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Abstract—We give an algorithm that computes exact maximum
flows and minimum-cost flows on directed graphs with m
edges and polynomially bounded integral demands, costs, and
capacities in m'*°() time. Our algorithm builds the flow through
a sequence of m'T°(") approximate undirected minimum-ratio
cycles, each of which is computed and processed in amortized
m°®) time using a new dynamic graph data structure.

Our framework extends to algorithms running in m
time for computing flows that minimize general edge-separable
convex functions to high accuracy. This gives almost-linear time
algorithms for several problems including entropy-regularized
optimal transport, matrix scaling, p-norm flows, and p-norm
isotonic regression on arbitrary directed acyclic graphs.

Index Terms—Maximum flow, Minimum cost flow, Data struc-
tures, Interior point methods, Convex optimization

See https://arxiv.org/abs/2203.00671 for the full version of
this paper.
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I. INTRODUCTION

The maximum flow problem and its generalization, the
minimum-cost flow problem, are classic combinatorial graph
problems that find numerous applications in engineering and
scientific computing. These problems have been studied exten-
sively over the last seven decades, starting from the work of
Dantzig and Ford-Fulkerson, and several important algorithmic
problems can be reduced to min-cost flows (e.g. max-weight
bipartite matching, min-cut, Gomory-Hu trees). The origin of
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numerous significant algorithmic developments such as the
simplex method, graph sparsification, and link-cut trees, can
be traced back to seeking faster algorithms for max-flow and
min-cost flow.

Formally, we are given a directed graph G = (V, E) with
\4 n vertices and |E| = m edges, upper/lower edge
capacities ut,u~ € RF, edge costs ¢ € R¥, and vertex
demands d € RV with > vey dv = 0. Our goal is to find
a flow f € RF of minimum cost ¢ f that respects edge
capacities u, < f. < uj and satisfies vertex demands
d. The vertex demand constraints are succinctly captured as
BT f = d, where B € RF*V is the edge-vertex incidence
matrix defined as B, ), is 1 if v = a, =1 if v = b,
and 0 otherwise. To compare running times, we assume that
all ul,u_,c. and d, are integral, and |u}|,|u_| < U and
le| < C.

There has been extensive work on max-flow and min-cost
flow. While we defer a longer discussion of the related works
to the full version, a brief discussion will help place our work
in context. Starting from the first pseudo-polynomial time
algorithm by Dantzig [20] that ran in O(mn2U) time, the
approach to designing faster flow algorithms was primarily
combinatorial, working with various adaptations of augment-
ing paths, cycle cancelling, blocking flows, and capacity/cost
scaling. A long line of work led to a running time of
O(mmin{m"?,n"*}logU) [29, 31, 23, 27] for max-flow,
and O(mnlogU) [26] for min-cost flow. These bounds stood
for decades.

In their breakthrough work on solving Laplacian systems
and computing electrical flows, Spielman and Teng [45]
introduced the idea of combining continuous optimization
primitives with graph-theoretic constructions for designing
flow algorithms. This is often referred to as the Lapla-
cian Paradigm. Daitch and Spielman [19] demonstrated the
power of this paradigm by combining Interior Point methods
(IPMs) with fast Laplacian systems solvers to achieve an



O(m'®log?U) time algorithm for min-cost flow, the first
progress in two decades. A key advantage of IPMs is that they
reduce flow problems on directed graphs to problems on undi-
rected graphs, which are easier to work with. The Laplacian
paradigm achieved several successes, including O(me~!) time
(1+¢)-approximate undirected max-flow and multicommodity
flow [16, 33, 43, 41, 42], and an m /> J"/2 time algorithm
for bipartite matching and unit capacity max-flow [40, 38,
37,32, 5], and pm't°(Y) time unweighted p-norm minimizing
flow for large p [34, 2].

Efficient graph data-structures have played a key role in
the development of faster algorithms for flow problems, e.g.
dynamic trees [44]. Recently, the development of special-
purpose data-structures for efficient implementation of IPM-
based algorithms has led to progress on min-cost flow for
some cases — including an O(m log U + n'%log? U) time al-
gorithm [12, 13, 11], an O(nlog U) time algorithm for planar
graphs [22, 21], and small improvements for general graphs,
resulting in an O(m3/2-1/3810g°M U) time algorithm for
min-cost flow [8, 25, 6, 10]. Yet, despite this progress, the
best running time bounds in general graphs are far from linear.
We give the first almost-linear time algorithm for min-cost
flow, achieving the optimal running time up to subpolynomial
factors.

Theorem I.1. There is an algorithm that, on a graph G =
(V,E) with m edges, vertex demands, upper/lower edge
capacities, and edge costs, all integral with capacities bounded
by U and costs bounded by C, computes an exact min-cost
flow in m**t°M) log U log C' time with high probability.

Our algorithm implements a new IPM that solves min-cost
flow via a sequence of slowly-changing undirected min-ratio
cycle subproblems. We exploit randomized tree-embeddings to
design new data-structures to efficiently maintain approximate
solutions to these subproblems.

A direct reduction from max-flow to min-cost flow gives us
an algorithm for max-flow with only a log U dependence on
the capacity range U. ! 2

Corollary 1.2. There is an algorithm that on a graph G with m
edges with integral capacities in [1,U] computes a maximum
flow between two vertices in time m'T°M) logU with high
probability.

A. Applications

Our result in Theorem I.1 has a wide range of appli-
cations. By standard reductions, it gives the first m!+o(1)
time algorithm for the bipartite matching problem and
m!*teM log Ulog C' time algorithms for its generalizations,
including the worker assignment and optimal transport prob-
lems.

s, ¢ max-flow can be reduced to min cost circulation by adding a new
edge t — s with lower capacity O and upper capacity mU. Set all demands
to be 0. The cost of the ¢t — s edge is —1. All other edges have zero cost.

2By classic capacity scaling techniques [24, 28, 3], it suffices to work with
graphs with U, C' = poly(m) to show Theorem 1.1 and Corollary 1.2.
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In directed graphs with possibly negative edge weights,
assuming integral weights bounded by W in absolute value,
we obtain the first almost-linear time algorithm to compute
single-source shortest paths and to detect a negative cycle,
running in m'°M log W time. In an independent work,
Bernstein, Nanongkai, and Wulff-Nilsen [9] claim the first
m - poly(logm) log W time algorithm for this problem.

Using recent reductions from various connectivity problems
to max-flow, we also obtain the first ' +°(Y) time algorithms
for various such problems, most prominently to compute
vertex connectivity and Gomory-Hu trees in undirected, un-
weighted graphs, and (1 + ¢)-approximate Gomory-Hu trees
in undirected weighted graphs. We also obtain the fastest
current algorithm to find the global min-cut in a directed
graph. Finally, we obtain the first almost linear time algorithms
to compute approximate sparsest cuts in directed graphs. We
defer the discussion of these results and precise statements to
the full version.

