
Constant Approximation of Min-Distances
in Near-Linear Time

Shiri Chechik
Blavatnik School of Computer Science

Tel Aviv University
Tel Aviv, Israel

shiri.chechik@gmail.com

Tianyi Zhang
Blavatnik School of Computer Science

Tel Aviv University
Tel Aviv, Israel

tianyiz21@tauex.tau.ac.il

Abstract—In a weighed directed graph G = (V,E, ω) with
m edges and n vertices, we are interested in its basic graph
parameters such as diameter, radius and eccentricities, under
the nonstandard measure of min-distance which is defined for
every pair of vertices u, v ∈ V as the minimum of the shortest
path distances from u to v and from v to u. Similar to standard
shortest paths distances, computing graph parameters exactly in
terms of min-distances essentially requires Ω̃(mn) time under
plausible hardness conjectures 1. Hence, for faster running time
complexities we have to tolerate approximations.

Abboud, Vassilevska Williams and Wang [SODA 2016] were
the first to study min-distance problems, and they obtained
constant factor approximation algorithms in acyclic graphs, with
running time Õ(m) and Õ(m

√
n) for diameter and radius,

respectively. The time complexity of radius in acyclic graphs
was recently improved to Õ(m) by Dalirrooyfard and Kaufmann
[ICALP 2021], but at the cost of an O(log n) approximation ratio.
For general graphs, the authors of [DWV+, ICALP 2019] gave
the first constant factor approximation algorithm for diameter,
radius and eccentricities which runs in time Õ(m

√
n); besides,

for the diameter problem, the running time can be improved to
Õ(m) while blowing up the approximation ratio to O(log n).

A natural question is whether constant approximation and
near-linear time can be achieved simultaneously for diameter,
radius and eccentricities; so far this is only possible for diameter
in the restricted setting of acyclic graphs. In this paper, we answer
this question in the affirmative by presenting near-linear time
algorithms for all three parameters in general graphs.

I. INTRODUCTION

Diameter, radius and eccentricities are basic graph param-

eters that have been widely studied (e.g., [1]–[9], [12]–[17]).

These three parameters are related in the following sense: the

eccentricity of any vertex in a graph is the longest distance

between this vertex and any other vertex, while diameter and

radius are the maximum and the minimum eccentricity of all

vertices, respectively.

There are several different ways to define the notion of

distances with which diameter, radius and eccentricities are

instantiated. In an undirected graph, the traditional sense of

distances refers to the length of the shortest path dist(·, ·) be-

tween two vertices. In directed graphs, for any pair of vertices

This publication is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 803118
UncertainENV).

1As usual, the Õ(·) notation hides poly-logarithmic factors in n

u and v, there are various ways to define distances in terms of

shortest paths, other than the dist(u, v). These include round-

trip distances [9] which is defined as dist(u, v) + dist(v, u),
and max-distances [2] which is max{dist(u, v),dist(v, u)},
and min-distances [2] which is min{dist(u, v),dist(v, u)}. In

this work we focus on the notion of min-distances, and under

this specific distance measure, the corresponding graph param-

eters are called min-diameter, min-radius, min-eccentricities

for short. The min distance is a natural definition of distance

with clear applications, for example, in a medical emergency

one needs to decide if to call an ambulance (from the hospital)

or to get to the hospital.

As with other standard definitions of distances, computing

these graph parameters exactly under min-distances cannot be

done in 2O(m2−ε) time for any constant ε > 0 [2], [14], so

it is natural to resort to approximation algorithms. In [2], the

authors provided a near-linear time 2-approximation of min-

diameter in acyclic graphs, and a 3-approximation algorithm

for min-radius that runs in time Õ(mn1/2) in an n-vertex m-

edge acyclic graphs; also, if only near-linear running time is

allowed, then their algorithms can decide if the min-radius

of the input graph is finite. This approximation ratio of 3
was improved to 2 in a recent paper by Dalirrooyfard and

Kaufmann [10], which is conditionally tight for subquadratic

time algorithms; more generally, their algorithm computes k-

approximations of min-radius and min-eccentricities in time

Õ(min{mn1/k,m2k−1/(2k−1)n}) for any integer k ≥ 2; in

particular, in the near-linear time regime, their algorithm has

O(log n) approximation. On the conditional lower bound side,

it was shown in [2], [10] that (1.5− ε) approximation of min-

diameter or (2 − ε)-approximation of min-radius in acyclic

graphs requires max{m2−o(1), nω−o(1)} time.

All the above upper bounds only hold in acyclic graphs. For

general graphs, the authors of [11] designed 3-approximation

algorithms for min-diameter and min-radius general graphs

with running time Õ(mn1/2); their algorithm can also be

adapted to compute min-eccentricities of all vertices with the

same running time, at the cost of a larger approximation ratio

of 5 + ε. Additionally, they also show a trade-off between

time and approximation ratio in the case of min-diameter: for

2Conventionally, assume the input graph has n vertices and m edges.

896

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00089

any integer 2 ≤ k ≤ O(log n), a (4k − 5)-approximation

of min-diameter can be computed in time Õ(mn1/k); in

particular, near-linear time algorithms can achieve O(log n)-
approximations. Unfortunately, unlike in acyclic graphs, so far

we do not have any non-trivial near-linear time approximation

algorithms for min-radius or min-eccentricities in general

graphs, even if O(log n) approximations are allowed.

Following this line of works, we would to like to highlight

a natural question whether constant approximation and near-

linear time can be achieved at the same time in general graphs

for min-diameter, min-radius and min-eccentricities.

A. Our results

As our main result, we show that constant-factor approxi-

mation of all three graph parameters in general graphs can be

computed in near-linear time. Our algorithms for min-radius

and min-eccentricities are closely related, while the algorithm

for min-diameter is more different, so we formulate our results

in two separate statements below.

Theorem 1.1: There is a randomized algorithm that com-

putes a 4-approximation of min-diameter of G in Õ(m) time.

Theorem 1.2: There is a randomized algorithm that com-

putes a 4-approximation of min-radius of G in Õ(m) time.

Also, for any constant ε > 0, there is a randomized algorithm

that computes (5 + ε)-approximations of min-eccentricities of

G in Õ(m/ε) time.

As our secondary result, we also restrict ourselves to

directed acyclic graphs, and achieve 3-approximations of

min-radius and min-eccentricities in near-linear time. Previ-

ously, 3-approximations of min-radius and min-eccentricities

needed Õ(min{mn1/3,m4/7n}) running time [2], [10],

and near-linear algorithms could only obtain O(log n)-
approximations [10]. For a detailed comparison to previous

works, please check Table I.

Theorem 1.3: There is a deterministic algorithm that com-

putes a 3-approximation of min-radius of directed acyclic

graph G in Õ(m) time. Furthermore, for any constant ε > 0,

there is a deterministic algorithm that computes (3 + ε)-
approximations of min-eccentricities of G in Õ(m/ε) time.

B. Technical overview

In this subsection, let us describe an outline of our algorithm

for min-diameter and min-radius in general graphs.

min-diameter: Given a threshold D, we want to either find

a pair of vertices whose min-distance in G is at least D/4, or

prove that the min-diameter of G is less than D; if it is done,

then to approximate the min-diameter in G, we can apply a

binary search on the best choice of D. To do this, we devise a

recursive algorithm MinDiameter(S,C) whose inputs are two

sets of vertices C ⊆ S ⊆ V ; at the beginning, we simply call

MinDiameter(V, V). During the recursion, set C represents a

set of candidate endpoints of the min-diameter in subgraph

G[S].
The starting point of the algorithm is sampling a ran-

dom vertex t from C and computing single source short-

est paths in G[S] to and from t, and defining two sets

U1 = {u ∈ C | distG[S](t, u) < D/4} and U2 = {u ∈
C | distG[S](u, t) < D/4} accordingly. We can assume

U1 ∪ U2 = C, since otherwise we can already find a vertex

z such that distmin
G[S](t, z) ≥ D/4. A basic observations is

that, if there exists a pair x, y ∈ S whose min-distance is

at least D, then x, y belong to the same set Ub, b ∈ {1, 2}.
Therefore, a natural strategy is to recurse on (S1 = U1, U1)
and (S2 = U2, U2) to detect vertex pairs with large min-

distances.

