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Abstract—Compressed sensing has been a very successful
high-dimensional signal acquisition and recovery technique that
relies on linear operations. However, the actual measurements of
signals have to be quantized before storing or processing them.
1(One)-bit compressed sensing is a heavily quantized version
of compressed sensing, where each linear measurement of a
signal is reduced to just one bit: the sign of the measurement.
Once enough of such measurements are collected, the recovery
problem in 1-bit compressed sensing aims to find the original
signal with as much accuracy as possible. The recovery problem
is related to the traditional ‘halfspace-learning” problem in
learning theory.

For recovery of sparse vectors, a popular reconstruction
method from one-bit measurements is the binary iterative hard
thresholding (BIHT) algorithm. The algorithm is a simple
projected subgradient descent method, and is known to converge
well empirically, despite the nonconvexity of the problem. The
convergence property of BIHT was not theoretically justified,
except with an exorbitantly large number of measurements (i.e.,
a number of measurement greater than max{k',24*® k%5 /e,
where £ is the sparsity and ¢ denotes the approximation error,
and even this expression hides other factors). In this paper we
show that the BIHT estimates converge to the original signal
with only O(%) measurements. Note that, this dependence on %
and ¢ is optimal for any recovery method in 1-bit compressed
sensing. With this result, to the best of our knowledge, BIHT is
the only practical and efficient (polynomial time) algorithm that
requires the optimal number of measurements in all parameters
(both k£ and ¢). This is also an example of a gradient descent
algorithm converging to the correct solution for a nonconvex
problem, under suitable structural conditions.

Index Terms—compressed sensing, quantization, gradient
descent, sparsity

I. INTRODUCTION

One-bit compressed sensing (IbCS) is a basic nonlinear
sampling method for high-dimensional sparse signals, intro-
duced first in [2]. Consider an unknown sparse signal x € R"
with sparsity (number of nonzero coordinates) ||x||, < k,
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where & < n. In the 1bCS framework, measurements of
x are obtained with a sensing matrix A € R™*" via the
observations of signs:

b = sign(Ax).

The sign function (formally defined later) is simply the + signs
of the coordinates.

Compressed sensing, the method of obtaining signals by
taking few linear projections [3], [4] has seen a lot of success
in the past two decades. 1bCS is an extremely quantized
version of compressed sensing where only one bit per sample
of the signal is observed. In terms of nonlinearity, this is
one of the simplest examples of a single-index model [5]:
Yi fa;,x)),s = 1,...,m, where f is a coordinate-
wise nonlinear operation. As a practical case study and for
its aesthetic appeal, 1bCS has been studied with interest in
the last few years, for example, in [6]-[10].

Notably, it was shown in [11] that m = ©(k/¢) measure-
ments are necessary and sufficient (up to logarithmic factors)
to approximate x within an e-ball. But the reconstruction
method used to obtain this measurement complexity is via
exhaustive search, which is practically infeasible. A linear
programming based solution (which runs in polynomial time)
that has measurement complexity O(f% log? %) was provided
in [12]. Note the suboptimal dependence on e.

An incredibly well-performing algorithm turned out to the
binary iterative hard thresholding (BIHT) algorithm, proposed
in the former work [11]. BIHT is a simple iterative algorithm
that converges to the correct solution quickly in practice.
However, until later, the reason of its good performance was
somewhat unexplained, barring the fact that it is actually a
proximal gradient descent algorithm on a certain loss function
(provided in Eq. (8)). In the algorithm, the projection is
taken onto a nonconvex set (namely, selecting the “top-k”
coordinates and then normalizing), which usually makes a
theoretical analysis unwieldy. Since the work of [11] there
has been some progress explaining the empirical success of the
BIHT algorithm. In particular, it was shown in [13, Sec. 3.4.2]
that after only the first iteration of the BIHT algorithm, an



approximation error € is achievable with 0(6%) measurements,
though the same result is shown in [14, Sec. 5] with O(e%)
measurements, so the former result might just be a typo.
Similar results also appear in [15, Sec. 3.5]. In all these
results, the dependence on e, which is also referred to as
the error-rate, is suboptimal. Furthermore, these works also
do not show convergence as the algorithm iterates further.
Indeed, according to these works, O((ﬁ2 log %) measurements
are sufficient to bring the error down to e after just the
first iteration of BIHT. Beyond the first iteration, it was
shown in [16] that the iterates of BIHT remain bounded,
maintaining the same order of accuracy for the subsequent
iterations. This, however, does not imply a reduction in the
approximation error after the first iteration. This issue has been
partially mitigated in [17], which uses a normalized version
of the BIHT algorithm. While [17] manage to show that the
normalized BIHT algorithm can achieve optimal dependence
on the error-rate as the number of iterations of BIHT tends
to infinity, ie., m ~ % their result is only valid when
m > max{ck'® log"’ " 2448, c%(klog %)7/2}. This clearly is
highly sub-optimal in terms of dependence on k, and does not
explain the empirical performance of the algorithm. This has
been left as the main open problem in this area as per [17].

