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Abstract—Many existing algorithms for streaming ge-
ometric data analysis have been plagued by exponential
dependencies in the space complexity, which are undesir-
able for processing high-dimensional data sets, i.e., large
d. In particular, once d > logn, there are no known
non-trivial streaming algorithms for problems such as
maintaining convex hulls and Lowner-John ellipsoids of
n points, despite a long line of work in high-dimensional
streaming computational geometry since [2].

We simultaneously improve all of these results to
poly(d,logn) bits of space by trading off with a
poly(d,log n) factor distortion. We achieve these results in
a unified manner, by designing the first streaming algorithm
for maintaining a coreset for /., subspace embeddings
with poly(d, logn) space and poly(d, logn) distortion. Our
algorithm also gives similar guarantees in the online coreset
model. Along the way, we sharpen known results for online
numerical linear algebra by replacing a log condition
number dependence with a logn dependence, answering
an open question of [13]. Our techniques provide a novel
connection between leverage scores, a fundamental object
in numerical linear algebra, and computational geometry.

For ¢, subspace embeddings, our improvements in
online numerical linear algebra yield nearly optimal trade-
offs between space and distortion for one-pass streaming
algorithms. For instance, we obtain a delztellministic coreset
using O(d” logn) space and O((dlogn)2~ 7 ) distortion for
p > 2, whereas previous deterministic algorithms incurred
a poly(n) factor in the space or the distortion [26].

Our techniques have implications also in the offline
setting, where we give optimal trade-offs between the
space complexity and distortion of a subspace sketch data
structure, which preprocesses an n x d matrix A and
outputs |Ax|| up to a poly(d) factor distortion for any
x. To do this we give an elementary proof of a “change of
density”’ theorem of [42] and make it algorithmic.l

Index Terms—computational geometry, streaming

I. INTRODUCTION

Data science has permeated modern computer science
in the last few decades, leading to a surge in demand
for geometric data processing algorithms on large data
sets. Two decades ago, the data sets studied in practice,
represented by an n x d matrix A, had many rows (large
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n) and small dimension (d = O(1)). Driven by such ap-
plications, many streaming algorithms were developed,
which only require one or a few passes through a stream
which allows access to the rows a1, as, . .., a, € R? one
at a time. In this setting, e-kernels were introduced by
[21, [3], which gave a unified approach towards obtaining
(1 + ¢)-factor approximations using £~©(4) space for
a wide range of geometric problems, including width,
convex hull, and minimum enclosing spherical shell, to
name just a few of the applications of e-kernels.

Since then, the dimensionality of data sets encoun-
tered in practice has increased dramatically, and space
complexities that scale exponentially in d, or even a
large polynomial (say d*), can no longer be considered
practical. Some geometric problems have adapted to this
high-dimensional setting, including minimum enclosing
cylinder [15, Theorem 3.1], minimum enclosing ball
(MEB) [5], [17], [61], and diameter [5, Theorem 3.2],
by tolerating a larger O(1)-factor distortion. [5] also
give lower bounds for the MEB and diameter problems,
showing that any one-pass streaming algorithm with less
than an «o-factor distortion must use exp(poly(d)) bits
of space, where o = # for MEB and a = /2 for
diameter. Furthermore, [5] show that the width problem
requires exp(poly(d)) bits of space for any algorithm
achieving distortion smaller than di/3 /8. Thus, distor-
tions at least poly(d) are necessary for some of these
problems to achieve poly(d) bits of space. However,
many problems still do not have polynomial space algo-
rithms, even with poly(d) distortions, such as computing
width, Lowner—John ellipsoids [5], [51], £, subspace
embeddings for large p [26], and convex hulls [12].

A. Our Contributions

In this work, we address the lack of streaming algo-
rithms for geometric problems in the high-dimensional
setting by providing a unified approach towards achiev-
ing poly(d,logn) space and distortion. As argued be-
fore, a dependence of poly(d) in the distortion is nec-
essary for polynomial space algorithms, and is arguably
natural since many geometric summarization problems



inherently incur such losses in the distortion, e.g., for
Lowner—John ellipsoids.

To obtain our results for streaming geometry, we
design the first one-pass streaming algorithm for the ¢,
subspace sketch problem. That is, given a row arrival
stream for A € Z"*<¢ with entries bounded by poly(n),
we show how to maintain a coreset S C [n] of size at
most |S| < O(dlogn) such that for all x € RY,

[A[sx]l, < |Ax],, < O(Vdlogn)||Alsx]| -

Our algorithm is deterministic and uses only
O(d?log®n) bits of space, which is an optimal
trade-off between the space complexity and distortion,
up to polylogn factors. In fact, our algorithm has the
property that each ¢ € S is selected irrevocably, i.e.,
we immediately decide whether to permanently keep or
discard the row a;. Such algorithms can be considered
under the online coreset model, in which the input
matrix A € R"*? is now allowed to take real values, and
the algorithm’s complexity is measured by the number
of rows it stores. Under this model, our algorithm
stores O(dlog(nkO')) rows and achieves a distortion of
O(y/dlog(nkOL)), where k8 = || A2 max?_, ||A; |22
is the online condition number of A [13]. Various
linear algebraic and geometric problems have been
considered in the online model, including spectral
approximation [24], low rank approximation [11], [13],
and ¢; subspace embeddings [13].

