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Abstract—We give an algorithm that computes exact maximum
flows and minimum-cost flows on directed graphs with m
edges and polynomially bounded integral demands, costs, and
capacities in m1+o(1) time. Our algorithm builds the flow through
a sequence of m1+o(1) approximate undirected minimum-ratio
cycles, each of which is computed and processed in amortized
mo(1) time using a new dynamic graph data structure.

Our framework extends to algorithms running in m1+o(1)

time for computing flows that minimize general edge-separable
convex functions to high accuracy. This gives almost-linear time
algorithms for several problems including entropy-regularized
optimal transport, matrix scaling, p-norm flows, and p-norm
isotonic regression on arbitrary directed acyclic graphs.

Index Terms—Maximum flow, Minimum cost flow, Data struc-
tures, Interior point methods, Convex optimization

See https://arxiv.org/abs/2203.00671 for the full version of

this paper.

I. INTRODUCTION

The maximum flow problem and its generalization, the

minimum-cost flow problem, are classic combinatorial graph

problems that find numerous applications in engineering and

scientific computing. These problems have been studied exten-

sively over the last seven decades, starting from the work of

Dantzig and Ford-Fulkerson, and several important algorithmic

problems can be reduced to min-cost flows (e.g. max-weight

bipartite matching, min-cut, Gomory-Hu trees). The origin of
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numerous significant algorithmic developments such as the

simplex method, graph sparsification, and link-cut trees, can

be traced back to seeking faster algorithms for max-flow and

min-cost flow.

Formally, we are given a directed graph G = (V,E) with

|V | = n vertices and |E| = m edges, upper/lower edge

capacities u+,u− ∈ R
E , edge costs c ∈ R

E , and vertex

demands d ∈ R
V with

∑
v∈V dv = 0. Our goal is to find

a flow f ∈ R
E of minimum cost c�f that respects edge

capacities u−e ≤ fe ≤ u+
e and satisfies vertex demands

d. The vertex demand constraints are succinctly captured as

B�f = d, where B ∈ R
E×V is the edge-vertex incidence

matrix defined as B((a,b),v) is 1 if v = a, −1 if v = b,
and 0 otherwise. To compare running times, we assume that

all u+
e ,u

−
e , ce and dv are integral, and |u+

e | , |u−e | ≤ U and

|ce| ≤ C.
There has been extensive work on max-flow and min-cost

flow. While we defer a longer discussion of the related works

to the full version, a brief discussion will help place our work

in context. Starting from the first pseudo-polynomial time

algorithm by Dantzig [20] that ran in O(mn2U) time, the

approach to designing faster flow algorithms was primarily

combinatorial, working with various adaptations of augment-

ing paths, cycle cancelling, blocking flows, and capacity/cost

scaling. A long line of work led to a running time of

Õ(mmin{m1/2, n2/3} logU) [29, 31, 23, 27] for max-flow,

and Õ(mn logU) [26] for min-cost flow. These bounds stood

for decades.

In their breakthrough work on solving Laplacian systems

and computing electrical flows, Spielman and Teng [45]

introduced the idea of combining continuous optimization

primitives with graph-theoretic constructions for designing

flow algorithms. This is often referred to as the Lapla-
cian Paradigm. Daitch and Spielman [19] demonstrated the

power of this paradigm by combining Interior Point methods

(IPMs) with fast Laplacian systems solvers to achieve an

612

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00064



Õ(m1.5 log2 U) time algorithm for min-cost flow, the first

progress in two decades. A key advantage of IPMs is that they

reduce flow problems on directed graphs to problems on undi-

rected graphs, which are easier to work with. The Laplacian

paradigm achieved several successes, including Õ(mε−1) time

(1+ε)-approximate undirected max-flow and multicommodity

flow [16, 33, 43, 41, 42], and an m4/3+o(1)U 1/3 time algorithm

for bipartite matching and unit capacity max-flow [40, 38,

37, 32, 5], and pm1+o(1) time unweighted p-norm minimizing

flow for large p [34, 2].

Efficient graph data-structures have played a key role in

the development of faster algorithms for flow problems, e.g.

dynamic trees [44]. Recently, the development of special-

purpose data-structures for efficient implementation of IPM-

based algorithms has led to progress on min-cost flow for

some cases – including an Õ(m logU + n1.5 log2 U) time al-

gorithm [12, 13, 11], an Õ(n logU) time algorithm for planar

graphs [22, 21], and small improvements for general graphs,

resulting in an Õ(m3/2−1/58 logO(1) U) time algorithm for

min-cost flow [8, 25, 6, 10]. Yet, despite this progress, the

best running time bounds in general graphs are far from linear.

We give the first almost-linear time algorithm for min-cost

flow, achieving the optimal running time up to subpolynomial

factors.

Theorem I.1. There is an algorithm that, on a graph G =
(V,E) with m edges, vertex demands, upper/lower edge
capacities, and edge costs, all integral with capacities bounded
by U and costs bounded by C, computes an exact min-cost
flow in m1+o(1) logU logC time with high probability.

Our algorithm implements a new IPM that solves min-cost

flow via a sequence of slowly-changing undirected min-ratio

cycle subproblems. We exploit randomized tree-embeddings to

design new data-structures to efficiently maintain approximate

solutions to these subproblems.

