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Abstract—In this paper, we develop deterministic fully dynamic
algorithms for computing approximate distances in a graph
with worst-case update time guarantees. In particular, we obtain
improved dynamic algorithms that, given an unweighted and
undirected graph G = (V,E) undergoing edge insertions and
deletions, and a parameter 0 < ε ≤ 1, maintain (1 + ε)-
approximations of the st-distance between a given pair of nodes
s and t, the distances from a single source to all nodes (“SSSP”),
the distances from multiple sources to all nodes (“MSSP”), or
the distances between all nodes (“APSP”).

Our main result is a deterministic algorithm for maintaining
(1 + ε)-approximate st-distance with worst-case update time
O(n1.407) (for the current best known bound on the matrix
multiplication exponent ω). This even improves upon the fastest
known randomized algorithm for this problem. Similar to sev-
eral other well-studied dynamic problems whose state-of-the-art
worst-case update time is O(n1.407), this matches a conditional
lower bound [BNS, FOCS 2019]. We further give a deterministic
algorithm for maintaining (1 + ε)-approximate single-source
distances with worst-case update time O(n1.529), which also
matches a conditional lower bound.

At the core, our approach is to combine algebraic distance
maintenance data structures with near-additive emulator con-
structions. This also leads to novel dynamic algorithms for main-
taining (1 + ε, β)-emulators that improve upon the state of the
art, which might be of independent interest. Our techniques also
lead to improved randomized algorithms for several problems
such as exact st-distances and diameter approximation.

Index Terms—Graph Algorithms, Data Structures

I. INTRODUCTION

From the procedural point of view, an algorithm is a set of

instructions that outputs the result of a computational task for

a given input. This static viewpoint neglects that computation

is often not a one-time task with input data in successive

runs of the algorithm being very similar. The idea of dynamic

graph algorithms is to explicitly model the situation that the

input is constantly undergoing changes and the algorithm

needs to adapt its output after each change to the input. This

paradigm has been highly successfully applied to the domain
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a Simons-Berkeley Postdoctoral Fellowship. Sebastian Forster and Yasamin
Nazari are supported by the Austrian Science Fund (FWF): P 32863-N. This
project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 947702).

of graph algorithms. The major goal in designing dynamic

graph algorithms is to spend as little computation time as

possible for processing each update to the input graph.

Despite the progress on dynamic graph algorithms in recent

years, many state-of-the-art solutions suffer from at least one

of the following restrictions: (1) Many dynamic algorithms

only support one type of updates, i.e., are incremental (sup-

porting only insertions) or decremental (supporting only dele-

tions). Fully dynamic algorithms support both types of updates.

(2) Many dynamic algorithms only achieve amortized update

time guarantees, i.e., the stated bound only holds “on average”

over a sequence of updates with individual updates possibly

taking significantly more time than the stated amortized bound.

Worst-case bounds also hold for individual updates, which for

example is relevant in real-time systems. (3) Many dynamic

algorithms are randomized. (i) On one hand, this means these

algorithms only give probabilistic guarantees on correctness

or running time that do not hold in all cases. (ii) On the

other hand, randomized algorithms often do not allow the

“adversary” creating the sequence of updates to be adaptive
in the sense that it may react to the outputs of the algorithm1.

This is because the power of randomization can in many cases

only be unleashed if the adversary is oblivious to the outputs

of the algorithm, which guarantees probabilistic independence

of the random choices made by the algorithm. Deterministic
algorithms avoid these two issues.

While these restrictions are not prohibitive in certain set-

tings, they obstruct the general-purpose usage of dynamic

algorithms as “black boxes”. Thus, the “gold standard” in

the design of dynamic algorithms should be deterministic

fully dynamic algorithms with worst-case update time bounds.

To date, there is only a limited number of problems that

admit such algorithms and additionally have time bounds that

match (conditional) lower bounds (say up to subpolynomial

factors). To the best of our knowledge, this is the case only

for (2 + ε)-approximate maximum fractional matching and

minimum vertex cover [3], (2Δ−1)-edge coloring [4], (1−ε)-
approximate densest subgraph [5], connectivity [6], minimum

1This type of adversary is called “adaptive online adversary” in the context
of online algorithms [2]. Note that despite being allowed to choose the next
update in its sequence based on the outputs of the algorithm so far, this
adversary may not explicitly observe the internal random choices of the
algorithm.
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spanning tree [6], and edge connectivity [7].

In this paper, we add two important problems to this list:

(1 + ε)-approximate st distances and (1 + ε)-approximate

single-source distances in unweighted, undirected graphs. For

current bounds on the matrix-multiplication exponent2 ω, our

deterministic worst-case update times for these problems are

O(n1.407) and O(n1.529), respectively, and match conditional

lower bounds from [12] up to subpolynomial factors. In par-

ticular, the dynamic (1+ ε)-approximate st distance currently

shares this conditional lower bound and the upper bound we

derive with an array of other dynamic problems such as st
reachability and cycle detection in directed graphs, maximum

matching size, or determinant and rank of a matrix [12]–[15].

Apart from our main results for st and single-source dis-

tances, we also obtain novel results for approximating multi-

source distances, all-pairs distances, and the diameter; see

Section I-A for a detailed overview on our results.

Summarized in one sentence, our results are obtained by

combining algebraic bounded-distance data structures with

near-additive emulator constructions (see Definition 1.3) and

then obtaining distance estimates from such an emulator. A

similar strategy was employed by recent related work of [16].

One major ingredient of their approach is equipping the

algebraic distance data structure of Sankowski [13], [14] with

a path-reporting mechanism similar to Seidel’s technique for

APSP in the static setting [17]. This allows them to main-

tain a near-additive spanner – which fits their path-reporting

purposes – but together with other parts of their algorithm

introduces randomization. By using certain types of emulators

instead of spanners, we can obtain a faster, deterministic

algorithm. In particular, we can tailor the algebraic data

structures better to our needs due to several nice properties of

our emulators, for example that their structure changes slowly
and locally.

In the remainder of this section we state all our results and

compare them with related work. In Section II, we give an

overview of our main ideas and technical contributions. In the

full version we provide all the omitted technical details.

A. Our Results and Comparison with Related Work

In this section, we summarize our main results for deter-

ministic fully dynamic distance computation (st, SSSP, APSP,

and MSSP supporting distance queries) and emulators. A sum-

mary of our algorithms for maintaining (1 + ε)-approximate

distances with their worst-case update time guarantees can be

found in Table I. In addition to these deterministic results,

our techniques also give improved randomized solutions for

diameter approximation, and subquadratic update-time (1+ε)-
APSP distance oracles3 with sublinear query time. We next

discuss each of these results and compare them with related

2Two n × n matrices can be multiplied in O(nω) operations with ω ≤
2.373 [8]–[10]. We write O(nω(a,b,c)) for the complexity of multiplying an
na × nb by nb × nc matrix [11].

3By a “distance oracle”, we mean a data structure that supports fast queries.
Our goal – unlike many static algorithms – is not optimizing the space of this
data structure.

