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Abstract—This paper considers the basic question of how
strong of a probabilistic guarantee can a hash table, storing
n (1+Θ(1)) logn-bit key/value pairs, offer? Past work on
this question has been bottlenecked by limitations of the
known families of hash functions: The only hash tables
to achieve failure probabilities less than 1/2polylogn require
access to fully-random hash functions—if the same hash
tables are implemented using the known explicit fami-
lies of hash functions, their failure probabilities become
1/poly(n).

To get around these obstacles, we show how to construct
a randomized data structure that has the same guarantees
as a hash table, but that avoids the direct use of hash
functions. Building on this, we able to construct a hash table
using O(n) random bits that achieves failure probability
1/nn1−ε for an arbitrary positive constant ε.

In fact, we show that this guarantee can even be achieved
by a succinct dictionary, that is, by a dictionary that uses
space within a 1+o(1) factor of the information-theoretic
optimum.

Finally we also construct a succinct hash table whose
probabilistic guarantees fall on a different extreme, offering
a failure probability of 1/poly(n) while using only Õ(logn)
random bits. This latter result replicates a guarantee
previously achieved by Dietzfelbinger et al., but with
increased space efficiency and with several surprising
technical components.

I. INTRODUCTION

A dictionary is any data structure that supports in-

sertions, deletions, and queries on a set S of up to n
keys; dictionaries often also allow for a user to store

a value associated with each key, which can then be

retrieved during queries. Unless stated otherwise, we will

assume a machine word of Θ(logn) bits, which means

that keys/values are also O(logn) bits. We will also

require implicitly that a dictionary should take at most

linear space (i.e., O(n logn) bits) and that a dictionary

should be explicit (i.e., it can be initialized in time O(n)).
In fact, the dictionaries in this paper have the stronger

property that they can be initialized in constant time.

Randomized dictionaries are often also referred to

as hash tables.1 A hash table is said to have failure
probability ε if each operation takes constant time with

probability at least 1− ε, and is said to succeed with
high probability if ε≤ 1/polyn.

A central open question is whether there exists a deter-

ministic constant-time dictionary. A remarkable success

in this direction is Pǎtraşcu and Thorup’s dynamic fusion

node [1], which builds on older work by Fredman and

Willard [2] in order to construct a deterministic constant-

time dictionary for very small sets of keys—that is, sets

S of at most polylogn keys that are Θ(logn) bits each.

For sets of Θ(n) keys, it is widely believed that (even

non-explicit) deterministic constant-time dictionaries are

impossible [3], but we are still very far from having

lower bounds to establish this (see [4]–[8] for other

related work on this question).

In this paper, we consider a natural relaxation of this

question: What is the smallest failure probability that a

hash table can offer [9]–[11]? We present the first hash

table to achieve a significantly sub-polynomial failure

probability. And we show that such a hash table can even

be made succinct, meaning that it uses space within a

(1+o(1)) factor of the information-theoretic optimum.

Past work on super-high-probability guarantees. The

study of probabilistic guarantees for hash tables has, up

until now, been intimately tied to the study of hash-

function families [12]–[23]. If one has access to fully-

random hash functions, then it is known [9]–[11] how

to achieve substantially sub-polynomial failure probabil-

ities. However, as observed by Goodrich, Hirschberg,

Mitzenmacher, and Thaler [11], the known techniques

for simulating constant-time hash functions with high

independence [14], [17], [22] are themselves randomized

constructions that introduce an additional 1/poly(n)
probability of failure. Efforts at reducing these failure

1Hash tables are sometimes also informally defined as any solution
to the dictionary problem that makes use of hash functions. We
intentionally take a more open-ended perspective as to the definition
of a hash table, so that we include data structures that accomplish
the same goal as traditionally accomplished by hash tables, but using
different means.
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probabilities [11] have only been able to do so at the

cost of ω(1) evaluation times.

Of the known families of constant-time hash functions,

the only one that has been successfully used to obtain

a hash table with sub-polynomial failure probabilities is

tabulation hashing [21]. Although the standard analy-

ses of tabulation hashing include a 1/poly(n) failure

probability, it has been noted by [21] that, in some

parameter regimes, the true failure probability is actually

sub-polynomial. Indeed, one can extend the techniques

of [21] to show that tabulation hash functions are load-

balancing with probability 1−1/2polylogn, thereby allow-

ing one to construct a hash table that has a failure prob-

ability of 1/2polylogn. To the best of our knowledge, this

remains the smallest failure probability to be achieved

by any hash table.

This paper: hash tables with nearly optimal failure
probabilities. We introduce a simple data structure,

which we call the amplified rotated trie, that offers

a failure probability of 1/nn1−ε
for an arbitrarily small

positive constant ε of our choice. Barring a deterministic

constant-time dictionary, this is the close to the strongest

guarantee that one could hope for: if there were to

exist a hash table with failure probability 1/nεn, for

some positive constant ε > 0, then that would imply

the existence of a (non-explicit) deterministic constant-

time dictionary. Our result improves significantly over

the previous state-of-the-art of 1/2polylogn.