A. Our Contribution and Techniques

In this paper, we show that the normalized BIHT algorithm
converges with a sample complexity having optimal depen-
dence on both the sparsity k£ and error € (see, Theorem III.1
below). As such, we further show the convergence rate with
respect to iterations for this algorithm. In particular, we show
that the approximation error of BIHT decays as O(e!=2 )
with the number of iteration ¢. This encapsulates the very fast
convergence of BIHT to the e-ball of the actual signal. Fur-
thermore, this also shows that after just one iteration of BIHT,
an approximation error of /e is achievable, with O(% log %)
measurements, which matches the observations of [14], [15]
regarding the performance of BIHT with just one iteration.
Due to the aforementioned fast rate, the approximation error
quickly converges to € resulting in a polynomial time algorithm
for recovery in 1bCS with only O(f) measurements, the
optimal.

There are several difficulties in analyzing BIHT that were
pointed out in the past, for example in [17]. First of all, the
loss function is not differentiable, and therefore one has to
rely on (sub)gradients, which prohibits an easier analysis of
convergence. Secondly, the algorithm projects onto nonconvex
sets, so the improvement of the approximation in each iteration
is not immediately apparent. To tackle these hurdles, the key
idea is to use some structural property of the measurement
or sampling matrix. Our result relies on such a property
of the sampling matrix A, called the restricted approximate
invertibility condition (RAIC). A somewhat different invert-
ibility property of a matrix also appears in [17]. However, our
definition, which looks more natural, allows for a significantly
different analysis that yields the improved sample complexity.
Thereafter, we show that random matrices with i1.i.d. Gaussian
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entries satisfy the invertibility condition with overwhelmingly
large probability.

The invertibility condition that is essential for our proof
intuitively states that treating the signed measurements as
some “scaled linear” measurements should lead to adequate
estimates, which is an overarching theme of recovery in
generalized linear models. Further, our condition quantifies
the “goodness” of these estimates in a way that allows us
to show a contraction in the BIHT iterations. This contraction
of approximation error comes naturally from our definition.
In contrast, while a similar idea appears in [17], showing
the contraction of approximate error is a highly involved
exercise therein. As another point of interest, [11, Sec. 4.2]
empirically observed that in normalized BIHT, the step-size
of the gradient descent algorithm must be carefully chosen,
or else the algorithm will not converge. Our definition of the
invertibility condition gives some intuitive justification on why
the algorithm is so sensitive to step-size. Our analysis relies
on the step-size being set exactly to 7 = /2. More generally,
if 7 were to deviate too far from v/2m, the contraction would
be lost.

So the technical burden of our main result turns out to be
to show Gaussian matrices do satisfy the invertibility condition
(Definition III.1 below). We need to show that for every
pair of sparse unit vectors the condition holds. We resort
to constructing a cover, an “epsilon-net,” of the unit sphere,
and then decompose the invertibility conditions for any two
vectors in the sphere into two components. First, we show
that it is satisfied for two vectors in the epsilon-net whose
distance is sufficiently large, and then we show that only
small error is added when instead of the net points, vectors
close to them are considered. This leads to a “large-distance”
and “small-distance” analysis. For these two parts, we require
differently curated concentration inequalities, which form the
bulk of the techniques used in this paper. Notably, we cannot
just extend the invertibility condition to points outside the net
by simply using, e.g., the triangle inequality, due to the sign
operation. But at the same time, the sign operation significantly
reduces the number of matrix-vector products we need to
union bound over. It turns out that, because we condition on
the rotational uniformity of the measurements, this number is
not “too large,” and will not increase the sample complexity
beyond the optimal.

One important aspect of BIHT’s convergence is that as
the approximation error in t*® iteration improves, it makes
possible an even smaller error for the (¢+1)*" approximation.
This can again be intuitively explained by the rotational sym-
metry of the measurements, as well as the sign operation. Each
iteration of BIHT involves fewer and fewer measurements, and
we can track the number of measurements involved by tracking
the number of measurements that are mismatches between the
vector x and its approximation at the ¢*? iteration. This is used
in the “large-distance” regime, where the pairs of points must
be at least some distance 7 from each other (note that this
qualifier is necessary). On the other hand, once the distance
is smaller than 7, the Chernoff bound that is used to track the



mismatch is no longer sufficient (using that we would end
up needing a suboptimal sample complexity). That is why
we need to use a separate analysis for the ‘“small-distance”
regime. In this regime, we instead try to keep a count of the
number of distinct vectors obtained by sign(Ax) for all k-
sparse unit norm x within a “small distance” from a fixed net
point. Because of the rotational uniformity, this count can also
be tightly quantified, and it turns out to be small enough to
give us the optimal sample complexity.

B. Other Related Works

A generalization of 1bCS is the noisy version of the prob-
lem, where the binary observations y; € {41, —1} are random
(noisy): i.e., y; = 1 with probability f({a;,x)),i=1,...,m,
where f is a potentially nonlinear function, such as the sigmoid
function. Recovery guarantees for such models were studied
in [9]. In another model, observational noise can appear before
the quantization, i.e., y; = sign ((a;,x) +&),i = 1,...,m,
where £; is random noise. As observed in [5], [17], the
noiseless setting (also considered in this work) is actually more
difficult to handle because the randomness of noise allows for
a maximum likelihood analysis. Indeed, having some control-
over &;s (or just assuming them to be i.i.d. Gaussian), helps
estimate the norm of x [18], which is otherwise impossible
with just sign measurements, as in our model (this is called
introducing dither, a well-known paradigm in signal process-
ing). In a related line of work, one-bit measurements are taken
by adaptively varying the threshold (in our case the threshold
is always 0), which can significantly reduce the error-rate, for
example see [19] and [20], the latter being an application of
sigma-delta quantization methods.