There are two main concerns with this approach. First, U1

and U2 can be intersecting in general, so recursing on both

G[U1] and G[U2] might be too costly. A second concern with

this approach is soundness: even if a recursion finds a pair of

vertices such that distmin
G[U1](x, y) ≥ D/4, it is still possible

that distmin
G[S](x, y) < D/4.

To handle the second concern, consider any pair of ver-

tices x, y ∈ U1 such that distmin
G[S](x, y) < D/4, say

distG[S](x, y) < D/4. Then by definition of U1, it implies

that distG[S](t, y) ≤ distG[S](t, x) + distG[S](x, y) < D/2.

So, if we include all vertices from B+
G[S](t,D/2) in S1 (sym-

metrically, all vertices B−G[S](t,D/2) in S2), then soundness

can be guaranteed; here B+
G[S](t,D/2) and B−G[S](t,D/2) are

out/in balls centered at t with radius D/2 in G[S]. So recursing

on (S1 = B+
G[S](t,D/2), U1) and (S2 = B−G[S](t,D/2), U2)

indeed ensures correctness. However, S1 and S2 could still be

intersecting; namely it could be the case that

S1 ∩ S2 = B+
G[S](t,D/2) ∩B−G[S](t,D/2) �= ∅

So, for the running efficiency, we may want to set S1 =
B+

G[S](t,D/2) \ B−G[S](t,D/2) and S2 = B−G[S](t,D/2) \
B+

G[S](t,D/2). It is still possible that for some pairs x, y ∈ S1,

distG[S](x, y) < D/4, but the shortest path goes outside

of S1 and intersects B−G[S](t,D/2). In this case, we have

distG[S](x, t) < 3D/4. Fortunately, we do not need to

worry about such kind of x, since for any pairs u, v ∈
S1 of true interest, namely distmin

G[S](u, v) ≥ D, we have

distG[S](u, t),distG[S](v, t) ≥ 3D/4. So we can safely

recurse on inputs (S1, C1), (S2, C2), where

C1 = U1 ∩ {u | distG[S](u, t) ≥ 3D/4}
C2 = U2 ∩ {u | distG[S](t, u) ≥ 3D/4}

while soundness is preserved along the way.

To bound the recursion depth, we apply an important lemma

from [11] to argue that if t is picked uniformly at random then

with constant probability both C1 and C2 are at most constant

fraction of C. By Chernoff bound we show later that it follows

that the recursion depth is O(log n) with high probability.

min-radius: Let us begin with a near-linear time algorithm

that gives a O(log n) approximation of min-radius. Given a

threshold R, we want to either find a vertex from V whose

min-eccentricity in G is at most O(R log n), or prove that

the min-radius of G is larger than R. The key subroutine

LogRadius is a recursive subroutine that accepts two pa-

rameters (H,C), where H is a contraction graph of G, and

897

TABLE I
A COMPARISON AGAINST PREVIOUS WORKS.

problem setting running time approximation reference

min-diameter in acyclic graphs Õ(m) 2 [2]

min-diameter in general graphs
Õ(mn1/k) 4k − 5, ∀k ≥ 2 [11]

Õ(m) 4 new

min-radius in general graphs
Õ(mn1/2) 3 [11]

Õ(m) 4 new

min-ecc. in general graphs
Õ(mn1/2/ε) 5 + ε [11]

Õ(m/ε) 5 + ε new

min-radius in acyclic graphs
Õ(mn1/2) 3 [2]

Õ(min{mn1/k,m2k−1/(2k−1)n}) k,∀k ≥ 2 [10]

Õ(m) 3 new

min-ecc. in acyclic graphs
Õ(min{mn1/k,m2k−1/(2k−1)n}/ε) k + ε, ∀k ≥ 2 [10]

Õ(m/ε) 3 + ε new

C ⊆ V ∩V (H) is a vertex subset which does not include any

contracted nodes.

The main algorithm simply runs LogRadius(G, V). Con-

sider an arbitrary level of recursion where C �= ∅. The

algorithm starts by taking a random source vertex t ∈ C and

compute single-source shortest paths to and from t in H . If

V (H) = B+
H(t, 2R)∪B−H(t, 2R), then we will return t as an

O(R log n)-min-center of G; here an O(R log n)-min-center

means a vertex whose eccentricity is bounded by O(R log n).
Otherwise, let us assume V (H) �= B+

H(t, 2R) ∪B−H(t, 2R).

Define W = V \(B+
H(t, 2R)∪B−H(t, 2R)). If the min-radius

of H is at most R, then the min-center must be in B+
H(t, R)∪

B−H(t, R). Our strategy is to search for the min-center in sets

C1 = C ∩ B+
H(t, R) and C2 = C ∩ B−H(t, R) recursively

on two smaller graphs. Construct two graphs as following:

contract all vertices in B−H(t, 2R) into a single node and call

the new graph H1; symmetrically we can define a new graph

H2. After that, invoke two recursive calls LogRadius(H1, C1)
and LogRadius(H2, C2). For the approximation ratio, as each

contracted node represents a subgraph with radius at most 2R,

the eccentricity of the final output vertex can be bounded by

O(R · (depth of recursion)).

To bound the recursion depth by O(log n), we again use

the lemma from [11] that shows with probability at least 1/2
over the choice of t ∈ C , we have max{|C1|, |C2|} ≤ 8

9 |C|.
Therefore, with high probability, the recursion depth of T is

bounded by O(log n). However, it is not enough to bound

the total running time, since at each recursion node (H,C),
the subgraphs H1 and H2 may intersect by a lot, since

W ⊆ V (H1) ∩ V (H2). The key observation is that, for any

vertex v, if it once belongs to the set W ⊆ V (H1) ∪ V (H2)
and is inherited by both subgraphs H1 and H2, then v can

never belong to both children of any nodes (H ′, C ′) which is

a descendant of either (H1, C1) or (H2, C2). Therefore, all the

tree nodes that contain v are a union of at most two tree paths

starting at root. As the depth of T is bounded by O(log n), the

total number of times that v appears in any contracted graph

H is also bounded by O(log n).

To improve the approximation ratio from log n to constant,

instead of recurring on contracted graphs H1, H2 of H , we

carefully recurse on two induced subgraphs of H . More specif-

ically, we will divide C into two sets C = C1 ∪C2, and then

recurse on instances (H1, C1) and (H2, C2), respectively. The

total running time will be bounded as near-linear using similar

techniques we just discussed in the previous paragraph. How-

ever, another key technical difficulty of such kind of recursions

is that these subgraphs need to preserve exact shortest paths

in H . Clearly, this task is impossible if we wish to preserve

all-pairs shortest paths. The idea is to preserve shortest paths

in subgraphs H1, H2 only between vertices that are not yet

known to be close in min-distances. More concretely, we will

introduce a third input parameter T ⊆ V to the recursive

procedure, such that for any pairs of vertices c ∈ C, v ∈ V \T ,

we can guarantee that distmin
G (c, v) = O(R). So, in subgraph

H , we only need to focus on min-distances between c ∈ C
and v ∈ T . When building the two subgraphs H1, H2, we

will divide T = T1 ∪ T2 and somehow ensure that pairwise

distances between c ∈ Cb and v ∈ Tb ∪ Cb will be preserved

exactly in Hb, ∀b ∈ {1, 2}. After that, we will recurse on

instances (H1, T1, C1) and (H2, T2, C2), respectively.

II. PRELIMINARIES

Let G = (V,E, ω) be a directed graph with positive

polynomially-bounded integral edge weights on n vertices and

m edges. For any directed path π in G, let ω(π) be the

total weight of this path. For any S ⊆ V , let G[S] be the

induced subgraph of S. For any positive value r and vertex

u ∈ V , define B+
G[S](u, r) = {v | distG[S](u, v) ≤ r} and

B−G[S](u, r) = {v | distG[S](v, u) ≤ r}; the subscript G is

omitted when S = V . For two different induced subgraphs

H1, H2 of G, H1 \ H2 refers to the induced subgraph on

vertices V (H1) \ V (H2).
For any pair of vertices u, v ∈ V , the min-

distance between u, v is defined as distmin
G (u, v) =

min{distG(u, v),distG(v, u)}; the subscript G is usually

omitted when it can be deduced from context. A vertex c ∈ V
is called an r-min-center if its min-eccentricity is bounded

by r, namely maxv∈V distmin(c, v) ≤ r.