Additionally, we extend our algorithm to compute flows
that minimize general edge-separable convex objectives. This
allows us to solve regularized versions of optimal transport
(equivalently, matrix scaling), as well as p-norm flow problems
and p-norm isotonic regression for all p € [1, 00]. We state an
informal version of our main result on general convex flows.

Informal Theorem 1.3. Consider a graph G with demands
d, and an edge-separable convex cost function cost(f)
> coste( fe) for “computationally efficient” edge costs coste.
Then in m'+°) time, we can compute a (fractional) flow
f that routes demands d and cost(f) < cost(f*) +
exp(— log® m) for any constant C' > 0, where f* minimizes
cost(f*) over flows with demands d.

We remark that the optimal solution f* to the above convex
flow problem can be non-integral, whereas in the case of max-
flow and min-cost flow with integral demands/capacities, there
exists an integral optimal flow.

II. OVERVIEW

Due to space constraints, we only give a technical overview
of the key pieces developed in this paper and refer to the
full version of the paper on arXiv 2203.00671. Section II-A
describes an optimization method based on interior point
methods that reduces min-cost flow to a sequence of m!*+o()
undirected minimum-ratio cycle computations. In particular,
we reduce the problem to computing approximate min-ratio
cycles on a slowly changing graph. This can be naturally
formulated as a data structure problem of maintaining min-
ratio cycles approximately on a dynamic graph. Below is an
informal statement summarizing the IPM guarantees proven
in the full version.

Informal Theorem IL.1 (¢; IPM Algorithm). We give an
IPM algorithm that reduces solving min-cost flow exactly
to sequentially solving mAt°Q) jnstances of undirected min-
ratio cycle, each up to an m°®) approximation. Further, the
resulting problem instances are “stable”, i.e. they satisfy, 1)



the direction from the current flow to the (unknown) optimal
flow is a good enough solution for each of the instances, and,
2) the length and gradient input parameters to the instances
change only for an amortized m°") edges every iteration.

We build a data structure for solving this dynamic min-
ratio cycle problem and solve it with m°(!) amortized time

per cycle update for our IPM, giving an overall running time
of mitel),

Informal Theorem II.2 (Hidden Stable-Flow Chasing. Theo-
rem 6.2). We design a randomized data structure for approxi-
mately solving a sequence of “stable” (as defined in Informal
Theorem 11.1) undirected min-ratio cycle instances. The data
structure maintains a collection of m°Y) spanning trees and
supports the following operations with high probability in
amortized m°Y) time: 1) Return an m°® -approximate min-
ratio cycle (implicitly represented as the union of m°Y) off-
tree edges and tree paths on one of the maintained trees), 2)
route a circulation along such a cycle 3) insert/delete edge
e, or update g. and L., and 4) identify edges that have
accumulated significant flow.

Section II-B gives an overview of our data structure for
this dynamic min-ratio cycle problem, with pointers to the
rest of the overview which provides a more in-depth picture
of the construction. The data structure creates a recursive
hierarchy of graphs with fewer and fewer vertices and edges.
In Section II-C we describe how to reduce the number of
vertices, before describing the overall recursive data structure
in Section II-D. Naively, the resulting data structure works
only against oblivious adversaries where updates and queries
to the data structure are fixed beforehand. We cannot utilize it
directly because the optimization routine updates the dynamic
graph based on past outputs from the data structure. Therefore,
the cycles output by the data structure may not be good
enough to make progress. Section II-E discusses the interaction
between the optimization routine and the data structure when
we directly apply it. It turns out one can leverage properties of
the interaction and adapt the data structure for the optimization
routine. Section II-F presents an online algorithm that manip-
ulates the data structure so that it always outputs cycles that
are good enough to make progress in the optimization routine.
Finally, the overview ends with Section II-G which gives an
outline of our dynamic spanner data structure.

Informal Theorem IL.3 (Dynamic Spanner w/ Embeddings.
Theorem 5.1). We give a randomized data-structure that for
an unweighted, undirected graph G undergoing edge updates
(insertions/deletions/vertex splits), maintains a subgraph H
with O(n) edges, along with an explicit path embedding of
every e € G into H of length m°Y . The amortized number of
edge changes in H is m°Y) for every edge update. Moreover,
the set of edges that are embed into a fixed edge e € H is
decremental for all edges e, except for an amortized set of
m°®M) edges per update. This algorithm can be implemented
efficiently.
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We use this spanner to reduce the number of edges at each
level of our recursive hierarchy, one of the main algorithmic
elements of our data structure.

A. Computing Min-Cost Flows via Undirected Min-Ratio Cy-
cles

The goal of this section is to describe an optimization
method which computes a min-cost flow on a graph G =
(V,E) in m'*°() computations of m°()-approximate min-
ratio cycles:

. g'A
mm ———F)F
BTA=0 |[LA[;

6]

for gradient g € R” and lengths L = diag(£) for £ € RE.
Note that the value of this objective is negative, as —A is a

circulation if A is.
Towards this, we work with the linear-algebraic setup of the
min-cost flow problem:
fre c'f @

arg min
B' f=d
ul <fe<ul forall e€cE

for demands d € R, lower and upper capacities u~,u™ €
R, and cost vector ¢ € RP. Our goal is to compute an
optimal flow f*. Let F* = ¢ f* be the optimal cost.

Our algorithm is based on a potential reduction interior point
method [30], where each iteration we reduce the value of the
potential function

O(f) =20mlog(c’ f — F*)
Y ((ud = £+ (fe —u) ™)

eck
for & = 1/(1000logmU). The reader can think of the barrier
™% as the more standard —logx for simplicity instead.
We use 7% to ensure that all lengths/gradients encoun-
tered during the algorithm can be represented using O(1)
bits, and explain why this holds later in the section. When
®(f) < —200mlogmU, we can terminate because then
c' f—F* < (mU)~'9, at which point standard techniques let
us round to an exact optimal flow [19]. Thus if we can reduce
the potential by m~°(1) per iteration, the method terminates
in m!*+°() jterations.

There are several reasons we choose to use a potential
reduction IPM with this specific potential. The most important
reason is the flexibility of a potential reduction IPM allows our
data structure for maintaining solutions to (1) to have large
m°() approximation factors. This contrasts with recent works
towards solving min-cost flow and linear programs using a
robust IPM (see [18] or the tutorial [35]), which require
(14 o(1))—approximate solutions for the iterates.

Finally, we use the barrier z=% as opposed to the more
standard logarithmic barrier in order to guarantee that all
lengths/gradients encountered during the method are bounded
by exp(log®V m) throughout the method. This follows be-
cause if (uf — f.)~® < O(m), then u} — f. > O(m)~V/* >

3



exp(—O(log? Um)). Such a guarantee does not hold for the
logarithmic barrier.?

