
(M0,M1), public input pub and a bit b, and outputs
an obfuscation of Mb.

• The evaluation algorithm E also takes as input a pair
of machines (M0,M1) and public input pub, and
an obfuscation of Mb, and uses them to compute
Mb[pub](x) for any x.

Correctness and security are defined similarly to
standard IO: Obfuscations of M0 and M1 must be
computationally indistinguishable if M0 and M1 are
functionally equivalent. Correctness, on the other hand,
must always hold regardless of whether or not M0 and
M1 are functionally equivalent.

Let us now explain how we build weak IO from WE.
Consider the following language

L =

(M0,M1, pub, n, T )

∣∣∣∣∣∣∣
∃x, |x| ≤ n,

M0[pub] and M1[pub]
abort on x in T steps,

M0[pub](x) ̸= M1[pub](x)

 ,

and let RL be the corresponding relation. Consider
two Turing machines M0[pub] and M1[pub] which run in
time T (n) on inputs of length n. Let WE = (Enc,Dec)
be a witness encryption scheme for the language L.

To obfuscate Mb, we compute the ciphertext ct =
Enc((M0,M1, pub, n, T ), b) that encrypts the bit b under
the instance (M0,M1, pub, n, T ) of the language L. The
obfuscated program simply consists of this ciphertext ct.
To evaluate this obfuscated program on an input x, the
evaluator first computes z0 = M0[pub](x) and z1 =
M1[pub](x). It then proceeds as follows:

• If z0 = z1, it simply outputs z0.
• Else, it uses x as a witness to decrypt the ciphertext
ct and recover the bit b. It outputs zb.

Correctness of this obfuscation scheme follows from
inspection and by appealing to the correctness of the
WE scheme. Security, on the other hand, follows from
the semantic security of the WE scheme. Specifically,
when M0[pub] and M1[pub] are functionally equivalent,
the statement (M0,M1, pub, n, T ) is false. Therefore, we
have that

Enc((M0,M1, pub, n, T ), 0)

≈c Enc((M0,M1, pub, n, T ), 1)

are computationally indistinguishable.
Finally, a remark on the succinctness of this scheme.

Suppose that the WE scheme is fully succinct (resp.
witness-succinct). Then, the weak IO scheme constructed
above is fully succinct (resp. input-succinct).

IO from Weak IO. We are now ready to describe our
construction of fully succinct IO. We will rely on two
ingredients:

• Our new fully succinct pv-IO scheme.
• A fully succinct weak IO scheme whose correctness

can be proven in theory PV.
We first establish some notation. Let (O, E) denote

a fully succinct weak IO scheme with a PV proof of
correctness. For any pair of machines (M0,M1), we use
M̃b to denote the obfuscation of Mb computed by the
obfuscator O using some randomness s. That is:

M̃b ← O(M0,M1, pub, b; s).

Let E
[M0,M1,M̃b]

denote the modified evaluation al-
gorithm of the weak IO scheme that contains the ma-
chines M0,M1 and the obfuscation M̃b hardwired in its
description. On input x, it evaluates the obfuscation to
learn Mb(x).

We will now show that our fully succinct pv-IO
scheme is indeed a fully succinct IO scheme for all pro-
grams. Our goal is to show that for all functionally equiv-
alent Turing machines M0[pub],M1[pub], O(M0, pub)
is computationally indistinguishable from O(M1, pub).
We consider the following sequence of hybrids:

O(M0, pub) ≈c O(E[M0,M1,M̃0]
, pub)

(by PV proof of correctness using randomness s)
≈c O(E[M0,M1,M̃1]

, pub)

(by O indistinguishability, since s is hidden)
≈c O(M1, pub).

(by PV proof of correctness using randomness s)
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Note that in the above, we use the fact that if (O, E) has
a PV proof of correctness, then,

⊢PV Mb[pub](x) = E[M0,M1,M̃b]
(pub, x),

where x is a free variable.
As mentioned above, the PV proof of correctness

depends on the randomness s used by the obfuscator.
What if the size of the randomness s grows with the input
size? In this case, the size of the PV proof, and thereby,
the size of O would also grow with the input size, and
the resulting scheme would not be input succinct.

To remedy this, we generate the randomness for
O via a pseudorandom generator (PRG) with arbi-
trary polynomial stretch. This yields a fully succinct
construction. The security proof proceeds in a similar
manner as above, except that we now have two additional
(symmetric) hybrid steps which rely upon the security of
the PRG. These hybrids are invoked immediately before
and after the intermediate hybrid which relies upon the
security of weak IO.

Equivalence to Unique-SNARGs. To obtain the equiv-
alence to SNARGs with unique proofs, we follow
the work of Sahai and Waters [62], and the work
of Chakraborty, Prabhakaran and Wichs [17]. Let n
be the input-size and m be the witness-size. Re-
call that a SNARG is witness-succinct if the CRS
grows with poly(λ, n, logm), and fully succinct if
poly(λ, log n, logm).

To see that witness-succinct (resp. fully succinct)
SNARGs imply WE, we rely on the work of [17]. This
work shows that unique witness maps (UWM) can be
used to construct witness encryption. In short, a UWM
deterministically maps all witnesses for an instance x
to a single representative (cryptographic) witness π.
On the other hand, for x /∈ L, it is hard to find an
valid proof π. Clearly, unique SNARGs imply UWMs,
where the proof π is succinct. We observe that the
[17] transformation from UWM witness-encryption is in
fact witness-succinct if we start with a witness-succinct
SNARG. In fact, if we started with a fully succinct
SNARG, the resulting witness encryption is also full-
succinct. Moreover, if the unique-SNARG (or UWM)
has a PV-proof of uniqueness, i.e.

⊢PV

 R(x,w0) = 1 ∧ R(x,w1) = 1
∧ π0 ← SNARG.Prove(crs, x, w0)
∧ π1 ← SNARG.Prove(crs, x, w1)

→ π0 = π1.

then, the resulting witness encryption has a PV-proof of
correctness.

To go from input-succinct IO to witness-succinct
(resp. fully succinct) SNARG, we rely on the work of
Sahai and Waters (SW) [62] which showed how to use

IO to construct a SNARG with unique proofs11. We
observe that if we use an input-succinct IO scheme, their
construction additionally achieves a witness-succinct crs.
This therefore gives us three-way equivalence between
these primitives in the input-succinct/witness-succinct
settings.

However, using fully succinct IO in place of input-
succinct IO in the SW construction does not seem to
yield fully succinct SNARG. The issue is the following:
in one of the hybrids in the proof of non-adaptive
soundness in [62], we have to hard-code in the program
the statement x∗ and a PRF key k{x∗} punctured at
x∗. The size of this hard-coded information grows at
least with the size of x∗. This, in turn, means that even
the program in the real scheme needs to be padded
by this amount. Therefore, the crs size still grows with
poly(λ, n) and is therefore not fully succinct.

Instead, we take inspiration from the work of [45].
Recall that in the SW SNARG, a proof for a statement
x∗ was simply a PRF evaluation fK(x∗). The twist
proposed by [45] is the following: instead of outputting
fK(x), output fK(Hashhk(x

∗)) where Hashhk is a hash
function. Then, one could hope that in the security proof,
one would only need to hardcode h∗ = Hashhk(x

∗),
which is much smaller than x∗.

However, this seems problematic - what if there is
a different x′ ∈ L such that Hashhk(x′) = Hashhk(x

∗)?
It therefore seems tricky to argue security. Luckily, we
already tackled a similar problem in our construction of
fully succinct pv-IO - we hardcoded a hash of the public
input pub, and argued security. Therefore, by using our
fully succinct pv-IO construction in a white-box way,
one can show the security of this variant of the SW
SNARG.

Therefore, this shows us a three-way equivalence
between IO, WE and somewhere-sound almost fully
succinct unique-SNARGs.

C. Overcoming the Representation-Size Barrier in Se-
cret Sharing

Recall that in secret sharing, the access structure is
public information. The goal is to minimize the total
share size given the description of the access structure.
As discussed in [4], for many access structures, it is
not known how to capitalize on the fact that f is
public to obtain share sizes smaller than |f |, even in
the computational setting. This is referred to as the
“representation-size barrier”. While [4] show how to
overcome this barrier in some special cases such as

11We note that they present their construction as a non-interactive
zero-knowledge (NIZK) proof system, but it is also a SNARG.
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monotone CNF formulas, it is not known how to address
this challenge in the case of general access structures.

Construction template from KNY. Our starting point
is the secret sharing for NP template of Komargodski,
Naor and Yogev [50] (KNY). The main ingredients in
their construction are:

• A perfectly binding bit commitment scheme
(Com.Gen,Com.Enc,Com.Open).

• A witness encryption scheme (WE.Enc,WE.Dec).
The KNY template is as follows:

Sharing algorithm: Given a monotone access
structure f : {0, 1}n → {0, 1} on n parties and
a secret s, the dealer does the following,
• Set pk← Com.Gen(1λ), where pk is the public

key
• Sample n commitments ci ← Com.Enc(1; ri)

(i.e. committing to 1, with randomness ri).
• Consider the following NP language L = Lpk,f

containing strings (c1, . . . , cn) ∈ Lpk,f for
which:
– there exists a subset I ⊆ [n] for which there

exists ri such that Com.Open(pk, ci, ri) = 1,
– and f(I) = 1.

• Let ct ← WE.Enc(RL, (c1, . . . , cn), s), where
RL is the relation TM corresponding to L.

• Set the public information to be crs =
((c1, . . . , cn), pk, ct), and each party is given ri.

Reconstruction algorithm: A subset I ⊆ [n] of
paries use {ri} to decrypt ct and obtain s.

Completeness of the above scheme follows immedi-
ately from the completeness of the witness encryption.
We now outline the proof analysis. Given an unautho-
rized subset I ⊆ [n] such that f(I) = 0, KNY proved
security as follows:
H1 The public parameters and shares are generated

honestly, and the adversary is given ((c1, . . . , cn),
pk, ct) and {ri}i∈I .

H2 For all ci for i /∈ I , switch ci to commitments of 0
instead. This is indistinguishable from the previous
hybrid by the hiding property of the commitment
scheme.

H3 At this point, one can change the witness en-
cryption to an encryption of 1 − s by appealing
to semantic security of the witness encryption
scheme. Note that instance (c1, . . . , cn) /∈ Lpk,f

by the perfect binding property of the commitment
scheme. To see this, note that the only {ci}i∈I can
be opened to 1 but since f(I) = 0. Therefore, we

can assert (c1, . . . , cn) /∈ Lpk,f by the monotonic-
ity of f .

While this construction captures all monotone functions,
even ones that are non-deterministic, the issue is that it
is not succinct. Indeed, if one implements the witness
encryption scheme naively, the the size of the witness
encryption grows with the size of the relation circuit
and the statement, i.e. |ct| = poly(λ, n, |pk|, |f |), i.e.
grows with the size of f . Therefore, the size of the public
parameters grows with f .

We now describe how we overcome this barrier, with
one improvement at a time. We note that since the
construction in Section VII directly implements all of
these optimizations at once, we hope that this step-by-
step exposition aids in understanding the intuition behind
each optimization.

Improvement #1: Use fully succinct WE. Our first
observation is that by using fully succinct witness
encryption in place of usual witness encryption, one
can immediately improve the efficiency of the scheme.
Treating the statement (c1, . . . , cn) and relation R as the
witness encryption statement, and improve the length of
|ct| ≤ poly(λ), independent of n and |f |. To evaluate
the witness encryption, a subset I of parties only needs
the statements (c1, . . . , cn), the relation R (which is de-
scribed by pk and f ), and {ri}i∈I . Therefore, the size of
the public information is:

∑
i |ci|+|pk| ≤ O(n·poly(λ)).

Therefore, instantiating the KNY template with fully
succinct WE, we get individual share size poly(λ) (note
that we can give ct to each party) with public share size
O(n · poly(λ)).
Improvement #2: pv-IO is sufficient for “natural”
monotone classes. While the previous improvement re-
quired fully succinct witness encryption (which requires
strong assumptions), for many “natural” (deterministic)
monotone classes, we show that witness encryption
constructed via fully succinct pv-IO is in fact sufficient.
For this analysis, we assume the following additional
properties about the commitment scheme, and the class
of monotone functions.

• The binding property of the commitment scheme
can be proven in PV, i.e. b ∈ {0, 1},

pk← Com.Gen(1λ),
c← Com.Enc(pk, b; r)


⊢PV ∀r′, c ≠ Com.Enc(pk, 1− b; r′).

In words, the above asserts that any commitment
of a bit b ∈ {0, 1} under key pk cannot be
opened to bit 1 − b. We note that the standard
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construction of commitments by Naor [58] does not
have this property. Therefore, we instead rely on an
alternative construction from public-key encryption
with PV proof of correctness.

• The monotonicity of f ∈ F can be proven in PV,
i.e.

⊢PV
∀I, J ⊆ [n],

(f(I) = 0 ∧ J ⊆ I)→ (f(J) = 0).

In words, we can show that if f(I) = 0, then for
any subset J ⊆ I , we can also assert that f(J) = 0.
We call any function class F for which we can
prove this a “natural” monotone function class. As
we will show, the class of all monotone circuits is
an example of such a class.