Yet another line of work in 1bCS literature takes a more
combinatorial avenue and looks at the support recovery prob-
lem and constructions of structured measurement matrices.
Instances of these works are [7], [8], [21], [22]. However, the
nature of these works is quite different from ours.

C. Organization

The rest of the paper is organized as follows. The required
notations and definitions to state the main result appear in
Section II, where we also formally define the 1-bit com-
pressed sensing problem and the reconstruction method, the
normalized binary iterative hard thresholding algorithm (Al-
gorithm 1). We provide our main result in Section III, which
establishes the convergence rate of BIHT (Theorem III.1) and
the asymptotic error-rate (Corollary III.2) with the optimal
measurement complexity. In Section III-B we also overview
the derivation of the result, including our invertibility condition
for Gaussian matrices. In Section IV we provide the main
proof of the BIHT convergence algorithm, assuming that a
structural property is satisfied by the measurement matrix.
Proof of this structural property for Gaussian matrices is the
major technical contribution of this paper (Theorem III.3).
However, due to the space limitation, we are unable to give
the full proof here. It can be found in the full version of this
paper which is available online [1]. Proofs of all lemmas and
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intermediate results that are omitted here can also be found in
the the full version. We conclude with some future directions
in Section V.

II. PRELIMINARIES
A. Notations and Definitions

The set of all k-sparse real-valued vectors in n dimension
is denoted by . The £2-sphere in R™ is written S"~! C R",
and hence, 8"~ N X7 C X7 is the subset of k-sparse real-
valued vectors with unit norm. The Euclidean ball of radius
7 > 0 and center u € R" is defined as B,(u) = {x € R" :
|lu — x||2 < 7}. Matrices are denoted in uppercase, boldface
text, e.g., M € R™*", with its (¢, j)-entries written M; ;. The
n X n identity matrix written as I, .. Vectors are likewise
indicated by boldface font, using lowercase and uppercase
lettering for nonrandom and random vectors, respectively, e.g.,
u € R" and U ~ N (0, I, ), with entries denoted such that,
e.g,u= (uy,...,u,). As customary, N'(0, L, ) denotes the
i.i.d. n-variate standard normal distribution (with the univariate
case, N'(0, 1)). Moreover, random sampling from a distribution
D is denoted by X ~ D, and likewise, drawing uniformly at
random from a set X’ is written as X ~ X. For any pair of
real-valued vectors u,v € R", write dgn-1(u,v) € R>¢ for
the distance between their projections onto the ¢5-sphere, as
well as 0y € [0,7] and Oy, € [—m, 7| for, respectively,
the angular distance and signed angular distance (for a given
convention of positive and negative directions of rotation)
between them. Formally,

u v 1
‘m—m y if u,v #0,
dsi—1(0,v) =4, ifu=v=o0, O
1, otherwise,
0y, = arccos (&) . 2)
ally vl
Note that these are related by
A% (u,
Ouv = arccos (1 — 512(uv)> 3)
or equivalently,
dgn-1(u,v) = 1/2(1 — cos(Ou,v)). 4)

The sign function, sign : R — {+1, —1}, is defined in the

following way:
sign (z) = {

The function can be extended to vectors, i.e., sign : R" —
{+1,—1}", by just applying it on each coordinate. Addition-
ally, for a condition C' € {true, false}, define the indicator
function I : {true, false} — {0,1} by

1, z >0,
-1, z<0.

if C = false,

5
, if C = true. ©)



We are going use the following universal constants
a,b,c,cy,co > 0 in the statement of our results. Their values
are

a=16, b2>379.1038, c=32,
3 16v2
=4/— |14+ — 6
c1 b ( + 3 >, (6)
4 vV
02=2<1+§+8337T+8\/67r>.

Additionally, in the BIHT algorithm, the step-size n > 0 is
fixed as n = V2.

We define two hard thresholding operations: the top-k
hard thresholding operation and the subset hard thresholding
operation, defined below in Definitions II.1 and II.2. When
clear from context, we will omit the distinction simply refer
to a hard thresholding operation.

Definition II.1 (Top-k hard thresholding operation). For k €
Z4, k < n, the top-k hard thresholding operation, T : R” —
Y%, projects a real-valued vector u € R" into the space of
k-sparse real-valued vectors by setting all but the k largest (in
absolute value) entries in u to 0 (with ties broken arbitrarily).

Definition I1.2 (Subset hard thresholding operation). For a
k-subset of coordinates J C [n], the subset hard thresholding
operation associated with J, Ty : R™ — X7, projects a real-
valued vector u € R™ into the space of k-sparse real-valued
vectors by T (u); = u; - 1(j € J) for each j € [n].

B. 1-Bit Compressed Sensing and the BIHT Algorithm

A measurement matrix is denoted by A € R™*"™ and
has rows, A ... A(™ < A(0,1,,.,), with i.i.d. Gaussian
entries. The one-bit measurements of an unknown signal,
x € X7, are performed by:

b = sign (Ax) @)

Throughout this work, the unknown signals, x € X}, are
assume to have unit norm since information about the norm
is lost due to the one-bit quanitization of the measurements.
(For interested readers, see [18] for techniques, e.g., dithering,
to reconstruct the signal’s norm in 1-bit compressed sensing.)
Given A and b, the goal of 1-bit compressed sensing is to
recover x as accurately as possible. We measure the accuracy
of the reconstruction, X € ¥}, by the metric dgn-1(x, X).