To conclude, we discuss a few specifics of the method, such

as how to pick the lengths and gradients, and how to prove that
the method makes progress. Given a current flow f we define
the gradient and lengths we use in (1) as g(f) = VO(f)
and £(f)e = (uf — £)7 7+ (fo—uZ) "% Now, let
A be a c1rcu1ation with g(f)" A/ ||[LA|, < —« for some
Kk < 1/100, scaled so that |[LA|; = £/50. A direct Taylor
expansion shows that ®(f + A) < &(f) — x2/500 (Lemma
4.4).
__ Hence it suffices to show that such a A exists with kK =
Q(1), because then a data structure which returns an m°™)-
approximate solution still has x = m~°(), which suffices.
Fortunately, the witness circulation A(f)* = f* — f satisfies
g(f)TA/|LA|, < —Q(1) (Lemma 4.7).

We emphasize that the fact that f* — f is a good enough
witness circulation for the flow f is essential for proving
that our randomized data structures suffice, even though the
updates seem adaptive. At a high level, this guarantee helps
because even though we do not know the witness circulation
f* — f, we know how it changes between iterations, because
we can track changes in f. We are able to leverage such
guarantees to make our data structures succeed for the updates
coming from the IPM. To achieve this, we end up carefully
designing our adversary model with enough power to capture
our IPM, but with enough restrictions that our min-ratio cycle
data structure to win against the adversary. We elaborate on
this point in Sections II-B and II-E.

B. High Level Overview of the Data Structure for Dynamic
Min-Ratio Cycle

As discussed in the previous section, our algorithm com-
putes a min-cost flow by solving a sequence of m!to()
min-ratio cycle problems mingTa_og' A/||[LA|; to m°™)
multiplicative accuracy. Because our IPM ensures stability
for lengths and gradients (see Lemma 4.9 and 4.10), and
is even robust to approximations of lengths and gradients,
we can show that over the course of the algorithm we only
need to update the entries of the gradients g and lengths
£ at most m'*t°() total times. Efficiency gains based on
leveraging stability has appeared in the earliest works on
efficiently maintaining IPM iterates [30, 46] as well as most
recent progress on speeding up linear programs.

a) Warm-Up: A Simple, Static Algorithm.: A simple
approach to finding an O(1)-approximate min-ratio cycle is
the following: given our graph GG, we find a probabilistic low
stretch spanning tree 7', i.e., a tree such that for each edge e =
(u,v) € G, the stretch of e, defined as str!*¢ = W
where T'[u,v] is the unique path from u to v along the tree

3The reason that path-following IPMs for max-flow [19] do not encounter
this issue is because one can show that primal-dual optimality actually
guarantees that the lengths/resistances are polynomially bounded. We do
not maintain any dual variables, so such a guarantee does not hold for our
algorithm.
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edges
tree T’
wwee - circulation A*

tree cycles Alp(e ® T[v,u])

Fig. 1: Illustrating the decomposition A* = 3" \.. A} -
p(e @ T'v,u]) of a circulation into tree cycles given by off-
trees and the corresponding tree paths.

T, is 6(1) in expectation. Such a tree can be found in 6(m)
time [4, 1].

Let A* be the witness circulation that minimizes (1), and
assume wlog that A* is a cycle that routes one unit of flow
along the cycle. We assume for convenience, that edges on
A* are oriented along the flow direction of A*, i.e. that
A* € RE. Then, for each edge e = (u,v) on the cycle
A*, the fundamental tree cycle of e in T denoted e ® T'[v, u],
representing the cycle formed by edge e concatenated with
the path in 7" from its endpoint v to u. To work again with
vector notation, we denote by p(e ® T'[v,u]) € RF the vector
that sends one unit of flow along the cycle e ® T'[v, u] in the
direction that aligns with the orientation of e. A classic fact
from graph theory now states that A* =3 ars0 AL -pled
T[v,u]). (note that the tree-paths used by adjacent off-tree
edges cancel out , see Figure 1) In particular, this implies
that gTA* =37 A..o AL g ple® T[v,u).

This fact will allow us to argue that with probability at
least 1 , one of the tree cycles is an O(1)-approximate solution
to (1). Therefore, since the stretch streT’e of edges e € E is
small in expectation, we can, by Markov’s inequality, argue
that with probability at least %, the circulation A* is not
stretched by too much. Formally, we have that > _. arso AL
IL p(e ® T[v,u))|l1 < v||LA*|; for v = 5(1) Combining
our insights, we can thus derive that

9'A* 1 YearsoAl-g'pled T, ul)
ILA*L — v XeassoAf- [Lple® Tlv,ul)|x
o1 g ' pledTv,ul)

— min

v eA:>0 ||L ple ® Tlv,u))|1

from the fact that
(recall also that g7 A* is negative).

where the last inequality follows

minicy 31 < S
But this exactly says ‘that for the edge e minimizing the
expression on the right, the tree cycle e ® T[v,u] is a -
approximate solution to (1), as desired.

Since the low stretch spanning tree 1" stretches circulation
A* reasonably with probability at least %, we could boost
the probability by sampling 6(1) trees 11,75, ..., T, inde-
pendently at random and conclude that w.h.p. one of the
fundamental tree cycles gives an approximate solution to (1).

Unfortunately, after updating the flow f to f’ along such

a fundamental tree cycle, we cannot reuse the set of trees



Ty,Ts, ..., Ts because the next solution to (1) has to be found
with respect to gradients g(f’) and lengths £(f’) depending
on f’ (instead of g = g(f) and € = £(f)). But g(f’) and
£(f’) depend on the randomness used in trees 11,75, . .., Ts.
Thus, naively, we have to recompute all trees, spending again
Q(m) time. But this leads to run-time €2(m?) for our overall
algorithm which is far from our goal.

b) A Dynamic Approach.: Thus we consider the data
structure problem of maintaining an m°!) approximate so-
lution to (1) over a sequence of at most m!'T°() changes
to entries of g, £. To achieve an almost linear time algorithm
overall, we want our data structure to have an amortized m°®)
update time. Motivated by the simple construction above, our
data structure will ultimately maintain a set of s = m°(1)
spanning trees 77, ..., T of the graph G. Each cycle A that
is returned is represented by m°(") off-tree edges and paths
connecting them on some 7;.

To obtain an efficient algorithm to maintain these trees T3,
we turn to a recursive approach. In each level of our recursion,
we first reduce the number of vertices, and then the number of
edges in the graphs we recurse on. To reduce the number of
vertices, we produce a core graph on a subset of the original
vertex set, and we then compute a spanner of the core graph
which reduces the number of edges. Both of these objects
need to be maintained dynamically, and we ensure they are
very stable under changes in the graphs at shallower levels
in the recursion. In both cases, our notion of stability relies
on some subtle properties of the interaction between the data
structure and the hidden witness circulation.

