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Abstract—A long-standing open question in computational
learning theory is to prove NP-hardness of learning efficient
programs, the setting of which is in between proper learning and
improper learning. Ko (COLT’90, SICOMP’91) explicitly raised
this open question and demonstrated its difficulty by proving
that there exists no relativizing proof of NP-hardness of learning
programs. In this paper, we overcome Ko’s relativization barrier
and prove NP-hardness of learning programs under randomized
polynomial-time many-one reductions. Our result is provably
non-relativizing, and comes somewhat close to the parameter
range of improper learning: We observe that mildly improving
our inapproximability factor is sufficient to exclude Heuristica,
i.e., show the equivalence between average-case and worst-case
complexities of NP.

We also make progress on another long-standing open question
of showing NP-hardness of the Minimum Circuit Size Problem
(MCSP). We prove NP-hardness of the partial function variant
of MCSP as well as other meta-computational problems, such as
the problems MKTP∗ and MINKT∗ of computing the time-
bounded Kolmogorov complexity of a given partial string, under
randomized polynomial-time reductions.

Our proofs are algorithmic information (a.k.a. Kolmogorov
complexity) theoretic. We utilize black-box pseudorandom gen-
erator constructions, such as the Nisan–Wigderson generator,
as a one-time encryption scheme secure against a program
which “does not know” a random function. Our key technical
contribution is to quantify the “knowledge” of a program by
using conditional Kolmogorov complexity and show that no small
program can know many random functions.

Index Terms—minimum circuit size problem, Kolmogorov
complexity, PAC learning, pseudorandomness

I. INTRODUCTION

The two main results established in this paper are the NP-

hardness of MINLT [2] and the partial function variant of

MCSP [3], both of which are of significant importance in

computational learning theory and meta-complexity theory. In

the following two subsections, we present the backgrounds of

the two problems and our results.

A. PAC Learning

Ever since Valiant [4] introduced the notion of PAC learn-

ing, classification of its complexity has been a fundamental

and central question in computational learning theory. PAC

learning is parameterized by a concept class C and a hypothesis

This work was supported by JST, PRESTO Grant Number JPMJPR2024,
Japan. The full version of this paper is available on ECCC [1].

class H. Informally, a class C is said to be PAC learnable
by H if there exists an efficient algorithm L such that for

every distribution D and for every concept c ∈ C, given suffi-

ciently many random samples (x1, c(x1)), . . . , (xm, c(xm)),
where each xi is drawn from D independently, the learn-

ing algorithm L outputs a hypothesis h ∈ H such that

Prx∼D[h(x) = c(x)] ≥ 1 − δ for a given parameter δ. A

fundamental theorem in computational learning theory [5]–[7]

states that, for a sufficiently large hypothesis class H, PAC

learning is equivalent to Occam learning, which can be for-

mulated as a search problem in NP.1 An outstanding question

is whether PAC learning of linear-sized circuits by polynomial-

sized circuits is at least as hard as solving NP, which would

establish the “NP-completeness” of PAC learning.
NP-hardness of PAC learning has been proved in the case

of proper learning, i.e., when C = H. Pitt and Valiant [8]

proved NP-hardness of learning k-term DNF by k-term DNF.

This was extended to the NP-hardness of learning linear-sized

DNF formulas by polynomial-sized disjunction of half-spaces

[9]; i.e., C = {DNF formulas} and H = OR ◦ {halfspaces}.
Note that, as the hypothesis class H becomes larger, it be-

comes increasingly harder to prove NP-hardness. For example,

consider the class NC1 of fan-in-2 circuits of logarithmic

depth. Intuitively, PAC learning of NC1 by NC1 appears to

be much harder than PAC learning of DNFs by DNFs since

NC1 is larger than the class of DNF formulas. However, NP-

hardness of learning linear-sized NC1 by polynomial-sized

NC1 is currently unknown.
Contrary to proper learning, improper learning does not

involve any other restriction on the hypothesis class H except

the requirement that H must be evaluated in polynomial time.

As noted in the seminal work of Valiant [4], it is possible to

prove hardness of improper PAC learning under cryptographic

assumptions. A recent exciting line of research (e.g., [10]–

[12]) based on Daniely, Linial, and Shalev-Shwartz [13] has

demonstrated that specific average-case hardness assumptions

of NP already imply hardness of improper PAC learning.

However, there is a fundamental obstacle that prevents us from

proving NP-hardness of improper PAC learning. Applebaum,

Barak, and Xiao [14] showed that NP-hardness of improper

1The task of Occam learning is to output a short description of a hypothesis
that is consistent with given samples (x1, c(x1)), . . . , (xm, c(xm)) for an
unknown concept c.
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PAC learning cannot be proved using nonadaptive reductions

unless the polynomial hierarchy collapses. They also proved

that NP-hardness of improper PAC learning excludes Pessiland

[15] from Impagliazzo’s five worlds, i.e., it implies the equiva-

lence between the existence of one-way functions and average-

case hardness of NP. Moreover, a partial converse to [13]

was recently proved by Hirahara and Nanashima [16]: PAC

learning with respect to distributions samplable by polynomial-

size circuits is feasible under the assumption that NP is easy

on average. Thus, the complexity of improper PAC learning

is intimately related to the average-case complexity of NP. In

particular, proving NP-hardness of PAC learning (with respect

to P/poly samplable distributions) also excludes Heuristica

from Impagliazzo’s five worlds [15], i.e., it establishes the

equivalence between worst-case and average-case complexi-

ties of NP. These previous works highlight the importance

and, simultaneously, the difficulty of proving NP-hardness of

improper PAC learning.

Ko [2] raised the question of classifying the complexity of

learning efficient programs, i.e., PAC learning by H, where the

hypothesis classH is the class of efficient programs. Arguably,

this is the most general hypothesis class: By the fundamental

principle of Kolmogorov complexity [17], the Kolmogorov

complexity of a string x, i.e., the length of a shortest program

that prints x, is a lower bound for the length of any decodable

encoding of the string x up to an O(1) additive term. Similarly,

Ko observed that representing a function using a program is the

most succinct way of representing it using any algorithm up to

an O(1) additive term. In particular, programs can represent

functions more succinctly than circuits.