Approx Type Worst-case update Reference

1 + ε st O(n1.407ε−2 log ε−1) Theorem 1.1

1 + ε SSSP O(n1.529ε−2 log ε−1) Theorem 1.2

1 + ε k-MSSP O(n1.529 + kn) ·O(ε−1)
√

2 log1/ε n
Theorem 1.5

1 + ε APSP O(n2) ·O(ε−1)
√

2 log1/ε n
Theorem 1.5

(1 + ε, no(1)) Emulators O(n1.407ε−2 log ε−1) Lemma 1.4

TABLE I
SUMMARY OF OUR DETERMINISTIC RESULTS FOR DISTANCE AND

EMULATORS. BY k-MSSP WE MEAN MULTI-SOURCE DISTANCES FROM k
SOURCES. FOR THE EXACT DEPENDENCE ON ω, SEE THE RESPECTIVE

THEOREMS.

work. Throughout this paper we assume that we are given an

unweighted graph with n nodes and m edges.

Deterministic (1 + ε)-st distances: Our main result is a

deterministic, fully dynamic algorithm for maintaining a (1+
ε)-approximation of the distance between a fixed pair of nodes

s, t ∈ V whose worst-case update time matches a conditional

lower bound.

Theorem 1.1: Given an unweighted undirected graph G =
(V,E) and a pair of nodes s and t, there is a fully-dynamic

data structure for maintaining (1+ ε)-distances between s and

t deterministically with

• Preprocessing time of O(nωε−2 log ε−1), where ω ≤
2.373.

• Worst-case update time of O((nω(1,1,μ)−μ+nω(1,μ,ν)−ν+
nμ+ν + n4/3)ε−2 log ε−1) for any parameters 0 ≤ ν ≤
μ ≤ 1, which is O(n1.407ε−2 log ε−1) for current ω (μ ≈
0.856, ν ≈ 0.551).

We are not aware of any non-trivial deterministic algorithms

with worst-case update time for maintaining the exact or

(1 + ε)-approximate st-distance under both insertions and

deletions.4

When relaxing determinism to randomization against adap-

tive adversaries, the previously fastest fully-dynamic algorithm

for st-distance has worst-case update time O(n1.724) [12], [14]

and maintains the distance exactly for unweighted directed

graphs. We later also show that if randomization is allowed,

our approach also improves the bound for exact st-distances

to O(n1.7035).
The previously fastest fully dynamic for unweighted, undi-

rected graphs is implied by the approach of [16] and yields a

worst-case update time of O(n1.529); this algorithm employs

randomization against oblivious adversaries, and in addition

to the approximate distance can also report an st-path of

the corresponding length. Despite being deterministic, our

algorithm improves upon these upper bounds.

Moreover, for current bounds on ω, our result closes the gap

between previous upper bounds and a conditional lower bound

for (1 + ε)-approximate dynamic st-distances on unweighted

undirected graphs [12]. This conditional lower bound is based

on a hardness assumption called “uMv-hinted uMv” where a

vector-matrix-vector product must be computed after receiving

hints about the structure of the three inputs. This assumption

4In independent work, [18] obtained such deterministic bounds for (the
more general) directed graphs when restricting to only edge insertions.
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formalizes the current barrier for improving upon algorithms

for various fully dynamic problems such as directed st-
reachability, maximum matching size, directed cycle detection,

directed k-cycle and k-path detection, and on the algebraic

side, maintaining determinant and rank of a dynamic matrix.

All of these problems admit an O(min0≤ν≤μ≤1(n
ω(1,1,μ)−μ+

nω(1,μ,ν)−ν + nμ+ν)) worst-case update time (which for cur-

rent ω amounts to O(n1.407)) and – assuming hardness of

“uMv-hinted uMv” – no dynamic algorithm for these problems

can improve upon this by a polynomial factor. While the nature

of conditional lower bounds can never rule out the existence

of faster algorithms with certainty, we believe that these

connections provide evidence that a substantial breakthrough

will be necessary in order to improve upon the update time

of our algorithm. We further note that closing the update-time

gap between fully dynamic st-reachability and st-distance was

raised as an important open problem by Sankowski [19]; our

bound for (1+ε)-approximate st-distance in undirected graphs

partially resolves this question.

Deterministic (1 + ε)-SSSP: Our second result is a deter-

ministic, fully dynamic algorithm for maintaining (1 + ε)-
single source distances whose worst-case update time matches

a conditional lower bound.

Formally we show the following.

Theorem 1.2: Given an unweighted undirected graph G =
(V,E) and a single source s, and 0 < ε < 1, there is

a deterministic fully-dynamic data structure for maintaining

(1 + ε)-distances from s with worst-case update time of

O((nω(1,1,μ)−μ + n1+μ)ε−2 log ε−1) for any 0 ≤ μ ≤ 1.

For current bounds on ω and the best choice of μ ≈ 0.529,

this is O(n1.529ε−2). The algorithm has preprocessing time of

O(nωε−2 log ε−1), where ω ≤ 2.373.

As with the st case, we are not aware of any non-

trivial deterministic algorithms with worst-case update time

for maintaining exact or (1 + ε)-approximate SSSP under

both insertions and deletions. When relaxing determinism

to randomization against adaptive adversaries, the previously

fastest fully-dynamic algorithm for (1+ ε)-approximate SSSP

in unweighted graphs has a much slower worst-case update

time of O(n1.823) [20] (albeit that bound also holds for

directed weighted graphs).

The fastest fully dynamic algorithm for unweighted, undi-

rected graphs is implied by the approach of [16] and yields a

worst-case update time of O(n1.529); this algorithm employs

randomization against oblivious adversaries, and in addition

to the approximate distance can also report an st-path of

the corresponding length. Our result matches the update time

of the distance maintenance problem with a deterministic

algorithm and additionally improves the dependence on the

error parameter ε from (1/ε)O(
√

log1/ε n) to a small polyno-

mial. Moreover, this update time matches a conditional lower

bound stated in [12] based on the hardness assumption “Mv-

hinted Mv”. This is a similar type of hardness assumption as

discusses in the st-case, but tuned to single source problems.

We emphasize again that our approximate st result matches

the conditional lower for current ω, whereas our approximate

SSSP bound matches the conditional lower bound for any ω.

Deterministic Sparse Emulators: The main tool developed

and applied in this paper is a novel fully dynamic algorithm

for maintaining (1 + ε, β)-emulators with various trade-offs,

which might be of independent interest.

Definition 1.3: Given a graph G = (V,E), an (α, β)-
emulator of G is a graph H = (V,E′) (that is not nec-

essarily a subgraph of G and might be weighted) in which

dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) + β for all pairs of nodes

u, v ∈ V . If H is a subgraph of G, then H is an (α, β)-spanner
of G.

In this paper, we are mainly interested in so-called near-
additive emulators and spanners, as introduced by [21], for

which α = 1+ ε for any parameter ε > 0 and β is a function

of ε. A influential construction of Thorup and Zwick [22] gives

(1+ε, β)-spanners of size Õ(n1+1/k)5 and with β = O(1/ε)k

for any 0 < ε ≤ 1 and 2 ≤ k ≤ log n that can statically be

computed in time Õ(mn1/k).6 For any constant ε, this allows

for a (1 + ε, no(1)-spanner of size n1+o(1).

In this paper, we obtain the following result for maintaining

near-additive emulators.

Lemma 1.4: Given an unweighted, undirected graph G =
(V,E), parameters 0 < ε < 1 and 2 ≤ k ≤ log n, we can

maintain a (1 + ε, β)-emulator of G with size Õ(n1+1/k),
where β = O(1/ε)k deterministically with worst-case update

time of max(Õ(n4/3+1/k), O(n1.407ε−2 log ε−1)). Here the

latter term of the update time has the same dependence on

ω as Theorem 1.1. The preprocessing time of this algorithm

is O(nωε−2 log ε−1).