Note that the /., subspace sketch problem is of central
importance in computational geometry: it is closely
related to directional width estimation [2], [3] as well
as the polytope membership problem [8]. It can also be
used to approximate maximum inner product search, for
which sampling-based algorithms have recently received
much attention in the large-scale machine learning lit-
erature [9], [29], [45]. Even beyond these applications,
we will show that the /., subspace sketch primitive in
fact leads to the first poly(d, log n) space, poly(d, logn)
distortion algorithm for a much wider variety of geo-
metric problems, k-robust directional width, including 7,
subspace sketch for p < oo, convex hull, Lowner—John
ellipsoids, volume maximization, minimum-width spher-
ical shell, and solving linear programs. Our results can
thus be seen as a high-dimensional and high-distortion
analogue of the fact that e-kernels solve many streaming
problems in the (1 + €)-distortion setting [2], [3].

Next, we study streaming subspace sketches. Here, we
obtain a deterministic algorithm achieving O(d?logn)
bits of space and O((dlog n)%_%) distortion, signifi-
cantly improving upon the earlier deterministic one-pass
algorithms of [26], which incurred a poly(n) factor in
either the space complexity or distortion. This nearly

2Here, A; is the i X d matrix formed by the first ¢ rows of A.
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TABLE I
RESULTS FOR ONE-PASS STREAMING £, SUBSPACE SKETCH IN THE
“FOR ALL” MODEL. NEW RESULTS HIGHLIGHTED IN BLUE. WE
SUPPRESS O(logn) FACTORS IN THE DISTORTION AND
poly(s—l, log n) FACTORS IN SPACE. “OPTIMAL” MEANS THAT THE
TRADE-OFF BETWEEN THE SPACE COMPLEXITY AND DISTORTION
IS OPTIMAL, UP TO log n FACTORS (SEE TABLE II).

Distortion Space Det. Online  Optimal

p=2 1 d? v/ v
p>0 1+e  @@VGETD v
p>1 do1/v) nYd v

p=o00 Vd d? v 4 v

1_1
p>2 d2"» d? v v v
p>2 () g v
p=2 1+¢ d? v v v
TABLE II

OUR RESULTS FOR SUBSPACE SKETCH IN THE “FOR ALL” MODEL.
RESULTS FOR THE “FOR EACH” MODEL REMOVE A FACTOR OF d
FROM THE SPACE BOUNDS, FOR THE SAME DISTORTION. NEW
RESULTS HIGHLIGHTED IN BLUE. WE SUPPRESS poly log n
FACTORS IN THE SPACE COMPLEXITY.

Distortion Space
p€ (0,2] UB 1 d?
1 1
p>2 UB dz"p d?
p>2 UB 1 dr/2+1
1(_4a
p>2 LB a3 (=3)  gan 2<q<p
1(1_4a
p>2 UB d2(1 P) d1/2t1 2 <qg<p
p>0 LB < o0 d?

matches the offline guarantee obtained by using Lewis
weights [25], [41], [56], achieving optimal trade-offs.

Although our streaming /,, subspace sketch achieves
nearly optimal trade-offs, it is still possible to ask for
improvements in these bounds, as well as faster algo-
rithms, in the offline setting where we have unlimited
access to A. In a third contribution, in the offline setting,
we construct £, subspace embeddings with nearly opti-
mal trade-offs between space complexity and distortion,
which shave all polylogn factors off of the distortion.
As a crucial step, we give a new elementary proof of
a “change of density” theorem in geometric functional
analysis due to Lewis and Tomczak-Jaegermann [42],
by using Lewis weights [25], [41], [56]. This allows
us to make the construction algorithmic, and in fact,
nearly input sparsity time. Our space complexity upper
bound matches a subspace sketch lower bound due to
[43]. These subspace sketch lower bounds also witness
the near tightness of our streaming ¢, subspace sketch
algorithms. See Table II for a summary.

Furthermore, our fast algorithms for computing these
£, subspace embeddings give the fastest known running
times for /,, regression and ¢, column subset selection,



TABLE III
RESULTS FOR FAST NUMERICAL LINEAR ALGEBRA IN £, FOR
p > 2, WITH THE CURRENT MATRIX MULTIPLICATION TIME
w & 2.37286 [6]. HERE, g IS ANY NUMBER BETWEEN 2 AND p. WE
SUPPRESS poly (logn, e~ 1) FACTORS IN THE RUNNING TIME AND
CONSTANT FACTORS IN THE DISTORTION. LR = £, LINEAR
REGRESSION, CSS = k-COLUMN SUBSET SELECTION.

Distortion Time
LR 1+e n¥ [1]
1+e¢ nnz(A) +d5* (1], [25]
;(1_1) %)
d2 P nnz(A) + d2
css K nd (11, 127]
1
K nnz(A)d + k2¥d (1], [25], [27]
1 1
k1_5+§(1_%) nnz(A)d + k3“d

when we allow for distortions which scale as poly(d)
(see Table III). Note that algorithms for £,, column subset
selection already incur distortions on the order poly(d)
[20], [27] (as they must due to known lower bounds).

B. Streaming Algorithms for Geometric Problems

We first introduce two models of streaming algorithms
which we study: the row arrival streaming model and the
online coreset model. In these models, we have an n X d
input matrix A with rows aj,as,...,a,, where n is so
large that we cannot observe the entire matrix at once,
and we can only observe one row at a time.

In the row arrival streaming model, we assume that
A € 7Z"* is an integer matrix with entries bounded
by poly(n). Then, the rows a3, as, . .., a, are presented
in a stream one at a time in that order, and we must
minimize the number of bits that we store while making
only one pass® through the stream of rows of A.

On the other hand, in the online coreset model, the
input matrix A takes real values R”*%. Again, the rows
aj,as,...,a, are presented in one pass over a stream,
one at a time, in that order. However, in this model,
for each ¢ € [n], we must irrevocably choose whether to
store a; or not. That is, if we choose to store a;, then we
may not discard it at a later time. For each stored row,
we allow for the row a; to be scaled by some weight
w; € R. The goal is to minimize the number of rows
of A that are stored. We assume that we may perform
exact arithmetic and linear algebra on the stored rows.