Ko formulated the task of learning efficient programs by

introducing a problem called MINLT, which is the deci-

sion version of Occam learning for efficient programs. The

input of MINLT consists of ((x1, b1), . . . , (xm, bm); 1t, 1s),
where xi ∈ {0, 1}n and bi ∈ {0, 1} for some n ∈ N,

and the objective is to decide whether there exists a t-
time program M of size s that is consistent with the given

samples (x1, b1), . . . , (xm, bm), i.e., M(xi) = bi for every

i. Since the complexity of MINLT “appears very difficult

to classify precisely” [2], Ko presented a formal evidence

for this statement by proving that there exists no relativiz-

ing proof that establishes the NP-hardness of MINLT. A

relativizing proof —a notion introduced by Baker, Gill, and

Solovay [18] to argue the difficulty of resolving the P versus

NP question—is a proof of a complexity-theoretic statement

that can be generalized to statements in the presence of

arbitrary oracles. Although there are several non-relativizing

proof techniques (see, e.g., [19], [20]), the vast majority of

complexity-theoretic proofs are relativizing; thus, proving a

non-relativizing statement is highly challenging and of major

importance in complexity theory. Indeed, we are not aware

of any previous non-relativizing result in complexity theory

for which relativization barriers were presented three decades

ago.2

In this paper, we overcome Ko’s relativization barrier and

resolve the long-standing open problem of proving the NP-

hardness of MINLT.

Theorem I.1. Under randomized polynomial-time one-query
reductions, it is NP-hard to distinguish the following cases,
given as input a size parameter s ∈ N and a distribution E
such that supp(E) ⊆ {0, 1}n × {0, 1} for some n ∈ N.3

Yes: There exists a polynomial-time program M of size s such
that

Pr
(x,b)∼E

[M(x) = b] = 1.

Moreover, M computes a linear function over GF(2).
No: For any program M of size s · nε,

Pr
(x,b)∼E

[M(x) = b] ≤ 1

2
+ 2−n1−δ

Here, δ > 0 is an arbitrary constant and ε =
1/(log logn)O(1).

A couple of remarks are in order. Firstly, the problem con-

sidered in Theorem I.1 can be reduced to MINLT by drawing

m samples (x1, b1), . . . , (xm, bm) from the distribution E for

m = O(s); thus, the theorem also shows the NP-hardness of

MINLT under randomized reductions as an immediate corol-

lary. Our result is provably non-relativizing. Although Ko [2]

stated his relativization barrier for deterministic reductions, it

can be extended to randomized reductions. See the full version

for the details. Secondly, Theorem I.1 refers to the decision

version of PAC learning of a concept class C by a hypothesis

class H, where C denotes the class of efficient programs of

size s (that compute a linear function) and H denotes the

class of time-unbounded programs of size s ·nε. Note that the

decision version is reducible to the standard search version, as

long as H can be evaluated in polynomial time; thus, another

corollary of Theorem I.1 is the NP-hardness of PAC learning

of C by H′, where H′ ⊆ H denotes the class of polynomial-

time programs of size s ·nε. Let us emphasize that, in the NO

case, even time-unbounded programs fail to output b on input

x for a random sample (x, b) drawn from E . Although finding

one hypothesis that is consistent with E is easy using Gaussian

elimination, Theorem I.1 implies that deciding whether such

a hypothesis can be compressed as a small time-unbounded

program is NP-hard. Thirdly, the probability 1
2 + 2−n1−δ

in

the NO case is close to the optimal, as a trivial hypothesis

that always outputs either 0 or 1 agrees with the samples

from E with probability at least 1
2 . Although several papers

have been published on the NP-hardness of learning with large

2As discussed in [20, Section 9], there are several non-relativizing state-
ments that exploit the subtleties in defining oracle access mechanism. These
include statements on small depth circuits and bounded-space Turing ma-
chines. Whether such results are “truly” non-relativizing is a controversial
question. In contrast, Theorem I.1 can be naturally relativized using the
standard definition of oracle Turing machines.

3A distribution E is represented by a circuit C such that the output C(r)
of C over a uniformly random string r ∼ {0, 1}|C| is identical to E . The
support of E is denoted by supp(E).
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error (e.g., [9], [21]–[25]), most results establish NP-hardness

of learning with error 1
2 − ε for a constant ε > 0; we are not

aware of any previous result that achieves the exponentially

small correlation bound of 2−n1−δ

.

Theorem I.1 comes somewhat close to the range of parame-

ters for which proof techniques on improper PAC learning can

be applied. For example, using the proof techniques of [16],

we observe that improving the inapproximability factor nε to

1.01n is sufficient to exclude Heuristica; see the full version

for further details.

B. Meta-Complexity

A problem closely related to PAC learning is the Minimum
Circuit Size Problem [3] (MCSP). The input of MCSP con-

sists of a Boolean function f : {0, 1}n → {0, 1} represented

as the truth table of length 2n as well as a size parameter

s ∈ N, and the task is to decide whether there exists a

circuit of size s that computes f . The study of MCSP dates

back to the 1960s [26]. Although it is easy to see that

MCSP ∈ NP, it is a long-standing open problem to prove

NP-hardness of MCSP—indeed, it was reported in [27] that

Levin [28] delayed the publication of his seminal work on

the theory of NP-completeness because he hoped to prove the

NP-completeness of MCSP.