This result should mainly be compared to the fully dynamic

algorithm of [16] for maintaining a (1 + ε, no(1))-spanner

of size n1+o(1) with worst-case update time O(n1.529) for

any constant ε > 0 that employs randomization against an

oblivious adversary. We improve upon the result of [16] both

in running time and by having a deterministic algorithm at the

cost of maintaining emulators instead of spanners. Other works

on maintaining spanners or emulators give a multiplicative

stretch α ≥ 3 [24]–[30] or are restricted to a partially dynamic

setting [31], [32].

Deterministic (1 + ε)-MSSP: Another implication of our

techniques is an algorithm for (1 + ε)-multi-source distances.

In the full version, we give an algorithm that combines our

sparse emulator construction with the algebraic techniques to

prove the following theorem.

Theorem 1.5: Given an unweighted, undirected graph G =
(V,E), and 0 < ε < 1, and a fixed set of sources S, we can

maintain (1 + ε)-approximate distances from S (i.e. pairs in

S×V ) deterministically with O((nω(1,1,μ)−μ+n1+μ+|S|·n)·
O(1/ε)

√
2 log1/ε n worst-case update time, which for current ω

5Throughout this paper, we use Õ(·)-notation to suppress terms that are
polylogarithmic in n, the number of nodes of the graph.

6In static settings there are somewhat more involved algorithms for near-
additive emulators that lead to slightly better tradeoffs in specific parameter
settings (e.g. see [23]).
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is O(n1.529 + |S| · n) · O(1/ε)
√

2 log1/ε n. The preprocessing

time is O(nω) ·O( 1ε )
√

2 log1/ε n.

Hence we can maintain distances from up to Õ(n0.52)
sources in almost (up to an no(1) factor) the same time as

maintaining distances from a single-source.
Deterministic (1 + ε)-APSP: One implication of Theo-

rem 1.5 (by simply setting S = V ) is a deterministic fully-

dynamic algorithm for maintaining all-pairs-shortest path that

nearly (up to an no(1) factor) matches the trivial lower bound

of Ω(n2) time per update for this problem. More formally,

Given an unweighted, undirected graph G = (V,E), and

0 < ε < 1, we can maintain (1 + ε)-all-pairs distances de-

terministically with O(n2) ·O( 1ε )
√

2 log1/ε n worst-case update

time. The preprocessing time is O(nω) ·O( 1ε )
√

2 log1/ε n.
It is worth mentioning that there is another (simpler) ap-

proach to obtain this bound that we will discuss in the full

version. The previous comparable bounds for this problem

either used randomization [20] or have amortized bounds

[33], [34]. The fastest deterministic algorithm with worst-

case guarantee that maintains exact shortest paths unweighted,

directed graphs and has an update time of Õ(n2.6) [35].

B. Randomized Algorithms for Exact st-distance, diameter
approximation and (1 + ε)-APSP Distance Oracles

In the full-version of this paper we show several results that,

unlike our previous bounds, are randomized. This includes an

improved bound for exact st-distances using our new algebraic

data structures, and two other implications of our dynamic

multi-source algorithms.
Exact st-distances: Our new dynamic algorithm for main-

taining bounded distances also leads to improved bounds for

dynamic exact st-distances in directed graphs, if we allow

randomization. For current ω, we obtain a worst-case update

time of O(n1.7035), improving upon the previous best bound

of O(n1.7643) [12], [14].
Theorem 1.6: For any 0 ≤ ν ≤ μ ≤ 1 and 0 ≤ h ≤ n,

there exists a randomized dynamic algorithm that maintains

exact st-distances in directed graphs. The preprocessing time

is Õ(hnω) and the worst-case update time per edge insertion or

deletion is Õ(h(nω(1,1,μ)−μ+nω(1,μ,ν)−ν +nμ+ν +(n/h)2)).
After each update, the algorithm returns the exact st-distance

and the result is correct with high probability. The algorithm

works against an adaptive adversary.
For current bounds on ω, this is O(n1.7035) time per update

(with μ ≈ 0.8556, ν ≈ 0.5512 and logn(h) ≈ 0.2966).
Randomized Approximate Diameter: We can maintain a

nearly-(3/2 + ε)-approximation of the diameter in fully dy-

namic unweighted graphs in O(n1.596) · ( 1ε )O(1) worst-case

update time against an adaptive adversary. This is done by

using our emulator to compute (1 + ε)-MSSP algorithms for

certain sets S of size Õ(
√
n) based on an algorithm by [36].

Previously, the fastest fully-dynamic algorithm with this

approximation guarantee by [20] had a worst-case update time

of O(n1.779) and employed randomization against an adaptive

adversary. We get better bounds by combining our sparse

emulator algorithms with the algorithm of [20].

Dynamic diameter was also analyzed in the partially dy-

namic setting [37], [38], e.g. there exists a nearly-(3/2 + ε)-
approximate decremental algorithm with m1+o(1/ε)

√
n/ε2 ex-

pected total update time [37].

(1 + ε)-APSP Distance Oracles with Sublinear Query:
Another implication of our new approach for dynamic (1+ε)-
MSSP is an improved bound for maintaining a data structure

supporting all-pairs distance queries that has subquadratic up-

date time O(n1.788) ·O( 1ε )
√

2 log1/ε n) and a small polynomial

query time O(n0.45ε−2) against an adaptive adversary.

Our result directly improves upon the O(n1.862ε−2 log ε−1)
update time of a corresponding algorithm by [20] which has

the same query time as ours and also employs randomization

against an adaptive adversary. The algorithm of [20] internally

maintains (1 + ε)-approximate MSSP and thus our result is

almost directly implied by our improvement for maintaining

approximate MSSP.

C. Further Related Work

Several state-of-the art dynamic algorithms employ an alge-

braic approach (i.e. use fast matrix multiplication) for main-

taining reachability and distance information. As a conditional

lower bound by Abboud and Vassilevska Williams [39] shows,

this is inherent in certain regimes: Unless one is able to

multiply two n×n boolean matrices in O(n3−δ) time for some

constant δ > 0, no fully dynamic algorithm for st reachability

in directed graphs can beat O(n2−δ′) update and query time

and O(n3−δ′) preprocessing time (for some constant δ′ > 0).

While not explicitly stated in [39], the same conditional

lower bound extends to fully dynamic (1 + ε)-approximate st
distances on undirected unweighted graphs for a small enough

constant ε.

In the same spirit, [40] obtained a more refined conditional

lower bound for combinatorial algorithms maintaining sparse

near-additive spanners and emulators based on the Combina-

torial k-Clique hypothesis.

The use of algebraic techniques for maintaining reachability

and distance information can be traced back to the path count-

ing approaches of King and Sagert [41] and Demetrescu and

Italiano [42]. Sankowski [13] subsequently developed a more

general framework for maintaining the adjoint of a matrix and

applied it to maintaining reachability in directed graphs [13]

and distances in unweighted, directed graph [14]. This ap-

proach was further refined which led to improved dynamic

algorithms for reachability [12] as well as for approximate

distances [20]. Recently, such algebraic data structures have

been enriched to maintain “witnesses” that allow reporting

paths in addition to the pure reachability/distance information:

the path reporting mechanism of [16] uses randomization

against an oblivious adversary and the one of [18] uses ran-

domization against an adaptive adversary. The latter paper also

contains deterministic bounds for incremental approximate

shortest paths independently of our work.
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II. TECHNICAL OVERVIEW

In this section we give a high-level overview of our technical

contributions. In Section II-A, we start by presenting deter-

ministic algorithms for maintaining (1 + ε, 2) and (1 + ε, 4)-
emulators with applications respectively in (1 + ε)-SSSP and

(1+ε)-st distances. These emulator algorithms slightly extend

a known “localization” [32] of the (randomized) additive emu-

lator construction [43] and have two properties crucial for our

bounds: (1) They are based on a “deterministic” and “slowly

changing” hitting set of high-degree neighborhoods. (2) For

assigning the edge weights, we only need to compute bounded

pairwise distances between the smaller set of nodes involving

the hitting set. We show that in our setting we can – instead

of using a standard randomized approach – deterministically

maintain an approximate solution to this particular hitting-set

instance with low recourse.