For each vertex u ∈ S where S ⊆ V , define XG[S](u) =
{v �= u | distG[S](u, v) < distG[S](v, u)}, and YG[S](u) =

898

S \ (XG[S](u) ∪ {u}). The subscript G[S] is usually omitted

when it is clear from context. Our algorithms will use a

powerful lemma by [11].

Lemma 2.1 ([11]): For any subset U ⊆ S, there are more

than |U |/2 vertices u ∈ U such that |XG[S](u) ∩ U |/8 ≤
|YG[S](u) ∩ U | ≤ 8|XG[S](u) ∩ U |.

III. MIN-DIAMETER IN GENERAL GRAPHS

Given a threshold D, we want to either find a pair of vertices

whose min-distance in G is at least D/4, or prove that the min-

diameter of G is less than D; if it is done, then to approximate

the min-diameter in G, we can apply a binary search on the

best choice of D. The main algorithm is a recursive procedure

MinDiameter(S,C), where C ⊆ S ⊆ V are two subsets. At

the root of the recursion, run MinDiameter(V, V).
For general inputs of S,C, procedure MinDiameter works

as follows. It first picks a vertex t in C uniformly at random

and computes single source shortest paths in G[S] to and from

t. Then, compute sets U1 = {u ∈ C | distG[S](t, u) < D/4}
and U2 = {u ∈ C | distG[S](u, t) < D/4}. If U1 ∪ U2 �= S
then the algorithm picks a vertex z ∈ C\(U1∪U2) and returns

{t, z}.
Otherwise, compute S1 = B+

G[S](t,D/2) \ B−G[S](t,D/2)

and S2 = B−G[S](t,D/2)\B+
G[S](t,D/2), and C1 = U1∩{u |

distG[S](u, t) ≥ 3D/4} and C2 = U2 ∩{u | distG[S](t, u) ≥
3D/4}. Finally, recurse on inputs (S1, C1) and (S2, C2). See

Algorithm 1 for a formal description.

Algorithm 1: MinDiameter(S,C)

1 if C = ∅ then
2 return null;
3 sample a vertex t ∈ C uniformly at randon, and

compute SSSP in G[S] to and from t;
4 compute U1 = {u ∈ C | dist(t, u) < D/4};
5 compute U2 = {u ∈ C | dist(u, t) < D/4};
6 if U1 ∪ U2 �= C then
7 pick an arbitrary vertex z ∈ C \ (U1 ∪ U2);
8 return (t, z);

9 compute S1 = B+
G[S](t,D/2) \B−G[S](t,D/2) and

S2 = B−G[S](t,D/2) \B+
G[S](t,D/2);

10 compute C1 = U1 ∩ {u | distG[S](u, t) ≥ 3D/4} and

C2 = U2 ∩ {u | distG[S](t, u) ≥ 3D/4};
11 run (t1, z1)← MinDiameter(S1, C1);
12 run (t2, z2)← MinDiameter(S2, C2);
13 return (t1, z1) or (t2, z2), whichever is not null;

A. Proof of correctness

Consider any recursion on input (S,C). Assume the algo-

rithm reaches line-9. First, we prove a basic property regarding

endpoints of the min-diameter.

Lemma 3.1: Consider any pair of vertices u, v ∈ S such

that distmin
G[S](u, v) ≥ D. Then u, v ∈ C1 or u, v ∈ C2.

Proof: If u, v belong to different U1, U2 respectively, then

distG[S](v, u) ≤ distG[S](v, t) + distG[S](t, u) < D/2

which is a contradiction. For the rest, let us assume u, v ∈ U1.

Then, by triangle inequality, distG[S](u, t) ≥ distG[S](u, v)−
distG[S](t, v) ≥ 3D/4, and so u ∈ C1. Similarly we can show

v ∈ C1 as well.

The next lemma shows that for any two vertices in C1, C2

whose min distance in G[S1], G[S2] is at least D/4, their

distance in G[S] is also at least D/4.

Lemma 3.2: For every two vertices x, y ∈ C1 and

distmin
G[S](x, y) < D/4, we have distmin

G[S1](x, y) < D/4. Sim-

ilarly, for every two vertices x, y ∈ C2 and distmin
G[S](x, y) <

D/4, we have distmin
G[S2](x, y) < D/4.

Proof: By symmetry, we only focus on the first half

of the statement. Consider two vertices x and y such that

x, y ∈ C1 and distmin
G[S](x, y) < D/4. Assume without

loss of generality that distG[S](x, y) ≤ distG[S](y, x). So

distG[S](x, y) < D/4. Let ρ be the shortest path from x
to y in G[S]. We first show that ρ is contained entirely in

BG[S](t,D/2). In fact, for any vertex z ∈ ρ, distG[S](t, z) ≤
distG[S](t, x) + ω(ρ) ≤ D/2.

Next, it suffices to prove that ρ ∩ B−G[S](t,D/2) = ∅.
Suppose otherwise, then there exists z ∈ ρ ∩ B−G[S](t,D/2).

Hence, distG[S](x, t) ≤ ω(ρ) + distG[S](z, t) < 3D/4,

contradicting the fact that x ∈ C1.

A recursive application of (the contrapositive of) the above

lemma immediately implies the soundness of our algorithm.

Corollary 3.1: Suppose MinDiameter(V, V) successfully

returns a pair (t, z), then distmin
G (t, z) ≥ D/4.

The next lemma proves completeness of the algorithm.

Lemma 3.3: Consider a call to Algorithm

MinDiameter(V, V). If there are two vertices u, v ∈ V
and distmin

G (u, v) ≥ D, then the invocation will return a pair

(t, z) such that distmin
G (t, z) ≥ D/4.

Proof: Since t ∈ C \(C1∪C2), we have |C1|, |C2| < |C|,
so the algorithm always terminates. Next, it suffices to prove

that u, v are contained in the same set C on a root-to-leaf path

on the recursion tree. As the basis, it is clear that u, v ∈ V .

Consider any recursion node (S,C) such that u, v ∈ C.

If the algorithm terminates on line-8, then by definition of

U1, U2, we have distmin
G[S](t, z) ≥ D/4. Using Corollary 3.1,

we can conclude the proof.

Next, assume the algorithm reaches line-9. By Lemma 3.1,

either u, v ∈ C1 or u, v ∈ C2. So we can choose the branch

(Sb, Cb), b ∈ {1, 2} such that Cb � u, v and continue with our

induction.

B. Running time analysis

Clearly, each recursion of the algorithm takes Õ(|G[S]|)
time (for invoking twice Dijkstra’s algorithm on G[S]). By

disjointness S1, S2, to bound the running time by near-linear,

it suffices to bound the recursion depth.

Lemma 3.4: W.h.p. the recursion depth of Algorithm

MinDiameter(V, V) is O(log n).

899

Proof: It is sufficient to show that at each recursion node

(S,C) that reaches line-9, with at least constant probability,

|C1|, |C2| ≤ 8|C|/9.

In fact, noticing that for any u ∈ C1, distG[S](t, u) <
D/4 < 3D/4 ≤ distG[S](u, t), we know that C1 ⊆ XG[S](t);
similarly we have C2 ⊆ YG[S](t). Thus, applying Lemma 2.1

(with U ← C) with probability at least 1/2 we have

|XG[S](t) ∩ C|/8 ≤ |YG[S](t) ∩ C| ≤ 8|XG[S](t) ∩ C|
Hence, |C1|, |C2| ≤ 8|C|/9.