The BIHT reconstruction algorithm, proposed by [11],
comprises two iterative steps: (i) a gradient descent step, which
finds a dense approximation, X € R"”, followed by (ii) a
projection by X — %X = T} (X) into the space of k-sparse
real-valued vectors. As shown by [11], the gradient step, (i),
aims to minimize the objective function

J(%;%) = ||[sign (Ax) Osign (AR)]_[|,,  ®)

where u®OV = (ujv1, ..., upvy,) and (u]_); = u;-I(u; <0).
While several variants of the BIHT algorithm have been
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proposed, see, [11, Section 4], this work focuses on the
normalized BIHT algorithm, where the projection step, (ii),
is modified to project the approximation onto the k-sparse,
{5-unit sphere, S"~1 N X7 Algorithm 1 provides the version
of the BIHT algorithm studied in this work.

Algorithm 1: Binary iterative hard thresholding with
normalized projections (normalized BIHT)

1 Setn =21
2 %0~ Sn-tngy
sfort=1,2,3,...
£
g0 4 ZAT . L(sign(Ax) — sign(Afc(t*l)))
Ti (X))
175 (%)l

do
4

£

III. MAIN RESULTS AND TECHNIQUES
A. BIHT Convergence Theorem

Our main result is presented below. Informally, it states
that with m = log 5 ) one-bit (sign) measurements, it
is possible to recover any %f sparse unit vector within an e-ball,
by means of the normalized BIHT algorithm.

Theorem IIL.1. Let a,b,c > 0 be universal constants as in
Eq. (6). Fix ¢,p € (0,1) and k,m,n € Z,., where

) + log (
)

Let the measurement matrix A € R™*™ have rows with i.i.d.
Gaussian entries. Then, uniformly with probability at least
1 — p, for every unknown k-sparse real-valued unit vector,
x € 8"~ 1 NP, the normalized BIHT algorithm produces a
sequence of approximations, {x(t) cS"inxp }t€Z>0, which
converges to the e-ball around the unknown vector x at a rate
upper bounded by

2bck 12bc

en

log (—

k

a

)+ e
+ —log
€ P

4bck
>

dgn-1 (x, %) <22 2 (10

for each t € Zx.

Corollary II1.2. Under the conditions stated in Theorem III.1,
uniformly with probability at least 1 — p, for every unknown k-
sparse real-valued unit vector, X € S’Hng, the sequence of
BIHT approximations, {ﬁ(t)}tezm, converges asymptotically
to the e-ball around the unknown vector x. Formally,

lim dgn1 (x,%5) <e. (11)
t—o0

B. Technical Overview

The analysis in this work is divided into two components:
() the proofs of Theorem III.1 and Corollary III.2, which
show the universal convergence of the BIHT approximations
by using the restricted approximate invertibility condition



(RAIC) for Gaussian measurement matries (defined below),
and (II) the proof of the main technical theorem, Theorem II1.3
(also below), which derives the RAIC for such a measurement
matrix. As already mentioned, the second piece of analysis is
only outlined this version but can be found in its entirety in
the full version [1].

Informally speaking, we show that the approximation error,
e(t), of the BIHT algorithm at step ¢ > 0 satisfies a recurrence
relation of the form &(t) = aj\/es(t — 1) + age. It is not a
difficult exercise to see that we get the desired convergence
rate from this recursion, starting from a constant error. The
recursion itself is a result of the RAIC property, which tries
to capture the fact that the difference between two vectors x
and y can be reconstructed by applying AT on the difference
of the corresponding one-bit measurements. Next we explain
the technicalities of these different components of the proof.

1) The Restricted Approximate Invertibility Condition

The main technical contribution is an improved sample
complexity for the restricted approximate invertibility condi-
tion (RAIC). A different invertibilty condition was proposed
by [17]. A comparison of the two definitions can be found
in the full version of this paper [1]. The definition of RAIC
considered in this work is formalized in Definition III.1, which
uses the following notations. For m,n € Z,, let A € R™*"
be a measurement matrix with rows A € R™, i € [m]. Then,
define the functions ha,ha.; : R” x R™ — R" by

ha (e,y) = LAT 2 (sign (Ax) —sign (Ay)) (12

and

hA;J (X7 Y) = ﬁupp(x)Usupp(y)uJ (hA (X7 Y)) (13)

for x,y € R™ and J C [n], and where n = /2.

Definition ITI.1 (Restricted approximate invertibility condition
(RAIC)). Fix 6,a1,a2 > 0 and k,m,n € Z, such that 0 <
k < n. The (k,n,d,ay,as)-RAIC is satisfied by a measurement
matrix A € R™*™ jf

[(x =y) = has(x,¥)|ly < a1/ ddsn-1(x,y) +a20 (14)
uniformly for all x,y € S""' N and all J C [n], |J| < k.

Theorem III.3 below is the primary technical result in
this analysis and establishes that m-many i.i.d. Gaussian
measurements satisfy the (k,n,d,c1,c2)-RAIC, where the
sample complexity for m matches the lower bound of [11,
Lemma 1]. The proof of the theorem is deferred to the full
version [1], while an overview of the proof is given below in
Section III-B3.

