
High-Dimensional Geometric Streaming in
Polynomial Space

David P. Woodruff
Carnegie Mellon University

dwoodruf@cs.cmu.edu

Taisuke Yasuda
Carnegie Mellon University

taisukey@cs.cmu.edu

Abstract—Many existing algorithms for streaming ge-
ometric data analysis have been plagued by exponential
dependencies in the space complexity, which are undesir-
able for processing high-dimensional data sets, i.e., large
d. In particular, once d ≥ log n, there are no known
non-trivial streaming algorithms for problems such as
maintaining convex hulls and Löwner–John ellipsoids of
n points, despite a long line of work in high-dimensional
streaming computational geometry since [2].

We simultaneously improve all of these results to
poly(d, log n) bits of space by trading off with a
poly(d, log n) factor distortion. We achieve these results in
a unified manner, by designing the first streaming algorithm
for maintaining a coreset for �∞ subspace embeddings
with poly(d, log n) space and poly(d, log n) distortion. Our
algorithm also gives similar guarantees in the online coreset
model. Along the way, we sharpen known results for online
numerical linear algebra by replacing a log condition
number dependence with a log n dependence, answering
an open question of [13]. Our techniques provide a novel
connection between leverage scores, a fundamental object
in numerical linear algebra, and computational geometry.

For �p subspace embeddings, our improvements in
online numerical linear algebra yield nearly optimal trade-
offs between space and distortion for one-pass streaming
algorithms. For instance, we obtain a deterministic coreset
using O(d2 log n) space and O((d log n)

1
2
− 1

p) distortion for
p > 2, whereas previous deterministic algorithms incurred
a poly(n) factor in the space or the distortion [26].

Our techniques have implications also in the offline
setting, where we give optimal trade-offs between the
space complexity and distortion of a subspace sketch data
structure, which preprocesses an n × d matrix A and
outputs ‖Ax‖p up to a poly(d) factor distortion for any
x. To do this we give an elementary proof of a “change of
density” theorem of [42] and make it algorithmic.1

Index Terms—computational geometry, streaming

I. INTRODUCTION

Data science has permeated modern computer science

in the last few decades, leading to a surge in demand

for geometric data processing algorithms on large data

sets. Two decades ago, the data sets studied in practice,

represented by an n×d matrix A, had many rows (large

David P. Woodruff and Taisuke Yasuda were supported by ONR
grant N00014-18-1-2562 and a Simons Investigator Award.

1Extended abstract; full version available at https://arxiv.org/abs/
2204.03790.

n) and small dimension (d = O(1)). Driven by such ap-

plications, many streaming algorithms were developed,

which only require one or a few passes through a stream

which allows access to the rows a1,a2, . . . ,an ∈ R
d one

at a time. In this setting, ε-kernels were introduced by

[2], [3], which gave a unified approach towards obtaining

(1 + ε)-factor approximations using ε−Θ(d) space for

a wide range of geometric problems, including width,

convex hull, and minimum enclosing spherical shell, to

name just a few of the applications of ε-kernels.

Since then, the dimensionality of data sets encoun-

tered in practice has increased dramatically, and space

complexities that scale exponentially in d, or even a

large polynomial (say d4), can no longer be considered

practical. Some geometric problems have adapted to this

high-dimensional setting, including minimum enclosing

cylinder [15, Theorem 3.1], minimum enclosing ball

(MEB) [5], [17], [61], and diameter [5, Theorem 3.2],

by tolerating a larger O(1)-factor distortion. [5] also

give lower bounds for the MEB and diameter problems,

showing that any one-pass streaming algorithm with less

than an α-factor distortion must use exp(poly(d)) bits

of space, where α = 1+
√
2

2 for MEB and α =
√
2 for

diameter. Furthermore, [5] show that the width problem

requires exp(poly(d)) bits of space for any algorithm

achieving distortion smaller than d1/3/8. Thus, distor-

tions at least poly(d) are necessary for some of these

problems to achieve poly(d) bits of space. However,

many problems still do not have polynomial space algo-

rithms, even with poly(d) distortions, such as computing

width, Löwner–John ellipsoids [5], [51], �p subspace

embeddings for large p [26], and convex hulls [12].

A. Our Contributions

In this work, we address the lack of streaming algo-

rithms for geometric problems in the high-dimensional

setting by providing a unified approach towards achiev-

ing poly(d, log n) space and distortion. As argued be-

fore, a dependence of poly(d) in the distortion is nec-

essary for polynomial space algorithms, and is arguably

natural since many geometric summarization problems

732

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00075

inherently incur such losses in the distortion, e.g., for

Löwner–John ellipsoids.

To obtain our results for streaming geometry, we

design the first one-pass streaming algorithm for the �∞
subspace sketch problem. That is, given a row arrival

stream for A ∈ Z
n×d with entries bounded by poly(n),

we show how to maintain a coreset S ⊆ [n] of size at

most |S| ≤ O(d log n) such that for all x ∈ R
d,

‖A|Sx‖∞ ≤ ‖Ax‖∞ ≤ O(
√
d log n)‖A|Sx‖∞.

Our algorithm is deterministic and uses only

O(d2 log2 n) bits of space, which is an optimal

trade-off between the space complexity and distortion,

up to poly log n factors. In fact, our algorithm has the

property that each i ∈ S is selected irrevocably, i.e.,

we immediately decide whether to permanently keep or

discard the row ai. Such algorithms can be considered

under the online coreset model, in which the input

matrix A ∈ R
n×d is now allowed to take real values, and

the algorithm’s complexity is measured by the number

of rows it stores. Under this model, our algorithm

stores O(d log(nκOL)) rows and achieves a distortion of

O(
√

d log(nκOL)), where κOL = ‖A‖2 maxni=1‖A−i ‖22

is the online condition number of A [13]. Various

linear algebraic and geometric problems have been

considered in the online model, including spectral

approximation [24], low rank approximation [11], [13],

and �1 subspace embeddings [13].

Note that the �∞ subspace sketch problem is of central

importance in computational geometry: it is closely

related to directional width estimation [2], [3] as well

as the polytope membership problem [8]. It can also be

used to approximate maximum inner product search, for

which sampling-based algorithms have recently received

much attention in the large-scale machine learning lit-

erature [9], [29], [45]. Even beyond these applications,

we will show that the �∞ subspace sketch primitive in

fact leads to the first poly(d, log n) space, poly(d, log n)
distortion algorithm for a much wider variety of geo-

metric problems, k-robust directional width, including �p
subspace sketch for p < ∞, convex hull, Löwner–John

ellipsoids, volume maximization, minimum-width spher-

ical shell, and solving linear programs. Our results can

thus be seen as a high-dimensional and high-distortion

analogue of the fact that ε-kernels solve many streaming

problems in the (1 + ε)-distortion setting [2], [3].

Next, we study streaming subspace sketches. Here, we

obtain a deterministic algorithm achieving O(d2 log n)

bits of space and O((d log n)
1
2− 1

p) distortion, signifi-

cantly improving upon the earlier deterministic one-pass

algorithms of [26], which incurred a poly(n) factor in

either the space complexity or distortion. This nearly

2Here, Ai is the i× d matrix formed by the first i rows of A.

TABLE I
RESULTS FOR ONE-PASS STREAMING �p SUBSPACE SKETCH IN THE

“FOR ALL” MODEL. NEW RESULTS HIGHLIGHTED IN BLUE. WE

SUPPRESS O(logn) FACTORS IN THE DISTORTION AND

poly(ε−1, logn) FACTORS IN SPACE. “OPTIMAL” MEANS THAT THE

TRADE-OFF BETWEEN THE SPACE COMPLEXITY AND DISTORTION

IS OPTIMAL, UP TO logn FACTORS (SEE TABLE II).