More generally, MCSP is an example of meta-
computational problems. Meta-complexity refers to the

computational complexity of problems that themselves

consider complexity. The aforementioned work of Ko [2]

introduced the problem MINKT of deciding whether a

given string x can be printed by a t-time program of size s,

given (x, 1t, 1s) as input. Similarly, MKTP is the problem

of deciding whether each bit of a given string x can be

computed by a t-time program of size s for some (t, s)
such that t + s ≤ θ, given (x, θ) as input [29]. All of the

aforementioned problems are meta-computational—MCSP
considers the circuit complexity of a given string; MINKT
considers the time complexity of printing a given string (i.e.,

time-bounded Kolmogorov complexity); MKTP considers

the trade-off between the time complexity and the size

complexity of printing a given string. Technically, MKTP is

often considered to be a convenient surrogate for MCSP, for

which many theorems that are not known to hold for MCSP
can be proved (e.g., [30], [31]). Meta-complexity has recently

received significant attention because of its connection to

diverse areas of theoretical computer science, including

learning theory [16], [32], average-case complexity [33], [34],

cryptography [35]–[37], and circuit lower bounds [38], [39];

see the survey of Allender [40] for a broad overview.

Although none of the meta-computational problems men-

tioned above has been shown to be NP-hard, there has

been recent substantial progress to prove the NP-hardness

of meta-computational problems. For restricted circuit classes

C ∈ {
DNF,DNF ◦XOR,AC0 formulas

}
, the corresponding

versions of MCSP (denoted by C-MCSP) were shown to be

NP-hard [41]–[44]. More recently, Ilango [45] proved that the

formula variant of MCSP is hard under the Exponential-Time

Hypothesis (ETH) [46].

A well-trodden path in the proofs of NP-hardness of vari-

ants of MCSP consists of the following two steps. First,

the NP-hardness of the partial function variants of MCSP,

which are often denoted by MCSP∗, is proved. The input of

MCSP∗ consists of a partial function f : {0, 1}n → {0, 1, ∗}
(encoded as a string of length 2O(n)) and a size parameter

s ∈ N, and the task is to decide whether there exists a

circuit of size s that computes f(x) on input x such that

f(x) 	= ∗. Second, the partial variants of MCSP are reduced

to MCSP. For example, the NP-hardness of DNF-MCSP
presented in [42] is proved by composing two reductions—

a reduction from NP to DNF-MCSP∗ and a reduction from

DNF-MCSP∗ to DNF-MCSP. Other works [43], [45] follow

the same paradigm. Thus, proving the NP-hardness of partial

variants of meta-computational problems serves as a milestone

towards proving the NP-hardness of the total versions of

meta-computational problems. In fact, Levin’s seminal paper

[28] presented six NP-complete problems; the second problem

shown to be NP-complete was DNF-MCSP∗. Since the intro-

duction of the theory of NP-completeness [28], [47], extension

of Levin’s NP-completeness result to MCSP∗ has been a long-

standing open problem.

The difficulty of proving the NP-hardness of MCSP is

closely related to the inability of proving explicit circuit lower

bounds. Kabanets and Cai [3] proved that if MCSP is NP-

hard under deterministic “natural” reductions, then EXP 	⊆
P/poly.4 Their proof techniques are applicable to MCSP∗

as well. Since EXP 	⊆ P/poly is a major open question in

complexity theory, this suggests that proving NP-hardness of

MCSP∗ would be quite difficult, at least under deterministic

reductions. A subsequent line of work improved the barrier

result of [3] to more general types of reductions, such as “non-

natural” reductions [48], nonadaptive deterministic reductions

[49], and adaptive deterministic reductions [50], [51]. The

intuition behind the aforementioned results is that if there is

a many-one reduction from SAT to MCSP∗, then, given an

unsatisfiable formula as input, it must produce the truth table

of a function f with high circuit complexity, which implies a

circuit lower bound for EXP.

To avoid this barrier, one may be tempted to consider

randomized reductions. A randomized reduction can easily

produce a function with high circuit complexity, as a random

function has high circuit complexity with high probability.

Thus, the barriers mentioned above do not apply to random-

ized reductions. Unfortunately, Hirahara and Watanabe [50]

presented some evidence for the difficulty of proving the

NP-hardness of MCSP even under randomized reductions.

They observed that most reductions to MCSP are oracle-
independent, i.e., they can be generalized to the Minimum

A-Oracle Circuit Size Problem (denoted by MCSPA) for

every oracle A. Then, they proved that there is no one-query

4A natural reduction to MCSP is a reduction such that the size parameter
in the output of the reduction depends only on the input length.
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randomized polynomial-time reduction from NP to MCSPA

for some oracle A unless the polynomial hierarchy collapses.

Another approach for avoiding the barriers is to use

exponential-time reductions. Ilango [44] recently bypassed the

barrier of [3] and proved ETH-hardness of MCSP∗ under

deterministic reductions. The intuition behind this result is

that lower bounds against O(n)-size circuits can be proved

using gate elimination techniques; since it is already known

that there exists an explicit function that cannot be computed

by a circuit of size cn for a constant c, the barrier of [3] does

not apply. Such proof techniques based on deterministic re-

ductions, however, are unlikely to be extended to NP-hardness

of MCSP∗, as the barriers of [3] come into play. Moreover,

it would be extremely difficult to prove the NP-hardness of

MKTP∗ and MINKT∗ under deterministic reductions, as

there are few techniques to prove a lower bound of the time-

bounded Kolmogorov complexity of an explicit string. Here,

MKTP∗ and MINKT∗ are the partial variants of MKTP
and MINKT, which ask the minimum of the time-bounded

Kolmogorov complexity of y over all the strings y ∈ {0, 1}∗
that are consistent with5 a given partial string x ∈ {0, 1, ∗}∗.

Using the techniques used to prove the NP-hardness of

PAC learning, we circumvent the barrier of [3] by means of

randomized reductions and prove the NP-hardness of partial

variants of several meta-computational problems.