Our second result is that, with a few small modifica-

tions, the same data structure can be used to obtain a

very different guarantee. The resulting hash table, which

we call the budget rotated trie, uses Õ(logn) random bits

to support constant-time operations with high probability

in n. This guarantee, which has also been achieved us-

ing more classical hashing-based techniques in previous

work by Dietzfelbinger et al. [24], serves as a natural

dual to the one above — rather than trying to minimize

failure probability, while using up to O(n) random bits,

one tries to minimize random bits while maintaining a

standard 1/poly(n) failure probability.

An interesting feature of budget rotated tries is that

they are able to make use of so called “gradually-

increasing-independence hash functions” [19], [20].

These hash functions, introduced originally by Celis,

Reingold, Segev, and Wieder [19] (and subsequently

made more efficient by Meka, Reingold, Rothblum, and

Rothblum [20]) can be used to distribute n balls roughly

evenly across n bins using only O(n log logn) random

bits, but come with the seemingly significant drawback

that they require Θ((log logn)2) time to evaluate. As a

consequence, past work on applying these hash functions

to classical hash tables [25] has incurred ω(1) time per

operation. Our approach suggests that such gradually-

increasing-independence may be more broadly applica-

ble to than was previously thought, and can be used in

the design of constant-time data structures.

Achieving succinctness. Finally, we turn our attention

to space efficiency. There has also been a great deal of

work on how to construct a succinct hash table (see,

e.g., [9], [26]–[28]), that is, a hash table that stores n
key/values pairs from a universe U in space

(1+o(1))B(|U |,n)
bits, where B(|U |,n) = log

(|U |
n

)
is the information-

theoretic lower bound on the size of any hash table.

In the extended version of the paper [29], we show

that the data structures in this paper can also be made

succinct, in the parameter regime where keys/values are

(1+Θ(1)) logn bits. More generally, we give a black-

box transformation that can be applied to any dictionary

in order to obtain a succinct dictionary whose probabilis-

tic guarantees are nearly the same as the original’s. The

new dictionary uses B(|U |,n) + O(n(logn)/ log logn)
bits.

Interestingly, the transformation itself makes use of

our (non-succinct) budget rotated trie as a critical al-

gorithmic component. The transformation also makes

use of a reduction due to Raman and Rao [26], and

can be seen as a constant-time and randomness-efficient

version of the succinct dictionary given in [26] (which

guaranteed only constant expected-time operations).

Applying our transformation, we obtain two data

structures: we get a succinct hash table that uses

O(logn(log logn)3) = Õ(logn) random bits, while sup-

porting constant-time operations with high probability;

and a succinct hash table with a failure probability of

1/nn1−ε
, where ε is an arbitrarily small positive constant

of our choice.

Circumventing the hash-function bottleneck. At the

core of our results is a simple but powerful observa-

tion: that it is possible to construct a hash table that
does not use hash functions, and that is consequently

free of the limitations that hamper known hash-function

constructions. In particular, we begin our exposition by

constructing a simple randomized dictionary that we

call a rotated radix trie. Like standard hash tables, the

rotated radix trie uses linear space and is constant-time

(with high probability). But unlike standard hash tables,

which rely on randomness supplied by hash functions,

the rotated radix trie uses randomness directly embedded

into the data structure. The rotated radix trie then serves

as the basis for both the amplified rotated trie and the

budget rotated trie.
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Outline. The rest of the paper proceeds as follows.

Section II presents basic preliminaries and conventions.

Section III presents and analyzes the rotated radix trie.

Building on this, Section IV gives a hash table that

achieves failure probability 1/nn1−ε
and Section V gives

a high-probability hash table using O(logn log logn)
random bits; in the extended version of the paper [29],

we show that the latter guarantee can also be extended

to the case where machine words are ω(logn) bits.

Finally, in the extended version of the paper [29], we

further show how to transform any linear-space hash

table into a succinct hash table, while nearly preserving

the randomization guarantees of the data structure.

II. PRELIMINARIES AND CONVENTIONS

We now present several preliminary definitions and

conventions for discussing (non-succinct) dictionaries.

Keys, values, and dictionaries. Let U = [poly(n)] be

the set of all possible Θ(logn)-bit keys, and let V =
[poly(n)] be the set of all possible Θ(logn)-bit values.

A dictionary is a data structure that stores a set of keys

from U , and that associates each key x with a value

y ∈V . Dictionaries support three operations: Insert(x,y)
adds key x to the set, if it is not already there, and sets

the corresponding value to y; Delete(x) removes x; and

Query(x) reports whether key x is present, returning the

corresponding value if so.
When discussing non-succinct dictionaries, we fo-

cuses (without loss of generality) on fixed-capacity

dictionaries, that is, dictionaries that are permitted to

have up to n keys at a time. Such dictionaries can

be used to implement dynamically-resized dictionaries

by simply rebuilding the dictionary (in a deamortized

fashion) whenever its size changes by a constant factor.

Unless stated otherwise, we shall require implicitly that

dictionaries must use at most linear space (i.e., O(n logn)
bits) and have O(1) initialization time.

Standard techniques for simplifying dictionaries.
There are several standard reductions that can be used

to simplify the problem of maintaining a linear-space

dictionary.
We can assume without loss of generality that the

lifespan of a dictionary is only O(n) operations. Indeed,

longer sequences of operations can be broken into phases

of size O(n), and the dictionary can be rebuilt from

scratch during each phase (i.e., all of the elements are

gradually moved from one instance of the dictionary to

another new instance of the dictionary). The rebuild cost

can be spread across the phase so that the asymptotic

running times of operations are preserved.2

2For our purposes, rebuilds do not sample new random bits. Once
a dictionary’s random bits are chosen, they are fixed forever.

