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Abstract—Compressed sensing has been a very successful
high-dimensional signal acquisition and recovery technique that
relies on linear operations. However, the actual measurements of
signals have to be quantized before storing or processing them.
1(One)-bit compressed sensing is a heavily quantized version
of compressed sensing, where each linear measurement of a
signal is reduced to just one bit: the sign of the measurement.
Once enough of such measurements are collected, the recovery
problem in 1-bit compressed sensing aims to find the original
signal with as much accuracy as possible. The recovery problem
is related to the traditional “halfspace-learning” problem in
learning theory.

For recovery of sparse vectors, a popular reconstruction
method from one-bit measurements is the binary iterative hard
thresholding (BIHT) algorithm. The algorithm is a simple
projected subgradient descent method, and is known to converge
well empirically, despite the nonconvexity of the problem. The
convergence property of BIHT was not theoretically justified,
except with an exorbitantly large number of measurements (i.e.,
a number of measurement greater than max{k10, 2448, k3.5/ε},
where k is the sparsity and ε denotes the approximation error,
and even this expression hides other factors). In this paper we
show that the BIHT estimates converge to the original signal
with only Õ( k

ε
) measurements. Note that, this dependence on k

and ε is optimal for any recovery method in 1-bit compressed
sensing. With this result, to the best of our knowledge, BIHT is
the only practical and efficient (polynomial time) algorithm that
requires the optimal number of measurements in all parameters
(both k and ε). This is also an example of a gradient descent
algorithm converging to the correct solution for a nonconvex
problem, under suitable structural conditions.

Index Terms—compressed sensing, quantization, gradient
descent, sparsity

I. INTRODUCTION

One-bit compressed sensing (1bCS) is a basic nonlinear

sampling method for high-dimensional sparse signals, intro-

duced first in [2]. Consider an unknown sparse signal x ∈ R
n

with sparsity (number of nonzero coordinates) ||x||0 ≤ k,

This work is supported in part by NSF awards 2133484 and 2127929.

A full version of this paper with detailed proofs is available online [1].

where k � n. In the 1bCS framework, measurements of

x are obtained with a sensing matrix A ∈ R
m×n via the

observations of signs:

b = sign(Ax).

The sign function (formally defined later) is simply the ± signs

of the coordinates.
Compressed sensing, the method of obtaining signals by

taking few linear projections [3], [4] has seen a lot of success

in the past two decades. 1bCS is an extremely quantized

version of compressed sensing where only one bit per sample

of the signal is observed. In terms of nonlinearity, this is

one of the simplest examples of a single-index model [5]:

yi = f(〈ai,x〉), i = 1, . . . ,m, where f is a coordinate-

wise nonlinear operation. As a practical case study and for

its aesthetic appeal, 1bCS has been studied with interest in

the last few years, for example, in [6]–[10].
Notably, it was shown in [11] that m = Θ̃(k/ε) measure-

ments are necessary and sufficient (up to logarithmic factors)

to approximate x within an ε-ball. But the reconstruction

method used to obtain this measurement complexity is via

exhaustive search, which is practically infeasible. A linear

programming based solution (which runs in polynomial time)

that has measurement complexity O( k
ε5 log

2 n
k ) was provided

in [12]. Note the suboptimal dependence on ε.
An incredibly well-performing algorithm turned out to the

binary iterative hard thresholding (BIHT) algorithm, proposed

in the former work [11]. BIHT is a simple iterative algorithm

that converges to the correct solution quickly in practice.

However, until later, the reason of its good performance was

somewhat unexplained, barring the fact that it is actually a

proximal gradient descent algorithm on a certain loss function

(provided in Eq. (8)). In the algorithm, the projection is

taken onto a nonconvex set (namely, selecting the “top-k”

coordinates and then normalizing), which usually makes a

theoretical analysis unwieldy. Since the work of [11] there

has been some progress explaining the empirical success of the

BIHT algorithm. In particular, it was shown in [13, Sec. 3.4.2]

that after only the first iteration of the BIHT algorithm, an
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approximation error ε is achievable with Õ( k
ε4 ) measurements,

though the same result is shown in [14, Sec. 5] with Õ( k
ε2 )

measurements, so the former result might just be a typo.

Similar results also appear in [15, Sec. 3.5]. In all these

results, the dependence on ε, which is also referred to as

the error-rate, is suboptimal. Furthermore, these works also

do not show convergence as the algorithm iterates further.

Indeed, according to these works, O( k
ε2 log

n
k ) measurements

are sufficient to bring the error down to ε after just the

first iteration of BIHT. Beyond the first iteration, it was

shown in [16] that the iterates of BIHT remain bounded,

maintaining the same order of accuracy for the subsequent

iterations. This, however, does not imply a reduction in the

approximation error after the first iteration. This issue has been

partially mitigated in [17], which uses a normalized version

of the BIHT algorithm. While [17] manage to show that the

normalized BIHT algorithm can achieve optimal dependence

on the error-rate as the number of iterations of BIHT tends

to infinity, i.e., m ∼ 1
ε , their result is only valid when

m > max{ck10 log10 n
k , 24

48, c′
ε (k log

n
k )

7/2}. This clearly is

highly sub-optimal in terms of dependence on k, and does not

explain the empirical performance of the algorithm. This has

been left as the main open problem in this area as per [17].

A. Our Contribution and Techniques

In this paper, we show that the normalized BIHT algorithm

converges with a sample complexity having optimal depen-

dence on both the sparsity k and error ε (see, Theorem III.1

below). As such, we further show the convergence rate with

respect to iterations for this algorithm. In particular, we show

that the approximation error of BIHT decays as O(ε1−2−t

)
with the number of iteration t. This encapsulates the very fast

convergence of BIHT to the ε-ball of the actual signal. Fur-

thermore, this also shows that after just one iteration of BIHT,

an approximation error of
√
ε is achievable, with O(kε log

n
k )

measurements, which matches the observations of [14], [15]

regarding the performance of BIHT with just one iteration.

Due to the aforementioned fast rate, the approximation error

quickly converges to ε resulting in a polynomial time algorithm

for recovery in 1bCS with only Õ(kε ) measurements, the

optimal.