1) Online Coresets for £, Subspace Sketch: We first
discuss our results for the /., subspace sketch problem,
in both the row arrival streaming and online coreset
models, which is the basis for all of our algorithms for
geometric problems.

3We also consider algorithms which make multiple passes through
the stream, but we will restrict to one pass for now.
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Definition I.1 (Streaming/Online ¢, Subspace Sketch).
The streaming /. subspace sketch problem is defined as
follows*. We are given an n x d matrix A over one pass
through a row arrival stream. Then:

o In the row arrival streaming model, A € Z"*? with
entries bounded by poly(n), and we must maintain
a data structure @) : R? — R such that, at the end
the stream, we have for some A > 1 that

for all x € RY, [Ax| < Q(x) < AllAx||

In the online coreset model, A € R"*? is a real
matrix, and we must irrevocably choose a subset
of entries S C [n] and weights w € R® as well
as a function Q : RY — R depending only on
diag(w)A|s such that, at the end of the stream,
we have for some A > 1 that

for all x € R?, |Ax| < Q(x) < AllAx]||

To motivate and discuss the streaming /., subspace
sketch problem, we first illustrate some connections with
computational geometry. Note that Lowner—John ellip-
soids can be used to achieve v/d distortion and d? words
of space for /., subspace sketch in the offline setting,
which is a nearly optimal trade-off. Thus, one may
wonder whether there are algorithms for maintaining
Lowner—John ellipsoids in a row arrival stream. This is,
however, a fundamental unresolved problem in streaming
computational geometry [5], [51]. In fact, we show that
Lowner—John ellipsoids require (n) bits of space to
maintain up to a distortion of less than ©(4/d/logn):

Theorem 1.2. Any algorithm that maintains the Lowner—
John ellipsoid of a1, as,...,a, € R% up to a factor of
\/d/logn, in one pass over a row arrival stream with
probability at least 2/3, must use Q(n) bits space.

This is perhaps surprising, given that for the syntacti-
cally similar MEB problem, O(1) approximation is pos-
sible using poly(d, log n) bits of space [5], [17]. Despite
this, we obtain a deterministic streaming algorithm, and
in fact an online coreset, for /., subspace embeddings:

Theorem 1.3. Let A be an n x d matrix presented in one
pass over a row arrival stream. There is an algorithm
A which maintains a coreset S C [n] such that

for all x € R4,

[Alsx]lo < [AX[l,, < AllAfsx][

where

e in the streaming model, A = O(y/dlogn), |S| =
O(dlogn), and A uses O(d?log®

n) bits of space.
o in the online coreset model, A = O(y/dlog(nkOL))

and |S| = O(dlog(nx®b)).

4 Although one may define randomized versions of this problem [43],
as we consider later, we restrict ourselves to deterministic algorithms
in this section.



As we show, any data structure () which satisfies

Pr{Q(x) < [Axl <A-Q)} >

for each x € R? must either have A = Q(y/d/logn)
or use §2(n) bits of space. Furthermore, we show that if

Pr{for all x € R%, Q(x) < [|Ax[lc < A-Q(x)} > %

for any A < oo, then Q must use 2(d?) bits of space.
Thus, our deterministic streaming algorithm achieves
the best distortion and space that is possible for any
randomized offline algorithm, up to poly logn factors.

2) Techniques for Online £, Subspace Sketch:

a) Strawman Solutions: We first discuss certain
natural coreset approaches to the streaming /., subspace
sketch problem and why they do not work, in order to
illustrate the difficulty of the problem. We assume for
simplicity for now that all input vectors have norm ©(1).

Intuitively, we want a small number of input rows that
are well spread apart, so that we have a small number
of rows that approximate the entire data set A in all
directions. One way to do this is to add a new row to
our coreset if and only if it has a small inner product, say
at most some threshold 7 = 1/ poly(d), with each of the
stored rows. Certainly, such a row must be included in
the coreset, otherwise that row itself as a query would
fail to achieve a 1/7-approximation. This can also be
shown to yield a small coreset of size at most poly(d).
However, such an algorithm could fail to store a row
which is very well-aligned with an earlier row, but also
has a tiny component pointing outside of the span of
every other row, which means the coreset would fail to
have any multiplicative error. One could try to fix this
by adding the condition that we add a row if it increases
the rank of the coreset; this also does not work, since
there could be future rows which significantly increase
the maximum component in this direction, but also have
large inner product with the stored rows.

Another approach, which attempts to address the
problem of having rows which increase the maximum
component in a given direction, is to maintain the
maximum component for poly(d) random directions.
That is, one can first choose a set of poly(d) random
directions S, and for each v € S, store the input
row which has the maximum inner product with v.
However, it can be shown that poly(d) directions is in
fact not enough to “catch” hidden growing components.
Indeed, suppose that that input rows consist of the
standard basis vectors +e;. These vectors will be stored.
Then, suppose that the algorithm receives the vector
a:= (1 —1/n)e; + (1/n'%)es,. In order for this vector
to be stored by a random vector v, we must have that

(a,v) = ((1 = 1/n)er + (1/n'")es,v) > [(e1, V)],
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or vo > n°|vy| by rearranging. The probability that
this occurs for a random vector v is at most O(1/n?),
and thus by a union bound over the poly(d) many
random vectors, no direction stores a. However, a has a
component outside of the span of the previous rows, so
even for vectors whose norms are within 1+ 1/ poly(n)
factors of each other, this algorithm fails. It is easy to see
that even if we store rows that increase the rank of the
coreset, it would still fail to store rows which increase
the component along e by poly(n) factors.