We maintain a recursive hierarchy of graphs. At the top
level of our hierarchy, for the input graph G, we produce
B = O(logn) core graphs. To obtain each such core graph, for
each i € [B], we sample a (random) forest F; with O(m/k)
connected components for some size reduction parameter k.
The associated core graph is the graph G/F; which denotes
G after contracting the vertices in the same components of
F;. We can define a map that lifts circulations A in the core
graph G/F;, to circulations A in the graph G by routing
flow along the contracted paths in F;. The lengths in the core
graph £ (again let L = diag(€)) and are chosen to upper
bound the length of circulations when mapped back into G
such that [LA[[; > [[LA[l;. Crucially, we must ensure these
new lengths £ do not stretch the witness circulation A* when
mapped into G/F; by too much, so we can recover it from
G/ F;. To achieve this goal, we choose F; to be a low stretch
forest, i.e. a forest with properties similar to those of a low
stretch tree. In Section II-C, we summarize the central aspects
of our core graph construction. _

While each core graph G/F; now has only O(m/k) ver-
tices, it still has m edges which is too large for our recursion.
To overcome this issue we build a spanner S(G, F;) on
G/F; to reduce the number of edges to O(m/k), which
guarantees that for every edge e = (u, v) that we remove from
G/F; to obtain S(G, F;), there is a u-to-v path in S(G, F})
of length m°M. Ideally, we would now recurse on each
spanner S(G, F};), again approximating it with a collection
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edges ¢ € Eg/r, \ Bsa,m)
spanner edges

spanner embedding paths e, s
circulation A(f)*
spanner cycles

spanner S(G, F;) et circulation A(f)*

embedded into spanner S(G, F;)

-

Fig. 2: Illustration of a dichotomy: either one of the edges
e € Eq/p, \ Es,r,) has a spanner cycle consisting of e
combined with I/ r, ,s(c, F,)(€) which is almost as good as
A(f)*, or re-routing A(f)* into S(G, F;) roughly preserves
its quality.

of smaller core graphs and spanners. However, we face an
obstacle: removing edges could destroy the witness circulation,
so that possibly no good circulation exists in any S(G, F;).
To solve this problem, we compute an explicit embedding
g/p,—s(a,F,) that maps each edge e = (u,v) € G/F; to a
short u-to-v path in S(G, F}). We can then show the following
dichotomy: Let A(f)* denote the witness circulation when
mapped into the core graph G/F;. Then, either one of the
edges e € Eg/F, \ES(G,Fi) has a spanner cycle consisting
of e cornAbined with Hg/Fﬁsg\G’E)(e) which is almost as
good as A(f)*, or re-routing A(f)* into S(G, F;) roughly
preserves its quality. Figure 2 illustrates this dichotomy. Thus,
either we find a good cycle using the spanner, or we can
recursively find a solution on S(G, F;) that almost matches
3( f)* in quality. To construct our dynamic spanner with its
strong stability guarantees under changes in the input graph,
we use a new approach that diverges from other recent works
on dynamic spanners; we give an outline of the key ideas in
Section II-G.

Our recursion uses d levels, where we choose the size
reduction factor k such that k% ~ m and the bottom level
graphs have m°(!) edges. Note that since we build B trees on
G and recurse on the spanners of G/Fy,G/Fs,...,G/Fp, our
recursive hierarchy has a branching factor of B = O(logn)
at each level of recursion. Thus, choosing d < +/logn, we
get B¢ = m°® Jeaf nodes in our recursive hierarchy. Now,
consider the forests Fj, , Fj,,...,F;, on the path from the
top of our recursive hierarchy to a leaf node. We can patch
these forests together to form a tree associated with the leaf
node. Each of these trees, we maintain as a link-cut tree data
structure. Using this data structure, whenever we find a good
cycle, we can route flow along it and detect edges where the
flow has changed significantly. The cycles are either given
by an off-tree edge or a collection of m°!) off-tree edges



coming from a spanner cycle. We call the entire construction
a branching tree chain, and in Section II-D, we elaborate on
the overall composition of the data structure.

What have we achieved using this hierarchical construction
compared to our simple, static algorithm? First, consider the
setting of an oblivious adversary, where the gradient and
length update sequences and the optimal circulation after
each update is fixed in advance. In this setting, we can
show that our spanner-of-core graph construction can survive
through m!~°() /k* updates at level i. Meanwhile, we can
rebuild these constructions in time m!+o(1) / ki1, leading to
an amortized cost per update of km°1) < me°() at each level.
This gives the first dynamic data structure for our undirected
min-ratio problem with m°") query time against an oblivious
adversary.

However, our real problem is harder: the witness circulation
in each round is A(f)* = f* — f and depends on the
updates we make to f, making our problem adaptive. Instead
of modelling our IPM as giving rise to a fully-dynamic
problem against an adaptive adversary, the promise that the
witness circulation can always be written as f* — f lets
us express the IPM with an adversary that is much more
restricted. Our data structure needs to ensure that the flow
f* — f is stretched by m°®) on average w.rt. the lengths
£. At a high level, we achieve this by forcing the forests
at every level to have stretch 1 on edges where f. changes
significantly and could affect the total stretch of our data
structure on f* — f. Section II-E describes the guarantees
we achieve using this strategy. However, the data structure at
this point is not yet guaranteed to succeed. Instead, we very
carefully characterize the failure condition. In particular, to
induce a failure, the adversary must create a situation where
the current value of ||[LA(f)*||; is significantly less than the
value when the levels of our data structure were last rebuilt.
This means we can counteract from this failure by rebuilding
the data structure levels. Due to the high cost of rebuilding
the shallowest levels of the data structure, naively rebuilding
the entire data structure is much too expensive, and we need
a more sophisticated strategy. We describe this strategy in
Section II-F, where we design a game that expresses the
conflict between our data structure and the adversary, and we
show how to win this game without paying too much runtime
for rebuilds.

C. Building Core Graphs

In this section, we describe our core graph construction
(Definition 6.7), which maps our dynamic undirected min-
ratio cycle problem on a graph G with at most m edges and
vertices into a problem of the same type on a graph with only
O(m/k) vertices and m edges, and handles O(m/k) updates
to the edges before we need to rebuild it. Our construction is
based on constructing low-stretch decompositions using forests
and portal routing (Lemma 6.5). We first describe how our
portal routing uses a given forest F' to construct a core graph
G/F. We then discuss how to use a collection of (random)
forests Fi,...,Fp to produce a low-stretch decomposition
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of G, which will ensure that one of the core graphs G/F;
preserves the witness circulation well. Portal routings played
a key role in the ultrasparsifiers of [45] and has been further
developed in many works since.

a) Forest Routings and Stretches.: To understand how to
define the stretch of an edge e with respect to a forest F', it is
useful to define how to route an edge e in F'. Given a spanning
forest F', every path and cycle in G can be mapped to G/F
naturally (where we allow G/ F' to contain self-loops). On the
other hand if every connected component in F' is rooted, where
root! denotes the root corresponding to a vertex u € V, we
can map every path and cycle in G/F back to G as follows.
Let P = ej,...,e, be any (not necessarily simple) path in
G/ F where the preimage of every edge ¢; is e = (u¥,vf) €
G. The preimage of P, denoted P, is defined as the following
concatenation of paths:

k
pa et @ Flroot’s,uf| @ ef @ Flvf, root’s],

i=1

where we use A @ B to denote the concatenation of paths A
and B, and F[a,b] to denote the unique ab-path in the forest
F. When P is a circuit (i.e. a not necessarily simple cycle), P¢
is a circuit in G' as well. One can extend these maps linearly
to all flow vectors and denote the resulting operators as Ilp :
RE(©@) — REG/F) and II;" : RE(G/F) — RE(@), Since we
let G/ F have self-loops, there is a bijection between edges of
G and G/F and thus II acts like the identity function.

