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Abstract—We consider the classic correlation clustering
problem in the hierarchical setting. Given a complete graph
G = (V,E) and ℓ layers of input information, where the
input of each layer consists of a non-negative weight and a
labeling of the edges with either + or −, this problem seeks
to compute for each layer a partition of V such that the
partition for any non-top layer subdivides the partition in
the upper-layer and the weighted number of disagreements
over the layers is minimized, where the disagreement of a
layer is the number of + edges across parts plus the number
of − edges within parts.

Hierarchical correlation clustering is a natural formula-
tion of the classic problem of fitting distances by ultramet-
rics, which is further known as numerical taxonomy [1]–[3]
in the literature. While single-layer correlation clustering
received wide attention since it was introduced in [4] and
major progress evolved in the past three years [5]–[8], few is
known for this problem in the hierarchical setting [9], [10].
The lack of understanding and adequate tools is reflected
in the large approximation ratio known for this problem,
which originates from 2021.

In this work we make both conceptual and technical
contributions towards the hierarchical clustering problem.
We present a simple paradigm that greatly facilitates
LP-rounding in hierarchical clustering, illustrated with
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a delicate algorithm providing a significantly improved
approximation guarantee of 25.7846 for the hierarchical
correlation clustering problem.

Our techniques reveal surprising new properties and
advances the current understanding for the formulation
presented and subsequently used in [9]–[12] for hierarchi-
cal clustering over the past two decades. This provides
a unifying interpretation on the core-technical problem
in hierarchical clustering as the problem of finding cuts
with prescribed properties regarding the average distance
of certain cut pairs.

We further illustrate this perspective by showing that
a direct application of the paradigm and techniques pre-
sented in this work gives a simple alternative to the state-of-
the-art result presented in [12] for the ultrametric violation
distance problem.

Index Terms—hierarchical correlation clustering, ultra-
metric embedding, correlation clustering, linear program-
ming rounding, approximation algorithms

I. INTRODUCTION

Clustering is among the central problems in unsuper-
vised machine learning and data mining. For a given
data set and information regarding pairwise similarity of
the elements, the general objective is to come up with
a partition of the elements into groups such that similar
elements are clustered into the same group and dissimilar
elements belong to different groups.

CORRELATION CLUSTERING, among various formu-
lations introduced towards the aforementioned objective,
has been one of the most successful model since its
introduction by Bansal, Blum, and Chawla in [4]. Given
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a complete graph G = (V,E) and a labeling of the edges
with either + or −, the goal is to partition the vertices
so as to minimize the number of disagreements between
the partition computed and the input labels, namely, the
number of + edges clustered into different parts plus
the number of − edges clustered into the same part.
Due to the simplicity and modularity of this formulation,
correlation clustering has found vast applications in prac-
tice, e.g., finding clustering ensembles [13], duplicate
detection [14], community mining [15], disambiguation
tasks [16], automated labeling [17], [18], and many
more.

Various algorithms with an O(1)-approximation guar-
antee exist in the literature for the correlation clustering
problem, including classic results in the early 2000s [4],
[19], [20], the elegant 2.06-approximation based on LP-
rounding [21], and recent breakthroughs that evolved
in the past three years using the Sherali-Adams hier-
archy [5], [6] and a strong formulation [7], [22] known
as cluster LP. Currently, the best approximation ratio is
1.437+ϵ, and (24/23−ϵ)-approximation is NP-hard [7]
for any ϵ > 0.

Motivated by the large number of applications in
practice, efficient approximation algorithms based on
combinatorial approaches have been introduced in the
literature, including linear time algorithm [20], dynamic
algorithms [23], results for distributed models [24]–[26],
streaming models [26]–[30], and very recent sublinear
time algorithms [8], [22], [30].

Correlation Clustering in the Hierarchical Setting:
In the hierarchical setting, we are given a complete graph
G = (V,E) and ℓ layers of input information regarding
pairwise similarity of the elements, where the input
information for each layer consists of a non-negative
weight and a labeling of the edges with either + or −.
The goal is to produce for each layer a partition of the
elements in V such that (i) the partition for any non-top
layer subdivides the partition in the upper layer and (ii)
the weighted disagreements over all layers is minimized.

Hierarchical correlation clustering is a natural formu-
lation for the classic problem of fitting given distance
information by ultrametrics, which is also known as
numerical taxonomy in the literature [1]–[3], [9], [10],
[31]. While single-layer correlation clustering was exten-
sively studied with various types of techniques in the past
two decades, the multi-layer setting remains much less
understood to date. The main challenge of this problem
has been in the need to produce a sequence of consistent
partitioning of the elements subject to the unrelated,
possibly conflicting, similarity information given for the
layers.

Ailon and Charikar [9] presented both combinatorial-
based and LP-rounding algorithms to obtain a min{ℓ+

2, O(log n log log n)}-approximation, utilizing the pivot-
based algorithm [20] and a region growing argument. In
a breakthrough result for this problem, Cohen-Addad,
Das, Kipouridis, Parotsidis, and Thorup [10] presented
an unconventional approach to obtain the first constant
factor (> 1000) approximation using the LP presented
in [9] and state-of-the-art algorithms for single-layer
correlation clustering. This has remained the best ap-
proximation ratio known for this problem since 2021.

Fitting Distance by Ultrametrics (Numerical Taxon-
omy): In the numerical taxonomy problem, we are given
measured pairwise distances D :

(
V
2

)
7→ R>0 for a set of

elements and the goal is to produce a tree metric or an
ultrametric T that spans V and minimizes the Lp-norm

∥T −D∥p :=

 ∑
{i,j}∈(V2)

| dT (i, j)−D(i, j) |p


1/p

,

where p is a prescribed constant with 1 ≤ p ≤ ∞ and
dT is the distance function for T .

Since Cavalli-Sforza and Edwards introduced the nu-
merical taxonomy problem, it has collected an extensive
literature [1], [32]–[34]. While this problem was initially
introduced in the L2-norm, Farris [32] suggested using
the L1-norm in 1972. Further, it is known that for any
1 ≤ p ≤ ∞, an algorithm that computes an ultrametric
can readily be applied for computing a tree metric losing
a factor of at most 3 in the approximation guarantee [10],
[35]. For L0-norm,

For the L∞-norm, it is known that an optimal ul-
trametric can be computed in time proportional to the
number of input distance pairs [36] and can be approxi-
mated in subquadratic time [37], [38]. For the case with
general tree metrics, this problem is APX-hard and O(1)-
approximation is known [35].

For constant p with 1 ≤ p < ∞, the developments
have been slower and remains much less understood to
date [9], [10], [31], [39], [40]. Among them, L1-norm
in particular has been extensively studied [9], [10], [31]
and a constant-factor approximation was given by [10].
For 1 < p < ∞, O(log n log log n) remains the best
approximation ratio [9].

When the goal is to edit the minimum number of
pairwise distances so as to fit into an ultrametric, the
problem is known as the ultrametric violation distance
problem. This problem can be interpreted as numerical
taxonomy under the L0-norm and has been actively
studied in recent years [11], [12], [41]–[45] for metric
fitting, tree metric fitting, and ultrametric fitting. For
the ultrametric version, the best result is a random-
ized 5-approximation [12]. We also note that Carmel,
Das, Kipouridis and Pipis recently gave a single-pass,
polynomial-time semi-streaming algorithm [45].
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A. Our Result

We present a simple paradigm which greatly facilitates
LP-rounding in hierarchical clustering. Our main result
is a delicate algorithm for the hierarchical correlation
clustering problem with a significantly improved ap-
proximation ratio compared to the previously known
guarantee [10].

Theorem 1. There is a 25.7846-approximation algo-
rithm for the hierarchical correlation clustering problem.

Our algorithm shares the same standard LP relaxation
used in the literature [9]–[12] for the hierarchical clus-
tering problems. However, we present a new property
of this LP relaxation that allows us to pretend as if the
objective has no negative items, intuitively speaking. Ap-
plying this property causes us to lose the multiplicative
factor of up to two.

Our rounding algorithm inherits several key features
from the two previous works [9], [10] with distin-
guishable technical characteristics, which we describe in
detail in the next section. Our paradigm further reveal
the core-technical problem in hierarchical clustering as
the problem of finding cuts with prescribed properties
regarding the average distance of a certain subset of
cut pairs. To illustrate this perspective, we show that
a direct application of the paradigm and techniques
presented in this work leads to an alternative algorithm
for the ultrametric violation distance problem that is
quite simple to describe and analyze, whose performance
guarantee matches the best known [12].

Corollary 2. There is a deterministic 5-approximation
algorithm for the ultrametric violation distance problem.

B. Techniques and Discussion

We begin with a description on the LP formulation and
an overview of the approaches introduced in [9] and [10]
which handled the rounding problem in very different
ways.

The LP-formulation models the clustering decisions
via pairwise dissimilarity of the elements which have
values within [0, 1] and must satisfy the triangle inequal-
ity. Hence, it is instructive to interpret the LP-solutions
as distance functions for the elements over the layers.
Furthermore, the distance between any pair of elements
satisfies the non-decreasing property top-down over the
layers. Each label given for the element pairs over the
layers corresponds to one item in the objective function
with a sign being equal to the label itself, i.e., a plus label
for an {u, v} pair at the t-th layer corresponds to an item
x
(t)
{u,v} while a minus label gives an item (1 − x

(t)
{u,v}).

Handling this discrepancy between signs has been the
main challenge of this problem.

Following the convention in the literature, we will
refer pairs labeled with + to as + edges and the rest
as − edges.

The Techniques in [9] and [10]: In [9], the hier-
archical clustering is obtained in a top-down manner.
This means that the decisions for the algorithm to make
in each iteration is how the partition coming from the
previous layer above should be subdivided, and the main
challenge is to upper-bound the number of disagreements
the current clustering decision will cause in all the
successive layers below.

To deal with this issue, the authors in [9] distributed
the overall LP value to each element and showed that,
whenever a set P in the partition contains a − edge
{u, v} with a distance at least 2/3, there always exists
an r ∈ [0, 1/3] such that a ball B with radius r
to be centered at either u or v will give a cut C,
such that the weighted disagreements caused by C in
all the successive layers below can be upper-bounded
by O(log log n) · log(Vol(P )/Vol(B)) · Vol(B), where
Vol(A) for any A ⊆ V accounts for the LP value of
the edges contained within A over all the successive
layers plus the LP value of the elements within A. The
proof towards the existence of such a cut utilizes the
famous region growing argument presented in [46] for
the multicut problem. Summing up the cost over all such
cuts gives a guarantee of O(log n log logn).

The approach presented in [10] starts from a reduction
to the HIERARCHICAL CLUSTER AGREEMENT problem,
in which the input for each layer is a pre-clustering of
the elements into groups and the goal is to minimize
the weighted symmetric difference with the input pre-
clustering over the layers. The authors showed that
an algorithm with an α-guarantee for the single-layer
correlation clustering can readily be applied to obtain a
pre-clustering for each layer with a multiplicative loss
of O(α) in the overall guarantee.

The obtained instance for the hierarchical cluster
agreement problem can be seen as an instance for the
hierarchical correlation clustering problem where the
intra-pre-cluster pairs act as + edges and the inter-pre-
cluster pairs act as − edges. To handle the LP-solution
for this new instance, a procedure called LP-cleaning
is presented to further subdivide the input pre-clusters
according to the LP-solution. This procedure uses a
clever filtering setting to classify the elements such that,
for each pre-cluster, either all the elements are made
singleton pre-clusters or only a very small proportion
of elements is made so. The setting guarantees that the
number of “+ edges” separated in the new pre-clusters
can be upper-bounded by the LP-value the fractional
solution already has. Furthermore, the diameter of the
new pre-clusters is guaranteed to smaller than 1/5.
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To obtain the hierarchical clustering, the authors
present a brilliant approach that handles set-merging in
a bottom-up manner, where the set-merging decisions
are guided by the non-singleton pre-clusters computed
in the above step and the structure of existing clusters
coming from the previous layer. Roughly speaking, dur-
ing the process, the algorithm records for each cluster
a core subset which comes from a pre-cluster that has
a small diameter and contains the majority of elements
within the cluster. To handle the set-merging decisions
for a partition coming from the previous layer, the
algorithm unconditionally merges for each non-singleton
pre-cluster all the clusters whose core subsets have a
nonempty intersection with the pre-cluster. Then the
union of the intersections becomes the core subset of
the merged set. Using the properties obtained from the
LP-cleaning procedure and the set-merging operation,
the authors proved a set of cardinality bounds regarding
the size of a cluster and its core subset via an involved
induction argument.

Our Techniques: In this work we present a new
paradigm that handles the LP-rounding problem for
hierarchical clustering directly. Our algorithm inherits
several key features from the two previous works [9],
[10] with distinguishable technical characteristics.

Our algorithm uses the same LP relaxation used in
previous works [9]–[12]. Our new, crucial observation
is: in any optimal LP solution, the (weighted) number of
− edges with distance strictly smaller than one over the
layers is always upper-bounded by the objective value of
the LP solution itself. Hence, whenever the LP-solution
pays a nonzero cost to separate a − edge, the cost later
incurred by that edge, if any, can readily be attributed to
the cost of this LP-solution.

This suggests that we need to handle − edges with
distance one separately since the LP pays nothing for
these edges. We will call them forbidden edges. Our
analysis can be intuitively (but not formally) understood
as defining a new instance of the problem where the
forbidden edges become − edges and non-forbidden
edges become + edges and then measuring solution costs
there. This general property avoids the tricky problems
in handling the discrepancy between the items with two
different signs in the original objective function, greatly
facilitating the task of LP-rounding and the analysis in
the context of hierarchical clustering.

