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Abstract—A seminal result in learning theory characterizes
the PAC learnability of binary classes through the Vapnik-
Chervonenkis dimension. Extending this characterization to the
general multiclass setting has been open since the pioneering
works on multiclass PAC learning in the late 1980s. This work
resolves this problem: we characterize multiclass PAC learnability
through the DS dimension, a combinatorial dimension defined by
Daniely and Shalev-Shwartz (2014).

The classical characterization of the binary case boils down to
empirical risk minimization. In contrast, our characterization of
the multiclass case involves a variety of algorithmic ideas; these
include a natural setting we call list PAC learning. In the list
learning setting, instead of predicting a single outcome for a given
unseen input, the goal is to provide a short menu of predictions.

Our second main result concerns the Natarajan dimension,
which has been a central candidate for characterizing multiclass
learnability. This dimension was introduced by Natarajan (1988)
as a barrier for PAC learning. He furthered showed that it is
the only barrier, provided that the number of labels is bounded.
Whether the Natarajan dimension characterizes PAC learnability
in general has been posed as an open question in several papers
since. This work provides a negative answer: we construct a
non-learnable class with Natarajan dimension 1.

For the construction, we identify a fundamental connection
between concept classes and topology (i.e., colorful simplicial
complexes). We crucially rely on a deep and involved construction
of hyperbolic pseudo-manifolds by Januszkiewicz and Światkowski.
It is interesting that hyperbolicity is directly related to learning
problems that are difficult to solve although no obvious barriers
exist. This is another demonstration of the fruitful links machine
learning has with different areas in mathematics.

I. INTRODUCTION

Many important machine learning tasks require classification

into many target classes: in image object recognition, the

number of classes is the number of possible objects. In language

models, the number of classes scales with the dictionary size.

In protein folding prediction, the goal is to predict the 3D

structures of proteins based on their 1D amino sequence. These

are real-world tasks that do not admit an a priori reasonable

bound on the number of classes. Multiclass classification

problems, therefore, have been attracting interest both on the

theoretical side and on the practical side; for further reading

we refer to the introduction of [Daniely and Shalev-Shwartz,

2014] and references within.

The theoretical understanding of multiclass learnability, how-

ever, is still lacking: even in the basic Probably Approximately

Correct (PAC) setting [Valiant, 1984], learnability is well-

understood only when the number of classes is bounded (see

e.g. [Natarajan, 1989, Ben-David, Cesabianchi, Haussler, and

Long, 1995, Shalev-Shwartz and Ben-David, 2014, Daniely,

Sabato, Ben-David, and Shalev-Shwartz, 2015a]).

The fundamental theorem of PAC learning asserts the equiva-

lence between binary classification and finiteness of the Vapnik-

Chervonenkis (VC) dimension [Vapnik and Chervonenkis, 1968,

1974, Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989].

The works of Natarajan and Tadepalli [1988] and Natarajan

[1989] extended Valiant’s PAC framework to the multiclass

setting. They identified two natural extensions of the VC

dimension: the Natarajan dimension and the Graph dimension.

The Natarajan dimension serves as a lower bound on the sample

complexity of PAC learning, and the Graph dimension serves

as an upper bound [Natarajan and Tadepalli, 1988, Natarajan,

1989]. When the number of classes is bounded (|Y| <∞), both

dimensions characterize PAC learnability. In the unbounded

case, however, Natarajan [1988] showed that finite Graph

dimension does not characterize PAC learnability; he identified

a PAC learnable class with infinite Graph dimension (see

also Example 8 below). Natarajan [1989] asked whether the

Natarajan dimension characterizes learnability, and explained

why standard uniform convergence techniques are not sufficient

to resolve this question.

In the 1990s, Ben-David, Cesabianchi, Haussler, and Long

[1995] and Haussler and Long [1995] introduced a rich com-

binatorial framework for defining dimensions in the multiclass

setting. This framework captures as special cases many other

dimensions, including the Natarajan and Graph dimensions,

the Pseudo-dimension [Pollard, 1990, Haussler, 1992], and

Vapnik’s dimension [Vapnik, 1989]. Within this framework,
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Ben-David, Cesabianchi, Haussler, and Long [1995] exactly

identified those dimensions (called distinguishers) that charac-

terize PAC learnability when the number of classes is bounded.

This framework, however, does not capture learnability when

the number of classes is unbounded, and they left this as an

open problem.

More recently, a sequence of works studied general principles

that guide learning in the multiclass setting [Rubinstein, Bartlett,

and Rubinstein, 2006, Daniely, Sabato, and Shalev-Shwartz,

2012, Daniely and Shalev-Shwartz, 2014, Daniely, Sabato,

Ben-David, and Shalev-Shwartz, 2015a, Daniely, Schapira, and

Shahaf, 2015b]. These works revealed a stark contrast between

a bounded and an unbounded number of labels. One important

example is that the celebrated empirical risk minimization

(ERM) principle ceases to apply when the number of labels is

unbounded [Daniely and Shalev-Shwartz, 2014].

Algorithmic ideas of Haussler, Littlestone, and Warmuth

[1994] and Rubinstein, Bartlett, and Rubinstein [2006] lead

Daniely and Shalev-Shwartz [2014] to identify a universal
family of transductive learning rules called one-inclusion graph
(OIG) algorithms. Universality means that every learnable class

can be learned by OIG algorithms. This universality and the

combinatorial structure of OIG algorithms guided them to a

new dimension. We call this new dimension the Daniely-Shalev-
Shwartz (DS) dimension. They proved that finite DS dimension

is a necessary condition for PAC learnability. But they too left

the full characterization of learnability open.

Remark. We use standard terminology from PAC learning
and standard measurability assumptions (see e.g. the text-
book [Shalev-Shwartz and Ben-David, 2014] and references
within). All the relevant dimensions are defined and discussed
in Section II.

A. Results

Our main result is that the DS dimension characterizes PAC

learnability in the multiclass setting.

Theorem A (Learnability ≡ Finite DS Dimension). The
following are equivalent for a concept class H ⊆ YX :

– The class H is PAC learnable.
– The DS dimension of H is finite.

We complement this result by refuting the conjecture that

the Natarajan dimension characterizes learnability.

Theorem B (Learnability �≡ Finite Natarajan Dimension).
Finite Natarajan dimension does not characterize PAC learn-
ability.

The two theorems follow from more informative results

as we describe next. Because Daniely and Shalev-Shwartz

[2014] proved that finite DS dimension is a necessary condition

for PAC learnability, Theorem A follows from the following

algorithmic result.

Theorem 1. Let H ⊆ YX be an hypothesis class with DS
dimension d <∞.

Realizable Case There is a learning algorithm Areal for H
with the following guarantees. For every H-realizable
distribution D, every δ > 0 and every integer n, given
an input sample S ∼ Dn, the algorithm Areal outputs an
hypothesis h = Areal(S) such that1

Pr
(x,y)∼D

[h(x) �= y] ≤ Õ

(
d3/2 + log(1/δ)

n

)

with probability at least 1− δ over S.
Agnostic Case There is a learning algorithm Aagn for H with

the following guarantees. For every distribution D, every
δ > 0 and integer n, given an input sample S ∼ Dn, the
algorithm Aagn outputs an hypothesis h = Aagn(S) such
that

Pr
(x,y)∼D

[h(x) �= y] ≤ LD(H) + Õ

(√
d3/2 + log(1/δ)

n

)

with probability at least 1 − δ, where LD(H) =
infg∈H Pr(x,y)∼D[g(x) �= y].