Theorem I.2. Under randomized polynomial-time one-query
reductions, it is NP-hard to distinguish the following two
cases, given a partial function f : {0, 1}n → {0, 1, ∗} (en-
coded as a string over {0, 1, ∗} of length 2n), a size parameter
s ∈ N, and a distribution D over f−1({0, 1}):
Yes: There exist an s-time6 program M of size s and a circuit

C of size s
log s and depth O(log s) such that

Pr
x∼D

[M(x) = f(x)] = 1 and Pr
x∼D

[C(x) = f(x)] = 1.

No: For every program M of size s · nε and for every circuit
C of size s

log s · nε,

Pr
x∼D

[M(x) = f(x)] ≤ 1

2
+ n−ε and

Pr
x∼D

[C(x) = f(x)] ≤ 1

2
+ n−ε.

Here, ε > 0 is a universal constant. In particular, MCSP∗,
NC1-MCSP∗, MKTP∗, and MINKT∗ are NP-hard under
randomized polynomial-time reductions. Moreover, these prob-
lems are NP-hard to approximate within a factor of (logN)ε

on inputs of length N .

Our proofs are inspired by a line of research [42], [43],

[52]–[56] that developed “top-down” approaches to prove the

5We say that a string y ∈ {0, 1}n is consistent with a partial string
x ∈ {0, 1, ∗}n if every bit of x is equal to either ∗ or the bit of y at
the corresponding position.

6Here, the time complexity of M is measured as in KT-complexity; that
is, we assume that a program is given oracle access to the description of M .

NP-hardness of MCSP.7 Theorem I.2 is proved using tech-

niques that are fundamentally different from previous results

of [44] and significantly improves them from the following

perspectives:

1) The time complexity of a reduction is improved from

exponential to polynomial.

2) The hardness of approximation is proved in Theorem I.2,

unlike in [52].

3) The NP-hardness of MKTP∗ and MINKT∗ is proved.

4) In addition, by slightly modifying the NP-hardness reduc-

tion of MCSP∗,8 we also prove the NP-hardness of the

average-case variant of MCSP called AveMCSP [36],

which asks the average-case circuit complexity of a given

total function f : {0, 1}n → {0, 1} with respect to the

uniform distribution.

The size parameter s in Theorem I.2 is exponential in the

input length n (i.e, s = 2Θ(n)), which is inevitable unless NP
can be solved in randomized sub-exponential time.9 The strong

circuit lower bound of the NO case would be surprising—it

indicates that no circuit of exponential size can compute the

function f . Given our poor knowledge of circuit lower bounds

for explicit functions,10 naı̈vely, one would expect any proof of

NP-hardness of MCSP∗ to require a complicated analysis of

exponential-sized circuits. This is indeed the primary difficulty

that has hindered the proof of NP-hardness of MCSP∗ (and

formalized as the barrier of [3] in the case of deterministic

reductions). Surprisingly, we prove the circuit lower bound

using almost nothing about circuits—the circuit lower bound

simply follows from the fact that no program of size s can

approximate f . Since a circuit of size s′ can be encoded as a

binary string of length O(s′ log s′), we obtain a circuit lower

bound of s′ ≥ Ω(s/ log s). In contrast, the construction of the

circuit C in the YES case is more complicated.
All the previous NP-hardness results for C-MCSP are

proved by different reductions for each circuit class C. Ide-

ally, one would like to prove NP-hardness of C-MCSP for

any sufficiently large circuit class C by a single reduction.

Unfortunately, this is not possible—the aforementioned work

of [50] proves that MCSP is not reducible to MCSPA for

some oracle A (unless MCSP is easy), despite the fact that

A-oracle circuits are more powerful than circuits. Surprisingly,

Theorem I.2 indicates that the same is not true for partial vari-

ants of MCSP. Our reduction is, in fact, oracle-independent

in the sense that it also proves the NP-hardness of MKTP∗A

for every oracle A.11 This indicates that the negative result of

7Specifically, based on his NP-hardness result of a conditional variant of
MCSP, Ilango [52] proposed an approach to prove the hardness of MCSP
“from above”, as opposed to “bottom-up” approaches of [42]–[45], which
attempt to prove the NP-hardness of C-MCSP for larger and larger classes
C. Theorem I.2 realizes such a top-down approach successfully.

8Specifically, we replace f(x) = ∗ with a uniformly random bit f(x) ∼
{0, 1} in the NP-hardness proof of MCSP∗.

9This follows from the fact that MCSP∗ with size parameter s(n) can be
solved in time 2O(s(n) log s(n)) by a brute-force search.

10For example, proving ENP �⊆ SIZE(O(n)) is an important open problem.
A function f ∈ ENP is said to be explicit.

11For a technical reason, our reduction may not prove the NP-hardness of
MCSP∗A.
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[50] for MCSP is unlikely to be extended to the partial variant

MCSP∗, despite that the negative result of [3] can easily be

extended to MCSP∗.
Theorem I.2 is proved by optimizing the reduction of The-

orem I.1. Note that the NP-hardness reduction of Theorem I.2

takes an NP instance of length N and produces the truth table

of a partial function f : {0, 1}n → {0, 1, ∗}, which is of length

2O(n), in time NO(1). Thus, we must have n = O(logN). A

high-level idea used in the proof of Theorem I.2 is that the

input length n of the distribution E in Theorem I.1 can be

optimized to be as small as O(logN).

II. AN OVERVIEW OF OUR PROOFS

In this section, we outline our proofs. At a very high level,

our technical contribution is to develop an algorithmic infor-
mation (Kolmogorov complexity) theoretic proof technique for

showing lower bounds of the size of programs. We assume

familiarity with the notions of Kolmogorov complexity and

secret sharing scheme.

Notation: [n] denotes {1, . . . , n}. For s1, . . . , sn and a

subset T ⊆ [n], let sT denote (si1 , . . . , sim), where T =
{i1 < · · · < im}.