Our rounding algorithm consists of two components:
(i) A pre-clustering algorithm which takes as input a
distance function and produces a partition of the ele-
ments which guarantees bounds on both the diameters
of the pre-clusters and the average distances of the non-
forbidden cut edges. (ii) A delicate hierarchical cluster-
ing algorithm that handles the set-merging decisions in

a bottom-up manner based on the information given by
the pre-clusters and the structures of the existing partition
coming from the previous layer.

For the first component, our pre-clustering algorithm
is a pivot-based algorithm [9], [20] that takes an entirely
different approach from the pre-clustering algorithm
presented in [10] to some extent. On the other hand,
our algorithm starts with a big cluster containing all the
elements and iteratively subdividing the clusters until
every cluster has a diameter strictly smaller than 1/3.
When this property is not yet met, an element with an
eccentricity at least 1/3 is picked, and the algorithm
either makes the element a singleton cluster or it makes
a cut with a ball of radius 1/3 − ϵ centered at that
element. This guarantees an average distance at least 1/6
for the non-forbidden cut edges. Hence, the number of
non-forbidden cut edges is bounded by a small factor
to the objective value of the LP-solution. Moreover, we
establish this bound using only cut edges that are not
too-far-apart.

Our hierarchical clustering algorithm inherits the
guided set-merging framework in [10]. Our algorithm
imposes a set-merging condition that captures the ele-
ments necessary to provide a good structure for hierar-
chical clustering yet sufficient to yield a small constant
loss in the approximation guarantee. We show that,
this set-merging condition, combined with the diameter
bound for the pre-clusters, leads to a geometrically-
decreasing territory of the non-core part for any cluster
in the hierarchy. This is the key to a set of substantially
stronger cardinality bounds which scales with the core-
parameter used in the set-merging condition.

To illustrate another use of our paradigm, we show that
a direct application of our pre-clustering algorithm in a
top-down manner with a radius parameter of 1/2 yields
a 5-approximation for the ultrametric violation distance
problem. This provides a simple alternative algorithm
to [12], which is obtained via a pivot-based randomized
rounding approach top-down recursively.

Our paradigm reveals the nature of the hierarchical
clustering problem as a problem of finding cuts with
prescribed properties regarding the average distance for
a certain subset of its cut edges. The above two re-
sults further suggest that improved approximation results
would be possible if stronger properties on the cuts to
be computed can be built. We believe our techniques
would easily extend to other variations of hierarchical
clustering problems with different objectives.

II. PROBLEM FORMULATION

In the hierarchical correlation clustering problem, we
are given a complete graph G = (V,E) and ℓ layers of
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min
∑

1≤t≤ℓ

δt ·

 ∑
{u,v}∈E

(t)
+

x
(t)
{u,v} +

∑
{u,v}∈E

(t)
−

(
1− x

(t)
{u,v}

)  LP-(∗)

s.t. x
(t)
{u,v} ≤ x

(t)
{u,p} + x

(t)
{p,v}, ∀ 1 ≤ t ≤ ℓ, u, v, p ∈ V,

x
(t+1)
{u,v} ≤ x

(t)
{u,v}, ∀ 1 ≤ t < ℓ, u, v ∈ V.

0 ≤ x
(t)
{u,v} ≤ 1, ∀ 1 ≤ t ≤ ℓ, u, v ∈ V.

Fig. 1. An LP formulation for the Hierarchical Correlation Clustering.

input information (δ1, E
(1)
+ ), . . . , (δℓ, E

(ℓ)
+ ), where δt ∈

R≥0 is a non-negative weight and E
(t)
+ ⊆ E is the set of

edges labeled with + at the t-th layer. We refer E(t)
+ and

E
(t)
− := E \ E(t)

+ to as the + edges and the − edges at
the t-th layer, respectively. We refer the 1-st layer to as
the bottom layer and the ℓ-th layer to as the top layer.

A feasible solution to this problem is a tuple
(P(1), . . . ,P(ℓ)), where P(t) is a partition of V into
groups such that P(t) is a subdivision of P(t+1) for any
t with 1 ≤ t < ℓ. That is, for any P ∈ P(t), there
always exists P ′ ∈ P(t+1) such that P ⊆ P ′. We say
that a collection of partitions {P(t)}1≤t≤ℓ is consistent
if it satisfies the above property.

The number of disagreements caused by P(t) is de-
fined to be the number of + edges in E

(t)
+ that result in

separated in P(t) plus the number of − edges in E
(t)
−

that are clustered into the same group in P(t). Formally,
we use

#(P(t)) :=
∑

P∈P(t)

∣∣∣{{p, q} ∈ E
(t)
− : p, q ∈ P

}∣∣∣
+

∑
P,P ′∈P(t)

P ̸=P ′

∣∣∣{{p, q} ∈ E
(t)
+ : p ∈ P, q ∈ P ′

}∣∣∣
to denote the number of disagreements caused by P(t).
The goal of this problem is to compute a feasible solution
{P(t)}1≤t≤ℓ that minimizes the weighted disagreements∑

1≤t≤ℓ δt ·#(P(t)).

We use the LP formulation in Fig. 1 from [9], [10]
for the hierarchical correlation clustering problem. In this
formulation, for each 1 ≤ t ≤ ℓ and {u, v} ∈

(
V
2

)
, we

use an indicator variable x
(t)
{u,v} ∈ {0, 1} to denote the

clustering decision for u and v at the t-th layer, i.e.,
x
(t)
{u,v} = 0 if and only if u, v ∈ Q for some Q ∈ P(t)

and x
(t)
{u,v} = 1 otherwise.

Since the triangle inequality is satisfied, we will inter-
pret x(t) as a distance function defined on the elements

at the t-th layer. Moreover, for each {u, v} ∈
(
V
2

)
,

the hierarchical constraint requires that x
(t)
{u,v} is non-

increasing bottom-up over the layers. In the rest of this
paper we will implicitly assume that x(t)

{u,u} = 0 for any
u ∈ V .

Notation: We use the following notation. For any
S ⊆ V , we use S to denote V \ S. Let x(1), . . . , x(ℓ)

be a feasible solution for LP-(∗). For any 1 ≤ t ≤ ℓ,
P,Q ⊆ V , and r ∈ R≥0, we use

Ball
(t)
<r(P,Q) :=

{
v ∈ Q : min

u∈P
x
(t)
{v,u} < r

}
to denote the set of elements in Q that are at a distance
of strictly less than r from some element in P in the
t-th layer. We use

diam(t)(Q) := max
u,v∈Q

x
(t)
{u,v}

to denote the diameter of the set Q with respect to x(t).

When an arbitrary distance function x is referenced,
we use Ball

(x)
<r (P,Q) and diam(x)(Q) to denote the

same concept with respect to the distance function x.

III. LP-ROUNDING ALGORITHM

Solve the LP-(∗) in Fig. 1 for an optimal solution x̃.
For any 1 ≤ t ≤ ℓ, define

F (t) :=
{
{p, q} ∈ E

(t)
− : x̃

(t)
{p,q} = 1

}
to be the set of − edges with distance one at the t-th
layer. We refer these edges to as forbidden edges since
the LP solution pays no cost to separate them.

Our rounding algorithm consists of two parts. The first
part is a pre-clustering algorithm that takes as input a
distance function x and produces a partition Q with the
following two properties.

1) For each Q ∈ Q, the diameter of Q with respect to
x is strictly smaller than 1/3.
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Algorithm 1 Hierarchical-clustering({x̃(t)}1≤t≤ℓ)

1: P(0) ← {{v} : v ∈ V } and ∆(0)(P )← P for all P ∈ P(0).
2: for t = 1 to ℓ do
3: P(t) ← ∅.
4: Q(t) ← Pre-clustering(x̃(t)). // Pre-clustering from Algorithm 2.
5: for all Q ∈ Q(t) do
6: Let Candi(t)(Q) be the set containing all the sets P ∈ P(t−1) such that

∆(t−1)(P ) ∩ P ∩Q ̸= ∅ and
∣∣∣ Ball(t)<2/3

(
P ∩Q, P ∩Q

) ∣∣∣ < α · |P ∩Q|.
7: if Candi(t)(Q) ̸= ∅ then // Merge all the sets in Candi(t)(Q).
8: Let PQ :=

⋃
P∈Candi(t)(Q) P .

9: Add PQ to P(t) and set ∆(t)(PQ)← Q.
10: end if
11: end for
12: for all P ∈ P(t−1) \⋃Q∈Q(t) Candi

(t)(Q) do // Carry the unmerged sets over to P(t)

13: Add P to P(t) and set ∆(t)(P )← ∆(t−1)(P ).
14: end for
15: end for
16: return {P(t)}1≤t≤ℓ.

2) The not-too-far-apart edges separated by Q have
a large average distance. In particular, those with
a distance at most 5/6 already have an average
distance at least 1/6.

We describe this algorithm later in this section.

The second part is a hierarchical clustering algorithm
that outputs a consistent partitioning {P(t)}1≤t≤ℓ, where
each set P in P(t) is further associated with a gluer set
denoted ∆(t)(P ).

Q

P

Ball
(t)
<2/3(P ∩Q,P ∩Q)

∆
(t−1)
+ (P )

P ∩Q

Q

P1

P2

P3

Fig. 2. The setting for intersection requirement (1) between P ∈
P(t−1) and Q ∈ Q(t) and the set-merging operation for the sets in
Candi(t)(Q) with Q being the gluer set.

Let P(0) := {{v}}v∈V be the initial singleton cluster-
ing and define ∆(0)(P ) := P for all P ∈ P(0). For the
t-th layer, where t = 1, 2, . . . , ℓ in order, the algorithm

first applies the pre-clustering algorithm on x̃(t) to obtain
Q(t) and iterates over all Q ∈ Q(t). For each Q, the
algorithm collects all the sets P ∈ P(t−1) that satisfies
the following intersection requirements with Q

∆
(t−1)
+ (P ) ∩Q ̸= ∅ and∣∣∣ Ball(t)

< 2
3

(
P ∩Q, P ∩Q

) ∣∣∣ < α · |P ∩Q| ,
(1)

where ∆
(t−1)
+ (P ) := ∆(t−1)(P ) ∩ P will be referred to

as the core of P and α := 0.3936. Note that α < 1/2.
Refer to Fig. 2 for an illustration on this condition.

Let Candi(t)(Q) denote the sets collected for Q. The
algorithm merges all the sets in Candi(t)(Q), if it is
nonempty, and sets Q to be the gluer set of the merged
set. When all the Q ∈ Q(t) are considered, the algorithm
carries all the unmerged sets in P(t−1) over to P(t) with
their gluer sets unchanged. Refer to Algorithm 1 for a
pseudo-code of this algorithm.

Consider the partition P(t) computed for any 1 ≤ t ≤
ℓ. We refer the sets {PQ}Q : Candi(t)(Q) ̸=∅ to as newly-
created at the t-th layer in the rest of this paper as they
are formed as a result of merging the sets in Candi(t)(Q)
for some Q ∈ Q(t). On the contrary, the unmerged sets
carried over from P(t−1) are referred to as previously-
formed.

Since the distance of any edge is non-increasing
bottom-up over the layers, it follows that the diameter
of any Q ∈ Q(t′) at the t-th layer is also strictly smaller
than 1/3 for any t ≥ t′. Hence, it follows by construction
that diam(t)(∆

(t)
+ (P )) < 1

3 for any P ∈ P(t) and
1 ≤ t ≤ ℓ.
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Algorithm 2 Pre-clustering(x)
1: Let Q ← {V }.
2: while there exists Q ∈ Q with diam(x)(Q) ≥ 1/3 do
3: Pick (v,Q) such that v ∈ Q ∈ Q and maxu∈Q x{u,v} ≥ 1/3.
4: Q′ ← ONE-THIRD-REFINE-CUT(Q, v, x).
5: Replace Q with the sets in Q′ in Q.
6: end while
7: return Q.

1: procedure ONE-THIRD-REFINE-CUT(Q, v, x)
2: if Condition (2) is satisfied for (Q, v) then
3: return { {v}, Q \ {v} }. // make v a singleton
4: else
5: return { Ball(x)<1/3(v,Q), Q \ Ball(x)<1/3(v,Q) }. // cut at 1/3− ϵ
6: end if
7: end procedure

The following lemma shows that the candidates to be
merged for each Q ∈ Q(t) is unambiguous, and hence
Algorithm 1 is well-defined.

Lemma 3. Candi(t)(Q) ∩ Candi(t)(Q′) = ∅ for any
Q,Q′ ∈ Q(t) with Q ̸= Q′.

Proof. Suppose that P ∈ Candi(t)(Q) ∩ Candi(t)(Q′)
for some P ∈ P(t−1) and Q,Q′ ∈ Q(t). Let p ∈
∆

(t−1)
+ (P )∩Q and q ∈ ∆

(t−1)
+ (P )∩Q′ be two elements.

We have
x̃
(t)
{p,q} ≤ x̃

(t−1)
{p,q} <

1

3
by the non-increasing property of the distance function
bottom-up over the layers. Then Condition (1) and the
diameter bounds of Q,Q′ at the t-th layer imply that

P ∩Q ⊆ Ball
(t)
<2/3(P ∩Q′, P ∩Q′),

and
P ∩Q′ ⊆ Ball

(t)
<2/3(P ∩Q,P ∩Q),

and hence |P ∩Q| < α · |P ∩Q′| < α2 · |P ∩Q|, a
contradiction.