In Section II-B, we then design an algebraic data structure

for maintaining bounded distances in such a way that it can

deal with a gradually changing hitting set efficiently. Following

the approach by Sankowski [14], maintaining small distances

between certain vertices reduces to maintaining a submatrix of

some dynamic matrix inverse. We modify the dynamic matrix

inverse algorithm of [12] to efficiently maintain such a sub-

matrix. In general, the algorithm of [12] has faster update but

slower query time compared to other dynamic matrix inverse

algorithms [13]. However, by exploiting that the queries will

be located within some specified submatrix, we can speed up

the query complexity. Using this additional information about

the location of the queries, we can periodically precompute

larger batches of information during the update phase via fast

matrix multiplication. For getting this speed up we need to

modify the algorithm and analysis of [12], as their algorithm

has different layers that need to be handled separately in our

case.

Finally, in Section II-C we discuss how using further respar-

sifications we can obtain near linear size additive spanners with

applications in MSSP, APSP, and diameter approximation.

A. Dynamic Emulators via Low-Recourse Hitting Sets

Deterministic (1 + ε, 2)-emulator and (1 + ε)-SSSP: We

start with a deterministic algorithm for maintaining a (1+ε, 2)-
emulator. This algorithm is inspired by a randomized algorithm

(working against an oblivious adversary) used by [32] in the

decremental setting, which in turn is based on the purely

additive static construction of [43]. Given an unweighted graph

G = (V,E), we maintain an emulator H with size Õ(n3/2)
as follows:

1) Let d =
√
n be a degree threshold. For any node v where

deg(v) < d, add all the edges incident to v to H . These

edges have weight 1.

2) Construct a hitting set A ⊆ V of size Õ(
√
n), such that

every node with degree at least d, called a heavy node,

has a neighbor in A. Add an edge to this neighbor.

3) For any node u ∈ A, add an edge to all nodes within

distance �2/ε	+ 1 to u. Set the weight of such an edge

(u,w) to dG(u,w).

It is easy to see that if we were interested in a randomized

algorithm that only works against an oblivious adversary, we

could simply construct a hitting set A by uniformly sampling

a fixed set of size Õ(
√
n) [44].

We could then maintain the corresponding (�2/ε	 + 1)-
bounded distances for all pairs in A × V after each update

using the algebraic data structure by [14] which runs in

O(n1.529ε−1 log ε−1) time per update.

The distance bound of (�2/ε	 + 1) in our emulator algo-

rithms leverages the power of algebraic distance maintenance

data structures because their running times scale with the given

distance bound. However, these ideas alone are not enough for

obtaining an efficient deterministic algorithm. We will have to

change both the hitting set construction and the algebraic data

structure.

Before explaining how to maintain both the hitting set and

the corresponding distances deterministically, let us sketch

the properties of this emulator and how it can be used for

maintaining (1 + ε)-SSSP. It is easy to see that H has size

Õ(n3/2): we add Õ(nd) edges incident to low-degree nodes,

and Õ(n3/2) edges in A×V . For the stretch analysis, consider

any pair of nodes s, t, and let π be the shortest path between

s, t. We can divide π into segments of equal length �2/ε	,
and possibly one additional smaller segment. Consider one

such segment [u, v]. If all the nodes on this segment are low-

degree, then we have included all the corresponding edges

in the emulator. Otherwise there is a node w ∈ A that is

adjacent to the first heavy node on this segment. We have

dG(w, v) ≤ �2/ε	, and thus in the third step of the algorithm

we have added a (weighted) edge (w, v) in the emulator. It is

easy to see that the path going through w either provides a

(1 + ε) multiplicative factor, or (for the one smaller segment)

an additive term of 2.

Given a (1 + ε
2 , 2) emulator, we can now maintain (1 + ε)-

SSSP by (i) using algebraic techniques to maintain O(1/ε)-
bounded distances from the source s to all nodes in V , and

(ii) statically running Dijkstra’s algorithm on the emulator in

time Õ(n3/2), and finally (iii) taking the minimum of the two

distance values for each pair (s, v) ∈ {s} × V . We observe

that if dG(s, v) ≤ O( 1ε ), then we are maintaining a correct

estimate in step (i). Otherwise in step (ii) the combination of

the (1 + ε
2 ) multiplicative factor and the additive term, leads

to an overall (1 + ε)-approximate estimate.

Deterministic low-recourse hitting set: As discussed, we

can easily obtain a fixed hitting set of size Õ(n/d) using

randomization, but we are interested in a deterministic algo-

rithm. One natural approach for constructing the hitting set A
deterministically is as follows: For each node v with degree

at least d, consider a set of exactly d neighbors of v. After

each update we can statically and deterministically compute

an O(log n)-approximation to this instance of the hitting set

problem. We use a simple greedy algorithm that proceeds by

sequentially adding nodes to A that hit the maximum number

of uncovered heavy nodes.

This can be done in Õ(nd) time and gives us a hitting

set of size Õ(n/d) as well. This running time is within our
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desired update-time bound, but we also need to maintain

Θ(1/ε)-bounded distances from elements in this hitting set.

As we outline in the full version, by using the naive approach

of recomputing a hitting set in each update and employing

off-the-shelf algebraic data structures (e.g. [12], [14]) for

maintaining bounded distances in A × V , we would get an

update time of O(n1.596) for current ω. However, there is a

conditional lower bound of O(n1.529) for this problem [12],

and our goal is to design an algorithm that matches this bound.

To get a better running time, we change both our construc-

tion and the algebraic data structure to use a low-recourse
hitting set instead, which ensures that in each update only a

constant number of nodes are added to the set. More formally

in the full version we prove the following lemma (the details

can be found in the full version):

Lemma 2.1: Given a graph G = (V,E) undergoing

edge insertions and edge deletions and a degree threshold

d, call a node v heavy if it has degree at least d. We can

deterministically maintain a hitting set Ad of size O(n·logn
d )

with worst-case O(1) recourse and worst-case O(d2+d log n)
time per update (after O(nd) preprocessing time) such that all

heavy nodes have a neighbor in Ad.

At a high-level our dynamic low recourse hitting set pro-

ceeds as follows: we start by using the static greedy hitting set

algorithm. We then note that each update (insertion or deletion)

can make at most 2 heavy nodes uncovered. We can keep on

adding arbitrary neighbors of such nodes to our hitting set A
until the size of the hitting set exceeds its initial O(nd log n)
bound by a constant factor, and then reset the construction.

This leads to an amortized constant recourse bound, and we

can then use standard techniques to turn this into a worst

case constant recourse bound (see the full version for the full

algorithm).

Note that this hitting set problem can be seen as a set cover

instance of size O(nd), where each set consists of exactly d
neighbors of a heavy node. Dynamic set cover approximation

has received significant attention in recent years (e.g. [40],

[45]–[47]). The most relevant result to our setting is a fully-

dynamic O(log n)-approximate set cover algorithm by [47]).