Theorem IIL3. Let a,b,c1,co > 0 be universal constants as
defined in Eq. (6). Fix 6,p € (0,1) and k,m,n € Z, such

e () GO () ()
o (1) + 1o (1),

m:glog
ok 6

k
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Let A € R™*"™ be a measurement matrix whose rows have
i.i.d. Gaussian entries. Then, A satisfies the (k,n,0d,c1,c2)-
RAIC with probability at least 1 — p. To state this explicitly,
uniformly with probability at least 1—p, for all x,y € S*~1N
XY and all J C [n), |J| <k,

[(x—=¥) = has(x¥)l, <c1v/ddsn-1(x,y) + c2d. (16)

2) The Uniform Convergence of BIHT Approximations

Assuming the desired RAIC property (i.e., the correctness
of Theorem II1.3), the uniform convergence of BIHT approx-
imations is shown as follows.

(a) The 0*" BIHT approximation, which is simply drawn
uniformly at random, %0 g1 7, can be seen
to have an error of at most 2 (the diameter of the
unit sphere). Then, the following argument handles each
subsequent ¢ BIHT approximation, ¢t € Z..

Using standard techniques, the error of any ¢ BIHT
approximation, ¢ € Z, can be shown to be (determinis-
tically) upper bounded by

(b)

dsn,—l (X7 §(<t))
< 4” (x - ’A‘(til)) — hassupp(xt) (Xv ’A‘(til)) Hz an

(©)

Subsequently, observing the correspondence between
Eq. (17) and the RAIC, Theorem IIL.3 is applied to further
bound the #*" approximation error in (17) from above by

dsn—l (X, )"((t)> <4 <01 \/zdsn—l (X, ) + Cgé)

= 4c; \/Ed‘gn—l (x7 fc(t_l)) + 4025.
c c
(18)

%=1

(d)

Then, the recurrence relation corresponding to the right-
hand-side of Eq. (18),

£(0) = 2, (19)

e(t) = 461m+ 46257 teZy, (20)
C C

can be shown to monotonically decrease with ¢, asymp-
totically converging as £(t) ~ €, and pointwise upper
bounded by (t) < 22 '¢l=2" for each t € Zs.
The asymptotic convergence and convergence rate of the
BIHT apprximations to the e-ball around the unknown
vector x directly follow. This will complete the analysis
for the universal convergence of the BIHT algorithm.

3) The RAIC for an i.i.d. Gaussian Matrix

Fixing 0, p € (0,1) and letting ¢1,co > 0 be the universal
constants specified in Eq. (6), Theorem IIL.3 establishes that
the measurement matrix A € R™*" with ii.d. Gaussian
entries satisfies the (k,n, d, ¢1, c2)-RAIC with high probability
(at least 1 —p) when the number of measurements m is at least



what is stated in Eq. (15). The proof of the theorem is outlined
as follows.

(a) Writing 7 = ¢, suppose {Cr,y C S"'NXp : J C
[n],]|J] < k} are T-nets over the subset of vectors in
8"~ N X7 whose support sets are precisely J. Then,
a 7-net over the entire set of k-sparse real-valued vec-
tors, S"~1 N X7, is constructed by the union C.
Uscngi<k Crsa- The goal will be to show that with
high probability certain properties hold for (almost) every
ordered pair (u,v) € C, xC,, or for every vector u € C..
The desired RAIC will then follow from extending the
properties to every pair X,y € S""1 n My

(b) The first property, corresponding with the “large distance”
regime (recall the discussion in Section I-A), requires that
with probability at least 1 — p;, for every ordered pair,
(u,v) € C; x Cy, in the 7T-net with distance at least

dgn-1(u,v) > 7 and for every J C [n], |J| < 2k,
[[(u—v) ddgn-1(u,v),

where b; > 0 is a small universal constant (see, Eq. (6)).

- hA;J(uvv)HQ <b (21)

(c) The second property, corresponding with the “small dis-
tance” regime, requires that with probability at least
1 — po, for each u € C,, each x € B,(u)NS" "1 NT7,

and each J C [n],
[(x —u)

where by > 0 is a small universal constant (again see,
Eq. (6)).

Requiring p; + p2 = p, the last step of the proof derives
the RAIC claimed in the theorem by using the results
from Steps (b) and (c), such that the condition holds with
probability at least 1 — p uniformly in all possible cases.

— hA;J(X, 11)”2 < b26 (22)

(d)

We provide a more thorough overview of Steps (b) and (c)
next in Section I1I-B4, and do likewise for Step (d) in Section
1I-BS.
4) Large- and Small-Distance Regimes — Steps (b) and (c)
Before discussing the approach to Steps (b) and (c), let us
first motivate the argument. Let x,y € S?~! NX7%. Notice that
the function ha (x,y) can be written as

hA (X7 Y)
= gAT . %(sign(Ax) — sign(Ay))
ZA 5 (sien( (A, x)) - sign((AD, y)))

V2r ; ;
— AD gion((A®
2T 5 A -sign((AY )