There are several difficulties in analyzing BIHT that were

pointed out in the past, for example in [17]. First of all, the

loss function is not differentiable, and therefore one has to

rely on (sub)gradients, which prohibits an easier analysis of

convergence. Secondly, the algorithm projects onto nonconvex

sets, so the improvement of the approximation in each iteration

is not immediately apparent. To tackle these hurdles, the key

idea is to use some structural property of the measurement

or sampling matrix. Our result relies on such a property

of the sampling matrix A, called the restricted approximate

invertibility condition (RAIC). A somewhat different invert-

ibility property of a matrix also appears in [17]. However, our

definition, which looks more natural, allows for a significantly

different analysis that yields the improved sample complexity.

Thereafter, we show that random matrices with i.i.d. Gaussian

entries satisfy the invertibility condition with overwhelmingly

large probability.

The invertibility condition that is essential for our proof

intuitively states that treating the signed measurements as

some “scaled linear” measurements should lead to adequate

estimates, which is an overarching theme of recovery in

generalized linear models. Further, our condition quantifies

the “goodness” of these estimates in a way that allows us

to show a contraction in the BIHT iterations. This contraction

of approximation error comes naturally from our definition.

In contrast, while a similar idea appears in [17], showing

the contraction of approximate error is a highly involved

exercise therein. As another point of interest, [11, Sec. 4.2]

empirically observed that in normalized BIHT, the step-size

of the gradient descent algorithm must be carefully chosen,

or else the algorithm will not converge. Our definition of the

invertibility condition gives some intuitive justification on why

the algorithm is so sensitive to step-size. Our analysis relies

on the step-size being set exactly to η =
√
2π. More generally,

if η were to deviate too far from
√
2π, the contraction would

be lost.

So the technical burden of our main result turns out to be

to show Gaussian matrices do satisfy the invertibility condition

(Definition III.1 below). We need to show that for every

pair of sparse unit vectors the condition holds. We resort

to constructing a cover, an “epsilon-net,” of the unit sphere,

and then decompose the invertibility conditions for any two

vectors in the sphere into two components. First, we show

that it is satisfied for two vectors in the epsilon-net whose

distance is sufficiently large, and then we show that only

small error is added when instead of the net points, vectors

close to them are considered. This leads to a “large-distance”

and “small-distance” analysis. For these two parts, we require

differently curated concentration inequalities, which form the

bulk of the techniques used in this paper. Notably, we cannot

just extend the invertibility condition to points outside the net

by simply using, e.g., the triangle inequality, due to the sign

operation. But at the same time, the sign operation significantly

reduces the number of matrix-vector products we need to

union bound over. It turns out that, because we condition on

the rotational uniformity of the measurements, this number is

not “too large,” and will not increase the sample complexity

beyond the optimal.

One important aspect of BIHT’s convergence is that as

the approximation error in tth iteration improves, it makes

possible an even smaller error for the (t+1)th approximation.

This can again be intuitively explained by the rotational sym-

metry of the measurements, as well as the sign operation. Each

iteration of BIHT involves fewer and fewer measurements, and

we can track the number of measurements involved by tracking

the number of measurements that are mismatches between the

vector x and its approximation at the tth iteration. This is used

in the “large-distance” regime, where the pairs of points must

be at least some distance τ from each other (note that this

qualifier is necessary). On the other hand, once the distance

is smaller than τ , the Chernoff bound that is used to track the
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mismatch is no longer sufficient (using that we would end

up needing a suboptimal sample complexity). That is why

we need to use a separate analysis for the “small-distance”

regime. In this regime, we instead try to keep a count of the

number of distinct vectors obtained by sign(Ax) for all k-

sparse unit norm x within a “small distance” from a fixed net

point. Because of the rotational uniformity, this count can also

be tightly quantified, and it turns out to be small enough to

give us the optimal sample complexity.

B. Other Related Works

A generalization of 1bCS is the noisy version of the prob-

lem, where the binary observations yi ∈ {+1,−1} are random

(noisy): i.e., yi = 1 with probability f(〈ai,x〉), i = 1, . . . ,m,

where f is a potentially nonlinear function, such as the sigmoid

function. Recovery guarantees for such models were studied

in [9]. In another model, observational noise can appear before

the quantization, i.e., yi = sign (〈ai,x〉+ ξi) , i = 1, . . . ,m,
where ξi is random noise. As observed in [5], [17], the

noiseless setting (also considered in this work) is actually more

difficult to handle because the randomness of noise allows for

a maximum likelihood analysis. Indeed, having some control-

over ξis (or just assuming them to be i.i.d. Gaussian), helps

estimate the norm of x [18], which is otherwise impossible

with just sign measurements, as in our model (this is called

introducing dither, a well-known paradigm in signal process-

ing). In a related line of work, one-bit measurements are taken

by adaptively varying the threshold (in our case the threshold

is always 0), which can significantly reduce the error-rate, for

example see [19] and [20], the latter being an application of

sigma-delta quantization methods.

Yet another line of work in 1bCS literature takes a more

combinatorial avenue and looks at the support recovery prob-

lem and constructions of structured measurement matrices.

Instances of these works are [7], [8], [21], [22]. However, the

nature of these works is quite different from ours.

C. Organization

The rest of the paper is organized as follows. The required

notations and definitions to state the main result appear in

Section II, where we also formally define the 1-bit com-

pressed sensing problem and the reconstruction method, the

normalized binary iterative hard thresholding algorithm (Al-

gorithm 1). We provide our main result in Section III, which

establishes the convergence rate of BIHT (Theorem III.1) and

the asymptotic error-rate (Corollary III.2) with the optimal

measurement complexity. In Section III-B we also overview

the derivation of the result, including our invertibility condition

for Gaussian matrices. In Section IV we provide the main

proof of the BIHT convergence algorithm, assuming that a

structural property is satisfied by the measurement matrix.

Proof of this structural property for Gaussian matrices is the

major technical contribution of this paper (Theorem III.3).

However, due to the space limitation, we are unable to give

the full proof here. It can be found in the full version of this

paper which is available online [1]. Proofs of all lemmas and

intermediate results that are omitted here can also be found in

the the full version. We conclude with some future directions

in Section V.