A direct reduction from max-flow to min-cost flow gives us

an algorithm for max-flow with only a logU dependence on

the capacity range U . 1 2

Corollary I.2. There is an algorithm that on a graph G with m
edges with integral capacities in [1, U ] computes a maximum
flow between two vertices in time m1+o(1) logU with high
probability.

A. Applications

Our result in Theorem I.1 has a wide range of appli-

cations. By standard reductions, it gives the first m1+o(1)

time algorithm for the bipartite matching problem and

m1+o(1) logU logC time algorithms for its generalizations,

including the worker assignment and optimal transport prob-

lems.

1s, t max-flow can be reduced to min cost circulation by adding a new
edge t → s with lower capacity 0 and upper capacity mU. Set all demands
to be 0. The cost of the t→ s edge is −1. All other edges have zero cost.

2By classic capacity scaling techniques [24, 28, 3], it suffices to work with
graphs with U,C = poly(m) to show Theorem I.1 and Corollary I.2.

In directed graphs with possibly negative edge weights,

assuming integral weights bounded by W in absolute value,

we obtain the first almost-linear time algorithm to compute

single-source shortest paths and to detect a negative cycle,

running in m1+o(1) logW time. In an independent work,

Bernstein, Nanongkai, and Wulff-Nilsen [9] claim the first

m · poly(logm) logW time algorithm for this problem.

Using recent reductions from various connectivity problems

to max-flow, we also obtain the first m1+o(1) time algorithms

for various such problems, most prominently to compute

vertex connectivity and Gomory-Hu trees in undirected, un-

weighted graphs, and (1 + ε)-approximate Gomory-Hu trees

in undirected weighted graphs. We also obtain the fastest

current algorithm to find the global min-cut in a directed

graph. Finally, we obtain the first almost linear time algorithms

to compute approximate sparsest cuts in directed graphs. We

defer the discussion of these results and precise statements to

the full version.

Additionally, we extend our algorithm to compute flows

that minimize general edge-separable convex objectives. This

allows us to solve regularized versions of optimal transport

(equivalently, matrix scaling), as well as p-norm flow problems

and p-norm isotonic regression for all p ∈ [1,∞]. We state an

informal version of our main result on general convex flows.

Informal Theorem I.3. Consider a graph G with demands
d, and an edge-separable convex cost function cost(f) =∑

e coste(fe) for “computationally efficient” edge costs coste.
Then in m1+o(1) time, we can compute a (fractional) flow
f that routes demands d and cost(f) ≤ cost(f∗) +
exp(− logC m) for any constant C > 0, where f∗ minimizes
cost(f∗) over flows with demands d.

We remark that the optimal solution f∗ to the above convex

flow problem can be non-integral, whereas in the case of max-

flow and min-cost flow with integral demands/capacities, there

exists an integral optimal flow.

II. OVERVIEW

Due to space constraints, we only give a technical overview

of the key pieces developed in this paper and refer to the

full version of the paper on arXiv 2203.00671. Section II-A

describes an optimization method based on interior point

methods that reduces min-cost flow to a sequence of m1+o(1)

undirected minimum-ratio cycle computations. In particular,

we reduce the problem to computing approximate min-ratio

cycles on a slowly changing graph. This can be naturally

formulated as a data structure problem of maintaining min-

ratio cycles approximately on a dynamic graph. Below is an

informal statement summarizing the IPM guarantees proven

in the full version.

Informal Theorem II.1 (�1 IPM Algorithm). We give an
IPM algorithm that reduces solving min-cost flow exactly
to sequentially solving m1+o(1) instances of undirected min-
ratio cycle, each up to an mo(1) approximation. Further, the
resulting problem instances are “stable”, i.e. they satisfy, 1)
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the direction from the current flow to the (unknown) optimal
flow is a good enough solution for each of the instances, and,
2) the length and gradient input parameters to the instances
change only for an amortized mo(1) edges every iteration.

We build a data structure for solving this dynamic min-

ratio cycle problem and solve it with mo(1) amortized time

per cycle update for our IPM, giving an overall running time

of m1+o(1).

Informal Theorem II.2 (Hidden Stable-Flow Chasing. Theo-

rem 6.2). We design a randomized data structure for approxi-
mately solving a sequence of “stable” (as defined in Informal
Theorem II.1) undirected min-ratio cycle instances. The data
structure maintains a collection of mo(1) spanning trees and
supports the following operations with high probability in
amortized mo(1) time: 1) Return an mo(1)-approximate min-
ratio cycle (implicitly represented as the union of mo(1) off-
tree edges and tree paths on one of the maintained trees), 2)
route a circulation along such a cycle 3) insert/delete edge
e, or update ge and �e, and 4) identify edges that have
accumulated significant flow.

Section II-B gives an overview of our data structure for

this dynamic min-ratio cycle problem, with pointers to the

rest of the overview which provides a more in-depth picture

of the construction. The data structure creates a recursive

hierarchy of graphs with fewer and fewer vertices and edges.

In Section II-C we describe how to reduce the number of

vertices, before describing the overall recursive data structure

in Section II-D. Naïvely, the resulting data structure works

only against oblivious adversaries where updates and queries

to the data structure are fixed beforehand. We cannot utilize it

directly because the optimization routine updates the dynamic

graph based on past outputs from the data structure. Therefore,

the cycles output by the data structure may not be good

enough to make progress. Section II-E discusses the interaction

between the optimization routine and the data structure when

we directly apply it. It turns out one can leverage properties of

the interaction and adapt the data structure for the optimization

routine. Section II-F presents an online algorithm that manip-

ulates the data structure so that it always outputs cycles that

are good enough to make progress in the optimization routine.