Because finite DS dimension is a necessary condition for

learnability, Theorem B boils down to the following statement.

Theorem 2. There exists a concept class H ⊆ YX with
Natarajan dimension 1 and an infinite DS dimension.

B. Roadmap

In Section II, we define the Natarajan dimension and

the DS dimension. We also introduce the reader to the DS

dimension and its basic properties. The central goal is to explain

the important links between the three fundamental concepts:

learnability, one-inclusion graphs, and the DS dimension.

In Section III, we review the shifting mechanism. Shifting is

a combinatorial technique used by Haussler [1995] to analyze

OIG algorithms in the binary setting. Rubinstein, Bartlett,

and Rubinstein [2006] later extended shifting to analyze OIG
algorithms in the multiclass setting. The multiclass setting

introduces subtleties and difficulties compared to the binary

setting (see Examples 19 and 20 below). To overcome these

difficulties, we introduce a new combinatorial dimension, the

exponential dimension, which might be interesting in its own

right.

Section IV contains the proof of the equivalence between

finite DS dimension and PAC learnability. The section begins

with an overview of the main challenges that arise and the

algorithmic ideas used to overcome them. Specifically, we

introduce and discuss the notion of list PAC learning, which

we believe should be of independent interest.

In Section V we prove that the Natarajan dimension does not

characterize PAC learnability. This section has two parts. One

part describes a general and basic connection between concept

classes and properly colored simplicial complexes. The second

part uses a deep and beautiful construction by Januszkiewicz

and Światkowski [2003] of a simplicial complex that exactly

1The Õ notation conceals polylog(n, d) factors. Logarithms in this text
are always in base two.
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meets our needs. We provide a simplified and high-level

exposition to their construction.

The proofs omitted throughout the paper are available in the

full version.

II. THE DS DIMENSION AND ONE-INCLUSION GRAPHS

The prime purpose of this section is to build the bridge

between the DS dimension and learnability. We start with an

introduction to the DS dimension, and a description of some

of its simple properties. We continue with a description of the

one-inclusion graph algorithm. The section concludes with the

story of the “duality” that links between the two.

A. Dimensions and Pseudo-cubes

All dimensions we consider follow a similar mechanism.

The main part is defining a notion of “shattering” that captures

some local complexity of H ⊆ YX . For S ∈ Xn, we consider

the projection H|S of H to S, and say that H shatters S if H|S
is “complex” in some appropriate sense. The dimension is then

defined as the maximum size (n) of a shattered sequence (if

H shatters arbitrarily large sets then the dimension is defined

to be ∞).

Notation. We consider sequences in Xn instead of subsets of
X , because typically inputs to learning problems are sequences
not sets. For h : X → Y and S = (x1, . . . , xn) ∈ Xn, the
projection h|S of h to S is thought of as the map from [n] to
Y defined by i 
→ h(xi). The projection of H to S is

H|S = {h|S : h ∈ H} ⊆ Yn.

We sometimes think of Yn as words of length n over the
alphabet Y .

The first and most well-known dimension is the VC

dimension. It is defined only for binary classification problems.

Definition 3 (VC dimension [Vapnik and Chervonenkis, 1968]).
We say that S ∈ Xn is VC-shattered by H ⊆ {0, 1}X if

H|S = {0, 1}n. The VC dimension dV C(H) is the maximum

size of a VC-shattered sequence.

When |Y| > 2, there are many ways to extend the VC

dimension. One of the first extensions of the VC dimension to

the multiclass setting is the Natarajan dimension. The relevant

shattering is “containing a copy of the Boolean cube”.

Definition 4 (Natarajan dimension [Natarajan, 1989]). We

say that S ∈ Xn is N-shattered by H ⊆ YX if there exist

f, g : [n]→ Y such that for every i ∈ [n] we have f(i) �= g(i),
and

H|S ⊇ {f(1), g(1)} × {f(2), g(2)} × . . .× {f(n), g(n)}.
The Natarajan dimension dN (H) is the maximum size of an

N-shattered sequence.

What is the “correct analog” of the Boolean cube for larger

alphabet sizes? There are many possible answers. The starting

point of the definition of the DS dimension is viewing the

Boolean cube as a graph. The vertex-set of the graph is {0, 1}d.

The edges of the graph are defined as follows. For every

vertex v ∈ {0, 1}d and for every direction i ∈ [d], there is a

(single) neighbor u of v in direction i (that is, u(i) �= v(i) and

u(j) = v(j) for all j �= i). This perspective can be naturally

applied to non-binary concept classes.

Definition 5 (Pseudo-cube). A class H ⊆ Yd is called a

pseudo-cube of dimension d if it is non-empty, finite and for

every h ∈ H and i ∈ [d], there is an i-neighbor g ∈ H of h
(i.e., g(i) �= h(i) and g(j) = h(j) for all j �= i).

When Y = {0, 1}, the two notions “Boolean cube” and

“pseudo-cube” coincide: The Boolean cube {0, 1}d is of course

a pseudo-cube. Conversely, every pseudo-cube H ⊆ {0, 1}d is

the entire Boolean cube H = {0, 1}d. When |Y| > 2, the two

notions do not longer coincide. Every copy of the Boolean

cube is a pseudo-cube, but there are pseudo-cubes that are not

Boolean cubes; see Figure 1 for an example. The example in

the figure uses a dual perspective. The functions (words) in the

class are the edges of the graph, and the alphabet symbols are

the vertices of the graph. This dual perspective is important

and useful. We discuss it in more detail in Section V.

a c

b

d

ab

cb

cd

ad

1 3

5

2

6 4

12

32

34

54

56

16

Fig. 1: A 2-dimensional pseudo-cube (on the right) that

is not isomorphic to the 2-dimensional Boolean cube

(on the left). The labels Y are the vertices (4 label on the

left, and 6 labels on the right). The words in H ⊂ Y2

are the edges (4 words on the left, and 6 words on

the right). For each word, the circle vertex appears as

the first symbol, and the square appears as the second

symbol.

The DS dimension is defined by containing pseudo-cubes

(the original definition uses a slightly different language, but

it is equivalent).

Definition 6 (DS dimension [Daniely and Shalev-Shwartz,

2014]). We say that S ∈ Xn is DS-shattered by H ⊆ YX
if H|S contains an n-dimensional pseudo-cube. The DS

dimension dDS(H) is the maximum size of a DS-shattered

sequence.
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How different are pseudo-cubes than Boolean cubes? Or,

more formally, are there d-dimensional pseudo-cubes with

Natarajan dimension < d? The hexagon in Figure 1 is a 2-

dimensional pseudo-cube whose Natarajan dimension is 1.

There are, in fact, many other such constructions, even in the

2-dimensional case.

The following example provides a complete description of

2-dimensional pseudo-cubes with Natarajan dimension 1 using

the language of graph theory. We omit the proof because in

Section V we derive generalizations to arbitrary dimensions.

Example 7. For every bipartite graph G = (L,R,E) the set

B(G) :=
{
(u, v) ∈ L×R : {u, v} ∈ E

}
is a 2-dimensional pseudo-cube if and only if G contains no
leaves. Conversely, for every B ⊆ Y2, the bipartite graph

G(B) :=
(
L = Y × {0}, R = Y × {1},
E =

{{(y0, 0), (y1, 1)} : (y0, y1) ∈ B
})

contains no leaves if and only if B is a pseudo-cube. The claim
is that a 2-dimensional pseudo-cube B ⊆ Y2 has Natarajan
dimension 2 iff the corresponding bipartite graph G(B) has a
4-cycle.