A. NP-Hardness of Learning Programs

We present an overview of the proof of Theorem I.1,

which shows NP-hardness of learning programs. We reduce

the Minimum Monotone Satisfying Assignment (MMSA)

problem [57] to the problem of learning programs. The input

of MMSA consists of a monotone formula ϕ on n variables

and a parameter θ ∈ N. The task is to decide whether there

exists a satisfying assignment α : [n]→ {0, 1} of ϕ such that∑n
i=1 α(i) ≤ θ. Approximation of MMSA to within a factor

of n1/(log log n)O(1)

is known to be NP-hard [58], [59].

To reduce MMSA to the learning problem, we use a

secret sharing scheme (Share(ϕ, -),Rec(ϕ, -)) for a monotone

formula ϕ. We say that a subset T ⊆ [n] is authorized if the

characteristic function χT : [n]→ {0, 1} of T satisfies the for-

mula ϕ. The secret sharing scheme allows a secret b ∈ {0, 1}
to be shared among n parties so that any authorized set of

parties can reconstruct the secret, whereas no unauthorized

set of parties can obtain any information of the secret. At a

high level, our reduction produces a distribution E , from which

(x, b) is sampled as follows. A random secret b ∼ {0, 1} is

shared as Share(ϕ, b) =: (s1, . . . , sn), where each si denotes

the share given to the i-th party, and then each share si is

“hidden” in an input x. Our main technical contribution is to

develop a way of hiding the shares in an input x so that large

programs can read the hidden shares from x, whereas small

programs cannot read many hidden shares.

A key tool for hiding shares in an input is a (black-box)

pseudorandom generator construction [60]. There are many

pseudorandom generator constructions in the literature, such as

the Nisan–Wigderson pseudorandom generator [61]. Although

most pseudorandom generator constructions can be used for

our purpose,12 for the sake of simplicity, we use a simple

pseudorandom generator construction called a k-wise direct
product generator DPk : {0, 1}λ × {0, 1}λ×k → {0, 1}λk+k

[63], which is defined as follows. Given a string f ∈ {0, 1}λ
(regarded as a row vector over GF(2)) and a λ× k matrix z
over GF(2), the output DPk(f ; z) is defined to be (z, f · z),
where f ·z denotes the multiplication of a vector f and a matrix

z over GF(2). The pseudorandom generator construction DPk

satisfies the following “reconstruction” property [64]: If there

exists a function D that ε-distinguishes the output distribution

DPk(f ; -) from the uniform distribution, i.e.,∣∣∣∣ Pr
z∼{0,1}λk

[D(DPk(f ; z)) = 1]− Pr
w∼{0,1}λk+k

[D(w) = 1]

∣∣∣∣ ≥ ε,

then

KD(f) ≤ k +O(log(λk/ε)). (1)

In other words, DPk(f ; -) : {0, 1}λk → {0, 1}λk+k is a

pseudorandom generator secure against an algorithm D if f
is a “hard” function in the sense that f cannot be described

using approximately k bits of information and oracle access to

D. The pseudorandom generator DPk(f ; -) can be regarded as

a one-time encryption scheme that is secure against any algo-

rithm D that “does not know” f in the sense that KD(f)� k.

Besides its simplicity, a useful property of DPk(f ; -) is that

DPk(f ; -) is a linear function for any fixed f , which enables us

to show the linearity property of the YES case in Theorem I.1.

We now present the details of the reduction from MMSA
to the learning problem. Let (ϕ, θ) be an instance of MMSA.

We choose n strings f1, . . . , fn ∼ {0, 1}λ uniformly at

random. Each string fi is associated with the i-th variable

of ϕ. Using the strings f1, . . . , fn, we define an example

distribution E = E(f1, . . . , fn) as follows. To sample an

example (x, b) ∈ {0, 1}m × {0, 1} distributed according to

E , we first choose a secret b ∼ {0, 1} randomly. The secret

b is shared among n parties using the secret sharing scheme

for ϕ; let (s1, . . . , sn) := Share(ϕ, b) be the set of shares

and let k ∈ N be the length of each share. The idea is to

hide these shares in the input x so that any algorithm that

“knows” fi can read the i-th share and any algorithm that

“does not know” fi cannot read the i-th share. To this end,

we let ξi := (zi, (fi · zi) ⊕ si) = DPk(fi; zi) ⊕ (0λk, si)
for every i ∈ [n], where zi ∼ {0, 1}λk. Here, “⊕” denotes

the bitwise XOR. Then, we define x := (ξ1, . . . , ξn). This

completes the description of how to sample (x, b) from the

example distribution E . In fact, this is a complete description

of the reduction of Theorem I.1. The difficulty lies in the proof

of the correctness of the reduction, which we sketch below.

It is not hard to see the completeness of the reduction.

Assume that there exists a satisfying assingment α of ϕ such

that
∑n

i=1 α(i) ≤ θ. Let T denote the set of indices i ∈ [n]
such that α(i) = 1. The fact that the set T is authorized

12One property of a pseudorandom generator that is required for our
reduction is seed-extending [62], i.e., a pseudorandom generator is secure
even if the seed is included in the output. This property is used in the proof
of the completeness of our reduction.
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motivates us to define the following program M : The program

M takes {fi | i ∈ T} as hard-wired input. Given an input

x = (ξ1, . . . , ξn), the program M lets (zi, ηi) := ξi, defines

si := (fi · zi)⊕ ηi, reconstructs the secret b using the recon-

struction procedure Rec(ϕ, -) for the shares {si | i ∈ T}, and

outputs b ∈ {0, 1}. Since T is authorized, it is guaranteed that

the secret b ∈ {0, 1} can be reconstructed in this way. The size

of M is approximately bounded by
∑

i∈T |fi| = |T | ·λ ≤ θλ.

To prove the soundness of the reduction, we first clarify the

condition under which the randomized reduction is successful.