Distortion Space Det. Online Optimal

p = 2 1 d2 � �

p > 0 1 + ε d2∨(
p
2
+1) �

p ≥ 1 dO(1/γ) nγd �

p = ∞ √
d d2 � � �

p > 2 d
1
2
− 1

p d2 � � �

p > 2 d
1
2

(
1− q

p

)
d

q
2
+1 �

p = 2 1 + ε d2 � � �

TABLE II
OUR RESULTS FOR SUBSPACE SKETCH IN THE “FOR ALL” MODEL.
RESULTS FOR THE “FOR EACH” MODEL REMOVE A FACTOR OF d

FROM THE SPACE BOUNDS, FOR THE SAME DISTORTION. NEW

RESULTS HIGHLIGHTED IN BLUE. WE SUPPRESS poly logn
FACTORS IN THE SPACE COMPLEXITY.

Distortion Space

p ∈ (0, 2] UB 1 d2

p > 2 UB d
1
2
− 1

p d2

p > 2 UB 1 dp/2+1

p > 2y LB d
1
2

(
1− q

p

)
dq/2+1 2 ≤ q ≤ p

p > 2 UB d
1
2

(
1− q

p

)
dq/2+1 2 < q < p

p > 0 LB < ∞ d2

matches the offline guarantee obtained by using Lewis

weights [25], [41], [56], achieving optimal trade-offs.

Although our streaming �p subspace sketch achieves

nearly optimal trade-offs, it is still possible to ask for

improvements in these bounds, as well as faster algo-

rithms, in the offline setting where we have unlimited

access to A. In a third contribution, in the offline setting,

we construct �p subspace embeddings with nearly opti-

mal trade-offs between space complexity and distortion,

which shave all poly log n factors off of the distortion.

As a crucial step, we give a new elementary proof of

a “change of density” theorem in geometric functional

analysis due to Lewis and Tomczak-Jaegermann [42],

by using Lewis weights [25], [41], [56]. This allows

us to make the construction algorithmic, and in fact,

nearly input sparsity time. Our space complexity upper

bound matches a subspace sketch lower bound due to

[43]. These subspace sketch lower bounds also witness

the near tightness of our streaming �p subspace sketch

algorithms. See Table II for a summary.

Furthermore, our fast algorithms for computing these

�p subspace embeddings give the fastest known running

times for �p regression and �p column subset selection,

733

TABLE III
RESULTS FOR FAST NUMERICAL LINEAR ALGEBRA IN �p FOR

p > 2, WITH THE CURRENT MATRIX MULTIPLICATION TIME

ω ≈ 2.37286 [6]. HERE, q IS ANY NUMBER BETWEEN 2 AND p. WE

SUPPRESS poly(logn, ε−1) FACTORS IN THE RUNNING TIME AND

CONSTANT FACTORS IN THE DISTORTION. LR = �p LINEAR

REGRESSION, CSS = k-COLUMN SUBSET SELECTION.

Distortion Time

LR 1 + ε nω [1]

1 + ε nnz(A) + d
p
2
ω [1], [25]

d
1
2

(
1− q

p

)
nnz(A) + d

q
2
ω

CSS k
1− 1

p nωd [1], [27]

k
1− 1

p nnz(A)d+ k
p
2
ωd [1], [25], [27]

k
1− 1

p
+ 1

2

(
1− q

p

)
nnz(A)d+ k

q
2
ωd

when we allow for distortions which scale as poly(d)
(see Table III). Note that algorithms for �p column subset

selection already incur distortions on the order poly(d)
[20], [27] (as they must due to known lower bounds).

B. Streaming Algorithms for Geometric Problems

We first introduce two models of streaming algorithms

which we study: the row arrival streaming model and the

online coreset model. In these models, we have an n×d
input matrix A with rows a1,a2, . . . ,an, where n is so

large that we cannot observe the entire matrix at once,

and we can only observe one row at a time.

In the row arrival streaming model, we assume that

A ∈ Z
n×d is an integer matrix with entries bounded

by poly(n). Then, the rows a1,a2, . . . ,an are presented

in a stream one at a time in that order, and we must

minimize the number of bits that we store while making

only one pass3 through the stream of rows of A.

On the other hand, in the online coreset model, the

input matrix A takes real values R
n×d. Again, the rows

a1,a2, . . . ,an are presented in one pass over a stream,

one at a time, in that order. However, in this model,

for each i ∈ [n], we must irrevocably choose whether to

store ai or not. That is, if we choose to store ai, then we

may not discard it at a later time. For each stored row,

we allow for the row ai to be scaled by some weight

wi ∈ R. The goal is to minimize the number of rows

of A that are stored. We assume that we may perform

exact arithmetic and linear algebra on the stored rows.

1) Online Coresets for �∞ Subspace Sketch: We first

discuss our results for the �∞ subspace sketch problem,

in both the row arrival streaming and online coreset

models, which is the basis for all of our algorithms for

geometric problems.

3We also consider algorithms which make multiple passes through
the stream, but we will restrict to one pass for now.

Definition I.1 (Streaming/Online �∞ Subspace Sketch).
The streaming �∞ subspace sketch problem is defined as
follows4. We are given an n×d matrix A over one pass
through a row arrival stream. Then:
• In the row arrival streaming model, A ∈ Z

n×d with
entries bounded by poly(n), and we must maintain
a data structure Q : Rd → R such that, at the end
the stream, we have for some Δ ≥ 1 that

for all x ∈ R
d, ‖Ax‖∞ ≤ Q(x) ≤ Δ‖Ax‖∞

• In the online coreset model, A ∈ R
n×d is a real

matrix, and we must irrevocably choose a subset
of entries S ⊆ [n] and weights w ∈ R

S as well
as a function Q : R

d → R depending only on
diag(w)A|S such that, at the end of the stream,
we have for some Δ ≥ 1 that

for all x ∈ R
d, ‖Ax‖∞ ≤ Q(x) ≤ Δ‖Ax‖∞

To motivate and discuss the streaming �∞ subspace

sketch problem, we first illustrate some connections with

computational geometry. Note that Löwner–John ellip-

soids can be used to achieve
√
d distortion and d2 words

of space for �∞ subspace sketch in the offline setting,

which is a nearly optimal trade-off. Thus, one may

wonder whether there are algorithms for maintaining

Löwner–John ellipsoids in a row arrival stream. This is,

however, a fundamental unresolved problem in streaming

computational geometry [5], [51]. In fact, we show that

Löwner–John ellipsoids require Ω(n) bits of space to

maintain up to a distortion of less than Θ(
√

d/ log n):

Theorem I.2. Any algorithm that maintains the Löwner–
John ellipsoid of a1,a2, . . . ,an ∈ R

d, up to a factor of√
d/ log n, in one pass over a row arrival stream with

probability at least 2/3, must use Ω(n) bits space.

This is perhaps surprising, given that for the syntacti-

cally similar MEB problem, O(1) approximation is pos-

sible using poly(d, log n) bits of space [5], [17]. Despite

this, we obtain a deterministic streaming algorithm, and

in fact an online coreset, for �∞ subspace embeddings:

Theorem I.3. Let A be an n×d matrix presented in one
pass over a row arrival stream. There is an algorithm
A which maintains a coreset S ⊆ [n] such that

for all x ∈ R
d, ‖A|Sx‖∞ ≤ ‖Ax‖∞ ≤ Δ‖A|Sx‖∞

where
• in the streaming model, Δ = O(

√
d log n), |S| =

O(d log n), and A uses O(d2 log2 n) bits of space.
• in the online coreset model, Δ = O(

√
d log(nκOL))

and |S| = O(d log(nκOL)).

4Although one may define randomized versions of this problem [43],
as we consider later, we restrict ourselves to deterministic algorithms
in this section.

734

As we show, any data structure Q which satisfies

Pr{Q(x) ≤ ‖Ax‖∞ ≤ Δ ·Q(x)} ≥ 2

3

for each x ∈ R
d must either have Δ = Ω(

√
d/ log n)

or use Ω(n) bits of space. Furthermore, we show that if

Pr
{

for all x ∈ R
d, Q(x) ≤ ‖Ax‖∞ ≤ Δ ·Q(x)

} ≥ 2

3

for any Δ < ∞, then Q must use Ω(d2) bits of space.