IV. MIN-RADIUS AND MIN-ECCENTRICITIES IN GENERAL

GRAPHS

To prove Theorem 1.2, we will first describe the algorithm

for min-radius, and then extend it for min-eccentricities. For

min-radius, it suffices to design a near-linear time algorithm

that, given any threshold R, either decides that the min-radius

of G is larger than R, or finds a center vertex c ∈ V such

that maxv∈V distmin(c, v) ≤ 4R. Since the input graph G
has positive integral edge weights which are polynomially

bounded, we can perform a binary search on R which gives

a 4-approximation of min-radius of G.

The key component of our main algorithm is a recursive

subroutine MinRadius that accepts three parameters

S, T, C ⊆ V which are vertex subsets satisfying

T ∪ C ⊆ S, and it either asserts that C does not contain

any R-min-center, or finds a vertex c ∈ C such that

maxu∈T distmin
G[S](c, u) ≤ 4R, where G[S] is the induced

subgraph on vertex set S. The main algorithm simply invokes

this subroutine MinRadius(V, V, V) to look for 4R-min-

centers in G.

Notations. Each node of the recursion tree T is specified by a

triple of vertex set (S, T, C) which are input to the recursive

subroutine MinRadius; so at the root node of T , the triple is

(V, V, V). In the end, we will ensure that the recursion tree

T of this subroutine is always a binary tree whose depth is

bounded by O(log n).
During the algorithm, we will explicitly store the entire

configuration of the recursion tree T . Also, for each vertex

u ∈ V and each tree node N = (S, T, C) such that u ∈ S,

we store an auxiliary label LN
u ∈ {−1, 1,⊥}, where ⊥ means

“undefined”.

Recursion. Next let us describe how the recursion subroutine

works. If C = ∅, then our algorithm simply returns null.

If |C| ≤ 10 logn, then for each c ∈ C apply Dijkstra’s

algorithm to compute single-source shortest paths to and from

c in subgraph G[S], and check if there exists a vertex c ∈ C
such that maxu∈T distmin

G[S](c, u) ≤ R.

The nontrivial case is when |C| > 10 log n. In this case,

take a uniformly random vertex t ∈ C, and compute single-

source shortest paths to and from t in the induced subgraph

G[S] by Dijkstra’s algorithm. Then, compute the set W =
S\(B+

G[S](t, 2R)∪B−G[S](t, 2R)). Next, consider two different

cases.

• Leaf. T ⊆ B+
G[S](t, 4R) ∪B−G[S](t, 4R).

In this case, return t as a 4R-min-center of the entire

graph G.

• Branch or prune. T is not contained in B+
G[S](t, 4R) ∪

B−G[S](t, 4R).
In this case, the recursive algorithm will grow two

branches. Let N be the current node (S,C, T) on the

recursion tree T . The first branch is defined as follows.

Define a set

S1 = S \ (B−G[S](t, 2R) ∪ L1)

where L1 ⊆W is the set of all vertices v ∈W such that

either LN
v = −1 or there exists an ancestor node N ′ of

N satisfying LN ′
v = −1.

If L1 ∩ T �= ∅, then we prune the first branch; namely

the algorithm will not recurse further on this branch.

Otherwise, define

T1 = S1 ∩ T \B−G[S](t, 3R)

C1 = C ∩ S1 ∩B+
G[S](t, R) \B−G[S](t, 3R)

and define a new node N1 = (S1, T1, C1) on T . Then

for each v ∈ S1 ∩W , set a label LN1
v = 1. After that,

recurse on node N1.

The second branch is defined in the symmetric manner.

Namely, take

S2 = S \ (B+
G[S](t, 2R) ∪ L2)

where L2 ⊆W is the set of all vertices v ∈W such that

either LN
v = 1, or there exists an ancestor node N ′ of N

satisfying LN ′
v = 1.

If L2 ∩ T �= ∅, then we prune the second branch.

Otherwise, define

T2 = S2 ∩ T \B+
G[S](t, 3R)

C2 = C ∩ S2 ∩B−G[S](t, R) \B+
G[S](t, 3R)

and define a new node N2 = (S2, T2, C2). For each v ∈
S2 ∩W , define a label LN2

v = −1. Finally, recurse on

node N2.

The recursion subroutine MinRadius is summarized as Al-

gorithm 2.

A. Proof of correctness

Here is a basic property of our recursive algorithm, which

is clearly guaranteed by the algorithm description.

Lemma 4.1: Let N = (S, T, C) and N ′ = (S′, T ′, C ′) be

two nodes on the recursion tree T such that N ′ is an ancestor

of N . Then S ⊆ S′, T ⊆ T ′, C ⊆ C ′.
Next we argue that the set C provides good candidates for

min-centers.

Lemma 4.2: Consider any node N = (S, T, C) on T . Then,

for any pairs of vertices c ∈ C, v ∈ V \T , distmin
G (c, v) ≤ 4R.

Proof: The statement is proved by an induction on the

depth of nodes on the recursion tree. As the basis, when N =
(V, V, V) is the root node, clearly it satisfies the statement as

V \ T = ∅. Next, let us focus on the inductive step.

900

Algorithm 2: MinRadius(S, T, C)

1 if C = ∅ then
2 return null;

3 else if 0 < |C| ≤ 10 log n then
4 for each c ∈ C apply Dijkstra’s algorithm to

compute single-source shortest paths in G[S];
5 return an arbitrary vertex c ∈ C such that

maxu∈T distmin
G[S](c, u) ≤ R;

6 else
7 take a random vertex t ∈ C, and compute

single-source shortest paths at t in G[S];
8 define W = S \ (B+

G[S](t, 2R) ∪B−G[S](t, 2R));

9 if T ⊆ B+
G[S](t, 4R) ∪B−G[S](t, 4R) then

10 return t;

11 else
/* grow the first branch */

12 compute L1 ⊆W which is set of all vertices

v ∈W such that either LN
v = −1 or there

exists an ancestor node N ′ of N satisfying

LN ′
v = −1;

13 S1 ← S \ (B−G[S](t, 2R) ∪ L1),

T1 ← S1 ∩ T \B−G[S](t, 3R),

C1 ← C ∩ S1 ∩B+
G[S](t, R) \B−G[S](t, 3R);

14 set labels LN1
v ← 1 for each v ∈ S1 ∩W ;

15 create new child nodes N1 = (S1, T1, C1) on

the recursion tree T ;

16 if L1 ∩ T = ∅ then
17 run c1 ← MinRadius(S1, T1, C1);

/* grow the second branch */
18 define N2 = (S2, C2, T2) in the symmetric

manner;

19 set labels LN2
v ← −1 for each v ∈ S2 ∩W ;

20 if L2 ∩ T = ∅ then
21 run c2 ← MinRadius(S2, T2, C2);

22 if c1 is not null, then return c1; else return c2;

Suppose the statement holds for some node N = (S, T, C).
We will prove that in the case where the first branch is

not pruned, node N1 = (S1, T1, C1) will also satisfy the

statement; we can repeat the symmetric argument for N2 as

well.

By Lemma 4.1, T1 ⊆ T,C1 ⊆ C, so it suffices to prove

that for any vertex c ∈ C1 and any vertex v ∈ T \T1, we have

distmin(c, v) ≤ 4R. In fact, as v ∈ T \ T1 and by definitions

S1 = S \(B−G[S](t, 2R)∪L1) and T1 = S1∩T \B−G[S](t, 3R),

we know T \T1 ⊆ B−G[S](t, 3R)∪L1. Since N1 is not pruned,

L1 ∩ T = ∅. Therefore it must be v ∈ B−G[S](t, 3R). So, by

triangle inequality, we have distmin
G (v, c) ≤ distG[S](v, c) ≤

distG[S](v, t) + distG[S](t, c) ≤ 4R.