Since the lifespan of each phase is only O(n) oper-

ations, we can implement deletions with the following

trivial approach: simply mark elements as deleted, and

defer the actual removal of those elements until the

next rebuild. As a consequence, when designing the

dictionary that will be used to implement each phase,

we can assume without loss of generality that the only

operations performed are insertions/queries.

We will therefore assume throughout the paper that,

whenever we are discussing a non-succinct dictionary,

the sequence of operations being performed has length

O(n) and consists exclusively of inserts/queries.

Randomization. Randomized dictionaries are given

access to a stream of random bits—the dictionary can

access the next Θ(logn) bits of the stream in time O(1).
When analyzing a randomized dictionary, the goal is to

bound the failure probability for any given operation.

We emphasize that, in this context, failure does not refer

to lack of correctness, but instead to lack of timeliness.

A dictionary fails whenever an operation takes super-

constant time.

All of our dictionaries share the property that, once

a failure occurs, all of the rest of the operations (in the

current phase of O(n) inserts/queries) also fail. We will

not bother to explicitly specify the dictionary’s behavior

when a failure occurs, since at that point it is okay for

each of the remaining operations in the phase to take

linear time.

We remark that randomized data structures are an-

alyzed against oblivious adversaries, meaning that the

sequence of insertions/deletions/queries being performed

is determined independently of the random bits that the

dictionary uses. We also remark that the failure prob-

ability of a dictionary is determined on a per-operation

basis. For example, if a dictionary has failure-probability

p and is used for 1/p operations, then it is reasonable

that some failures should occur.3

III. A WARMUP DATA STRUCTURE: THE ROTATED

TRIE.

In this section, we present a simple randomized

constant-time dictionary, called the rotated radix trie,

that serves as the basis for the data structures in later

sections.

The starting place: an n-ary radix trie. The starting

place for our data structure will be the classic n-ary radix

trie. Each internal node of the trie can be viewed as an

array of size n, where the j-th entry of the array stores

3Moreover, failures may be correlated between steps (and between
phases). For example, if we are using r random bits, and an adversary
guesses them, then they can force failures all the time with probability
1/2r .
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either a pointer to child j, if such a child exists, or a null

character otherwise. The leaves of the trie correspond to

the keys in the data structure (and are where we store

values). In general, there is a leaf with root-to-leaf path

j1, j2, j3, . . . , jd if and only if the key j1◦ j2◦ j3◦· · ·◦ jd ∈
[nd ] = [U ] is present.

What makes the n-ary radix trie an interesting starting

place is that the trie deterministically supports constant-

time operations. What it does not support is space

efficiency: there may be as many as Θ(n) internal

nodes, each of which is an array of size n, and which

collectively require space Ω(n2) to implement.

Using randomness to save space: the rotated radix
trie. We now add randomness to our data structure in

a very simple way. Label the internal nodes of the trie

by 1,2, . . . ,m for some m ∈ O(n), and refer to the array

used to implement each internal node i∈ [m] as Ai. When

the data structure is initialized, we assign to each internal

node i a random rotation ri selected uniformly at random

from {0,1, . . . ,n−1}. The rotation ri is stored as part of

the node i.
The purpose of ri is to apply a random cyclic rotation

to the array Ai. That is, if a pointer would have been

stored in position j of Ai, it is now stored in position

(( j+ ri) mod n) of Ai instead.

Finally, having rotated each of the arrays Ai by ri,

we now overlay the arrays A1,A2, . . . ,Am on top of one

another, and we store the contents of all of them in a

single array A of size n. Of course, the j-th position

of A may be responsible for storing elements from

multiple Ais. As long as the number of elements stored

in each entry is relatively small, then this is fine: we

simply implement each entry of A as a dynamic fusion

node [1], which is a deterministic constant-time linear-

space dictionary capable of storing up to � = polylogn
key/value pairs at a time.

If, prior to collapsing the arrays into a single array A,

the the j-th position of rotated array Ai stored a pointer

to array Ai′ , then afterwards the dynamic fusion node

A[ j] stores the key-value pair (i,(i′,ri′)). In this setting,

we refer to the pair (i′,ri′) as a pointer to Ai′ , since it

dictates which array Ai′ we are pointing at and where to

find the entries of Ai′ . Similarly, if prior to collapsing the

arrays, the j-th position of the rotated array Ai stored a

pointer p directly to a value (rather than to another array

Ai′ ), then the dynamic fusion node A[ j] stores the key-

value pair (i, p).

Analyzing the rotated radix trie. To analyze the ro-

tated radix trie, we must show that, with high probability

in n, each entry of A is responsible for storing entries

from at most �= polylogn different Ais.

Let us first establish some conventions that will be

useful throughout the rest of the paper. When discussing

a radix trie, we will refer to the arrays A1,A2, . . . ,Am
as the nodes (or sometimes as the internal nodes), and

we will refer to the non-null entries of each Ai (i.e., the

entries containing pointers) as balls.