=1
T(sign((A"), x)) # sign((A1"),

¥)))-

Hence, given the random vector

Ryy = % (sign (Ax) — sign (Ay)),
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which takes values in {—1,0,1}™, and defining the random
variable

y = IRy llg = D Lsign((A1”,x)) # sign((A1V, y))),
i=1

which tracks number of mismatches (again, recall the discus-
sion in Section I-A), the random vector (ha (x,y) | Rx,y)
becomes a function of only Ly ,-many random vectors, where
Lyy < m. Such conditioning on Ry, will allow for
tighter concentration inequalities related to (an orthogonal
decomposition of) the random vector (ha (x,y) | Rxy).
Note that these concentration inequalities (detailed in the full

version [1, Lemma A.1]) provide the same inequality for
any Lyxy = |Rxyllo and Ly o+ = ||Rys y[lo, whenever
Lyy = L, ., where x,y,x’, y € S" 1A XY and thus

it suffices to ﬁave a handle on (an appropriate subset of) the
random variables {Lxy : x,y € S""! N X7},

With this intuition in mind, we will now lay down the
specifics of deriving the results achieved by Steps (b) and (c)
for the “large-” and “small-distance” regimes. Each follows
from two primary arguments. First, for a given u,v € C,,
the associated random variable L, is bounded. Then, con-
ditioning on L, v, the desired properties in Steps (b) and (c)
follow from the appropriate concentration inequalities related
to the decomposition of ha.s(x,y) into three orthogonal
components.

Specifically, Step (b) is achieved as follows.

(i) Consider any (u,v) € C; xC, such that dgn-1(u,v) > 7
and fix J' C [n], |J'| < 2k, arbitrarily.

(i) It can be shown that for a small s € (0,1), the number,
Lu.v, of points among A i € [m], for which a mis-

match occurs, i.e., sign({(A “) u)) # sign((AD v)), is
bounded in the range
Luv € [(1 —5) buvm ,(1+s) eu,vm} (23)

uniformly with high probability for all (u,v) € C; x C,.

(iii) Define ga : R™ x R™ — R"™ by
ga(u,v) =ha(u,v)
u u—v
hA(u,v)> —_—
<Hu— a— vl
_< u+v ha > u-+v (24)
a+vil,’ a4 vl

where gA;J’ (ua V) = 7jsupp(u)Usupp(v)uJ’ (gA (ua V))
Note that ha and ha.js can then be orthogonally de-
composed into



(iv)

)

+ga(u,v) (25)
and
hA;J’ (uv V) :7—supp(u)Usupp(v)UJ’ (h’A(ua V))
u—Vv u—v
)
<||UV|2 [ —vl,
u+v u+v
)
<|u+V|2 la+vi,
+ gA;J’ (uv V). (26)

Note that [17] similarly uses such a decomposition to
show their RAIC, and this decomposition technique ap-
pears earlier in [15].

Ou,vm Ou.vm

Conditioned on Ly € [(1 —5) ==, (14 5)22=], the
desired property in Eq. (21) is derived from Eq. (26) using
a concentration inequality proved in the full version [1]
together with standard techniques, e.g., the triangle in-
equality.

A union bound extends Eq. (21) to hold uniformly over
CrxCrand all J' C [n], |J'| < 2k, with high probability,
completely Step (b).

While Step (c) takes a similar approach, it requires a some-

what different argument involving an additional construction,
as detailed next.

®

(i)

(iii)

(iv)

)

Let u € C; be an arbitrary vector in the 7-net, and fix
any J' C [n], |J'| < 2k. Recall that the desired property
in Eq. (22) should hold for all x € B,(u)NS"~ 1 N Xy

To ensure this uniform result over B,(u) N S™~ ! N X7,
construct a second net D, (u) C B, (u)NS" 1 NX7? such
that for each x € B, (u)NS" "1 NX7, there exits a point
w € D, (u) such that sign(Aw) = sign(Ax). The next
step will upper bound the size of D, (u).

7_2

Let 8 = arccos(1 — %) be the angle associated with
the distance 7, and define the random variable Mg, =
{AD i€ [m]: 0, a0 €[5 — B, % + B} Notice that
the size of D, (u) need not exceed 2Ms.u Moreover, for
any x € B, (u)NS" 1 NXY with Ox 4 € [0, 3], the value
taken by the random variable Mg, upper bounds the
number of points A%, i € [m], on which sign((A®¥), x))
and sign((A”), u)) mismatch—or more formally, Ly, <
Mgy for every x € B-(u)NS"~ 1 N Xy

By a Chernoff and union bound, the random variable
Mg can be shown to be bounded from above by
Mg < 37m with high probability for every u € C,
and taken with the above argument, this further implies
Lyu < 37m for each u € C; and each x € B;(u) N
Sinz

Taking any w € D.(u) and conditioning on L, the
norm of ha,;(w,u) is bounded using an orthogonal
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(vi)

(vii)

decomposition analogous to that in Step (b), and again
applying the concentration inequalities in the full ver-
sion [1, Lemma A.1], along with standard techniques, to
obtain ||ha, s (w,u)|l, <O (7).

This bound is then extended to hold uniformly for all
u€eCl,, weD.(u),and J C[n], |J'| < 2k, by union
bounding.