To make our core graph construction dynamic, the key
operation we need to support is the dynamic addition of more
root nodes, which results in forest edges being deleted to
maintain the invariant each connected component has a root
node. Whenever an edge is changing in (G, we ensure that
G/ F approximates the changed edge well by forcing both its
endpoints to become root notes, which in turn makes the portal
routing of the new edge trivial and this guarantees its stretch
is 1. An example of this is shown in Figure 3.

For any edge ¢ = (u“,v%) in G with image e in G/F,
we set 2? , the edge length of e in G/F, to be an upper
bound on the length of the forest routing of e, i.e. the path
Flrootfy ,u® @ e & F[vY, rootf;]. Meanwhile, we define
§tTre et 27; /€., as an overestimate on the stretch of e w.r.t. the
forest routing. A priori, it is unclear how to provide a single
upper bound on the stretch of every edge, as the root nodes of
the endpoints are changing over time. Providing such a bound
for every edge is important for us as the lengths in G/F could
otherwise be changing too often when the forest changes. We
guarantee these bounds by scheme that makes auxiliary edge
deletions in the forest in response to external updates, with
these additional roots chosen carefully to ensure the length
upper bounds.

Now, for any flow f in G/F, its length in G/F is at least
the length of its pre-image in G, i.e. HLH;ﬂlj’H1 < Hf;FfH .
Let A* be the optimal solution to (1). We will show latér
how to build F' such that HfFA* ) < v||LA*||; holds for
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Fig. 3: Tlustration of the core graph G/ F' changing as an edge
is deleted in G (and in F)).

some v = m°1), solving (1) on G/F with edge length 2 and
properly defined gradient g on G/F yields an %—approximate
solution for G. The gradient g is defined so that the total
gradient of any circulation A on G/F and its preimage
II.'A in G is the same, ie. g'A = g'II.'A. The idea
of incorporating gradients into portal routing was introduced
in [34]; our version of this construction is somewhat different
to allow us to make it dynamic efficiently.
b) Collections of Low Stretch Decompositions (LSD).:

The first component of the data structure is constructing and
maintaining forests of F' that form a Low Stretch Decompo-
sition (LSD) of G. Variations of which (such as j-trees) have
been used to construct several recursive graph precondition-
ers [39, 43, 33, 15] and dynamic algorithms [14]. Informally,
a k-LSD is a rooted forest F' C G that decomposes G into
O(m/k) vertex disjoint components. Given some positive edge
weights v € R and reduction factor k¥ > 0, we compute a
k-LSD F' and length upper bounds oF of G /F that satisfy
two properties:

1) sAt/rf = ¥ /t,c = O(k) for any edge ¢C € G with
image e in G/F, and

2) The weighted average of s?’f w.rt. v is only O(1), ie.
~F ~
> eceq Veo - stry < O(1) - [vl]; .

Item 1 guarantees that the solution to (1) for G /F yields a
O(k)-approximate one for G. However, this guarantee is not
sufficient for our data structure, as our B-branching tree chain
has d ~ log,, m levels of recursion and the quality of the solu-
tion from the deepest level would only be O(k)? ~ m!+e(l).
approximate.
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Instead, like [39, 43, 33] we compute k different edge
weights vy, ..., v, via multiplicative weight updates (Lemma
6.6) so that the corresponding LSDs Fj,...,Fy have
Q(l) average stretch on every edge in G: Z?Zl S?c/rfj =
O(k), for all ¢ € G with image e in G/F.

By Markov’s inequality, for any fixed flow f in G,
Hfﬁf”l < O(1)|ILf|, holds for at least half the LSDs

corresponding to Fy,...
formly from Fi,..

,F},. Taking O(1) samples uni-
. Fy, say Fy,...,Fg for B = O(1) we

get that with high probability min;¢p; H;ﬁFJ oLA*|| <

~ 1
O(1) |[LA*||,. That is, it suffices to solve (1) on
G/Fy,...,G/Fg to find an O(1)-approximate solution for
G.

D. Maintaining a Branching Tree Chain

The goal of this section is to elaborate on how we combine
core graphs and spanners to produce our overall data structure
for our undirected min-ratio cycle problem, the B-branching
tree chain. We also describe how the data structure is main-
tained under dynamic updates, which is more formally shown
in the full version. A central reason our hierarchical data
structure works is that the components, both core graphs and
spanners, are designed to remain very stable under dynamic
changes to the input graphs they approximate. In the literature
on dynamic graph algorithms, this is referred to as having low
recourse.

1) Sample and maintain B = O(logn) k-LSDs
F\, Fs, ..., Fp, and their associated core graphs G/ F;.
Over the course of O(m/k) updates at the top level,
the forests F; are decremental, i.e. only undergo edge
deletions (from root insertions), and will have O(m/k)
connected components.

Maintain spanners S(G, F;) of the core graphs G/F;,
and embeddings Ilg(g/r,)=s(c,r). say with length
increase vy, = m°

Recursively process the graphs S(G, F;), i.e. maintains
LSDs and core graphs on those, and spanners on the
contracted graphs, etc. Go for d total levels, for k¢ =m.
Whenever a level ¢ accumulates m/ki total updates,
hence doubling the number of edges in the graphs at
that level, we rebuild levels 7,7+ 1,...,d.

Recall that on average, the LSDs stretch lengths by 5(1)
and the spanners S(G, F;) stretch lengths by ~,. Hence the
overall data structure stretches lengths by O(v,)? = me°(M)
(for appropriately chosen d).

We now discuss details on how to update the forests G/ F;
and spanners S(G, I;). Intuitively, every time an edge e =
(u,v) is changed in G, we will delete O(1) additional edges
from F;. This ensures that no edge’s total stretch/routing-
length increases significantly due to the deletion of e (Lemma
6.5). As the forest F; undergoes edge deletions, the graph
G/ F; undergoes verfex splits, where a vertex has a subset
of its edges moved to a newly inserted vertex. Thus, a key
component of our data structure is to maintain spanners and

2)

3)

4)



embeddings of graphs undergoing vertex splits (as well as
edge insertions/deletions). It is important that the amortized
recourse (number of changes) to the spanner S(G, F;) is me)
independent of k, even though the average degree of G/F;
is Q(k), and hence on average (k) edges will move per
vertex split in G/F;. We discuss the more precise guarantees
in Section II-G.