Finally, the overview ends with Section II-G which gives an

outline of our dynamic spanner data structure.

Informal Theorem II.3 (Dynamic Spanner w/ Embeddings.

Theorem 5.1). We give a randomized data-structure that for
an unweighted, undirected graph G undergoing edge updates
(insertions/deletions/vertex splits), maintains a subgraph H
with Õ(n) edges, along with an explicit path embedding of
every e ∈ G into H of length mo(1). The amortized number of
edge changes in H is mo(1) for every edge update. Moreover,
the set of edges that are embed into a fixed edge e ∈ H is
decremental for all edges e, except for an amortized set of
mo(1) edges per update. This algorithm can be implemented
efficiently.

We use this spanner to reduce the number of edges at each

level of our recursive hierarchy, one of the main algorithmic

elements of our data structure.

A. Computing Min-Cost Flows via Undirected Min-Ratio Cy-
cles

The goal of this section is to describe an optimization

method which computes a min-cost flow on a graph G =
(V,E) in m1+o(1) computations of mo(1)-approximate min-

ratio cycles:

min
B�Δ=0

g�Δ
‖LΔ‖1 (1)

for gradient g ∈ R
E and lengths L = diag(�) for � ∈ R

E
>0.

Note that the value of this objective is negative, as −Δ is a

circulation if Δ is.

Towards this, we work with the linear-algebraic setup of the

min-cost flow problem:

f∗ ∈ argmin
B�f=d

u−e ≤fe≤u+
e for all e∈E

c�f (2)

for demands d ∈ R
E , lower and upper capacities u−,u+ ∈

R
E , and cost vector c ∈ R

E . Our goal is to compute an

optimal flow f∗. Let F ∗ = c�f∗ be the optimal cost.

Our algorithm is based on a potential reduction interior point

method [30], where each iteration we reduce the value of the

potential function

Φ(f)
def
=20m log(c�f − F ∗)

+
∑
e∈E

(
(u+

e − fe)
−α + (fe − u−e )

−α
)

(3)

for α = 1/(1000 logmU). The reader can think of the barrier

x−α as the more standard − log x for simplicity instead.

We use x−α to ensure that all lengths/gradients encoun-

tered during the algorithm can be represented using Õ(1)
bits, and explain why this holds later in the section. When

Φ(f) ≤ −200m logmU , we can terminate because then

c�f−F ∗ ≤ (mU)−10, at which point standard techniques let

us round to an exact optimal flow [19]. Thus if we can reduce

the potential by m−o(1) per iteration, the method terminates

in m1+o(1) iterations.

There are several reasons we choose to use a potential

reduction IPM with this specific potential. The most important

reason is the flexibility of a potential reduction IPM allows our

data structure for maintaining solutions to (1) to have large

mo(1) approximation factors. This contrasts with recent works

towards solving min-cost flow and linear programs using a

robust IPM (see [18] or the tutorial [35]), which require

(1 + o(1))–approximate solutions for the iterates.

Finally, we use the barrier x−α as opposed to the more

standard logarithmic barrier in order to guarantee that all

lengths/gradients encountered during the method are bounded

by exp(logO(1) m) throughout the method. This follows be-

cause if (u+
e −fe)

−α ≤ Õ(m), then u+
e −fe ≥ Õ(m)−1/α ≥
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exp(−O(log2 Um)). Such a guarantee does not hold for the

logarithmic barrier.3

To conclude, we discuss a few specifics of the method, such

as how to pick the lengths and gradients, and how to prove that

the method makes progress. Given a current flow f we define

the gradient and lengths we use in (1) as g(f)
def
= ∇Φ(f)

and �(f)e
def
= (u+

e − fe)
−1−α

+ (fe − u−e )
−1−α

. Now, let

Δ be a circulation with g(f)�Δ/ ‖LΔ‖1 ≤ −κ for some

κ < 1/100, scaled so that ‖LΔ‖1 = κ/50. A direct Taylor

expansion shows that Φ(f +Δ) ≤ Φ(f) − κ2/500 (Lemma

4.4).

Hence it suffices to show that such a Δ exists with κ =
Ω̃(1), because then a data structure which returns an mo(1)-

approximate solution still has κ = m−o(1), which suffices.

Fortunately, the witness circulation Δ(f)∗ = f∗−f satisfies

g(f)�Δ/ ‖LΔ‖1 ≤ −Ω̃(1) (Lemma 4.7).

We emphasize that the fact that f∗ − f is a good enough

witness circulation for the flow f is essential for proving

that our randomized data structures suffice, even though the

updates seem adaptive. At a high level, this guarantee helps

because even though we do not know the witness circulation

f∗ − f , we know how it changes between iterations, because

we can track changes in f . We are able to leverage such

guarantees to make our data structures succeed for the updates

coming from the IPM. To achieve this, we end up carefully

designing our adversary model with enough power to capture

our IPM, but with enough restrictions that our min-ratio cycle

data structure to win against the adversary. We elaborate on

this point in Sections II-B and II-E.