Thus, our deterministic streaming algorithm achieves

the best distortion and space that is possible for any

randomized offline algorithm, up to poly log n factors.

2) Techniques for Online �∞ Subspace Sketch:
a) Strawman Solutions: We first discuss certain

natural coreset approaches to the streaming �∞ subspace

sketch problem and why they do not work, in order to

illustrate the difficulty of the problem. We assume for

simplicity for now that all input vectors have norm Θ(1).
Intuitively, we want a small number of input rows that

are well spread apart, so that we have a small number

of rows that approximate the entire data set A in all

directions. One way to do this is to add a new row to

our coreset if and only if it has a small inner product, say

at most some threshold τ = 1/poly(d), with each of the

stored rows. Certainly, such a row must be included in

the coreset, otherwise that row itself as a query would

fail to achieve a 1/τ -approximation. This can also be

shown to yield a small coreset of size at most poly(d).
However, such an algorithm could fail to store a row

which is very well-aligned with an earlier row, but also

has a tiny component pointing outside of the span of

every other row, which means the coreset would fail to

have any multiplicative error. One could try to fix this

by adding the condition that we add a row if it increases

the rank of the coreset; this also does not work, since

there could be future rows which significantly increase

the maximum component in this direction, but also have

large inner product with the stored rows.

Another approach, which attempts to address the

problem of having rows which increase the maximum

component in a given direction, is to maintain the

maximum component for poly(d) random directions.

That is, one can first choose a set of poly(d) random

directions S, and for each v ∈ S, store the input

row which has the maximum inner product with v.

However, it can be shown that poly(d) directions is in

fact not enough to “catch” hidden growing components.

Indeed, suppose that that input rows consist of the

standard basis vectors ±e1. These vectors will be stored.

Then, suppose that the algorithm receives the vector

a := (1 − 1/n)e1 + (1/n10)e2. In order for this vector

to be stored by a random vector v, we must have that

〈a,v〉 = 〈
(1− 1/n)e1 + (1/n10)e2,v

〉
> |〈e1,v〉|,

or v2 ≥ n9|v1| by rearranging. The probability that

this occurs for a random vector v is at most O(1/n9),
and thus by a union bound over the poly(d) many

random vectors, no direction stores a. However, a has a

component outside of the span of the previous rows, so

even for vectors whose norms are within 1±1/ poly(n)
factors of each other, this algorithm fails. It is easy to see

that even if we store rows that increase the rank of the

coreset, it would still fail to store rows which increase

the component along e2 by poly(n) factors.

b) Our Approach.: We now give a high-level proof

of our online �∞ coreset. We seek S ⊆ [n] such that

‖Ax‖∞ ≤ Δ‖A|Sx‖∞, so suppose we have maintained

such an S, and let a ∈ R
d be a new row. As hinted previ-

ously, we encounter a problem if there exists any direc-

tion x ∈ R
d along which a updates the maximum com-

ponent by more than a poly(d) factor. That is, if there

exists x ∈ R
d such that |〈a,x〉| � ‖A|Sx‖∞, then we

must include a in our coreset. However, we are unable to

analyze such an algorithm, due to the lack of structure of

the �∞ norm. Now note that if |S| = poly(d, log n), then

‖A|Sx‖2 = poly(d, log n)‖A|Sx‖∞, so using ‖A|Sx‖2
is just as good of a condition for adding a. The advantage

is that the �2 norm has much more structure than the �∞
norm, which we can use to bound the size of the coreset.

Suppose now that we add a to our coreset whenever

there exists x ∈ R
d such that |〈a,x〉|2 ≥ ‖A|Sx‖22.

In the language of numerical linear algebra, this cor-

responds to the condition that the leverage score of a
with respect to A|S is at least 1. With the connection to

leverage scores, we are now in the position to bound the

size of S. Note that in the final coreset A|S , we have

by construction that every row ai has leverage score

at least 1 with respect to the previous rows. This can

be phrased as the fact that all of the online leverage
scores τOL

i of A|S are at least 1. Now, it can be shown

that the ith online leverage score bounds the incremental

difference between the log-volume spanned by columns

of the first i rows Ai of A and Ai+1, which gives a

bound of O(d log κOL) on the sum of online leverage

scores, where κOL = ‖A‖2 maxni=1‖A−‖2 is the online

pseudo condition number of A [13], [24]. This means

that S must have at most O(d log κOL) rows. In turn, we

can bound the distortion as

‖Ax‖∞ =
n

max
i=1

|〈ai,x〉| ≤ ‖A|Sx‖2
≤

√
|S|‖A|Sx‖∞ ≤ O(

√
d log κOL)‖A|Sx‖∞.

Although the κOL here is for the submatrix A|S , it can

be shown that this is only a poly(n) factor away from

κOL of A. While this discussion contains a number

of ideas for our online coreset algorithm for the �∞
subspace sketch problem, we still need to improve our

result from O(
√
d log κOL) to O(

√
d log n) distortion for

735

integer matrices with entries bounded by poly(n) for the

row arrival streaming model. For this, we will improve

the bound on the sum of online leverage scores for such

matrices. We discuss this result in the next section.

3) Techniques for Sharper Online Numerical Linear
Algebra: We now discuss our techniques for improving

the sum of online leverage scores for integer matrices

with entries bounded by poly(n). Naı̈vely, the earlier

condition number bound gives a bound of O(d2 log n)
by using that for such matrices, κ ≤ poly(n)d (see, e.g.,

[22, Lemma 4.1]). Note that κ can indeed be as large as

exp(poly(d)), even for sign matrices [7]. We improve

this to the following:

Theorem I.4 (Sum of Online Leverage Scores). Let
A ∈ Z

n×d have entries bounded by poly(n). Then,∑n
i=1 τ

OL
i (A) = O(d log n).

We start with the proof of [24], which gives a bound

of O(d log κOL). This is done by analyzing the quan-

tity det(A�A + λId), for λ = (maxni=1

∥∥A−i ∥∥2)−1.

This quantity is at most O(‖A‖2)d, and can be

shown to be lower bounded by exp(12
∑

i τ
OL
i (A)) ·

det(λId)
d by the matrix determinant lemma, which

gives det(A�i+1Ai+1 + λId) ≥ det(A�i Ai +
λId) exp(τ

OL
i (A)/2) where Aj is the first j rows of A.

Taking logarithms on both sides and rearranging yields

that
∑n

i=1 τ
OL
i (A) ≤ O

(
d log

‖A‖2
λ

)
= O(d log κOL).

Now, one may question whether regularizing by λ is

necessary, as it leads to the undesirable log 1
λ factor.

Indeed, we set λ = 0 and instead analyze the pseu-
dodeterminant pdet(A�A), which is the product of the

nonzero eigenvalues. With this change, we have almost

the same result, except that we must treat rows i which

do not lie in rowspan(Ai−1) differently. In this case,

pdet(A�i Ai) ≥ pdet(A�i−1Ai−1)
∥∥a⊥i ∥∥22 where a⊥i is

the component of ai orthogonal to rowspan(Ai−1). Now

observe that the product of
∥∥a⊥i ∥∥22 for all rows i which

do not lie in rowspan(Ai−1) is exactly the volume

spanned by these vectors, which is a positive integer, and

thus ≥ 1. We thus avoid the log 1
λ factor and instead get

the upper bound of O(d log n).
As a result of Theorem I.4, we immediately remove

condition number dependencies from a variety of re-

sults in online numerical linear algebra which rely on

Theorem I.4, and answer an open question of [13]

on removing the condition number dependence from

the online spectral approximation problem, under bit

complexity assumptions.