Step (c) concludes by arguing that the uniform result from
step (vi) suffices to ensure Eq. (22) holds uniformly for
all u € C;, x € B.(u), and J' C [n], |J'| < 2k, by
observing that for each x € B,(u), the construction of
the net, D (u), ensures the existence of w € D, (u)
such that [[ha;s (x,)ll, = [[ha. (W, u)l, < O(7).
The argument additionally applies the triangle inequality:
[(x—u) = hay(xu)lly, < [Ix —ully+|hass (x,u),
<O(7).

5) Combining the Intermediate Results to Complete the

Proof — Step (d)
The final step, Step (d), combines the results obtained

in Steps (b) and (c), i.e., Egs. (21) and (22), to conclude

that

the i.i.d. Gaussian measurement matrix A satisfies the

(k,n,0,c1,c2)-RAIC with bounded probability.

®

(i)

(iii)

Fix an arbitrary pair of k-sparse unit vectors x,y €
S" 1N X7, and let u,v € C, be the closest net
points, respectively, subject to supp(u) = supp(x) and
supp(v) = supp(y). Note that our specific construction
of C, ensures that there exist net points u and v which are
at most 7-far from x and y, respectively, and satisfy the
condition on the support sets. Additionally, it is possible
to have u = x in the case when x € C,, and likewise for
v when y € C,. Let J C [n], |J| < k, be any k-subset
of coordinates. Moreover, write Jx = J U supp(x) and
Jy = J Usupp(y), each having size no more than 2k.

It is straightforward to show with algebraic manipulation
that
(x—y)—ha(x,y) =(u—v)—ha(u,v)
+ (x—u) — ha(x,u)
+(v—y)—halv,y), @D
and similarly that
(x—y) = hau(xy) =(u—=v) = ha(u,v)
+ (x—u) —hau, (x,u)
+(v—-y) = hau(v,y)
(28)

The ¢3-norm of the left-hand-side of Eq. (28) can be
bounded by splitting it up into the sum of three terms
via the triangle inequality. Specifically,
[(x = ¥) = has(x,¥)]2
<l(a=v) = hay(w,v)|2
+[(x =) = hau, (%02

+ (v =y) = ha,z (v, y)]2 (29)



(iv) Now, we divide up the argument into two cases based on
whether dgn-1(u,Vv) is above or below the threshold .
If dgn—1(u,v) < 7, then using the result from Step (c),
we can obtain

I(x = y) = hass(x,y)[l2 < 3b26.

Otherwise, when dg»-1(u,v) > 7, by applying the
results from both Steps (b) and (c), we can show

|(x—y) = has(x,¥)|l2 < bi1y/ddsn-1(u, v) + 2b20.
(31)
Above, by,bo > 0 are universal constants specified in
Eq. (6). Both Eqgs. (30) and (31) are trivially upper
bounded by

(x—y) = has(x,¥)|l2 < biy/ddsn-1(u, v) + 3b20,
(32)

(30)

where this will hold with probability at least 1 — p.
)

Then, adjusting the constants with the universal constants
defined in Eq. (6), the (k,n, d, c1, c2)-RAIC for the Gaus-
sian measurement matrix A will hold with probability at

least 1 — p, completing the proof of Theorem IIL.3.

IV. PROOF OF THE MAIN RESULT—BIHT CONVERGENCE
A. Intermediate Results

Before proving the main theorems, Theorem III.1 and
II1.2, three intermediate results, in Lemmas IV.1-IV.3, are
presented to facilitate the analysis for the convergence of BIHT
approximations. The proofs for these intermediate results can
be found in the full version [1].

Lemma IV.1. Consider any x € S" ' N} and any t €
Z.... The error of the t'* approximation produced by the BIHT
algorithm satisfies

dsn— 1 (X, )A((t))

< 4” (X - &(til)) - hA;supp(ic(")) (X7 iuil)) (33)

l>-

Note that Lemma IV.1 is a deterministic result, arsing from
the equation by which the BIHT algorithm computes its ¢
approximations, ¢ € Z.. Hence, it hold for all x € S"~1N¥}
and all iterations ¢ € Z.

Lemma IV.2. Let ¢ :
recurrence relation

Z>o — R be a function given by the

e(0) = 2, (34)

e(t) =dery | Se(t—1) +4es, teZy.  (35)
C C

The function € decreases monotonically with t and asymptot-
ically tends to a value not exceeding e—formally,

4
(2c1 (cl /e —|—02) —0—02) f <e.  (36)

Lemma IV.3. Let ¢ : Z>o — R be the function as defined in

Lemma IV.2. Then, the sequence {&(t)}iez., is bound from
el—27"

lim e(t) =

t— o0

above by the sequence {22% Hezso-
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B. Proofs of Theorems II1.2 and IIl.1

The main theorems for the analysis of the BIHT algorithm
are restated below for convenience and will subsequently be
proved in tandem.

Theorem (restatement) (Theorem III.1). Let a,b,c > 0
be universal constants as in Eq. (6). Fix e,p € (0,1) and

k,m,n € Zy where
4 12
m > bCklog( )—i— log(£> )
€

Let the measurement matrix A € R™*™ have rows with i.i.d.
Gaussian entries. Then, uniformly with probability at least
1 — p, for every unknown k-sparse real-valued unit vector,
xc S In X%, the normalized BIHT algorithm produces a
sequence of approximations, {i(t) € 8" Nt ez, which
converges to the e-ball around the unknown vector X at a rate
upper bounded by

2bck be

a
+ — log
€

(

en

k

& ()

dgn—1 (x,x ) < 92 'l-2

for each t € Z>.