B. High Level Overview of the Data Structure for Dynamic
Min-Ratio Cycle

As discussed in the previous section, our algorithm com-

putes a min-cost flow by solving a sequence of m1+o(1)

min-ratio cycle problems minB�Δ=0 g
�Δ/‖LΔ‖1 to mo(1)

multiplicative accuracy. Because our IPM ensures stability

for lengths and gradients (see Lemma 4.9 and 4.10), and

is even robust to approximations of lengths and gradients,

we can show that over the course of the algorithm we only

need to update the entries of the gradients g and lengths

� at most m1+o(1) total times. Efficiency gains based on

leveraging stability has appeared in the earliest works on

efficiently maintaining IPM iterates [30, 46] as well as most

recent progress on speeding up linear programs.

a) Warm-Up: A Simple, Static Algorithm.: A simple

approach to finding an Õ(1)-approximate min-ratio cycle is

the following: given our graph G, we find a probabilistic low

stretch spanning tree T , i.e., a tree such that for each edge e =

(u, v) ∈ G, the stretch of e, defined as strT,�
e

def
=

∑
f∈T [u,v] �(f)

�(e)

where T [u, v] is the unique path from u to v along the tree

3The reason that path-following IPMs for max-flow [19] do not encounter
this issue is because one can show that primal-dual optimality actually
guarantees that the lengths/resistances are polynomially bounded. We do
not maintain any dual variables, so such a guarantee does not hold for our
algorithm.

T

Δ∗

Δ∗
ep(e⊕ T [v, u])

Fig. 1: Illustrating the decomposition Δ∗ =
∑

e:Δ∗e>0 Δ
∗
e ·

p(e ⊕ T [v, u]) of a circulation into tree cycles given by off-

trees and the corresponding tree paths.

T , is Õ(1) in expectation. Such a tree can be found in Õ(m)
time [4, 1].

Let Δ∗ be the witness circulation that minimizes (1), and

assume wlog that Δ∗ is a cycle that routes one unit of flow

along the cycle. We assume for convenience, that edges on

Δ∗ are oriented along the flow direction of Δ∗, i.e. that

Δ∗ ∈ R
E
≥0. Then, for each edge e = (u, v) on the cycle

Δ∗, the fundamental tree cycle of e in T denoted e⊕T [v, u],
representing the cycle formed by edge e concatenated with

the path in T from its endpoint v to u. To work again with

vector notation, we denote by p(e⊕T [v, u]) ∈ R
E the vector

that sends one unit of flow along the cycle e⊕ T [v, u] in the

direction that aligns with the orientation of e. A classic fact

from graph theory now states that Δ∗ =
∑

e:Δ∗e>0 Δ
∗
e ·p(e⊕

T [v, u]). (note that the tree-paths used by adjacent off-tree

edges cancel out , see Figure 1). In particular, this implies

that g�Δ∗ =
∑

e:Δ∗e>0 Δ
∗
e · g�p(e⊕ T [v, u]).

This fact will allow us to argue that with probability at

least 1
2 , one of the tree cycles is an Õ(1)-approximate solution

to (1). Therefore, since the stretch strT,�
e of edges e ∈ E is

small in expectation, we can, by Markov’s inequality, argue

that with probability at least 1
2 , the circulation Δ∗ is not

stretched by too much. Formally, we have that
∑

e:Δ∗e>0 Δ
∗
e ·

‖L p(e ⊕ T [v, u])‖1 ≤ γ‖LΔ∗‖1 for γ = Õ(1). Combining

our insights, we can thus derive that

g�Δ∗

‖LΔ∗‖1 ≥
1

γ
·

∑
e:Δ∗e>0 Δ

∗
e · g�p(e⊕ T [v, u])∑

e:Δ∗e>0 Δ
∗
e · ‖L p(e⊕ T [v, u])‖1

≥ 1

γ
min

e:Δ∗e>0

g�p(e⊕ T [v, u])

‖L p(e⊕ T [v, u])‖1
where the last inequality follows from the fact that

mini∈[n] xi

yi
≤

∑
i∈[n] xi∑
i∈[n] yi

(recall also that g�Δ∗ is negative).

But this exactly says that for the edge e minimizing the

expression on the right, the tree cycle e ⊕ T [v, u] is a γ-

approximate solution to (1), as desired.

Since the low stretch spanning tree T stretches circulation

Δ∗ reasonably with probability at least 1
2 , we could boost

the probability by sampling Õ(1) trees T1, T2, . . . , Ts inde-

pendently at random and conclude that w.h.p. one of the

fundamental tree cycles gives an approximate solution to (1).

Unfortunately, after updating the flow f to f ′ along such

a fundamental tree cycle, we cannot reuse the set of trees
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T1, T2, . . . , Ts because the next solution to (1) has to be found

with respect to gradients g(f ′) and lengths �(f ′) depending

on f ′ (instead of g = g(f) and � = �(f)). But g(f ′) and

�(f ′) depend on the randomness used in trees T1, T2, . . . , Ts.

Thus, naively, we have to recompute all trees, spending again

Ω(m) time. But this leads to run-time Ω(m2) for our overall

algorithm which is far from our goal.
b) A Dynamic Approach.: Thus we consider the data

structure problem of maintaining an mo(1) approximate so-

lution to (1) over a sequence of at most m1+o(1) changes

to entries of g, �. To achieve an almost linear time algorithm

overall, we want our data structure to have an amortized mo(1)

update time. Motivated by the simple construction above, our

data structure will ultimately maintain a set of s = mo(1)

spanning trees T1, . . . , Ts of the graph G. Each cycle Δ that

is returned is represented by mo(1) off-tree edges and paths

connecting them on some Ti.