Theorem I.5 (Online Coreset for Spectral Approxi-

mation). Let A ∈ Z
n×d have entries bounded by

poly(n). There is a deterministic online coreset al-
gorithm which outputs Ã such that (1 − ε)A�A

Ã�Ã
 (1 + ε)A�A and the number of rows in Ã

is O(d(log n)2/ε2).

We also implement the simpler sampling algorithm

with a similar randomized guarantee.

Theorem I.6 (Online Coreset for Spectral Approxima-

tion via Leverage Score Sampling). Let A ∈ Z
n×d have

entries bounded by poly(n). There is an online coreset
algorithm which outputs Ã such that

Pr
{
(1− ε)A�A
 Ã�Ã
 (1 + ε)A�A

}
≥ 2

3

and the number of rows in Ã is O(d(log d)(log n)/ε2).

4) High-Dimensional Computational Geometry in
Polynomial Space: We now show that our �∞ sub-

space sketch algorithm gives the first polynomial space

algorithms for many important problems in streaming

computational geometry, including the basic problems

of symmetric width, convex hull, and Löwner–John

ellipsoids. Previous algorithms for these problems had

an exponential dependence on d, due to reliance on ε-

kernels [2], [3]. In particular, in the high-dimensional

regime of d ≥ C log n for a large enough constant C,

the memory bound for known results becomes larger

than Θ̃(nd), and thus there were no previously known
nontrivial algorithms in this regime, despite the fact that

algorithms that work in the high-dimensional regime

have been sought after for over a decade since they were

suggested by [2], [3], [15], [61] and others.

In the following discussion, we assume a centrally

symmetric instance, that is, if a ∈ R
d is in the input point

set, then so is −a. Note that for most geometric problems

falling under the class of extent measure problems [2],

[5], considering only centrally symmetric instances is

without loss of generality by translating to the origin,

up to constant factor losses in the distortion.

Because our �∞ subspace sketch algorithm is online,

many of our algorithms for streaming geometry are

online as well, and we present results in both the row

arrival streaming and online coreset models.

a) k-Robust Directional Width: Perhaps the most

straightforward of our applications is directional width

[2], [3], as this is equivalent to the �∞ subspace sketch

problem. Using the “peeling” technique [4], we also ob-

tain algorithms for k-robust directional width Ek(x,A):

Theorem I.7 (k-Robust Directional Width). There is an
algorithm A which maintains a coreset S ⊆ [n] such
that 1

ΔEk(x,A) ≤ Ek(x,A|S) ≤ Ek(x,A) where

• in the streaming model, Δ = O(
√
d log n), |S| =

O(kd log n), and A uses O(kd2 log2 n) bits of
space.

• in the online coreset model, Δ = O(
√

d log(nκOL))
and |S| = O(kd log(nκOL)).

736

b) Convex Hull: A fundamental problem in com-

putational geometry is the approximation of the convex

hull of n points a1,a2, . . . ,an ∈ R
d. For (1 + ε)-

approximation, ε-kernels [2], [3] give coresets of near-

optimal size of ε−Θ(d), even in the streaming model

[15], [16]. However, a general streaming algorithm for

convex hull in poly(d, log n) bits of space, even with

poly(d, log n) distortion, remained elusive. In the offline

setting, this is possible via coresets for Löwner–John

ellipsoids (see Section 3.6 of [57]).

By using our coreset for �∞ subspace sketch, we

obtain coresets for approximating symmetric convex

hulls, with poly(d, log n) bits of space and distortion.

Theorem I.8 (Streaming Convex Hulls). There is an
algorithm A which maintains a coreset S ⊆ [n]
such that conv({±ai}i∈S) ⊆ conv({±ai}ni=1) ⊆
Δconv({±ai}i∈S) where
• in the streaming model, Δ = O(

√
d log n), |S| =

O(d log n), and A uses O(d2 log2 n) bits of space.
• in the online coreset model, Δ = O(

√
d log(nκOL))

and |S| = O(d log(nκOL)).

Note that this also gives us a O(
√
d log n)d-factor

approximation to the volume of convex hull.

c) Löwner–John Ellipsoids: As previously dis-

cussed, streaming Löwner–John ellipsoids in the high-

dimensional setting has been open [5], [51]: [51] pro-

posed a simple algorithm of iteratively adding points

to a Löwner–John ellipsoid which does not yield

poly(d, log n) distortion, while [5] gave an O(1)-
approximation for MEB in poly(d) space, and asked

whether their ideas applied to Löwner–John ellipsoids.

We first note that our streaming �∞ subspace sketch

result immediately gives a result for Löwner–John ellip-

soids for linear inequality polytopes.

Theorem I.9 (Löwner–John Ellipsoids in Polynomial

Space). Let K =
{
x ∈ R

d : ‖Ax‖∞ ≤ 1
}

. There is
an algorithm A which maintains a coreset S ⊆ [n]
from which we can compute an ellipsoid E′ such that
E′ ⊆ K ⊆ ΔE′ where
• in the streaming model, Δ = O(

√
d log n), |S| =

O(d log n), and A uses O(d2 log2 n) bits of space.
• in the online coreset model, Δ = O(

√
d log(nκOL))

and |S| = O(d log(nκOL)).
Since K ⊆ E ⊆ √dK, E′ is an O(Δ

√
d)-approximate

Löwner–John ellipsoid.

We then show that taking polars yields Löwner–John

ellipsoids for symmetric convex hulls as well.

d) Volume Maximization: We next consider the

problem of selecting k rows that approximately max-

imizes the volume of the parallelepiped spanned by

the rows, known as volume maximization, or maximum

a posteriori (MAP) inference of determinantal point

processes (DPPs) [10]. Relative error guarantees for

this problem have been studied by [32], [33], [46],

culminating in the following:

Theorem I.10 (Theorem 1.9 of [46]). Let C ∈
[1, (log n)/k]. There is a one-pass streaming algorithm
that computes a subset S ⊆ [n] of k points such that

Pr
{
O(Ck)k/2 Vol(A|S) ≥ Vol(A|S∗)

}
≥ 2

3

where Vol(A|S) is the volume of the parallelepiped
spanned by the rows A|S indexed by S and A|S∗ is a
set of k rows that maximizes the volume. The algorithm
uses O(nO(1/C)d) bits of space.

This result is obtained by combining coresets for

volume maximization [32] with streaming ε-kernels for

directional width [15]. Note that even when C =
(log n)/k, the space complexity is exp(O(k))d and

thus still exponential in k. By replacing ε-kernels for

directional width with our �∞ subspace sketch result, we

obtain the first relative error polynomial space algorithms

for volume maximization5.

Theorem I.11 (Streaming Volume Maximization). Let
1 < C < (log n)/k and r = (log n)/C. There is a one-
pass streaming algorithm that computes a subset S ⊆ [n]
of k points such that

Pr
{
O(r2Ck log2 n)k/2 Vol(A|S) ≥ Vol(A|S∗)

}
≥ 2

3

where Vol(A|S) is the volume of the parallelepiped
spanned by the rows A|S indexed by S and A|S∗ is a
set of k rows that maximizes the volume. The algorithm
uses O(rd log2 n) bits of space.

If only the indices (rather than the d-dimensional
rows) are required, there is an algorithm using
O(k2 log3 n) bits of space with O(k log n)k distortion.

e) Minimum-Width Spherical Shell: Our next ap-

plication is the problem of approximating the spherical
shell of minimum width which encloses a set of points.

Formally, a spherical shell centered at c ∈ R
d with

inner radius r and outer radius R is σ(c, r, R) :={
x ∈ R

d : r ≤ ‖x− c‖2 ≤ R
}

, and we seek relative er-

ror approximations to R− r.