As a corollary, the algorithm always returns a good candi-

date center.
Corollary 4.1: If the algorithm MinRadius(V, V, V) success-

fully returns any vertex c as a candidate min-center, then its

min-eccentricity is at most 4R.
Proof: If a candidate min-center c is returned on line-5

or line-10, then by the algorithm description, for any u ∈ T ,

distmin(c, u) ≤ distmin
G[S](c, u) ≤ 4R. By Lemma 4.2, for any

v ∈ V \ T , we also have distmin(c, v) ≤ 4R. Therefore, the

min-eccentricity of c is at most 4R.
The following lemma explains the motivation of using labels

LN
v .
Lemma 4.3: If LN1

v = 1 for some node N1 = (S1, T1, C1),
then for any c ∈ C1, distG[S1](c, v) > R. Similarly, if LN2

v =
−1 for some node N2 = (S2, T2, C2), then for any c ∈ C2,

distG[S2](v, c) > R.
Proof: Let us prove the statement for N1 and a symmetric

argument holds for N2. By the algorithm description, it never

assigns labels for the root node of T , therefore N1 is not the

root node. Suppose N = (S, T, C) is the parent node of N1.

As LN1
v = 1, we can assume N1 is on the first branch below

N . Then c ∈ B+
G[S](t, R). By the way we set the labels, we

know v ∈ W . By definition of W , distG[S](t, v) > 2R, and

so using triangle inequality we have:

distG[S1](c, v) ≥ distG[S](c, v)

≥ distG[S](t, v)− distG[S](t, c) > R

Assume G has min-radius at most R. Then there exists a

center c∗ whose eccentricity in G is at most R. In the next

lemma, we prove that c∗ always lies in some set C.
Lemma 4.4: Vertex c∗ is contained in the set C for all

nodes N = (S, T, C) lying on a certain root-to-leaf tree

path of T . Plus, for any such node N , for every vertex

c ∈ C and vertex v ∈ T ∪ C, if distG(c, v) ≤ R, then

distG(c, v) = distG[S](c, v); symmetrically, if distG(v, c) ≤
R, then distG(v, c) = distG[S](v, c).

Proof: The statement is proved by an induction on

recursion depth. As the basis, the statement holds trivially for

the root node. Now suppose at a certain depth, there is a node

N = (S, T, C) that satisfies both properties. Suppose it enters

the branch-or-prune phase and reaches line-12 of Algorithm 2;

otherwise this node is already a leaf node.
By the inductive hypothesis, as t ∈ C, we know

distmin
G[S](c

∗, t) ≤ R. Therefore, c∗ ∈ B+
G[S](t, R) ∪

B−G[S](t, R). Without loss of generality, assume c∗ ∈
B+

G[S](t, R).

Claim 4.4.1: c∗ /∈ B−G[S](t, 3R).
Proof of claim: By the branch-or-prune condition, we

know T is not contained in B+
G[S](t, 4R) ∪B−G[S](t, 4R). So

there exists v ∈ T such that distmin
G[S](t, v) > 4R. By triangle

inequality,

distG[S](c
∗, v) ≥ distG[S](t, v)− distG[S](t, c

∗)
> 4R−R = 3R > R

Then, by the contrapositive of the inductive hypothesis, we

know distG(c
∗, v) > R. As c∗ is an R-min-center, we know

901

distG(v, c
∗) ≤ R. So again by the inductive hypothesis and

triangle inequality,

4R− distG[S](c
∗, t) < distG[S](v, t)− distG[S](c

∗, t)
≤ distG[S](v, c

∗) ≤ R

So distG[S](c
∗, t) > 3R, or equivalently c∗ /∈ B−G[S](t, 3R).

By the above claim and definition of C1 and the fact that

L1 ⊆ W we know c∗ ∈ C1. Next we need to verify that the

branch on N1 is not pruned.

Claim 4.4.2: L1 ∩ T = ∅.
Proof of claim: Suppose otherwise there exists a vertex

v ∈ L1∩T . Then by definition of L1, either LN
v = −1, or there

exists an ancestor N ′ = (S′, T ′, C ′) such that LN ′
v = −1. By

Lemma 4.1 and Lemma 4.3, we have distG[S](v, c
∗) > R.

Using the inductive hypothesis on v ∈ T and c∗ ∈ C, we

know distG(v, c
∗) > R as well.

Now, as c∗ is an R-min-center, it must be distG(c
∗, v) ≤ R.

So, by inductive hypothesis, distG[S](c
∗, v) = distG(c

∗, v) ≤
R. By triangle inequality, distG[S](t, v) ≤ distG[S](t, c

∗) +
distG[S](c

∗, v) ≤ 2R, which contradicts the fact that v ∈
L1 ⊆W .

Now let us turn to the second half of the statement. Consider

any vertex v ∈ T1 ∪C1 and c ∈ C1 such that distmin
G (c, v) ≤

R. By the inductive hypothesis, distmin
G[S](c, v) ≤ R. Consider

two possibilities.

• distG[S](c, v) ≤ R.

In this case, let ρ be the shortest path from c to v in G[S].
We show that ρ lies entirely in S1, or equivalently, that ρ
does not intersect B−G[S](t, 2R)∪L1, which would prove

distG[S1](c, v) = distG[S](c, v) = distG(c, v).
If there is a vertex z ∈ ρ∩B−G[S](t, 2R), then by triangle

inequality, distG[S](c, t) ≤ ω(ρ) + distG[S](z, t) ≤
3R, which contradicts c /∈ B−G[S](t, 3R) as C1 ∩
B−G[S](t, 3R) = ∅.
If there is a vertex z ∈ ρ ∩ L1, then distG[S](c, z) ≤
ω(ρ) ≤ R. So by triangle inequality, distG[S](t, z) ≤
distG[S](t, c) + distG[S](c, z) ≤ 2R, which contradicts

z ∈ L1 ⊆W .

• distG[S](v, c) ≤ R.

In this case, let ρ be the shortest path from v to c in G[S].
We also show that ρ lies entirely in S1, or equivalently,

that ρ does not intersect B−G[S](t, 2R)∪L1, which would

prove distG[S1](v, c) = distG[S](v, c) = distG(v, c).
If there is a vertex z ∈ ρ∩B−G[S](t, 2R), then by triangle

inequality, distG[S](v, t) ≤ ω(ρ) + distG[S](z, t) ≤ 3R,

which contradicts v /∈ B−G[S](t, 3R) as (T1 ∪ C1) ∩
B−G[S](t, 3R) = ∅.
If there is a vertex z ∈ ρ ∩ L1, then distG[S](z, c) ≤
ω(ρ) ≤ R. However, by definition of L1, either LN

z =
−1, or there exists an ancestor N ′ = (S′, T ′, C ′) of N
such that LN ′

z = −1. By Lemma 4.3, distG[S](z, c) > R,

contradiction.

B. Running time analysis

First we analyze the depth of the recursion tree.

Lemma 4.5: With high probability, the depth of the recursion

tree T is at most O(log n).
Proof: Consider any branch-or-prune phase at any node

N = (S, T, C). It suffices to prove that with constant proba-

bility over the choice of t ∈ C, we have max{|C1|, |C2|} ≤
8
9 |C|. By Lemma 2.1, with probability at least 1/2 over the

choice of t ∈ C, we have

|XG[S](t) ∩ C|/8 ≤ |YG[S](t) ∩ C| ≤ 8|XG[S](t) ∩ C|
Now, by construction of C1, for any c ∈ C1,

distG[S](t, c) ≤ R < 3R < distG[S](c, t), and so c ∈
XG[S](t). Therefore, |C1| ≤ 8

9 |C|. Similarly we also have

|C2| ≤ 8
9 |C|.

Secondly, we study the total cost of recursion. The following

lemma explains the motivation of using labels.

Lemma 4.6: For any vertex v ∈ V , v belongs to S for at

most O(log n) different nodes N = (S, T, C) of the recursion

tree T .

Proof: Consider the branch-or-prune phase of any node

N = (S, T, C) such that S � v, and let N1 =
(S1, T1, C1), N2 = (S2, T2, C2) be its two children. If vertex

v is always passed to at most one branch, namely v /∈ S1 or

v /∈ S2, then by Lemma 4.5, as the tree depth is bounded by

O(log n) with high probability, v belongs to set S of at most

O(log n) different nodes.

Now, consider the first time that v belongs to both S1 and

S2. Then, by the algorithm description, v must belong to W ,

and so it must have set the labels LN1
v = 1 and LN2

v = −1.