However we cannot use their result directly, as they state

that their polynomial time algorithm only leads to constant

amortized recourse, and their update-time guarantees are also

only amortized7. Here we use a simple approach that utilizes

the properties of our hitting set instance, which is enough to

get worst-case recourse bounds.

Deterministic (1+ε, 4)-emulator for (1+ε)-st distances:
Next, we outline how we can improve the O(n1.529) update

time to O(n1.407) in case of st-distances. For this purpose,

we maintain a (1 + ε, 4)-emulator with size Õ(n4/3), which

again is inspired by the purely additive construction of [43]

in the static setting, by making the following modifications

to the algorithm described in Section II-A above: We set the

7The goal in [47] is a generic set cover approximation algorithm, which is
why they are not comparable to our specialized algorithm. Also, the other set
cover algorithms cited lead to approximation ratio dependent on an instance
parameter f , which can be as large as n in our case.

degree threshold to d = n1/3. More importantly, rather than

adding edges corresponding to bounded distances in Ad × V ,

we only add pairwise edges between nodes (with bounded

distance) in Ad ×Ad. This has two advantages: First, we can

run Dijkstra on a sparser graph. Second, the algebraic steps

can be performed much faster when we only need to maintain

pairwise distances between two sets of sublinear size (here

|Ad| = Õ(n2/3), rather than from a set of size Õ(
√
n) to all

nodes in V .

It is easy to see that this emulator has size Õ(n4/3). There

are Õ(nd) edges corresponding to low-degree nodes, and

Õ(n4/3) corresponding to edges in Ad×Ad. The stretch argu-

ment follows a similar structure to the one for the (1 + ε, 2)-
emulator. Again, for each pair of nodes s, t, we divide the

shortest path to segments of equal length Θ(1/ε). The main

difference is that here we should consider the first and last

heavy nodes on each segment, which we denote by x and

y. Then there must be nodes w1, w2 ∈ Ad that are adjacent

to x and y respectively. We have dG(w1, w2) ≤ Θ(1/ε) and

thus we have added an edge (w1, w2) in the emulator. The

path using this edge will lead to either a (1+ ε)-multiplicative

stretch for this segment, or an additive term of 4 for the (at

most) one smaller segment.

Note that this algorithm does not lead to better bounds

for single-source distances since querying Θ(1/ε)-bounded

single-source distances still takes O(n1.529) time using known

algebraic techniques. However, if we are interested in the

Θ(1/ε)-bounded distance between a fixed pair of nodes s and

t, our algebraic approach, as outlined in Section II-B, leads

to better bounds. In this case, we get an improved bound of

O(n1.407).

B. Dynamic Pairwise Bounded Distances via Matrix Inverse

As outlined before, we must efficiently maintain bounded

pairwise distances for some sets S×T ⊆ V ×V , where the sets

S and T are dynamically changing. We additionally use the

fact that even though these sets change, they do not change

substantially with each update because of our low-recourse

hitting sets. In this section, we outline the following: (i) a

reduction from maintaining S × T -distances to maintaining a

submatrix8 (A−1)S,T for some dynamic matrix A, and (ii) a

dynamic algorithm maintaining this submatrix of the inverse

efficiently. This dynamic matrix inverse algorithm, together

with the reduction, then imply the following dynamic algo-

rithm (Theorem 2.2, proven in the full version) for maintaining

bounded distances.

Theorem 2.2: For all 0 ≤ ν ≤ μ ≤ 1 there exists

a deterministic dynamic algorithm that, after preprocessing

a given unweighted directed graph G and sets S, T ⊆ V ,

supports edge-updates to G and set-updates to S and T
(i.e. adding or removing a node to S or T ) as long as

|S|, |T | ≤ nμ throughout all updates. After each edge- or set-

8Throughout, we use NS,T for sets S, T ⊆ [n] and n × n matrix N to
denote the submatrix consisting of rows with index in S and columns with
index in T .
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update the algorithm returns the h-bounded pairwise distances

of S × T in G.

The preprocessing time is O(nωh2 log h), and the worst-

case update time is

O((nω(1,1,μ)−μ + nω(1,μ,ν)−ν + nμ+ν + |S × T |)h2 log h).

For current bounds on rectangular matrix multiplication

ω(·, ·, ·) [11], this is O((n1.407 + |S × T |)h2 log h) for

|S|, |T | ≤ n0.85, or O((n1.529 + |S × T |)h2 log h) for any

(possibly larger) S, T .

For our approximate st-distance algorithm, we will set

|S| = |T | = Õ(n2/3) and h = O(1/ε), resulting in

O(n1.407ε−2 log ε−1) update time. For our approximate SSSP

algorithm we will set |S| = n, |T | = Õ(
√
n) and h = O(1/ε),

resulting in O(n1.529ε−2 log ε−1) update time.

Reducing distances to matrix inverse: All previous fully

dynamic algebraic algorithms that maintain distances work by

reducing the task to the so called “dynamic matrix inverse”

problem [12], [14], [16], [20], [48], [49]. This reduction is

due to Sankowski [14] who originally used the adjoint instead

of the matrix inverse. In previous work on fully dynamic

algebraic algorithms, this reduction was always randomized.

Here we recap the reduction when using matrix inverse instead

of adjoint, and argue why the reduction can be derandomized

for our use-case of maintaining bounded distances. Readers

already familiar with this reduction might want to skip ahead

to the paragraph labeled “Submatrix maintenance”.

For the reduction, we are given an adjacency matrix A.

Note that Ak
s,t (where Ak is the k-th power of A) is the

number of (not necessarily simple) paths from s to t of length

k. Specifically, the smallest k with Ak
s,t 
= 0 is the distance

from s to t. We can maintain these powers of A via dynamic

matrix inverse as follows:

Let X be some symbol and let (I − XA) be the matrix

with 1 on the diagonal and (I − XA)u,v = −X for all

edges (u, v) ∈ E. When performing all arithmetic operations9

modulo Xh, we have (I − XA)−1 =
∑h−1

k=0 X
kAk. To see

this, observe

(I−XA) ·
h−1∑
k=0

XkAk =
h−1∑
k=0

XkAk −
h∑

k=1

XkAk = I

where the last identity holds by XhAk = 0 because of

the entry-wise mod Xh. Thus, a dynamic algorithm that

maintains the inverse of matrix (I−XA) is able to maintain

distances of length < h in dynamic graphs. The task of

maintaining pairwise distances for S × T thus reduces to

the task of maintaining the submatrix (M−1)S,T for some

dynamic matrix M.

Note that the number of uv-paths of length k, given by

Ak
u,v , might be as large as O(nk). Representing this number

needs O(k) words in Word-RAM model and each arithmetic

operation needs O(k) time [50]. In general, a graph might have

9For our proofs, this is formalized as the entries of the matrix being from
F[X]/〈Xh〉 for some field F, i.e. polynomials over F where we truncate all
monomials of degree ≥ h.

paths of length O(n), thus randomization was used in previous

work [12], [14], [16], [20], [48], [49] to bound the bit-length

and arithmetic complexity of the numbers involved (e.g. by

maintaining the number of paths modulo some small random

prime p = poly(n), or by using Schwartz-Zippel lemma).10

However, in our use-case, we only need distances up to

O(1/ε) thanks to properties of our emulators, thus the ran-

domization is not required. Each arithmetic operation will only

need O(1/ε) time as we only consider numbers represented

by O(1/ε) words.