To obtain an efficient algorithm to maintain these trees Ti,

we turn to a recursive approach. In each level of our recursion,

we first reduce the number of vertices, and then the number of

edges in the graphs we recurse on. To reduce the number of

vertices, we produce a core graph on a subset of the original

vertex set, and we then compute a spanner of the core graph

which reduces the number of edges. Both of these objects

need to be maintained dynamically, and we ensure they are

very stable under changes in the graphs at shallower levels

in the recursion. In both cases, our notion of stability relies

on some subtle properties of the interaction between the data

structure and the hidden witness circulation.

We maintain a recursive hierarchy of graphs. At the top

level of our hierarchy, for the input graph G, we produce

B = O(log n) core graphs. To obtain each such core graph, for

each i ∈ [B], we sample a (random) forest Fi with Õ(m/k)
connected components for some size reduction parameter k.

The associated core graph is the graph G/Fi which denotes

G after contracting the vertices in the same components of

Fi. We can define a map that lifts circulations Δ̂ in the core

graph G/Fi, to circulations Δ in the graph G by routing

flow along the contracted paths in Fi. The lengths in the core

graph �̂ (again let L̂ = diag(�̂)) and are chosen to upper

bound the length of circulations when mapped back into G
such that ‖L̂Δ̂‖1 ≥ ‖LΔ‖1. Crucially, we must ensure these

new lengths �̂ do not stretch the witness circulation Δ∗ when

mapped into G/Fi by too much, so we can recover it from

G/Fi. To achieve this goal, we choose Fi to be a low stretch

forest, i.e. a forest with properties similar to those of a low

stretch tree. In Section II-C, we summarize the central aspects

of our core graph construction.

While each core graph G/Fi now has only Õ(m/k) ver-

tices, it still has m edges which is too large for our recursion.

To overcome this issue we build a spanner S(G,Fi) on

G/Fi to reduce the number of edges to Õ(m/k), which

guarantees that for every edge e = (u, v) that we remove from

G/Fi to obtain S(G,Fi), there is a u-to-v path in S(G,Fi)
of length mo(1). Ideally, we would now recurse on each

spanner S(G,Fi), again approximating it with a collection

ΠG/Fi→S(G,Fi)

Δ̂(f)∗

G/Fi S(G,Fi)

Δ̂(f)∗

S(G,Fi)
S(G,Fi)

e1

e2

e3

e ∈ EG/Fi
\ ES(G,Fi)

Fig. 2: Illustration of a dichotomy: either one of the edges

e ∈ EG/Fi
\ ES(G,Fi) has a spanner cycle consisting of e

combined with ΠG/Fi→S(G,Fi)(e) which is almost as good as

Δ̂(f)∗, or re-routing Δ̂(f)∗ into S(G,Fi) roughly preserves

its quality.

of smaller core graphs and spanners. However, we face an

obstacle: removing edges could destroy the witness circulation,

so that possibly no good circulation exists in any S(G,Fi).
To solve this problem, we compute an explicit embedding

ΠG/Fi→S(G,Fi) that maps each edge e = (u, v) ∈ G/Fi to a

short u-to-v path in S(G,Fi). We can then show the following

dichotomy: Let Δ̂(f)∗ denote the witness circulation when

mapped into the core graph G/Fi. Then, either one of the

edges e ∈ EG/Fi
\ ES(G,Fi) has a spanner cycle consisting

of e combined with ΠG/Fi→S(G,Fi)(e) which is almost as

good as Δ̂(f)∗, or re-routing Δ̂(f)∗ into S(G,Fi) roughly

preserves its quality. Figure 2 illustrates this dichotomy. Thus,

either we find a good cycle using the spanner, or we can

recursively find a solution on S(G,Fi) that almost matches

Δ̂(f)∗ in quality. To construct our dynamic spanner with its

strong stability guarantees under changes in the input graph,

we use a new approach that diverges from other recent works

on dynamic spanners; we give an outline of the key ideas in

Section II-G.

Our recursion uses d levels, where we choose the size

reduction factor k such that kd ≈ m and the bottom level

graphs have mo(1) edges. Note that since we build B trees on

G and recurse on the spanners of G/F1, G/F2, . . . , G/FB , our

recursive hierarchy has a branching factor of B = O(log n)
at each level of recursion. Thus, choosing d ≤ √

log n, we

get Bd = mo(1) leaf nodes in our recursive hierarchy. Now,

consider the forests Fi1 , Fi2 , . . . , Fid on the path from the

top of our recursive hierarchy to a leaf node. We can patch

these forests together to form a tree associated with the leaf

node. Each of these trees, we maintain as a link-cut tree data

structure. Using this data structure, whenever we find a good

cycle, we can route flow along it and detect edges where the

flow has changed significantly. The cycles are either given

by an off-tree edge or a collection of mo(1) off-tree edges
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coming from a spanner cycle. We call the entire construction

a branching tree chain, and in Section II-D, we elaborate on

the overall composition of the data structure.

What have we achieved using this hierarchical construction

compared to our simple, static algorithm? First, consider the

setting of an oblivious adversary, where the gradient and

length update sequences and the optimal circulation after

each update is fixed in advance. In this setting, we can

show that our spanner-of-core graph construction can survive

through m1−o(1)/ki updates at level i. Meanwhile, we can

rebuild these constructions in time m1+o(1)/ki−1, leading to

an amortized cost per update of kmo(1) ≤ mo(1) at each level.