II. PRELIMINARIES

A. Notations and Definitions

The set of all k-sparse real-valued vectors in n dimension

is denoted by Σn
k . The �2-sphere in R

n is written Sn−1 ⊂ R
n,

and hence, Sn−1 ∩ Σn
k ⊂ Σn

k is the subset of k-sparse real-

valued vectors with unit norm. The Euclidean ball of radius

τ ≥ 0 and center u ∈ R
n is defined as Bτ (u) = {x ∈ R

n :
‖u − x‖2 ≤ τ}. Matrices are denoted in uppercase, boldface

text, e.g., M ∈ R
m×n, with its (i, j)-entries written Mi,j . The

n × n identity matrix written as In×n. Vectors are likewise

indicated by boldface font, using lowercase and uppercase

lettering for nonrandom and random vectors, respectively, e.g.,

u ∈ R
n and U ∼ N (0, In×n), with entries denoted such that,

e.g., u = (u1, . . . , un). As customary, N (0, In×n) denotes the

i.i.d. n-variate standard normal distribution (with the univariate

case,N (0, 1)). Moreover, random sampling from a distribution

D is denoted by X ∼ D, and likewise, drawing uniformly at

random from a set X is written as X ∼ X . For any pair of

real-valued vectors u,v ∈ R
n, write dSn−1(u,v) ∈ R≥0 for

the distance between their projections onto the �2-sphere, as

well as θu,v ∈ [0, π] and θu,v ∈ [−π, π] for, respectively,

the angular distance and signed angular distance (for a given

convention of positive and negative directions of rotation)

between them. Formally,

dSn−1(u,v) =

⎧⎪⎪⎨
⎪⎪⎩

∥∥∥ u
‖u‖2

− v
‖v‖2

∥∥∥
2
, if u,v 
= 0,

0, if u = v = 0,

1, otherwise,

(1)

θu,v = arccos

( 〈u,v〉
‖u‖2 ‖v‖2

)
. (2)

Note that these are related by

θu,v = arccos

(
1− d2Sn−1(u,v)

2

)
(3)

or equivalently,

dSn−1(u,v) =
√

2(1− cos(θu,v)). (4)

The sign function, sign : R→ {+1,−1}, is defined in the

following way:

sign (x) =

{
1, x ≥ 0,

−1, x < 0.

The function can be extended to vectors, i.e., sign : Rn →
{+1,−1}n, by just applying it on each coordinate. Addition-

ally, for a condition C ∈ {true, false}, define the indicator

function I : {true, false} → {0, 1} by

I (C) =

{
0, if C = false,

1, if C = true.
(5)
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We are going use the following universal constants

a, b, c, c1, c2 > 0 in the statement of our results. Their values

are

a = 16, b � 379.1038, c = 32,

c1 =

√
3π

b

(
1 +

16
√
2

3

)
, (6)

c2 =
3

b

(
1 +

4π

3
+

8
√
3π

3
+ 8
√
6π

)
.

Additionally, in the BIHT algorithm, the step-size η > 0 is

fixed as η =
√
2π.

We define two hard thresholding operations: the top-k
hard thresholding operation and the subset hard thresholding
operation, defined below in Definitions II.1 and II.2. When

clear from context, we will omit the distinction simply refer

to a hard thresholding operation.

Definition II.1 (Top-k hard thresholding operation). For k ∈
Z+, k ≤ n, the top-k hard thresholding operation, Tk : Rn →
Σn

k , projects a real-valued vector u ∈ R
n into the space of

k-sparse real-valued vectors by setting all but the k largest (in
absolute value) entries in u to 0 (with ties broken arbitrarily).

Definition II.2 (Subset hard thresholding operation). For a
k-subset of coordinates J ⊆ [n], the subset hard thresholding

operation associated with J , TJ : Rn → Σn
k , projects a real-

valued vector u ∈ R
n into the space of k-sparse real-valued

vectors by TJ (u)j = uj · I(j ∈ J) for each j ∈ [n].

B. 1-Bit Compressed Sensing and the BIHT Algorithm

A measurement matrix is denoted by A ∈ R
m×n and

has rows, A(1), . . . ,A(m) ∼ N (0, In×n), with i.i.d. Gaussian

entries. The one-bit measurements of an unknown signal,

x ∈ Σn
k , are performed by:

b = sign (Ax) (7)

Throughout this work, the unknown signals, x ∈ Σn
k , are

assume to have unit norm since information about the norm

is lost due to the one-bit quanitization of the measurements.

(For interested readers, see [18] for techniques, e.g., dithering,

to reconstruct the signal’s norm in 1-bit compressed sensing.)

Given A and b, the goal of 1-bit compressed sensing is to

recover x as accurately as possible. We measure the accuracy

of the reconstruction, x̂ ∈ Σn
k , by the metric dSn−1(x, x̂).

The BIHT reconstruction algorithm, proposed by [11],

comprises two iterative steps: (i) a gradient descent step, which

finds a dense approximation, x̃ ∈ R
n, followed by (ii) a

projection by x̃ �→ x̂ = Tk (x̃) into the space of k-sparse

real-valued vectors. As shown by [11], the gradient step, (i),

aims to minimize the objective function

J (x̂;x) =
∥∥[ sign (Ax)� sign (Ax̂) ]−

∥∥
1
, (8)

where u�v = (u1v1, . . . , unvn) and ([u]−)j = uj ·I(uj < 0).
While several variants of the BIHT algorithm have been

proposed, see, [11, Section 4], this work focuses on the

normalized BIHT algorithm, where the projection step, (ii),

is modified to project the approximation onto the k-sparse,

�2-unit sphere, Sn−1 ∩ Σn
k . Algorithm 1 provides the version

of the BIHT algorithm studied in this work.