It will be helpful to think about the witness encryption
scheme explicitly in terms of pv-IO. For the statement
(c1, . . . , cn) with respect to commitment public key pk
and access structure f , the witness encryption is the pv-
IO of the following program:

P [(c1, . . . , cn, pk, f)](J, {rj}j∈J):
• For all j ∈ J , check if cj = Com.Enc(1; rj).

If any fail, abort.
• If f(J) = 1, output s. Else, output ⊥.

With these additional properties, we now show the mod-
ified analysis. Hybrids H1 and H2 are as before. Then,
we proceed as follows. (We note that the consecutive
hybrids using pvIO security can be a collapsed hybrid.
However, we will spell it out over several hybrids for
clarity.)
H3 Sample a PRG seed sd, and sample

(r, r′1, . . . , r
′
n) ← G(sd), sample pk ←

Com.Gen(1λ; r), and set ci = Com.Enc(pk, 1; r′i).
This follows from PRG security. Looking forward,
we are compressing the randomness sd so that
we can hardcode this in the pvIO in the next step
hybrid.

H4 Hardcode sd in the obfuscated program, and mod-
ify the functionality of the programs as follows:

Qsd[(c1, . . . , cn, pk, f)](J, {rj}j∈J) :

a) Compute (r, r′1, . . . , r
′
n)← G(sd).

b) Sample pk′ ← Com.Gen(1λ; r). If pk ≠
pk′, abort.

c) If ci = Com.Enc(pk, 1; r′i), then add i to I .
Else, if ci ≠ Com.Enc(pk, 0; r′i), abort.

d) If f(I) ≠ 0, abort.
e) For all j ∈ J , check if cj =

Com.Enc(1; rj). If any fail, abort.
f) If f(J) = 1, output s. Else, output ⊥.

The first and second lines clearly do not interfere
with the functionality of the program by con-
struction. For the third line, we note that ci ≠
Com.Enc(pk, b; r′i) for either b = 0 or b = 1.
Therefore, by construction, the program does not
abort at this step. Finally, the check that f(I) = 0
also passes by construction (the adversary must
choose I such that f(I) ≠ 0). Note that here, we
use the fact that running f on I is a PV proof of
the fact that f(I) = 0.

H5 At this point, we can switch the program to one that
always outputs ⊥ via a PV-proof of equivalence.
We sketch the PV proof:

(i) If the input J ⊆ I , then since f(I) = 0, by
the proof of monotonicity of f , we can conclude
f(J) = 0.

(ii) Hence, if J ⊆ I , the program outputs ⊥.
(iii) If J ̸⊆ I , there exists j ∈ J such that j /∈ I .
(iv) Recall that the last line of the program is only

reached if cj = Com.Enc(pk, 0; r′j).
(v) By the PV proof of binding of the com-

mitment scheme, we know for all rj , cj ̸=
Com.Enc(pk, 1; rj). Hence, the program always
aborts.

(vi) Therefore, if J ̸⊆ I , the program outputs ⊥.
(vii) By the law of excluded middle, (ii) and (vi)

imply that the program outputs ⊥ for all inputs.
Therefore, we can invoke pv-IO security.

At this point, s is no longer in the adversary’s view,
therefore proving security of the scheme.

At a high level, we relied on the fact that given the
short seed sd used to generate the commitments as well
as the PV proof of monotonicity, one can argue that
the statement (c1, . . . , cn, pk, f) has a small “PV proof
of non-membership”, following the terminology of [41],
[46].

Improvement #3: Improving public parameters to a
URS of size n. In the previous construction, the public
share was the list of commitments (c1, . . . , cn). We now
show that we can improve the public parameters in two
ways:

• The public share is a uniformly random string.
• The length of the public share is size n (as opposed

to O(n · poly(λ))).
To achieve this, we first have to change the pro-
gram so that it no longer takes all of the commit-
ments {ci}i∈[n] as public input, and instead, we com-
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pute an SSB hash of all the commitments dig ←
SSB.Hash(hk, (c1, . . . , cn)), and hardcode dig in the
obfuscated program. We then give each party ci, a com-
mitment opening ri, along with an SSB local opening
ρi so that SSB.Ver(hk, dig, i, ci, ρi) = 1.

To ensure that an adversary cannot feed “incorrect”
commitments to the program, we rely on the fact that
there exists a small program of size n+ poly(λ) which
outputs the commitments {ci}i∈[n] if all the commit-
ments are generated from a single, short PRG seed sd:

M(I, sd) :

• Sample (r, r1, . . . , rn)← G(sd).
• Sample pk← Com.Gen(1λ; r).
• For i ∈ I , sample ci ← Com.Enc(pk, 1; ri).
• For i /∈ I , sample ci ← Com.Enc(pk, 0; ri).
• Output {ci}i∈[n].

Therefore, in one of the hybrids, we can switch to
computing ci “on the fly” from M(I, sd), and rely on
SSB security to ensure that the adversary’s inputs are
consistent with these values. To achieve rate-1 in this
program size, we then rely on our padding techniques
from Section III-D to pay for the “padding” in the form
of a size n public random string.

Improvement #4: Reducing public share size below
n. To reduce the size of the share below n, we rely on
two facts:

• Our security analysis only relied on the fact that
commitments of 0 cannot be switched to commit-
ments of 1 to assert Step (iv) of the PV proofs.
Therefore, we do not need to ensure that every
commitment that the evaluator feeds is generated
honestly, but only that commitments of zero are not
flipped to commitments of ones.

• Suppose there exists T ⊇ I such that f(T ) = 0.
Then, it suffices to ensure that commitments of i /∈
T correspond to commitments of 0. Such a T is
called a zero-certificate of I .

In other words, we can use any set T ⊇ I such
that f(T ) = 0 in our security analysis. If T has a
small description, we can then use a program of size
smaller than n (i.e. t-bounded conditional Kolmogorov
complexity less than n) to generate the commitments
corresponding to 0, and conduct the same security proof
as before.

Example: Bipartite matching. As an example, we
consider the bipartite matching access structure f on
n = m2 parties, where each party represents a unique
edge in a bipartite graph on V1 and V2, each of size

m. Then, f(E) = 1 if and only if E contains a perfect
matching.

We now show that for any E such that f(E) = 0,
there exists a “zero-certificate” W ⊇ E such that
f(W ) = 0, and f(W ) can be described in 2m + O(1)
bits. With this, one can then improve our secret sharing
scheme in the setting of bipartite matching to have a
public share of size 2m = 2

√
n rather than n.

Consider an E such that f(E) = 0. We now
construct a new set W ⊇ E such that f(W ) = 0 which
has a short description. By Hall’s marriage theorem [36],
we know that f(E) = 0 if and only if there exists some
S ⊆ V1 such that |NE(S)| < |S|, where NE(S) denotes
the set of all neighbours of S in the subgraph defined by
E. Let W be the subgraph obtained by taking the whole
bipartite graph and deleting all edges between S and
V2 \NE(S). Clearly, W ⊆ E. Moreover, it is clear that
|NW (S)| < |S| by construction, and hence W does not
contain a perfect matching (i.e. f(W ) = 0). Moreover,
W can be described by S and V2 \ (S), which can be
represented by a string of size 2m+O(1). This completes
the claim.

D. Padding with Public Randomness and High Rate
Obfuscation

In this section, we describe a general template to
overcome the common “necessary padding” issue via
a public random string. As a corollary, we show how
to improve the rate of IO schemes for many classes of
programs. For simplicity, we present the result here for
programs M without a public part.

Our construction uses two main ingredients: a punc-
turable PRF family, and a fully succinct IO scheme iO.
At a high-level, the algorithm takes as input a program
M , a padding parameter 1ρ and a public string URS,
and first encrypts M using a “pseudorandom” rate-1
encryption via the puncturable PRF key k. It then uses
URS to pad the encryption to length ρ. It then constructs
a program Uℓ,k which takes the padded string as public
input and uses ℓ and k to parse the input and compute
M .

padO(M, 1ρ,URS):
• Let ℓ = |M |.
• Encrypt and pad:

– Sample k ← PRF.Gen(1λ).
– Let ct = {M [i]⊕PRFk(i)}i∈[ℓ], i.e. use the
PRF to compute a rate-1 encryption of the
program.

– Truncate URS to length ρ− ℓ.
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– Let r = ct||URS be a string of length ρ
(with no delimiter separating the two parts).

• Obfuscate: Construct the following program
Uℓ,k[r](x):
– Parse r = (ct,URS) using the parameter ℓ,

and ignore URS.
– Decrypt ct using k to obtain M .
– Obtain M(x).

• Let Γ = iO(Uℓ,k, pub = r), where iO is a fully
succinct IO scheme.

• Output (r,Γ).

By construction, it is clear that the program that is
output has length ρ + poly(λ), and that ρ − ℓ bits of
the obfuscation correspond to a public random string of
the obfuscator’s choice.

Remark III.1. Note that if we instead relied on
description-succinct IO (which is not input-succinct), we
get an obfuscated program of size ρ+poly(λ, n), where n
is a bound on the input-length. This gives a construction
of padO from iO for circuits and LWE (without making
any non-standard assumptions such as the existence of
succinct witness encryption). For most of this overview,
we will instantiate iO as a fully succinct IO scheme.

For simplicity, we will omit URS from the syntax of
padO for the rest of this overview.

Security for adjacent and close programs. Our first
observation is that for programs M0 and M1 that
are “adjacent” (recall that this means that they are
functionally-equivalent but differ in τ = O(1) bits), then
padO(M0, 1

ρ) is indistinguishable from padO(M1, 1
ρ)

for ρ ≥ max(|M0|, |M1|). Our proof strategy is rel-
atively simple: we will puncture the PRF key at the
points that the two programs differ, and the hardcode
the differing bits in the obfuscation.

We now outline the proof in more detail for the case
where τ = 1 and |M0| = |M1| (we argue how to modify
the proof when |M0| > |M1| after the sketch). Suppose
the two programs differ at index i. We then proceed in
a few hybrids as follows:
H1 Output (r,Γ)← padO(M0, 1

ρ).

H2 In this hybrid, puncture the PRF key k at index i,
and hardcode b = M0[i] in the obfuscated program
Uℓ,k{i},i,b. It then uses ct and punctured key k{i}
to derive all the bits of M0 other than the ith bit,
and uses b at the ith bit. This follows from iO
security since the functionality of the program has
not changed.

H3 Switch the hardcoded bit b in the program to

M1[i]. This does not change the functionality of
the program because M0 ≡ M1 and they differ
only on index i.

H4 Switch the ith bit of ct to a uniformly random
bit. Since k is hidden from the distinguisher’s view
(the distinguisher only sees k{i}), PRFk(i) looks
pseudorandom. Therefore, this change is indistin-
guishable.

H5 Switch the ith bit of ct to PRFk(i)⊕ M1[i] . Once
again, this follows from punctured key security.

H6 Unpuncture the key k, and change the obfuscated
program to Uℓ,k as in the padO algorithm. This is
indistinguishable from the previous hybrid by func-
tionality equivalence of the obfuscated program.
This hybrid is now identical to padO(M1, 1

ρ).
This completes the proof. In the event that |M0| > |M1|,
note that i = ℓ (they differ in the last bit). Then, we do
not need to perform H5, and we instead obfuscate Uℓ−1,k

in the last hybrid.

Security for ρ-close programs. Once we have that
padO is secure for adjacent programs, we can now show
that it is secure for ρ-close programs M0 and M1. Recall
that we call M0 and M1 ρ-close if there exists a poly(λ)-
sequence of adjacent machines starting with M ′

0 and
ending with M ′

1, where M ′
b is Mb padded to size ρ.

Then, by a simple hybrid argument over the sequence of
adjacent machines, we have that

padO(M0, 1
ρ′
) ≈c padO(M1, 1

ρ′
).

for all ρ′ ≥ ρ. Moreover, by construction, we saw that
ρ′− |M | bits of the construction indeed correspond to a
uniform public string.

Corollary: Rate-1 Null-IO. Recall that null-IO pre-
serves functionality, but only guarantees indistinguisha-
bility for programs M0 and M1 which are identically
zero on all inputs. With our general theorem in hand, it
suffices to show that for any two programs M0 and M1,
both of length ℓ which are identically zero on all inputs,
M0 and M1 are (ℓ+O(1))-close. To see this:

• Start from M0.
• Add a line to the program that changes the output

to 0 (this is an O(1) change).
• Switch the bits of M0 one at a time to bits of M1.
• Change the output of the program to the output of
M1.

It is clear that the above programs are functionally
equivalent, since all programs evaluate to 0. Moreover, it
is easy to see that that the programs are ℓ+O(1)-close.
Therefore, we get that padO(M0, 1

ρ) ≈c padO(M0, 1
ρ)
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for ρ = ℓ + O(1), thereby giving us a rate-1 Null-IO
scheme.

Corollary: High-rate batch obfuscation. Suppose we
are given k programs M1, . . . ,Mk to obfuscate simul-
taneously, and the goal is to construct an obfusca-
tion Γ ← O(M1, . . . ,Mk) with the functionality that
Γ(i, x) = Mi(x) (this setting was considered by [2]).
Additionally, we want the guarantee that (M ′

1, . . . ,M
′
k)

such that Mi ≡M ′
i , we have that

O(M1, . . . ,Mk) ≈c O(M ′
1, . . . ,M

′
k).