Below we describe the pre-clustering algorithm (Algo-
rithm 2). The algorithm takes as input a distance function
x, starts with one big set Q := {V }, and refines it
repeatedly until diam(x)(Q) < 1/3 for all Q ∈ Q. In
each refining iteration, it picks a Q ∈ Q and a vertex
v ∈ Q such that maxu∈Q x{u,v} ≥ 1/3. If∑
q∈Ball

(x)

<1/3
(v,Q)

x{v,q} ≥
1

3
· |Ball(x)<1/3(v,Q)|

− 1

6
· |Ball(x)<1/2(v,Q)| − 1

6
,

(2)

then the algorithm makes v a singleton pre-cluster by
replacing Q with {v} and Q \ {v}. Otherwise, Q is re-
placed with Ball

(x)
<1/3(v,Q) and Q\Ball(x)<1/3(v,Q). We

make a note that in (2) we use the implicit assumption
that x{u,u} = 0 for any u ∈ V in the distance function
x.

This concludes our rounding algorithm for the hierar-
chical correlation clustering problem.

IV. OVERVIEW OF THE ANALYSIS

Let {P(t)}1≤t≤ℓ be the output of Algorithm 1 and
#(P(t)) be the number of disagreements caused by P(t).

Define NF
(t)
− := E

(t)
− \ F (t) to be the set of non-

forbidden − edges at the t-th layer. We have that

#(P(t)) ≤
∑

P∈P(t)

(
#F(P ) + #NF−(P )

)
+

∑
P,P ′∈P(t),

P ̸=P ′

#NF(P, P
′), (3)

where

• #F(P ) := |{ {i, j} ∈ F (t) : i, j ∈ P }| is the
number of forbidden edges clustered within P ,

• #NF−(P ) := |{ {i, j} ∈ NF
(t)
− : i, j ∈ P }| is the

number of non-forbidden − edges clustered within
P , and

• #NF(P, P
′) := |{ {i, j} /∈ F (t) : i ∈ P, j ∈ P ′ }|

is the number of non-forbidden edges between P
and P ′.

Recall that x̃ is an optimal solution to LP-(∗). To bound
the weighted disagreements, we use a rather surprising
property, proved in Section V-D.
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P
P ′

P

Fig. 3. Two types of disagreements we will focus on – (a) Forbidden
edges clustered into the same part P . (b) Non-forbidden edges across
different parts P and P ′.

Lemma 4 (Section V-D).

∑
1≤t≤ℓ

δt ·

 ∑
{u,v}∈E

(t)
+

x̃(t)
u,v +

∑
{u,v}∈E

(t)
−

(
1− x̃(t)

u,v

)
≥

∑
1≤t≤ℓ

δt ·
∣∣∣ NF

(t)
−

∣∣∣ .
It follows from Lemma 4 that the weighted disagree-

ments caused by the edges in NF
(t)
− , if any, can readily

be attributed to the cost of the optimal LP solution.
Furthermore, they can be treated as if they were + edges
when necessary.

Next we bound
∑

P #F(P ) and
∑

P ̸=P ′ #NF(P, P
′)

in terms of |NF(Q(t))|, where we use

NF(Q(t)) :={
{i, j} /∈ F (t) : {i, j} separated in Q(t)

}
to denote the set of non-forbidden edges that are sep-
arated in Q(t). As for #F(P ), we prove the following
lemma in Section V-B and A.

Lemma 5 (Section V-B, Section A). For α := 0.3936
and any P ∈ P(t), we have

#F(P ) ≤ (2− α)(1 + α)2

2(1− α)2
· β ·

∣∣∣NF(Q(t), P )
∣∣∣ ,

where β := 0.8346 and NF(Q(t), P ) :={
{i, j} ∈ NF(Q(t)) : i, j ∈ P

}
denotes the set

of edges in NF(Q(t)) that reside within P .

For #NF(P, P
′), we prove the following lemma.

Lemma 6 (Section V-B). For any P, P ′ ∈ P(t) with
P ̸= P ′, we have

#NF(P, P
′)

≤ max

{
1

1− α
,
1 + α

α

}
·
∣∣∣NF(Q(t), P, P ′)

∣∣∣ ,
where NF(Q(t), P, P ′) :=

{
{i, j} ∈ NF(Q(t)) : i ∈

P, j ∈ P ′ } denotes the set of edges in NF(Q(t)) that
are between P and P ′.

Lemma 5 and Lemma 6 bound
∑

P #F(P ) +∑
P ̸=P ′ #NF(P, P

′) in terms of |NF(Q(t))|. To further
bound |NF(Q(t))|, we show that the non-forbidden
edges separated in Q(t) have an average distance at least
1/6 via a stronger statement.

Lemma 7 (Section V-C). Consider line 4 in Algorithm 2
with input distance function x. Let v be the pivot chosen
in that iteration and (Q1, Q2) with v ∈ Q1 be the pair
returned by the procedure ONE-THIRD-REFINE-CUT.
Then ∑

{i,j}∈NF(Q1,Q2),

i∈Q1,

j∈Ball
(x)

<1/2
(v,Q2)

(
min

{
x{v,j},

1

3

}
− x{v,i}

)

≥ 1

6
·
∣∣∣∣∣
{ {i,j}∈NF(Q1,Q2),

i∈Q1,

j∈Ball
(x)

<1/2
(v,Q2)

}∣∣∣∣∣ ,
where NF(Q1, Q2) denotes the set of non-forbidden
edges between Q1 and Q2.

Since |x{v,i}− x{v,j}| is a lower-bound for x{i,j} for
any i, j ∈ Q1 ∪Q2 by the triangle inequality, Lemma 7
guarantees an average distance at least 1/6 for the edges
in NF(Q1, Q2). Moreover, although the actual distance
of such edges can be much larger than the average, the
statement ensures that only a reasonably small amount
of it is charged to establish the bound.

Using Lemma 7, we bound
∣∣∣NF(Q(t)) ∩ E

(t)
+

∣∣∣ in

terms of the objective value of x̃(t). Combining all
the above with Inequality (3), we obtain the following
lemma in Section V-E.

Lemma 8 (Section V-E).∑
1≤t≤ℓ

δt ·#(P(t)) ≤ (7c(α) + 1) ·

∑
1≤t≤ℓ

δt ·

 ∑
{u,v}∈E

(t)
+

x̃
(t)
{u,v} +

∑
{u,v}/∈E

(t)
+

(
1− x̃

(t)
{u,v}

) ,

where c(α) := max
{

β(2−α)(1+α)2

2(1−α)2 , 1
1−α ,

1+α
α

}
≈

3.5406 for α := 0.3936, and β := 0.8346.

This yields the approximation guarantee of 25.7846.

V. BOUNDING THE WEIGHTED DISAGREEMENTS

In this section we provide the proofs for the lemmas
described in the previous section.
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A. Cardinality Bounds for P ∈ P(t)

To prove Lemma 5 and Lemma 6, one of the key
ingredients is a set of cardinality bounds regarding the
territory of any cluster in terms of its core.

In particular, the intersection requirement in (1) leads
to a decrease of the non-core territory in a geometric
order for any cluster in the hierarchy.

Let P ∈ P(t) be a cluster in the t-th layer. Recall that
∆(t)(P ) denotes the gluer set of P and ∆

(t)
+ (P ) := P ∩

∆(t)(P ) is referred to as the core set of P . Additionally
define

• Ext(t)(P ) := P \∆(t)
+ (P ) to be the extended part

of P ,
• ℓ(t, P ) to be the top-most layer up to the t-th layer

at which P is newly-created, and
L
(t)
1 (P ) to be the elements in the 2/3-vicinity of

P ′ ∩∆
(ℓ(t,P ))
+ (P ) within P ′ at the ℓ(t, P )-th layer

over all P ′ ∈ Candi(ℓ(t,P ))(∆(ℓ(t,P ))(P )).
Formally,

L
(t)
1 (P ) :=⋃

P ′∈Candi(ℓ(t,P ))(QP )

Ball
(ℓ(t,P ))
<2/3

(
P ′ ∩QP , P

′ ∩QP

)
,

where we use QP := ∆(ℓ(t,P ))(P ) to denote the
gluer set of P at the ℓ(t, P )-th layer. We note that
ℓ(t, P ) is always well-defined.
Refer to the figure below for an illustration. Note
that it follows that |L(t)

1 (P )| < α · |∆(t)
+ (P )| by the

merging condition in Algorithm 1.

P

∆
(t)
+ (P )

P

L
(t)
1 (P )

Ext(t)(P )

We prove the following helper lemma regarding the
cardinality of the extended part of P and the reasonably
dense structure in any 2/3-vicinity of it. The statements
are proved using the intersection requirement (1) in
Algorithm 1 and the diameter bound of 1/3 for each
pre-cluster.

Lemma 9. Let P ∈ P(t) be a cluster. We have

|Ext(t)(P )| ≤

min

{
α

1− α
· |∆(t)

+ (P )|, 1

1− α
· |L(t)

1 (P )|
}
.

Furthermore, for any nonempty A ⊆ Ext(t)(P ), there
exists K

(t)
P (A) ⊆ Ball

(t)
<2/3(A,P \A) such that

|A| ≤ α

1− α
· |K(t)

P (A)|.

We prove the statements in Lemma 9 separately. Note
that it suffices to prove the statements for the ℓ(t, P )-
th layer. Hence, in the following we assume that P is
newly-created at the t-th layer.

Consider a tree TP built to represent the sequence of
set-merging processes leading to P , where each node
v ∈ TP is associated with the following two auxiliary
information.

1) H(v) which is a cluster newly-created at the t′-th
layer for some t′ ≤ t. Literally this will be the set
to which the node v corresponds.

2) ℓ(v) which is an index of a layer at which H(v) is
newly-created. Refer to the construction described
below.

We define TP by describing a procedure to construct
it. The process starts with a singleton tree with the root
node r such that H(r) := P and ℓ(r) := t. In each of
the iterations that follow, consider the set of current leaf
nodes v in TP with ℓ(v) > 1. For each of such leaf nodes
v, consider the sets contained in Candi(ℓ(v))(∆(ℓ(v))(v)).
For each P ′ ∈ Candi(ℓ(v))(∆(ℓ(v))(v)), create a node for
P ′, say, u, as a child node of v. Set H(u) := P ′ and
ℓ(u) to be the largest index between 1 and ℓ(v) such that
P ′ is newly-created at the ℓ(u)-th layer.

P
TP

P

Proof of Lemma 9, Part I. Use a pre-order traversal on
TP to define a set of layers as follows. Initially, define
A1 := ∆

(t)
+ (P ) and Base1 := A1 ∪ L1, where

L1(P ) :=⋃
P ′∈Candi(t)(∆(t)(P ))

Ball
(t)
<2/3

(
P ′ ∩∆(t)(P ), P ′ ∩∆(t)(P )

)
.

The traversal starts with the root node P and the initial
index i = 1. For any vertex v encountered during
the traversal, process v as follows. If ∆

(ℓ(v))
+ (H(v)) ⊆

Basei, then nothing needs to be done. In this case we
proceed to the next vertex directly.

On the other hand, if ∆
(ℓ(v))
+ (H(v)) ̸⊆ Basei, then

consider the parent node p(v) of v in TP . Such node
exists since ∆

(ℓ(r))
+ (H(r)) ⊆ Base1 for the root node r.

Let Q(v) := ∆(ℓ(p(v))(H(p(v))) denote the gluer set of
H(p(v)). Increase i by one and define

Ai := H(v) ∩Q(v) and

Basei := Basei−1 ∪ Ball
(ℓ(p(v)))
<2/3

(
Ai, H(v) ∩Ai

)
.
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vi−1

vi

Ai−1

H(vi)

Basei−1

H(vi−1)

∆+(H(vi))

Ai−1

H(vi)

Basei−1

H(vi−1)

Ai

Li

Fig. 4. From vi−1 on which Ai−1 and Basei−1 are defined, identify the first descendant vi whose core set is not contained within Basei−1.
Then Ai, Li, and Basei are defined accordingly.

Note that Ai ̸= ∅. Also refer to Fig. 4 for an illustration
for the definitions. For any i ≥ 2, define

Li := Basei \Basei−1 .

For any index i ≥ 2, let vi denote the specific vertex
at which the sets Ai, Basei, and Li are defined during
the pre-order traversal. For i = 1, define v1 to be the
root node r for consistency. Also refer to Fig. 4 for an
illustration of the definitions.

We prove the following two invariant conditions re-
garding the sets defined during the traversal.

i. |Li| ≤ α|Ai| for any i ≥ 1.
ii. Ai ∩Aj = ∅ for any i ̸= j.

For condition (i), it suffices to consider any i ≥ 2. By
the definition of Li we have

Li ⊆ Ball
(ℓ(p(vi)))
<2/3

(
Ai, H(vi) ∩Ai

)
= Ball

(ℓ(p(vi)))
<2/3

(
H(vi) ∩Q(vi), H(vi) ∩Q(vi)

)
,

where we recall that Q(vi) denotes the gluer set of
H(p(vi)). Since Q(vi) results in the merge of H(vi),
condition (1) is satisfied between H(vi) and Q(vi).
Hence, |Li| ≤ α|Ai|.

For condition (ii), consider any i, j with 1 ≤ j < i. Let
vk be the least common ancestor of vi and vj in TP . If
vk /∈ {vi, vj}, then vi and vj belong to different subtrees
rooted at vk. Since the sets to which the children nodes
of vk correspond form a partition of H(vk), it follows
that H(vi) ∩H(vj) = ∅ and this condition holds.