b) Our Approach.: We now give a high-level proof
of our online /., coreset. We seek S C [n] such that
|Ax| . < AlAlsx]|,, so suppose we have maintained
such an S, and let a € R? be a new row. As hinted previ-
ously, we encounter a problem if there exists any direc-
tion x € R? along which a updates the maximum com-
ponent by more than a poly(d) factor. That is, if there
exists x € R? such that |(a,x)| > ||A|sx]| ., then we
must include a in our coreset. However, we are unable to
analyze such an algorithm, due to the lack of structure of
the /o, norm. Now note that if |.S| = poly(d, logn), then
|Alsx]l, = poly(d,log n) [ Alsx] .. so using || Alsx]l,
is just as good of a condition for adding a. The advantage
is that the /5 norm has much more structure than the /.,
norm, which we can use to bound the size of the coreset.

Suppose now that we add a to our coreset whenever
there exists x € R? such that |(a,x)|* > ||A]sx]3.
In the language of numerical linear algebra, this cor-
responds to the condition that the leverage score of a
with respect to Alg is at least 1. With the connection to
leverage scores, we are now in the position to bound the
size of S. Note that in the final coreset A|g, we have
by construction that every row a; has leverage score
at least 1 with respect to the previous rows. This can
be phrased as the fact that all of the online leverage
scores TOL of Alg are at least 1. Now, it can be shown
that the ith online leverage score bounds the incremental
difference between the log-volume spanned by columns
of the first ¢ rows A; of A and A,;, which gives a
bound of O(dlogx®") on the sum of online leverage
scores, where kKO = || A, max!_,||A ||, is the online
pseudo condition number of A [13], [24]. This means
that S must have at most O(d log x°%) rows. In turn, we
can bound the distortion as

n
I Ax]l. = i (@i, )] < [[Alsx]

< VISHIAlsx|lo < O(Vdlog k)| Alsx]| -

Although the kOl here is for the submatrix Alg, it can
be shown that this is only a poly(n) factor away from
xOY of A. While this discussion contains a number
of ideas for our online coreset algorithm for the /.,
subspace sketch problem, we still need to improve our

result from O(y/dlog x°1) to O(y/dlogn) distortion for



integer matrices with entries bounded by poly(n) for the
row arrival streaming model. For this, we will improve
the bound on the sum of online leverage scores for such
matrices. We discuss this result in the next section.

3) Techniques for Sharper Online Numerical Linear
Algebra: We now discuss our techniques for improving
the sum of online leverage scores for integer matrices
with entries bounded by poly(n). Naively, the earlier
condition number bound gives a bound of O(d?logn)
by using that for such matrices, x < poly(n)d (see, e.g.,
[22, Lemma 4.1]). Note that x can indeed be as large as
exp(poly(d)), even for sign matrices [7]. We improve
this to the following:

Theorem 1.4 (Sum of Online Leverage Scores). Let
A € 7"%9 have entries bounded by poly(n). Then,
Y TONA) = O(dlogn).

We start with the proof of [24], which gives a bound
of O(dlogx®"). This is done by analyzing the quan-
tity det(ATA + M), for A = (maxj_,||A;[|,)~".
This quantity is at most O(||Al,)% and can be
shown to be lower bounded by exp(3 >, 79H(A)) -
det(A\I4)? by the matrix determinant lemma, which
gives det(A A + Mg) > det(AJA; +
M) exp(TPL(A)/2) where A is the first j rows of A.
Taking logarithms on both sides and rearranging yields
that >0 T9H(A) < O(dlog% = O(dlog k°).
Now, one may question whether regularizing by A is
necessary, as it leads to the undesirable logi factor.
Indeed, we set A = 0 and instead analyze the pseu-
dodeterminant pdet(AT A), which is the product of the
nonzero eigenvalues. With this change, we have almost
the same result, except that we must treat rows ¢ which
do not lie in rowspan(A;_;) differently. In this case,
pdet(A] A;) > pdet(AiT_lAi,l)HailHE where a;- is
the component of a; orthogonal to rowspan(A;_1). Now
observe that the product of Haf”i for all rows ¢ which
do not lie in rowspan(A;_;) is exactly the volume
spanned by these vectors, which is a positive integer, and
thus > 1. We thus avoid the log % factor and instead get
the upper bound of O(dlogn).

As a result of Theorem 1.4, we immediately remove
condition number dependencies from a variety of re-
sults in online numerical linear algebra which rely on
Theorem 1.4, and answer an open question of [13]
on removing the condition number dependence from
the online spectral approximation problem, under bit
complexity assumptions.

Theorem 1.5 (Online Coreset for Spectral Approxi-
mation). Let A € Z"*¢ have entries bounded by
poly(n). There is a deterministic online coreset al-
gorithm which outputs A such that (1 — e)ATA <
ATA < (1+¢)ATA and the number of rows in A
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is O(d(logn)?/e?).

We also implement the simpler sampling algorithm
with a similar randomized guarantee.

Theorem 1.6 (Online Coreset for Spectral Approxima-
tion via Leverage Score Sampling). Let A € Z™*% have
entries bounded by poly(n). There is an online coreset
algorithm which outputs A such that

2

Z,

Pr{(l — ) ATA<ATA=<(1+ E)ATA} 3

and the number of rows in A is O(d(logd)(logn)/e?).