Overall, let every level have recourse 7, = m°®) (indepen-
dent of k) per tree. Then each update at the top level induces
O(B%,)d (as each tree branches into B trees) updates in the
data structure overall. Intuitively, for the proper choice of
d = w(1), both the total recourse O(B~,.)* and approximation
factor O(7y,)? are m°™) as desired.

E. Going Beyond Oblivious Adversaries by using IPM Guar-
antees

The precise data structure in the previous section only works
for oblivious adversaries, because we used that if we sampled
B = O(logn) LSDs, then whp. there is a tree whose average
stretch is O(1) with respect to a fixed flow f. However,
since we are updating the flow along the circulations returned
by our data structure, we influence future updates, so the
optimal circulations our data structure needs to preserve are
not independent of the randomness used to generate the LSDs.
To overcome this issue we leverage the key fact that the flow
f* — f is a good witness for the min-ratio cycle problem at
each iteration.

Lemma 4.7 states that for any flow f,
g(F)TA(H)/100m + [LHAPSI,) < —Q(1) holds
where A(f) = f* — f. Then, the best solution to (1) among
the LSDs G/ F1, .. .,G/Fp maintains an O(1)-approximation
of the quality of the witness A(f) = f* — f as long as

min [L5A()] | <O ILAAL], +00m). @)
In this case, let A be the best solution obtained from
G/Fy,...,G/Fp. We have

gH)TA _  g)TA)
[LpA| — OWILHADI, +OGm)

=-Q(1).

The additive O(m) term is there for a technical reason
discussed later.

To formalize this intuition, we define the width w(f) of
A(f) as w(f) = 100 - 1 + |L(f)A(f)|. The name comes
from the fact that w(f). is always at least |&(f).(f> — f.)|
for any edge e. We show that the width is also slowly
changing (Lemma 9.2) across IPM iterations, in that if the
width changed by a lot, then the residual capacity of e must
have changed significantly. This gives our data structure a
way to predict which edges’ contribution to the length of the
witness flow f* — f could have significantly increased.

Observe that for any forest F; in the LSD of G, we have

Hf;FJ'A(f)‘ < |lstr™ ow(f)’ . Thus, we can strengthen
1

(4) and show that the IPM potential can be decreased by

m=oW if mingeqp [t ow(f)| < O) [w(f)], . I
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also holds with w.h.p if the collection of LSDs are built after
knowing f. However, this does not necessarily hold after
augmenting with A, an approximate solution to (1).

Due to stability of w(f), we have w(f + A)e = w(f).
for every edge e whose length does not change a lot. For other
edges, we update their edge length and force the stretch to be 1,
. —F; . . .

i.e. str,” = 1 via the dynamic LSD maintenance, by shortcut-
ting the routing of the edge e at its endpoints. This gives that

Tow(f+a) s
1
+ Jlw(f+ A)|,. Using the fact that

for any j € [B], the following holds: HsAt/r
5 utr),
min ez Hs?rFf o w(f)Hl < O(1) |w(f)]|,. we have the fol-

lowing: minje(p Hs’,ter’ ocw(f + A)H1 S O() [lw(f)ll, +
w(f+ Al

Thus, solving (1) on the updated G/F1,...,G/Fp yields
a good enough solution for reducing IPM potential as long as
the width of w(f 4+ A) has not increased significantly, i.e.
[w(f + A, <O) [w(F), -

If the solution on the updated graphs G/F1,...,G/Fpg does
not have a good enough quality, we know by the above dis-
cussion that ||w(f + A)||; > 100 ||w(f)||,; must hold. Then,
we re-compute the collection of LSDs of G and solve (1) on
the new collection of G/F1,...,G/Fp again. Because each
recomputation reduces the ¢; norm of the width by a constant
factor, and all the widths are bounded by exp(logo(l)~ m)
(as discussed in Section II-A), there can be at most O(1)
such recomputations. At the top level, this only increases our
runtime by O(1) factors.

The real situation is much more complicated since we
recursively maintain the solutions on the spanners of each
G/Fy,...,G/Fp. Hence, it is possible that lower levels in
the data structure are the “reason” that the quality of the
solution is poor. More formally, let T be the total number
of IPM iterations. We use ¢ € [T] to index each iteration
and use superscript (") to denote the state of any variable
after ¢-th iteration. For example, f() is the flow computed so
far after ¢ IPM iterations and we define w® = w(f®) to
be the width wrt. f(*). Recall that every graph maintained
in the dynamic B-Branching Tree Chain re-computes its
collection of LSDs after certain amount of updates. When
some graph at level ¢ re-computes, we enforce every graph
at the same level to re-compute as well. Since there’s only
m°1) such graphs at each level, this scheme results in a
m°®) overhead on the update time which is tolerable. For
every level ¢ = 0,...,d, we define prevgt) to be the most
recent iteration at or before ¢ that a re-computation of LSDs
occurs at level i. For graphs at level d which contain only
m°() vertices, we enforce a rebuild everytime and always
have prevfit) = t. We show in Lemma 7.9 that the cycle
output by the data structure in the ¢-th IPM iteration has length
at most m°(M) 30 ||w('"e"§t))||1. This inequality is a natural
generalization of the O(1) (||lw(f)||, + |lw(f + A)]|,)-bound
when taking recursive structure into account.

At this point, we want to emphasize that the fact that we



can prove this guarantee depends on certain “monotonicity”
properties of both our core and spanner graph constructions. In
the core graph construction, it is essential that we can provide
a fixed length upper bound for most edges. In the spanner
construction, we crucially use that the set of edges routing into
any fixed edge in the spanner is decremental for most spanner
edges. This allows us to produce an initial upper bound on the
width for edges in the spanner and continue using this bound
as long as the spanner edge routes a decremental set.

The cycle output by the data structure yields enough de-
crease in the IPM potential if its 1-norm is small enough. Oth-
erwise, the 1-norm of the output cycle is large and we know
that Z;Lo Hw("re"it))ﬂl is much more than m°M|jw®||;. In
this way, the data structure can fail because some lower level
¢ has Hw("'e"gw)Hl > [|[w®];. A possible fix is to rebuild
the entire data structure which sets prev,” =t at any level <.
However, this costs linear time per rebuild, and this may need
to happen almost every iteration because there are multiple
levels. In the next section we show how to leverage that lower
levels have cheaper rebuilding times (levels 7,541, ...,d can
be rebuilt in time approximately m'*+°() /k?) to design a more
efficient rebuilding schedule.