Now consider the other case where vk ∈ {vi, vj}, in
which vj is a proper ancestor of vi. Since the core of vi
is not contained within Basei−1, there exists an element
q ∈ ∆

(ℓ(vi))
+ (H(vi)) \ Basei−1. Observe that, since Ai

intersects ∆
(ℓ(vi))
+ (vi), by the diameter bounds of Q(vi)

and ∆
(ℓ(vi))
+ (vi) together with the triangle inequality, we

have
x̃
(ℓ(p(vi)))
{q,w} <

2

3
for any w ∈ Ai. (4)

Define

A′
j :=


Aj , if j > 1,
A1 ∩H(v′), where v′ is the child

of v1 such that Ai ⊆ H(v′),
otherwise.

Note that, to prove that Ai∩Aj = ∅, it suffices to prove
the statement for Ai and A′

j . For this, we prove the
following claim.

Claim.

x̃
(ℓ(p(vi)))
{q,u} ≥ 2

3
for any u ∈ A′

j .

Proof. Consider the case for which j ≥ 2. We have

Basej ⊆ Basei−1 and H(vi) ⊆ H(vj),

which shows that q ∈ H(vj) \Basej . Since j ≥ 2, from
the construction, we have that

Ball
(ℓ(p(vj)))

<2/3

(
Aj , H(vj) ∩Aj

)
⊆ Basej .

This implies that

x̃
(ℓ(p(vi)))
{q,u} ≥ x̃

(ℓ(p(vj)))

{q,u} ≥ 2

3
for any u ∈ Aj ,

where the first inequality follows from the monotonic
property of the distances over the layers. Since A′

j := Aj

when j > 1, we are done with this case.
For the other case with j = 1, recall that v′ is the child

of v1 such that Ai ⊆ H(v′). From the construction, we
have

Ball
(ℓ(p(v′)))
<2/3

(
A′

1, H(v1) ∩A′
1

)
⊆ Base1,

and hence

x̃
(ℓ(p(v′)))
{q,u} ≥ 2

3
for any u ∈ A′

1,

Note that since ℓ(p(v′)) = ℓ(v1) ≥ ℓ(p(vi)), the
monotonicity over the layers completes the proof.

Combining the above claim with (4), we have

x̃
(ℓ(p(vi)))
{u,w} ≥ x̃

(ℓ(p(vi)))
{q,u} − x̃

(ℓ(p(vi)))
{q,w} > 0.
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Since this holds for any w ∈ Ai and any u ∈ A′
j , we

have Ai ∩A′
j = ∅ and condition (ii) follows.

We are ready to prove the statement of this lemma. It
follows from the above definitions that Li ∩ Lj = ∅ for
all i ̸= j and |Ext(t)(P )| = ∑i≥1 |Li|. From invariant
condition (i) and (ii), we obtain that

|Ext(t)(P )| =
∑
i≥1

|Li| = |L1| +
∑
i≥2

|Li|

≤ |L1| + α ·
∑
i≥2

|Ai|

≤ |L1| + α · |Ext(t)(P )|.
This gives |Ext(t)(P )| ≤ 1

1−α · |L1|. The first part of
the lemma follows from |L1| ≤ α · |∆(t)

+ (P )|
In the following we complete the second part of

Lemma 9.

Proof of Lemma 9, Part II. Consider the tree TP and
the set of nodes u ∈ TP whose core set intersects A
and whose every ancestor node has its core set being
disjoint with A. Formally,

∆
(ℓ(u))
+ (H(u)) ∩A ̸= ∅ and

∆
(ℓ(v))
+ (H(v)) ∩A = ∅ for any ancestor v of u in TP .

Let u1, u2, . . . , uk be the set of all such nodes and
p1, p2, . . . , pm be the parent nodes of {ui}1≤i≤k. Note
that m ≤ k since some nodes in {ui}1≤i≤k may share
a common parent.

It follows that A ⊆ ⋃
1≤i≤m Ext(ℓ(pi))(H(pi)) and

hence

|A| ≤ α

1− α
·
∑

1≤i≤m

∣∣∣∆(ℓ(pi))
+ (H(pi))

∣∣∣
by the bound proved above for the first part of this
lemma. Furthermore, for each pi, there exists uj which
is a child node of pi such that

∆
(ℓ(pi))
+ (H(pi)) ∩ ∆

(ℓ(uj))
+ (H(uj)) ̸= ∅ and

A ∩∆
(ℓ(uj))
+ (H(uj)) ̸= ∅.

Since max
{

diam(t)(∆
(ℓ(pi))
+ (H(pi))),

diam(t)(∆
(ℓ(uj))
+ (H(uj)))

}
< 1/3 by the monotonic

property of the distance functions over the layers and
the diameter bound of the core sets, it follows that⋃

1≤i≤m

∆
(ℓ(pi))
+ (H(pi)) ⊆ Ball

(t)
<2/3(A,P \A).

From the construction, Ext(ℓ(pi))(H(pi)) for all 1 ≤
i ≤ m are disjoint. Hence, taking K

(t)
P (A) :=⋃

1≤i≤m ∆
(ℓ(pi))
+ (H(pi)) completes the proof of this

lemma.

P
P ′

P

Fig. 5. Two types of disagreements to bound in this section – (a)
Forbidden edges clustered into the same part P . (b) Non-forbidden
edges across different parts P and P ′.

B. Counting the Number of Disagreements

We count the total number of disagreements in P(t) in
terms of the number of edges in NF(Q(t)) for Lemma 5
and Lemma 6. Recall that, for any P ∈ P(t) and any
P ′ ∈ P(t), P ̸= P ′,

• #F(P ) denotes the number of forbidden edges
clustered into P , and

• #NF(P, P
′) denotes the number of non-forbidden

edges between P and P ′.
Also recall that for any cluster P ∈ P(t),

• ∆(t)(P ) denotes the gluer set of P , ∆
(t)
+ (P ) :=

P ∩∆(t)(P ) is referred to as the core of P ,
• Ext(t)(P ) := P \∆(t)

+ (P ) denotes the extended part
of P , and

• L
(t)
1 (P ) denotes the set of elements in the 2/3-

vicinity of P ′ ∩ ∆
(ℓ(t,P ))
+ (P ) within P ′ over all

P ′ ∈ Candi(ℓ(t,P ))(∆(ℓ(t,P ))(P )), where ℓ(t, P ) is
the index of the top-most layer up to the t-th layer
at which P is newly-created.

Sketch of Lemma 5 – Forbidden edges within
any P : To illustrate the ideas, we prove a weaker
bound of (2−α)(1+α)2

2(1−α)2 for #F(P ) in the following. For
β(2−α)(1+α)2

2(1−α)2 with β := 0.8346, we refer the readers to
Section A in the appendix for the details.

Let P ∈ P(t) be a cluster. Since diam(t)(∆
(t)
+ (P )) <

1/3 and the distances are non-increasing bottom-up
over the layers, forbidden edges only occur between
Ext(t)(P ) and P , i.e., no forbidden edges reside within
∆

(t)
+ (P ). Hence, we have

#F(P ) ≤|Ext(t)(P )| ·
(
|Ext(t)(P )|

2
+ |∆(t)

+ (P )|
)

≤ 1

1− α
· |L(t)

1 (P )| · 2− α

2(1− α)
· |∆(t)

+ (P )| (5)

≤ 2− α

2(1− α)2
· α · |∆(t)

+ (P )|2, (6)

where in the last two inequalities we use the bounds
from Lemma 9.
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P

Q1 Q2

Q3

P

L
(t)
1 (P )

∆
(t)
+ (P ) ∆

(t)
+ (P )

Fig. 6. Two cases for the cluster P . (a) P is newly-created at the t-th layer. In this case, the edges between L
(t)
1 (P ) and ∆

(t)
+ (P ) must be

non-forbidden and reside between different pre-clusters within P . (b) P is created at a layer lower than t. In this case, P /∈ Candi(t)(Q) for
any pre-cluster Q that intersects ∆

(t)
+ (P ).

We have two cases to consider. If P is a newly-
formed cluster at the t-th layer, then any edge between
∆

(t)
+ (P ) and L

(t)
1 (P ) crosses different pre-clusters and

is non-forbidden by the way L
(t)
1 (P ) is defined. Hence,

these edges are contained within NF(Q(t), P ) and we
have |L(t)

1 (P )| · |∆(t)
+ (P )| ≤

∣∣NF(Q(t), P )
∣∣ . It follows

from (5) that

#F(P ) ≤ 2− α

2(1− α)2
·
∣∣∣NF(Q(t), P )

∣∣∣ .
Second, if P is a previously-formed cluster at a

lower layer, then consider the set of pre-clusters in
Q(t) that intersect the core set ∆(t)

+ (P ). Let Q1, . . . , Qk

denote these pre-clusters and assume W.L.O.G. that
|Q1 ∩ ∆

(t)
+ (P )| = max1≤j≤k |Qj ∩ ∆

(t)
+ (P )|. Since

P /∈ Candi(t)(Q1), we have

B1 :=
∣∣∣ Ball(t)

< 2
3

(
P ∩Q1, P ∩Q1

) ∣∣∣
≥ α · |P ∩Q1| .

(7)

We have two subcases to consider regarding the relative
size of |Qj ∩∆

(t)
+ (P )| for all j.

• If
∑

2≤j≤k |Qj ∩ ∆
(t)
+ (P )| < α · |Q1 ∩ ∆

(t)
+ (P )|,

then

|∆(t)
+ (P )|2 ≤ (1 + α)2 · |Q1 ∩∆

(t)
+ (P )|2

≤ (1 + α)2

α
· |Q1 ∩∆

(t)
+ (P )| ·B1

by Condition (7). Since the edges between Q1 ∩
∆

(t)
+ (P ) and Ball

(t)

< 2
3

(
P ∩Q1, P ∩Q1

)
are non-

forbidden, reside within P , and cross different pre-
clusters, they are contained within NF(Q(t), P ).
By (6) we have

#F(P ) ≤ 2− α

2(1− α)2
· (1 + α)2 ·

∣∣∣NF(Q(t), P )
∣∣∣ .

• If
∑

2≤j≤k |Qj ∩ ∆
(t)
+ (P )| ≥ α · |Q1 ∩ ∆

(t)
+ (P )|,

since α ≤ 1/2, it follows that Q1, . . . , Qk can be
partitioned into two groups G1 and G2 such that1

α ·
∑
Q∈G1

|Q ∩∆
(t)
+ (P )| ≤

∑
Q∈G2

|Q ∩∆
(t)
+ (P )|

≤
∑
Q∈G1

|Q ∩∆
(t)
+ (P )|.

Define G1 :=
∑

Q∈G1
|Q ∩ ∆

(t)
+ (P )| and G2 :=∑

Q∈G2
|Q ∩∆

(t)
+ (P )| for short. We have

|∆(t)
+ (P )|2 = (G1 +G2)

2

=

(
G1

G2
+

G2

G1
+ 2

)
·G1 ·G2

≤
(

1

α
+ α+ 2

)
·G1 ·G2

=
(1 + α)2

α
·G1 ·G2,

where the last inequality follows since the function
f(x) = x + 1/x attains its maximum value at
x = α within the interval [α, 1]. Since the edges
counted between G1 and G2 are contained within
NF(Q(t), P ), again we have

#F(P ) ≤ 2− α

2(1− α)2
· (1 + α)2 ·

∣∣∣NF(Q(t), P )
∣∣∣ .

We provide the details for the improved bound
β(2−α)(1+α)2

2(1−α)2 with β := 0.8346 in Section A in the
appendix for further reference.

Proof of Lemma 6 – Non-forbidden edges across
P and P ′: This type of disagreements consists of two
different types, namely, whether or not they reside within
the same pre-cluster.

1One of such ways is to consider Qj in non-ascending order of
|Qj ∩∆

(t)
+ (P )| for all 1 ≤ j ≤ k, and assign each Qj considered to

the group that has a smaller intersection with ∆(t)(P ) in size.
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P
P ′

Fig. 7. Two types of non-forbidden edges across different parts P
and P ′ – Whether or not they reside within the same pre-cluster.

First, the number of non-forbidden edges between P
and P ′ that are not within the same pre-cluster is at most∣∣NF(Q(t), P, P ′)

∣∣, where

NF(Q(t), P, P ′)

:= {{i, j} ∈ NF(Q(t)) : i ∈ P, j ∈ P ′}
(8)

denotes the set of non-forbidden edges in NF(Q(t)) that
resides between P and P ′.

Consider the set of non-forbidden edges that resides
between P and P ′ and that belongs to the same Q for
some Q ∈ Q(t). To count the number of such edges, fix
a Q ∈ Q(t) with P ∩ Q ̸= ∅ and P ′ ∩ Q ̸= ∅. By the
design of Algorithm 1, at most one of P and P ′ can be
newly-created at this layer and have Q being its gluer
set.

Without loss of generality, assume that P is either
previously-formed or newly-created with a gluer set
other than Q. In the following, for this {P, P ′} pair,
we fix P and count the number of non-forbidden edges
that reside in Q and that have with one end in P and
the other end in P ′. We have two cases to consider.

If Q∩∆(t)
+ (P ) = ∅, then there exists K

(t)
P (P ∩Q) ⊆

Ball
(t)
<2/3(P ∩Q,P \Q) such that

|P ∩Q| ≤ α

1− α
· |K(t)

P (P ∩Q)|

by Lemma 9.
Hence,

|P ∩Q| · |P ′ ∩Q| ≤ α

1− α
· |K(t)

P (P ∩Q)| · |P ′ ∩Q|.