4) High-Dimensional Computational Geometry in
Polynomial Space: We now show that our ¢, sub-
space sketch algorithm gives the first polynomial space
algorithms for many important problems in streaming
computational geometry, including the basic problems
of symmetric width, convex hull, and L&wner—John
ellipsoids. Previous algorithms for these problems had
an exponential dependence on d, due to reliance on e-
kernels [2], [3]. In particular, in the high-dimensional
regime of d > C'logn for a large enough constant C,
the memory bound for known results becomes larger
than ©(nd), and thus there were no previously known
nontrivial algorithms in this regime, despite the fact that
algorithms that work in the high-dimensional regime
have been sought after for over a decade since they were
suggested by [2], [3], [15], [61] and others.

In the following discussion, we assume a centrally
symmetric instance, that is, if a € R is in the input point
set, then so is —a. Note that for most geometric problems
falling under the class of extent measure problems [2],
[5], considering only centrally symmetric instances is
without loss of generality by translating to the origin,
up to constant factor losses in the distortion.

Because our /., subspace sketch algorithm is online,
many of our algorithms for streaming geometry are
online as well, and we present results in both the row
arrival streaming and online coreset models.

a) k-Robust Directional Width: Perhaps the most
straightforward of our applications is directional width
[2], [3], as this is equivalent to the /., subspace sketch
problem. Using the “peeling” technique [4], we also ob-
tain algorithms for k-robust directional width E(x, A):

Theorem 1.7 (k-Robust Directional Width). There is an
algorithm A which maintains a coreset S C [n] such

that xEx(x,A) < Ex(x, Als) < Ex(x, A) where

e in the streaming model, A = O(y/dlogn), |S| =
O(kdlogn), and A uses O(kd?log®n) bits of
space.

e in the online coreset model, A = O(

and |S| = O(kdlog(nx®b)).

dlog(nkOL))



b) Convex Hull: A fundamental problem in com-
putational geometry is the approximation of the convex
hull of n points aj,as,...,a, € RY For (1 + ¢)-
approximation, e-kernels [2], [3] give coresets of near-
optimal size of ¢~ ©(4), even in the streaming model
[15], [16]. However, a general streaming algorithm for
convex hull in poly(d,logn) bits of space, even with
poly(d,logn) distortion, remained elusive. In the offline
setting, this is possible via coresets for Lowner—John
ellipsoids (see Section 3.6 of [57]).

By using our coreset for /., subspace sketch, we
obtain coresets for approximating symmetric convex
hulls, with poly(d, logn) bits of space and distortion.

Theorem 1.8 (Streaming Convex Hulls). There is an
algorithm A which maintains a coreset S C [n]
such that conv({£a;}ics) C conv({fa;}’ ;) C
Aconv({xa;}ics) where
e in the streaming model, A = O(y/dlogn), |S| =
O(dlogn), and A uses O(d?log®

n) bits of space.
o in the online coreset model, A = O(+/dlog(nkOL))

and |S| = O(dlog(nx®b)).

Note that this also gives us a O(+/dlogn)%-factor
approximation to the volume of convex hull.

c) Lowner—John Ellipsoids: As previously dis-
cussed, streaming Lowner—John ellipsoids in the high-
dimensional setting has been open [5], [51]: [51] pro-
posed a simple algorithm of iteratively adding points
to a Lowner—John ellipsoid which does not yield
poly(d,logn) distortion, while [5] gave an O(1)-
approximation for MEB in poly(d) space, and asked
whether their ideas applied to Lowner—John ellipsoids.

We first note that our streaming /., subspace sketch
result immediately gives a result for Lowner—John ellip-
soids for linear inequality polytopes.

Theorem 1.9 (Léwner—John Ellipsoids in Polynomial
Space). Let K = {xe€R?:|Ax| < 1}. There is
an algorithm A which maintains a coreset S C [n]
Sfrom which we can compute an ellipsoid E' such that
E' C K C AE’ where
o in the streaming model, A = O(y/dlogn), |S| =
O(dlogn), and A uses O(d?1og® n) bits of space.
o in the online coreset model, A = O(+/dlog(nkxOL))
and |S| = O(dlog(nx®b)).
Since K C E C VdK, E' is an O(A\/&)-approximate
Lowner—John ellipsoid.

We then show that taking polars yields Lowner—John
ellipsoids for symmetric convex hulls as well.

d) Volume Maximization: We next consider the
problem of selecting k£ rows that approximately max-
imizes the volume of the parallelepiped spanned by
the rows, known as volume maximization, or maximum
a posteriori (MAP) inference of determinantal point
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processes (DPPs) [10]. Relative error guarantees for
this problem have been studied by [32], [33], [46],
culminating in the following:

Theorem I1.10 (Theorem 1.9 of [46]). Let C' €
[1, (logn)/k]. There is a one-pass streaming algorithm
that computes a subset S C [n] of k points such that

S*)}Zg

where Vol(Al|g) is the volume of the parallelepiped
spanned by the rows A|g indexed by S and Alg, is a
set of k rows that maximizes the volume. The algorithm
uses O(n®/C)ad) bits of space.

Pr{O(C’k)k/QVol(A|S) > Vol(A

This result is obtained by combining coresets for
volume maximization [32] with streaming e-kernels for
directional width [15]. Note that even when C
(logn)/k, the space complexity is exp(O(k))d and
thus still exponential in k. By replacing e-kernels for
directional width with our /., subspace sketch result, we
obtain the first relative error polynomial space algorithms

for volume maximization®.

Theorem I.11 (Streaming Volume Maximization). Let
1< C < (logn)/k and r = (logn)/C. There is a one-
pass streaming algorithm that computes a subset S C [n]
of k points such that

2
>
-3
where Vol(Alg) is the volume of the parallelepiped
spanned by the rows A|g indexed by S and Alg, is a
set of k rows that maximizes the volume. The algorithm
uses O(rdlog®n) bits of space.