We claim that (M1, . . . ,Mk) and (M ′
1, . . . ,M

′
k) are (k+

1) · ℓ+O(1)-close.
• Start with the program UM1,...,Mk

(i, x) = Mi(x).
• Add the description of M ′

1 to the program (without
changing the functionality of the program).

• On inputs of the form (1, x), switch the output to
M ′

1(x).
• Switch the hardcoded value M1 to M ′

1, one bit at
a time.

• Switch back to using the first copy of M ′
1.

• Erase the second copy of M ′
1 from the program one

bit at a time. The resulting program is now of the
form UM ′

1,M2,...,Mk
.

Repeating this argument for each i ∈ [k], we have that
the two programs are in fact ρ-close for ρ ≥ (k + 1) ·
ℓ + O(1). Therefore, we can set the batch-obfuscation
algorithm

O(M1, . . . ,Mk) = padO((M1, . . . ,Mk), 1
ρ)

for ρ = (k + 1) · ℓ + O(1), and guarantee security.
Therefore, this gives us rate- k

k+1 batch obfuscation. Note
that as a corollary, we obtain rate-1/2 IO.

Better rate for pv-IO. While the above claims crucially
relied on IO for all TMs, we also show results in the
setting of pv-IO. Consider the explicit construction of
JJ22 of pv-IO ( [41, Figure 11]). Their construction
is roughly as follows: An obfuscation of M is an
obfuscation of the program M̂ which does the following:
on input (i, g),

• Compute the circuit Ci corresponding to running
M on an input of size i.

• Compute a “gate-by-gate” circuit obfuscation of Ci.
• Output the obfuscation of gate g.

The program M̂ is padded size ρ to additionally contain
a programMΠ that outputs a propositional proof corre-
sponding to the PV proof Π. Other hybrids make small
changes to the program (e.g. puncturing PRF keys, etc).
Therefore, M̂0 and M̂1 are γ + poly(λ)-close.

Our observation is that if we used our padO scheme
(instantiated via description-succinct IO) in place of IO
for circuits, we can pay for MΠ in rate-1! Therefore,
this improves the JJ22 efficiency as follows: for families
M1 and M2 with a PV proof of size at most γ, we have
that

|O(1λ, 1γ ,M)| = γ + 2|M |+ poly(λ).

Propogating this through our construction of fully suc-
cinct IO and padO, we can construct high-rate pv-IO.
For example, there exists a null-IO scheme which is rate-
1 in the program M and PV proof Π of the fact that
∀x,M(x) = 0.

IV. PRELIMINARIES

Throughout, we will use λ to denote the security
parameter.

• We say that a function f(λ) is negligible in λ
if f(λ) = λ−ω(1), and we denote it by f(λ) =
negl(λ).

• We say that a function g(λ) is polynomial in λ if
g(λ) = p(λ) for some fixed polynomial p, and we
denote it by g(λ) = poly(λ).

Notation. We will use the following notation through
the work.

• For n ∈ N, we use [n] to denote {1, . . . , n}.
• We use the notation |x| or desc(x) to denote the bit-

length of string x. We use desc(x) when |x| has a
different interpretation, e.g. when x is a description
of a polynomial.

• If R is a random variable, then r ← R denotes
sampling r from R. If T is a set, then i ← T
denotes sampling i uniformly at random from T .

• We write RT(M,x) to denote the runtime of ma-
chine M on an input x. We say that the runtime
of M is bounded by a polynomial t(·) if for all x,
RT(M,x) ≤ t(|x|).

A. Extended Frege EF
In this work, we will use the extended Frege (EF)

system when discussing propositional logic. Such a
system is described by a set of variables, a set of connec-
tives, and a set of inference rules. Variables are the most
basic elements, usually represented by letters such as
x, y, z, and should be interpreted as taking on the value
of either “true” or “false”. We can then use standard
Boolen connectives such as →,¬,∧,∨,⊕ (representing
“imply”, “negation”, “and”, “or” and “xor” respectively)
to construct Boolean formulae. Finally, we define a finite
set of inference rules. Each inference rule is defined
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as A1, A2, . . . , Ak ⊢ A0, where A0, A1, . . . , Ak are
formulas. Intuitively, it means that “if A1, A2, . . . , Ak

are valid, then A0 is also valid”. If k = 0, then we say
such inference rule is an axiom. We use the following
set of axioms and modus ponens as inference rules for
propositional logic.

• Axiom 1: p→ (q → p)
• Axiom 2: (p→ (q → r))→ ((p→ q)→ (p→ r))
• Axiom 3: ¬¬p→ p
• Modus Ponens: p, p→ q ⊢ q

While the above description captures Frege sys-
tems, the extended Frege system additionally has the
following extension axiom. Namely, for a derivation
(θ1, θ2, . . . , θℓ) in EF , for each i ∈ [ℓ], θi needs to
satisfy the aforementioned constraint or θi is of the
form t ↔ A, where A is a formula, and t is a new
variable that has not been occurred in θ1, θ2, . . . , θi−1,
and also does not occur in A. We define the size of a
proof (θ1, θ2, . . . , θℓ) as the summation of the sizes of
the formulas θ1, θ2, . . . , θℓ.

B. Theory PV

In this work, we will often use Cook’s Theory PV
to argue that a mathematical claim has a “uniform” EF
proofs (Theorem IV.2).

Cook introduced theory PV [20] to capture the intu-
ition of feasibly constructive proofs (i.e. polynomial-time
reasoning). Its language consists of function symbols rep-
resenting basic polynomial-time computable functions,
and terms, which are syntactic expressions built by com-
posing these function symbols with variables (formally,
every variable is a term, and if f is a k-ary function
symbol and t1, . . . , tk are terms, then f(t1, . . . , tk) is
also a term). The formulas of PV are equations of
the form t1 = t2 between terms, expressing that the
corresponding polynomial-time computations produce
the same output. Proofs in PV consist of equational
derivations obtained from the defining axioms of the
function symbols using the standard rules of equality
(reflexivity, symmetry, transitivity, and substitution), and
the theorems of PV capture identities that hold between
polynomial-time computable functions. For more formal
details on PV, we refer the reader to [41], [52].

We use the notation ⊢PV t = u to denote that there
exists a PV proof of the fact that t = u.

Remark IV.1. Note that if one can prove ⊢PV t(x) =
u(x) where t and u are function symbols and x is a
free variable, then, one can then meta-mathematically
interpret as a PV proof that for all x, t(x) = u(x).
For ease of readability and to be explicit about free

variables, we sometimes write ⊢PV ∀x, t(x) = u(x).
Note, however that ∀ quantifier is not part of the formal
syntax for PV.

Theory PV1. In the same work, Cook also introduced
theory PV1 (we defer the details to Appendix A) which
includes truth-functional combinations of equations, us-
ing “∧,∨,¬,→,↔”, which express “and”, “or”, “nega-
tion”, “imply”, and “equivalent”. Moreover, Cook [20]
showed that PV1 is a conservative extension of PV. In
other words, any theorem of the fact that “t = u” (where
t and u are terms) in PV1 can also be proven in PV.
Therefore, we will primarily rely on PV1 [20] since it
makes formalizing proofs easier. We will not distinguish
between PV and PV1 explicitly.

Throughout this work, we will often write theorems
of the form ⊢PV s → (t = u), or equivalently,
s ⊢PV (t = u). Although this claim is not an equation
(and in fact, PV does not allow for →), one can should
interpret this claim instead as a PV1 proof of the fact
that ⊢PV ITE(s, t, u) = u, where ITE is the function
symbol corresponding to the if-then-else function:

ITE(s, t, u) =

{
t if s is true,
u otherwise.

(2)

As shown in [52], the function symbol ITE is in fact
definable in PV. For brevity and ease of readability, we
abuse notation and write ⊢PV s → (t = u) to mean
⊢PV ITE(s, t, u) = u.

Propositional Translation. The main property about PV
proofs that we will rely on is that any proof in PV can
be translated to polynomial size EF proof [20], [22]. Let
t(x) = u(x) be a PV equation with PV proof Π. Then,
let Jt = uKn denote the EF claim that

∀x ∈ {0, 1}n, t(x) = u(x).

Theorem IV.2 (Corollary of ER Simulation Theorem in
[20]). Let t(x) and u(x) be terms in PV, and let Π be a
PV proof that t = u. Then, there exists a machine MΠ

and polynomial q such that on input 1n, outputs a EF
proof of Jt = uKn in q(n) time.

C. Indistinguishability Obfuscation for Turing Machines

In this section, we define indistinguishability obfus-
cation for Turing machines.

Syntax. An indistinguishability obfuscation scheme for
Turing machines (TMs) consists of a probabilistic al-
gorithm iO that takes as input a security parameter 1λ,
a program M , an input length bound n. It outputs an
obfuscation M̃ .
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Definition IV.3. An indistinguishability obfuscation
scheme iO for TMs satisfies the following properties:

• Correctness: For every λ, n ≤ 2λ, machine M ,
and input x such that |x| ≤ n and RT(M,x) ≤ 2λ,
we have that

Pr
[
M̃(x) = M(x) : M̃ ← iO(1λ,M, n)

]
= 1 .

We say that the scheme is N -correct for a function
N(λ) ≤ 2λ if the above only holds for n ≤ N(λ).

• Efficiency: In the correctness experiment above:
– The running time of iO is poly(λ, |M |, n).
– There exists a polynomial q such that

RT(M̃, x) = q(λ,RT(M,x)).
– We say that the scheme is input-succinct if the

running time of iO is at most poly(λ, |M |).
• Security: For every poly-size A and polynomial p,

there exists a negligible function µ such that for
every λ, M0,M1 and bound n ≤ p(λ) such that
– |M0| = |M1| ≤ p(λ).
– For every input x of length at most 2λ, it

holds that M0(x) = M1(x) and RT(M0, x) =
RT(M1, x).

we have that

Pr

[
A(M̃b) = b :

b← {0, 1}
M̃b ← iO(1λ,Mb, n)

]
≤ 1

2
+ µ(λ) .

We say the scheme is Γ-secure if the advantage
above is at most (Γ(λ))−O(1) for all adversaries of
size poly(Γ).

Remark IV.4 (Augmenting the definition for input suc-
cinct IO). For IO schemes that are input-succinct, we
can remove the bound n on the input size from the
parameters of iO and instead fix n = 2λ (or n = N(λ)
if the scheme is only N -correct).

1) IO for uniform EF-equivalent Machines: In this
section, we recap the result on IO for TMs of Jain and
Jin [41] (JJ). JJ constructs a candidate input-succinct IO
scheme for TMs, and show security for all pairs of pro-
grams M0 and M1 for which ⊢PV ∀x,M0(x) = M1(x).
For convenience, in this work, we will instead follow
the formulation of Ma, Dai and Shi [56] that consider
instead pairs of programs M0 and M1 for which there
exists a uniform EF-proof of equivalence. The relation
between PV proofs and uniform EF proofs is given by
Theorem IV.2.

To state the theorem, we first introduce the following
definition.

Definition IV.5 (EF equivalent machines). Let ρ be a
constant and T be a polynomial. We say that two TMs
M0 and M1are (ρ, T )-EF equivalent if there exists a
TM MΠ of size at most ρ which on input n,M0,M1

and outputs an EF proof of JM0(x) = M1(x)Kn in time
T (n).

Next we define EF-security: a relation of the security
in Definition IV.3 that holds only for pairs of EF-
equivalent programs instead of every pair of functionally
equivalent programs.

Definition IV.6 ((ρ, T )-EF security). Let ρ(λ) and
T (λ, n) be polynomials. We say that an IO scheme sat-
isfies (ρ, T )-EF-security if for every λ, and polynomial-
sized adversary A and polynomial p, there exists a
negligible function µ such that for every M0 and M1

satisfying:

• |M0| = |M1| ≤ p(λ),
• For every input x, RT(M0, x) = RT(M1, x).
• M0 and M1 are (ρ(λ), T (λ, ·))-equivalent,

Pr

[
A(1λ, M̃b) = b :

b← {0, 1}
M̃b ← iO(1λ,Mb)

]
≤ 1

2
+µ(λ) .

We say the scheme is Γ-secure if the advantage above is
at most (Γ(λ))−O(1) for all adversaries of size poly(Γ).

Definition IV.7. (EF-IO) Let N(λ) ≤ 2λ be a function.
An N -correct EF-IO scheme is given by an algorithm
iOρ,T such that for every pair of polynomials ρ(λ)
and T (λ, n), iOρ,T is an N -correct input-succinct IO
scheme with (ρ, T )-security, satisfying the following
efficiency: In the correctness experiment described in
Definition IV.3:

• The running time of iOρ,T (1
λ,M) is

poly(λ, |M |, ρ(λ)).
• The exists a polynomial q such that RT(M̃, x) =
q(λ,RT(M,x), ρ(λ), T (λ, |x|)).

Theorem IV.8 ( [41], [56]). Let N(λ) ≤ 2λ be
a function. Assuming poly(N)-hardness of LWE, sub-
exponential hardness of one-way functions, and sub-
exponential security of IO for circuits, for every ρ ∈ N
and polynomial T , there exists a N -correct EF-IO
scheme.