In total, there are O(n) balls in the trie. Each ball b
is specified by a pair (s,c) ∈ [m]× [n], where s ∈ [m] is

the source node for the ball (i.e., the node containing

the ball), and c ∈ [n] is the child index of the ball (i.e.,

the index in Ai where b is logically stored). The effect

of randomly rotating the arrays Ai and then overlaying

them to obtain a single array A is that each ball b= (s,c)
gets mapped to position φ(s,c) := c+ rs in A. We refer

to the entries of A as bins, so each ball b gets mapped to

bin φ(b). The dynamic fusion node for a each bin j ∈ [n]
stores the set of key-value pairs (b, p) where b ranges

over the balls satisfying φ(b) = j, and p is the pointer

corresponding to the ball b.

For i ∈ [m] and j ∈ [n], let Xi, j be the 0-1 random

variable indicating whether node i places a ball into bin

j. The Xi, js are not independent across the bins j, but

they are independent across the nodes i, since each Xi, j is

a function of the random bits ri. Therefore, the number

Yj of balls in bin j, which is given by Yj = ∑m
i=1 Xi, j, is

a sum of independent indicator random variables.

Each of the O(n) balls has probability 1/n of being

in bin j, so E[Yj] = O(1). Thus, by a Chernoff bound,

we have that Yj ≤ polylogn with high probability in n.

The Chernoff bound actually tells us that Yj ≤ polylogn
with probability 1/npolylogn, so we have even achieved a

slightly sub-polynomial probability of failure.

Putting the pieces together. If we implement deletions

as in Section II, then we obtain the following result:

Proposition 1. The rotated radix trie is a randomized

linear-space dictionary that can store up to n Θ(logn)-bit

keys/values at a time, and that supports each operation in

constant time with probability 1−1/npolylogn.

It’s worth taking a moment to remark on how to

initialize our data structure. The random rotations ri can

be initialized lazily, so that ri is generated the first time

that the node i is used. Additionally, we do not have to

actually pay the cost of initializing any arrays, since we

can use standard techniques to simulate zero-initialized

arrays in constant time (see [30] or Problem 9 of Section

1.6 of [31]). Thus our rotated radix trie can be initialized

in constant time.

Taking stock of our situation. The rotated radix trie

does not, on its own, make any significant progress on

either of the problems that we care about: (1) achieving

super-high probability guarantees, and (2) using a near-
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logarithmic number of random bits. We have achieved

a slightly sub-polynomial failure probability, but we are

nowhere near our goal of 1/nn1−ε
.

What makes the rotated radix trie useful, however, is

that the role of randomness in the data structure is re-

markably simple. The only sources of randomness are the

rotational offsets r1,r2, . . . ,rm. In this sense, the rotated

radix trie deviates from the standard mold for how to

design a constant-time dictionary. The randomness in the

data structure isn’t used to hash elements, but is instead

used to apply random rotations to sparse arrays.

Since the role of randomness will be important in later

sections, we conclude the current section by discussing

an important subtlety in how the randomness is re-

purposed over time. Consider how the data structure

evolves over a large period of time containing many

insertions/deletions. As the shape of the trie changes,

each array Ai will be repurposed to represent different

parts of the trie. This means that the way in which

the random rotation ri interacts with the key space

also changes over time, with the same ri applying to

a different node in the trie (and thus a different part of

the key space) at different times. The re-purposing of

ris has an interesting consequence: even if two points in

time t1 and t2 store the exact same set S of key/value

pairs as one-another, the shape of the rotated trie may

differ considerably between the two times.

IV. THE AMPLIFIED ROTATED TRIE

In this section, we modify the rotated radix trie to

reduce its probability of failure (i.e., the probability that

a given operation takes super-constant time) to 1/nn1−ε
,

for a positive constant ε of our choice. We will refer to

this new data structure as the amplified rotated radix
trie.

Storing overflow balls in a (non-rotated) trie. When-

ever a ball b is inserted into a bin j that already contains

� = polylogn other balls, the ball b is regarded as an

overflow ball. Since each bin is a dynamic fusion node

with capacity �, we cannot store the overflow balls in

the bins.

We instead store the overflow balls in a secondary data

structure Q that is implemented as a nδ-ary trie, for some

positive constant δ > 0.

The secondary data structure Q supports in-

serts/queries on overflow balls in constant time. On the

other hand, Q is not space efficient. If there are q
overflow balls, then Q may use as much as qnδ space. To

establish that our dictionary uses linear space, we must

show that

Pr[q≥ n1−δ]≤ O
(

1/nn1−ε
)
. (1)

The problem: dependencies between balls with
shared source nodes. Our current data structure does

not yet satisfy (1), however. This is because, when-

ever multiple balls share the same source node, their

assignments become closely linked. Suppose, for ex-

ample, that the rotated trie R has only 2� internal

nodes, and that each internal node i ∈ {1,2, . . . ,2�}
contains Θ(n/�) balls (i,1),(i,2), . . . ,(i,Θ(n/�)). With

probability 1/n2� = 1/2polylogn, each internal node i ∈
{1,2, . . . ,2�} has random rotation ri = 0. This results in

bins 1,2, . . . ,Θ(n/�) each containing 2� balls—in other

words, half of the balls in the system are overflow balls.

This means that

Pr[q≥Ω(n)]≥ 1/2polylogn.