The above demonstrates that 2-dimensional pseudo-cubes

are rather simple combinatorial objects. The landscape in

higher dimensions is significantly richer. Figure 2 depicts

a 3-dimensional pseudo-cube with Natarajan dimension 1.

This pseudo-cube arises from a triangulation of the plane;

a hint towards the topology that is used in Section V to prove

Theorem 2.

The condition that pseudo-cubes are finite is surprisingly

important. Without it, the DS dimension does not characterize

learnability, as the following example shows.

Example 8. There is an infinite learnable class Htree over
X = N so that for each x ∈ X and h ∈ Htree, there is
g ∈ Htree that agrees with h on all points besides x. But
the DS dimension of this class is 1, so it is learnable (by our
main result). This class can be thought of as a directed tree
whose edges are directed towards the root; Figure 3 illustrates
a similar class for the case X = [3]. The root is the all-zeros
function. Each h in the tree has X in-going edges; for each
x ∈ X , there is an edge towards h from the function that is
equal to h on X \ {x}, and is equal to a new and unique
alphabet symbol at x. Every alphabet symbol y ∈ Y has a
depth; it is the minimum distance from the root of a word that y
appears in. The DS dimension is less than two for the following
reason. For every S ∈ X 2 and every finite H0 ⊂ Htree|S , we
can choose y ∈ Y with maximum depth among all symbols
that appear in H0. Let h0 be an element in H0 that contains
y. The vertex h0 does not have two neighbors, so H0 is not a
pseudo-cube.













⊃

⊃

>

>

Fig. 2: An example of a 3-dimensional pseudo-cube with

Natarajan dimension 1. The words in the pseudo-cube

are the triangles (there are 54 of them). The labels are

the vertices (there are 3·54
6 = 27 of them). The vertices

are colored by 3 colors: circle, triangle and square. In

each word, the circle vertex appears as the first symbol,

the triangle vertex as the second, and the square vertex

as the third. Opposite sides of the hexagon are identified,

as the picture indicates. The pseudo-cube property holds

because each triangle has three neighboring triangles

that are obtained by switching one vertex from each

color. The Natarajan dimension is 1 because there is no

square (a cycle of length four) in the graph so that its

vertices have alternating colors. For more details, see

Section V.

B. The One-Inclusion Graph

This subsection introduces an important combinatorial ab-

straction of learning algorithms. The idea is to translate a

learning problem to the language of graph theory.

Definition 9 (One-inclusion Graph [Haussler, Littlestone, and

Warmuth, 1994, Rubinstein, Bartlett, and Rubinstein, 2006]).
The one-inclusion graph of H ⊆ Yn is a hypergraph G(H) =
(V,E) that is defined as follows.2 The vertex-set is V = H.

For each i ∈ [n] and f : [n] \ {i} → Y , let ei,f be the set of

all h ∈ H that agree with f on [n] \ {i}. The edge-set is

E =
{
(ei,f , i) : i ∈ [n], f : [n] \ {i} → Y, ei,f �= ∅

}
. (1)

We say that the edge (ei,f , i) ∈ E contains the vertex v, and

write v ∈ (ei,f , i), if v ∈ ei,f . The size of the edge (ei,f , i) is

defined to be |(ei,f , i)| := |ei,f |.
Remark. The edge-set consists of pairs (e, i), where e is a set
of vertices and i is the direction of the edge. It is convenient that
the “name” of an edge also tells us its direction. Edges could
be of size one, and each vertex v is contained in exactly n edges.
This is not the standard structure of edges in hypergraphs, but
we use this notation because it provides a better model for
learning problems.

2We use the term “one-inclusion graph” although it is actually a hypergraph.
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(0, 0, 0)

(1, 0, 0) (0, 2, 0) (0, 0, 3)

(4, 0, 0) (1, 5, 0) (1, 0, 6) (7, 2, 0) (0, 8, 0) (0, 2, 9) (10, 0, 3) (0, 11, 3) (0, 0, 12)

(13, 0, 0) (4, 14, 0) (4, 0, 15) ...
...

...
...

Fig. 3: An example of an infinite class Htree ⊆ YX with X = [3] and Y = N.

The one-inclusion graph leads to a simple but useful toy

model for transduction in machine learning.

Example 10 (Toy Model). The learning game is played over
a one-inclusion graph (V,E). The input to the problem is an
edge. The input edge e is generated by first choosing a vertex
v∗ from some unknown distribution over V , and then choosing
e to be a uniformly random edge containing v∗. The goal is to
output a vertex u that is equal to v∗ with as high probability
as possible.

Learning algorithms in this toy model are orientations.

Definition 11. An orientation of the hypergraph (V,E) is a

mapping σ : E → V such that σ(e) ∈ e for each edge e ∈ E.

Every (deterministic) learning algorithm defines an orienta-

tion, and vice versa. The success probability of the algorithm

is determined by the out-degrees of the orientation. The out-
degree of v ∈ V in σ is

outdeg(v;σ) = |{e : v ∈ e and σ(e) �= v}|. (2)

The maximum out-degree of σ is

outdeg(σ) = sup
v∈V

outdeg(v;σ). (3)

There is a certain duality between orientations and the DS

dimension, as the following two lemmas demonstrate. This

duality is the basic link between the DS dimension and

learnability.

Lemma 12. IfH ⊆ Yd has DS dimension d, then outdeg(σ) ≥
d
2 for every orientation σ of G(H).

Lemma 13. If H ⊆ Yd+1 has DS dimension d, then there
exists an orientation σ of G(H) with outdeg(σ) ≤ d.

Proof of Lemma 12. We prove the stronger assertion that if

H ⊆ Yd is a pseudo-cube then every orientation σ of H
satisfies that outdeg(σ) ≥ d

2 . In a pseudo-cube, each h has a

neighbor in each of the d directions, and every edge e ∈ E has

size |e| ≥ 2 so that |e| − 1 ≥ |e|
2 . Even the average out-degree

is at least d
2 : for every orientation σ,

1

|V |
∑
v∈V

outdeg(v;σ) =
1

|V |
∑
e∈E
|e| − 1

≥ 1

|V |
∑
e∈E

|e|
2

=
1

2|V | · d|V | =
d

2
.

This finishes the proof because the maximum is at least the

average.

Proof of Lemma 13. We start by analyzing the case that H is

finite (similarly to [Daniely and Shalev-Shwartz, 2014]). The

orientation is constructed inductively and greedily as follows.

The base of the induction is the case |H| = 1. In this case,

all edges are oriented towards the single vertex, so the claim

trivially holds. For the inductive step, assume |H| > 1. Let

G = (V,E) be the one-inclusion graph associated with H.

Because the DS dimension of H is d, there must be h ∈ H so

that the size of {e ∈ E : h ∈ e, |e| > 1} is at most d. Let H′
be H after deleting h. By definition, the DS dimension of H′
is at most d. Let G′ = (V ′, E′) be the hyper-graph associated

with H′. Edges in E′ are obtained from edges in E by deleting

h. There is at least one singleton edge of size 1 that contains

h in E. This edge does not appear in E′. By the induction

hypothesis, there is an orientation σ′ : E′ → V ′ with maximum

out-degree at most d. Every edge in E′ corresponds to an edge

in E. The only edges in E that do not have counterparts in E′

are the singleton edges that contain h. Let σ : E → V extend

σ′ as follows. Every edge in E that has a counterpart in E′ is

directed in σ as in σ′. All other (singleton) edges are directed

towards h. The out-degree of vertices in G′ does not change,

and the out-degree of h is at most d. So, the out-degree of σ
is at most d as required.