Algorithm 1: Binary iterative hard thresholding with

normalized projections (normalized BIHT)

1 Set η =
√
2π

2 x̂(0) ∼ Sn−1 ∩ Σn
k

3 for t = 1, 2, 3, . . . do
4 x̃(t) ←

x̂(t−1) + η
mAT · 12

(
sign(Ax)− sign(Ax̂(t−1))

)
5 x̂(t) ← Tk(x̃

(t))

‖Tk(x̃(t))‖2

III. MAIN RESULTS AND TECHNIQUES

A. BIHT Convergence Theorem

Our main result is presented below. Informally, it states

that with m = O(kε log
n

k
√
ε
) one-bit (sign) measurements, it

is possible to recover any k-sparse unit vector within an ε-ball,

by means of the normalized BIHT algorithm.

Theorem III.1. Let a, b, c > 0 be universal constants as in
Eq. (6). Fix ε, ρ ∈ (0, 1) and k,m, n ∈ Z+, where

m ≥ 4bck

ε
log
(en
k

)
+

2bck

ε
log

(
12bc

ε

)
+

bc

ε
log

(
a

ρ

)
.

(9)

Let the measurement matrix A ∈ R
m×n have rows with i.i.d.

Gaussian entries. Then, uniformly with probability at least
1 − ρ, for every unknown k-sparse real-valued unit vector,
x ∈ Sn−1 ∩ Σn

k , the normalized BIHT algorithm produces a
sequence of approximations, {x̂(t) ∈ Sn−1∩Σn

k}t∈Z≥0
, which

converges to the ε-ball around the unknown vector x at a rate
upper bounded by

dSn−1

(
x, x̂(t)

)
≤ 22

−t

ε1−2−t

(10)

for each t ∈ Z≥0.

Corollary III.2. Under the conditions stated in Theorem III.1,
uniformly with probability at least 1−ρ, for every unknown k-
sparse real-valued unit vector, x ∈ Sn−1∩Σn

k , the sequence of
BIHT approximations, {x̂(t)}t∈Z≥0

, converges asymptotically
to the ε-ball around the unknown vector x. Formally,

lim
t→∞

dSn−1

(
x, x̂(t)

)
≤ ε. (11)

B. Technical Overview

The analysis in this work is divided into two components:

(I) the proofs of Theorem III.1 and Corollary III.2, which

show the universal convergence of the BIHT approximations

by using the restricted approximate invertibility condition
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(RAIC) for Gaussian measurement matries (defined below),

and (II) the proof of the main technical theorem, Theorem III.3

(also below), which derives the RAIC for such a measurement

matrix. As already mentioned, the second piece of analysis is

only outlined this version but can be found in its entirety in

the full version [1].
Informally speaking, we show that the approximation error,

ε(t), of the BIHT algorithm at step t > 0 satisfies a recurrence

relation of the form ε(t) = a1
√
εε(t− 1) + a2ε. It is not a

difficult exercise to see that we get the desired convergence

rate from this recursion, starting from a constant error. The

recursion itself is a result of the RAIC property, which tries

to capture the fact that the difference between two vectors x
and y can be reconstructed by applying AT on the difference

of the corresponding one-bit measurements. Next we explain

the technicalities of these different components of the proof.
1) The Restricted Approximate Invertibility Condition
The main technical contribution is an improved sample

complexity for the restricted approximate invertibility condi-

tion (RAIC). A different invertibilty condition was proposed

by [17]. A comparison of the two definitions can be found

in the full version of this paper [1]. The definition of RAIC

considered in this work is formalized in Definition III.1, which

uses the following notations. For m,n ∈ Z+, let A ∈ R
m×n

be a measurement matrix with rows A(i) ∈ R
n, i ∈ [m]. Then,

define the functions hA, hA;J : Rn × R
n → R

n by

hA (x,y) =
η

m
AT · 1

2
(sign (Ax)− sign (Ay)) (12)

and

hA;J (x,y) = T supp(x)∪supp(y)∪J (hA (x,y)) (13)

for x,y ∈ R
n and J ⊆ [n], and where η =

√
2π.

Definition III.1 (Restricted approximate invertibility condition

(RAIC)). Fix δ, a1, a2 > 0 and k,m, n ∈ Z+ such that 0 <
k < n. The (k, n, δ, a1, a2)-RAIC is satisfied by a measurement
matrix A ∈ R

m×n if

‖(x− y)− hA;J(x,y)‖2 ≤ a1
√
δdSn−1(x,y) + a2δ (14)

uniformly for all x,y ∈ Sn−1 ∩Σn
k and all J ⊆ [n], |J | ≤ k.

Theorem III.3 below is the primary technical result in

this analysis and establishes that m-many i.i.d. Gaussian

measurements satisfy the (k, n, δ, c1, c2)-RAIC, where the

sample complexity for m matches the lower bound of [11,

Lemma 1]. The proof of the theorem is deferred to the full

version [1], while an overview of the proof is given below in

Section III-B3.

Theorem III.3. Let a, b, c1, c2 > 0 be universal constants as
defined in Eq. (6). Fix δ, ρ ∈ (0, 1) and k,m, n ∈ Z+ such
that 0 < k < n and

m =
b

δ
log

((
n

k

)2(
n

2k

)(
12b

δ

)2k (
a

ρ

))

= O

(
k

δ
log
( n

δk

)
+

1

δ
log

(
1

ρ

))
. (15)

Let A ∈ R
m×n be a measurement matrix whose rows have

i.i.d. Gaussian entries. Then, A satisfies the (k, n, δ, c1, c2)-
RAIC with probability at least 1 − ρ. To state this explicitly,
uniformly with probability at least 1−ρ, for all x,y ∈ Sn−1∩
Σn

k and all J ⊆ [n], |J | ≤ k,

‖(x− y)− hA;J(x,y)‖2 ≤ c1
√
δdSn−1(x,y) + c2δ. (16)

2) The Uniform Convergence of BIHT Approximations
Assuming the desired RAIC property (i.e., the correctness

of Theorem III.3), the uniform convergence of BIHT approx-

imations is shown as follows.

(a) The 0th BIHT approximation, which is simply drawn

uniformly at random, x̂(0) ∼ Sn−1 ∩ Σn
k , can be seen

to have an error of at most 2 (the diameter of the

unit sphere). Then, the following argument handles each

subsequent tth BIHT approximation, t ∈ Z+.