This gives the first dynamic data structure for our undirected

min-ratio problem with mo(1) query time against an oblivious

adversary.

However, our real problem is harder: the witness circulation

in each round is Δ(f)∗ = f∗ − f and depends on the

updates we make to f , making our problem adaptive. Instead

of modelling our IPM as giving rise to a fully-dynamic

problem against an adaptive adversary, the promise that the

witness circulation can always be written as f∗ − f lets

us express the IPM with an adversary that is much more

restricted. Our data structure needs to ensure that the flow

f∗ − f is stretched by mo(1) on average w.r.t. the lengths

�. At a high level, we achieve this by forcing the forests

at every level to have stretch 1 on edges where fe changes

significantly and could affect the total stretch of our data

structure on f∗ − f . Section II-E describes the guarantees

we achieve using this strategy. However, the data structure at

this point is not yet guaranteed to succeed. Instead, we very

carefully characterize the failure condition. In particular, to

induce a failure, the adversary must create a situation where

the current value of ‖LΔ(f)∗‖1 is significantly less than the

value when the levels of our data structure were last rebuilt.

This means we can counteract from this failure by rebuilding

the data structure levels. Due to the high cost of rebuilding

the shallowest levels of the data structure, naïvely rebuilding

the entire data structure is much too expensive, and we need

a more sophisticated strategy. We describe this strategy in

Section II-F, where we design a game that expresses the

conflict between our data structure and the adversary, and we

show how to win this game without paying too much runtime

for rebuilds.

C. Building Core Graphs

In this section, we describe our core graph construction

(Definition 6.7), which maps our dynamic undirected min-

ratio cycle problem on a graph G with at most m edges and

vertices into a problem of the same type on a graph with only

Õ(m/k) vertices and m edges, and handles Õ(m/k) updates

to the edges before we need to rebuild it. Our construction is

based on constructing low-stretch decompositions using forests

and portal routing (Lemma 6.5). We first describe how our

portal routing uses a given forest F to construct a core graph

G/F . We then discuss how to use a collection of (random)

forests F1, . . . , FB to produce a low-stretch decomposition

of G, which will ensure that one of the core graphs G/Fi

preserves the witness circulation well. Portal routings played

a key role in the ultrasparsifiers of [45] and has been further

developed in many works since.

a) Forest Routings and Stretches.: To understand how to

define the stretch of an edge e with respect to a forest F , it is

useful to define how to route an edge e in F . Given a spanning

forest F , every path and cycle in G can be mapped to G/F
naturally (where we allow G/F to contain self-loops). On the

other hand if every connected component in F is rooted, where

rootFu denotes the root corresponding to a vertex u ∈ V , we

can map every path and cycle in G/F back to G as follows.

Let P = e1, . . . , ek be any (not necessarily simple) path in

G/F where the preimage of every edge ei is eGi = (uG
i , v

G
i ) ∈

G. The preimage of P , denoted PG, is defined as the following

concatenation of paths:

PG def
=

k⊕
i=1

F [rootFuG
i
, uG

i ]⊕ eGi ⊕ F [vGi , root
F
vG
i
],

where we use A⊕B to denote the concatenation of paths A
and B, and F [a, b] to denote the unique ab-path in the forest

F. When P is a circuit (i.e. a not necessarily simple cycle), PG

is a circuit in G as well. One can extend these maps linearly

to all flow vectors and denote the resulting operators as ΠF :
R

E(G) → R
E(G/F ) and Π−1

F : RE(G/F ) → R
E(G). Since we

let G/F have self-loops, there is a bijection between edges of

G and G/F and thus ΠF acts like the identity function.

To make our core graph construction dynamic, the key

operation we need to support is the dynamic addition of more

root nodes, which results in forest edges being deleted to

maintain the invariant each connected component has a root

node. Whenever an edge is changing in G, we ensure that

G/F approximates the changed edge well by forcing both its

endpoints to become root notes, which in turn makes the portal

routing of the new edge trivial and this guarantees its stretch

is 1. An example of this is shown in Figure 3.

For any edge eG = (uG, vG) in G with image e in G/F ,

we set �̂Fe , the edge length of e in G/F , to be an upper
bound on the length of the forest routing of e, i.e. the path

F [rootFuG , u
G] ⊕ eG ⊕ F [vG, rootFvG ]. Meanwhile, we define

s̃tre
def
= �̂Fe /�e, as an overestimate on the stretch of e w.r.t. the

forest routing. A priori, it is unclear how to provide a single

upper bound on the stretch of every edge, as the root nodes of

the endpoints are changing over time. Providing such a bound

for every edge is important for us as the lengths in G/F could

otherwise be changing too often when the forest changes. We

guarantee these bounds by scheme that makes auxiliary edge

deletions in the forest in response to external updates, with

these additional roots chosen carefully to ensure the length

upper bounds.

Now, for any flow f in G/F , its length in G/F is at least

the length of its pre-image in G, i.e.
∥∥LΠ−1

F f
∥∥
1
≤

∥∥∥L̂Ff
∥∥∥
1
.