Note that, the edges counted in the right-hand-side above
reside between P and P ′. Each of them has one end in
P ′ ∩Q and the other end in P ∩Q′ for some other pre-
cluster Q′. Moreover, they are non-forbidden. It follows
that

|P ∩Q|·|P ′ ∩Q|
≤ α

1− α
·
∣∣∣NF(Q(t), P, P ′, Q)

∣∣∣ , (9)

where

NF(Q(t), P, P ′, Q)

:= { {i, j} ∈ NF(Q(t)) : i ∈ P \Q, j ∈ P ′ ∩Q }

denotes the set of edges in NF(Q(t)) that have one end
in P \Q and the other in P ′ ∩Q.

For the second case, suppose that Q∩∆(t)
+ (P ) ̸= ∅. It

follows that P must be previously-formed. Furthermore,
P /∈ Candi(t)(Q). Hence, we have

|P ∩Q| · |P ′ ∩Q|

≤ 1

α
·
∣∣∣ Ball(t)

< 2
3

(
P ∩Q, P ∩Q

) ∣∣∣ · |P ′ ∩Q|

≤ 1

α
·
∣∣∣NF(Q(t), P, P ′, Q)

∣∣∣ . (10)

Combining (9) and (10), it follows that

#NF(P, P
′, Q) ≤

max

{
α

1− α
,
1

α

}
·
∣∣∣NF(Q(t), P, P ′, Q)

∣∣∣ ,
where #NF(P, P

′, Q) denotes the number of non-
forbidden edges that are between P and P ′ and that
belong to Q. Summing up over all Q with P ∩ Q ̸= ∅
and P ′ ∩Q ̸= ∅ and further taking (8) into account, we
obtain

#NF(P, P
′)

≤
(
max

{
α

1− α
,
1

α

}
+ 1

)
·
∣∣∣NF(Q(t), P, P ′)

∣∣∣ .
(11)

C. Average Distance of Non-Forbidden Cut Edges

Consider the execution of Algorithm 2. Let x be the
input distance function. Suppose that the algorithm picks
a pair (v,Q) with v ∈ Q ∈ Q and maxu∈Q x{u,v} ≥
1/3 in some iteration and let (Q1, Q2) with v ∈ Q1 be
the pair returned by the procedure ONE-THIRD-REFINE-
CUT.

Recall that we use NF(Q1, Q2) to denote the set of
non-forbidden edges between Q1 and Q2. For the ease
of notation define

B1/3 := Ball
(x)
<1/3(v,Q), B1/2 := Ball

(x)
<1/2(v,Q),

and Q′
2 := Q2 ∩B1/2.

We prove the following lemma.

Lemma 10 (Restate of Lemma 7).∑
{i,j}∈NF(Q1,Q2),

i∈Q1, j∈Q′
2

(
min

{
x{v,j},

1

3

}
− x{v,i}

)

≥ 1

6
·
∣∣∣{ {i,j}∈NF(Q1,Q2),

i∈Q1, j∈Q′
2

}∣∣∣ .
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Proof. For any p, q ∈ B2/3, define d(p, q) :=
|min{x{v,p}, 1/3} − min{x{v,q}, 1/3}| − 1/6. Since
Q1 ⊆ B1/3, to prove the statement of this lemma, it
suffices to prove that

∑
{p,q}∈NF(Q1,Q′

2)

d(p, q) ≥ 0. (12)

From the setting of the procedure ONE-THIRD-REFINE-
CUT, we have

(Q1, Q
′
2) ∈

{
Cut1 =

(
{v}, B1/2 \ {v}

)
,

Cut2 =
(
B1/3, B1/2 \B1/3

) } .

Hence, to prove (12), it suffices to prove that

W := max
1≤i≤2

 ∑
{p,q}∈NF(Cuti)

d(p, q)

 ≥ 0. (13)

In the following we prove (13).

Let k := |B1/3| and m := |B1/2 \ B1/3|. For Cut1,
we have

∑
{p,q}∈NF(Cut1)

d(p, q)

=
∑

q∈B1/3

x{v,q} +
1

3
· |B1/2 \B1/3| −

1

6
·
(
|B1/2| − 1

)
=
∑

q∈B1/3

x{v,q} +
1

6
· |B1/2| −

1

3
· |B1/3|+

1

6
(14)

=
∑

q∈B1/3

x{v,q} +
1

6
· (m− k + 1). (15)

Note that the nonnegativity of (14) is exactly tested by
the procedure ONE-THIRD-REFINE-CUT.

For Cut2, observe that any p ∈ B1/3 and q ∈ B1/2 al-
ways forms a non-forbidden edge. By a similar argument
to the above, we have

∑
{p,q}∈NF(Cut2)

d(p, q)

=
1

6
· |NF(Cut2)| − m ·

∑
q∈B1/3

x{v,q}.
(16)

From the definition of W in (13) combined with (15)

and (16), we obtain

W ≥ m

m+ 1
·

∑
{p,q}∈NF(Cut1)

d(p, q)

+
1

m+ 1
·

∑
{p,q}∈NF(Cut2)

d(p, q)

=
m

m+ 1
·

 ∑
q∈B1/3

x{v,q} +
1

6
· (m− k + 1)


+

m

m+ 1
·

 1

6
· k −

∑
q∈B1/3

x{v,q}


=

m

6(m+ 1)
· (m+ 1) ≥ 0,

where in the second last equality we use the fact that
|NF(Cut2)| = k ·m.

Recall that we define Q′
2 := Q2∩B1/2. The following

corollary, which is obtained by taking into accounts the
edges {i, j} with i ∈ Q1, j ∈ Q2 \Q′

2, summarizes the
guarantee for the average distance of non-forbidden cut
edges.

Corollary 11.
1

6
· |NF(Q1, Q2)|

≤
∑

{i,j}∈NF(Q1,Q2),

i∈Q1,j∈Q′
2

(
min

{
x{v,j},

1

3

}
− x{v,i}

)

+
∑

{i,j}∈NF(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
+

x{i,j}

+
1

6
·
∣∣∣∣∣
{ {i,j}∈NF(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
−

}∣∣∣∣∣ .
Proof. Observe that, for any i ∈ Q1, j ∈ Q2 \ Q′

2, we
have x{i,j} ≥ x{v,j} − x{v,i} ≥ 1/6.

The following lemma relates the number of non-
forbidden edges separated by Q1 and Q2 to the objective
value of the input distance function in terms of the
original input instance (E

(t)
+ , E

(t)
− ).

Lemma 12.∑
{i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
+

x{i,j} +
∑

{i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
−

(
1− x{i,j}

)

≥ 1

6
·
∣∣∣∣{ {i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
+

}∣∣∣∣ .
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Proof. Recall that Q′
2 := Q2∩B1/2. First, we prove that∑

{i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
+

x{i,j} +
∑

{i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
−

(
1− x{i,j}

)

+
1

6
·
∣∣∣∣{ {i,j}∈NF(Q1,Q

′
2),

{i,j}∈E
(t)
−

}∣∣∣∣
≥

∑
{i,j}∈NF(Q1,Q2),

i∈Q1, j∈Q′
2

(
min

{
x{v,j},

1

3

}
− x{v,i}

)

+
∑

{i,j}∈NF(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
+

x{i,j}. (17)

To prove (17), consider any {i, j} ∈ NF(Q1, Q2) with
i ∈ Q1.

1) If {i, j} is a + edge in E
(t)
+ , then using the triangle

inequality we have x{i,j} ≥ x{v,j} − x{v,i} and
hence x{i,j} ≥ min

{
x{v,j},

1
3

}
− x{v,i}.

2) If {i, j} is a − edge in E
(t)
− with j ∈ Q′

2, then
applying the setting and the triangle inequality we
have x{i,j} ≤ x{v,i} + x{v,j} ≤ 5/6, and hence

(
1− x{i,j}

)
+

1

6
≥ 1

3

≥ min

{
x{v,j},

1

3

}
− x{v,i}.

The above compares the left-hand side of (17) with
its right-hand side for all cases. Hence, we have (17).

Adding
1

6
·

∣∣∣∣∣∣∣
{ {i,j}∈NF(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
−

}∣∣∣∣∣∣∣ to both sides of (17)

and applying Corollary 11, it follows that∑
{i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
+

x{i,j} +
∑

{i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
−

(
1− x{i,j}

)

+
1

6
·
∣∣∣∣{{i,j}∈NF(Q1,Q2),

{i,j}∈E
(t)
−

}∣∣∣∣
≥ 1

6
· |NF(Q1, Q2)| ,

and this lemma follows.

Since Lemma 12 holds for every (Q1, Q2) output
by the procedure ONE-THIRD-REFINE-CUT, we have
the following corollary for the pre-cluster Q output by
Algorithm 2.

Corollary 13.∑
{i,j}∈NF(Q(t)),

{i,j}∈E
(t)
+

x̃
(t)
{i,j} +

∑
{i,j}∈NF(Q(t)),

{i,j}∈E
(t)
−

(
1− x̃

(t)
{i,j}

)

+
1

6
·
∣∣∣∣{ {i,j}∈NF(Q(t)),

{i,j}∈E
(t)
−

}∣∣∣∣
≥ 1

6
·
∣∣∣NF(Q(t))

∣∣∣ .
D. Relating the Objectives

We prove the following key technical lemma regarding
the weighted cardinality of non-forbidden − edges over
the layers in any optimal LP-solution.

Lemma 14 (Restate of Lemma 4).

∑
1≤t≤ℓ

δt ·

 ∑
{u,v}∈E(t)

x̃(t)
u,v +

∑
{u,v}∈E

(t)
−

(
1− x̃(t)

u,v

)
≥

∑
1≤t≤ℓ

δt ·
∣∣∣ NF

(t)
−

∣∣∣ .
where we use NF

(t)
− := E

(t)
− \F (t) to denote the set of

non-forbidden − edges at the t-th layer.

Fix an optimal solution x̃ to LP-(∗). In the following
we modify the constraints in LP-(∗) step by step, while
keeping the invariant that x̃ remains an optimal solution
to the LP.

For each variable x
(t)
{u,v} such that x̃(t)

{u,v} = 1, replace

all occurrences of x(t)
{u,v} with the constant 1. Note that

the restriction of x̃ to the surviving variables continues to
be an optimal solution to the LP after this modification.

There are three types of constraints in LP-(∗) other
than the nonnegativity constraints, namely, x

(t)
{u,p} +

x
(t)
{p,v} ≥ x

(t)
{u,v}, x(t)

{u,v} ≥ x
(t+1)
{u,v}, and x

(t)
{u,v} ≤ 1. We

further modify the LP to remove redundant constraints,
which we describe in the following.

• For each 1 ≤ t ≤ ℓ and u, v, p ∈ V , remove the
constraint x(t)

{u,p} + x
(t)
{p,v} ≥ x

(t)
{u,v} if at least one

variable on the left-hand side was replaced with 1.
• For each 1 ≤ t ≤ ℓ and u, v ∈ V , remove the

constraint x(t)
{u,v} ≥ x

(t+1)
{u,v} if at least one variable

was replaced with 1.
• For each 1 ≤ t ≤ ℓ and u, v ∈ V , remove x

(t)
{u,v} ≤

1 if x(t)
{u,v} was replaced with 1.

Let SV(t) := {{u, v} : x̃(t)
{u,v} < 1} be the set of

variables that survived in layer t, x̃∗ be the restriction of
x̃ to {SV(t)}t, and LP-(∗∗) be the LP obtained by the
above procedure.
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min
∑

1≤t≤ℓ

δt ·


∣∣∣E(t)

+ \ SV(t)
∣∣∣ +

∑
{u,v}∈E

(t)
+ ,

{u,v}∈SV(t)

x
(t)
{u,v} +

∑
{u,v}∈E

(t)
− ,

{u,v}/∈F (t)

(1− x
(t)
{u,v})

 LP-(∗∗)

s.t. x
(t)
{u,p} + x

(t)
{p,v} ≥ x

(t)
{u,v}, ∀ 1 ≤ t ≤ ℓ, {u, p}, {p, v}, {u, v} ∈ SV(t),

x
(t)
{u,p} + x

(t)
{p,v} ≥ 1, ∀ 1 ≤ t ≤ ℓ, {u, p}, {p, v} ∈ SV(t), {u, v} /∈ SV(t),

x
(t+1)
{u,v} ≤ x

(t)
{u,v}, ∀ 1 ≤ t < ℓ, {u, v} ∈ SV(t) ∩SV(t+1),

0 ≤ x
(t)
{u,v} ≤ 1, ∀ 1 ≤ t ≤ ℓ, {u, v} ∈ SV(t) .

We have the following lemma.

Lemma 15. x̃∗ is an optimal solution for LP-(∗∗).
Proof. We claim that removing the above constraints
does not change the set of feasible solutions, and hence
x̃∗ remains an optimal solution to the resulting LP.

Consider the first type of constraints. The removed
constraints are in the form of 1+x

(t)
{p,v} ≥ x

(t)
{u,v}, 1+1 ≥

x
(t)
{u,v}, 1 + x

(t)
{p,v} ≥ 1, or 1 + 1 ≥ 1.