Theorem I.12 (Minimum Width Spherical Shell). Let
A be an n × d matrix presented in one pass over a
row arrival stream. There is an algorithm A which
maintains a coreset S ⊆ [n] from which we can
compute find a center ĉ, inner radius r̂ and outer
radius R̂ such that σ(ĉ, r̂, R̂) ⊇ {ai}ni=1 and R̂ − r̂ ≤
Δ3/2 minσ(c,r,R)⊇{ai}ni=1

R− r where

5The algorithm of [10] has polynomial space as well, but has an
additive error guarantee

737

• in the streaming model, Δ = O(
√
d log n), |S| =

O(d log n), and A uses O(d2 log2 n) bits of space.
• in the online coreset model, Δ = O(

√
d log(nκOL))

and |S| = O(d log(nκOL)).

f) Linear Programming.: Finally, we consider lin-

ear programming for instances with a centrally symmet-

ric constraint polytope
{
x ∈ R

d : ‖Ax‖∞ ≤ 1
}

. More

formally, we seek to approximate the optimal value of

the following optimization problem

maximize 〈c,x〉
subject to x ∈ R

d, ‖Ax‖∞ ≤ 1

where the rows of A arrive in a row arrival stream.

Theorem I.13 (Streaming Linear Programming). Let
A be an n × d matrix presented in one pass over
a row arrival stream. Define the polytope K ={
x ∈ R

d : ‖Ax‖∞ ≤ 1
}

. There is an algorithmA which
maintains a coreset S ⊆ [n] such that for any c ∈ R

d,
one can compute from A|S a vector x̂ ∈ K such that
maxx∈K〈c,x〉 ≤ Δ · 〈c, x̂〉 where
• in the streaming model, Δ = O(

√
d log n), |S| =

O(d log n), and A uses O(d2 log2 n) bits of space.
• in the online coreset model, Δ = O(

√
d log(nκOL))

and |S| = O(d log(nκOL)).

C. Streaming and Online �p Subspace Sketch

1) The Subspace Sketch Problem: We now consider

the �p subspace sketch problem, which is defined anal-

ogously to �∞ in Definition I.1. This problem in the

offline setting, as well as its randomized variants, was in-

troduced by [43]. When defining the randomized version

of this guarantee, [43] define two versions, known as the

“for each” and “for all” guarantees. For our streaming

algorithms, we focus on the stronger “for all” guarantee.

Definition I.14. Let A ∈ R
n×d and Δ ≥ 1. Then:

• For each guarantee: Qp satisfies the “for each”

guarantee if for each x ∈ R
d,

Pr
{
‖Ax‖p ≤ Qp(x) ≤ Δ‖Ax‖p

}
≥ 2

3

• For all guarantee: Qp satisfies the “for all” guar-

antee if

Pr
{
∀x ∈ R

d, ‖Ax‖p ≤ Qp(x) ≤ Δ‖Ax‖p
}
≥ 2

3
,

2) Prior Work on Streaming Subspace Sketch: The

subspace sketch problem is a vast generalization of

the more well-known subspace embedding problem, in

which Qp specifically takes the form ‖SAx‖, for some

norm ‖·‖ and a linear map S ∈ R
s×n. Many, but not all,

of our upper bounds on the subspace sketch problem will

actually be subspace embeddings.

In the regime of Δ = (1 + ε) for ε → 0, near-

optimal streaming algorithms can be obtained quite

straightforwardly by leveraging �p subspace embeddings

algorithms due to [25]. These subspace embedding re-

sults achieve near-optimal space complexity by sam-

pling methods. One can then use the merge-and-reduce
framework, in which one repeatedly finds subsets of

rows that provide a (1 + ε) approximation for blocks of

rows, and then combines them in a binary tree fashion

(see [13], [26]), to get streaming subspace embedding

algorithms of approximately the same quality. Since the

approximation is composed with a depth of log n, our

distortion is (1 + ε)logn; by replacing ε by ε
logn , we

recover the same trade-off as the offline subspace sketch

problem, up to poly log n factors. The space complexity

is roughly d2∨(p/2+1) words of space. However, this is

intractable when p is large.

The previous work of [26] studied the problem of

maintaining a subspace sketch data structure determin-
istically using a similar merge-and-reduce strategy, but

their results unfortunately incur an nΩ(1) factor either

in the distortion or the space complexity. Similar com-

posable coreset approaches have been explored by other

works, e.g., [32].

3) Streaming Algorithms for �p Subspace Sketch: We

now discuss our results for the �p streaming subspace

sketch problem. We first develop the following determin-

istic streaming algorithm, which greatly improves [26].

Theorem I.15. Let A ∈ Z
n×d have entries bounded

by poly(n). Let 2 < p < ∞. There is a one-pass
streaming algorithm maintaining a data structure Q
using O(d2 log n) bits of space such that for all x ∈ R

d,

‖Ax‖p ≤ Q(x) ≤ O((d log n)
1
2− 1

p)‖Ax‖p.
Our result proceeds by defining an online set of

weights that behave similarly to Lewis weights.

By tolerating randomization and exponential time, we

also obtain a full set of near-optimal trade-offs:

Theorem I.16. Let A ∈ Z
n×d have entries bounded

by poly(n). Let 2 < q < p < ∞. There is a one-pass
streaming algorithm which maintains a data structure
Q using O(dq/2+1 log n) bits of space such that with
probability at least 2/3, for all x ∈ R

d,

‖Ax‖p ≤ Q(x) ≤ O(d
1
2 (1− q

p) log n)‖Ax‖p.
Furthermore, for q = 2, our result can be combined

with �2 online coresets to yield online coresets for �p:

Corollary I.17. Let 2 < p < ∞. Let A be an n × d
matrix presented in one pass over a row arrival stream.
There is an algorithm A which maintains a coreset S ⊆
[n] and weights w ∈ R

S such that for all x ∈ R
d,

‖Ax‖p ≤ ‖diag(w)A|Sx‖2 ≤ Δ‖Ax‖p
where

738

• in the streaming model, Δ = O((d log n)
1
2− 1

p),
|S| = O(d log n), and A uses O(d2 log2 n) bits of
space.

• in the online coreset model, Δ =
O((d log κOL)

1
2− 1

p) and |S| = O(d log κOL).

As a corollary, we immediately obtain streaming al-

gorithms for solving �p regression.

Corollary I.18 (Online Coresets for �p Regression). Let
2 < p ≤ ∞. Let A be an n × d matrix and let b
be a vector and suppose that the n × (d + 1) matrix
A′ := [A b] is presented in a row arrival stream. There
is an algorithmA which maintains a coreset S ⊆ [n] and
weights w ∈ R

S from which we can compute x̂ ∈ R
d

such that ‖Ax̂− b‖p ≤ Δminx‖Ax− b‖p, where

• in the streaming model, Δ = O((d log n)
1
2− 1

p),
|S| = O(d log n), and A uses O(d2 log2 n) bits of
space.

• in the online coreset model, Δ =
O((d log κOL)

1
2− 1

p) and |S| = O(d log κOL).

Our results are summarized in Table I.

D. Change of Density

We now turn to the offline �p subspace sketch prob-

lem. We first investigate changes of density:

Definition I.19 (Change of Density [36], [42]). Let 0 <
p, q ≤ ∞ and let d ∈ N. Then, c(d, p, q) denotes the
smallest c > 0 such that for any A ∈ R

n×d, there exists
a nonnegative w ∈ R

n such that, for W = diag(w),

for all x ∈ R
d, ‖Ax‖p ≤

∥∥∥W 1
q− 1

pAx
∥∥∥
q
≤ c‖Ax‖p.

Here, we think of w as weights (or a measure) on

the rows of A when evaluating �q norms, i.e., ‖y‖q,w =

(
∑n

i=1 wi · |yi|q)1/q . Note then that
∥∥W−1/pAx

∥∥
p,w

=

‖Ax‖p so the map Ax �→ W−1/pAx equipped with

the appropriate norm is an isometry. On the other

hand, the weighted �q norm is
∥∥W−1/pAx

∥∥
q,w

=∥∥W1/q−1/pAx
∥∥
q
, which is comparable to ‖Ax‖p if w

satisfies the guarantee of Definition I.19.

a) Lewis weights.: The following seminal result is

known about the parameter c(d, p, q) for q = 2:

Theorem I.20 ([35], [41], [56]). Let d ∈ N. For all
0 < p ≤ ∞, c(d, p, 2) = c(d, 2, p) = d|1/2−1/p|.