Let Δ∗ be the optimal solution to (1). We will show later

how to build F such that
∥∥∥L̂FΔ∗

∥∥∥
1
≤ γ ‖LΔ∗‖1 holds for
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Fig. 3: Illustration of the core graph G/F changing as an edge

is deleted in G (and in F ).

some γ = mo(1), solving (1) on G/F with edge length �̂ and

properly defined gradient ĝ on G/F yields an 1
γ -approximate

solution for G. The gradient ĝ is defined so that the total

gradient of any circulation Δ on G/F and its preimage

Π−1
F Δ in G is the same, i.e. ĝ�Δ = g�Π−1

F Δ. The idea

of incorporating gradients into portal routing was introduced

in [34]; our version of this construction is somewhat different

to allow us to make it dynamic efficiently.

b) Collections of Low Stretch Decompositions (LSD).:
The first component of the data structure is constructing and

maintaining forests of F that form a Low Stretch Decompo-
sition (LSD) of G. Variations of which (such as j-trees) have

been used to construct several recursive graph precondition-

ers [39, 43, 33, 15] and dynamic algorithms [14]. Informally,

a k-LSD is a rooted forest F ⊆ G that decomposes G into

O(m/k) vertex disjoint components. Given some positive edge

weights v ∈ R
E
>0 and reduction factor k > 0, we compute a

k-LSD F and length upper bounds �̂F of G/F that satisfy

two properties:

1) s̃tr
F

e = �̂Fe /�eG = Õ(k) for any edge eG ∈ G with

image e in G/F , and

2) The weighted average of s̃tr
F

e w.r.t. v is only Õ(1), i.e.∑
eG∈G veG · s̃trFe ≤ Õ(1) · ‖v‖1 .

Item 1 guarantees that the solution to (1) for G/F yields a

Õ(k)-approximate one for G. However, this guarantee is not

sufficient for our data structure, as our B-branching tree chain

has d ≈ logk m levels of recursion and the quality of the solu-

tion from the deepest level would only be Õ(k)d ≈ m1+o(1)-

approximate.

Instead, like [39, 43, 33] we compute k different edge

weights v1, . . . ,vk via multiplicative weight updates (Lemma

6.6) so that the corresponding LSDs F1, . . . , Fk have

Õ(1) average stretch on every edge in G:
∑k

j=1 s̃tr
Fj

e =

Õ(k), for all eG ∈ G with image e in G/F.
By Markov’s inequality, for any fixed flow f in G,∥∥∥L̂Fjf

∥∥∥
1
≤ Õ(1) ‖Lf‖1 holds for at least half the LSDs

corresponding to F1, . . . , Fk. Taking Õ(1) samples uni-

formly from F1, . . . , Fk, say F1, . . . , FB for B = Õ(1) we

get that with high probability minj∈[B]

∥∥∥s̃trFj ◦ LΔ∗
∥∥∥
1
≤

Õ(1) ‖LΔ∗‖1 . That is, it suffices to solve (1) on

G/F1, . . . , G/FB to find an Õ(1)-approximate solution for

G.

D. Maintaining a Branching Tree Chain

The goal of this section is to elaborate on how we combine

core graphs and spanners to produce our overall data structure

for our undirected min-ratio cycle problem, the B-branching

tree chain. We also describe how the data structure is main-

tained under dynamic updates, which is more formally shown

in the full version. A central reason our hierarchical data

structure works is that the components, both core graphs and

spanners, are designed to remain very stable under dynamic

changes to the input graphs they approximate. In the literature

on dynamic graph algorithms, this is referred to as having low
recourse.

1) Sample and maintain B = O(log n) k-LSDs

F1, F2, . . . , FB , and their associated core graphs G/Fi.

Over the course of O(m/k) updates at the top level,

the forests Fi are decremental, i.e. only undergo edge

deletions (from root insertions), and will have Õ(m/k)
connected components.

2) Maintain spanners S(G,Fi) of the core graphs G/Fi,

and embeddings ΠE(G/Fi)→S(G,Fi), say with length

increase γ� = mo(1).

3) Recursively process the graphs S(G,Fi), i.e. maintains

LSDs and core graphs on those, and spanners on the

contracted graphs, etc. Go for d total levels, for kd = m.

4) Whenever a level i accumulates m/ki total updates,

hence doubling the number of edges in the graphs at

that level, we rebuild levels i, i+ 1, . . . , d.

Recall that on average, the LSDs stretch lengths by Õ(1),
and the spanners S(G,Fi) stretch lengths by γ�. Hence the

overall data structure stretches lengths by Õ(γ�)
d = mo(1)

(for appropriately chosen d).

We now discuss details on how to update the forests G/Fi

and spanners S(G,Fi). Intuitively, every time an edge e =
(u, v) is changed in G, we will delete Õ(1) additional edges

from Fi. This ensures that no edge’s total stretch/routing-

length increases significantly due to the deletion of e (Lemma

6.5). As the forest Fi undergoes edge deletions, the graph

G/Fi undergoes vertex splits, where a vertex has a subset

of its edges moved to a newly inserted vertex. Thus, a key

component of our data structure is to maintain spanners and
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embeddings of graphs undergoing vertex splits (as well as

edge insertions/deletions). It is important that the amortized

recourse (number of changes) to the spanner S(G,Fi) is mo(1)

independent of k, even though the average degree of G/Fi

is Ω(k), and hence on average Ω(k) edges will move per

vertex split in G/Fi. We discuss the more precise guarantees

in Section II-G.

Overall, let every level have recourse γr = mo(1) (indepen-

dent of k) per tree. Then each update at the top level induces

O(Bγr)
d (as each tree branches into B trees) updates in the

data structure overall. Intuitively, for the proper choice of

d = ω(1), both the total recourse O(Bγr)
d and approximation

factor Õ(γ�)
d are mo(1) as desired.