The case when H is infinite is handled using a compactness

argument. Because we could not find a proper reference, we

provide the short (but not entirely trivial) proof in the full

version.

C. The One-Inclusion Graph Algorithm
The one-inclusion graph captures a model for transduction in

machine learning (Example 10). A key observation of Haussler,

Littlestone, and Warmuth [1994] is that this model captures an

essential ingredient of general PAC learnability; see also [Ru-

binstein, Bartlett, and Rubinstein, 2006, Daniely and Shalev-

Shwartz, 2014, Alon, Hanneke, Holzman, and Moran, 2021].
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In a nutshell, good orientations of the one-inclusion graph yield

good learning algorithms.

Algorithm 1 The one-inclusion algorithm AH for H ⊆ YX

Input: An H-realizable sample S =
(
(x1, y1), . . . , (xn, yn)

)
.

Output: A hypothesis AH(S) = hS : X → Y .

For each x ∈ X , the value hS(x) is computed as follows.

1: Consider the class of all patterns over the unlabeled data
H|(x1,...,xn,x) ⊆ Yn+1.

2: Find an orientation σ of G(H|(x1,...,xn,x)) that minimizes

the maximum out-degree.

3: Consider the edge in direction n+ 1 defined by S; let

e = {h ∈ H|(x1,...,xn,x) : ∀i ∈ [n] h(i) = yi}.
4: Let h′ = σ((e, n+ 1)).
5: Set hS(x) = h′(n+ 1).

The one-inclusion graph (OIG) algorithm AH is presented in

Algorithm 1. The algorithm gets as input a realizable training

sample S = ((x1, y1), . . . , (xn, yn)) as well as an additional

test point x. Its goal is to provide a good prediction for the

label of x. The main idea is to translate this problem to the toy

model. Use the unlabelled data x1, . . . , xn and x to build the

one-inclusion graph of H|(x1,...,xn,x). The labels y1, . . . , yn
now define an edge in the graph. An orientation of the graph

provides the prediction for the label of x.

The crucial point is that an orientation with small maximum

out-degree yields small error. This follows by a simple and

clever leave-one-out argument (see e.g. [Haussler, Littlestone,

and Warmuth, 1994]). The argument exploits the underlying

symmetry as we now explain.

Let S ∼ Dn be the input sample and let (x, y) ∼ D be

the test point (chosen independently of S). We can generate

the joint distribution of (S, (x, y)) in a different way. We can

choose S′ ∼ Dn+1 and independently choose I from the

uniform distribution U(n+ 1) on [n+ 1]. Let

S′−I = ((x′1, y
′
1), . . . , (x

′
I−1, y

′
I−1), (x

′
I+1,y

′
I+1),

. . . , (x′n+1, y
′
n+1))

be the sample S′ after deleting its I entry. The distribution of

(S′−I , (x
′
I , y

′
I)) is identical to that of (S, (x, y)).

Fact 14 (Leave-one-out). Let D be a distribution over a set
Z and let n > 0 be an integer. For every event E ⊆ Zn+1,

Pr
(S,Z)∼Dn+1

[
(S,Z) ∈ E

]
=

Pr
(S′,I)∼Dn+1×U(n+1)

[
(S′−I , S

′
I) ∈ E

]
.

The one-inclusion graph together with the leave-one-out

argument lead to a formal connection between good orientations

and PAC prediction error.

Proposition 15. Let D be an H-realizable distribution and
let n > 0 be an integer. Let M be an upper bound on the

maximum out-degree of all orientations chosen by AH. The
prediction error can be bounded as

Pr
(S,(x,y))∼Dn+1

[
hS(x) �= y

] ≤ M

n+ 1
,

where hS = AH(S).
Proof. By Fact 14,

Pr
[
hS(x) �= y

]
= Pr

[
hS′−I

(x′I) �= y′I
]
.

The prediction error is small, as long as the max-

imum out-degree is small: for every fixed S′ =
((x′1, y

′
1), . . . , (x

′
n+1, y

′
n+1)),

Pr
I

[
hS′−I

(x′I) �= y′I
]
=

1

n+ 1

n+1∑
i=1

1
[
hS′−i

(x′i) �= y′i
]

=
1

n+ 1

n+1∑
i=1

1
[
σ(ei) �= y′i

]

=
outdeg(y′;σ)

n+ 1
,

where y′ = (y′1, . . . , y
′
n+1) is a vertex the one-inclusion graph,

and ei is the edge in the i’th direction containing y′.

The final piece we present in this section is that a bound

on the DS dimension leads to non-trivial prediction guarantees

for PAC learning. This rather weak prediction capability is the

starting point of our general PAC learning algorithm. It will

be significantly enhanced in Section IV below.

Claim 16. Let H ⊆ YX be so that d = dDS(H) < ∞. Let
AH be Algorithm 1. For every H-realizable sample S′ =
((x′1, y

′
1), . . . , (x

′
d+1, y

′
d+1)), there exists i ∈ [d+ 1] such that

hS′−i
(x′i) = y′i, where hS′−i

= AH(S′−i).

Proof. Let H′ = H|(x′1,...,x′d+1)
. Think of y′ = (y′1, . . . , y

′
d+1)

as a vertex in G(H′). Let σ denote the orientation that

minimizes the maximum out-degree of G(H′) chosen by AH.

Lemma 13 implies that the maximum out-degree of σ is at

most d. Let ei be the edge in the i’th direction containing y′.
For every i ∈ [d+ 1], we have hS′−i

(x′i) �= y′i ⇔ σ(ei) �= y′.
So,

d+1∑
i=1

1
[
hS′−i

(x′i) �= y′i
]
=

d+1∑
i=1

1
[
σ(ei) �= y′

]
= outdeg(y′;σ) ≤ d.

It follows that there must exist i such that hS′−i
(x′i) = y′i.

III. SHIFTING AND ORIENTATIONS

In this section we use a powerful combinatorial technique

called shifting to derive good orientations. This links the general

discussion of one-inclusion graphs from the previous section,

with the learning algorithm we use to prove Theorem A in

the next section. The main result of this section is that the

out-degree of optimal orientations can be controlled by the

Natarajan dimension and the number of labels.3

3Here and below we did not attempt to optimize the constants.
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Lemma 17. Let H ⊆ [p]n be a class with Natarajan dimension
dN < ∞. Then, there exists an orientation σ of G(H) with
maximum out-degree

outdeg(σ) ≤ 20dN log p.

The key technique we use is shifting [Haussler, 1995,

Rubinstein, Bartlett, and Rubinstein, 2006]. Shifting is a way

to simplify the structure of a hypothesis class, while controlling

important properties. Intuitively, it is the operation of “pushing

a concept class downward”. Think of [p] as totally ordered by

the standard order on N. The set [p]n becomes a poset with

the partial order h ≤ g iff h(i) ≤ g(i) for all i.

Definition 18 (Shifting). Let H ⊆ [p]n and let i ∈ [n]. The

shifting operator in the i’th direction Si maps H to its shifted

version Si(H) as follows. Shifting is first defined on edges.

For f : [n] \ {i} → [p], let ef be the collections of h ∈ H that

agree with f on [n] \ {i}. The shifting Si(ef ) is obtained by

“pushing ef downward”; namely, Si(ef ) is the collection of all

g ∈ [p]n that agree with f on [n] \ {i} and 1 ≤ g(i) ≤ |ef |.
The shifting of H is the union of all shifted edges

Si(H) =
⋃
f

Si(ef ) ⊆ [p]n.