(b) Using standard techniques, the error of any tth BIHT

approximation, t ∈ Z+, can be shown to be (determinis-

tically) upper bounded by

dSn−1

(
x, x̂(t)

)
≤ 4
∥∥(x− x̂(t−1)

)
− hA;supp(x̂t)

(
x, x̂(t−1)

)∥∥
2
. (17)

(c) Subsequently, observing the correspondence between

Eq. (17) and the RAIC, Theorem III.3 is applied to further

bound the tth approximation error in (17) from above by

dSn−1

(
x, x̂(t)

)
≤ 4

(
c1

√
ε

c
dSn−1

(
x, x̂(t−1)

)
+ c2

ε

c

)

= 4c1

√
ε

c
dSn−1

(
x, x̂(t−1)

)
+ 4c2

ε

c
.

(18)

(d) Then, the recurrence relation corresponding to the right-

hand-side of Eq. (18),

ε(0) = 2, (19)

ε(t) = 4c1

√
ε

c
ε(t− 1) + 4c2

ε

c
, t ∈ Z+, (20)

can be shown to monotonically decrease with t, asymp-

totically converging as ε(t) ∼ ε, and pointwise upper

bounded by ε(t) ≤ 22
−t

ε1−2−t

for each t ∈ Z≥0.

The asymptotic convergence and convergence rate of the

BIHT apprximations to the ε-ball around the unknown

vector x directly follow. This will complete the analysis

for the universal convergence of the BIHT algorithm.

3) The RAIC for an i.i.d. Gaussian Matrix
Fixing δ, ρ ∈ (0, 1) and letting c1, c2 > 0 be the universal

constants specified in Eq. (6), Theorem III.3 establishes that

the measurement matrix A ∈ R
m×n with i.i.d. Gaussian

entries satisfies the (k, n, δ, c1, c2)-RAIC with high probability

(at least 1−ρ) when the number of measurements m is at least
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what is stated in Eq. (15). The proof of the theorem is outlined

as follows.

(a) Writing τ = δ
b , suppose {Cτ ;J ⊆ Sn−1 ∩ Σn

k : J ⊆
[n], |J | ≤ k} are τ -nets over the subset of vectors in

Sn−1 ∩ Σn
k whose support sets are precisely J . Then,

a τ -net over the entire set of k-sparse real-valued vec-

tors, Sn−1 ∩ Σn
k , is constructed by the union Cτ =⋃

J⊆[n]:|J|≤k Cτ ;J . The goal will be to show that with

high probability certain properties hold for (almost) every

ordered pair (u,v) ∈ Cτ×Cτ , or for every vector u ∈ Cτ .

The desired RAIC will then follow from extending the

properties to every pair x,y ∈ Sn−1 ∩ Σn
k .

(b) The first property, corresponding with the “large distance”

regime (recall the discussion in Section I-A), requires that

with probability at least 1 − ρ1, for every ordered pair,

(u,v) ∈ Cτ × Cτ , in the τ -net with distance at least

dSn−1(u,v) ≥ τ and for every J ⊆ [n], |J | ≤ 2k,

‖(u− v)− hA;J(u,v)‖2 ≤ b1
√
δdSn−1(u,v), (21)

where b1 > 0 is a small universal constant (see, Eq. (6)).

(c) The second property, corresponding with the “small dis-

tance” regime, requires that with probability at least

1− ρ2, for each u ∈ Cτ , each x ∈ Bτ (u) ∩ Sn−1 ∩ Σn
k ,

and each J ⊆ [n], |J | ≤ 2k,

‖(x− u)− hA;J(x,u)‖2 ≤ b2δ, (22)

where b2 > 0 is a small universal constant (again see,

Eq. (6)).

(d) Requiring ρ1 + ρ2 = ρ, the last step of the proof derives

the RAIC claimed in the theorem by using the results

from Steps (b) and (c), such that the condition holds with

probability at least 1− ρ uniformly in all possible cases.

We provide a more thorough overview of Steps (b) and (c)

next in Section III-B4, and do likewise for Step (d) in Section

III-B5.
4) Large- and Small-Distance Regimes – Steps (b) and (c)
Before discussing the approach to Steps (b) and (c), let us

first motivate the argument. Let x,y ∈ Sn−1∩Σn
k . Notice that

the function hA(x,y) can be written as

hA (x,y)

=

√
2π

m
AT · 1

2

(
sign(Ax)− sign(Ay)

)
=

√
2π

m

m∑
i=1

A(i) · 1
2

(
sign(〈A(i),x〉)− sign(〈A(i),y〉)

)

=

√
2π

m

m∑
i=1

A(i) · sign(〈A(i),x〉)

· I(sign(〈A(i),x〉) 
= sign(〈A(i),y〉)).
Hence, given the random vector

Rx,y =
1

2
(sign (Ax)− sign (Ay)) ,

which takes values in {−1, 0, 1}m, and defining the random

variable

Lx,y = ‖Rx,y‖0 =

m∑
i=1

I(sign(〈A(i),x〉) 
= sign(〈A(i),y〉)),

which tracks number of mismatches (again, recall the discus-

sion in Section I-A), the random vector (hA (x,y) | Rx,y)
becomes a function of only Lx,y-many random vectors, where

Lx,y ≤ m. Such conditioning on Rx,y will allow for

tighter concentration inequalities related to (an orthogonal

decomposition of) the random vector (hA (x,y) | Rx,y).
Note that these concentration inequalities (detailed in the full

version [1, Lemma A.1]) provide the same inequality for

any Lx,y = ‖Rx,y‖0 and Lx′,y′ = ‖Rx′,y′‖0, whenever

Lx,y = L′
x′,y′ , where x,y,x′,y′ ∈ Sn−1 ∩ Σn

k , and thus

it suffices to have a handle on (an appropriate subset of) the

random variables {Lx,y : x,y ∈ Sn−1 ∩ Σn
k}.

With this intuition in mind, we will now lay down the

specifics of deriving the results achieved by Steps (b) and (c)

for the “large-” and “small-distance” regimes. Each follows

from two primary arguments. First, for a given u,v ∈ Cτ ,

the associated random variable Lu,v is bounded. Then, con-

ditioning on Lu,v, the desired properties in Steps (b) and (c)

follow from the appropriate concentration inequalities related

to the decomposition of hA;J (x,y) into three orthogonal

components.