Theorem I.20 is due to Lewis [41] in the regime of

1 ≤ p <∞, and the weights w achieving the guarantee

of Definition I.19 are known as Lewis weights, in honor

of [41]. For the remaining parameter regimes, the case of

p =∞ follows from Löwner–John ellipsoids [35], while

the case of 0 < p < 1 was proven in [56]. Although the

original proof by Lewis in [41] uses involved theorems

from Banach space theory, particularly the theory of p-

summing operators [28], the proofs of [25], [56] notably

provide elementary proofs based only on analyzing the

Lagrange multipliers for a convex program.

The use of Lewis weights was introduced to the

theoretical computer science community by [25], whose

work made Lewis weights algorithmic by giving in-

put sparsity time algorithms for approximating Lewis

weights, and used them to obtain fast algorithms for

solving �p regression. Subsequently, Lewis weights have

become widely used in algorithms research, playing im-

portant roles in recent developments in optimization [30],

[34], [40], convex geometry [37], randomized numerical

linear algebra [19], [21], [25], [44], [47], and machine

learning [18], [48], [52], [53]. Algorithms for computing

Lewis weights themselves have also been refined over

the years, both for 0 < p <∞ [31], [39], [40] as well as

p = ∞, corresponding to Löwner–John ellipsoids [23],

[57].

b) Change of density to �q , q �= 2: The following

gives an optimal bound on c(d, p, q) for q �= 2.

Theorem I.21 (Theorem 1.2 of [42]). Let d ∈ N and let
1 ≤ p, q <∞. The following holds:

• If min(p, q) ≤ 2, then c(d, p, q) ≤ d| 1q− 1
p |.

• If min(p, q) ≥ 2, then c(d, p, q) ≤ d
1
2 (1− p∧q

p∨q).

As [42] show, the quantity c(d, p, q) is intimately

related to various other quantities, including p-summing

norms and p-integral norms of operators, and is of

independent interest in the functional analysis literature.

For instance, an important corollary of this result is the

best known upper bound on the Banach–Mazur distance
[58] between a subspace of �np and any subspace of �nq ,

which formalizes the notion of distance between �p and

�q for subspaces. As the authors note in Corollary 1.9

[42], this result is optimal for 1 ≤ p < q < 2. In fact, we

will show that the proof of a result of [43] implies that

this is optimal in the regime of min(p, q) ≥ 2 as well,

when n is large enough. Thus, Theorem I.21 obtains a

tight characterization of the distance between subspaces

of �p and �q , in the sense of Banach–Mazur distance.

For min(p, q) ≤ 2, Theorem I.21 follows from prop-

erties of Lewis weights, enjoying simple proofs and fast

algorithms due to our refined understanding of Lewis

weights. However, for min(p, q) ≥ 2, the proof is much

more complicated. The authors first relate the problem

of bounding c(d, p, q) to bounding the smallest constant

α > 0 such that πq(u) ≤ απp(u) for all linear maps u
(Definition 1.3 of [42])6, where πp(u) is the p-summing
norm of u [28]. To prove that α bounds c(d, p, q), the

6In fact, they show that these two parameters are equal.

739

authors invoke a factorization theorem of Maurey [50]7,

which replaces Lewis’s theorem and gives weights w for

the change of density. Finally, the bound on α follows

from a result of [14], which uses results from the theory

of operator ideals [54].

Our main result of this section is an elementary

proof of Theorem I.21 using Lewis weights. Due to the

simplicity of our proof, we obtain the following robust

version of Theorem I.21, which refines [42] since:

1) The change of density is specifically the �p Lewis

weights, rather than a tailor-made construction.

2) The error guarantees degrade gracefully when the

change of density is replaced by an approximation.

Theorem I.22 (Change of density via approximate Lewis

weights). Let A ∈ R
n×d and 0 < p, q < ∞. Let w ∈

R
n be α-approximate �p Lewis weight overestimates and

W = diag(w). There is λd,p,q such that for all x ∈ R
d,

‖Ax‖p ≤
∥∥∥λd,p,q ·W1/q−1/pAx

∥∥∥
q
≤ κd,p,q‖Ax‖p

where

κd,p,q =

{
(αd)| 1q− 1

p | if min(p, q) ≤ 2

(αd)
1
2 (1− p∧q

p∨q) if min(p, q) ≥ 2

Our main technique is a new simple identity for

Lewis weights which may be of independent interest,

which shows that if we reweight the rows of A with

�p Lewis weights, then the �q Lewis weights of the

resulting matrix coincide with the �p Lewis weights of

A. Given this identity, the proof follows from just a

few lines of estimates, which substantially simplifies

the original proof of [42]. Furthermore, because our

change of density uses Lewis weights, we inherit fast

algorithms for computing these weights. Note that al-

though polynomial time algorithms are known for many

factorization theorems [59], known algorithms require

solving constrained eigenvalue minimization problems,

and are not known to have fast input sparsity time

algorithms as Lewis weights do. Our result shows the

following surprising message:

�p Lewis weights optimally approximate �p by �q .

We hope that our techniques will find further applications

in functional analysis and theoretical computer science.

In particular, we give the fastest known algorithms for

�p linear regression with poly(d)-factor relative error

distortion and �p column subset selection. Both �p regres-

sion and �p column subset selection are extremely well-

studied, and obtaining fast algorithms for these problems

is important. See Table III for a summary.

7See also Proposition 10 in Chapter III.H of [60] for a proof and
exposition in English of a similar theorem from [50], which gives the
“transposed” result.

E. Subspace Sketch with Large Approximation

As an application of Theorem I.22, we obtain new

tight bounds on the offline �p subspace sketch problem.

The offline subspace sketch problem captures the

fundamental limits of dimension reduction in �p: with

unbounded computation and access to A, how much

can A be compressed, as a function of the distortion

Δ? The work of [43] studied this problem in the regime

of Δ = (1 + ε) for ε → 0. Here, [43] found surprising

separations between p ∈ 2Z and all other p, showing a

lower bound of Ω̃(d/ε2) bits of space required to store

Qp for p ∈ [1,∞) \ 2Z for the “for each” guarantee,

which separates these p from p ∈ 2Z due to an upper

bound of Õ(dp) due to [55]. For ε = Θ(1), they showed

a lower bound of Ω̃(dp/2) for the “for each” guarantee

and Ω̃(dp/2+1) for the “for all” guarantee, matching

known upper bounds.

Although space bounds of the form Õ(dp/2/ε2) are

possible for achieving (1 + ε) distortion [38], for large

constant p, this space usage may already be problematic,

especially if one is willing to tolerate a larger approxima-

tion factor. One could first observe that even for p =∞,

if one is willing to tolerate a distortion of
√
d, then it is

possible to do better by using Löwner–John ellipsoids,

since it only takes O(d2) words of space (or O(d2 log n)
bits) to store the quadratic form for the Löwner–John

ellipsoid for the convex set {x ∈ R
d : ‖Ax‖p ≤ 1}.

Taking this idea a step further, one could also store the

quadratic form for the Lewis ellipsoid for A using O(d2)

words to achieve a distortion of O(d
1
2− 1

p). However,

these two upper bounds jump from dp/2+1 space to d2

space, which raises the question of whether it is possible

to obtain a smooth trade-off. As another contribution, we

answer this question in the affirmative, by applying our

Theorem I.22. Our trade-offs are summarized in Table

II. The lower bounds of [43] extend to the parameter

regime we consider, and shows that our upper bounds

are nearly optimal, up to logarithmic factors. Our algo-

rithmic technique is to first approximate the �p norm by

the �q norm using Theorem I.22 with some q < p, and

then to use a constant factor approximation to the �q
norm using O(dq/2) words of space for the “for each”

guarantee or Õ(dq/2+1) for the “for all” guarantee.