Submatrix maintenance: As explained in the previous

paragraph, our dynamic distance algorithms reduce to a dy-

namic matrix inverse algorithm that maintains a submatrix

M−1
S,T for some dynamic matrix M. Any existing dynamic

matrix algorithm can maintain such a submatrix by just

querying all |S × T | entries after each change to M, but this

would not be fast enough for our purposes. We instead propose

a new dynamic matrix inverse algorithm that can maintain such

a submatrix efficiently, if the sets S and T are slowly changing.

The construction of this dynamic algorithm relies on reduc-

ing maintaining M−1
S,T to maintaining partial rows of the form

(M−1)k,T for any k ∈ [n], which is formalized and proven in

the full version.

Lemma 2.3: Assume we are given a dynamic algorithm

that initializes on a dynamic set T ⊂ [n] and a dynamic

n×n matrix M that is promised to stay non-singular. Assume

the algorithms supports both changing any entry of M and

adding/removing any index to/from T in O(u(|T |, n)) opera-

tions, and supports queries for any i ∈ [n] that return M−1
i,T

in O(q(|T |, n)) operations. Then we can also maintain M−1
S,T

explicitly for dynamic matrix M and dynamic sets S, T ⊂ [n]
while the update time increases to O(u(k, n)+ q(k, n)+ |S×
T |) for k = max(|S|, |T |). The preprocessing time increases

by an additive O(nω) operations.

Thus it suffices to design a dynamic matrix inverse algo-

rithm that supports efficient queries to partial rows M−1
i,T . Our

proposed algorithm is a modification of the dynamic matrix

inverse algorithm by [12]. Their data structure has the fastest

known update complexity among all dynamic matrix inverse

algorithms, but comes at the cost of slower queries than some

data structures from [13].

We speed up the queries of [12] by exploiting the fact

that set T is slowly changing, thus we know ahead of time

which entries of the inverse might be queried in the future. By

preprocessing these entries, we can speed up queries to M−1
i,T

for any i ∈ [n] and a dynamic set T ⊂ [n]. In addition to these

faster queries, we also simplify the proof and the structure of

the dynamic algorithm from [12].

We next explain how to achieve such a speed up. We

start with a quick recap of how the data structure of [12]

represents the dynamic matrix inverse and then explain how

we modify the algorithm. Let M′ be the dynamic matrix M

10We focus on fully dynamic algorithms here. We note that in the incre-
mental setting (i.e. only edge insertions), such randomization is not required.
See e.g. [18].
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during initialization, then we maintain M in the following

implicit form:

M = M′ +U′V′� +UV� (1)

where for some 0 ≤ ν ≤ μ ≤ 1, the matrices U′,V′ have at

most nμ columns and U,V have at most nν columns, all of

which have at most one non-zero entry per column. Initially,

U,U′,V,V′ are all empty matrices (i.e. with 0 columns) as

M = M′. Then, with each update to M, we update U and

V as follows: The entry update to Mi,j can be represented

as adding some v · eie�j to M for some scalar v. We can

thus maintain (1) by setting U← [U|v · ei] and V ← [V|ej ]
(i.e. appending a new column to U and V). After nν updates,

the matrices U and V have nν columns and we append these

columns to U′,V′ by setting U′ ← [U′|U], V′ ← [V′|V],
then we reset U,V to be empty matrices (i.e. with 0 columns).

Thus M is still maintained in form (1) and we can assume

U, V always have at most nν columns. After nμ updates, the

algorithm is reset by letting M′ ←M and all U,U′,V,V′ are

reset to be empty matrices. Thus we can also assume U′,V′

have at most nμ columns.

The task is now to maintain M−1 in some implicit form

that allows for fast queries to M−1
i,T for any i ∈ [n] and a

dynamic set T ⊂ [n]. For this consider the following Sherman-

Morrison-Woodbury identity.

Lemma 2.4 ( [51], [52]): For any non-singular M and

M+UV� we have

(M+UV�)−1 = M−1−M−1U(I+V�M−1U)−1V�M−1.

By applying this identity twice (once for M := M′′+UV�

and once for M′′ := M′ +U′V′�) we can write:

M−1 = M′−1 +AB︸ ︷︷ ︸
=M′′−1

+M′′−1UCV�M′′−1 (2)

A := M′−1U′(I+V′�M′−1U′)−1,

B := V′�M′−1, C := (I+V�M′′−1U)−1

where matrices A,B,C are maintained by the data structure.

In [12], it was shown that this representation (that is, matrices

M′−1,A,B,U,V,C) can be maintained in O(nω(1,1,μ)−μ +
nω(1,μ,ν)−ν + nμ+ν) time per update.11

Here the representation of M−1 and M′′−1 is only implicit

via (2), while matrices M′−1, A, B, U, V, C are known

explicitly (i.e. direct read access in memory). The first row

of Figure 1 shows (2) where each box represents one of

the matrices and gray matrices are computed explicitly. We

modify the algorithm by computing some submatrices of the

implicit M′′−1 and V�M′′−1 explicitly (see gray areas in

the second row of Figure 1). Every time matrices A and B
change (i.e. every nν iterations) we precompute M′′−1

[n],T =

11Technically, [12] uses Lemma 2.4 in the form (M + UV�)−1 =
M−1T for T = (U(I+V�M−1U)−1V�M−1). Then sum (2) is written
as a matrix product of two such T, one for UV� and one for U′V′�. In
the full version we reprove the algorithm in sum-form (2) which simplifies
both the analysis of the algorithm and the analysis of our modifications to
accelerate the queries.

M′−1
[n],T +(AB�)[n],T for current set T . It is possible to show

that this precomputation can be performed in O(nω(1,μ,ν))
operations if |T | ≤ nμ. Since T is slowly changing, whenever

we attempt to query M′′−1
i,T at a later point, there are at most

O(nν) entries that have not been precomputed yet. Each of

these missing entries can be computed in O(nμ) time because

M′′−1
i,j = M′−1

i,j + (e�i A)(Bej) where A and B have at most

nμ columns. Thus any row M′′−1
i,T can be obtained in O(nν+μ)

operations.

With every update to M, we also maintain the columns of

V�M′′−1 with index in T . Note that by V having at most nν

columns, each with only one non-zero entry, V�M′′−1 are

just ≤ nν rows of M′′−1. Further, with each update to M,

V grows by one column, so one more row of (M′′−1)i,[n] is

added to V�M′′−1 for some i ∈ [n]. So we can maintain the

desired submatrix of V�M′′−1 by querying the entries M′′−1
i,T

in O(nμ+ν) operations. If an index is added to T , we need to

compute one new column of V�M′′−1, which means we just

need to query ≤ nν entries of M′′−1. This can also be done

in O(nν+μ) operations.

With these explicit submatrices maintained (see Figure 1

for a summary), we can now query any M−1
i,T efficiently as

follows: Query M′′−1
i,T in O(nν+μ) operations, then query

(M′′−1UCV�M′′−1)i,T . For the latter, note that e�i M
′′−1U

are just nν entries of M′′−1 because U has only one non-

zero entry per column, and the columns with index in T of

V�M′′−1 are maintained explicitly. Thus, this also takes just

O(nν+μ) operations by |T | ≤ nμ.

In summary, our modification has amortized complexity

(which can be made worst-case via standard techniques, see

e.g. [12, Theorem B.1])

O( nω(1,μ,ν)−ν︸ ︷︷ ︸
Explicitly maintain

submatrix of M′′−1.