D. PRGs and Puncturable PRFs

Definition IV.9 (Pseudorandom Generators (PRGs)).
Fix a polynomial p. A pseudorandom generator G :
{0, 1}λ → {0, 1}p(λ) is a function mapping λ bits
to p(λ) > λ bits such that for any polynomial-sized
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adversary A,∣∣∣∣ Pr
r∈{0,1}λ

[A(1λ, G(r)) = 1]

− Pr
z∈{0,1}p(λ)

[A(1λ, z) = 1]

∣∣∣∣ ≤ negl(λ).

Definition IV.10 (Puncturable PRF). A puncturable
PRF family on key space K = {Kλ}λ, do-
main X = {Xλ}λ, output space Y = {Yλ}λ
and polynomial s(λ) is a tuple of PPT algorithms
(PPRF.Gen,PPRF.Punc,PPRF.Eval) with the follow-
ing interface and properties.

• PPRF.Gen(1λ) : On input the security parameter
1λ, outputs a key k ∈ Kλ.

• PPRF.Punc(k, S): On input a key k ∈ Kλ and a
set S ⊆ Xλ such that |S| ≤ s(λ), outputs a new
key k({S}) ∈ Kλ.

• PPRF.Eval(k, x): On input k ∈ Kλ and x ∈ Kλ,
outputs some value y ∈ Yλ.

• Functionality preserving: For all sets S ⊆ X of
size |S| ≤ s(λ), for all x /∈ S,

Pr

[
Eval(k{S}, x)
= Eval(k, x)

:
k ← Gen(1λ),

k{S} ← Punc(k, S)

]
= 1.

• Polynomial pseudorandomness at punctured
points: Consider the following experiment
EXPRA(b, λ) between a challenger C and adversary
A:
– First, A chooses a set S ⊆ Xλ such that |S| ≤
s(λ), and sends it to C.

– C samples k ← PPRF.Gen(1λ), and computes
k{S} ← PPRF.Punc(k, S).

∗ If b = 0, compute L0 =
{xi,PPRF.Eval(k, xi)}xi∈S .
∗ If b = 1, compute L1 = {xi, yi}xi∈S where

each yi ← Y .
Give k{S}, Lb to A.

– A produces a bit b′.
Let Wb be the event that the adversary outputs 1 in
experiment b, and define the adversary’s advantage
to be AdvRA(λ) = |Pr[W0]− Pr[W1]|. We say that
the PPRF is pseudorandom at punctured points if
for all PPT adversaries A, AdvRA(λ) = negl[λ].

Definition IV.11 (Puncturable PRF with PV proof of
Correctness, [41]). We say a family of puncturable PRFs
(PPRF.Gen,PPRF.Eval,PPRF.Punc) has a PV proof
of correctness if Gen,Eval,Punc can be formalzied as
function symbols in PV, and there is a proof that:(

x /∈ S
∧ k ← PPRF.Gen(1λ)

)

⊢PV
(

PPRF.Eval(PPRF.Punc(k, S), x)
= PPRF.Eval(k, x)

)
.

Lemma IV.12 ( [41, Lemma 14]). The GGM con-
struction [33] of puncturable PRFs has a PV proof of
correctness.

E. Bit commitments

Syntax. A commitment scheme in the CRS model con-
sists of polynomial-time algorithms (Gen,Enc,Ver) with
the following syntax:

• Com.Gen is a probabilistic algorithm that takes
as input a security parameter 1λ, and outputs a
common reference string crs.

• Com.Enc(pk,m) is a probabilistic algorithm that
takes as input the common reference string crs and
a bit m ∈ {0, 1}, and outputs a commitment c along
with an opening r.

• Com.Ver(crs, c,m, r) is a deterministic algorithm
which takes as input the common reference string
crs, commitment c, message m and opening r, and
either accepts or rejects.

Definition IV.13 (Commitment scheme in the CRS
model). A tuple of PPT algorithms (Com.Gen,
Com.Enc,Com.Ver) is a commitment scheme in a CRS
model if it satisfies the following conditions:

Correctness: For all bits m ∈ {0, 1}, we have that:

Pr

[
Ver(crs, c,m, r) = 1 :

crs← Gen(1λ),
(c, r)← Enc(crs,m)

]
≥ 1− negl(λ).

We say that the construction has perfect correctness
if the above probability is exactly 1.

Statistical Binding: For all crs← Com.Gen(1λ), and
(c, r)← Com.Enc(crs,m), we have that for all r′,
Com.Ver(crs, c, 1−m, r′) = 0.

Γ-secure-Computational Hiding: For all adversaries
A of size poly(Γ(λ)),∣∣∣∣Pr [ A(crs, c) = 1 :

crs← Com.Gen(1λ),
(c, r)← Com.Enc(crs, 0)

]
−Pr

[
A(crs, c) = 1 :

crs← Com.Gen(1λ),
(c, r)← Com.Enc(crs, 1)

]∣∣∣∣
≤ (Γ(λ))−O(1)

Definition IV.14 (Commitment scheme with PV proof
of binding.). We say that the commitment scheme
(Com.Gen,Com.Enc,Com.Ver) has a PV proof of bind-
ing if:

⊢PV

 b ∈ {0, 1},
pk← Com.Gen(1λ),

c← Com.Enc(crs, b; r)


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→ ∀r′, 0 ̸= Com.Ver(crs, c, 1− b, r).

In words, the condition says that for every CRS, any
commitment of the bit b cannot be opened to a bit 1− b.

Lemma IV.15. Suppose there exists a public-key encryp-
tion scheme (PKE.Gen,PKE.Enc,PKE.Dec) with a PV-
proof of correctness, i.e.

⊢PV

 (pk, sk)← PKE.Gen(1λ)
ct← PKE.Enc(pk, b; r)
b′ ← PKE.Dec(sk, ct)

→ b = b′.

Then, there exists a perfectly binding commitment
scheme with a PV proof of binding.

Proof sketch.. The construction is straightforward.
• Com.Gen(1λ): Sample (pk, sk) ← PKE.Gen(1λ),

and output pk.
• Com.Enc(pk, b; r): Compute PKE.Enc(pk, b; r),

and output ct as the commitment, and r as the
opening.

• Com.Ver(pk, ct, b, r): Accept if ct =
PKE,Enc(pk, b; r).

It suffices to argue that for all r, r′, PKE.Enc(pk, 0; r′) ̸=
PKE.Enc(pk, 1; r). Suppose otherwise, and there exists
some ct. Then, PKE.Dec(ct) = 0 and PKE.Dec(ct) =
1 by the correctness of the PKE scheme, leading to a
contradiction. This completes the proof.

Therefore, as shown in [41], such a commitment
scheme can be instantiated from LWE, or from DDH.

F. Somewhere Statistically Binding Hash

In this section, we recall the notion of statistical bind-
ing hash functions [39], additionally with an extraction
property (sometimes also referred to as a Somewhere
Extractable Hash (SEH)).

Syntax. A somewhere statistically binding
(SSB) hash scheme is a type of algorithms
(Gen,TGen,Hash, Ver,Ext) with the following syntax:
Gen(1λ, 1N ,Σ)→ hk. On input a security parameter

1λ, message length 1N , alphabet Σ, outputs a hash
key hk.

TGen(1λ, 1N ,Σ, S ⊆ [N ])→ (hk∗, td). On input a se-
curity parameter 1λ, message length 1N , alphabet
Σ, outputs a hash key hk∗ along with a trapdoor td.

Hash(hk,x ∈ ΣN )→ τ . On input a hash key hk and a
string x, output a hash value τ .

Open(hk,x, i)→ ρ. On input a hash key hk, a string
x ∈ ΣN and an index i ∈ [N ], output a “local
opening” ρ.

Ver(hk, τ, i, y, ρ)→ 0/1. On input a hash key hk, hash
value τ , index i ∈ [N ], symbol y ∈ Σ and opening
ρ, the verification algorith mdecides to accept or
reject the local opening.

Ext(hk∗, td, τ)→ y. On input the hash key hk, trapdoor
td and hash value τ , the extraction algorithm out-
puts a string xS on the subset S (the subset which
was chosen during the TGen algorithm).

Definition IV.16. A somewhere statistically binding
(SSB) family (Gen,TGen,Hash, Ver,Ext) is required to
satisfy the following properties:

Succinct Key. The size of the key is bounded by
poly(λ, |S|, logN).

Succinct Hash. The size of the hash value c is
bounded by poly(λ, |S|, logN).

Succinct Local Opening. The size of the local open-
ing ρi ← Open(K,m, i, r) is bounded by
poly(λ, |S|, logN).

Succinct Verification. The running time of the verifi-
cation algorithm is bounded by poly(λ, |S|, logN).

Key Indistinguishability. For any non-uniform PPT
adversary A and any polynomial N = N(λ), there
exists a negligible function ν(λ) such that∣∣∣∣Pr [ A(hk) = 1 :

S ← A(1λ, 1N ),

hk← Gen(1λ, 1N ,Σ, 1|S|)

]
− Pr

[
A(hk∗) = 1 :

S ← A(1λ, 1N ),
(hk∗, td)← TGen(1λ, 1N ,Σ, S)

] ∣∣∣∣
≤ ν(λ).

We say the scheme is Γ-secure if the advantage
above is at most (Γ(λ))−O(1) for all adversaries of
size poly(Γ).

Opening Completeness. For any hash key hk, any
message x = (x1, . . . , xN ) ∈ ΣN , any randomness
r, and any index i ∈ [N ], we have

Pr

[
Ver(hk, τ, xi, i, ρi) = 1 :

τ ← Hash(hk,x),
ρi ← Open(hk,x, i)

]
= 1.

Extraction Correctness. For any subset S ⊆ [N ],
any trapdoor key (hk∗, td)← TGen(1λ, 1N , S), any
hash τ , any index i ∈ S, any bit xi∗ ∈ Σ, and any
proof ρi∗ , we have

Pr

[
Ver(hk, τ, xi∗ , i

∗, ρi∗) = 1
⇒ Ext(τ, td)|i∗ = xi∗

]
= 1.

Since the extracted value Ext(τ, td)|i∗ is unique,
the extraction correctness implies statistical binding
property.

Remark IV.17. We observe that the construction is a
Merkle-tree based construction, and thus the input length
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N can in fact be unbounded. That is, the running time
of Gen,TGen grows poly-logarithmically in N . If we set
N to be a slightly super-polynomial in λ, then the hash
key can support any polynomial input length. Hence, in
our construction, we suppress the input length N in Gen
and TGen.

“PV-friendly” SSB hashing. In this work, we need will
rely on a specific template towards constructing SSB
family via a two-to-one SSB (Two-SSB) family. At a
high level, a Two-SSB is a special SSB (without local
opening) with the following additional properties:

• It hashes exactly two blocks of equal length s
(where the length of s is any poly(λ)).

• The length of the hash is s+ poly(λ, log s).

We write the explicit transformation in the full ver-
sion of the paper in order to argue that the resulting
SSB hash satisfies Definition IV.21 if the underlying
Two-SSB satisfies Definition IV.20.

Theorem IV.18 ( [48]). There exists a two-to-one SSB
hash family assuming a rate-1 string oblivious transfer
scheme (see [25] for a definition) with either perfect
correctness or verifiable correctness, i.e. there is an
algorithm that efficiently checks that the output of an
OT sender message can be decrypted correctly.

Theorem IV.19 ( [25]). There exists a rate-1 string OT
from the following assumptions:

• Quadratic residuosity (QR). This scheme has per-
fect correctness.

• Decisional composite residuosity (DCR). This
scheme has perfect correctness.

• Decisional Diffie Hellman (DDH). This scheme has
verifiable correctness.

• Learning with error (LWE). This scheme has veri-
fiable correctness.

In the full version of the paper, we show that the
LWE based instantiation satisfies Definition IV.20.

Definition IV.20 (Two-to-one SSB with PV proof of
binding). We say a two-to-one SSB family has a PV
proof of binding if the following binding property can
be formalized in theory PV as function symbols:

(hk, td)← Two-SSB.TGen(1λ, 1s, b)
∧ x0, x1 ∈ σk,

∧ k ≤ 2λ ∧ h← Two-SSB.Hash(hk, (x0, x1))
∧ h ̸= ⊥

∧ y = Two-SSB.Ext(hk, td, h)


⊢PV xb = y.

Definition IV.21 (PV-friendly SSB hashing.). We say
that a SSB family is “PV-friendly” if the following
properties can be proven in PV: We can then additionally
prove the following properties about SSB in PV.

• PV proof of correctness: One can prove that if a
string is hashed honestly, then an honest opening
will be accepted. Formally,

hk← SSB.Gen(1λ,Σ)
∧ x← Σk

∧ τ ← SSB.Hash(hk, x)
∧ ρ← SSB.Open(hk, x, j)


⊢PV SSB.Ver(hk, τ, j, xj , ρ) = 1.

• PV proof of binding property: One can prove
that a hash key generated in trapdoor mode is
statistically binding, i.e. (hk, td)← SSB.TGen(1λ,Σ, j)
∧ 1← SSB.Ver(hk, τ, j, y, ρ)
∧ y′ ← SSB.Ext(hk, td, j, k, τ)

 ⊢PV y = y′.

• PV correctness of extraction: One can prove that
extraction on an honestly generated hash is correct,
i.e.