Corollary (restatement) (Corollary II1.2). Under the con-
ditions stated in Theorem III.1, uniformly with probability
at least 1 — p, for every unknown k-sparse real-valued unit
vector, x € S"71N X%, the sequence of BIHT approximations,
{i(t)}tez>u, converges asymptotically to the e-ball around the
unknown vector x. Formally,

tlggo dSn—l(X, )'c(t)) <e.

Proof (Theorem Ill.1 and Corollary I11.2). The convergence
of BIHT approximations for an arbitrary unknown, k-sparse
unit vector, x € S"1n Y%, will follow from the main
technical theorem, Theorem III.3, and the intermediate lem-
mas, Lemmas IV.1-IV.3. Recalling that Theorem II.3 and
Lemma IV.1 hold uniformly over S"~! N Y} (respectively,
with bounded probability and deterministically), the argument
then implies uniform convergence for all unknown k-sparse
vectors, x € S* 1 N Xy

Consider any unknown, k-sparse unit vector x € S*~1 N
Y% with an associated sequence of BIHT approximations,
(" e 8" ' N ¥}z, For each t € Z,, Lemma IV.1
bounds the error of the ¢ approximation from above by

dsn—l (X, f((t))

< 4[| (x = %"7Y) = hauppien) (6 XY, GT)

which is further bounded by Theorem IIL.3 (by setting § =
£ = 55 in the theorem) as

dSn—l (X, )A((t))

<4 (x=%") = hp qppzi-) (%), (38a)

<4 ((31 \/EdSH (x,%71) + c25> (38b)
C C

=de; \/Edsn—l (3, %7 + 4cz£ (38¢)



where in the case of ¢t = 1, (38¢),
dgn-1 (X, )A((l)) <4c; EdSn—l (X, )A((O)) + 402E
c c
€ €
<decyy/—dgn—1(x,—%) + deg—
c c

= clﬁ—ﬁ- %26.

Recall that Lemma IV.2 defines a function ¢ : Z>o — R by
the recurrence relation

(39)

e(0) = 2, (40)

e(t) =dery [ Se(t—1) +4eS, teZy, @)
C &

whose form is similar to (38c). It can be argued inductively

that for every ¢ € Z>¢, the function &(t) upper bounds

the error of the ¢*" BIHT approximation, ds»—1(x,%"), as

discussed next. The base case, ¢t = 0, is trivial since

dgn-1 (%, %) < dgn-1(x,-x) =2=2(0). (42

Meanwhile, arbitrarily fixing ¢ € Z, suppose that for each
t' € [t — 1], the error is upper bounded by

dgn (x, %)) < e(t)). (43)
Then, applying Eq. (38), the t*® approximation satisfies
dSn—l (X7 )A((t)) § 461 \/EdSn—l (X7 §(<t_1)) + 402E
c c
< 4¢ E5(75 -1+ 462E
c c
=e(t) (44)

as desired. By induction, it follows that the sequence of BIHT
approximations for the unknown vector x satisfies
dgn1 (x,%D) <e(t), Vite Zso. (45)

Then, Lemmas IV.2 and IV.3 immediately imply the desired
results since asymptotically (Lemma IV.2),

i n—1 %) < 1i
tlggodg (e, % )_tlggos(t)

4e
= (201 (cl + \/c%+62> +cz> -

<e (46)
whereas pointwise (Lemma IV.3),
dsn 1 (x,80) < e(t) <22 2 (47)

This completes the first step of the proof. Next, the proof
concludes by extending the argument to the uniform results
claimed in the theorems.

As briefly mentioned at the beginning of the proof, in
the argument laid out above, Lemma IV.1 and Theorem III.3
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hold uniformly for every x € S*~! N X7, where Lemma IV.1
is deterministic while Theorem III.3 ensures the bound with
probability at least 1 — p. Thus, for every x € S*~! N X7, the
t*® BIHT approximation has error upper bounded by

uniformly with probability at least 1 — p. Furthermore, because
Lemmas IV.2 and IV.3 are deterministic, the rate of decay
and asymptotic behavior stated in the theorems also hold
uniformly—specifically, for all x € S*~1 N X7,

lim dgn—1 (x, )"((t))

t—o0
< I
< Jim £(t)
5 4e
= 2()1 C1 + Cl + Co + Co ?
<e (49)
and
dgn (x,80) <e(t) <2212, VieZso  (50)
with probability at least 1 — p. ]

V. OUTLOOK

In this paper, we have shown that the binary iterative hard
thresholding algorithm, an iterative (proximal) subgradient
descent algorithm for a nonconvex optimization problem, con-
verges under certain structural assumptions, with the optimal
number of measurements. It is worth exploring how general
this result can be: what other nonlinear measurements can be
handled this way, and what type of measurement noise can be
tolerated by such iterative algorithms? This direction is hopeful
because the noiseless sign measurements are often thought
to be the hardest to analyze. As another point of interest,
our result is deterministic given a measurement matrix with a
certain property. Incidentally, Gaussian measurements satisfy
this property with high probability. However, the spherical
symmetry of these measurements is crucial in the proof laid
out in this work, and it is not clear whether other non-
Gaussian (even sub-Gaussian) measurement matrices can have
this property, or whether derandomized, explicit construction
of measurement matrices is possible.
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