• For 1 + x
(t)
{p,v} ≥ x

(t)
{u,v}, where {p, v}, {u, v} ∈

SV(t), the removed constraint is implied by
x
(t)
{p,v} ≥ 0 and x

(t)
{u,v} ≤ 1, which are constraints

that still exist in LP-(∗∗).
• For 1 + 1 ≥ x

(t)
{u,v}, where {u, v} ∈ SV(t), the

removed constraint is implied by x
(t)
{u,v} ≤ 1, a

constraint still existing in LP-(∗∗).
• For 1 + x

(t)
{p,v} ≥ 1 with {p, v} ∈ SV(t), again it is

implied by x
(t)
{p,v} ≥ 0, which exists in LP-(∗∗).

Consider the second type of constraints, i.e., x(t)
{u,v} ≥

x
(t+1)
{u,v}. If x

(t+1)
{u,v} was replaced with 1, then x̃

(t)
{u,v} = 1

and {u, v} /∈ SV(t). If only x
(t)
{u,v} was replaced, then

1 ≥ x
(t+1)
{u,v} is a constraint that persists in LP-(∗∗).

Finally, for the third type of constraints, x(t)
{u,v} ≤ 1, the

claimed statement is trivial. This proves the lemma.

Let us now consider the dual of LP-(∗∗), which has
an objective function of the following form

max
∑

1≤t≤ℓ

δt ·
( ∣∣∣E(t)

+ \ SV(t)
∣∣∣ +

∣∣∣NF
(t)
−

∣∣∣
+

∑
{u,v}/∈SV(t)

p:{u,p},{p,v}∈SV(t)

β
(t)
{u,v},p −

∑
{u,v}∈SV(t)

η
(t)
{u,v}

)
,

where {β(t)
{u,v},p}

1≤t≤ℓ,
{u,v}/∈SV(t)

p:{u,p},{p,v}∈SV(t)

and

{η(t){u,v}}1≤t≤ℓ, {u,v}∈SV(t) are non-negative dual
variables for the second set and the last set of
constraints in LP-(∗∗), respectively.

Since x̃
∗(t)
{u,v} < 1 for any 1 ≤ t ≤ ℓ and {u, v} ∈

SV(t), the complementary slackness condition states that
in any optimal dual solution with ỹ∗ which contains η∗

as dual variables for the last set of constraints in LP-(∗∗),
we always have that

η
∗(t)
{u,v} = 0 for any 1 ≤ t ≤ ℓ and {u, v} ∈ SV(t).

This implies that
∑

1≤t≤ℓ δt · |NF
(t)
− | ≤ Val(ỹ∗) =

Val(x̃∗), where Val(x̃∗) and Val(ỹ∗) denote the objec-
tive value of x̃∗ and ỹ∗, and it follows that∑

1≤t≤ℓ

δt ·
∣∣∣NF

(t)
−

∣∣∣ ≤ (18)

∑
1≤t≤ℓ

δt ·

 ∑
{u,v}∈E

(t)
+

x̃
(t)
{u,v} +

∑
{u,v}∈E

(t)
−

(
1− x̃

(t)
{u,v}

) .

E. Putting Things Together

Now we are ready to prove Lemma 8. Consider the
statements of Lemma 5 and Lemma 6. By the definition
of NF(Q(t), P ) and NF(Q(t), P, P ′), we have that

NF(Q(t)) =
⋃

P∈P(t)

NF(Q(t), P )

∪
⋃

P,P ′∈P(t), P ̸=P ′

NF(Q(t), P, P ′).

Hence, the two lemmas give that
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∑
P∈P(t)

#F(P ) +
∑

P,P ′∈P(t)

P ̸=P ′

#NF(P, P
′)

≤ c(α) ·
∣∣∣NF(Q(t))

∣∣∣ ,
(19)

where c(α) := max
{

β(2−α)(1+α)2

2(1−α)2 , 1
1−α ,

1+α
α

}
≈

3.5406 for α := 0.3936, and β := 0.8346.

Applying Inequality (19) on Inequality (3), we have

#(P(t))

≤
∑

P∈P(t)

#NF−(P ) +
∑

P∈P(t)

#F(P )

+
∑

P,P ′∈P(t)

P ̸=P ′

#NF(P, P
′)

≤ |NF
(t)
− | + c(α) ·

∣∣∣NF(Q(t))
∣∣∣ , (20)

where we use the fact that #NF−(P ) is the number of
non-forbidden − edges clustered within P . By Corol-
lary 13, the R.H.S. of (20) is upper-bounded by

|NF
(t)
− |

+ c(α) ·
(
|NF

(t)
− | +

6 ·
( ∑
{i,j}∈NF(Q(t)),

{i,j}∈E
(t)
+

x̃
(t)
{i,j} +

∑
{i,j}∈NF(Q(t)),

{i,j}∈E
(t)
−

(
1− x̃

(t)
{i,j}

)))
.

Summing up the weighted disagreements over all layers
t with 1 ≤ t ≤ ℓ and apply (18), we obtain∑
1≤t≤ℓ

δt ·#(P(t)) ≤ ( 7c(α) + 1 ) ·

∑
1≤t≤ℓ

δt ·

 ∑
{u,v}∈E

(t)
+

x̃
(t)
{u,v} +

∑
{u,v}/∈E

(t)
+

(
1− x̃

(t)
{u,v}

) .

VI. EXTENSION TO ULTRAMETRIC VIOLATION
DISTANCE

Recall that given a set of pairwise measured distance
for a set V of elements, the goal of the ultrametric vio-
lation distance problem is to edit the minimum number
of input distances so that there is a perfect fit to an
ultrametric. In [11], [12] the following formulation is
introduced for this problem, where t{u,v} denotes the
supposed layer at which u and v are separated in the
ultrametric when a perfect fit for the given distances
exists.

min
∑

u,v∈V,
u̸=v

((
1− x

(t{u,v})

{u,v}

)
+ x

(t{u,v}+1)

{u,v}

)
LP-(L0)

s.t. x
(t)
{u,v} ≤ x

(t)
{u,p} + x

(t)
{p,v},

∀ 1 ≤ t ≤ ℓ, u, v, p ∈ V,

0 ≤ x
(t+1)
{u,v} ≤ x

(t)
{u,v} ≤ 1,

∀ 1 ≤ t < ℓ, u, v ∈ V.

Fig. 8. LP formulation for the Ultrametric Violation Distance.

As for the LP-(∗) for the hierarchical correlation clus-
tering problem, we implicitly assume in the following
that x

(t)
{u,u} = 0 for all u ∈ V holds in any feasible

solution x for LP-(L0). Furthermore, we extend the
definition such that x(ℓ+1)

{u,v} := 0 for any u, v ∈ V .
Let x̃ be an optimal solution to LP-(L0). The algo-

rithm begins with a big cluster P(ℓ+1) := {V } and
proceeds in a top-down manner. For each iteration t with
t = ℓ, . . . , 1, the algorithm uses P(t) := P(t+1) as the
initial clustering and repeats until diam(t)(P ) < 1/2
holds for all P ∈ P(t). If P ∈ P(t) contains an edge
(u, v) with distance at least 1/2, then the cutting pro-
cedure ONE-HALF-REFINE-CUT is applied to separate
this edge.

The procedure ONE-HALF-REFINE-CUT takes as in-
put a tuple (P, v, x), where P is a set, v ∈ P is the
pivot, and x is a distance function, and tests the following
condition. If

∑
q∈Ball

(x)

<1/2
(v,P )

x{v,q} ≥
1

2
· |Ball(x)<1/2(v, P )|

− 1

4
· |Ball(x)<3/4(v, P )| − 1

4
,

(21)

then the algorithm makes v a singleton cluster by replac-
ing P with {v} and P \ {v}. Otherwise, P is replaced
with Ball

(x)
<1/2(v, P ) and P \ Ball(x)<1/2(v, P ).

Approximation Guarantee

We prove the following theorem for the statement in
Corollary 2.

Theorem 16. Let {P(t)}1≤t≤ℓ be the output of Algo-
rithm 3 and x̂ be the rounded integer distance function
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Algorithm 3 Ultrametric-Violation-Distance({x̃}1≤t≤ℓ)

1: Let P(ℓ+1) ← {V }.
2: for t = ℓ down to 1 do
3: Let P(t) ← P(t+1).
4: while diam(t)(P ) ≥ 1/2 for some P ∈ P(t) do
5: Pick P ∈ P(t) and v ∈ P such that maxu∈P x̃

(t)
{u,v} ≥ 1/2.

6: P ′ ← ONE-HALF-REFINE-CUT(P, v, x̃(t)). // Compute a refined cut
7: Replace P with the sets in P ′ in P(t).
8: end while
9: end for

10: return {P(t)}1≤t≤ℓ.

1: procedure ONE-HALF-REFINE-CUT(P, v, x)
2: if Condition (21) is satisfied for (P, v) then
3: return { {v}, P \ {v} }. // make v a singleton
4: else
5: return { Ball(x)<1/2(v, P ), P \ Ball(x)<1/2(v, P ) }. // cut at 1/2− ϵ
6: end if
7: end procedure

to which P(t) corresponds. We have∑
u,v∈V,

u ̸=v

( (
1− x̂

(t{u,v})

{u,v}

)
+ x̂

(t{u,v}+1)

{u,v}

)

≤ 5 ·
∑

u,v∈V,

u ̸=v

( (
1− x̃

(t{u,v})

{u,v}

)
+ x̃

(t{u,v}+1)

{u,v}

)
,

where x̃ is an optimal solution to LP-(L0).

Observe that each edge {u, v} contributes exactly two
items in the objective value of x̃, namely, x̃

(t{u,v}+1)

{u,v}
and 1 − x̃

(t{u,v})

{u,v} . We consider {u, v} a + edge for all
the layers above t{u,v} and a − edge for the remaining
layers. In this regard, define

E
(t)
+ :=

{
{u, v} : t{u,v} < t

}
and

E
(t)
− :=

{
{u, v} : t{u,v} ≥ t

}
.

Define F :=
{
{u, v} : x̃

(t{u,v})

{u,v} = 1
}

to be the set of

forbidden edges and NF :=
(
V
2

)
\ F .

With exactly the same argument as in Lemma 4
(proved in Section V-D), we have the following updated
version of statement for LP-(L0).

Lemma 17. Let x̃ be an optimal solution to LP-(L0).
We have∑

u,v∈V,

u ̸=v

((
1− x̃

(t{u,v})

{u,v}

)
+ x̃

(t{u,v}+1)

{u,v}

)
≥ | NF | .

Consider the execution of Algorithm 3 and the calls
the algorithm makes to the procedure ONE-HALF-
REFINE-CUT. Let k be the number of calls to the

procedure and {(Q(i)
1 , Q

(i)
2 )}1≤i≤k be the set of pairs

returned by the procedure upon these calls. For each
(Q

(i)
1 , Q

(i)
2 ), define

NExtm
(
Q

(i)
1 , Q

(i)
2

)
:=

{
{u, v} : u ∈ Q

(i)
1 , v ∈ Q

(i)
2 , x

(ti)
{u,v} < 1

}
to be the set of edges that are separated by Q

(i)
1 and Q

(i)
2

and that have distances strictly smaller than 1 at the ti-
th layer, where we use ti to denote the layer at which
(Q

(i)
1 , Q

(i)
2 ) is separated. We will refer these edges to as

non-extreme cut edges.

For any edge {u, v}, define

#{u,v} :=
(
1− x̂

(t{u,v})

{u,v}

)
+ x̂

(t{u,v}+1)

{u,v} and

Val{u,v} :=
(
1− x̃

(t{u,v})

{u,v}

)
+ x̃

(t{u,v}+1)

{u,v}

to be the disagreement caused by the edge {u, v} and
the LP value the edge {u, v} has, respectively. To upper-
bound #{u,v}, let t∗{u,v} be the top-most layer at which
{u, v} is separated for the first time in the hierarchy.
Define t∗{u,v} to be zero if {u, v} is never separated in
the hierarchy.

It is clear that #{u,v} = 1 only when t∗{u,v} ̸= t{u,v}.
Consider the following two cases.

• t∗{u,v} = 0.

In this case, {u, v} is never separated. Then it
follows from the design of Algorithm 3 that
x̃
(t{u,v})

{u,v} < 1
2 . Hence,

#{u,v} ≤ 2 ·
(
1− x̃

(t{u,v})

{u,v}

)
≤ 2 ·Val{u,v} .
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t{u,v}-th layer

(t{u,v} + 1)-th layer

1-st layer

ℓ-th layer

t∗{u,v}

t∗{u,v}

t{u,v} t{u,v}

Fig. 9. (a) We consider {u, v} a + edge for all the layers above the t{u,v}-th layer and a − edge for the remaining layers. Moreover, {u, v}
contributes to the objective value only at the (t{u,v} + 1)-th and the t{u,v}-th layers. (b) Two types of disagreements for the {u, v} edge,
namely, t∗{u,v} > t{u,v} or t∗{u,v} < t{u,v}.

• 0 < t∗{u,v} ̸= t{u,v}.

In this case, {u, v} is separated by exactly one
pair in Q and this happens at the t∗{u,v}-th layer
in the hierarchy. Denote this particular pair by
(Q

(i)
1 , Q

(i)
2 ).

Further consider the following subcases.
– If {u, v} /∈ NExtm(Q

(i)
1 , Q

(i)
2 ) and t∗{u,v} >

t{u,v}, then x̃
(t∗{u,v})

{u,v} = 1, which implies that

x̃
(t)
{u,v} = 1 for all t ≤ t∗{u,v}, and hence

#{u,v} = 1 = x̃
(t{u,v}+1)

{u,v} = Val{u,v} .