F. Independent and Concurrent Work

In [49] which appeared in COLT 2022, the authors

give a one-pass streaming algorithm for approximating

the Löwner–John ellipsoid of a convex hull which stores

O(d2) floating point numbers and achieves a distortion

of O(
√

d log(R/r + 1)), where R is the radius of the

smallest ball containing the input points and r is the

radius of the largest ball contained in the input points.

The algorithm in [49] is quite different from ours,

740

analyzing an algorithm similar to that of [51]. For real-

valued inputs, their distortion is independent of n while

our Theorem I.9 incurs a dependence on log n. However,

our algorithm offers a couple of other advantages over

[49]: (1) for integer matrices with polynomially bounded

entries, our result improves upon [49] by providing

a O(
√
d log n) distortion without further assumptions,

whereas the aspect ratio R/r could be exponential in

d; (2) our algorithm is a coreset algorithm, i.e., it only

relies on storing a subset of the input points. We also

note that they do not solve related �p subspace sketch

algorithms, as we do.

ACKNOWLEDGMENT

We thank Timothy Chan, Sariel Har-Peled, Piotr In-

dyk, and Jeff Phillips for helpful feedback and sugges-

tions. We thank Naren Manoj and Max Ovsiankin for

pointing out an error in an earlier version of the draft.

We thank anonymous reviewers for suggestions which

helped improve the presentation of the draft.

REFERENCES

[1] D. Adil, R. Kyng, R. Peng, and S. Sachdeva.

Iterative refinement for �p-norm regression. In

T. M. Chan, editor, SODA 2019, pages 1405–1424.

SIAM, 2019.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.

Approximating extent measures of points. J. ACM,

51(4):606–635, 2004.

[3] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.

Geometric approximation via coresets. Combinato-
rial and computational geometry, 52(1-30):3, 2005.

[4] P. K. Agarwal, S. Har-Peled, and H. Yu. Robust

shape fitting via peeling and grating coresets. Dis-
cret. Comput. Geom., 39(1-3):38–58, 2008.

[5] P. K. Agarwal and R. Sharathkumar. Streaming

algorithms for extent problems in high dimensions.

Algorithmica, 72(1):83–98, 2015.

[6] J. Alman and V. V. Williams. A refined laser

method and faster matrix multiplication. In

D. Marx, editor, SODA 2021, pages 522–539.

SIAM, 2021.

[7] N. Alon and V. H. Vũ. Anti-Hadamard matrices,

coin weighing, threshold gates, and indecompos-

able hypergraphs. J. Combin. Theory Ser. A,

79(1):133–160, 1997.

[8] S. Arya, G. D. da Fonseca, and D. M. Mount.

Optimal approximate polytope membership. In

P. N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, pages 270–288. SIAM,

2017.

[9] G. Ballard, T. G. Kolda, A. Pinar, and C. Seshadhri.

Diamond sampling for approximate maximum all-

pairs dot-product (MAD) search. In C. C. Aggar-

wal, Z. Zhou, A. Tuzhilin, H. Xiong, and X. Wu,

editors, 2015 IEEE International Conference on
Data Mining, ICDM 2015, pages 11–20. IEEE

Computer Society, 2015.

[10] A. Bhaskara, A. Karbasi, S. Lattanzi, and M. Zadi-

moghaddam. Online MAP inference of determinan-

tal point processes. In H. Larochelle, M. Ranzato,

R. Hadsell, M. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, 2020.

[11] A. Bhaskara, S. Lattanzi, S. Vassilvitskii, and

M. Zadimoghaddam. Residual based sampling for

online low rank approximation. In D. Zuckerman,

editor, 60th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2019, pages

1596–1614. IEEE Computer Society, 2019.

[12] A. Blum, V. Braverman, A. Kumar, H. Lang,

and L. F. Yang. Approximate convex hull of

data streams. In I. Chatzigiannakis, C. Kakla-

manis, D. Marx, and D. Sannella, editors, 45th
International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018,
Prague, Czech Republic, volume 107 of LIPIcs,

pages 21:1–21:13. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2018.

[13] V. Braverman, P. Drineas, C. Musco, C. Musco,

J. Upadhyay, D. P. Woodruff, and S. Zhou. Near

optimal linear algebra in the online and sliding

window models. In FOCS 2020, pages 517–528.

IEEE, 2020.

[14] B. Carl. Inequalities between absolutely (p, q)-
summing norms. Studia Math., 69(2):143–148,

1980/81.

[15] T. M. Chan. Faster core-set constructions and data-

stream algorithms in fixed dimensions. Comput.
Geom., 35(1-2):20–35, 2006.

[16] T. M. Chan. Dynamic streaming algorithms for

epsilon-kernels. In S. P. Fekete and A. Lubiw,

editors, SoCG 2016, volume 51 of LIPIcs, pages

27:1–27:11. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2016.

[17] T. M. Chan and V. Pathak. Streaming and dynamic

algorithms for minimum enclosing balls in high

dimensions. Comput. Geom., 47(2):240–247, 2014.

[18] X. Chen and M. Derezinski. Query complexity

of least absolute deviation regression via robust

uniform convergence. In M. Belkin and S. Kpotufe,

editors, COLT 2021, volume 134 of Proceedings
of Machine Learning Research, pages 1144–1179.

PMLR, 2021.

[19] R. Chhaya, J. Choudhari, A. Dasgupta, and S. Shit.

Streaming coresets for symmetric tensor factoriza-

741

tion. In ICML 2020, volume 119 of Proceedings
of Machine Learning Research, pages 1855–1865.

PMLR, 2020.

[20] F. Chierichetti, S. Gollapudi, R. Kumar, S. Lattanzi,

R. Panigrahy, and D. P. Woodruff. Algorithms

for �p low-rank approximation. In D. Precup and

Y. W. Teh, editors, ICML 2017, volume 70 of

Proceedings of Machine Learning Research, pages

806–814. PMLR, 2017.

[21] K. L. Clarkson, R. Wang, and D. P. Woodruff.

Dimensionality reduction for tukey regression. In

K. Chaudhuri and R. Salakhutdinov, editors, ICML
2019, volume 97 of Proceedings of Machine Learn-
ing Research, pages 1262–1271. PMLR, 2019.

[22] K. L. Clarkson and D. P. Woodruff. Numeri-

cal linear algebra in the streaming model. In

M. Mitzenmacher, editor, STOC 2009, pages 205–

214. ACM, 2009.

[23] M. B. Cohen, B. Cousins, Y. T. Lee, and X. Yang. A

near-optimal algorithm for approximating the John

ellipsoid. In A. Beygelzimer and D. Hsu, editors,

COLT 2019, volume 99 of Proceedings of Machine
Learning Research, pages 849–873. PMLR, 2019.

[24] M. B. Cohen, C. Musco, and J. Pachocki. Online

row sampling. Theory Comput., 16:1–25, 2020.

[25] M. B. Cohen and R. Peng. Lp row sampling by

lewis weights. In R. A. Servedio and R. Rubinfeld,

editors, STOC 2015, pages 183–192. ACM, 2015.

[26] G. Cormode, C. Dickens, and D. P. Woodruff.

Leveraging well-conditioned bases: Streaming and

distributed summaries in Minkowski p-norms. In

J. G. Dy and A. Krause, editors, ICML 2018,

volume 80 of Proceedings of Machine Learning
Research, pages 1048–1056. PMLR, 2018.

[27] C. Dan, H. Wang, H. Zhang, Y. Zhou, and

P. Ravikumar. Optimal analysis of subset-selection

based l p low-rank approximation. In H. M. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d’Alché-

Buc, E. B. Fox, and R. Garnett, editors, NeurIPS
2019, pages 2537–2548, 2019.