Specifically, Step (b) is achieved as follows.

(i) Consider any (u,v) ∈ Cτ×Cτ such that dSn−1(u,v) ≥ τ ,

and fix J ′ ⊆ [n], |J ′| ≤ 2k, arbitrarily.

(ii) It can be shown that for a small s ∈ (0, 1), the number,

Lu,v, of points among A(i), i ∈ [m], for which a mis-

match occurs, i.e., sign(〈A(i),u〉) 
= sign(〈A(i),v〉), is

bounded in the range

Lu,v ∈
[
(1− s)

θu,vm

π
, (1 + s)

θu,vm

π

]
(23)

uniformly with high probability for all (u,v) ∈ Cτ ×Cτ .

(iii) Define gA : Rn × R
n → R

n by

gA(u,v) =hA(u,v)

−
〈

u− v

‖u− v‖2
, hA(u,v)

〉
u− v

‖u− v‖2
−
〈

u+ v

‖u+ v‖2
, hA(u,v)

〉
u+ v

‖u+ v‖2
(24)

where gA;J ′(u,v) = T supp(u)∪supp(v)∪J ′ (gA(u,v)).
Note that hA and hA;J ′ can then be orthogonally de-

composed into

hA(u,v) =

〈
u− v

‖u− v‖2
, hA(u,v)

〉
u− v

‖u− v‖2
+

〈
u+ v

‖u+ v‖2
, hA(u,v)

〉
u+ v

‖u+ v‖2
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+ gA(u,v) (25)

and

hA;J ′(u,v) =T supp(u)∪supp(v)∪J ′ (hA(u,v))

=

〈
u− v

‖u− v‖2
, hA(u,v)

〉
u− v

‖u− v‖2
+

〈
u+ v

‖u+ v‖2
, hA(u,v)

〉
u+ v

‖u+ v‖2
+ gA;J ′(u,v). (26)

Note that [17] similarly uses such a decomposition to

show their RAIC, and this decomposition technique ap-

pears earlier in [15].

(iv) Conditioned on Lu,v ∈ [(1− s)
θu,vm

π , (1+ s)
θu,vm

π ], the

desired property in Eq. (21) is derived from Eq. (26) using

a concentration inequality proved in the full version [1]

together with standard techniques, e.g., the triangle in-

equality.

(v) A union bound extends Eq. (21) to hold uniformly over

Cτ×Cτ and all J ′ ⊆ [n], |J ′| ≤ 2k, with high probability,

completely Step (b).

While Step (c) takes a similar approach, it requires a some-

what different argument involving an additional construction,

as detailed next.

(i) Let u ∈ Cτ be an arbitrary vector in the τ -net, and fix

any J ′ ⊆ [n], |J ′| ≤ 2k. Recall that the desired property

in Eq. (22) should hold for all x ∈ Bτ (u) ∩ Sn−1 ∩Σn
k .

(ii) To ensure this uniform result over Bτ (u) ∩ Sn−1 ∩ Σn
k ,

construct a second net Dτ (u) ⊆ Bτ (u)∩Sn−1∩Σn
k such

that for each x ∈ Bτ (u)∩Sn−1 ∩Σn
k , there exits a point

w ∈ Dτ (u) such that sign(Aw) = sign(Ax). The next

step will upper bound the size of Dτ (u).

(iii) Let β = arccos(1 − τ2

2 ) be the angle associated with

the distance τ , and define the random variable Mβ,u =

|{A(i), i ∈ [m] : θw,A(i) ∈ [π2 − β, π
2 + β]}|. Notice that

the size of Dτ (u) need not exceed 2Mβ,u . Moreover, for

any x ∈ Bτ (u)∩Sn−1∩Σn
k with θx,u ∈ [0, β], the value

taken by the random variable Mβ,u upper bounds the

number of points A(i), i ∈ [m], on which sign(〈A(i),x〉)
and sign(〈A(i),u〉) mismatch—or more formally, Lx,u ≤
Mβ,u for every x ∈ Bτ (u) ∩ Sn−1 ∩ Σn

k .

(iv) By a Chernoff and union bound, the random variable

Mβ,u can be shown to be bounded from above by

Mβ,u ≤ 4
3τm with high probability for every u ∈ Cτ ,

and taken with the above argument, this further implies

Lx,u ≤ 4
3τm for each u ∈ Cτ and each x ∈ Bτ (u) ∩

Sn−1 ∩ Σn
k .

(v) Taking any w ∈ Dτ (u) and conditioning on Lx,u, the

norm of hA;J ′(w,u) is bounded using an orthogonal

decomposition analogous to that in Step (b), and again

applying the concentration inequalities in the full ver-

sion [1, Lemma A.1], along with standard techniques, to

obtain ‖hA;J ′(w,u)‖2 ≤ O (τ).

(vi) This bound is then extended to hold uniformly for all

u ∈ Cτ , w ∈ Dτ (u), and J ′ ⊆ [n], |J ′| ≤ 2k, by union

bounding.

(vii) Step (c) concludes by arguing that the uniform result from

step (vi) suffices to ensure Eq. (22) holds uniformly for

all u ∈ Cτ , x ∈ Bτ (u), and J ′ ⊆ [n], |J ′| ≤ 2k, by

observing that for each x ∈ Bτ (u), the construction of

the net, Dτ (u), ensures the existence of w ∈ Dτ (u)
such that ‖hA;J ′(x,u)‖2 = ‖hA;J ′(w,u)‖2 ≤ O (τ).
The argument additionally applies the triangle inequality:

‖(x− u)− hA;J ′(x,u)‖2 ≤ ‖x− u‖2+‖hA;J ′(x,u)‖2
≤ O (τ).

5) Combining the Intermediate Results to Complete the
Proof – Step (d)

The final step, Step (d), combines the results obtained

in Steps (b) and (c), i.e., Eqs. (21) and (22), to conclude

that the i.i.d. Gaussian measurement matrix A satisfies the

(k, n, δ, c1, c2)-RAIC with bounded probability.