(hk, td)← SSB.TGen(1λ,Σ, j)
∧ x← Σk

∧ (τ, k)← SSB.Hash(hk, x)
y ← SSB.Ext(hk, td, (τ, k))

 ⊢PV y = xj

The above is a combination of the correctness and
binding properties.

V. FULLY SUCCINCT INDISTINGUISHABILITY
OBFUSCATION FOR EF -EQUIVALENT PROGRAMS

In this section, we will construct a fully succinct IO
for programs with uniform EF proofs of equivalence.

A. Definitions

We start by introducing the notion of IO for Turing
machines with split description. We consider programs
that are represented by a public part pub and a (possibly)
secret part M . Formally, we fix some universal machine
U that takes as input both parts of the program (M, pub),
an input x to the program and a runtime parameter
1T and simulates (M, pub) on x. We use M [pub](·) to
denote the machine U(M, pub, ·).

The syntax of IO for Turing machines with split
description is the same as the syntax of IO for Turing ma-
chines given in Definition IV.3 except that we consider
input programs M [pub] that include both public and
secret parts. The correctness and efficiency properties
are also the same as Definition IV.3. For machines with
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public description we additionally define the notions
of description-succinctness and full succinctness. We
also redefine the security property to account for the
program’s public part. For convenience, we rewrite here
the full definition of IO for TMs with split description.

Definition V.1 (IO for TMs for Split Description). An
indistinguishability obfuscation scheme iO for U satisfies
the following properties:

• Correctness: For every λ, n ≤ 2λ, machine
M [pub], and input x such that |x| ≤ n and
RT(M [pub], x) ≤ 2λ, we have that

Pr

[
M̃ [pub](x)

= M [pub](x)
: M̃ ← iO(1λ,M [pub], n)

]
= 1.

We say that the scheme is N -correct for a function
N(λ) ≤ 2λ if the above only holds for n ≤ N(λ).

• Efficiency: In the correctness experiment above:
– The running time of iO is poly(λ, |M |, |pub|).
– There exists a polynomial q such that

RT(M̃ [pub], x) = q(λ,RT(M [pub], x)).
– The size of the obfuscation |M̃ | =
poly(λ, |M |, |pub|, n).
∗ Input-succinctness: We say that the scheme

is input-succinct if additionally, |M̃ | =
poly(λ, |M |, |pub|).
∗ Description-succinctness: We say that the

scheme is description-succinct if |M̃ | =
poly(λ, |M |, n).
∗ Full succinctness: We say the scheme

is fully succinct if it is both input-
succinct and description-succinct, i.e. |M̃ | =
poly(λ, |M |).

• Security for split programs: For every poly-size A
and polynomial p, there exists a negligible function
µ such that for every λ, M0,M1 and bounds n ≤
p(λ) such that
– |M0| = |M1| ≤ p(λ), and |pub| ≤ p(λ).
– For every input x of length at most n, it

holds that M0[pub](x) = M1[pub](x) and
RT(M0[pub], x) = RT(M1[pub], x).

we have that

Pr

[
A(M̃b, pub) = b :

b← {0, 1}
M̃b ← iO(1λ,Mb[pub], n)

]
≤ 1

2
+ µ(λ) .

We now define what it means for an IO scheme to
have a PV proof of correctness. For this, we introduce
the PV symbol Uclock which on input M [pub], x and 1t,
simulates M [pub](x) for t steps, and outputs M [pub](x)
if the computation has halted, and ⊥ otherwise. As

discussed in [52, Section 2.1.1], this is in fact a valid
function symbol.

Definition V.2 (Indistinguishability obfuscation with PV
proof of correctness). We say that an indistinguishability
obfuscation scheme iO has a PV proof of completeness
if its correctness can be formalized in theory PV as
function symbols: M̃ = iO(1λ,M [pub], n; r),

|x| ≤ n,
Uclock(M [pub], x, 1t) ̸= ⊥


→

(
Uclock(M [pub], x, 1t)

= Uclock(M̃ [pub], x, 1q(t))

)
where q is some polynomial.

Just as in Remark IV.4, we will omit the input length
n from the input to IO when the scheme is input or fully-
succinct.

1) Uniform-EF-equivalent programs with split de-
scription.: In this section we define a restriction of
IO security to EF-equivalent programs, extending the
definition in Section IV-C1 to the case of programs with
split description.

Definition V.3 (EF-equivalence with split description).
Let ρ ∈ N and T be a polynomial. We say that programs
M0[pub](·) and M1[pub](·) are (ρ, T )-EF-equivalent if
there exists a machine MΠ of size ρ which takes as
input a length bound 1n, along with M0,M1, pub and
outputs an EF proof that JM0[pub](x) = M1[pub](x)Kn
in T (n) time.

Definition V.4 ((ρ, T )-EF security for IO for split
programs). Let ρ(λ) and T (λ, n) be polynomials. We
say that an IO scheme satisfies (ρ, T )-EF-security if
for every λ, and polynomial-sized adversary A and
polynomial p, there exists a negligible function µ such
that for every M0[pub] and M1[pub] satisfying:

• |M0[pub]| = |M1[pub]| ≤ p(λ).
• for all x, RT(M0[pub](x)) = RT(M1[pub](x)),
• M0[pub] and M1[pub] are (ρ(λ), T (λ, ·))-

equivalent,

Pr

[
A(M̃b[pub]) = b :

b← {0, 1}
M̃b[pub]← iO(1λ,Mb[pub])

]
≤ 1

2
+ µ(λ) .

We say the scheme is Γ-secure if the advantage above is
at most (Γ(λ))−O(1) for all adversaries of size poly(Γ).

Definition V.5. (EF-IO for programs with split descrip-
tion) Let N(λ) ≤ 2λ be a function. An N -correct EF-
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IO for split programs is given by an algorithm iOρ,T for
every pair of polynomials ρ(λ) and T (λ, n), iOρ,T is an
N -correct input-succinct IO scheme with (ρ, T )-security,
satisfying the following efficiency: In the correctness
experiment described in Definition V.1:

• The running time of iOρ,T (1
λ,M [pub]) is

poly(λ, |M |, |pub|, ρ(λ)). We say the scheme
is additionally fully succinct if the size of the
obfuscation is poly(λ, |M |, ρ(λ)).

• The exists a polynomial q
such that RT(M̃ [pub], x) =
q(λ,RT(M [pub], x), ρ(λ), T (λ, |x|)).

B. Main Theorem

Theorem V.6. Let N(λ) ≤ 2λ be a function. Assuming
• a poly(N)-secure, N -correct EF-IO (as in Defini-

tion IV.7),
• a poly(N)-secure, PV-friendly somewhere statisti-

cally binding hash function (Definition IV.21),
there exists an N -correct fully succinct EF-IO for TMs
with split description.

By instantiating the above theorem with Theo-
rem IV.8, we have the following corollary.

Corollary V.7. Let N(λ) ≤ 2λ be a function. Assuming
• poly(N)-hardness of Learning with Errors,
• sub-exponentially secure one-way functions, and
• sub-exponentially secure indistinguishability obfus-

cation for circuits,
there exists a N -correct, (ρ, T )-secure fully succinct EF-
IO scheme. Moreover, the scheme has a PV proof of
correctness.

We defer the proof of this theorem to the full version
of this paper.

C. Description-succinct IO

While constructions of description-succinct IO (with-
out input-succinctness) have been implicit in prior works,
we provide an alternative construction that follows as a
corollary of Theorem V.6.

Corollary V.8 (Alternative construction of description–
succinct IO.). Assuming

• sub-exponentially secure Learning with Errors,
• sub-exponentially secure one-way functions, and
• sub-exponentially secure indistinguishability obfus-

cation for circuits,
there exists a description-succinct IO scheme for split
programs.

We defer the proof of this theorem to the full version
of the paper.

VI. EQUIVALENCE BETWEEN SUCCINCT IO,
WITNESS ENCRYPTION AND SNARGS

In this section, we show an equivalence (up to
standard assumptions) between the existence of

• input-succinct (resp. fully succinct) IO with PV-
proof of correctness,

• witness-succinct (resp. fully succinct) witness en-
cryption with PV-proof of correctness, and

• and witness-succinct (resp. fully succinct) non-
adaptive SNARGs with PV-proof of correctness and
uniqueness.

We first define witness encryption and SNARGs along
with these efficiency guarantees in Section VI-A, and
then present the main theorem in Section VI-B.

A. Definitions

In this section, we recall the definition of witness
encryption [29] and succinct non-interactive arguments
(SNARGs), and introduce terminology to refer to various
efficiency metrics for the size of the witness encryption
ciphertext.

Syntax. A witness encryption scheme for NP is a tuple
of algorithms (Enc,Dec):

• Enc is a probabilistic algorithm that takes as input
a security parameter λ, a machine R, instance x,
a witness length bound n, and a bit b. It outputs a
ciphertext ct.

• Dec is a deterministic algorithm that takes as input
a a machine R, an instance x, a witness w and a
ciphertext ct. It outputs a bit b or ⊥.

Definition VI.1 (Witness encryption). A witness encryp-
tion scheme (Enc,Dec) for NP satisfies the following
properties:

• Correctness: For every machine R, instance x,
witness w satisfying |w| ≤ n ≤ 2λ, R(x,w) = 1
and RT(x,w) ≤ 2λ, bit b ∈ {0, 1}, we have that

Pr
[
Dec(R, x, w, ct) = b : ct← Enc(1λ,R, x, n, b)

]
= 1 .

We say that the scheme is N -correct for a function
N(λ) ≤ 2λ if the above only holds for n ≤ N(λ).

• Efficiency: In the correctness experiment above:
– The running time of Enc is poly(λ, |R|, |x|, n).
– The running time of Dec is
poly(λ,RT(R, (x,w))).

– Witness-succinctness: The scheme is witness-
succinct if |ct| = poly(λ, |R|, |x|).
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– Full succinctness: We say that the scheme is fully
succinct if |ct| = poly(λ, |R|).

• Security: For every poly-size A and polynomial p,
there exists a negligible function µ such that for
every λ, machine R, instance x and bounds n ≤
p(λ) such that
– |R|, |x| ≤ p(λ).
– For every w, R(x,w) = 0.
we have that

Pr

[
A(ct) = b :

b← {0, 1}
ct← Enc(1λ,R, x, n)

]
≤ 1

2
+ µ(λ) .

Definition VI.2 (Witness encryption with PV proof
of completeness). We say that a witness encryption
scheme (Enc,Dec) has a PV proof of completeness if its
correctness can be formalized in theory PV as function
symbols: (

ct = Enc(1λ,R, x, n, b; r) ∧
|w| ≤ n ∧ R(x,w) = 1

)
⊢PV Dec(R, x, w, ct) = b.

If the runtime t and input length n are clear from context,
we omit these conditions for readability.

Syntax. A succinct non-interactive argument (SNARG)
system for NP consists of algorithms (Gen,P,V) with
the following syntax:

• SNARG.Gen is a probabilistic algorithm that takes
as input a security parameter λ, a relation R (rep-
resented as a Turing machine), a time bound t,
an instance length bound nx and a witness length
bound nw. It outputs a common reference strings
crs.

• SNARG.P is a deterministic algorithm that takes as
input the common reference strings crs, a relation
R, an instance x and a witness w. It outputs a proof
Π.

• SNARG.V is a deterministic algorithm that takes as
input the common reference strings crs, a machine
R, an instance x and proof Π. It outputs a bit
indicating if it accepts or rejects.

Definition VI.3 (SNARG). A succinct non-interactive
argument system for NP (Gen,P,V) satisfies the fol-
lowing properties:

• Correctness: For every λ, nx, nw ≤ 2λ, machine
R, instance x, witness w such that R(x,w) =
1 and bounds |x| ≤ nx, |w| ≤ nw where

RT(R, (x,w)) ≤ 2λ, we have that

Pr

[
V(crs,R, x, π) = 1 :

crs← Gen(1λ,R, nx, nw),
π ← P(crs,R, x, w)

]
= 1 .

• Efficiency: In the correctness experiment above:
– The running time of Gen is poly(λ, |R|, nx, nw).
– The running time of P is poly(λ, |R|, nx, nw).
– The running time of V is poly(λ, |R|, nx).
– We say that the scheme is witness-succinct if
|crs| = poly(λ, |R|, nx, log nw) and |Π| =
poly(λ, |R|, nx).

– We say that the scheme is fully succinct if |crs| =
poly(λ, |R|) and |Π| = poly(λ, |R|).

• Non-adaptive Soundness: For every poly-size A
and polynomial p, there exists a negligible function
µ such that for every λ, machine R, instance x and
bounds nx, nw ≤ p(λ) such that
– |R|, |x| ≤ p(λ).
– For every w, R(x,w) = 0.
we have that

Pr

[
V(crs,R, x, π) = 1 :

crs← Gen(1λ,R, nx, nw),
π ← A(crs)

]
≤ µ(λ) .

Definition VI.4 (SNARG with unique proofs.). A
succinct non-interactive argument system for NP
(Gen,P,V) has unique proofs if for every ma-
chine R, instance x, pair of witnesses w1, w2 such
that R(x,w) = 1, R(x,w2) = 1 and bounds
nx ≥ |x|, nw ≥ max(|w1|, |w2|) and t ≥
max(RT(R, (x,w1)),RT(R, (x,w2))) we have that

Pr

 π1 = π2 :
crs← Gen(1λ,R, nx, nw),
π1 ← P(crs,R, x, w1),
π2 ← P(crs,R, x, w2)

 = 1 .