+ nμ+ν︸ ︷︷ ︸
Explicitly maintain

submatrix of V′′�M′′−1

+query any M′′−1
i,T

)

This is subsumed by the complexity of [12] for maintaining

the matrices M′−1,A,B,C in (2). So our modification of

their algorithm does not increase the update complexity despite

precomputing submatrices of M′′−1 and V′�M′′−1.

C. Sparse Emulators, MSSP, APSP, and Further Applications

Finally, we give another algorithm that lets us maintain

much sparser emulators, which further leads to improvements

when we need to maintain approximate distances from many

sources (e.g. MSSP and APSP).

We start by maintaining near-linear size emulators as fol-

lows: first maintain a (1 + ε, 4)-emulator H1 of G. Then

statically construct a much sparser (1+ ε, no(1))-emulator H2

of size Õ(n1+o(1)). The key idea here is to use H1 in order

to construct H2 more efficiently. We use a static deterministic

emulator algorithm (based on [22], [53]) that can construct

such an emulator in time O(|E(H1)|no(1)). This leads to

a fully-dynamic algorithm for maintaining (1 + ε, no(1))-
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rows of+

columns of columns with index in T
columns with index in T

indices added to T since 
last precomputation

Fig. 1. Implicit representation of M−1 (2). Gray blocks represent (sub-)matrices that are explicitly maintained. White (sub-)matrices are only implicitly
accessible (i.e. entries can be queried). Matrices A,B have nμ columns while U,V,C have nν columns for 0 ≤ ν ≤ μ ≤ 1. Matrices U,V have only
one non-zero entry per column.

emulators deterministically in Õ(n1.407) worst-case update

time.

Now we can use this to maintain multi-source distances

from many (up to O(n0.52)) sources with an update time

almost the same as the time required for single-source dis-

tances. For this purpose, given a set of sources S, we use the

above approach to maintain an emulator of size Õ(n1+o(1)).
Then, similar to before, in each update we find distance

estimates for pairs in S × V by computing the minimum

of the following estimates: i) no(1)-bounded distances from

all sources maintained by an algebraic data structure, ii)

distances from all sources on emulator H2, computed in time

O(|S| · n1+o(1)).

This lets us maintain (1 + ε)-MSSP from up to O(n0.52)
sources in almost (up to an no(1) factor) the same running time

as maintaining distances from a single-source by computing

multi-source distances statically on this very sparse emulator

and querying small distances from the algebraic data structure.

This approach naturally extends to maintaining all-pairs dis-

tances deterministically and yields a worst-case update time

of n2+o(1) by setting S = V .

Having described our approach for maintaining the more

general emulator, let us briefly explain the differences to the

dynamic spanner algorithm of [16]: We do not aim at directly
maintaining an almost linear-size spanner. Instead, we use

a two-level scheme in which we first compute a (1 + ε, 4)-
emulator of “medium” sparsity (outlined in Section II-A) and

then resparsify this first-level emulator with a static algorithm.

Hence, we get improved bounds for the second-level (near-

linear size) emulators, since we can maintain the “first-level”

emulators more efficiently than the algorithms in [16] due to

the properties described in Section II-A. Moreover, our deter-

ministic dynamic hitting set and our algebraic data structure

supporting its changes let us maintain these emulators deter-

ministically, whereas the spanners of [16] are randomized.

Diameter Approximation: Our sparse emulators can also

be used to maintain a (nearly) (3/2 + ε)-approximation of

the diameter. Our algorithm is an adaptation of the dynamic

algorithm by [20], which is in turn based on an algorithm

by [36]. At a high-level, we need to query (approximate)

multi-source distances from three sets of size at most O(
√
n).

We show that our emulators can be used to maintain such

approximate distances much more efficiently than the data

structures of [20].
(1 + ε)-APSP Distance Oracles: Finally, we maintain

a data structure with worst-case subquadratic update time

that supports sublinear all-pairs (1 + ε)-approximate distance

queries. Our algorithm is based on ideas of [20], [54] that

utilize well-known path hitting techniques (e.g. [44]). In order

to get improved bounds we again use our sparse (1 + ε, β)-
emulators. We need to handle some technicalities both in

the algorithm and its analysis introduced by the additive

factor β, combined with h-bounded distances maintained in

the algorithm of [20] for an appropriately chosen parameter

h.

III. APPROXIMATE DISTANCES VIA EMULATORS

In this section we focus on maintaining emulators with

various tradeoffs and describing how they can be combined

with the algebraic data structure of Lemma 2.2 for obtaining

dynamic st and single-source distance approximations.
While our main focus is on st-distances, as a warm-up we

start with our SSSP result.
We first assume that we have a low-recourse dynamic hitting

set which we use in maintaining (1 + ε, 2)-emulators (with

application in (1 + ε)-SSSP) and (1 + ε, 4)-emulators (with

applications in (1 + ε)-st). We will then move on to give

a deterministic algorithm that maintains low-recourse hitting

sets.

A. Deterministic (1 + ε, 2)-Emulators and (1 + ε)-SSSP
In this section we summarize how to maintain (1 + ε)-

SSSP with a worst-case update time matching the conditional

lower bound of [12]. We start by describing how to maintain

a (1 + ε, 2)-emulator, assuming that we have a low-recourse

hitting set, and can compute bounded-hop distances from

elements in this set. The algorithm is summarized in Algorithm

1. The omitted details, including the hitting set algorithm, can

be found in the full version. Assume that we are given two

functions:

• UPDATEHITTINGSET(G, d), which returns a dynamically

maintained hitting set for neighborhoods of heavy nodes

(i.e., with degree at least d) satisfying Lemma 2.1.
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• QUERYDISTANCES(G,S, T, h), which can query h-

bounded distances between pairs in S×T as specified in

Lemma 2.2.

Algorithm 1: Update Algorithm for a (1 + ε, 2)-
Emulator

Input : Unweighted Graph G = (V,E);
1 Ad := UPDATEHITTINGSET(G, d) with d =

√
n log n;

2 For all nodes {v : deg(v) ≤ d}, add all the edges

incident to v to H with weight 1;

3 QUERYDISTANCES(G,Ad, V, � 2ε 	+ 1);
4 For all nodes {v : deg(v) ≥ d}, add the edge from v

to the neighbor in Ad with weight 1;

5 QUERYDISTANCES(G,Ad, V, � 2ε 	+ 1);
6 Add edges

{(u,w) : u ∈ Ad, w ∈ V, dG(u, v) ≤ � 2ε 	+ 1} to H ,

and set the weight of each edge (u,w) to dG(u,w) ;

7 return H;

Observe that even though we start with an unweighted

graph, we need to add weighted edges to the emulator (with

weight corresponding to the distance between the endpoints).

We note that a similar, but randomized version of this emulator

construction (working only against an oblivious adversary)

was used in [32] for maintaining approximate shortest paths

decrementally. We have,

Theorem 3.1: Given an unweighted graph G = (V,E),
0 < ε < 1, we can deterministically maintain a (1 + ε, 2)-
emulator with size O(n3/2

√
log n). The worst-case update

time is O((nω(1,1,ν)−ν+n1+ν)ε−2 log ε−1) for any 0 ≤ ν ≤ 1
and preprocessing time is O(nωε−2 log ε−1).
For current bounds on ω and best choice of ν ≈ 0.529, this is

O(n1.529ε−2 log ε−1) update time. We can now use this result

to prove Theorem 1.2, details of which can be found in the

full version.