If only the indices (rather than the d-dimensional
rows) are required, there is an algorithm using
O(k?log® n) bits of space with O(klogn)* distortion.

Pr{O(r2Ck log? n)"/2 Vol(A|s) > Vol(A|S*)}

e) Minimum-Width Spherical Shell: Our next ap-
plication is the problem of approximating the spherical
shell of minimum width which encloses a set of points.
Formally, a spherical shell centered at ¢ € R? with
inner radius r and outer radius R is o(c,r, R)
{xeR:r <|[x—cl, <R}, and we seek relative er-
ror approximations to R — r.

Theorem 1.12 (Minimum Width Spherical Shell). Let
A be an n x d matrix presented in one pass over a
row arrival stream. There is an algorithm A which
maintains a coreset S C [n] from which we can
compute find a center ¢, inner radius T and outer
radius R such that o (&, 7, R) D {a;};_, and R—#<
A3/? MiN, (¢ R)D{a,;}r_, F — 1 where

5The algorithm of [10] has polynomial space as well, but has an
additive error guarantee



e in the streaming model, A = O(y/dlogn), |S| =
O(dlogn), and A uses O(d? log®

n) bits of space.
o in the online coreset model, A = O(+/dlog(nkOL))

and |S| = O(dlog(nx®b)).

f) Linear Programming.: Finally, we consider lin-
ear programming for instances with a centrally symmet-
ric constraint polytope {x € R?: [|Ax|| < 1}. More
formally, we seek to approximate the optimal value of
the following optimization problem

maximize  (c,x)

subject to  x € R? ||Ax| <1

where the rows of A arrive in a row arrival stream.

Theorem I.13 (Streaming Linear Programming). Let
A be an n X d matrix presented in one pass over
a row arrival stream. Define the polytope K
{x e R?: |Ax| < 1}. There is an algorithm A which
maintains a coreset S C [n] such that for any c € RY,
one can compute from Alg a vector x € K such that
maxxex (€, x) < A - (c,X) where

e in the streaming model, A = O(y/dlogn), |S| =

O(dlogn), and A uses O(d?log®

n) bits of space.
o in the online coreset model, A = O(+/dlog(nkOL))

and |S| = O(dlog(nx®b)).

C. Streaming and Online £, Subspace Sketch

1) The Subspace Sketch Problem: We now consider
the £, subspace sketch problem, which is defined anal-
ogously to {o, in Definition I.1. This problem in the
offline setting, as well as its randomized variants, was in-
troduced by [43]. When defining the randomized version
of this guarantee, [43] define two versions, known as the
“for each” and “for all” guarantees. For our streaming
algorithms, we focus on the stronger “for all” guarantee.

Definition 1.14. Ler A € R"*% gnd A > 1. Then:

o For each guarantee: (), satisfies the “for each”
guarantee if for each x € R,

2

> Z

-3

o For all guarantee: (), satisfies the “for all” guar-
antee if

Pr{||Ax||p <Q,(x) < AlIAxllp}

2
Pr{vx ¢ RY, | Ax], < Q,(x) < Al Ax], } > .

2) Prior Work on Streaming Subspace Sketch: The
subspace sketch problem is a vast generalization of
the more well-known subspace embedding problem, in
which @, specifically takes the form ||SAx]|, for some
norm ||-|| and a linear map S € R**™. Many, but not all,
of our upper bounds on the subspace sketch problem will
actually be subspace embeddings.

In the regime of A = (14 ¢) for ¢ — 0, near-
optimal streaming algorithms can be obtained quite
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straightforwardly by leveraging ¢, subspace embeddings
algorithms due to [25]. These subspace embedding re-
sults achieve near-optimal space complexity by sam-
pling methods. One can then use the merge-and-reduce
framework, in which one repeatedly finds subsets of
rows that provide a (1 + ¢) approximation for blocks of
rows, and then combines them in a binary tree fashion
(see [13], [26]), to get streaming subspace embedding
algorithms of approximately the same quality. Since the
approximation is composed with a depth of logn, our
distortion is (1 4 £)'°8™; by replacing ¢ by oo We
recover the same trade-off as the offline subspace sketch
problem, up to poly logn factors. The space complexity
is roughly d2V(®/2+1) words of space. However, this is
intractable when p is large.

The previous work of [26] studied the problem of
maintaining a subspace sketch data structure determin-
istically using a similar merge-and-reduce strategy, but
their results unfortunately incur an n*(1) factor either
in the distortion or the space complexity. Similar com-
posable coreset approaches have been explored by other
works, e.g., [32].

3) Streaming Algorithms for £,, Subspace Sketch: We
now discuss our results for the ¢, streaming subspace
sketch problem. We first develop the following determin-
istic streaming algorithm, which greatly improves [26].

Theorem L.15. Let A € Z™*? have entries bounded
by poly(n). Let 2 < p < oo. There is a one-pass
streaming algorithm maintaining a data structure Q)
using O(d?logn) bits of space such that for all x € R,

IAx], < Q(x) < O((dlogn)>~7)|Ax],.

Our result proceeds by defining an online set of
weights that behave similarly to Lewis weights.

By tolerating randomization and exponential time, we
also obtain a full set of near-optimal trade-offs:

Theorem 1.16. Let A € Z™*? have entries bounded
by poly(n). Let 2 < ¢ < p < oo. There is a one-pass
streaming algorithm which maintains a data structure
Q using O(d9/**logn) bits of space such that with
probability at least 2/3, for all x € RY,

1Ax], < Q(x) < 0(d*(1=%) logn) | Ax|, .