That is, our failure probability using Q the store overflow

balls is no better than the failure probability that we

achieved in Section III without Q.

Reducing the dependencies. What makes the above

pathological example possible is that it is possible to

have only a small number of internal nodes in our rotated

trie. This makes it so that there are only a small number

of random bits that affect the rotated trie’s structure,

preventing us from achieving any super-high probability

guarantees.

To fix this problem, we reduce the fanout of our

rotated radix trie from n to nδ. Now each internal node

can contain at most nδ balls, so there are guaranteed to

be at least n1−δ internal nodes. This ensures that there

are always at least n1−δ logn random bits affecting the

trie’s structure.

We remark that, since the fanout of the rotated trie is

now nδ, each ball is determined by a pair (s,c) where

s ∈ [m] is a source node and c ∈ [nδ] is a child index.

Nonetheless, the mapping φ from balls to bins works

exactly as before: we map ball (s,c) to bin φ(s,c) =
((rs + c) mod n) where rs ∈ [n] is selected at random.

Bounding the number of overflow balls. Of course,

there are still dependencies between the number q j of

overflow balls in different bins j ∈ [n]. To handle these

dependencies, we make use of a tool from probabilistic

combinatorics.

Call a function f : [0,1)m → R L-Lipschitz if for

every pair of inputs of the form �x = (x1, . . . ,xi, . . . ,xm)

and �x′ = (x1, . . .x′i, . . . ,xm), we have | f (�x)− f (�x′)| ≤ L.

McDiarmid’s inequality [32] tells us that if f is L-

Lipschitz and X1,X2, . . . ,Xm ∈ [0,1) are independent ran-

dom variables, then for any t ≥ 0,

Pr[| f (X1, . . . ,Xm)−E[ f (X1, . . . ,Xm)]| ≥ t]≤ 2e−2t2/(mL2).

To apply McDiarmid’s inequality to our situation,
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define f (r1, . . . ,rm) := q to be the number of overflow

balls. Observe that f is nδ-Lipschitz, since each ri can

determine the outcome of at most nδ different balls.

Since E[q] = 1
polyn , it follows by McDiarmid’s inequality

that

Pr[ f (r1, . . . ,rm)≥ n1−δ]≤ e−Ω(n2−2δ/(mn2δ))

= e−Ω(n2−2δ/n1+2δ)

= e−Ω(n1−4δ).

For any 0 < ε≤ 1, we can set δ = ε/5 so that

Pr[q≥ n1−δ]≤ e−Ω(n1−4δ)

≤ O
(

n−n1−ε
)
.

This establishes (1). If we implement deletions as in

Section II, then we arrive at the following theorem.

Theorem 2. The nε/5-ary amplified rotated radix trie is

a randomized linear-space dictionary that can store up

to n Θ(logn)-bit keys/values at a time, and that sup-

ports each operation in constant time with probability

1−O
(

1/nn1−ε
)

.

We remark that there is a strong sense in which

the amplified rotated radix trie is nearly optimal. In

particular, for any constant ε > 0, if there were to

exist a randomized linear-space dictionary with failure

probability of 1/nεn, that would imply the existence of a

deterministic (though non-explicit) linear-space constant-

time dictionary.

Lemma 3. Let ε> 0 be any positive constant and assume

a machine word of size w = Θ(logn) bits. Suppose there

exists randomized linear-space dictionary that stores up to

n Θ(logn)-bit keys/values at a time and has failure prob-

ability 1/nεn. Then there also exists a deterministic (not-

necessarily explicit) dictionary with the same guarantees.

Proof. To distinguish the randomized dictionary from

the deterministic dictionary that we are constructing, we

will refer to the former as a hash table and the latter as

a dictionary.

As noted in Section II, by rebuilding our dictionary

once every O(n) operations, we can assume without loss

of generality that the lifespan of the dictionary is at most

O(n) operations. We will implement the dictionary using

a hash table with capacity n′= cn for some large positive

constant c to be determined later. This means that the

hash table has failure probability

1/nεn′ = 1/nεcn.

Each operation takes place on a Θ(logn)-bit key/value

pair, so there are at most nO(1) options for what a

given operation could be. The total number of O(n)-long

operation sequences is therefore at most nO(n). Since our

hash table has failure probability 1/nεcn, its total failure

probability on any given sequence of O(n) operations is

at most O(n)/nεcn ≤ 1/nεcn/2 The probability that there

exists any sequence of operations on which our hash

table fails to be constant-time is therefore at most

nO(1)

nεcn/2
,

which if c is taken to be a sufficiently large constant, is

at most 1/2. Thus there exists some choice of random

bits for which our hash table is constant-time on every
sequence of operations. By hard-coding in this choice of

random bits, we arrive at a deterministic constant-time

dictionary.

Note that, since the hash table spends total time O(n)
on the O(n) operations, the number of random bits that

it can use is at most O(nw) = O(n logn) bits—thus the

deterministic dictionary can hard-code the random bits

in linear space.