We claim that, for any descendant node M = (S0, T0, C0)
of Nb, ∀b ∈ {1, 2} on the recursion tree T such that v ∈
S0, v is passed on to at most one child of M during the

branch-or-prune procedures at M . Say, M is a descendant

of N1. During the branch-or-prune phase at M , let W0 =
S0 \ (B+

G[S0]
(t, 2R) ∪B−G[S0]

(t, 2R)), where t is a uniformly

random vertex taken from C0, and let M1,M2 be the two

children of M . If v /∈ W0, then by the algorithm v is passed

to at most one of M1,M2 in deeper recursions; otherwise if

v ∈ W0, then since LN1
v = 1 and N1 is an ancestor of M , v

can never be passed on to the second branch M2. A symmetric

argument works with N2.

By the above claim, all descendants of Nb that include v
should form an ancestor-to-descendant tree path starting at

Nb, ∀b ∈ {1, 2}. Therefore, as the depth of T is bounded by

O(log n), v belongs to at most O(log n) nodes. See Figure 1

for an illustration.

By the above lemma, each vertex is copied for at most

O(log n) times, so the total cost of running Dijkstra’s algo-

rithm is bounded by Õ(m).

C. Extension to eccentricities

Our approximate min-eccentricity algorithm follows the

basic framework of the previous min-radius algorithm, with

slight modifications. Take R = 1, �(1 + ε/5)�, �(1 +
ε/5)2�, · · · , �(1 + ε/5)i�, · · · , and for each R we will

902

root

Fig. 1. In this picture, the black node is the root of T . The orange node is
the highest node where v belongs to both S1, S2. Then, all descendants of
the orange node that involves v should form two tree paths. Overall, all nodes
that contain v form two tree paths starting at the root, which are shown as
the dotted lines. As the depth of T is O(logn), the length of the dotted lines
is also O(logn).

give a near-linear time algorithm that for each u ∈ V ,

either decides maxv∈V distmin(u, v) > R or certifies

maxv∈V distmin(u, v) ≤ 5R; if this can be done, then

we have a near-linear time algorithm that approximates all

min-eccentricities within stretch 5 + ε. The full algorithm is

summarized as Algorithm 3. At the root of the recursion,

we apply MinEcc(V, V, V). For general inputs (S, T, C), the

algorithm decides for each c ∈ C whether the eccentricity of

c is larger than R or at most 5R in G.

The algorithm is mostly the same as Algorithm 2. So here

we only discuss the modifications in the recursion step.

Recursion. Let N = (S, T, C) be the current recursion node.

In the case where |C| > 10 log n, take a uniformly random

vertex t ∈ C and compute single-source shortest paths to and

from t in subgraph G[S] by Dijkstra’s algorithm. Define W =
S \ (B+

G[S](t, 2R) ∪B−G[S](t, 2R)).

If T ⊆ B+
G[S](t, 4R)∪B−G[S](t, 4R), then identify t as a 5R-

min-center of G. Next we need to conduct further recursions

to identify the rest of C. Similar to Algorithm 2, the algorithm

grows two branches; the two branches are symmetric so we

only define the first branch.

Define L1 ⊆ W is the set of all vertices v ∈ W such that

either LN
v = −1, or there exists an ancestor node N ′ of N

with LN ′
v = −1. Then, take S1 = S \ (B−G[S](t, 2R) ∪ L1). If

L1 ∩T �= ∅, then the first branch is pruned. Otherwise, define

T1 = S1 ∩ T \B−G[S](t, 3R)

C1 = C ∩ S1 ∩B+
G[S](t, R) \B−G[S](t, 3R)

and define a new node N1 = (S1, T1, C1). Then for each

v ∈ S1 ∩W , define a label LN1
v = 1.

Before recurring on node N1, we need to identify vertices

in

C ∩B+
G[S](t, R) \ C1 = C ∩B+

G[S](t, R) ∩B−G[S](t, 3R)

as either 5R-min-centers, or assert their eccentricities are

larger than R, which is the main modification to Algorithm 2.

If T ⊆ B+
G[S](t, 2R) ∪ B−G[S](t, 4R), then the algorithm

reports all vertices in C ∩ B+
G[S](t, R) ∩ B−G[S](t, 3R) as

5R-min-centers; otherwise, the algorithm claims that all

vertices in C ∩B+
G[S](t, R)∩B−G[S](t, 3R) have eccentricities

larger than R.

For the runtime analysis, the only extra part of Algo-

rithm 3 is checking if T ⊆ B+
G[S](t, 2R)∪B−G[S](t, 4R), T ⊆

B−G[S](t, 2R) ∪ B+
G[S](t, 4R) and identifying 5R-min-centers

in C ∩ B+
G[S](t, R) ∩ B−G[S](t, 3R) and C ∩ B−G[S](t, R) ∩

B+
G[S](t, 3R). This takes time linear in the size of S, so it is

does not change the asymptotic running time.

Following similar arguments in Lemma 4.4, we can prove

that short distances between C and T ∪ C are preserved in

G[S]. It suffices to analyze the min-eccentricity of vertices

in C ∩ B+
G[S](t, R) ∩ B−G[S](t, 3R) and C ∩ B−G[S](t, R) ∩

B+
G[S](t, 3R).
Lemma 4.7: During the recursion, for any vertex c ∈

C ∩ B+
G[S](t, R) ∩ B−G[S](t, 3R), if T ⊆ B+

G[S](t, 2R) ∪
B−G[S](t, 4R), then c is a 5R-min-center of G; otherwise, the

min-eccentricity of c in G is larger than R. Symmetrically, the

statement holds for any c ∈ C ∩ B−G[S](t, R) ∩ B+
G[S](t, 3R)

as well.

Proof: Suppose T ⊆ B+
G[S](t, 2R) ∪B−G[S](t, 4R). Con-

sider any c ∈ C ∩ B+
G[S](t, R) ∩ B−G[S](t, 3R) and v ∈ T .

If v ∈ B+
G[S](t, 2R), then distG[S](c, v) ≤ distG[S](c, t) +

distG[S](t, v) ≤ 3R + 2R = 5R; if v ∈ B−G[S](t, 4R), then

distG[S](v, c) ≤ distG[S](v, t) + distG[S](t, c) ≤ 4R + R =
5R. By Lemma 4.2, the min-distance between c and vertices

not in T is bounded by 4R, so c is a 5R-min-center of G.

Now, suppose T is not in B+
G[S](t, 2R)∪B−G[S](t, 4R), then

there exists z ∈ T \(B+
G[S](t, 2R)∪B−G[S](t, 4R)). By triangle

inequality, distG[S](z, c) > 4R − 3R = R, distG[S](c, z) >
2R − R = R. By Lemma 4.4, the min-distance between c, z
in G is larger than R.

V. MIN-RADIUS AND MIN-ECCENTRICITIES IN ACYCLIC

GRAPHS

In this section we present our algorithm underlying The-

orem 1.3. Let G = (V,E, ω) be an acyclic directed graph

with positive integral edge weights. Let π : V → [n] be a

topological ordering of vertices in V , so that for any u, v ∈ V ,

if u can reach v then π(u) < π(v). To unify the algorithms

for radius and eccentricities, it suffices to prove the following

lemma.