Furthermore, for ¢ = 2, our result can be combined
with £5 online coresets to yield online coresets for /£,:

Corollary I.17. Let 2 < p < co. Let A be an n x d
matrix presented in one pass over a row arrival stream.
There is an algorithm A which maintains a coreset S C
[n] and weights w € R® such that for all x € RY,

[Ax]|, < [|diag(w)Alsx]l;, < AfAx]],

P —

where



e in the streaming model, A = O((dlogn)éf%),
|S| = O(dlogn), and A uses O(d?log®n) bits of
space.

e in the online coreset model, A
O((dlog k)2~ %) and |S| = O(dlog OL).

As a corollary, we immediately obtain streaming al-
gorithms for solving £, regression.

Corollary 1.18 (Online Coresets for £, Regression). Let
2 < p < oo Let A be an n x d matrix and let b
be a vector and suppose that the n x (d + 1) matrix
A’ :=[A b] is presented in a row arrival stream. There
is an algorithm A which maintains a coreset S C [n] and
weights w € RS from which we can compute x € R?
such that [|Ax —Db|, < Aminy|Ax — bl|, where

e in the streaming model, A = O((dlogn)%fé),
|S| = O(dlogn), and A uses O(d?log®n) bits of

space.
o in the zm{ine1 coreset model, A =
O((dlog k°%)27 %) and |S| = O(dlog kO).

Our results are summarized in Table I.

D. Change of Density

We now turn to the offline £, subspace sketch prob-
lem. We first investigate changes of density:

Definition 1.19 (Change of Density [36], [42]). Let 0 <
p,q < 0o and let d € N. Then, c(d,p,q) denotes the
smallest ¢ > 0 such that for any A € R™*?, there exists
a nonnegative w € R™ such that, for W = diag(w),

forallx €RY%  ||Ax], < Hw%*%AxH < || Ax]|.
q
Here, we think of w as weights (or a measure) on
the rows of A when evaluating ¢, norms, i.e., qu7W =
>, Wi ly:|)"/?. Note then that ||W*1/PAx||p w=
|Ax||, so the map Ax W~1/? Ax equipped ‘with
the appropriate norm is an isometry. On the other
hand, the weighted ¢, norm is HW_l/prHq‘w =
[W/a=1/p Ax|| . which is comparable to [|Ax]|,, if w
satisfies the guarantee of Definition 1.19.
a) Lewis weights.: The following seminal result is
known about the parameter c(d, p, q) for ¢ = 2:

Theorem 1.20 ( [35], [41], [56]). Let d € N. For all
0<p<oo cld,p?2) =c(d,2,p) = d/>1/rl

Theorem 1.20 is due to Lewis [41] in the regime of
1 < p < o0, and the weights w achieving the guarantee
of Definition 1.19 are known as Lewis weights, in honor
of [41]. For the remaining parameter regimes, the case of
p = oo follows from Lowner—John ellipsoids [35], while
the case of 0 < p < 1 was proven in [56]. Although the
original proof by Lewis in [41] uses involved theorems
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from Banach space theory, particularly the theory of p-
summing operators [28], the proofs of [25], [56] notably
provide elementary proofs based only on analyzing the
Lagrange multipliers for a convex program.

The use of Lewis weights was introduced to the
theoretical computer science community by [25], whose
work made Lewis weights algorithmic by giving in-
put sparsity time algorithms for approximating Lewis
weights, and used them to obtain fast algorithms for
solving ¢, regression. Subsequently, Lewis weights have
become widely used in algorithms research, playing im-
portant roles in recent developments in optimization [30],
[34], [40], convex geometry [37], randomized numerical
linear algebra [19], [21], [25], [44], [47], and machine
learning [18], [48], [52], [53]. Algorithms for computing
Lewis weights themselves have also been refined over
the years, both for 0 < p < oo [31], [39], [40] as well as
p = o0, corresponding to Lowner—John ellipsoids [23],
[57].

b) Change of density to {4, q # 2: The following
gives an optimal bound on ¢(d, p, q) for q # 2.

Theorem 1.21 (Theorem 1.2 of [42]). Let d € N and let
1 < p,q < oco. The following holds:

o If min(p, q) < 2, then c(d,p, q)
e If min(p,q) > 2, then ¢(d,p,q)

As [42] show, the quantity c(d,p,q) is intimately
related to various other quantities, including p-summing
norms and p-integral norms of operators, and is of
independent interest in the functional analysis literature.
For instance, an important corollary of this result is the
best known upper bound on the Banach—Mazur distance
[58] between a subspace of £ and any subspace of /7,
which formalizes the notion of distance between ¢, and
£, for subspaces. As the authors note in Corollary 1.9
[42], this result is optimal for 1 < p < ¢ < 2. In fact, we
will show that the proof of a result of [43] implies that
this is optimal in the regime of min(p,q) > 2 as well,
when n is large enough. Thus, Theorem 1.21 obtains a
tight characterization of the distance between subspaces
of £, and ¢4, in the sense of Banach-Mazur distance.

For min(p, ¢) < 2, Theorem 1.21 follows from prop-
erties of Lewis weights, enjoying simple proofs and fast
algorithms due to our refined understanding of Lewis
weights. However, for min(p, ¢) > 2, the proof is much
more complicated. The authors first relate the problem
of bounding ¢(d, p, ¢) to bounding the smallest constant
a > 0 such that m4(u) < amp(u) for all linear maps u
(Definition 1.3 of [42])°, where 7p(u) is the p-summing
norm of u [28]. To prove that o bounds ¢(d, p, q), the

SIn fact, they show that these two parameters are equal.



authors invoke a factorization theorem of Maurey [5077,
which replaces Lewis’s theorem and gives weights w for
the change of density. Finally, the bound on « follows
from a result of [14], which uses results from the theory
of operator ideals [54].