(i) Fix an arbitrary pair of k-sparse unit vectors x,y ∈
Sn−1 ∩ Σn

k , and let u,v ∈ Cτ be the closest net

points, respectively, subject to supp(u) = supp(x) and

supp(v) = supp(y). Note that our specific construction

of Cτ ensures that there exist net points u and v which are

at most τ -far from x and y, respectively, and satisfy the

condition on the support sets. Additionally, it is possible

to have u = x in the case when x ∈ Cτ , and likewise for

v when y ∈ Cτ . Let J ⊆ [n], |J | ≤ k, be any k-subset

of coordinates. Moreover, write Jx = J ∪ supp(x) and

Jy = J ∪ supp(y), each having size no more than 2k.

(ii) It is straightforward to show with algebraic manipulation

that

(x− y)− hA(x,y) =(u− v)− hA(u,v)

+ (x− u)− hA(x,u)

+ (v − y)− hA(v,y), (27)

and similarly that

(x− y)− hA;J(x,y) =(u− v)− hA;J(u,v)

+ (x− u)− hA;Jy(x,u)

+ (v − y)− hA;Jx(v,y).
(28)

(iii) The �2-norm of the left-hand-side of Eq. (28) can be

bounded by splitting it up into the sum of three terms

via the triangle inequality. Specifically,

‖(x− y)− hA;J(x,y)‖2
≤ ‖(u− v)− hA;J(u,v)‖2
+ ‖(x− u)− hA;Jy(x,u)‖2
+ ‖(v − y)− hA;Jx(v,y)‖2. (29)
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(iv) Now, we divide up the argument into two cases based on

whether dSn−1(u,v) is above or below the threshold τ .

If dSn−1(u,v) < τ , then using the result from Step (c),

we can obtain

‖(x− y)− hA;J(x,y)‖2 ≤ 3b2δ. (30)

Otherwise, when dSn−1(u,v) ≥ τ , by applying the

results from both Steps (b) and (c), we can show

‖(x− y)− hA;J(x,y)‖2 ≤ b1
√
δdSn−1(u,v) + 2b2δ.

(31)

Above, b1, b2 > 0 are universal constants specified in

Eq. (6). Both Eqs. (30) and (31) are trivially upper

bounded by

‖(x− y)− hA;J(x,y)‖2 ≤ b1
√
δdSn−1(u,v) + 3b2δ,

(32)

where this will hold with probability at least 1− ρ.

(v) Then, adjusting the constants with the universal constants

defined in Eq. (6), the (k, n, δ, c1, c2)-RAIC for the Gaus-

sian measurement matrix A will hold with probability at

least 1− ρ, completing the proof of Theorem III.3.

IV. PROOF OF THE MAIN RESULT—BIHT CONVERGENCE

A. Intermediate Results
Before proving the main theorems, Theorem III.1 and

III.2, three intermediate results, in Lemmas IV.1-IV.3, are

presented to facilitate the analysis for the convergence of BIHT

approximations. The proofs for these intermediate results can

be found in the full version [1].

Lemma IV.1. Consider any x ∈ Sn−1 ∩ Σn
k and any t ∈

Z+. The error of the tth approximation produced by the BIHT
algorithm satisfies

dSn−1

(
x, x̂(t)

)
≤ 4
∥∥(x− x̂(t−1)

)
− hA;supp(x̂(t))

(
x, x̂(t−1)

)∥∥
2
. (33)

Note that Lemma IV.1 is a deterministic result, arsing from

the equation by which the BIHT algorithm computes its tth

approximations, t ∈ Z+. Hence, it hold for all x ∈ Sn−1∩Σn
k

and all iterations t ∈ Z+.

Lemma IV.2. Let ε : Z≥0 → R be a function given by the
recurrence relation

ε(0) = 2, (34)

ε(t) = 4c1

√
ε

c
ε(t− 1) + 4c2

ε

c
, t ∈ Z+. (35)

The function ε decreases monotonically with t and asymptot-
ically tends to a value not exceeding ε—formally,

lim
t→∞

ε(t) =

(
2c1

(
c1 +

√
c21 + c2

)
+ c2

)
4ε

c
< ε. (36)

Lemma IV.3. Let ε : Z≥0 → R be the function as defined in
Lemma IV.2. Then, the sequence {ε(t)}t∈Z≥0

is bound from
above by the sequence {22−t

ε1−2−t}t∈Z≥0
.

B. Proofs of Theorems III.2 and III.1

The main theorems for the analysis of the BIHT algorithm

are restated below for convenience and will subsequently be

proved in tandem.

Theorem (restatement) (Theorem III.1). Let a, b, c > 0
be universal constants as in Eq. (6). Fix ε, ρ ∈ (0, 1) and
k,m, n ∈ Z+ where

m ≥ 4bck

ε
log
(en
k

)
+

2bck

ε
log

(
12bc

ε

)
+

bc

ε
log

(
a

ρ

)
.

Let the measurement matrix A ∈ R
m×n have rows with i.i.d.

Gaussian entries. Then, uniformly with probability at least
1 − ρ, for every unknown k-sparse real-valued unit vector,
x ∈ Sn−1 ∩ Σn

k , the normalized BIHT algorithm produces a
sequence of approximations, {x̂(t) ∈ Sn−1∩Σn

k}t∈Z≥0
, which

converges to the ε-ball around the unknown vector x at a rate
upper bounded by

dSn−1

(
x, x̂(t)

)
≤ 22

−t

ε1−2−t

for each t ∈ Z≥0.

Corollary (restatement) (Corollary III.2). Under the con-
ditions stated in Theorem III.1, uniformly with probability
at least 1 − ρ, for every unknown k-sparse real-valued unit
vector, x ∈ Sn−1∩Σn

k , the sequence of BIHT approximations,
{x̂(t)}t∈Z≥0

, converges asymptotically to the ε-ball around the
unknown vector x. Formally,

lim
t→∞

dSn−1

(
x, x̂(t)

)
≤ ε.