Lemma 5.1: For any positive integer R, there is a near-linear

time randomized algorithm that computes a vertex subset

C∗ ⊆ V , such that for any c ∈ C∗, the min-eccentricity of c

903

Algorithm 3: MinEcc(S, T, C)

1 if 0 < |C| ≤ 10 log n then
2 for each c ∈ C apply Dijkstra’s algorithm to

compute single-source shortest paths in G[S];
3 for each c ∈ C such that

maxv∈T distmin
G[S](c, v) ≤ R, identify c as a

5R-min-center in G;

4 else
5 take a random vertex t ∈ C, and compute

single-source shortest paths at t in G[S];
6 define W = S \ (B+

G[S](t, 2R) ∪B−G[S](t, 2R));

7 if T ⊆ B+
G[S](t, 4R) ∪B−G[S](t, 4R) then

8 identify t as a 5R-min-center;

/* grow the first branch */
9 compute L1 ⊆W which is set of all vertices

v ∈W such that either LN
v = −1 or there exists

an ancestor node N ′ of N satisfying LN ′
v = −1;

10 S1 ← S \ (B−G[S](t, 2R) ∪ L1),

T1 ← S1 ∩ T \B−G[S](t, 3R),

C1 ← C ∩ S1 ∩B+
G[S](t, R) \B−G[S](t, 3R);

11 set labels LN1
v ← 1 for each v ∈ T1 ∩W ;

12 create new child nodes N1 = (S1, T1, C1) on the

recursion tree T ;

/* main modifications here */
13 if T ⊆ B+

G[S](t, 2R) ∪B−G[S](t, 4R) then
14 identify all vertices in

C ∩B+
G[S](t, R) ∩B−G[S](t, 3R) as

5R-min-centers;

15 if T ⊆ B−G[S](t, 2R) ∪B+
G[S](t, 4R) then

16 identify all vertices in

C ∩B−G[S](t, R) ∩B+
G[S](t, 3R) as

5R-min-centers;

/* grow the first branch */
17 if L1 ∩ T = ∅ then
18 run MinEcc(S1, T1, C1);

/* grow the second branch */
19 define N2 = (S2, C2, T2) in the symmetric manner;

20 set labels LN2
v ← −1 for each v ∈ T2 ∩W ;

21 if L2 ∩ T = ∅ then
22 run MinEcc(S2, T2, C2);

is at most 3R; plus that for any v /∈ C∗, the min-eccentricity

of c is larger than R.
If the above lemma is proved, then to approximate min-

radius, we can conduct a binary search over all polynomially

bounded integers R to find the smallest threshold such that

a 3R-min-center exists, which gives a 3-approximation. For

approximate min-eccentricities, try difference choices of

R = 1, �1+ ε/3�, �(1 + ε/3)2�, · · · , �(1 + ε/3)O(logn/ε)� and

apply the above lemma, which gives 3 + ε-approximation of

all eccentricities.

Notations. The algorithm underlying Lemma 5.1 is a recursive

subroutine. Throughout the algorithm, starting with C∗ = ∅,
it keeps adding more and more vertices to C∗. Let T be the

recursion tree. Each node of the recursion tree is associated

with two parameters (C,P) below.

(i) C ⊆ V is a set of candidate centers. Define vertex cmed ∈
C such that π(cmed) takes the median in {π(v) | v ∈ C}.
We will ensure that different tree nodes will have different

values of cmed, so we can also use cmed ∈ V to refer to

nodes of T .

(ii) P ⊆ V refers to a subset of ancestors of cmed on T .

At the root of the recursion tree, the algorithm takes parameter

C = V and P = ∅. Next we describe how the algorithm

recurs.

Recursion. Consider any node (C,P) on the recursion tree T .

Suppose C �= ∅. For each vertex c ∈ V which is an ancestor

of cmed in tree T , if π(c) < π(cmed), then define Vc = {v ∈
V | π(v) ≤ π(c)}; otherwise define Vc = {v ∈ V | π(v) ≥
π(c)}. Define S = V \⋃c∈P Vc. Apply Dijkstra’s algorithm in

the induced subgraph G[S] to compute single-source shortest

paths to and from cmed. If all vertices in S are within min-

distances at most 2R from cmed, then add cmed to C∗.
Next we try to create two child nodes of (C,P) which

are specified as (C1, P1), (C2, P2) for recursions. Let us

only describe how to compute (C1, P1); (C2, P2) can be

defined in a symmetric manner. Define C1 = C ∩ {c1 |
distG[S](cmed, c1) ≤ R} \ {cmed}. Go over every ancestor

of cmed on T not in set P which can be specified by vertex

c ∈ V \ P . To construct the set P1, initialize P1 = P , and

then consider two cases below.

• Suppose π(c) < π(cmed).
In this case, check if B−G[S](cmed, 2R) covers all vertices in

Vc ∩ S. If so, then add c to P1.

• Suppose π(c) > π(cmed).
In this case, check if B+

G[S](med, 2R) covers all vertices in

Vc ∩ S. If not, then prune the node (C1, P1) entirely.

After that, if (C1, P1) is not pruned, then append it as a

child below (C,P) on T and recurse further. This recursive

subroutine is summarized as Algorithm 4.

A. Proof of correctness
Here is a basic property of the recursion tree T .
Lemma 5.2: Consider any tree node (C,P) and any of

its ancestor on T specified by vertex c ∈ V . Then, either

904

Algorithm 4: DagMinEcc(C,P)

1 if C �= ∅ then
2 define S = V \⋃c∈P Vc;

3 apply Dijkstra’s algorithm to compute single-source

shortest paths to and from cmed in G[S];
4 if S = B+

G[S](cmed, 2R) ∪B−G[S](cmed, 2R) then
5 C∗ ← C∗ ∪ {cmed};
6 compute sets

C1 = C ∩ {c1 | distG[S](cmed, c1) ≤ R} \ {cmed}
and

C2 = C ∩{c2 | distG[S](c2, cmed) ≤ R} \ {cmed},
and initialize P1 = P2 = P ;

7 for ancestor c ∈ V \ P of cmed in the recursion
tree T do

8 if π(c) < π(cmed) then
9 if B−G[S](cmed, 2R) covers all vertices in

Vc ∩ S then
10 P1 ← P1 ∪ {c};
11 else
12 prune the child (C2, P2) in later

recursions;

13 else
14 if B+

G[S](cmed, 2R) covers all vertices in
Vc ∩ S then

15 P2 ← P2 ∪ {c};
16 else
17 prune the child (C1, P1) in later

recursions;

18 if (C1, P1) was not pruned then
19 then run DagMinEcc(C1, P1);

20 if (C2, P2) was not pruned then
21 then run DagMinEcc(C2, P2);

π(c) < minc′∈C π(c′), or π(c) > maxc′∈C π(c′). Also, for

any ancestor node (C ′, P ′) of (C,P), we have C ⊆ C ′, P ⊆
P ′.

Proof: This is straightforward by the way we define sets

C1, C2, P1, P2 during the recursion steps.

Now we prove that C makes a good set of candidates for

min-centers in some sense.

Lemma 5.3: Consider any tree node (C,P) of T . Let sets Vc

be defined as in the algorithm description, where c ranges over

all ancestors of cmed. Then, for any t ∈ C and v ∈ ⋃
c∈P Vc,

we have distmin
G (t, v) ≤ 3R.

Proof: This is proved by an induction on the depth of

node (C,P). The statement holds trivially for the basis where

(C,P) = (V, ∅). Suppose the statement holds for node (C,P),
then we will prove that its child nodes (C1, P1), (C2, P2) also

meet the requirement. Consider any vertex c ∈ P1 \P and any

vertex v ∈ Vc \
⋃

c′∈P Vc′ = Vc ∩ S. By the algorithm, since

c is added to P1, it must be the case that π(c) < π(cmed),
and that B−G[S](cmed, 2R) contains all vertices in Vc ∩ S.

Therefore, for any v ∈ Vc∩S, distG(v, t) ≤ distG[S](v, t) ≤
distG[S](v, cmed) + distG[S](cmed, t) ≤ 2R + R = 3R. A

symmetric argument also holds for (C2, P2), which completes

the induction.

Corollary 5.1: After DagMinEcc(V, ∅) terminates, for any

vertex c ∈ C∗, its min-eccentricity in G is at most 3R.

Proof: Suppose the recursion added cmed to C∗ on line-

5 of Algorithm 4 with some pair of input (C,P). By the

branching condition, all vertices in S are within min-distances

of at most 2R from cmed in G[S], thus in G as well. Also, by

the above lemma, for each v ∈ V \S, distmin
G (cmed, v) ≤ 3R.

Hence, the eccentricity of cmed in G is at most 3R.

So far we have proved that all vertices in C∗ are of min-

eccentricities at most 3R. Next we need to lower bound the

min-eccentricities of vertices outside of C∗. Consider any

vertex c∗ whose min-eccentricity is at most R. We prove

that c∗ must have been added to C∗ during the execution of

DagMinEcc(V, ∅).
Lemma 5.4: There is a tree path starting at the root on the

recursion tree T , such that for each node (C,P) on this path,

c∗ ∈ C, plus that c∗ is added to C∗ at the ending node of this

tree path.