Definition VI.5 (SNARG with PV proof of complete-
ness). We say that a succinct non-interactive argument
system (Gen,P,V) has a PV proof of completeness and
uniqueness if its correctness can be formalized in theory
PV as function symbols:

crs← Gen(1λ,R, nx, nw)
∧ |w| ≤ nw

∧ R(x,w)
∧ π ← P(crs,R, x, w)


⊢PV (V(crs,R, x, π1) = 1)

Definition VI.6 (SNARG with PV proof of complete-
ness and uniqueness). We say that a succinct non-
interactive argument system (Gen,P,V) has a PV proof
of completeness and uniqueness if its correctness can be
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formalized in theory PV as function symbols:
crs← Gen(1λ,R, nx, nw)
∧ |w1|, |w2| ≤ nw

∧ R(x,w1) = 1 ∧ R(x,w2) = 1
∧ π1 ← P(crs,R, x, w1)
∧ π2 ← P(crs,R, x, w2)


⊢PV (π1 = π2).

B. Main Theorem

Theorem VI.7. Let N(λ) ≤ 2λ be a function. Assuming
the existence of:

• poly(N)-secure fully succinct EF-IO (Defini-
tion V.5) as well as one-way functions,

• poly(N)-secure PV-friendly SSB hash,
we have that the following statements are equivalent:

(I) There exists an N -correct fully succinct (resp.
input-succinct) IO with PV-proof of correctness.

(II) There exists an N -correct fully succinct (resp.
witness-succinct) WE with PV-proof of correctness.

(III) There exists an N -correct fully succinct (resp.
witness-succinct) non-adaptive SNARGs with
unique proofs and PV-proofs of both correctness
and uniqueness.

We defer the proof of this theorem to the full version
of this paper.

VII. SUCCINCT COMPUTATIONAL SECRET SHARING

In this section, we present our succinct computational
secret sharing schemes.

A. Definitions

We first introduce some definitions, following the
terminology from the work of [4], [50].

Notation. For x, y ∈ {0, 1}n, we write x ⪰ y if for all
i ∈ [n], xi ≥ yi. For an x ∈ {0, 1}n, we denote by Sx

the subset {i : xi = 1}.

Monotone functions. We say that a function P a
function P : {0, 1}n → {0, 1} is monotone if for all
x, y ∈ {0, 1}n such that x ⪰ y, if P (x) = 0, then
P (y) = 0.

For a non-deterministic MP : {0, 1}n × {0, 1}m →
{0, 1}, we define P (x) = 1 if and only if there exists
some w ∈ {0, 1}w such that P (x,w) = 1. We say that
MP is an monotone non-deterministic function if the
corresponding function P is monotone.

Computational secret sharing. WE now recall the
definition of computational secret sharing.

Definition VII.1 (Authorized sets and access structures).
Consider a set of n parties, and let x ∈ {0, 1}n be an
indicator vector denoting a subset Sx = {i : xi = 1}
of the parties. Given a boolean function P : {0, 1}n →
{0, 1}, we say a set Sx is authorized if P (x) = 1. The
set P then represents an access structure, comprising all
authorized sets Sx.

We can now define a computational secret sharing
scheme for a function P .

Definition VII.2 (Computational secret sharing). A
computational secret sharing (CSS) scheme for a class of
(possibly non-deterministic) monotone programs F is a
pair of algorithms CSS = (CSS.Share,CSS.Recon) such
that:

• CSS.Share(1λ, 1n, P, s)→ (crs, sh1, . . . , shn). This
is a randomized polynomial time algorithm which
takes as input the security parameter λ, the number
of parties n, a (possibly non-deterministic) mono-
tone program P ∈ F and a secret s ∈ {0, 1}, and
outputs a public share crs, and n shares {shi}i∈[n].
Each share shi is given to party i, and crs is a public
string available to all parties.

• CSS.Recon(P, x, w, crs, {shi}i∈Sx
) → s. This is

a deterministic algorithm which takes as input a
program P , a string x ∈ {0, 1}n indicating a
subset of parties of [n], a non-deterministic witness
w ∈ {0, 1}m, and a subset of shares {shi}i∈Sx

. The
algorithm outputs a secret s ∈ {0, 1}.

We require a CSS scheme to additionally satisfy the
following properties.
Correctness. For every λ ∈ N and secret s ∈ {0, 1}, for

x ∈ {0, 1}n, a witness w ∈ {0, 1}m, and a program
P such that P (x,w) = 1, we have that

Pr [s← CSS.Recon(P, x,w, crs, {shi}i∈Sx)

: (crs, sh1, . . . , shn)← CSS.Share(1λ, 1n, P, s)
]

= 1.

Security. Consider the following game between a non-
uniform adversary A of size poly(λ), and a chal-
lenger:

• On input 1λ, 1n and P , A chooses an input
x ∈ {0, 1}n such that P (x) = 0. It sends x
to the challenger.

• The challenger chooses s ∈ {0, 1}, and
computes shares

(crs, sh1, . . . , shn)← CSS.Share(1λ, 1n, P, s).
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Send crs, {shi}i∈Sx
to A.

• A outputs a bit b.
• Challenger accepts if s = b and P (x) = 0.

We say the scheme is secure if the probability that
A wins (i.e. the challenger accepts) is at most 1/2+
negl(λ) for large enough λ.

Remark VII.3. If P is non-deterministic, we say that
the CSS is a “secret sharing scheme for NP” (as defined
by [50]). If it is deterministic, we refer to the scheme as
a “secret sharing scheme for P”.

We now characterize the classes of monotone func-
tions that admit proofs of monotonicity in Theory PV.
Looking forward, for these classes, we will derive results
based only on fully succinct pviO.

Definition VII.4 (Deterministic Monotone families with
PV proofs of monotonicity). We say that a family F
of deterministic monotone functions has a PV proof of
monotonicity if the following conditions hold:

• Given a program P , there exists a polynomial time
machine MemberF such that MemberF (P ) = 1 if
and only if P ∈ F .

• There is a PV proof that: MemberF (P ) = 1
∧ P (x) = 0
∧ ∂Less(y, x)

 ⊢PV (P (y) = 0).

where ∂Less(y, x) is a PV function formalizing ⪯.
In words, the above condition says that for P ∈ F ,
one can prove that P is indeed a monotone function.

Zero certificate complexity of a monotone function.
Now, we introduce a notion of “zero certificate complex-
ity” of a monotone function. Note that for our setting,
we care about the time-bounded Kolmogorov complexity
of the zero certificate rather than Hamming weight.

Definition VII.5 (t-Time-bounded Conditional Kol-
mogorov complexity). The t-time bounded conditional
Kolmogorov complexity of a string x ∈ {0, 1}∗ given
a string z ∈ {0, 1}∗, denoted by Kt(x|z), is the length
of the shortest program and input pair (Π, y) such that
Π[z](y) outputs x in time t(|x|).

We introduce the following new notion of zero-
complexity of a monotone function in terms of condi-
tional Kolmogorov complexity, which will be convenient
in our proof later.

Definition VII.6 (t-Time Zero Complexity of a Mono-
tone Function). Given a (possibly non-deterministic)

monotone function P : {0, 1}n → {0, 1}, we define the
zero certificate complexity of P to be

CKt(P ) := max
x∈{0,1}n:P (x)=0

(
min

y:Sy⊇Sx

Kt(y|P )

)
,

where Kt is the t-time bounded Kolmogorov complexity,
as defined in Definition VII.5.

It is easy to see that for t ≤ poly(n), P : {0, 1}n →
{0, 1}, CKt(P ) ≤ n+O(1) since Kt(y|P ) ≤ n+O(1)
for all n-bit strings y.

Remark VII.7. We note that it might potentially ineffi-
cient to compute the corresponding programs matching
the certificate complexity given the program P and input
x. However, looking forward, this program will only
show up in the security analysis.

B. Construction

Our construction will utilize the following main
ingredients:

• index-hiding somewhere statistically binding hash
family with PV proof of binding Definition IV.21,

• A perfectly binding commitment scheme with PV
proof of binding (Definition IV.14): b ∈ {0, 1},

pk← Com.Gen(1λ),
c← Com.Enc(crs, b; r)


⊢PV ∀r′, c ̸= Com.Enc(crs, 1− b; r′).

where r′ on the RHS is a free variable (i.e. the proof
holds for all r′). Note that we refer to the output
of Com.Gen as pk rather than a common reference
string for notational convenience in the description
of our algorithm.

• Fully succinct EF-IO scheme iO (Definition V.5)
(or a fully succinct IO scheme for the result on
secret sharing for all of NP, as in Theorem VII.8).

• A length-expanding PRG G.
We now present our construction for secret sharing

for NP. In the following, let P : {0, 1}n × {0, 1}m →
{0, 1} (m = 0 if P is a deterministic circuit).

For notational convenience, we will let our
CSS.Share algorithm take as input additional parame-
ters 1ℓ and t. Looking forward, we will choose t ≥
poly(λ,RT(P, x)), and ℓ ≥ CKt(P ) (as defined in
Definition VII.6). Recall that one can always choose
ℓ = n and t = poly(λ,RT(P, x)).

CSS.Share(1λ, 1n, P, s, (1ℓ, t)):
• Construct commitments.
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– Sample pk← Com.Gen(1λ).
– For i = 1, 2, . . . , n, sample randomness ri ←
{0, 1}λ, and ci ← Com.Enc(pk, 1; ri).

– Sample hk ← SSB.Gen(1λ), and compute
dig ← SSB.Hash(hk, (ct1, . . . , ctn)), and let
ρi denote the local openings from dig to ci.

– For i ∈ [n], set πi = (ci, ρi, ri).
• Constructed obfuscated program.

– Sample crs← {0, 1}ℓ.
– Consider the program Mpk,hk,dig,s[pub =
(P, crs)] which on input x ∈ {0, 1}n, w ∈
{0, 1}m and {πi}i∈Sx

does the following:
∗ Abort if P (x,w) = 0.
∗ For each i ∈ Sx:
· Parse πi = (ci, ρi, ri).
· Check that Hash.Ver(hk, dig, ci, ρi) =
1.
· Check that ci = Com.Enc(pk, 1; ri).
· Abort if any test fails.

∗ If P (x,w) = 1, then output s. Else, output
⊥.

– Set Γ = iO(Mpk,hk,dig,s, pub := (P, crs)).
• Create shares:

– Set shi = {πi,Γ}.
– Output (crs, {shi}i∈[n], 1

ρ, t), where ρ is an
appropriate padding parameter chosen accord-
ing to our security analysis.

CSS.Recon(P, x, crs, {shi}i∈Sx
):

• Parse (ci, ρi, ri,Γ)← shi for i ∈ Sx.
• Compute s← Γ[pub = (P, crs)](x, {shi}i∈Sx

).
• Output s.

Theorem VII.8 (Succinct secret sharing for NP). As-
suming

• fully succinct IO,
• perfectly-binding commitment schemes,
• index-hiding somewhere statistically binding hash

family,
• pseudorandom-generators,

there exists a n-party computational secret sharing for
all monotone function families F such that for an access
structure P ∈ F:

• Common reference string is a uniformly random
string of length CKt(P ) for some time parameter
t.

• Each share size is poly(λ, log n, log t, log |P |).
• The reconstruction algorithm runs in time
poly(RT(P, (x,w)), n, t, λ)

Theorem VII.9 (Succinct secret sharing for P). Assum-

ing
• fully succinct EF-IO (as in Definition V.5),
• perfectly-binding commitment schemes with PV

proof of binding (Definition IV.14),
• index-hiding somewhere statistically binding hash

family with PV proof of binding (Definition IV.21),
• pseudorandom-generators,

there exists a n-party computational secret sharing for
deterministic monotone function families F which have
PV proofs of monotonicity Π (Definition VII.4) such that
for P ∈ F:

• Common reference string is a uniformly random
string of length CKt(P ) for some time-parameter
t.

• Each share size is poly(λ, log n, log |P |, |Π|), where
P ∈ F is the access structure for the scheme.

• The reconstruction algorithm runs in time
poly(RT(P, x), n, t, λ).

We defer the proof of these theorems to the full
version of this paper.

C. Examples

Monotone circuits. Recall that a circuit C : {0, 1}n →
{0, 1} is a monotone circuit if it only consists ∧ and ∨
gates (no ¬ gates).

Lemma VII.10 (PV proof of monotonicity of monotone
circuits). The monotonicity of monotone circuits can
be proven in Cook’s theory PV. Namely, the following
statement can be proven in PV:

(MonoCirc(C) = 1 ∧ ∂Less(x, y) = 1)

→ ∂Less(U(C, x), U(C, y)) = 1,

where MonoCirc is a PV function deciding whether a cir-
cuit is a monotone circuit, ∂Less(x, y) is a PV function
deciding whether every entry of the truth assignments x
is less than or equal to the corresponding entry of y,
and U(C, x) is an universal Turing machine formalized
as a PV function that computes C(x).

Proof Sketch. We prove this by an induction argument
on the size of the monotone circuit C. Without loss of
generality, we can always assume that U(C, x) not only
outputs C(x), but also all the intermediate wire values
during the execution of C(x).