The condition is that K(fT ) � |T |·λ for every T , which can be

proved to happen with high probability over the random choice

of f1, . . . , fn by a simple counting argument. (Throughout this

section, an approximate inequality a � b can be understood as

a ≤ (1+o(1)) ·b, where o(1) approaches 0 as the parameter λ
increases.) Now, assuming that there exists no authorized set T
of size θ, we claim that no program M of size θλ/2 can output

b on input x with high probability over (x, b) ∼ E . The key

technical lemma, which we call an algorithmic information
extraction lemma, is informally stated as follows.

Lemma II.1 (informal). Let f1, . . . , fn ∈ {0, 1}λ be strings
such that K(fT ) � |T | · λ for every T ⊆ [n], where λ is
sufficiently large. Let M be a program of size |M |. Then,
there exists a set B ⊆ [n] such that |B| � |M |/λ and

Pr
[
M(XB , U[n]\B) = 1

]
≈ Pr

[
M(XB , X[n]\B) = 1

]
,

where Xi is the random variable identical to DPk(fi; zi) for
a random choice of zi ∼ {0, 1}nk and Ui is identical to the
uniform distribution over {0, 1}λk+k.

This lemma demonstrates that a small set B can be “ex-

tracted” from a program M such that DPk(fi; -) appears

to be pseudorandom against M for every i ∈ [n] \ B. In

particular, for every i ∈ [n] \ B, the program M cannot read

si from ξi = DPk(fi; zi) ⊕ s′i, where s′i denotes (0λk, si).
Moreover, we have |B| � |M |/λ ≤ θ/2, which implies that

B is not authorized. By the privacy of the secret sharing

scheme, the shares sB and the secret b ∼ {0, 1} are statistically

independent. Thus, we obtain

Pr
[
M(XB ⊕ s′B , U[n]\B ⊕ s′[n]\B) = b

]
= Pr

[
M(XB ⊕ s′B , U[n]\B) = b

]
=

1

2
.

It follows from the algorithmic information extraction lemma

that13

Pr
(x,b)∼E

[M(x) = b]

= Pr
[
M(XB ⊕ s′B , X[n]\B ⊕ s′[n]\B) = b

]

≈ Pr
[
M(XB ⊕ s′B , U[n]\B ⊕ s′[n]\B) = b

]

=
1

2
,

as desired.

It remains to prove the algorithmic information extraction

lemma. We formalize the notion that M “knows” fi based on

conditional Kolmogorov complexity. We say that M knows fi
if

K(fi |M) ≤ θ

for a threshold θ := 2nk. The intuition behind this definition

is that if M contains a lot of information about fi, it should

be possible to describe fi using a few bits of information.14

Now, we define B to be the set of indices i ∈ [n] such that

M knows fi. It can be shown that |B| is small:

|B| · λ− |M |
�K(fB)− |M |
�K(fB |M)

�
∑
i∈B

K(fi |M)

≤ |B| · θ, (2)

where the first inequality follows from the assumption, the

second inequality holds by the definition of conditional Kol-

mogorov complexity, the third inequality holds because fB =
(fi | i ∈ B) can be described by programs describing fi for

all i ∈ B, and the final inequality holds by the definition of

B. If we choose a sufficiently large λ such that θ = o(λ) (e.g.,

λ := θ2), we obtain

|B| · λ · (1− o(1)) � |M |,
which implies |B| � |M |/λ, as desired. We now prove that

M cannot distinguish Xi = DPk(fi; zi) from Ui for every

i ∈ [n] \B. This can be proved using a standard (but careful)

hybrid argument. To illustrate the idea, let us assume that B =
{2} and n = 2. In this case, we must prove that

Pr
z1,z2

[M(DPk(f1; z1),DPk(f2; z2)) = 1]

≈ Pr
U1,z2

[M(U1,DPk(f2; z2)) = 1].

Assume, towards a contradiction, that this approximate

equality fails. Our goal is to prove K(f1 | M) ≤ θ, which

13The argument is not precise, especially because we need to argue that
the set B does not depend on the secret b and the shares s[n]. To address
this issue, the algorithmic information extraction lemma will be stated for a
program that takes an advice string α, which includes the information about
the secret and the shares; see the full version for details.

14In terms of the mutual information I(fi : M) := K(fi) − K(fi | M)
between fi and M , the condition that M knows fi means that I(fi : M) ≈
K(fi).
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contradicts that M does not know f1 (i.e., 1 	∈ B). We use the

reconstruction property of DPk. However, it is problematic to

apply the property of Eq. (1) naively: Applying Eq. (1), we

would get KD(f1) � k, where D is a function that outputs

M(w,DPk(f2; z2)) on input w and random bits z2. Since D
can be simulated using M and f2, we obtain

K(f1 |M, f2) � KD(f1) � k.

We need to remove f2 from the condition of K(f1 |M, f2). To

this end, we observe that D is, in fact, a randomized algorithm

that takes an a-bit advice string as input, which depends on

randomness for some small a ∈ N (independent of λ). The

notion of such advice was introduced by Trevisan and Vadhan

[60]. Specifically, D takes w and random bits z2 as inputs

and outputs M(w,DPk(f2; z2)) = M(w, (z2, f2 · z2))—this

function can be computed using the k-bit advice string f2 ·
z2 ∈ {0, 1}k. Thus, we do not require the full description of

f2 ∈ {0, 1}λ to compute D. Using a pseudorandom generator

(computable by an exhaustive search), we observe that the

reconstruction property of Eq. (1) actually yields

K(f1 |M) � k + a

for any randomized algorithm M that takes a bits of Trevisan–

Vadhan advice. In our case, we have a ≤ (n− 1) · k; thus, we

can prove that K(f1 | M) � nk ≤ θ/2. This implies that M
knows f1, which contradicts 1 	∈ B.