Let us provide a different view point on this important

operation. Fix j �= i, and partition all edges in the j’th direction

according to their projection to [n]\{i, j}. Fix f ∈ H|[n]\{i,j},
and consider all vertices that agree with f on [n] \ {i, j}.
Encode this data by the p× p Boolean matrix Mf defined by

Mf (a, b) = 1 iff adding a, b to f in positions i, j leads to a

word in H. The 1-entries in the matrix correspond to words in

H that agree with f . Every row in the matrix corresponds to

the (possibly empty or singleton) set of words that differ in

the j’th coordinate. Rows with at least one 1-entry correspond

to edges in the one-inclusion graph. The matrix offers a nice

viewpoint on shifting. Shifting is performed by pushing all the

1-entries “upwards”. Here is an example of shifting six words

over an alphabet of size four:⎡
⎢⎢⎣

1 1

1
1 1 1

⎤
⎥⎥⎦ =⇒

⎡
⎢⎢⎣

1 1 1
1 1

1

⎤
⎥⎥⎦

Repeatedly applying the shifting operator in various direc-

tions leads to a fixed point H∗ of these operators; that is,

Si(H∗) = H∗ for all i. This must happen in a finite number

of steps, because when a change is made the total sum of

all entries strictly decreases. The fixed points of shifting are

classes that are closed downwards (that is, if h is in a fixed-

point H∗ ⊆ [p]n and g ≤ h then g ∈ H∗).
In the binary setting, Haussler [1995] proved that shifting

does not increase the VC dimension, and that it does not

decrease the number of edges in the one-inclusion graph. This

allows to elegantly bound from above the edge density by the

VC dimension.

In the multiclass setting, Rubinstein, Bartlett, and Rubinstein

[2006] used the Pollard dimension [Pollard, 1990] to control the

behavior of multiclass shifting; the Pollard dimension provides

a natural mechanism for moving from the multiclass setting

to the binary setting. But the Pollard dimension and other

standard dimensions can grow during shifting; see Example 19

below. In addition, the number of edges and their total size

can decrease; see Example 20.

Example 19 (Dimensions Increase).

(1, 1) (1, 1)
(1, 0) (0, 0)
(0, 1) =⇒ (0, 1)
(2, 0) S1 (1, 0)
(0, 2) (0, 2)

Before shifting all three dimensions—Natarajan, DS and
Pollard—are 1. After shifting they are 2.

Example 20 (Edges Decrease).

(2, 2) (0, 2)
(1, 1) =⇒ (0, 1)
(1, 0) S1 (0, 0)
(2, 0) (1, 0)

Before shifting, the three non-singleton edges are
{(2, 2), (2, 0)}, {(1, 1), (1, 0)}, and {(1, 0), (2, 0)}, and
the sum of their sizes is 6. After shifting, there are two
non-singleton edges {(0, 0), (0, 1), (0, 2)} and {(0, 0), (1, 0)},
and the sum of their sizes is 5. In the binary case, the sum of
the sizes of edges is equivalent to the average degree, and it
does not decrease during shifting.

These examples show that the analysis of multiclass shifting

is not a direct extension of the arguments in the binary case. We

now identify two quantities that are similar to VC dimension

and average degree, but can be controlled during shifting.

Because multiclass shifting is “complex”, we seek the

simplest possible dimension.

Definition 21 (Exponential Dimension). We say that S ∈ Xn

is E-shattered by H ⊆ YX if |H|S | ≥ 2n. The exponential

dimension dE(H) is the maximum size of an E-shattered

sequence.

The following claim shows that the exponential dimension

is not increased during shifting.

Claim 22 (Shifting Does Not Increase Projections). Let H ⊆
[p]n and let i ∈ [n]. For every S ∈ [n]k,∣∣Si(H)|S

∣∣ ≤ ∣∣H|S∣∣.
Corollary 23. For every H ⊆ [p]n and i ∈ [n],

dE(Si(H)) ≤ dE(H).

We would like to control the structure of edges during

shifting. The most obvious measure to keep track of is the

average degree (with respect to non-singleton edges).
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Definition 24 (Average Degree). Let G(H) = (V,E) be the

one-inclusion graph of H ⊆ [p]n. The average degree of H is

avd(H) =
1

|V |
∑
v∈V

deg(v) =
1

|V |
∑

e∈E:|e|>1

|e|,

where deg(v) = |{e ∈ E : v ∈ e, |e| > 1}|.
Example 20 shows that the number of edges and average

degree may decrease during shifting (which is bad for our

purposes). The correct measure to keep track of turns out to

be the following.

Definition 25 (Shifting Average Degree). Let G(H) = (V,E)
be the one-inclusion graph of H ⊆ [p]n. Define

avd′(H) =
1

|V |
∑
e∈E

(|e| − 1).

Claim 26 (Shifting Does Not Decrease avd′). For every H ⊆
[p]n and i ∈ [n],

avd′(Si(H))) ≥ avd′(H).

The control of the exponential dimension and of avd′ allows

to bound the average degree.

Proposition 27 (Average Degree is Bounded by Exponential

Dimension). For every H ⊆ [p]n,

avd(H) ≤ 4dE(H).

The bound on the average degree immediately allows to

build good orientations.

Corollary 28 (Exponential Dimension Leads to Orientations).
For every H ⊆ [p]n, there is an orientation of G(H) with
maximum out-degree at most 4dE(H).

Proof. Proposition 27 implies that every induced sub-graph of

G(H) has a vertex of degree at most 4dE(H). The beginning

of the proof of Lemma 13 produces the needed orientation;

the orientation is constructed “greedily” by picking a vertex

of degree at most 4dE(H), removing it from the graph and

proceeding recursively.

The last piece of the puzzle is to relate the exponential

dimension to the Natarajan dimension. This is achieved via a

generalization of Sauer’s lemma by Haussler and Long [1995].

Lemma 29 (Controlling the Exponential Dimension). For every
H ⊆ [p]n with dN = dN (H) and dE = dE(H) <∞,

dE ≤ 5dN log(p).

Remark. Corollary 28 and Lemma 29 imply Lemma 17.

IV. LEARNABILITY ≡ FINITE DS DIMENSION

Here we prove the characterization of multiclass PAC

learnability via the DS dimension (Theorem 1). Our main

contribution is algorithmic. We develop a learning algorithm

for any class H with finite DS dimension.

A. Outline

The starting point is the OIG algorithm by Haussler, Lit-

tlestone, and Warmuth [1994]; see Section II-C above for a

reminder. The finiteness of the DS dimension translates to

a non-trivial guarantee on the OIG algorithm (as we saw in

Claim 16). The output hypothesis of this algorithm has expected

prediction error at most 1− 1
d+1 . This error is pretty high, but

the crucial point is that it is uniformly bounded away from 1.

The OIG algorithm forms a kind of a (very) weak PAC learner.

It is tempting to try to improve the error by boosting. But

standard boosting turns out to be useless in our context. The

traditional assumption for boosting in the binary setting requires

error below 1
2 . The above error guarantee is too weak and does

not meet the minimal requirements for boosting. And even

if multiclass boosting was available, known techniques have

sample complexity that scales with log|Y|; see [Schapire and

Freund, 2012, Brukhim, Hazan, Moran, and Schapire, 2021].

This factor could be infinite in our setting. To circumvent this

obstacle we introduce the framework of list PAC learning.