Base Case. The base case of the induction is the case
when C only consists of a single gate. Namely, the
circuit C takes a bit from the input and outputs it directly.
In this case, U(C, x) = At(x, i) for some index i, where
At(x, i) is the PV function that takes x and i as input
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and outputs the i-th bit in the binary representation of
x. Clearly, we have

U(C, x) = At(x, i) ≤ At(y, i) = U(C, y),

since ∂Less(x, y) = 1 → At(x, i) ≤ At(y, i) can be
proven in PV.

Induction Step. Let g be an output gate of C, and let
C ′ be the circuit C with g removed. In the induction
step, we assume the theorem holds for C ′ and now
we prove the theorem for C. By induction hypothesis,
we have (MonoCirc(C ′) = 1 ∧ ∂Less(x, y) = 1) →
∂Less(U(C ′, x), U(C ′, y)) = 1.

The input wire values of g are two output
bits in U(C ′, ·). Let their indices be i, j, respec-
tively. Then the output of g can be expressed as
g(At(U(C ′, ·), i),At(U(C ′, ·), j)). Since g is either an
∧ or an ∨, we can derive in PV that

g(At(U(C ′, x), i),At(U(C ′, x), j))

≤ g(At(U(C ′, y), i),At(U(C ′, y), j))

from ∂Less(U(C ′, x), U(C ′, y)) = 1. This proves that
the output value of g is also monotone, which finishes
the induction step.

Finally, we argue that each step in the above mathe-
matical proof can be formalized in PV. Specifically, the
induction step can be formalized using the induction rule
. This finishes the proof sketch.

Definition VII.11 (Matching access structure). Let Gn

for even n be the complete undirected graph with n
vertices and

(
n
2

)
edges. A perfect matching in the graph

is a subset of edges E of size |E| = n/2 such that each
v ∈ V appears in exactly one edge in E. Then, Γ is the
access structure which takes input E ∈ {0, 1}(

n
2), and

Γgeneral(E) =

{
1 if E contains a perfect matching.
0 otherwise.

One can efficiently implement Γn via Edmonds’ match-
ing algorithm [27].

Definition VII.12 (Bipartite matching access structure).
In a bipartite matching access structure, we instead
consider the graph Gn,n which is a complete undirected
bipartite graph on V1, V2, each of size n. We say that
a matching access structure is bipartite if we instead
consider the bipartite graph Gn,n on 2n vertices. Then,

Γ(E) =

{
1 if E contains a perfect matching.
0 otherwise.

One can efficiently implement Γ via the augmenting-path

algorithm (see [21] for details).

Lemma VII.13 (PV proof of monotonicity of bipartite
matching access structure, [21]). The monotonicity of
the bipartite matching access structure can be proven
in theory PV. Namely, the following statement can be
proven in PV:

∂Less(x, y) = 1→ (Γ(x) = 1→ Γ(y) = 1)

where ∂Less(x, y) is a PV function deciding whether
every entry of the truth assignments x is less than or
equal to the corresponding entry of y.

Proof. Let Hungarian be the PV function formalizing
the augmenting-path algorithm of finding the perfect
matching in a bipartite graph E. The work [21] formal-
ized the correctness of augmenting-path algorithm in PV.
Hence, we have the following formulas proven in PV:

Γ(E) = 1

→ (Hungarian(E) = w → Verify(E,w) = 1),

Verify(E,w′) = 1→ Γ(E) = 1 (3)

where w is the variable denoting the matching outputted
by Hungarian, and Verify is a PV function verifying
whether a given matching w is a perfect matching in
E.

Now, consider any two bipartite graphs x, y ∈
{0, 1}(

n
2) with 2n vertices and ∂Less(x, y) = 1. If

Γ(x) = 1, then we have Hungarian(x) = w →
Verify(x,w) = 1. Hence, w is a perfect matching in x,
and from ∂Less(x, y) = 1, we know that x is a subgraph
of y. Therefore, we also have Verify(y, w) = 1. Applying
Equation (3), we derive that Γ(y) = 1. This finishes the
proof.

This proof can be formalized in PV because the
key step in the above argument (Verify(x,w) = 1 ∧
∂Less(x, y) = 1)→ Verify(y, w) = 1 can be formalized
in PV.

Remark VII.14. By a similar argument, if one can show
that Edmonds’ algorithm for matchings [27] has a PV
proof of correctness, then one can show that Γgeneral (for
general graphs) has a PV proof of monotonicity.

Moreover, we show that the zero complexity of this
matching access structure is in fact better than the trivial
bound of n2.

Lemma VII.15 (Zero complexity of bipartite matching
access structure.). There exists t = poly(n) such that:
CKt(Γn,n) ≤ 2n+O(1).

Proof. Consider the bipartite graph G on vertex sets V1
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and V2. Consider any set E ⊆ V1 × V2 that does not
contain a perfect matching. Then, by Hall’s marriage
lemma, this is true if and only if there exists S ⊆ V1 such
that |NE(S)| < |S|, where NE(S) denotes the set of all
neighbors of v ∈ S in the subgraph defined by E. In
other words, E contains no edges from S×V2\{N(S)}.
Consider the zero certificate obtained by the following
procedure:

• Takes as input S and V2 \ {N(S)}.
• Let W = S × V2 \ {N(S)}.
• Output W (i.e. the complement of the graph).

Let Z denote the output of the above algorithm. Clearly,
Kt(Z) ≤ 2n + O(1), for t = O(n2). By definition, E
is a subgraph of Z. Moreover, it is clear by construction
that NZ(S) = NE(S), and hence |NZ(S)| < |S|.
Therefore, Z does not have a perfect matching either,
and Γn,n(Z) = 0.

The above gives a procedure for constructing a zero-
certificate for any E with Kt complexity 2n+O(1).

Corollary VII.16. From the same assumptions as in
Theorem VII.9, there exists a n2-party secret sharing
scheme for the bipartite matching access structure Γn,n

with:
• a public share which is a random string of size 2n,
• individual shares of size poly(λ, log n).

Proof. Combining Theorem VII.9 with Lemma VII.13
and Lemma VII.15, the result follows immediately.

VIII. NECESSARY PADDING AND HIGH-RATE
OBFUSCATION

In this section, we first give a general template
algorithm to overcome “necessary-padding” via a public
random string, as in Algorithm 1. We then introduce a
notion of “ρ-closeness”, and we show how to analyze
Algorithm 1 for in these settings in Lemma VIII.2 and
Theorem VIII.3. We then show several corollaries to
high-rate obfuscation in Section VIII-B.

A. Construction and Analysis

We first give a general construction for superfluous
padding in Algorithm 1.

Ingredients. For this construction, we will need two
main ingredients:

• An IO scheme iO, which is either description-
succinct, fully succinct, or fully succinct only for
PV-equivalent machines (as guaranteed by Theo-
rem V.6). Looking forward, we will get different
efficiency and security guarantees based on which
notion of IO we use.

• A puncturable PRF family (PPRF.Gen,PPRF.Eval,
PPRF.Punc). We will additionally assume that the
family has a PV proof of correctness (as defined in
Definition IV.11), as this is achieved by the standard
GGM construction of PRFs from one-way functions
(see Lemma IV.12).

Construction. We can now describe the construction in
Algorithm 1. In words, the algorithm takes as input a
padding parameter 1ℓ, and pads the input program M to
size ℓ by sampling a uniformly random string of length
ℓ− |M |. We show that this strategy is in fact sound.

Algorithm 1 iO with Padding via a Uniform Random
String (URS)

Parameters:
• Let ℓ be some padding parameter for the unobfus-

cated program.
• Let the polynomial T describe a time bound on the

runtime of the unobfuscated program.
• Let Pad(M, 1κ) denote a program which is func-

tionally equivalent to M of size |M |+ κ.
padO.Obf(1λ,M, pub, 1ℓ,URS):
• Let S = |M |.
• Sample k ← PPRF.Gen(1λ) such that
PPRF.Eval(k, y) ∈ {0, 1}.

• Let ct = {M [i]⊕ PPRF(k, i)}i∈[S].
• Truncate URS to length ℓ− |M |.
• Set r = ct||URS.
• Let Uk,S be the machine that takes as public input
(pub, r) and input x and does the following:
– Parse r = (ct,URS) by taking the first S bits

of r to be ct.
– Ignore URS, and compute M ← {ct[i] ⊕
PPRF.Eval(k, i)}i∈[S].

– Output M [pub](x).
Moreover, pad the runtime of Uk,S to match
the runtime of the programs in the hybrids of
Lemma VIII.2.

• Let Γ = iO.Obf(1λ,Pad(Uk,s, 1
κ), (pub, r)),

where κ = poly(λ, γ) (where poly refer to a fixed
polynomial from the proof analysis, and γ is the
PV-size parameter which we will choose in the
proof).

• Output (Γ, r).

Definition VIII.1 (ρ-closeness). Let M1[pub] =
{M1,λ[pubλ]}λ and M2[pub] = {M2,λ[pubλ]}λ be a
pair of Turing machine families with split descrip-
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tions satisfying that for all x, RT(M1[pub], x) =
RT(M2[pub], x).

• We say that M1[pub] and M2[pub] are adjacent if
M1,λ and M2,λ if they are functionally equivalent,
and their descriptions only differ by a constant
number of bits (not necessarily of the same size).

• We say that M1[pub] and M2[pub] are close if
we can transition between them via a polynomial-
size sequence of adjacent machines. That is, if
there exists ℓ = poly(λ) and M ′

1, . . . ,M
′
ℓ such that

M1[pub] = M ′
1[pub], M2[pub] = M ′

ℓ[pub] and for
every i, M ′

i [pub] and M ′
i+1[pub] are adjacent.

• We say that M1[pub] and M2[pub] are ρ-close for
a function ρ(λ) if they are close via a sequence
M ′

1, . . . ,M
′
ℓ such that maxi |M ′

i | ≤ ρ.

Lemma VIII.2. Suppose one-way functions exist. Con-
sider programs M0 = {M0,λ}λ and M1 = {M1,λ} that
are adjacent (i.e. differ in at most τ = O(1) bits). Then,

padO(1λ,M0, pub, 1
ρ) ≈c padO(1λ,M1, pub, 1

ρ)

for ρ ≥ max(|M0|, |M1|). Moreover, the efficiency of the
size of the program Γ ← padO(1λ,M0, pub, 1

ρ) is as
follows:

• Assuming fully succinct IO, |Γ| = ρ +
poly(λ, τ, log ℓ).

• Assuming description-succinct IO, |Γ| = ρ +
poly(λ, τ, n, log ℓ), where n is a bound on the input
length supported by Γ.

Proof. The efficiency guarantees follow in a straight-
forward way from the efficiency guarantees of fully
succinct/description-succinct IO. It suffices to show se-
curity.

Suppose we have two functionality equivalent adja-
cent machines M0[pub] and M1[pub] where |Mb| = Sb.
Without loss of generality, suppose that S0 ≥ S1. Sup-
pose that the two machines differ on indices i1, . . . , iτ ∈
[S]. Let I = {ij}j∈[τ ]. Let β(b)

j = Mb[ij ], i.e. the ij th
bit of Mb. We use the short-hand Lb = {β(b)

j }j∈[τ ].

H1 Sample (Γ, r) ← padO(1λ,M0, pub, 1
ρ) as in

Algorithm 1.
H2 Hardcode I, L0, L1 in the obfuscated program.

This is clearly functionally equivalent (and in fact
EF-equivalent) to the previous hybrid because we
have only added additional bits to the program.
Hence, this follows from iO security.

H3 Change the obfuscated program to the following
program:

Uk,S0,S1,I,L0,L1 :

• Parse r = (ct,URS) by taking the first S0

bits of r to be ct.
• For ij ∈ I , set M [ij ] = β

(0)
j .

• For i /∈ I , set M [i] ← ct[i] ⊕
PPRF.Eval(k, i).

• Output M [pub](x).

By construction, we know that for ij ∈ L,
β
(0)
j = ct[ij ] ⊕ PPRF.Eval(k, ij). Therefore, this

is functionally equivalent to the previous hybrid
(and in fact EF-equivalent) and indistinguishability
follows from iO security.

H4 Puncture the key k on index set I , and hardcode
k{I} instead of k in the obfuscated program.
This follows from the fact that the obfuscated
program does not need PPRF.Eval(k, ij) for ij ∈
I , and by the correctness of the PPRF fam-
ily. Therefore, this is functionally equivalent to
the previous hybrid (and in fact EF-equivalent
by Lemma IV.12) and indistinguishability follows
from iO security.

H5 For ij ∈ I , switch ct[ij ] to PPRF.Eval(k, ij)⊕β(1)
j

if ij ≤ S1, and switch to a uniformly random bit
if ij > S1.
This follows from punctured key indistinguishabil-
ity (note that the adversary only sees the puntured
key k{I}).

H6 In this hybrid, we change the obfuscated program
to use L0 instead of L1.

Uk{I},S0,S1,I,L0,L1
:

• Parse r = (ct,URS) by taking the first S1

bits of r to be ct.
• For ij ∈ I and ij ≤ S1, set M [ij ] = β

(1)
j .

• For i ≤ Sb, set M [i] ← ct[i] ⊕
PPRF.Eval(k, i).