Proof: Let us prove the first half of the statement by an

induction on depth. The basis trivially holds for the root node

as (C,P) = (V, ∅). For the inductive step, let us suppose

that the statement holds for some pair (C,P). Consider three

different cases.

(1) c∗ = cmed.

In this case, the algorithm computes single-source short-

est paths to and from c∗ in G[S] and checks if S =
B+

G[S](c
∗, 2R) ∪ B−G[S](c

∗, 2R). Noticing that by def-

inition S = V \ ⋃
c∈P Vc, each Vc is either {v |

π(v) ≤ π(c)} or {v | π(v) ≥ π(c)}, depending on

the relative order between π(c) and π(cmed), and so

vertices from S = V \⋃c∈P Vc are a consecutive interval

in terms of order π(·). Therefore, for each v ∈ S,

distmin
G[S](c

∗, v) = distmin
G (c∗, v) ≤ R, and thus S =

B+
G[S](c

∗, 2R) ∪ B−G[S](c
∗, 2R). Hence, c∗ is added to

C∗.
(2) π(c∗) > π(cmed).

Clearly, by Lemma 5.2, we have C ⊆ S. As S
forms a consecutive interval of V in terms of the topo-

logical ordering π(·), we have distG[S](cmed, c
∗) =

distG(cmed, c
∗) ≤ R. So by the algorithm description,

we have c∗ ∈ C1. To show c∗ is inherited in the

child node (C1, P1), we need to verify that (C1, P1)
is never pruned by the algorithm. Suppose otherwise,

then there exists an ancestor c ∈ V \ P , such that

π(c) > π(cmed) and Vc ∩ S \ B+
G[S](cmed, 2R) is

nonempty, say z ∈ Vc ∩ S \ B+
G[S](cmed, 2R). By

Lemma 5.2, π(z) ≥ π(c) > π(c∗). As c∗ is an R-min-

center, distG[S](c
∗, z) = distG(c

∗, z) ≤ R. However, by

triangle inequality, distG[S](c
∗, z) ≥ distG[S](cmed, z)−

905

distG[S](cmed, c
∗) > 2R − R = R, which is a contrac-

tion.

(3) π(c∗) < π(cmed).
This case is symmetric to the previous one, so we neglect

the analysis here.

B. Running time analysis

It is easy to observe that the depth of T is always bounded

by O(log n), as |C1|, |C2| ≤ |C|/2 for any tree node (C,P).
The running time is dominated by applying Dijkstra’s algo-

rithm to compute single-source shortest paths. By Lemma 5.2,

it is straightforward to maintain the subset S along with P . So

we only need to care about the total size of subgraphs G[S]
across all tree nodes. It suffices to prove the following lemma.

Lemma 5.5: For any vertex v, it belongs to set S for at most

O(log2 n) different tree nodes (C,P).
Proof: If we only look at the value of cmed of each node

(C,P) of the recursion tree T , then it corresponds to a binary

search tree of all vertices from V . Fix any c ∈ V which is

an ancestor of v on T ; without loss of generality, assume

π(c) ≥ π(v). Consider all the descendants t of c such that

π(t) > π(c).
We argue that v contributes to the SSSP instances of at

most O(log n) of such descendants t of c during the recursion

DagMinEcc. In fact, suppose the recursion at t has input

pair (C,P) and t is the cmed vertex with respect to C. Then

according to line-9 through line-12 of Algorithm 4, either c is

added to P1, or the child node (C2, P2) is pruned.

• If c is added to P1, then according to Lemma 5.2, for any

descendant of c specified by (C ′, P ′), we have c ∈ P1 ⊆ P ′.
As π(v) ≤ π(c) < π(t), v does not participate in the SSSP

computation at node (C ′, P ′).
• If (C2, P2) is pruned, then v can only contribute to the first

branch (C1, P1) of (C,P).

Therefore, v contributes to the SSSP instances of at most

one of the two children of t. So, in the end, all tree nodes

whose SSSP instances contain v should form a tree path

starting from c to a leaf node. So the total contribution of v
is bounded by O(log n). Summing over all different ancestors

c, the overall contribution of c is bounded by O(log2 n). See

Figure 2 for an illustration.

By the above lemma, for each vertex v ∈ V , during all

invocations of DagMinEcc, it appears in the SSSP instances

for at most O(log2 n) times. Therefore, the total cost of SSSP

instances is bounded by Õ(m).

REFERENCES

[1] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
Subcubic equivalences between graph centrality problems, apsp and
diameter. In Proceedings of the twenty-sixth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 1681–1697. SIAM, 2014.

[2] Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Ap-
proximation and fixed parameter subquadratic algorithms for radius and
diameter in sparse graphs. In Proceedings of the twenty-seventh annual
ACM-SIAM Symposium on Discrete Algorithms, pages 377–391. SIAM,
2016.

[3] Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi, and Arie Tamir.
Efficient algorithms for center problems in cactus networks. Theoretical
Computer Science, 378(3):237–252, 2007.

root

v

c

t

Fig. 2. For any ancestor c of v on the recursion tree T , consider all nodes
on the opposite branch of c where the SSSP instance involes vertex v. Then
we can prove that all these nodes should form a tree path starting at c on the
recursion tree T . Ranging over different choices of c, all such nodes should
form at most O(logn) tree paths, as drawn by the dotted lines, and so the
total number of such nodes is bounded by O(log2 n).

[4] Piotr Berman and Shiva Prasad Kasiviswanathan. Faster approximation
of distances in graphs. In Workshop on Algorithms and Data Structures,
pages 541–552. Springer, 2007.

[5] Shiri Chechik, Daniel H Larkin, Liam Roditty, Grant Schoenebeck,
Robert E Tarjan, and Virginia Vassilevska Williams. Better approxi-
mation algorithms for the graph diameter. In Proceedings of the twenty-
fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1041–
1052. SIAM, 2014.

[6] Victor Chepoi, Feodor Dragan, and Yann Vaxes. Center and diameter
problems in plane triangulations and quadrangulations. In SODA,
volume 2, pages 346–355. Citeseer, 2002.

[7] Fan RK Chung. Diameters of graphs: Old problems and new results.
Congressus Numerantium, 60(2):295–317, 1987.

[8] Derek G Corneil, Feodor F Dragan, Michel Habib, and Christophe Paul.
Diameter determination on restricted graph families. In International
Workshop on Graph-Theoretic Concepts in Computer Science, pages
192–202. Springer, 1998.

[9] Lenore Cowen and Christopher G Wagner. Compact roundtrip routing
for digraphs. In Symposium on Discrete Algorithms: Proceedings of the
tenth annual ACM-SIAM symposium on Discrete algorithms, volume 17,
pages 885–886. Citeseer, 1999.

[10] Mina Dalirrooyfard and Jenny Kaufmann. Approximation algorithms
for min-distance problems in dags. arXiv preprint arXiv:2106.02120,
2021.

[11] Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, Nicole
Wein, Yinzhan Xu, and Yuancheng Yu. Approximation algorithms for
min-distance problems. In 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[12] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks
cannot compute their diameter in sublinear time. In Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 1150–1162. SIAM, 2012.

[13] S Louis Hakimi. Optimum locations of switching centers and the abso-
lute centers and medians of a graph. Operations research, 12(3):450–
459, 1964.

[14] Liam Roditty and Virginia Vassilevska Williams. Fast approximation
algorithms for the diameter and radius of sparse graphs. In Proceedings
of the forty-fifth annual ACM symposium on Theory of computing, pages
515–524, 2013.

[15] Oren Weimann and Raphael Yuster. Approximating the diameter of
planar graphs in near linear time. ACM Transactions on Algorithms
(TALG), 12(1):1–13, 2015.

[16] Christian Wulff-Nilsen. Wiener index, diameter, and stretch factor of a
weighted planar graph in subquadratic time. Citeseer, 2008.

[17] Raphael Yuster. Computing the diameter polynomially faster than apsp.
arXiv preprint arXiv:1011.6181, 2010.

906