List PAC learning

In the standard PAC setting, the goal is to provide a single

prediction on an unseen data point. In list PAC learning, the

goal is to provide a short menu of predictions. Given a sample

S ∼ Dn from a realizable D, the goal is to output a menu μ
that maps elements of X to a small subset of Y so that y ∈ μ(x)
with high probability over a new test point (x, y) ∼ D. List

PAC learning is discussed in greater detail in Section IV-B.

Rather than boosting the weak OIG algorithm to a strong

PAC learner, we use it to derive a list PAC learning algorithm.

We show that every class H with a finite DS dimension admits

a list PAC learner (see Algorithm 2). This list-learner gathers

information from several OIG algorithms to produce a good

menu. Its analysis is based on the leave-one-out symmetrization

argument. The list-learner allows to eliminate the vast majority

of a priori possible labels. Instead of all of Y , we can safely

use the menu μ(x) as the “local alphabet for x”. Menus can

be thought of as tools for alphabet reduction. Once we have a

list PAC learner, it is natural to try to reduce the learning task

to one in which the number of labels is bounded.

Did we just reduce the infinite alphabet case to the finite

case? The short answer is no. Even with a good menu μ, the

subclass H|μ = {h ∈ H : ∀x ∈ X h(x) ∈ μ(x)} of H may

be completely useless. For example, let H ⊆ {0, 1, 2}N be the

set of all functions h such that |h−1({1, 2})| <∞, and let μ
be the menu such that μ(x) = {1, 2} for all x ∈ N. The menu-

subclass H|μ is just empty. At the same time, every finitely

supported distribution D with labels in {1, 2} is both realizable

by H and consistent with μ. This simple example indicates

that in order to restrict to a subclass of H without losing

essential information, at least some knowledge on the support

of the target distribution is needed. Learning the support of a

distribution, however, is a much harder task than PAC learning.

Let us make a quick comment. In this work, list PAC learning

serves as a tool for proving Theorem 1. However, we think
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it is a natural setting and interesting in its own right (and we

prove further motivation in Section IV-B).

List PAC Learning ⇒ PAC Learning
Our solution is based on the fact that the OIG algorithm is

exactly suitable for situations in which the learning task is not

defined by a concept class, but by a set of allowable samples.

The main property of OIG algorithms is their locality. To make

a prediction on x, they just use the part of H that is relevant

to the training data S, and do not require any global access to

H.
An alternative way to model learning with a menu is via

partial concept classes [Alon, Hanneke, Holzman, and Moran,

2021]. Instead of all maps in H that are consistent with the

menu μ, we can consider all partial maps that agree with

both the class H and the menu μ. We chose not to use

this formalism here in order to use as standard language

as possible. The partial concept class perspective does not

really help to solve the problem. The focus of Alon, Hanneke,

Holzman, and Moran [2021] was on binary-classification, which

is significantly simpler than the multiclass setting. Generalizing

the analysis of the one-inclusion graph from the binary setting

to the multiclass setting turns out to be a subtle (and somewhat

confusing) task. Natural attempts to do so fail; see Section III

for a full discussion.

Sample Compression Schemes
The algorithm we develop is best thought of as a sample

compression scheme [Littlestone and Warmuth, 1986]. A

sample compression scheme is an abstraction of a common

property to many learning algorithms; see Figure 4. It can be

viewed as a two-party protocol between a compresser and a

reconstructor. Both players know the underlying concept class

H. The compresser gets as input an H-realizable sample S.

The compresser picks a small subsample S′ of S and sends it

to the reconstructor. The reconstructor outputs an hypothesis h.

The correctness criteria is that h needs to correctly classify all
examples in the input sample S.

One advantage of using the sample compression schemes

framework is that the proofs are typically cleaner, because

in contrast to the probabilistic nature of the PAC framework,

sample compression is a deterministic task. At the same time,

sample compression schemes are known to represent good PAC

learning algorithms [Littlestone and Warmuth, 1986].
Classical sample compression algorithms usually boil down

to a simple one-shot encoding scheme (e.g. Figure 4). Our

compression scheme is more involved and is comprised of two

main components. The first component is a variant of sample

compression that fits into the list-learning framework. The

second component incorporates the menu derived by the first

component together with a minimax-based sample compression

as in [David, Moran, and Yehudayoff, 2016].

B. List PAC learning
List PAC learning is a model for providing a short menu

of likely predictions. It extends the standard PAC model by

allowing the learning algorithm more freedom.

Relaxing the demand of a single output to a list of outputs

is a common and useful paradigm in computer science. One

notable example is the notion of list-decoding in coding theory,

which is important both as a tool and as a goal.

Let us start with a few examples for list learning. In medical

contexts, list-learning can offer physicians a menu of likely

diagnoses. In technical contexts, list-learning can provide a

short menu of possible solutions that are meant to assist clients.

List-learning can also provide the menu of preferences of

consumers. One can easily imagine other scenarios where list-

learning is useful.

Our main motivation for developing this model is reasoning

on the first component of our multiclass learning algorithm.

But this basic model naturally fits into many scenarios, and

we plan to investigate it further in future works.

The goal of list PAC learning is to compute good menus.

Definition 30 (p-menu). A menu of size p ∈ N is a function

μ : X → {Y ⊆ Y : |Y | ≤ p}.
List PAC learning is the following natural version of standard

PAC learning.

Definition 31 (List PAC Learner). An algorithm A with sample

size n and list size p is a list PAC learner with success

probability α > 0 for the concept class H ⊆ YX if for every

H-realizable distribution D,

Pr
(S,(x,y))∼Dn+1

[
y ∈ μS(x)

] ≥ α,

where μS = A(S) is always a p-menu.

Remark. In the “noisy” case, when the label y has entropy
given x, list learning can potentially lead to zero error even
though in the standard PAC setting zero error is not achievable.

The main result of this section is the development of a

list PAC learner for every class of finite DS dimension (see

Algorithm 2). The list PAC learner can be thought of as a

brute-force extension of the one-inclusion learning rule.

Algorithm 2 List PAC learner LH,t for H ⊆ YX with

dDS(H) = d and t ∈ N

Input: Data S ∈ (X × Y)n where n = d+ t.
Output: A p-menu μS for p =

(
n
t

)
.

1: Let S1, . . . , Sp denote all subsamples of S of size d.

2: Let hSi
= AH(Si) denote the hypothesis output of

Algorithm 1 on input sample Si.

3: Return the menu defined by

μS(x) =
{
hS1(x), . . . , hSp(x)

}
.

Proposition 32 (Finite DS Dimension implies List PAC

Learning). Let H ⊆ YX be a class with DS dimension d <∞
and let t ∈ N. The algorithm LH,t is a list PAC learner for
H with sample size n = d+ t, list size p =

(
n
t

)
and success

probability α = t+1
d+t+1 .
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Fig. 4: An illustration of Support Vector Machine in 2D as a sample compression scheme. The realizable sample S
consists of negative and positive points. The algorithm outputs a separating line that maximizes the margin. This line is

determined by the support vectors (circled).

Proof. Let μS = LH,t(S) be the menu generated by the

algorithm with data S. By the leave-one-out symmetrization

argument (Fact 14),

Pr
(S,(x,y))∼Dn+1

[
y ∈ μS(x)

]
=

Pr
(S′,I)∼Dn+1×U([n+1]])

[
y′I ∈ μS′−I

(x′I)
]
.