B. NP-Hardness of Partial Variants of Meta-computatioal
Problems

We now update the aforementioned proof to a proof

of Theorem I.2, i.e., the NP-hardness of the partial func-

tion variants of meta-computational problems, such as

NC1-MCSP∗,MCSP∗,MKTP∗, and MINKT∗. Specifically,

our goal is to reduce an instance of an NP-complete prob-

lem to an example distribution E such that supp(E) ⊆
{0, 1}O(logn) × {0, 1}, where n denotes the length of an

instance of the original NP-complete problem. Enumerating all

the elements in the support supp(E) of the distribution E , we

obtain a partial function f : {0, 1}O(logn) → {0, 1, ∗}, which

yields a reduction to partial variants of meta-computational

problems. Note that the reduction of Theorem I.1 produces a

partial function f : {0, 1}nO(1) → {0, 1, ∗}. We need to reduce

the input length of f exponentially.

We begin by inspecting the NP-hardness reduction to the

MMSA problem. Dinur and Safra [58] presented a generic

approximation-preserving reduction from any MaxCSP (Con-

straint Satisfaction Problem) to MMSA. An instance of

MaxCSP consists of a set Ψ = {C1, . . . , Cm} of constraints

over n variables taking values in an alphabet Σ. Each con-

straint Cj depends on D variables, where D = O(1). The

reduction of [58] reduces such an instance to a depth-3

monotone formula ϕ such that ϕ =
∧

j∈[m] ϕj , where each

depth-2 subformula ϕj “verifies” that the constraint Cj is

satisfied. Since each constraint Cj depends on a constant

number D of variables, each subformula ϕj also depends on

a small number of variables. The fundamental idea behind

reducing the input length in our reduction is to exploit this

“locality” of ϕj .

Now, we introduce the Collective Minimum (Weight)

Monotone Satisfying Assignment (CMMSA) problem, which

generalizes the MMSA problem. An instance of CMMSA
consists of a collection Φ = {ϕ1, . . . , ϕm} of monotone DNF

formulas over n variables, a weight function w : [n]→ N, and

a threshold θ. The task is to distinguish (1) the YES case, in

which there exists an assignment α : [n]→ {0, 1} such that the

weight
∑n

i=1 α(i)·w(i) is at most θ and Prϕ∼Φ[ϕ(α) = 1] = 1
from (2) the NO case, in which for every assignment of weight

Δε · θ, Prϕ∼Φ[ϕ(α) = 1] < Δ−ε, where ε > 0 is a constant

and Δ is a parameter such that the number of literals in the

DNF formula ϕj is at most Δ for every j ∈ [m]. Using a

PCP system [65] developed in the research line on the Sliding

Scale Conjecture [66], we observe that CMMSA is NP-hard

for some constant ε > 0 and for a parameter Δ := (log n)1/2

by applying the reduction of [58]. We note that the weight

function w in CMMSA is used for a technical reason; thus,

for simplicity, we assume that w ≡ 1 in this proof overview.

Now, our goal is to reduce CMMSA to MINKT∗. To

this end, we exploit the “locality” of CMMSA: Each for-

mula ϕj in Φ depends on at most Δ variables out of n
variables. The reduction is similar to the reduction discussed

in Theorem I.1. For random strings f1, . . . , fn ∼ {0, 1}λ,

we define a distribution E = E(f1, . . . , fn) as follows:

A secret b ∼ {0, 1} and ϕj ∼ Φ are chosen randomly.

Using the secret sharing scheme for ϕj , the secret b is

shared among at most Δ parties v1, . . . , vΔ ∈ [n]. Let

(s1, . . . , sΔ) = Share(ϕj , b) be the shares distributed to

the parties v1, . . . , vΔ, respectively. We define an input x
to be (j,DPk(fv1

; z1)⊕ s′1, . . . ,DPk(fvΔ
; zΔ)⊕ s′Δ), where

s′i := (0λk, si). The output of the distribution E is defined to

be (x, b). Just as in the proof of Theorem I.1, it is possible

to prove the following statements: If there is an assignment

α : [n] → {0, 1} that satisfies all the formulas ϕj in Φ, then

there exists a program of size �
∑n

i=1 α(i) · λ (that takes

{fi | α(i) = 1} as hard-wired input) that computes b on input

x for every (x, b) ∈ supp(E). If there is no assignment of

small weight that satisfies a Δ−ε-fraction of Φ, then there is

no small program that computes b on input x with probability

1/2 + 2Δ−ε over a random choice of (x, b) ∼ E .

The only issue is that the length of the seeds z1, . . . , zΔ is

large, which prevents us from obtaining |x| = O(log n). The

length of each zi is λk, which is always greater than the length

of fi. This is because DPk is instantiated with Hadamard

encoding, which maps a string fi of length λ to a string of

length 2λ. Instead, if we instantiate a k-wise direct product

generator with an error correcting code that maps a string of

length λ to a string of length λO(1), the length of seed zi can be

reduced to k·O(log λ) (as in [63]). This optimization is still not

sufficient to guarantee |x| = O(log n), as the seeds z1, . . . , zΔ
are independent. To further reduce the seed length, we use the

Nisan–Wigderson pseudorandom generator construction [61].

Nisan and Wigderson [61] developed a method of generating

correlated seeds zS1
, . . . , zSΔ

from a short seed z and used it
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to construct a pseudorandom generator with short seed length

based on an average-case hard function. Using the Nisan–

Wigderson pseudorandom generator construction NW, we

construct the input x as follows: (j, z,NW(Enc(fv1
); zS1

) ⊕
s1, . . . ,NW(Enc(fvΔ

); zSΔ
) ⊕ sΔ), where Enc: {0, 1}λ →

{0, 1}λO(1)

is an error-correcting code. It can be proved that

the input length |x| is O(log n). This completes the overview

of the proof of NP-hardness of MINKT∗.
Proving the NP-hardness of MCSP∗ requires addi-

tional ideas. We need to argue that there exists a small

circuit C that takes x = (j, z,NW(Enc(fv1
); zS1

) ⊕
s1, . . . ,NW(Enc(fvΔ

); zSΔ
)⊕sΔ) as input, reads shares from

the input, and reconstructs the secret. This can be achieved

using a poly(λ)-time algorithm by computing Enc(fvi) from a

hard-wired input fvi . However, this is not necessarily possible

for a circuit. The string fvi
∈ {0, 1}λ must be hard-wired in

a circuit using O(λ/ log λ) gates. Then, the bits of Enc(fvi
)

specified by zSi
must be computed from such embedded gates

using O(λ/ log λ) gates. This does not seem to be possible,

as each bit of Enc(fvi) depends on almost all bits of fvi in

order for Enc to be a good error-correcting code; thus, simply

reading such bits amounts to O(λ) gates, which is too large.