Our main result of this section is an elementary
proof of Theorem [.21 using Lewis weights. Due to the
simplicity of our proof, we obtain the following robust
version of Theorem 1.21, which refines [42] since:

1) The change of density is specifically the £, Lewis
weights, rather than a tailor-made construction.

2) The error guarantees degrade gracefully when the
change of density is replaced by an approximation.

Theorem 1.22 (Change of density via approximate Lewis
weights). Let A € R™*? and 0 < p,q < oco. Let w €
R™ be a-approximate £, Lewis weight overestimates and
W = diag(w). There is Ay 4 such that for all x € R?,

|AX], < H/\d%q . Wl/q—l/PAxHq < KapglAX|,
where
(ad)ls 5] if min(p, q) < 2
Kd,p,q = 1(1-289) oo
(ad)2\""#va)  if min(p, q) > 2

Our main technique is a new simple identity for
Lewis weights which may be of independent interest,
which shows that if we reweight the rows of A with
¢, Lewis weights, then the ¢, Lewis weights of the
resulting matrix coincide with the ¢, Lewis weights of
A. Given this identity, the proof follows from just a
few lines of estimates, which substantially simplifies
the original proof of [42]. Furthermore, because our
change of density uses Lewis weights, we inherit fast
algorithms for computing these weights. Note that al-
though polynomial time algorithms are known for many
factorization theorems [59], known algorithms require
solving constrained eigenvalue minimization problems,
and are not known to have fast input sparsity time
algorithms as Lewis weights do. Our result shows the
following surprising message:

£, Lewis weights optimally approximate £, by /.

We hope that our techniques will find further applications
in functional analysis and theoretical computer science.
In particular, we give the fastest known algorithms for
¢, linear regression with poly(d)-factor relative error
distortion and £, column subset selection. Both £, regres-
sion and ¢, column subset selection are extremely well-
studied, and obtaining fast algorithms for these problems
is important. See Table III for a summary.

7See also Proposition 10 in Chapter IILH of [60] for a proof and
exposition in English of a similar theorem from [50], which gives the
“transposed” result.
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E. Subspace Sketch with Large Approximation

As an application of Theorem 1.22, we obtain new
tight bounds on the offline £,, subspace sketch problem.

The offline subspace sketch problem captures the
fundamental limits of dimension reduction in £,: with
unbounded computation and access to A, how much
can A be compressed, as a function of the distortion
A? The work of [43] studied this problem in the regime
of A = (1+¢) for € — 0. Here, [43] found surprising
separations between p € 2Z and all other p, showing a
lower bound of Q(d/e?) bits of space required to store
Qp for p € [1,00) \ 2Z for the “for each” guarantee,
which separates these p from p € 2Z due to an upper
bound of O(d?) due to [55]. For ¢ = ©(1), they showed
a lower bound of Q(d?/?) for the “for each” guarantee
and Q(dP/?>*1) for the “for all” guarantee, matching
known upper bounds.

Although space bounds of the form O(dP/?/e?) are
possible for achieving (1 + ) distortion [38], for large
constant p, this space usage may already be problematic,
especially if one is willing to tolerate a larger approxima-
tion factor. One could first observe that even for p = oo,
if one is willing to tolerate a distortion of V/d, then it is
possible to do better by using Lowner—John ellipsoids,
since it only takes O(d?) words of space (or O(d? logn)
bits) to store the quadratic form for the Lowner—John
ellipsoid for the convex set {x € R? : [Ax|, < 1}
Taking this idea a step further, one could also store the
quadratic form for the Lewis ellipsoid for A using O(d?)
words to achieve a distortion of O(d 2 5) However,
these two upper bounds jump from d?/?*+! space to d?
space, which raises the question of whether it is possible
to obtain a smooth trade-off. As another contribution, we
answer this question in the affirmative, by applying our
Theorem 1.22. Our trade-offs are summarized in Table
II. The lower bounds of [43] extend to the parameter
regime we consider, and shows that our upper bounds
are nearly optimal, up to logarithmic factors. Our algo-
rithmic technique is to first approximate the £, norm by
the ¢, norm using Theorem 1.22 with some ¢ < p, and
then to use a constant factor approximation to the £,
norm using O(d?%/?) words of space for the “for each”
guarantee or O(d?/>*1) for the “for all” guarantee.

F. Independent and Concurrent Work

In [49] which appeared in COLT 2022, the authors
give a one-pass streaming algorithm for approximating
the Lowner—John ellipsoid of a convex hull which stores
O(d?) floating point numbers and achieves a distortion
of O(y/dlog(R/r + 1)), where R is the radius of the
smallest ball containing the input points and r is the
radius of the largest ball contained in the input points.
The algorithm in [49] is quite different from ours,



analyzing an algorithm similar to that of [51]. For real-
valued inputs, their distortion is independent of n while
our Theorem 1.9 incurs a dependence on log n. However,
our algorithm offers a couple of other advantages over
[49]: (1) for integer matrices with polynomially bounded
entries, our result improves upon [49] by providing
a O(y/dlogn) distortion without further assumptions,
whereas the aspect ratio R/r could be exponential in
d; (2) our algorithm is a coreset algorithm, i.e., it only
relies on storing a subset of the input points. We also
note that they do not solve related £, subspace sketch
algorithms, as we do.
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