It hence suffices to show that every realizable sample S′ of

size n+ 1 satisfies

Pr
I∼U([n+1]])

[
y′I ∈ μS′−I

(x′I)
] ≥ t+ 1

d+ t+ 1
. (4)

Let us call an index i ∈ [n + 1] good if y′i ∈ μS′−i
(x′i). We

need to show that there are at least t + 1 good indices. By

Claim 16, at least one of the indices in [d+1] is good. Denote

this good index by i1. Again, by Claim 16, at least one of

the indices in [d+ 2] \ {i1} is good. Denote this good index

by i2. Repeat this process to obtain the needed t + 1 good

indices.

C. Learning Natarajan Classes From Menus

We now move towards the second component of our

algorithm. The objective is to use the good menu that was

generated by the first component to effectively reduce the

number of labels. The algorithm we develop in this sub-section

is a weak PAC learner, but under a strong assumption. Several

such weak learners will be combined later on to get the full

sample compression scheme.

The learning algorithm now has two pieces of knowledge:

the underlying class H and the menu μ. Trusting that the first

component delivered on its promise, it assumes that the data

is consistent with the menu. This is captured by the following

definition.

Definition 33 (Menu Realizability). A sample S ∈ (X × Y)n
is realizable by the menu μ if y ∈ μ(x) for every (x, y) in S.

A distribution D over X × Y is realizable by μ if for every

m ∈ N, a random sample S ∼ Dm is realizable by μ with

probability 1.

This definition captures the ideal scenario that we have a

menu that completely captures the unknown distribution D. It

is basically impossible to generate a single menu that captures

all of D. Nevertheless, this idealization is a useful sub-goal

that we need to deal with later on.

Algorithm 3 One-inclusion algorithm AH,μ for a class H and

menu μ

Input: A sample S =
(
(x1, y1), . . . , (xn, yn)

)
realizable by

H and μ.

Output: A hypothesis hS : X → Y .

For each x ∈ X , the value hS(x) is computed as follows.

1: Consider the class H′ ⊆ Yn+1 of all patterns on the

unlabelled data that are realizable by both H and μ. That is,

it is the set of all h ∈ H|(x1,...,xn,x) so that h(n+1) ∈ μ(x)
and h(i) ∈ μ(xi) for i ∈ [n].

2: Find an orientation σ of G(H′) that minimizes the maxi-

mum out-degree.

3: Consider the edge in direction n+1 that is consistent with

S. Let

e =
{
h ∈ H′ : ∀i ∈ [n] h(i) = yi

}
.

4: Let h′ = σ((e, n+ 1)).
5: Set hS(x) = h′(n+ 1).

The main result of this sub-section is a PAC learning

algorithm for menu-realizable distributions (Algorithm 3). The

sample complexity is controlled by the size of the menu μ as

well the Natarajan dimension of H. This is pretty good news

because we controlled the size of the menu, and the Natarajan

dimension is the smallest among all dimensions.

Proposition 34 (PAC Learning Given a Menu). Let H ⊆ YX
be a class with Natarajan dimension dN <∞ and let μ be a p-
menu. For every distribution D over X × Y that is realizable
by both H and by μ, and for all integers n > 0,

Pr
(S,(x,y))∼Dn+1

[
hS(x) �= y

] ≤ 20dN log(p)

n
,

where hS = AH,μ(S).
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The proposition is not the end of the story. The menu μ
generated by the first component allows to make good list-

predictions, but it has no chance to capture all of the unknown

distribution D. It is extremely unlikely that D is realizable by

μ. The removal of this realizability assumption is postponed

to the next section.

The high-level idea behind the proof of the proposition is to

use the p-menu to reduce the label-set from the unbounded Y
to a label-set of size p. This is beneficial because PAC learning

with p many labels can be achieved with sample complexity

order dN log(p). In fact, any proper ERM algorithm with this

sample complexity is a PAC learner.

Trying to implement this strategy raises a subtle challenge.

The task of learning a distribution realizable by a class H and

a menu μ cannot be reduced to PAC learning the sub-class

H|μ of H that is consistent with the menu. The sub-class H|μ
could even be empty; see Section IV-A for a simple example.

The solution is based on the unique locality feature of the

OIG algorithm. To make a prediction on an unseen data point

x ∈ X , the OIG algorithm just uses x and the unlabelled part

of the sample S. This local view of X suffices to make a

prediction.

V. LEARNABILITY �≡ FINITE NATARAJAN DIMENSION

The goal of this section is to prove that the Natarajan

dimension does not characterize PAC learnability (Theorems B

and 2). That is, to construct a concept classH that has Natarajan

dimension 1 but DS dimension ∞.

A. Outline

The class H lives between two opposing conditions. On one

hand, there should be no non-trivial copy of the Boolean cube

inside H. On the other hand, it should contain pseudo-cubes

of arbitrary large dimension. Pseudo-cubes of large dimension

imply that learning H is difficult. No copies of the Boolean

cube indicates that “locally H looks like it is easy to learn”.

The barrier to learning H is not local but global. An analogy

is a graph of large girth and large chromatic number; locally

the graph is 2-colorable, and the coloring-difficulty stems from

a global obstacle.

Our goal is, essentially, to find pseudo-cubes of arbitrary

large dimension that do not contain any non-trivial copy of

the Boolean cube. The proof begins by translating the problem

from the realm of concept classes to the realm of simplicial

complexes (see Section V-B). We show that any concept class

can be identified with a colorful simplicial complex (and vice

versa).

What about the pseudo-cube condition and the Natarajan

dimension in the realm of simplicial complexes? The pseudo-

cube conditions turns out to be quite natural; it is reminiscent

of the notion of a pseudo-manifold. The Natarajan dimension

1 condition is almost identical to the flag-no-square condi-

tion; this condition was studied in many works as a local

combinatorial criteria for hyperbolicity.

As the abstract of [Januszkiewicz and Światkowski, 2003]

indicates, simplicial complexes in the spirit we need were

conjectured not to exist (by Moussong), or at least to require

difficult number theory (by Gromov). However, Januszkiewicz

and Światkowski [2003] built a simplicial complex that exactly

meets our needs (see Section V-C).

The difficulty of the construction explains the fact that

Natarajan’s question was open for so many years. For example,

for d = 2, the smallest concept class with Natarajan dimension

1 we know of has size 6; see Figure 1. For d = 3, the size

grows to 54; see Figure 2. For d = 4, the size jumps to

118, 098. This large complex is not the complex suggested

in [Januszkiewicz and Światkowski, 2003]. The high-level

structure of the construction is similar, but the complex we

found is smaller. We found the construction and verified

it with a computer (using [GAP, 2021]). See Section 9

of [Januszkiewicz and Światkowski, 2003] for more details on

the “complexity” of their construction.

B. Pseudo-cubes and Simplicial Complexes

We begin with a brief introduction to simplicial complexes.

Simplicial complexes are combinatorial abstractions of triangu-

lations of topological spaces. A family C of finite subsets of a

set V is called a simplicial complex if it is downward closed.

That is, for every f ∈ C, if g ⊂ f then g ∈ C. A member

of C is called a simplex or a face. The dimension of a face

f ∈ C is defined to be dim(f) = |f | − 1 and the dimension

of the complex C is dim(C) = maxf∈C dim(f). A simplicial

complex is called pure if all of its maximal faces have the

same dimension. The 1-skeleton of a simplicial complex C
is a graph whose vertices are the elements of V and whose

edges are all the 1-dimensional faces of C. Every face in C
thus corresponds to a clique in its 1-skeleton.

We also need our complexes to be properly colored. A proper
coloring of a complex C is a proper coloring of the 1-skeleton

of C with dim(C) + 1 colors. That is, it is an assignment

r : V → [dim(C)+1] such that r(u) �= r(v) for every distinct

u, v so that {u, v} ∈ C.