F. The Rebuilding Game

Our goal in Section 8 is to develop a strategy that finds
approximate min-ratio cycles without spending too much time
rebuilding our data structure when it fails to do so. In the
previous overview section, we carefully characterized the
conditions under which our data structure can fail against
adversarial updates, given the promise that f* — f remains
a good witness circulation. In this section, we set up a game
which abstracts the properties of the data structure and the
adversary. The player in this game wants to ensure our data
structure works correctly by rebuilding levels of it when it
fails. We show that the player can win without spending too
much time on rebuilding.

Recall w® < w(f®) is a hidden vector that we use to
upper bound the ¢; cost of the hidden witness circulation
A(f). We will refer to |[w®]|; as the total width at time
t. We argued in the previous Section II-E that our branching-
tree data structure can find a good cycle whenever the total
width ||w®||; is not too small compared to the total widths
at the times when the levels 0,1,...,d of the data structure
were last initialized or rebuilt. We let prev,gt) denote the stage
when level 7 was last rebuilt, and refer to Hw("'e"it)) l1 as the
total width at level ¢. As we saw in the previous section, the
only way our cycle-finding data structure can fail to produce a
good enough cycle is if 3¢ ||w(p'e"£t))||1 > moW |lw®]];.
We can estimate the quality of the cycles we find, and if we fail
to find a good cycle we can conclude this undesired condition
holds. However, even if the condition holds, we might still find
a good cycle “by accident”, so finding a cycle does not prove
that the data structure currently estimates the total width well.
Because the total widths ||w®||; are hidden from us, we do
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not know which level(s) cause the problem when we fail to
find a cycle.

We turn this into a game that abstracts the data structure
and IPM and supposes that total width ||w(®)||; is an arbitrary
positive number chosen by an adversary, while a player (our
protagonist) manages the data structure by rebuilding levels of
the data structure to set previt =t when necessary. Now, be-
cause of well-behaved numerical properties of our IPM, we are
guaranteed that log(||w®||;) € [~poly log(m), poly log(m)],
and we impose this condition on the total width in our
game as well. By developing a strategy that works against
any adversary choosing such total widths, we ensure our
data structure will work with our IPM as a special case. In
Definition 8.1 we formally define our rebuilding game.

In our branching tree data structure, level ¢ can be rebuilt at a
cost of m+°() /k% and it can last through roughly m!—°(") /¢
cycle updates before we have to rebuild it because the core
graph has grown too large (we call this a “winning rebuild”).
But, if we are unable to find a good cycle, we are forced to
rebuild sooner (we call this a “losing rebuild”). Which level
should we rebuild if we are unable to find a good cycle? The
answer is not immediately clear, because any level could have
too large total width. However, by tuning our parameters such
that the m°") factor in our condition 3% ||w(p'evy))||1 >
m®MW ||w®||; is larger than 2(d + 1), we can deduce that if a
failure occurs, then max?_ Hw<prevgt))\|1 > 2w®|[;. Thus,
if the total width at level ¢ is too large, then a losing rebuild
at level 4 (and hence updating w0 w®) will reduce
its total width by at least a factor 2.

This means that for any level ¢, if we do a losing rebuild of
level i poly log(m) times before a winning rebuild of level i,
we can conclude that the too-large total width is not at level
. This leads to the following strategy: Starting at the lowest
level, do a losing rebuild of each level i up to poly log(m)
times after each winning rebuild, and then move to rebuilding
level 7 —1 in case of more failures. We state this strategy more
formally in Algorithm 6. This leads to a cost of O(m°™") (m +
T)) to process T cycle updates in the rebuilding game, as we
prove in Lemma 8.3.

Finally, at the end of Section 8, we combine the data
structure designed in the previous sections with our strategy
for the rebuilding game to create a data structure that handles
successfully finds update cycles in our hidden stable-flow
chasing setting in amortized m°®) cost per cycle update,
which is encapsulated in Theorem 6.2.

G. Dynamic Embeddings into Spanners of Decremental
Graphs

It remains to describe the algorithm to maintain a spanner
S(G, F;) on the graphs G/F;. Let us recall the requirements
on the spanner given in Section 2.4:

1) Sparsity: at all times the spanner should be sparse,
i.e. consist of at most O(|V(S(G, F;))|) edges. This is
crucial for reducing the problem size and as we ensure
that F; has only O(m/k) connected components, we



have that S(G, F;) consists of O(m/k) edges, reducing
the problem size by a factor of almost k.

Low Recourse: we further require that for each update
to G/F;, there are at most v, = m°®) changes to
S(G, F;) on average. This is crucial as otherwise the
updates to S(G, F;) could trigger even more updates in
the B-Branching Tree Chain (see Section II-D).

Short Paths with Embedding: we maintain the spannner
such that for every edge e in G, its endpoints in S(G, F;)
are at distance at most +y;-£(e) and even maintain witness
paths Ilg_,s(q,F,)(e) between the endpoints consisting
of ~; edges. This is crucial as we need an explicit way to
check whether e ® 11/ 5, . 5(c, ;) (€) is a good solution
to the min-ratio cycle problem.

Small Set of New Edges That We Embed Into: we ensure
that after each update, we return a set D consisting of
m°() edges such that each edge e in G / F; is embedded
into a path I/, (¢, F,) (€) consisting of the edges on
the path of the old embedding path I, p, ,s(c,F,)(€)
of e and edges in D.

Efficient Update Time: we show how to maintain
S(G, F;) with amortized update time km°(").

2)

3)

4)

5)

We note that additionally, we need our spanner to work
against adaptive adversaries since the update sequence is
influenced by the output spanner. Although spanners have been
studied extensively in the dynamic setting, there is currently
only a single result that works against adaptive adversaries.
While this spanner given in [7] appears promising, it does not
ensure our desired low recourse property for vertex splits and
this seems inherent to the algorithm (additionally, it also does
not maintain an embedding g/ r, s 5(q,F,))-

While we use similar elements as in [7] to obtain spanners
statically, we arrive at a drastically different algorithm that
can deal well with vertex splits. We focus first on obtaining
an algorithm with low recourse and discuss afterwards how to
implement it efficiently.

a) A Static Algorithm.: We first consider the static ver-
sion of the problem on a graph G/F;, i.e. to give a static
algorithm that computes a spanner with short path embeddings.
By using a simple bucketing scheme over edge lengths, we can
assume wlog that all lengths have unit-weight. We partition
the graph into edge-disjoint expander graphs H;, Ho, ..., Hy
where each H; has roughly uniform degree, i.e. its average
degree is at most a polylogarithmic factor larger than its
minimum_degree A, (H;), and each vertex v in G is in
at most O(1) graphs H;. Here, we define an expander to be
a graph H; that has no cut (X, X) where X = V(H;)\ X
with | Ex, (X, X)| < © (m X)}
where Eg, (X, X) is the set of edges in H; with endpoints in
X and S and volg, (V) is the sum of degrees over the vertices
yey.