Using an emulator for maintaining (1+ ε)-SSSP.: Given

an unweighted graph G = (V,E), we first maintain a (1 +
ε
2 , 2)-emulator H for G. Given a single-source s and H , we

can now maintain the distances by:

(i) Using the algebraic data structure of Lemma 2.2: �4/ε	-
hop bounded distances from s on G,

(ii) After each update, statically computing SSSP on H in

O(n3/2
√
log n) time.

B. Deterministic (1+ ε, 4)-Emulator and (1+ ε)-st Distances

In this section, we give another emulator-based algorithm

that lets us maintain the approximate distance from a given

source s to a given destination t with better update time

than the time bound we showed for SSSP. We maintain a

sparser emulator with a slightly larger additive stretch that

supports faster computation of the st distance approximation.

In particular, we maintain a (1+ε, 4)-emulator of size Õ(n4/3).
Compared to the emulator of Section III-A, for this emulator

construction we need to maintain bounded distances with our

algebraic data structure for a smaller number of pairs of nodes,

which increases efficiency. This, combined with the fact that

our emulators are sparser, leads to a faster algorithm for

maintaining (1 + ε)-approximate st distances.

(1+ε, 4)-emulator.: We start by maintaining a sparse em-

ulator with slightly larger additive stretch term. The algorithm

is summarized in Algorithm 6.

Algorithm 2: Update Algorithm for (1 + ε, 4)-
Emulators

Input : Unweighted Graph G = (V,E).
1 Ad := UPDATEHITTINGSET(G, d) with

d = n1/3
√
log n;

2 For all nodes {v : deg(v) ≥ d}, add the edge from v
to a neighbor in Ad with weight 1;

3 For all nodes {v : deg(v) ≤ d}, add all the edges

incident on v to H with weight 1;

4 QUERYDISTANCES(G,Ad, Ad, � 4ε 	+ 2);
5 Add edges {(u,w) : u,w ∈ Ad, dG(u, v) ≤ � 4ε 	+ 2}

to H , and set the weight of each edge (u,w) to

dG(u,w) ;

6 return H;

Assuming that we can maintain a low-recourse hitting set

Ad and O(1/ε)-bounded distance between pairs Ad×Ad, Al-

gorithm 6 leads to an emulator with the following guarantees

(proof can be found in the full version):

Theorem 3.2: Given an unweighted graph G = (V,E),
0 < ε < 1, we can deterministically maintain a (1 + ε, 4)-
emulator of size O(n4/3

√
log n) with worst-case update time

of O((nω(1,1,μ)−μ + nω(1,μ,ν)−ν + nμ+ν + n4/3)ε−2 log ε−1)
for any 0 ≤ ν ≤ μ ≤ 1, and preprocessing time of

O(nωε−2 log ε−1).
For current bounds on ω and μ ≈ 0.856, ν ≈ 0.551, this is

O(n1.407ε−2 log ε−1) update time. The proof of Theorem 1.1

follows from a similar approach discussed for (1 + ε)-SSSP

by taking the minimum of two estimates.

IV. SPARSE EMULATOR WITH APPLICATIONS IN

(1 + ε)-APSP AND (1 + ε)-MSSP

In this section we show that by maintaining a much sparser

emulator, we can maintain distances from many sources effi-

ciently. At a high-level, we first use the construction in the

previous section to maintain a (1 + ε, 4)-emulator H , and

then use a static deterministic algorithm on H to obtain a

(1 + ε, no(1))-emulator with size n1+o(1).

A. Sparse Deterministic Emulators

We start by showing that we can maintain near-additive

emulators with general stretch/size tradeoffs. Before describ-

ing our dynamic construction, we observe that statically we

can construct near-additive spanners (and hence emulators)

efficiently and deterministically. For this we can use the

deterministic algorithm of [53] for constructing the clusters

used in the spanner construction of [22]. In other words, we

can derandomize the spanner construction in [22] and have:
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Lemma 4.1 ( [22], [53]): Given an unweighted graph

G = (V,E) with m edges, and an integer k > 1, there is

a deterministic algorithm that constructs, for any 0 < ε ≤ 1,

a (1 + ε, β)-spanner with β = (1/ε)k and size O(n1+1/k) in

Õ(mn1/k)) time.

Note that while with this (static) lemma we can construct a

spanner (i.e., is a true subgraph of G), in our deterministic

dynamic construction the algebraic techniques only let us

maintain an emulator efficiently. For maintaining these em-

ulators we perform the following for a parameter ε′ that will

be set later:

• Maintain a (1 + ε′, 4)-emulator H of size Õ(n4/3).
• Turn the emulator into an unweighted graph: we replace

each weighted edge w(e) of H with an unweighted path

of length w(e). Since the emulator we constructed only

has edge weights bounded by O(1/ε′), this will blow-up

the size only by a factor of O(1/ε′).
• Using Lemma 4.1, we statically construct a (1 + ε′, β)-

emulator H ′ of H .

It is easy to see that H ′ is now an emulator of G with

slightly larger additive factor. More formally,

Lemma 1.4: Given an unweighted, undirected graph G =
(V,E), parameters 0 < ε < 1 and 2 ≤ k ≤ log n, we can

maintain a (1 + ε, β)-emulator of G with size Õ(n1+1/k),
where β = O(1/ε)k deterministically with worst-case update

time of max(Õ(n4/3+1/k), O(n1.407ε−2 log ε−1)). Here the

latter term of the update time has the same dependence on

ω as Theorem 1.1. The preprocessing time of this algorithm

is O(nωε−2 log ε−1).
Proof: It is easy to see that the update time is the

maximum of the time required for running the algorithm in

Lemma 4.1 statically, and the dynamic time for maintaining

the (1 + ε, 4)-emulator which is given by Theorem 3.2.

For every pair of nodes s, t, there is a path with length

(1 + ε′)dH(s, t) + β in H ′. We also know dH(s, t) ≤ (1 +
ε′)dG(s, t) + 2. Hence,

d′H(s, t) ≤ (1 + ε′)dH(s, t) + β

≤ (1 + ε′)[(1 + ε′)dG(s, t) + 2] + β

≤ (1 + 3ε′)dG(s, t) +O(β)

Hence by setting ε′ = ε/3 the claim follows.

One important special case of this result is when we set k =√
log n and ε is a constant. In this case we have an additive

stretch of β = O(1/ε)
√
logn = no(1), and the size of the

emulator is Õ(n1+o(1)). We can obtain such a sparse emulator

in O( n1.407

ε2 log ε−1 ) worst-case update time deterministically.

B. Deterministic (1 + ε)-MSSP

Now using the emulator in this special setting, we do the

following for maintaining multi-source distances from a set S
of sources:

1) At each update, after updating H ′, statically compute S×
V distances on H ′ in O(|S| · |E(H ′)|) time.

2) Maintain O(β)-bounded distances between pairs in S×V
on G.

3) The distance estimate d(s, v) for each source s ∈ S and

node v is the minimum distance estimate derived from

these two steps.

It is now easy to combine Lemma 1.4 with Lemma 2.2

by setting k =

√
log1/ε n

2 and thus β = O(1/ε)
√

2 log1/ε n to

prove Theorem 1.5. Hence, we can compute (1 + ε)-MSSP

from up to O(n0.52) sources in the same time complexity as

our (1 + ε)-SSSP algorithm, namely O(n1.529).
Deterministic (1 + ε)-APSP: We can directly use our

(1 + ε)-MSSP algorithm to maintain all-pairs-shortest paths

distances deterministically by setting S = V .
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