Our first goal in this subsection is to express the notion

“pseudo-cube” in the language of simplicial complexes. This is

captured by the following definitions. We say that a complex

C satisfies replacement if for every simplex f ∈ C and for

every vertex v ∈ f there exists a vertex u �= v such that

(f \ {v}) ∪ {u} ∈ C.

Definition 35 (Good Complex). A simplicial complex C is

good if it is finite, pure, has a proper coloring, and satisfies

replacement.

The following proposition summarizes the equivalence

between pseudo-cubes and good simplicial complexes. Figure 2

may help in digesting this equivalence.

Proposition 36 (Concept Classes ≡ Good Complexes). For
every d-dimensional good complex C and a proper coloring r
of C, there is a (d+1)-dimensional pseudo-cube B = B(C, r).
Conversely, for every d-dimensional pseudo-cube B, there is a
(d− 1)-dimensional good simplicial complex C = C(B).
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Remark. The pseudo-cube B(C, r) and the complex C(B)
are explicitly constructed in the proof.

The remaining of this section is about translating the Natarjan

dimension condition to the language of simplicial complexes.

A square v0 → v1 → v2 → v3 → v0 in a simplicial complex

C is a sequence of four distinct vertices that form a cycle of

length four in the 1-skeleton of C.

Proposition 37 (Natarajan Dimension for Colored Complex).
Let C be a d-dimensional good complex and let r be a proper
coloring of C. Let B = B(C, r) be the pseudo-cube that is
defined by C, r. The two following properties are equivalent:

1) There exists a square v0 → v1 → v2 → v3 → v0 in C
such that r(v0) = r(v2) and r(v1) = r(v3).

2) The Natarajan dimension of B is at least 2.

Typically, simplicial complexes are not colorful. So, it is

helpful to have a version of Proposition 37 that does not require

a proper coloring. An empty square in a simplicial complex C
is a square v0 → v1 → v2 → v3 → v0 so that both {v0, v2}
and {v1, v3} are not edges in the 1-skeleton of C. In other

words, an empty square is a square so that the induced graph

on its vertices is the same square (somewhat confusingly this

is also known as a full square in some contexts).

Corollary 38 (Natarajan Dimension for Complex). If there
are no empty squares in a good simplicial complex C of
dimension d then for every proper coloring r of C, the
Natarajan dimension of B(C, r) is at most 1.

Proof. By Proposition 37, if the Natarajan dimension of

B(C, r) is at least 2, then there is a square v0 → v1 → v2 →
v3 → v0 in C such that r(v0) = r(v2) and r(v1) = r(v3).
Because r is a proper coloring, the square must be empty.

C. The Simplicial Complex

The goal of this section is to state the construction

by Januszkiewicz and Światkowski [2003] of the simplicial

complexes we need.

How can we build a complex C, that is pure, has a proper

coloring and satisfies replacement? This is quite easy, and we

shall return to it below. The reason is that we did not insist

that C is finite. The challenge is to have all these properties

in a finite object.

A baby version of this difficulty appears already in graph

theory. It is fairly easy to build an infinite regular tree, but

constructing finite regular graphs is more challenging. Group

theory provides a fundamental and powerful mechanism to

“fold” the infinite tree to a finite regular graph. If the infinite

tree is thought of as a Cayley graph of some group F , and N
is a normal subgroup of F of finite index, then the “modulo N”

operation allows to fold the tree to a finite graph. Many useful

constructions of finite graphs are obtained via this mechanism.

Coming back to an infinite complex that is pure, properly

colored and satisfies replacement, we can simply start with a

face of dimension d, connect it to d+ 1 new faces by adding

new vertices, and keep going indefinitely. This construction

corresponds to an infinite regular tree (see also Example 8). It is

easy to build, but utterly useless for us. The real difficulty is to

“fold” it to be finite. What does “fold” even mean? The solution

is again algebraic, but it uses the more abstract language of

coset complexes.

Let F be a group (finite or infinite). A coset of a subgroup

H ≤ F is a set of the form gH = {gh : h ∈ H}. The

coset complex defined by subgroups H1, . . . , Hd ≤ F is

the simplicial complex C = CF (H1, . . . , Hd) that is defined

as follows. The vertices of C are the cosets of the groups

H1, . . . , Hd, and a set of cosets σ is a simplex in C if

and only if the intersection of all cosets in σ is non-empty:

σ ∈ C ⇐⇒ ⋂
L∈σ L �= ∅. Stated differently, the complex is

the nerve of the set of all cosets.

The following theorem states the existence of the coset

complexes we need.

Theorem 39 (Januszkiewicz and Światkowski [2003]). For
every integer d > 1, there exists a finite group F , and d
subgroups H1, . . . , Hd ≤ F such that the following hold:

1) For every i ∈ [d], we have (∩j �=iHj) \Hi �= ∅.
2) The coset complex CF (H1, . . . , Hd) does not contain

empty squares.

Theorem 39 is a consequence of a deep construction

by Januszkiewicz and Światkowski [2003] which combines

tools and ideas from algebra and topology that are beyond the

scope of our work. In the full version of this paper we formally

derive Theorem 39 using results stated in [Januszkiewicz and
´ Swiatkowski, 2003]. It is rather a formality, because all ideas are

already in that paper, but the exact result we need, unfortunately,

is not explicitly stated. This derivation is not self-contained

and uses concepts that are defined in [Januszkiewicz and
´ Swiatkowski, 2003].

Let us return to the main goal of this section, deducing the

needed concept class from the construction of Januszkiewicz

and Światkowski [2003].

Proposition 40 (There is a Good Complex with No Empty

Squares). Let F and H1, . . . , Hd be as in Theorem 39. The
coset complex C = CF (H1, . . . , Hd) has dimension d− 1, is
good and has no empty squares.
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coxeter groups of large dimension. Commentarii Mathematici
Helvetici, 78(3):555–583, 2003.

Nick Littlestone and Manfred Warmuth. Relating data com-

pression and learnability. Unpublished manuscript, 1986.

Balas K. Natarajan. Some results on learning. Unpublished
manuscript, 1988.

Balas K. Natarajan. On learning sets and functions. Machine
Learning, 4(1):67–97, 1989.

Balas K. Natarajan and Prasad Tadepalli. Two new frameworks

for learning. In ICML, pages 402–415, 1988.

David Pollard. Empirical processes: Theory and applications.

NSF-CBMS Regional Conference Series in Probability and
Statistics, 2:1–86, 1990.

Benjamin Rubinstein, Peter Bartlett, and J Hyam Rubinstein.

Shifting, one-inclusion mistake bounds and tight multiclass

expected risk bounds. In NIPS, pages 1193–1200, 2006.

Robert E Schapire and Yoav Freund. Boosting: Foundations
and algorithms. Cambridge University Press, 2012.

Shai Shalev-Shwartz and Shai Ben-David. Understanding
machine learning: From theory to algorithms. Cambridge

University Press, 2014.

Leslie G. Valiant. A theory of the learnable. In STOC, pages

436–445, 1984.

Vladimir Vapnik. Inductive principles of the search for

empirical dependences (methods based on weak convergence

of probability measures). In COLT, pages 3–21, 1989.

Vladimir Vapnik and Alexey Chervonenkis. On the uniform

convergence of relative frequencies of events to their proba-

bilities. In Proc. USSR Acad. Sci., 1968.

Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern
Recognition. Nauka, Moscow, 1974.

955