Although one typically assumes a machine-word size

of Θ(logn) bits, it is also an interesting question what the

strongest achievable probabilistic guarantees are in the

setting where machine words (as well as keys/values)

are of some size w = ω(logn) bits. On one hand, the

larger key size makes it so that Lemma 3 no longer

applies, so in principle, one might be able to achieve

a failure probability of 1/nω(n). On the other hand,

from an upper-bound perspective, it is not even known

how to achieve a sub-polynomial failure probability
in this setting [9]–[11], [21]. Here, the main obstacle

appears to be unavoidably about hash functions: can

one construct a family of hash functions from [2w] to

[poly(n)] such that for any given n-element set S⊆ [2w],
we have that maxx∈S |{y ∈ S | h(x) = h(y)}| ≤ polylogn
with probability 1/nω(1)? If such a family were to exist,

then it could be directly combined with Theorem 2

to construct a dictionary that achieves sub-polynomial

failure probability for any key-size w. We conjecture that

no such family of hash functions exists, and moreover,

that a sub-polynomial failure probability is not possible

for word sizes w = ω(logn) bits.

V. THE BUDGET ROTATED TRIE

In this section, we present a dictionary that uses

only O(logn log logn) random bits, while guaranteeing

that each operation takes constant time with probability

1−1/poly(n) (i.e., with high probability in n). We will

refer to the data structure as the budget rotated trie. In

Appendix A, we further extend the budget rotated trie

to support keys that are ω(logn) bits, while still using

only O(logn log logn) bits of randomness.
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We remark that the guarantee achieved by the budget

rotated trie is not novel—in fact, a previous approach by

Dietzfelbinger, Gil, Matias, and Pippenger [24] can be

used to achieve O(logn) random bits for the setting of

Θ(logn)-bit keys that we are considering. Nonetheless,

we believe that the construction for the budget rotated

tries is interesting in its own right, both because of its re-

lationship to the amplified rotated trie, and also because

of the surprising way in which it is able to make use of

gradually-increasing-independence hash functions. Addi-

tionally, the specific structure of the budget rotated trie

will prove useful in our quest for succinctness in the

extended version of the paper [29].

Our starting place is again the rotated trie, and as in

Section IV, we will take the fanout of the trie to be nδ

for some constant δ; in fact, it will suffice to simply use

δ = 1/4.

Reducing the number of random bits to
O(n/polylogn). To transform the nδ-ary rotated

trie into a budget rotated trie, our first modification will

be to reduce the number of random bits from O(n logn)
to O(n/polylogn). Of course, this may not seem like

much progress, but we shall see later that the distinction

is important.

Recall that, in a rotated trie, each ball b (i.e., each non-

null entry in an internal node) contains a pointer to either

a leaf (i.e., an actual key/value pair) or another internal

node (i.e., a child). We now add a third option: if the

ball should be pointing at another internal node x, but if

the subtree rooted at x contains fewer than �= polylogn
total keys, then we store that subtree as a dynamic fusion

node z. If the size of the subtree rooted at x subsequently

surpasses �, then we create an actual internal node for

x—in this case, any elements stored in the fusion node z
remain in z, and the ball b now stores two pointers, one

to x and one to z. In other words, there are now three

possible states for a ball: it can contain a pointer to a

leaf; it can contain a pointer to a dynamic fusion node;

or it can contain two pointers, one to a dynamic fusion

node and one to another internal node of the trie.

The point of this modification is that we only create

an internal node x if the subtree rooted at x contains at

least �= polylogn elements. Importantly, this means that

the total number of internal nodes m is at most O(n/�) =
n/polylogn. The number of random bits needed for the

rotations r1,r2, . . . ,rm is therefore also n/polylogn.

Changing the balls-to-bins mapping. Our next modifi-

cation is to change how we map the balls to bins. Recall

that each ball b is specified by a pair (s,c), where s∈ [m]
is the source node of the ball and c ∈ [nδ] is the child

index. In the standard rotated trie, we map balls to bins

using the function

φ(s,c) = (c+ rs) mod n.

We will now instead map balls to bins using the

function

ψ(s,c) = (c+as(mod nδ)) ·n1−δ +bs,

where as is selected at random from [nδ] and bs is

selected at random from [n1−δ].
When can think about ψ as follows. We break the bins

into groups G1, . . . ,Gnδ of size n1−δ, and we use the

random value as ∈ [nδ] to assign the ball to a random

group. Once the ball is assigned to a group Gi, it is

then assigned to the bs-th bin in that group. Importantly,

the assignments are designed so that each source node s
assigns at most one of its balls to any given group Gi.

There will never be two balls b1,b2 in group Gi that both

obtain their assignments bs from the same source node.

Since the number m of internal nodes may be as

large as n/polylogn, we cannot afford to generate

a1,a2, . . . ,am ∈ [nδ] and b1,b2, . . . ,bm ∈ [n1−δ] truly at

random. Fortunately, as we shall now see, the roles of

the ais and bis have been carefully designed so that both

sequences can be generated using a small number of

“seed” random bits.

Generating the ais with O(1)-independent hash func-
tions. Let k be a sufficiently large positive constant,

and select a random hash function g : [n]→ [nδ] from a

family of k-independent hash functions. Since k = O(1),
the function g can be specified using O(logn) random

bits, and can be evaluated in time O(1). We compute the

ais by

ai := g(i).

To analyze the number of balls in each group Gi, we

use a well-known tail bound for k-independent random

variables (see, e.g., [33] or [34]).