Next, consider any such expander H;. It is well-known that
sampling edges in expanders with probability p; ~ log” ((7}?
gives a cut-sparsifier S; of H;, i.e. a graph such that fn(;ll‘neacf]
cut (X, X), we have |Ey, (X, X)| =~ |Es,(X,X)|/p; (see

min{voly, (X), volg, (
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[45, 7]). This ensures that also S; is an expander. It is well-
known that any two vertices in the same expander are at small
distance, i.e. there is a path of length at most O(1) between
them. We use a dynamic shortest paths data structure [17] for
expander graphs on S; to find such short paths between the
endpoints of each edge e¢ in G/F; and take them to be the
embedding paths (here we lose an m°") factor in the length
of the paths due to the data structure).

It remains to observe that each spanner S; has a nearly
linear number of edges because each graph H; has average
degree close to its minimum degree, and edges are sampled
independently with probability p;. Thus, letting S(G, F;) be
the union of all graphs S; and using that each vertex is in at
most O(1) graphs H;, we conclude the desired sparsity bound
on S(G, I;). We take Il p,5(c,F,) to be the union of the
embeddings constructed above and observe that the length of
embedding paths is at most m°") as desired.

b) The Dynamic Algorithm.: To make the above algo-
rithm dynamic, let us assume that there is a spanner S(G, F})
with corresponding embedding g/ r,,5(q,F,) and after its
computation, a batch of updates U is applied to G/ F; (consist-
ing of edge insertions/deletions and vertex splits). Clearly, after
forwarding the updates U to the current spanner S(G, F;),
by deleting edges that were deleted from G/F; and splitting
vertices, we have that for some edges e € G/F;, the updated
embedding I, p,s(c,F,)(e) might no longer be a proper
path.

We therefore need to add new edges to S(G, F;) and fix the
embedding. We start by defining S to be the vertices that are
touched by an update in U, meaning for the deletion/insertion
of edge (u,v) we add u and v to S and for a vertex split of
v into v and v’, we add v and v’ to S. Note that |S| < 2|U|
and that all I/ p, . s(c,F,)(e) that are no longer proper paths
intersect with S.

We now fix the embedding by constructing a new static
spanner on a special graph J over the vertices of .S. More pre-
cisely, for each e = (a,b) in G/F; where Ilg/rp,—s(c,F,)(€)
intersects with S, we find the vertices @, b in S that are closest
to a and b on Ig/ps(a F,)(e), and then insert an edge
e = (a, b) into the graph J. We say that e is the pre-image of
€ (and € the image of e in J).

Finally, we run the static algorithm from the last paragraph
to find a sparsifier J of J and let II ;_, 7 be the corresponding
embedding. Then, for each edge € that was sampled into J. s
we add its pre-image e to the current sparsifier S(G, F;).

To fix the embedding, for each € = (a, /l;) € J, we observe
that since e = (a,b) was added to S(G, F;), we can simply
embed the edge into itself. We define for each such edge € the
path

Ps =lg/r,s(c,r)(e)[a, a]

@ (a,0) © g p,—s(a,r,)(e)b, 0]

which is a path between the endpoints of €. This path is in the
current graph S(G, F;) since we added (a,b) to the spanner



and by definition of @, we have that g, p, . s(c,F,)(e)[@, a]
is still a proper path, the same goes for b.

But this means we can embed each edge f = (c¢,d) even
if its image f = (c, J) ¢ J, since we can simply set it to the
path

D

eet,  ;(f)

® HG/FiaS(G,Fi)(f)[&: d].

g p—s@c,r)(f)le,d @ P

By the guarantees from the previous paragraph, we have that
the sparsifier J has average degree O(1), and we only added
the pre-images of edges in J to S(G, F;). Since J (and J)
are taken over the vertex set S, we can conclude that we
only cause O(|S|) = O(|U|) recourse to the spanner. Further,
since each new path Ilg_,s(c,r,)(e) for each e now consists
of 5(1) path segments from the old embedding Il _,s(q,F))
(plus 9] (1) edges), the maximum length of the the embedding
paths has only increased by a factor of O(1) overall. Finally,
we take D to be the set of edges on Ps for all € € J. Clearly,
each edge f embeds into a subpath of its previous embedding
path (to reach the first and last vertex in S) and into some
paths P all of which now have edges in D. To bound the
size of D, we observe that also each path Ps is of short
length since it is obtained from combining two old embedding
paths (which were short) and a single edge. Thus, we have
ID| = [Uzej Pe | = O(|J]) = O(|U]) which again is only
5(1) when amortizing over the number of updates. Figure 4
gives an example of this spanner maintenance procedure in
action.

By using standard batching techniques, we can also deal
with sequences of update batches U1, U(?) | . . . to the spanner
and ensure that we cause only m°Y) amortized recourse per
update/ size of D to the spanner.

¢) An Efficient Implementation.: While the algorithm
above achieves low recourse, so far, we have not reasoned
about the run-time. To do so, we enforce low vertex-congestion
of llg,p,—s(a,F,) defined to be the maximum number of paths
g r, s, r,)(e) that any vertex v € V(G/F;) occurs on.
More precisely, we implement the algorithm above such that
the vertex congestion of Ilg/r, ,s(q,F,)(e) remains of order
YeAmaz(G/F;) for some v, = m°L) over the entire course
of the algorithm. We note that by a standard transformation,
we can assume wlog that A,,...(G/F;) = O(k).

Crucially, using our bound on the vertex congestion, we can
argue that the graph J has maximum degree v.A 0. (G/F;).
Since we can implement the static spanner algorithm in time
near-linear in the number of edges, this_implies that the
entire algorithm to compute a sparsifier J only takes time
~ U YDA maz(G/F;) = |Um°ME, and thus in amortized
time km°®) per update.

It remains to obtain this vertex congestion bound. Let us
first discuss the static algorithm. Previously, we exploited that
each sparsifier S; is expander since it is a cut-sparsifier of H;
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G/F, and spanner S(G, F;)
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A~ spanner edges
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deleted edges
O S touched vertices
ey
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J €2 J €2 0—0 projected edges in J
P s < spanner edges in J
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spanner embedding paths IT_, ;
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updated G/F; and 0—0 cdees
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A~~~ spanner edges
spanner embedding paths 1la, (.
€1

Fig. 4: Tllustration of the procedure for maintaining S(G, F;)
under edge deletions.

in a rather crude way. But it is not hard to see via the multi-
commodity max-flow min-cut theorem [36] that this property
can be used to argue the existence of an embedding Iy, s,
that uses each edge in S; on at most O(1/p;) embedding paths
and therefore each path has average length O(1). In fact, using
the shortest paths data structures on expanders [17], we can
find such an embedding and turn the average length guarantee
into a worst-case guarantee.

_This ensures that each edge has congestion at most
O(1/pi) = O(Amaz(G/F;)) and because S(G, F;) has aver-
age degree O(1), this also bounds the vertex congestion. We
need to refine this argument carefully for the dynamic version
but can then argue that due to the batching we only increase
the vertex congestion slightly. We refer the reader to Section
5 for the full implementation and analysis.
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