[28] J. Diestel, H. Jarchow, and A. Tonge. Absolutely
summing operators, volume 43 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge Univer-

sity Press, Cambridge, 1995.

[29] Q. Ding, H. Yu, and C. Hsieh. A fast sampling

algorithm for maximum inner product search. In

K. Chaudhuri and M. Sugiyama, editors, The 22nd
International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, volume 89 of Pro-
ceedings of Machine Learning Research, pages

3004–3012. PMLR, 2019.

[30] D. Durfee, K. A. Lai, and S. Sawlani. $\ell 1$

regression using lewis weights preconditioning

and stochastic gradient descent. In S. Bubeck,

V. Perchet, and P. Rigollet, editors, COLT 2018,

volume 75 of Proceedings of Machine Learning
Research, pages 1626–1656. PMLR, 2018.

[31] M. Fazel, Y. T. Lee, S. Padmanabhan, and A. Sid-

ford. Computing lewis weights to high precision.

In J. S. Naor and N. Buchbinder, editors, SODA
2022, pages 2723–2742. SIAM, 2022.

[32] P. Indyk, S. Mahabadi, S. O. Gharan, and

A. Rezaei. Composable core-sets for determinant

maximization: A simple near-optimal algorithm. In

K. Chaudhuri and R. Salakhutdinov, editors, ICML
2019, volume 97 of Proceedings of Machine Learn-
ing Research, pages 4254–4263. PMLR, 2019.

[33] P. Indyk, S. Mahabadi, S. O. Gharan, and

A. Rezaei. Composable core-sets for determinant

maximization problems via spectral spanners. In

S. Chawla, editor, SODA 2020, pages 1675–1694.

SIAM, 2020.

[34] A. Jambulapati, Y. P. Liu, and A. Sidford. Improved

iteration complexities for overconstrained p-norm

regression. In S. Leonardi and A. Gupta, editors,

STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, pages 529–542. ACM,

2022.

[35] F. John. Extremum problems with inequalities as

subsidiary conditions. In Studies and Essays Pre-
sented to R. Courant on his 60th Birthday, January
8, 1948, pages 187–204. Interscience Publishers,

Inc., New York, N. Y., 1948.

[36] W. B. Johnson and G. Schechtman. Finite di-

mensional subspaces of Lp. In Handbook of the
geometry of Banach spaces, Vol. I, pages 837–870.

North-Holland, Amsterdam, 2001.

[37] A. Laddha, Y. T. Lee, and S. S. Vempala. Strong

self-concordance and sampling. In K. Makarychev,

Y. Makarychev, M. Tulsiani, G. Kamath, and

J. Chuzhoy, editors, STOC 2020, pages 1212–1222.

ACM, 2020.

[38] M. Ledoux and M. Talagrand. Probability in
Banach spaces. Classics in Mathematics. Springer-

Verlag, Berlin, 2011.

[39] Y. T. Lee. Faster algorithms for convex and com-
binatorial optimization. PhD thesis, Massachusetts

Institute of Technology, 2016.

[40] Y. T. Lee and A. Sidford. Solving linear pro-

grams with sqrt(rank) linear system solves. CoRR,

abs/1910.08033, 2019.

[41] D. R. Lewis. Finite dimensional subspaces of Lp.

Studia Mathematica, 63(2):207–212, 1978.

[42] D. R. Lewis and N. Tomczak-Jaegermann. Hilber-

tian and complemented finite-dimensional sub-

spaces of Banach lattices and unitary ideals. J.
Functional Analysis, 35(2):165–190, 1980.

[43] Y. Li, R. Wang, and D. P. Woodruff. Tight bounds

742

for the subspace sketch problem with applications.

SIAM J. Comput., 50(4):1287–1335, 2021.

[44] Y. Li, R. Wang, L. Yang, and H. Zhang. Nearly

linear row sampling algorithm for quantile regres-

sion. In ICML 2020, volume 119 of Proceedings
of Machine Learning Research, pages 5979–5989.

PMLR, 2020.

[45] S. S. Lorenzen and N. Pham. Revisiting wedge

sampling for budgeted maximum inner product

search (extended abstract). In Z. Zhou, editor,

Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021,

pages 4789–4793. ijcai.org, 2021.

[46] S. Mahabadi, I. P. Razenshteyn, D. P. Woodruff, and

S. Zhou. Non-adaptive adaptive sampling on turn-

stile streams. In K. Makarychev, Y. Makarychev,

M. Tulsiani, G. Kamath, and J. Chuzhoy, editors,

STOC 2020, pages 1251–1264. ACM, 2020.

[47] A. V. Mahankali and D. P. Woodruff. Optimal �1
column subset selection and a fast PTAS for low

rank approximation. In D. Marx, editor, SODA
2021, pages 560–578. SIAM, 2021.

[48] T. Mai, C. Musco, and A. Rao. Coresets for classi-

fication - simplified and strengthened. In M. Ran-

zato, A. Beygelzimer, Y. N. Dauphin, P. Liang,

and J. W. Vaughan, editors, NeurIPS 2021, pages

11643–11654, 2021.

[49] Y. Makarychev, N. S. Manoj, and M. Ovsiankin.

Streaming algorithms for ellipsoidal approximation

of convex polytopes. In P. Loh and M. Raginsky,

editors, Conference on Learning Theory, volume

178 of Proceedings of Machine Learning Research,

pages 3070–3093. PMLR, 2022.

[50] B. Maurey. Théorèmes de factorisation pour les
opérateurs linéaires à valeurs dans les espaces Lp.

Number 11 in Astérisque. Société Mathématique de

France, Paris, 1974.

[51] A. Mukhopadhyay, A. Sarker, and T. Switzer. Ap-

proximate ellipsoid in the streaming model. In

W. Wu and O. Daescu, editors, COCOA 2010,
Proceedings, Part II, volume 6509 of Lecture Notes
in Computer Science, pages 401–413. Springer,

2010.

[52] C. Musco, C. Musco, D. P. Woodruff, and T. Ya-

suda. Active sampling for linear regression beyond

the �2 norm. CoRR, abs/2111.04888, 2021.

[53] A. Parulekar, A. Parulekar, and E. Price. L1

regression with Lewis weights subsampling. In

APPROX/RANDOM 2021, volume 207 of LIPIcs,

pages 49:1–49:21, 2021.

[54] A. Pietsch. Operator ideals, volume 20 of North-
Holland Mathematical Library. North-Holland

Publishing Co., Amsterdam-New York, 1980.

[55] G. Schechtman. Tight embedding of subspaces of

Lp in �np for even p. Proc. Amer. Math. Soc.,
139(12):4419–4421, 2011.

[56] G. Schechtman and A. Zvavitch. Embedding sub-

spaces of lp into lnp , 0¡ p¡ 1. Mathematische
Nachrichten, 227(1):133–142, 2001.

[57] M. J. Todd. Minimum volume ellipsoids - theory
and algorithms, volume 23 of MOS-SIAM Series
on Optimization. SIAM, 2016.

[58] N. Tomczak-Jaegermann. Banach-Mazur distances
and finite-dimensional operator ideals, volume 38

of Pitman Monographs and Surveys in Pure and
Applied Mathematics. Longman Scientific & Tech-

nical, Harlow; copublished in the United States

with John Wiley & Sons, Inc., New York, 1989.

[59] J. A. Tropp. Column subset selection, matrix factor-

ization, and eigenvalue optimization. In C. Math-

ieu, editor, SODA 2009, pages 978–986. SIAM,

2009.

[60] P. Wojtaszczyk. Banach spaces for analysts, vol-

ume 25 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge,

1991.

[61] H. Zarrabi-Zadeh and T. M. Chan. A simple

streaming algorithm for minimum enclosing balls.

In Proceedings of the 18th Annual Canadian Con-
ference on Computational Geometry, CCCG 2006,

2006.

743