Lemma 4 (Lemma 2.2 of [33]). Let k ≥ 4 be an even

integer. Suppose X1, . . . ,Xm are k-wise independent 0-1

random variables. Let X = ∑i Xi. Then, for any t ≥ 0,

Pr[|X−E[X ]| ≥ t]≤ 2

(
nk
t2

)k/2

.

Define Xj to be the event that source-node j sends a

ball to group Gi. The Xjs are k-independent, so we have

by Lemma 4 that

Pr[|Gi|−E[|Gi|]≥ n0.75]≤ 2

(
kn

n1.5

)k/2

≤ n−Ω(k) = 1/poly(n).

Since δ = 0.25, it follows that

Pr[|Gi|−E[|Gi|]≥ n1−δ]≤ 1/poly(n).
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Since each of the O(n) balls is equally likely to be in

any group, we have that E[|Gi|] = O(n1−δ). Thus

Pr[|Gi| ≤ O(n1−δ)]≥ 1−1/poly(n).

That is, each group Gi contains at most O(n1−δ) balls

with high probability in n.

Generating the bis with increasing-independence
hash functions. To generate the bis without using a

large number of random bits, we make use of a more

sophisticated family of hash functions. Call a family

H (t) of hash functions h : [poly(t)]→ [t] load-balancing
if it can be used to map t balls to t bins with maximum

load polylog t; that is, for any fixed set S ⊆ poly(t) of

size t, and for any fixed i ∈ [t], if we select a random

h ∈H , then

|{s ∈ S | h(s) = i}| ≤ polylog t

with probability 1−1/poly(t).
Celis, Reingold, Segev, and Wieder [19] showed how

to construct a load-balancing family H (t) of hash func-

tions such that each h ∈ H can be described with

O(log t log log t) random bits and can be evaluated in time

O(log t log log t). The family H is referred to as having

“gradually-increasing-indepenence” because each h∈H
is actually the composition of Θ(log log t) hash functions

h1, . . . ,hΘ(log log t) with different levels of independence:

each hi determines Θ((3/4)i log t) bits of h, and each hi
is (1/poly t)-close to being Θ((4/3)i)-independent.

The family H comes with a tradeoff. It is able

to achieve a maximum load of polylog t (in fact, it

even achieves maximum load O(log t/ log log t)) using on

O(log t log log t) bits, but it requires super-constant time

to evaluate. Subsequent work [20] has improved the eval-

uation time from O(log t log log t) to O((log log t)2). It

seems unlikely that the evaluation time can be improved

to O(1), however, since Ω(log log t) time is needed just to

read the random bits used to evaluate the hash function.

The super-constant evaluation time makes it so that

hash functions with gradually-increasing independence

are not suitable for direct use in constant-time hash tables

[25]. We get around this problem by using h not as a

hash function but as a pseudo-random number generator.

Specifically, we select a random h : [m]→ [n1−δ] from

H (n1−δ), and we use h to initialize the bis as

bi := h(i).

Since h takes time O((log logn)2) to evaluate, each

bi now takes time O((log logn)2) to initialize. Recall,

however, that we only create a new internal node x in

our rotated trie once there are more than � = polylogn
records that want to reside in that node’s subtree; the first

� = polylogn insertions that wish to use x are instead

placed into a dynamic fusion node that acts as a proxy

for x. As a result, we can afford to spend up to � time

initializing the node x, and we can spread that time across

the � insertions that trigger x’s initialization. Since � =
ω((log logn)2), we can initialize bi = h(i) without any

problem.

Analyzing the maximum load. Recall that, with

probability 1− 1/poly(n), each group Gi contains at

most O(n1−δ) balls. Furthermore, each of the balls have

different source nodes than one another. If a ball has

source-node s, then it is placed in the bs-th bin of Gi.

Let Si ⊆ [m] be the set of source nodes that assign

balls to Gi. Then for each r ∈ [n1−δ], the number gi,r of

balls in the r-th bin of Gi is given by

gi,r = |{s ∈ Si | h(s) = r}|.
Since h : poly(n) → [n1−δ] is from a load-balancing

family of hash functions, we are guaranteed to have

gi,r ≤ polylogn1−δ ≤ polylogn

with high probability in n.

Putting the pieces together. The fact that each bin

contains at most polylogn balls (with high probability)

means that, as in the standard rotated trie, each bin can

be implemented with a dynamic fusion node. Operations

on our dictionary therefore take time O(1) with high

probability in n. If we implement deletions as in Section

II, then we arrive at the following theorem.

Theorem 5. The budget rotated trie is a randomized

linear-space dictionary that can store up to n Θ(logn)-bit

keys/values at a time, that uses O(logn log logn) random

bits, and that supports each operation in constant time

with probability 1−1/poly(n).

We conclude the section by observing that there is

a strong sense in which the guarantee achieved by the

budget rotated trie is optimal. In particular, if there were

to exist a hash table failure probability 1/nc but that used

fewer than c logn random bits, then there would also

necessarily exist a deterministic linear-space constant-

time dictionary.

Lemma 6. Suppose there exists a randomized linear-

space dictionary that can store up to n Θ(logn)-bit

keys/values at a time, that uses c logn random bits, but that

has a failure probability smaller than 1/nc. Then there ex-

ists a deterministic dictionary with the same guarantees.