– If {u, v} /∈ NExtm(Q
(i)
1 , Q

(i)
2 ) and t∗{u,v} <

t{u,v}, then it follows from the design of Algo-
rithm 3 that x̃

(t{u,v})

{u,v} < 1
2 . Hence again

#{u,v} ≤ 2 ·
(
1− x̃

(t{u,v})

{u,v}

)
≤ 2 ·Val{u,v} .

From the above three cases, we obtain that∑
u ̸=v

#{u,v}

=
∣∣∣{ {u, v} : 0 < t∗{u,v} ̸= t{u,v}

}∣∣∣
+
∣∣∣{ {u, v} : t∗{u,v} = 0

}∣∣∣
≤

∑
1≤i≤k

∣∣∣NExtm(Q
(i)
1 , Q

(i)
2 )
∣∣∣

+ 2 ·
∑

{u,v} : t∗{u,v}=0 or(
0 < t∗{u,v} ̸= t{u,v} and x̃

(t∗{u,v})

{u,v} =1

)
Val{u,v} . (22)

The following lemma, which is the updated version
of Corollary 13 for the Algorithm 3, bounds the number
of edges in F ∩ NExtm(Q

(i)
1 , Q

(i)
2 ) in terms of the

average distance of the edges in NExtm(Q
(i)
1 , Q

(i)
2 ). We

provide the proof in Section B in the appendix for further
reference.

Lemma 18 (Section B). Let (Q1, Q2) be a pair returned
by the procedure ONE-HALF-REFINE-CUT. We have
that ∑

{i,j}∈NExtm(Q1,Q2)

Val{i,j} +
1

4
·
∣∣∣{{i,j}∈NExtm(Q1,Q2),

{i,j}∈NF

}∣∣∣
≥ 1

4
· |NExtm(Q1, Q2)| .

Combining Lemma 18 with (22) and Lemma 17, we
obtain that∑

u ̸=v

#{u,v} ≤ 4 ·
∑
u ̸=v

Val{u,v} + | NF |

≤ 5 ·
∑
u ̸=v

Val{u,v} .

This proves Theorem 16.

VII. CONCLUSION

In this work, we present a new paradigm that advances
the current understanding for hierarchical clustering
in both conceptual and technical capacities. A natural
question following our results is whether the presented
paradigm can be extended to other variations of hierar-
chical clustering problems with different objectives. The
technical problem boils down to the problem of finding
cuts with prescribed properties regarding the average
distances for the problem considered.

Another natural question is whether we can obtain
better approximation result via improving the partition-
ing algorithm, e.g., ONE-HALF-REFINE-CUT in Al-
gorithm 3. The current partitioning algorithm can be
interpreted as follows: sort the points by their distance
from the pivot, and cut this sorted list either at distance

1164



ϵ or 1/2 − ϵ. One could ask: what if we allow cutting
to happen anywhere in the list? We believe such an
algorithm which partitions the ordered list of points into
two consecutive sublists may be of interest.

APPENDIX

A. Lemma 5 – Forbidden Edges within any P .

Let P ∈ P(t) be a cluster and recall that
• #F(P ) denotes the number of forbidden edges

clustered into P ,
• ∆(t)(P ) denotes the gluer set of P , ∆

(t)
+ (P ) :=

P ∩∆(t)(P ) is referred to as the core of P ,
• Ext(t)(P ) := P \∆(t)

+ (P ) denotes the extended part
of P , and

• L
(t)
1 (P ) denotes the set of elements in the 2/3-

vicinity of P ′ ∩ ∆
(ℓ(t,P ))
+ (P ) within P ′ over all

P ′ ∈ Candi(ℓ(t,P ))(∆(ℓ(t,P ))(P )), where ℓ(t, P ) is
the index of the top-most layer up to the t-th layer
at which P is newly-created.

We prove the following lemma.

Lemma 19 (Restate of Lemma 5). For α := 0.3936 and
any P ∈ P(t), we have

#F(P ) ≤ (2− α)(1 + α)2

2(1− α)2
· β ·

∣∣∣NF(Q(t), P )
∣∣∣ ,

where β := 0.8346 and NF(Q(t), P ) :={
{i, j} ∈ NF(Q(t)) : i, j ∈ P

}
denotes the set

of edges in NF(Q(t)) residing within P .

Proof. Since diam(t)(∆
(t)
+ (P )) < 1/3, forbidden edges

only occur between elements in Ext(t)(P ) and that in
P . Hence, we have

#F(P ) ≤ |Ext(t)(P )| ·
(
|Ext(t)(P )|

2
+ |∆(t)

+ (P )|
)

≤ 1

1− α
· |L(t)

1 (P )| · 2− α

2(1− α)
· |∆(t)

+ (P )|,
(23)

≤ 2− α

2(1− α)2
· α · |∆(t)

+ (P )|2, (24)

where we apply Lemma 9 in the last two inequalities.
We have two cases to consider. If P is a newly-formed

cluster at the t-th layer, then any edge between ∆
(t)
+ (P )

and L
(t)
1 (P ) crosses different pre-clusters and is non-

forbidden by the way L
(t)
1 (P ) is defined. Hence, these

edges are contained within NF(Q(t), P ) and we have

|L(t)
1 (P )| · |∆(t)

+ (P )| ≤
∣∣∣NF(Q(t), P )

∣∣∣ .
Hence, from (23) we obtain

#F(P ) ≤ 2− α

2(1− α)2
·
∣∣∣NF(Q(t), P )

∣∣∣ . (25)

P

Q1 Q2

Q3

P

L
(t)
1 (P )

∆
(t)
+ (P ) ∆

(t)
+ (P )

If P is a previously-formed cluster at a lower layer,
then consider the set of pre-clusters in Q(t) that intersect
the core set ∆(t)

+ (P ). Let Q1, . . . , Qk denote these pre-
clusters and assume W.L.O.G. that |Q1 ∩ ∆

(t)
+ (P )| =

max1≤j≤k |Qj ∩∆(t)
+ (P )|. Since P /∈ Candi(t)(Q1), by

Step 6 of Algorithm 1, we have

B1 :=
∣∣∣ Ball(t)

< 2
3

(
P ∩Q1, P ∩Q1

) ∣∣∣ ≥ α·|P ∩Q1| .
(26)

We have two subcases to consider regarding the relative
size of |Qj ∩∆

(t)
+ (P )| for all j.

Case (i) – Imbalanced in Size: If
∑

2≤j≤k |Qj ∩
∆

(t)
+ (P )| < α · |Q1 ∩∆

(t)
+ (P )|, then

|∆(t)
+ (P )|2 ≤ (1 + α)2 · |Q1 ∩∆

(t)
+ (P )|2. (27)

To bound |Q1∩∆(t)
+ (P )|2, further consider two subcases

regarding the size of L(t)
1 (P ) and ∆

(t)
+ (P ).

1) If |L(t)
1 (P )| ≤ β ·α|∆(t)

+ (P )|, then Inequality (23)
yields a good bound. Combined with (27), we have

#F(P ) ≤ 2− α

2(1− α)2
· β · α · |∆(t)

+ (P )|2

≤ 2− α

2(1− α)2
· (1 + α)2

· β · α · |Q1 ∩∆
(t)
+ (P )|2

≤ 2− α

2(1− α)2
· (1 + α)2

· β · |Q1 ∩∆
(t)
+ (P )| ·B1,

where we use Condition (26) in the last inequal-
ity. Since the edges between Q1 ∩ ∆

(t)
+ (P ) and

Ball
(t)
<2/3

(
P ∩Q1, P ∩Q1

)
are non-forbidden,

reside within P , and cross different pre-clusters, it
follows that

#F(P )≤ 2− α

2(1− α)2
(1 + α)2β

∣∣∣NF(Q(t), P )
∣∣∣ .
(28)

2) If |L(t)
1 (P )| ≥ β · α|∆(t)

+ (P )|, then a decent
number of elements exist in the 2/3-vicinity of
∆

(t)
+ (P ). Define for short the following notations.

• ℓ1 := |Q1∩L(t)
1 (P )| and ℓ2 :=

∑
2≤j≤k |Qj∩

L
(t)
1 (P )|,
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• ℓ := |L(t)
1 (P )| − (ℓ1 + ℓ2),

• G1 := |Q1 ∩∆
(t)
+ (P )| and

G2 :=
∑

2≤j≤k |Qj ∩∆
(t)
+ (P )|.

Further consider two subcases regarding the relative
size of Q1 ∩ Ext(t)(P ) and L

(t)
1 (P ).

If ℓ1 ≥ η · |L(t)
1 (P )|, where η := 1−β

αβ2 ≈ 0.6034,
then Q1 contains a large number of elements in
addition to those in Q1 ∩∆

(t)
+ (P ).

In particular, we have ℓ1 ≥ η · |L(t)
1 (P )| ≥ αβη ·

|∆(t)
+ (P )| ≥ αβη · G1. Applying Condition (26),

we obtain

B1 ≥ α · |P ∩Q1| ≥ α · (ℓ1 +G1)

≥ α · (1 + αβη) ·G1.

Following (27) and that G1 := |Q1 ∩∆(t)
+ (P )|, we

obtain

|∆(t)
+ (P )|2 ≤ (1 + α)2 ·G2

1

≤ (1 + α)2

α · (1 + αβη)
·G1 ·B1

=
(1 + α)2 · β

α
·G1 ·B1,

where in the last equality we plug in the setting
of η to obtain that 1

1+αβη = β. Since G1 · B1 ≤∣∣NF(Q(t), P )
∣∣, from (24) we have

#F(P ) ≤ 2− α

2(1− α)2
· (1 + α)2

· β ·
∣∣∣NF(Q(t), P )

∣∣∣ . (29)

If ℓ1 ≤ η · |L(t)
1 (P )|, then a decent fraction of

elements in L
(t)
1 (P ) lies outside Q1 and is ready to

pair up with elements in Q1 ∩∆
(t)
+ (P ). We have

ℓ2 + ℓ ≥ (1− η) · |L(t)
1 (P )|

≥ α · β · (1− η) · |∆(t)
+ (P )|.

(30)

Let γ := 2αβ·(1−η)
1+αβ·(1−η) ≈ 0.2305. We have

|∆(t)
+ (P )|2

= ( G1 + G2 ) · |∆(t)
+ (P )|

= γ ·G1 · |∆(t)
+ (P )|

+ ( (1− γ) ·G1 + G2 ) · ( G1 + G2 )

≤ γ

αβ(1− η)
·G1 · (ℓ2 + ℓ)

+
γ

αβ(1− η)
·G1 ·G2

+ ( 1− γ ) ·G2
1

+

(
2− γ − γ

αβ(1− η)

)
·G1G2 +G2

2,

(31)

where in the last inequality we apply Inequal-
ity (30). Note that by the setting of γ, for the
coefficient of G1 ·G2 in the above, we have

2− γ − γ

αβ(1− η)
≥ 0.

Hence, all the coefficients in the right-hand-side
of (31) are non-negative, and it gives a valid upper-
bound of |∆(t)

+ (P )|2 in terms of edges counted in
G1 · (ℓ2 + ℓ+G2), G2

1, G1 ·G2, and G2
2. Since

G2 < α ·G1, from (31) we have

|∆(t)
+ (P )|2

≤ γ

αβ(1− η)
·G1 · (ℓ2 + ℓ+G2)

+

(
(1− γ) + α

(
2− γ − γ

αβ(1− η)

)
+ α2

)
G2

1

≤ γ

αβ(1− η)
·G1 · (ℓ2 + ℓ+G2) (32)

+
1

α

(
(1 + α)2 − γ(1 + α)− γ

β(1− η)

)
G1B1,

where in the last inequality we apply Condi-
tion (26). Since the edges counted in G1 ·
(ℓ2 + ℓ+G2) and G1 · B1 are non-forbidden, it
follows that

max
{
G1 · (ℓ2 + ℓ+G2) , G1 ·B1

}
≤
∣∣∣NF(Q(t), P )

∣∣∣ .
Combining the above with (32), we obtain

#F(P )

≤ 2− α

2(1− α)2
· (1 + α)2

·
(

1− γ

1 + α

)
·
∣∣∣NF(Q(t), P )

∣∣∣ ,
(33)

where γ
1+α = 1

1+α ·
2αβ2+2β−2
αβ2+2β−1 by plugging in the

setting for η.

Case (ii) – Balanced in Size: If
∑

2≤j≤k |Qj ∩
∆

(t)
+ (P )| ≥ α·|Q1∩∆(t)

+ (P )|, since α ≤ 1/2, it follows
that Q1, . . . , Qk can be partitioned into two groups G1
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and G2 such that2

α ·
∑
Q∈G1

|Q ∩∆
(t)
+ (P )|

≤
∑
Q∈G2

|Q ∩∆
(t)
+ (P )|

≤
∑
Q∈G1

|Q ∩∆
(t)
+ (P )|.

Define for short the following notations.
• G1 :=

∑
Q∈G1

|Q ∩∆
(t)
+ (P )|, and

• G2 :=
∑

Q∈G2
|Q ∩∆

(t)
+ (P )|.

We have

|∆(t)
+ (P )|2 = (G1 +G2)

2

=

(
G1

G2
+

G2

G1
+ 2

)
·G1 ·G2

≤
(

1

α
+ α+ 2

)
·G1 ·G2

=
(1 + α)2

α
·G1 ·G2, (34)

where the last inequality follows since, within the in-
terval [α, 1], the function f(x) = x + 1/x attains its
maximum value at x = α.

Further consider two subcases regarding the relative
size of L(t)

1 (P ) and |∆(t)
+ (P )|.