One may be tempted to let Enc be the identity function to

avoid such a computation, but this does not work because it

significantly weakens the reconstruction property of NW. In

general, there are two conflicting requirements on Enc(-):

1) It must be ensured that each bit of Enc(f) can be

computed by reading a small number of bits from f .

2) Enc(-) must be a good list-decodable error-correcting

code, i.e., given a string that agrees with Enc(f) on a

(1/2 + ε)-fraction of bits for a small parameter ε > 0,

f must be identified based on a small number of advice

bits.

In other words, a “locally-encodable and list-decodable” error-

correcting code is required. We observe that the derandomized

hardness amplification theorem of Impagliazzo and Wigderson

[67] can be regarded as such a code: They showed that any

function f : {0, 1}log λ → {0, 1} can be converted into a

function f̂ : {0, 1}O(log λ) → {0, 1} such that given a small

circuit that computes f̂ on a (1/2+ε)-fraction of inputs, there

exists a small circuit that computes f on almost all inputs.

Letting Enc(f) be f̂ , we observe that the two properties

are satisfied. This enables us to prove the NP-hardness of

MKTP∗.
Proving NP-hardness of MCSP∗ requires an additional (and

the last) ingredient. In this case, we need to ensure that f̂ can

be computed by a circuit of size O(λ/ log λ) for a random

function f : {0, 1}log λ → {0, 1}. To this end, we employ

the theorem of Uhlig [68], [69], which states that for any

function f : {0, 1}log λ → {0, 1}, the r-wise direct product

fr :
({0, 1}log λ

)r → {0, 1}r can be computed by a circuit of

size O(λ/ log λ) for r = λo(1/ log log λ). Since f̂ can be locally

computed using the output of f on at most r inputs, we obtain

a circuit of size O(λ/ log λ) that computes f̂ .

III. OPEN PROBLEMS

We expect the results proved in this paper to motivate

several fruitful research directions, as described below.

MCSP: A major open problem is to prove NP-hardness

of MCSP. Following the two-step paradigm of proving the

NP-hardness of variants of MCSP, it suffices to present a

reduction from MCSP∗ to MCSP. We expect that this task

now becomes much easier than it was previously, because the

reduction of Theorem I.2 creates a large gap between the YES

instances and the NO instances. Thus, the reduction of the

approximate and partial variant of MCSP of Theorem I.2 to

MCSP is a promising research problem.

It is also interesting to see if MCSP∗ for AC0 circuits is

NP-hard. In general, our results do not necessarily prove NP-

hardness of MCSP∗ for circuit classes with unbounded fan-in

gates. The reason is that an O(1)-fan-in circuit of size s can be

encoded as a binary string of O(s log s), whereas the binary

encoding of an unbounded-fan-in circuit of size s can be as

large as s2. Generalization of our results to unbounded-fan-in

circuits is an interesting direction of research.

Heuristica: Another major open question is to improve

the inapproximability factor nε of Theorem I.1 to 1.01n. This

has a significant implication for Impagliazzo’s five worlds—in

particular, it excludes Heuristica. We expect that this requires

a “non-black-box” reduction technique that exploits the effi-

ciency of a program in the NO case. Indeed, the literature on

the limits of black-box reductions [70]–[74] suggests that no

nonadaptive randomized reduction can reduce NP to a black-

box oracle that solves NP on average. Our proof techniques

are algorithmic information theoretic and do not exploit the

efficiency of programs in the NO case. Thus, we expect that

our reduction techniques are subject to such a barrier.

We note, however, that excluding Heuristica is achievable

in principle by combining current proof techniques: Hirahara

[33], [34] developed non-black-box but relativizing reduction

techniques (which are, thus, subject to the relativization barrier

of Impagliazzo [75]; see also [16]); we developed black-box
but non-relativizing reduction techniques. What remains is to

combine these proof techniques to overcome black-box and

relativization barriers simultaneously. This can be achieved by

reducing the approximate problem of MINKT∗ (Theorem I.2)

to an approximate problem GapMINKT of MINKT, which

is known to be in P in Heuristica [33], [64].

A less challenging but intriguing open problem is to improve

the inapproximability factor nε to n1−o(1), which could be

achievable by combining sophisticated PCP machinery with

the proof techniques developed in this paper.

Computational Learning Theory: Our proof techniques

would have applications to the problem of learning parities,

which is one of central research topics in computational

learning theory (see, e.g., [76], [77] and references therein).

Learning k-sparse parities by k-juntas is known to be W[1]-
hard [77]. We strongly conjecture that Theorem I.1 can be

improved to NP-hardness of learning s-sparse parities by

programs of size s·n1/(log log n)O(1)

, which would significantly
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improve the result of [77]. In fact, the only missing piece is

the following question regarding PCPs: Can the PCP system

of Dinur, Harsha, and Kindler [59] be made smooth in the

sense that every coordinate of a proof is queried with equal

probability? We expect that the proof techniques developed

in, e.g., [78] that make PCP systems smooth might be used to

resolve this question affirmatively.

More broadly, our results open up the possibility of proving

the NP-hardness of PAC learning of various concept classes

by small programs. There are many non-proper PAC learners

in the literature (e.g., [32], [76], [79], to name a few). Can

we give evidence that such PAC learners cannot produce

small programs, using our proof techniques of showing NP-

hardness?
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