Proof. To distinguish the randomized dictionary from

the deterministic dictionary that we are constructing, we

will refer to the former as a hash table. Let R denote

the c logn random bits used by the hash table. Define

D to be the deterministic dictionary obtained by setting
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R = 0. Suppose for contradiction that D is not constant

time. Then there exists some sequence of operations such

that the final operation on D takes super-constant time.

This means that, with probability at least 1/nc, that same

operation would have taken super-constant time in our

hash table. But the hash table has failure probability

smaller than 1/nc, a contradiction.

APPENDIX

In this section, we extend the budget rotated trie to

support keys from a universe U of super-polynomial size.

Throughout the section, we set U = [2u] for some u =
no(1), and we assume that machine words are Θ(u) bits.

To support large keys, the natural approach is to

first hash elements from U to a smaller universe U ′ of

polynomial size, an then to store the Θ(logn)-bit keys in

a hash table along with pointers to the full keys/values.

Past work on load-balancing hash functions [19] has used

a pair-wise independent hash function h : [2u]→ [poly(n)]
to perform this reduction. This requires the use of Θ(u)
random bits, which when u is large, is significantly larger

than logn log logn.

An appealing alternative to using pairwise-

independent hash functions would be to instead

use Pagh’s construction [35] (which, in turn, is based

on an earlier construction by Fredman, Komlós, and

Semerédi [36]) of (1 + o(1))-universal hash functions

that require only O(logn + log logu) random bits.

The only minor problem with this construction is

that it is not fully explicit. The construction requires

access to a random prime number p ∈ [poly(n)],
but the only known time-efficient high-probability

approaches to constructing such a prime number require

ω(logn log logn) random bits (see discussion in [37]).

Fortunately, this issue is relatively straightforward to

solve. For completeness, we now give a construction for

a simple family of hash functions that can be initialized

in time o(n) and used for universe reduction.

Lemma 7. Let n > uc for a sufficiently large positive

constant c and let S ⊆ [2u] be a set of size n. Let P
be the set of prime numbers in the range [n2/c]. Select

p1, p2, . . . , pc2 independently and uniformly at random

from P , and define the function h : [2u]→ [n2c] by

h(x) = (x mod p1 p2 · · · pc2).

With probability 1−1/poly(n), h is injective on S.

Proof. The probability Pr[|h(S)| 	= S] is at most

∑
s1,s2∈S

Pr[|s1− s2| divisible by all of p1, p2, . . . , pc2 ],

where s1 and s2 are implicitly taken to be distinct. Since

the pis are independent, this is

∑
s1,s2∈S

(Pr[|s1− s2| divisible by p1])
c2

.

The quantity |s1− s2| is an element of U = [2u], and can

thus have at most u distinct prime factors. Therefore,

Pr[|h(S)| 	= S]≤ ∑
s1,s2∈S

(
u
|P |
)c2

≤ ∑
s1,s2∈S

(
n1/c

|P |

)c2

.

By the Prime Number Theorem, the set P of primes in

the range [n2/c] has size Ω(n2/c/ logn). Therefore,

Pr[|h(S)| 	= S]≤ ∑
s1,s2∈S

O

(
n1/c

n2/c/ logn

)c2

≤ O

(
∑

s1,s2∈S

(
logn
n1/c

)c2)

≤ O

(
∑

s1,s2∈S

logc2
n

nc

)

≤ O

(
n2 logc2

n
nc

)

≤ 1/poly(n).

Since all of the prime numbers in [nε] can be enumer-

ated in time O(n2ε), we get the following corollary:

Corollary 8. Let u = no(1). For any constant δ > 0,

there exists an explicit family H of constant-time hash

functions h : [2u] → [poly(n)] such that (a) a random

function h ∈ H can be constructed in time O(nδ) using

O(logn) random bits; and (b) for any fixed set S ⊆U of

size n, and for a random h∈H , we have that |h(U)|= |U |
with probability 1−1/poly(n).

We can use Corollary 8 to construct a version of the

budget rotated trie that supports large universes.

Theorem 9. Let u = no(1), suppose that keys/values are

u bits, and assume a machine word of size at least Ω(u)
bits. The budget rotated trie uses O(logn log logn) ran-

dom bits, it uses O(nu) bits of space, and it supports

insert/delete/query operations on up to n keys/values at

a time. The data structure can be initialized in time

O(nε), for a positive constant ε of our choice, and each

insert/delete/query operation takes constant time with

probability 1−1/poly(n).
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To eliminate the O(nε) initialization cost, we can also

construct a dynamic version of the same data structure,

where there is some upper bound N on the data struc-

ture’s size, but where the true size n changes over time.

Every time that the data structure’s size changes by a

constant factor, we rebuild it based on the new value of

n. Each rebuild takes time O(n) (with high probability

in n), but the cost of a rebuild can be spread across Θ(n)
operations. The properties of this new data structure can

be summarized with the following corollary.

Corollary 10. Let u = No(1), suppose that keys/values

are u bits, and assume a machine word of size

at least Ω(u) bits. The dynamic budget rotated trie

uses O(logN log logN) random bits and supports in-

sert/delete/query operations on up to N keys/values at a

time. If it is storing n key/value pairs, then it uses O(nu)
bits of space, and each insert/delete/query operation takes

constant time with probability 1−1/poly(n).
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