1) If |L(t)
1 (P )| ≤ β · α|∆(t)

+ (P )|, then following
Inequality (23) and (34) we have

#F(P ) ≤ 2− α

2(1− α)2
· β · α · |∆(t)

+ (P )|2

≤ 2− α

2(1− α)2
· (1 + α)2

· β ·
∣∣∣NF(Q(t), P )

∣∣∣ . (35)

2) If |L(t)
1 (P )| ≥ β ·α|∆(t)

+ (P )|, then a decent num-
ber of edges exists between L

(t)
1 (P ) and ∆

(t)
+ (P ).

In this regard, define the following notations.
• ℓ1 :=

∑
Q∈G1

|Q ∩ L
(t)
1 (P )|,

ℓ2 :=
∑

Q∈G2
|Q ∩ L

(t)
1 (P )|,

• L := |L(t)
1 (P )|, and ℓ := L− (ℓ1 + ℓ2).

Further define G := G1 · (ℓ2 + ℓ) + G2 · (ℓ1 + ℓ)

to count edges between L
(t)
1 (P ) and ∆

(t)
+ (P ). We

have

G ≥
(
ℓ2
L

+
ℓ

L

)
·G1L + α

(
ℓ1
L

+
ℓ

L

)
·G1L

≥ αG1L ≥ α2βG1 · |∆(t)
+ (P )|,

2Note that, one way is to start with two empty groups and consider
Qj in non-ascending order of |Qj ∩ ∆

(t)
+ (P )| for all 1 ≤ j ≤ k.

For each Qj considered, assign it to the group that has a smaller
intersection with ∆(t)(P ) in size.

which the second inequality follows from the fact
that the previous R.H.S. attains its minimum value
when ℓ1 = L and ℓ2 = ℓ = 0. Since

G1 · |∆(t)
+ (P )| = G2

1 +G1 ·G2 ≥ 2 ·G1 ·G2,

we obtain that

G1 ·G2 = ζ ·G1G2 + (1− ζ) ·G1G2

≤ ζ

2α2β
·G+ (1− ζ) ·G1G2, (36)

where ζ := 2α2·β
1+2α2·β . Note that, the setting of ζ

satisfies that
ζ

2α2β
= 1− ζ.

Combining (36) with (34), we obtain

|∆(t)
+ (P )|2

≤ (1 + α)2

α
· 1

1 + 2α2β
· ( G + G1 ·G2 ) .

Since G and G1 · G2 count two disjoint sets of
non-forbidden edges in NF(Q(t), P ), it follows
from (24) that

#F(P ) ≤ 2− α

2(1− α)2
· (1 + α)2

· 1

2α2β
·
∣∣∣NF(Q(t), P )

∣∣∣ . (37)

Combining Inequalities (28), (29), (33), (35), and (37),
we obtain

#F(P ) ≤ 2− α

2(1− α)2
(1 + α)2W ·

∣∣∣NF(Q(t), P )
∣∣∣ ,

where

W := max


β,

1− 2αβ2+2β−2
(1+α)(αβ2+2β−1) ,

1
1+2α2β ,

which has a value of 0.8346 with the setting α := 0.3936
and β := 0.8346. Since W = β and (1 + α)2β ≥ 1, the
statement of this lemma follows.

B. Lemma 18 – Average Distance of Non-extreme Cut
Edges

Consider the procedure ONE-HALF-REFINE-CUT
with input tuple (P, v, x), where x is a distance function,
P is a set with diam(x)(P ) ≥ 1/2, and v ∈ P is the
pivot with maxu∈P x{v,u} ≥ 1/2.

Suppose that the procedure is called at the t-th layer
and (Q1, Q2) with v ∈ Q1 is the pair returned by the
procedure ONE-HALF-REFINE-CUT. Recall that we use

Val{u,v} :=
(
1− x̃

(t{u,v})

{u,v}

)
+ x̃

(t{u,v}+1)

{u,v}
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1: procedure ONE-HALF-REFINE-CUT(P, v, x)
2: if Condition (21) is satisfied for (P, v) then
3: return { {v}, P \ {v} }.

// make v a singleton
4: else
5: return {Ball(x)<1/2(v, P ), P \Ball(x)<1/2(v, P )}

// cut at 1/2− ϵ
6: end if
7: end procedure

to denote the objective value the edge {u, v} possesses,
NExtm(Q1, Q2) to denote the set of edges with dis-
tances strictly smaller than 1 between Q1 and Q2, and
NF :=

(
V
2

)
\ F to denote the set of edges {u, v} with

x̃
(t{u,v})

{u,v} < 1.

In this section we prove the following lemma.

Lemma 20 (Restate of Lemma 18).∑
{i,j}∈NExtm(Q1,Q2)

Val{i,j} +
1

4
·
∣∣∣{{i,j}∈NExtm(Q1,Q2),

{i,j}∈NF

}∣∣∣
≥ 1

4
· |NExtm(Q1, Q2)| .

For the ease of notation define

B1/4 := Ball
(x)
<1/4(v, P ), B1/2 := Ball

(x)
<1/2(v, P ),

B3/4 := Ball
(x)
<3/4(v, P ), and Q′

2 := Q2 ∩B3/4.

To prove Lemma 20, first we bound the cardinality of
NExtm(Q1, Q2) in terms of the average distance of the
edges it contains. The following lemma is the updated
version of Lemma 7 for the procedure ONE-HALF-
REFINE-CUT.

Lemma 21.∑
{i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q′
2

(
min

{
x{v,j},

1

2

}
− x{v,i}

)

≥ 1

4
·
∣∣∣{ {i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q′
2

}∣∣∣ .
Proof. For any p, q ∈ B3/4, define d(p, q) :=
|min{x{v,p}, 1/2} − min{x{v,q}, 1/2}| − 1/4. Since
Q1 ⊆ B1/2, to prove this lemma, it suffices to prove
that ∑

{p,q}∈NExtm(Q1,Q′
2)

d(p, q) ≥ 0. (38)

From the design of the procedure ONE-HALF-REFINE-
CUT, we have

(Q1, Q
′
2) ∈

{
Cut1 =

(
{v}, B3/4 \ {v}

)
,

Cut2 =
(
B1/2, B3/4 \B1/2

) } .

Hence, to prove (38), it suffices to prove that

W := max
1≤i≤2

 ∑
{p,q}∈NExtm(Cuti)

d(p, q)

 ≥ 0. (39)

In the following we prove (39).

Let k := |B1/4|, ℓ := |B1/2 \B1/4|, and m := |B3/4 \
B1/2|. For Cut1, any q ∈ B3/4 \ {v} always forms a
non-extreme edges with v. Hence, we have∑

{p,q}∈NExtm(Cut1)

d(p, q)

=
∑

q∈B1/2

x{v,q} +
1

2
· |B3/4 \B1/2| −

1

4
·
(
|B3/4| − 1

)
=
∑

q∈B1/2

x{v,q} +
1

4
· |B3/4| −

1

2
· |B1/2| +

1

4
(40)

=
∑

q∈B1/2

x{v,q} +
1

4
· (m− k − ℓ+ 1). (41)

Note that the nonnegativity of (40) is exactly the condi-
tion tested by the procedure ONE-HALF-REFINE-CUT.

For Cut2, observe that any p ∈ B1/4 and q ∈ B3/4

always forms a non-extreme edge. For any p ∈ B1/2 \
B1/4, let N(p) denote the number of elements in B3/4 \
B1/2 that forms a non-extreme edge with p. It follows
that ∑

{p,q}∈NExtm(Cut2)

d(p, q) =
1

4
|NExtm(Cut2)|

−m ·
∑

q∈B1/4

x{v,q} −
∑

q∈B1/2\B1/4

N(q)x{v,q}. (42)

From the definition of W in (39) with (41) and (42), we
obtain

W ≥ m

m+ 1
·

∑
{p,q}∈NExtm(Cut1)

d(p, q)

+
1

m+ 1
·

∑
{p,q}∈NExtm(Cut2)

d(p, q)

=
m

m+ 1
·

 ∑
q∈B1/2

x{v,q} +
1

4
(m− k − ℓ+ 1)


+

1

m+ 1
·
(

1

4
|NExtm(Cut2)|

−m
∑

q∈B1/4

x{v,q} −
∑

q∈B1/2\B1/4

N(q)x{v,q}

)
.

1168



Further plugging in |NExtm(Cut2)| = m · k +∑
q∈B1/2\B1/4

N(q), we obtain

W ≥ 1

m+ 1
·
( ∑

q∈B1/2\B1/4

(m−N(q))x{v,q}

+
1

4
m(m− ℓ+ 1) +

1

4

∑
q∈B1/2\B1/4

N(q)

)

≥ m

4(m+ 1)
· (m+ 1) ≥ 0,

where in the second last inequality we use the fact that
x{v,q} ≥ 1/4 for any q ∈ B1/2 \B1/4.

Recall that t is the layer at which the procedure ONE-
HALF-REFINE-CUT is called and the pair (Q1, Q2) with
v ∈ Q1 is separated. Also recall that E

(t)
+ and E

(t)
−

denote the set of + edges and the set of − edges at
the t-th layer.

We have the following lemma.

Lemma 22.∑
{i,j}∈NExtm(Q1,Q2),

{i,j}∈E
(t)
+

x{i,j} +
∑

{i,j}∈NExtm(Q1,Q2),

{i,j}∈E
(t)
−

(
1− x{i,j}

)

+
1

4
·
∣∣∣∣{ {i,j}∈NExtm(Q1,Q

′
2),

{i,j}∈E
(t)
−

}∣∣∣∣
≥

∑
{i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q′
2

(
min

{
x{v,j},

1

2

}
− x{v,i}

)

+
∑

{i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
+

x{i,j}.

Proof. To prove this lemma, we compare both sides of
the inequality for each {i, j} ∈ NExtm(Q1, Q2) with
i ∈ Q1.

1) If {i, j} is a + edge in E
(t)
+ , then using the triangle

inequality, we have x{i,j} ≥ x{v,j} − x{v,i} and
hence x{i,j} ≥ min

{
x{v,j},

1
2

}
− x{v,i}.

2) If {i, j} is a − edge in E
(t)
− with j ∈ Q′

2, then
further consider the following subcases.
a) If Q1 is a singleton-cluster, then it follows that
x{i,j} ≤ 3/4 and(

1− x{i,j}
)
+

1

4
≥ 1

2

≥ min

{
x{v,j},

1

2

}
− x{v,i}.

b) If Q1 = B1/2, then j ∈ B3/4 \B1/2.

i) If i ∈ B1/4, then the triangle inequality
implies that

1−x{i,j} ≥ 1−x{v,i}−x{v,j} ≥
1

4
−x{v,i}.

On the other hand, min{x{v,j},
1
2}−x{v,i} =

1
2 − x{v,i}. Hence,(

1− x{i,j}
)
+

1

4

≥ min

{
x{v,j},

1

2

}
− x{v,i}.

ii) If i ∈ B1/2 \B1/4, then(
1− x{i,j}

)
+

1

4
≥ 1

4
=

1

2
− 1

4

≥ min

{
x{v,j},

1

2

}
− x{v,i}.

We have compared all {i, j} in the above case argu-
ments. This proves the lemma.

In the following we prove Lemma 20.

Proof of Lemma 20. We have that∑
{i,j}∈NExtm(Q1,Q2)

Val{i,j}

≥
∑

{i,j}∈NExtm(Q1,Q2),

{i,j}∈E
(t)
+

x{i,j} +
∑

{i,j}∈NExtm(Q1,Q2),

{i,j}∈E
(t)
−

(
1− x{i,j}

)

by the definition of E
(t)
+ , E(t)

− , and the non-decreasing
property of x̃{i,j} over the layers. Combining the above
statement with Lemma 22, we obtain that∑

{i,j}∈NExtm(Q1,Q2)

Val{i,j} +
1

4

∣∣∣∣{{i,j}∈NExtm(Q1,Q
′
2),

{i,j}∈E
(t)
−

}∣∣∣∣
≥

∑
{i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q′
2

(
min

{
x{v,j},

1

2

}
− x{v,i}

)

+
∑

{i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
+

x{i,j}

≥
∑

{i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q′
2

(
min

{
x{v,j},

1

2

}
− x{v,i}

)

+
1

4
·
∣∣∣∣∣
{{i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
+

}∣∣∣∣∣ , (43)

where in the last inequality we use the fact that x{i,j} ≥
1/4 for any {i, j} ∈ NExtm(Q1, Q2) with i ∈ Q1, j ∈
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Q2 \ Q′
2 by the design of the procedure ONE-HALF-

REFINE-CUT.

Adding
1

4
·

∣∣∣∣∣∣∣
{ {i,j}∈NExtm(Q1,Q2),

i∈Q1, j∈Q2\Q′
2,

{i,j}∈E
(t)
−

}∣∣∣∣∣∣∣ to both sides

of (43) and combining it with Lemma 21, we obtain
that ∑

{i,j}∈NExtm(Q1,Q2)

Val{i,j}

+
1

4

∣∣∣∣{{i,j}∈NExtm(Q1,Q2),

{i,j}∈E
(t)
−

}∣∣∣∣
≥ 1

4
· |NExtm(Q1, Q2)| .

The statement of this lemma follows from the above
inequality and the fact that∣∣∣{{i,j}∈NExtm(Q1,Q2),

{i,j}∈NF

}∣∣∣
≥

∣∣∣∣{{i,j}∈NExtm(Q1,Q2),

{i,j}∈E
(t)
−

}∣∣∣∣ .
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