Proof (Theorem III.1 and Corollary III.2). The convergence

of BIHT approximations for an arbitrary unknown, k-sparse

unit vector, x ∈ Sn−1 ∩ Σn
k , will follow from the main

technical theorem, Theorem III.3, and the intermediate lem-

mas, Lemmas IV.1-IV.3. Recalling that Theorem III.3 and

Lemma IV.1 hold uniformly over Sn−1 ∩ Σn
k (respectively,

with bounded probability and deterministically), the argument

then implies uniform convergence for all unknown k-sparse

vectors, x ∈ Sn−1 ∩ Σn
k .

Consider any unknown, k-sparse unit vector x ∈ Sn−1 ∩
Σn

k with an associated sequence of BIHT approximations,

{x̂(t) ∈ Sn−1 ∩ Σn
k}t∈Z≥0

. For each t ∈ Z+, Lemma IV.1

bounds the error of the tth approximation from above by

dSn−1

(
x, x̂(t)

)
≤ 4
∥∥(x− x̂(t−1)

)
− hA;supp(x̂(t−1))

(
x, x̂(t−1)

)∥∥
2

(37)

which is further bounded by Theorem III.3 (by setting δ =
ε
c = ε

32 in the theorem) as

dSn−1

(
x, x̂(t)

)
≤ 4
∥∥(x− x̂(t−1)

)
− hA;supp(x̂(t−1))

(
x, x̂(t−1)

)∥∥
2

(38a)

≤ 4

(
c1

√
ε

c
dSn−1

(
x, x̂(t−1)

)
+ c2

ε

c

)
(38b)

= 4c1

√
ε

c
dSn−1

(
x, x̂(t−1)

)
+ 4c2

ε

c
(38c)
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where in the case of t = 1, (38c),

dSn−1

(
x, x̂(1)

)
≤ 4c1

√
ε

c
dSn−1

(
x, x̂(0)

)
+ 4c2

ε

c

≤ 4c1

√
ε

c
dSn−1(x,−x) + 4c2

ε

c

= c1
√
ε+

c2
8
ε. (39)

Recall that Lemma IV.2 defines a function ε : Z≥0 → R by

the recurrence relation

ε(0) = 2, (40)

ε(t) = 4c1

√
ε

c
ε(t− 1) + 4c2

ε

c
, t ∈ Z+, (41)

whose form is similar to (38c). It can be argued inductively

that for every t ∈ Z≥0, the function ε(t) upper bounds

the error of the tth BIHT approximation, dSn−1

(
x, x̂(t)

)
, as

discussed next. The base case, t = 0, is trivial since

dSn−1

(
x, x̂(0)

)
≤ dSn−1

(
x,−x

)
= 2 = ε(0). (42)

Meanwhile, arbitrarily fixing t ∈ Z+, suppose that for each

t′ ∈ [t− 1], the error is upper bounded by

dSn−1

(
x, x̂(t′)) ≤ ε(t′). (43)

Then, applying Eq. (38), the tth approximation satisfies

dSn−1

(
x, x̂(t)

)
≤ 4c1

√
ε

c
dSn−1

(
x, x̂(t−1)

)
+ 4c2

ε

c

≤ 4c1

√
ε

c
ε(t− 1) + 4c2

ε

c

= ε(t) (44)

as desired. By induction, it follows that the sequence of BIHT

approximations for the unknown vector x satisfies

dSn−1

(
x, x̂(t)

)
≤ ε(t), ∀ t ∈ Z≥0. (45)

Then, Lemmas IV.2 and IV.3 immediately imply the desired

results since asymptotically (Lemma IV.2),

lim
t→∞

dSn−1

(
x, x̂(t)

)
≤ lim

t→∞
ε(t)

=

(
2c1

(
c1 +

√
c21 + c2

)
+ c2

)
4ε

c

< ε (46)

whereas pointwise (Lemma IV.3),

dSn−1

(
x, x̂(t)

)
≤ ε(t) ≤ 22

−t

ε1−2−t

. (47)

This completes the first step of the proof. Next, the proof

concludes by extending the argument to the uniform results

claimed in the theorems.

As briefly mentioned at the beginning of the proof, in

the argument laid out above, Lemma IV.1 and Theorem III.3

hold uniformly for every x ∈ Sn−1 ∩Σn
k , where Lemma IV.1

is deterministic while Theorem III.3 ensures the bound with

probability at least 1− ρ. Thus, for every x ∈ Sn−1 ∩Σn
k , the

tth BIHT approximation has error upper bounded by

dSn−1

(
x, x̂(t)

)
≤ 4c1

√
ε

c
dSn−1

(
x, x̂(t−1)

)
+ 4c2

ε

c
(48)

uniformly with probability at least 1−ρ. Furthermore, because

Lemmas IV.2 and IV.3 are deterministic, the rate of decay

and asymptotic behavior stated in the theorems also hold

uniformly—specifically, for all x ∈ Sn−1 ∩ Σn
k ,

lim
t→∞

dSn−1

(
x, x̂(t)

)
≤ lim

t→∞
ε(t)

=

(
2c1

(
c1 +

√
c21 + c2

)
+ c2

)
4ε

c

< ε (49)

and

dSn−1

(
x, x̂(t)

)
≤ ε(t) ≤ 22

−t

ε1−2−t

, ∀ t ∈ Z≥0 (50)

with probability at least 1− ρ. �

V. OUTLOOK

In this paper, we have shown that the binary iterative hard

thresholding algorithm, an iterative (proximal) subgradient

descent algorithm for a nonconvex optimization problem, con-

verges under certain structural assumptions, with the optimal

number of measurements. It is worth exploring how general

this result can be: what other nonlinear measurements can be

handled this way, and what type of measurement noise can be

tolerated by such iterative algorithms? This direction is hopeful

because the noiseless sign measurements are often thought

to be the hardest to analyze. As another point of interest,

our result is deterministic given a measurement matrix with a

certain property. Incidentally, Gaussian measurements satisfy

this property with high probability. However, the spherical

symmetry of these measurements is crucial in the proof laid

out in this work, and it is not clear whether other non-

Gaussian (even sub-Gaussian) measurement matrices can have

this property, or whether derandomized, explicit construction

of measurement matrices is possible.
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