• Output M [pub](x).

It is clear that the obfuscated program in the previ-
ous hybrid is functionally equivalent to M0, and the
program in this hybrid is functionally equivalent to
M1. Therefore, the two programs are functionally
equivalent by the fact that M0[pub] ≡ M1[pub].
Hence, indistinguishability follows from iO secu-
rity.

H7 Unpuncture the key k on index set I in the obfus-
cated program. Indistinguishability follows from
the (PV) correctness of the puncturing.

H8 Sample (Γ, r) ← padO(1λ,M1, pub, 1
ρ). This
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is indistinguishable from the previous hybrid by
doing the hybrids in reverse and relying on IO
security.

This completes the proof of security.

Theorem VIII.3. Consider two programs M0 =
{M0,λ}λ and M1 = {M1,λ} that are ρ(λ)-close. Then,

padO(1λ,M0, pub, 1
ℓ) ≈c padO(1λ,M1, pub, 1

ℓ)

for ℓ ≥ ρ. Moreover, the efficiency of the size of the
program depends on the version of IO used, just as in
Lemma VIII.2.

Proof. If M0 and M1 are ρ(λ)-close, by definition, then
there exists a sequence M ′

1,M
′
2, . . . ,M

′
ℓ for ℓ = poly(λ)

such that M ′
i and M ′

i+1 are adjacent and maxi |M ′
i | ≤ ρ.

By Lemma VIII.2, we have that M ′
i and M ′

i+1, we know
that they are adjacent, and by Lemma VIII.2,

padO(1λ,M ′
i , pub, 1

ρ) ≈c padO(1λ,M ′
i+1, pub, 1

ℓ).

Therefore, by a hybrid argument, we have the desired
result.

B. Applications to High-Rate Obfuscation

Rate-1 Null IO. Recall the notion of null-IO [34], [67],
where we only require security for programs that are
equivalent to the all-zeros program (note that this still
requires correctness for all programs).

Definition VIII.4 (Null IO for Programs with Split
Description). We say that a IO scheme as in Defini-
tion V.1 is a null IO scheme if it satisfies the following
weaker security guarantee: For every poly-size A and
polynomial p, there exists a negligible function µ such
that for every λ, M0,M1 and bounds n ≤ p(λ) such that

• |M0| = |M1| ≤ p(λ), and |pub| ≤ p(λ).
• For every input x of length at most n, it holds

that M0[pub](x) = M1[pub](x) = 0 and
RT(M0[pub], x) = RT(M1[pub], x).

For technical reasons, our rate-1 null IO result
will only apply to programs M [pub] whose runtime
f(x) = RT(M [pub], x) has a small description. For
simplicity, we will restrict our attention to polynomial
TMs M for which there exists a polynomial q such that
RT(M [pub], x) = q(|x|). We will call such machines
“runtime-regular”. We say a null IO scheme is secure for
runtime-regular programs if Definition VIII.4 satisfies
security for pairs M0[pub] and M1[pub] which are
runtime-regular.

Theorem VIII.5 (Rate-1 Null IO). Suppose one-way
function exists. Then, there exists null IO for runtime-
regular programs with the following efficiency: in the
correctness experiment of Definition V.1,

• assuming fully succinct IO, there exists |M̃ | =
|M |+|desc(p)|+poly(λ), where p is the polynomial
which describes the runtime of M [pub], and desc(p)
is the size of the program which describes p.

• assuming description-succinct IO, |M̃ | = |M | +
|desc(p)|+ poly(n, λ).

We defer the construction and proof to the full
version of the paper.

Batch-obfuscation. We now consider an IO scheme that
takes a batch of k ≤ poly(λ) programs M1, . . . ,Mk, and
obfuscates them simultaneously to obtain a program Π,
with the property that Π(i, x) = Mi(x). We say that the
batch obfuscation scheme is secure if

O(1λ, 1n, (M1, . . . ,Mk)) ≈c O(1λ, 1n, (M ′
1, . . . ,M

′
k)).

for k ≤ poly(λ), where for all i, Mi ≡M ′
i and |Mi| =

|M ′
i |.

Theorem VIII.6. Suppose one-way functions exist.
Then, there exists a batch-IO that obfuscates k ≤
poly(λ) programs Γ ← O(1λ, 1n,M1, . . . ,Mk) with a
following efficiency:

• Assuming fully succinct IO,

Γ =
∑
i∈[k]

|Mi|+max
i∈[k]
|Mi|+ poly(λ, log k).

In particular, assuming that |M1| = |M2| = · · · =
|Mk|, we have |Γ| = k+1

k |Mi|+ poly(λ).
• Assuming description-succinct IO,

Γ =
∑
i∈[k]

(|Mi|+max
i∈[k]
|Mi|+ poly(λ, n, log k),

where n is an upper bound on the input length
supported by Γ.

We defer the proof to the full version of the paper.

C. Improving EF-IO Rate

In this section, we show how to use Theorem VIII.3
to improve the rate of the our fully succinct EF-IO
construction in Theorem V.6.

Theorem VIII.7 (Fully-succinct pv-IO with Rate-1 in
uniform EF Proof). Suppose the following assumptions
hold:

• quasi-polynomial hardness of Learning with Errors,
• sub-exponentially secure one-way functions, and
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• sub-exponentially secure indistinguishable obfusca-
tion for circuits.

Then, there is a (ρ, T )-secure EF-IO scheme satisfying
that |iOρ,T (1

λ,M, pub)| = ρ+ 2|M |+ poly(λ).

We defer the proof to the full version of the paper.

APPENDIX

This section is taken nearly verbatim from [41].
Cook introduced a theory PV [20] to capture the

intuition of feasibly constructive proofs (i.e. polynomial-
time reasoning). PV is an equational theory, i.e, each
statement in PV asserts that two terms are equal.
Moreover, it allows the introduction of new function
symbols by recursive definition (i.e. Cobham’s defini-
tion of polynomial-time functions [19]). Hence, any
polynomial-time function is definable in PV [20]. More-
over, commonly used arithmetical operations such as
addition, multiplication, and modulus functions can also
be defined in PV. Their related properties such as
commutative law, associative law etc. can be proven in
PV [15].

Formally, Cook’s theory PV [20] is defined as fol-
lows. PV works on the natural numbers that are repre-
sented in the dyadic notation, where any natural number
x is uniquely represented as a finite string of integers
in {1, 2}∗ . Specifically, we represent x as the string
xnxn−1xn−2 . . . x1 ∈ {1, 2}n, if

∑n
i=1 xi2

i = x, and
use an empty string to represent 0 . It’s easy to see that
such presentation is unique for any natural number. The
function si(x) = 2x+ i, i = 1, 2 appends i to the string
x. Hence, we also denote si(x) as x||i.

We introduce the following terminologies. Terms are
defined inductively as follows: any variable is a term; any
function symbol of arity 0 is a term; if t1, t2, . . . , tk are
terms, and f is a function symbol, then f(t1, t2, . . . , tk)
is a term. Equations are of the form t = u, where
both t and u are terms. A derivation for the statement
E1, E2, . . . , En ⊢PV E in PV is a series of equations
D1, D2, . . . , Dℓ such that Dℓ = E and for any i ∈ [ℓ],
the equation Di is either a premise Ej(j ∈ [n]), or a
defining equation for some function symbol that we will
introduce later, or follows from some inference rule that
we will introduce later. A proof in PV is a derivation
with no premise (n = 0).

Introducing Function Symbols. A new function symbol
f can be introduced in PV in the following two ways.

• (Composition). The first way is to define

f(x1, x2, . . . xk) = t,

where t is a term with variables x1, x2, . . . , xk.

• (Recursion). The second way is to recursively de-
fine the function on the dyadic notion (i.e. Cob-
ham’s characterization of polynomial-time func-
tions [19]). Specifically, for existing function sym-
bols g, h1, h2, k1, k2 in PV, define the following
equations as defining equations

f(0,y) = g(y), (4)
f(x||i,y) = hi(x,y, f(x,y)), i = 1, 2, (5)

where y = (y1, . . . , yk) is a series of k variables.
Then how f is computed for any x,y is fully spec-
ified. To avoid any undecidable issue, PV further
requires that the output length of f is bounded by
a polynomial. To ensure this, Cook requires that
“|hi(x,y, z)| ≤ |z|+ |ki(x,y)|” is provable in PV,
where |·| is the length of the dyadic presentation. To
achieve this, Cook introduced the LESS function,
and it is defined with other initial functions as
follows. si, i = 1, 2 has no defining functions. 0
is also function symbol with arity 0, and has no
defining function.
– TR: TR(0) = 0,TR(x||i) = x, i = 1, 2. It cuts

off the least significant digit in the dyadic notion.
– ⋆: ⋆(x, 0) = x, ⋆(x, y||i) = si(x, y), i = 1, 2. It

concatenates the string x and y.
– ⃝⋆ : ⃝⋆ (x, 0) = x,⃝⋆ (x, y||i) = ⋆(x,⃝⋆ (x, y)), i =
1, 2. It concatenates |y| copies of x.

– LESS : LESS(x, 0) = x, LESS(x, y||i) =
TR(LESS(x, y)), i = 1, 2. It cuts off the |y| right
most digits of x in the dyadic notion. Then we
can use LESS(x, y) = 0 to express |x| ≤ |y|.

To complete the definition of function f ,
PV requires two proofs π1, π2 in PV for
LESS(hi(x,y, z), z ⋆ ki(x,y)) = 0, i = 1, 2.
Then a function symbol f is defined as the tuple
(g, h1, h2, k1, k2, π1, π2).

The inference rules are in the following. Here, t, u, v
are any terms, x is any variable, and y = (y1, y2, . . . , yk)
is any tuple of k ≥ 0 variables. f is any function symbol
(we will define later).

• R1: t = u ⊢ u = t.
• R2: t = u, u = v ⊢ t = u
• R3: t1 = u1, t2 = u2, . . . , tk = tk ⊢
f(t1, t2, . . . , tk) = f(u1, u2, . . . , uk).

• R4: t = u ⊢ t(v/x) = u(v/x). Here, the notation
“t(v/x)” means replacing each occurrence of the
variable x with the term v. “u(v/x)” is defined in
the same way.

• R5: E1, E2, . . . , E6 ⊢ f1(x,y) = f2(x,y), where
E1, E2, . . . , E6 are the defining (5) for f1, f2, with
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the same function symbols g, h1, h2.

PV proofs for arithmetic. The work of [15] shows
that basic arithmetic operations such as +,−, ·, /, ⌊·⌋,≤
can be introduced in Cook’s theory PV [20] as function
symbols, and their basic laws such as commutative law,
associative law, distributive law, etc. can be proven in
PV.

A. Theory PV1

In the same work [20], Cook also introduced a theory
PV1 in which formalizing proofs is easier than PV. [20]
showed that the theory PV1 is a conservative extension
of PV, which means that any theorem proven in PV1

can also be proven in PV. Hence, in this work, we do
not distinguish PV and PV1.

The theory PV1 contains all variables, function sym-
bols, and terms in PV. Furthermore, it contains formulae,
which are either equations, or truth-functional combina-
tions of equations, using “∧,∨,¬,→,↔”, which express
“and”, “or”, “negation”, “imply”, and “equivalent”.

The axioms of PV1 are defined as follows. Here, x
is a variable, t, u, ti, ui are terms.

• E1: t = t
• E2: t = u→ u = t
• E3: t = u ∧ u = v → t = v
• E4: (t1 = u1 ∧ . . . ∧ tk = uk) → f(t1, . . . , tk) =
f(u1, . . . , uk), where f is a function symbol in PV.

• E5: x = y ↔ x||i = y||i, i = 1, 2
• E6: ¬(x||1 = x||2)
• E7: ¬(0 = x||i), i = 1, 2
• Defining Functions: Defining equations for any

function symbol in PV is axioms in PV1. More-
over, PV1 allows defining multi-variable func-
tions via recursion as follows. Let g00, g01, g10,
{hij , kij}i,j∈{1,2} be function symbols. Then a new
function symbol f can be defined by the following
defining equations.

f(0, 0, z) = g00(z)

f(0, y||j, z) = g01(z), j = 1, 2

f(x||i, 0, z) = g10(z), i = 1, 2

f(x||i, y||j, z) = hij(x, y, z, f(x, y, z)), i, j ∈ {1, 2}

Moreover, LESS(hij(x, y, z, u), u ⋆ kij(x, y, z)) =
0, i, j ∈ {1, 2} needs to be provable in PV. Finally,
the defining of the initial functions TR, ⋆,⃝⋆ , and
LESS are also axioms of PV1.

• Tautology: The truth-functionally valid formulae of
PV1 are axioms.

The inference rules of PV1 are as follows.

• Substitution. A ⊢ A(t/x), where A is a formula in
PV1, t is a term and x is a variable. Here, we use
A(t/x) to denote the formula Aσ, where σ is the
substitution σ : x 7→ t.

• Implication. A1, A2, . . . , Ak ⊢ B, where the for-
mula B is a truth-functional implication of formulae
A1, . . . Ak.

• k-Induction. {A(0/xi)}i∈[k], {A →
A(x1||j1/x1, . . . , xk||jk/xk)}j1,j2,...,jk∈{1,2} ⊢ A,
where A is a formula of the variables x1, . . . , xk.
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