E. Going Beyond Oblivious Adversaries by using IPM Guar-
antees

The precise data structure in the previous section only works

for oblivious adversaries, because we used that if we sampled

B = O(log n) LSDs, then whp. there is a tree whose average

stretch is Õ(1) with respect to a fixed flow f . However,

since we are updating the flow along the circulations returned

by our data structure, we influence future updates, so the

optimal circulations our data structure needs to preserve are

not independent of the randomness used to generate the LSDs.

To overcome this issue we leverage the key fact that the flow

f∗ − f is a good witness for the min-ratio cycle problem at

each iteration.

Lemma 4.7 states that for any flow f ,

g(f)�Δ(f)/(100m + ‖L(f)Δ(f)‖1) ≤ −Ω̃(1) holds

where Δ(f) = f∗ − f . Then, the best solution to (1) among

the LSDs G/F1, . . . , G/FB maintains an Õ(1)-approximation

of the quality of the witness Δ(f) = f∗ − f as long as

min
j∈[B]

∥∥∥L̂FjΔ(f)
∥∥∥
1
≤ Õ(1) ‖L(f)Δ(f)‖1 + Õ(m). (4)

In this case, let Δ̂ be the best solution obtained from

G/F1, . . . , G/FB . We have

g(f)�Δ̂∥∥∥L(f)Δ̂∥∥∥
1

≤ g(f)�Δ(f)

Õ(1) ‖L(f)Δ(f)‖1 + Õ(m)
= −Ω̃(1).

The additive Õ(m) term is there for a technical reason

discussed later.

To formalize this intuition, we define the width w(f) of

Δ(f) as w(f) = 100 · 1 + |L(f)Δ(f)| . The name comes

from the fact that w(f)e is always at least |�(f)e(f∗e − fe)|
for any edge e. We show that the width is also slowly

changing (Lemma 9.2) across IPM iterations, in that if the

width changed by a lot, then the residual capacity of e must

have changed significantly. This gives our data structure a

way to predict which edges’ contribution to the length of the

witness flow f∗ − f could have significantly increased.

Observe that for any forest Fj in the LSD of G, we have∥∥∥L̂FjΔ(f)
∥∥∥
1
≤

∥∥∥s̃trFj ◦w(f)
∥∥∥
1
. Thus, we can strengthen

(4) and show that the IPM potential can be decreased by

m−o(1) if minj∈[B]

∥∥∥s̃trFj ◦w(f)
∥∥∥
1
≤ Õ(1) ‖w(f)‖1 . It

also holds with w.h.p if the collection of LSDs are built after

knowing f . However, this does not necessarily hold after

augmenting with Δ, an approximate solution to (1).

Due to stability of w(f), we have w(f + Δ)e ≈ w(f)e
for every edge e whose length does not change a lot. For other

edges, we update their edge length and force the stretch to be 1,

i.e. s̃tr
Fj

e = 1 via the dynamic LSD maintenance, by shortcut-

ting the routing of the edge e at its endpoints. This gives that

for any j ∈ [B], the following holds:
∥∥∥s̃trFj ◦w(f +Δ)

∥∥∥
1
�∥∥∥s̃trFj ◦w(f)

∥∥∥
1

+ ‖w(f +Δ)‖1 . Using the fact that

minj∈[B]

∥∥∥s̃trFj ◦w(f)
∥∥∥
1
≤ Õ(1) ‖w(f)‖1, we have the fol-

lowing: minj∈[B]

∥∥∥s̃trFj ◦w(f +Δ)
∥∥∥
1
� Õ(1) ‖w(f)‖1 +

‖w(f +Δ)‖1 .
Thus, solving (1) on the updated G/F1, . . . , G/FB yields

a good enough solution for reducing IPM potential as long as

the width of w(f + Δ) has not increased significantly, i.e.

‖w(f +Δ)‖1 ≤ Õ(1) ‖w(f)‖1 .
If the solution on the updated graphs G/F1, . . . , G/FB does

not have a good enough quality, we know by the above dis-

cussion that ‖w(f +Δ)‖1 ≥ 100 ‖w(f)‖1 must hold. Then,

we re-compute the collection of LSDs of G and solve (1) on

the new collection of G/F1, . . . , G/FB again. Because each

recomputation reduces the �1 norm of the width by a constant

factor, and all the widths are bounded by exp(logO(1) m)
(as discussed in Section II-A), there can be at most Õ(1)
such recomputations. At the top level, this only increases our

runtime by Õ(1) factors.

The real situation is much more complicated since we

recursively maintain the solutions on the spanners of each

G/F1, . . . , G/FB . Hence, it is possible that lower levels in

the data structure are the “reason” that the quality of the

solution is poor. More formally, let T be the total number

of IPM iterations. We use t ∈ [T ] to index each iteration

and use superscript x(t) to denote the state of any variable x
after t-th iteration. For example, f (t) is the flow computed so

far after t IPM iterations and we define w(t) def
= w(f (t)) to

be the width w.r.t. f (t). Recall that every graph maintained

in the dynamic B-Branching Tree Chain re-computes its

collection of LSDs after certain amount of updates. When

some graph at level i re-computes, we enforce every graph

at the same level to re-compute as well. Since there’s only

mo(1) such graphs at each level, this scheme results in a

mo(1) overhead on the update time which is tolerable. For

every level i = 0, . . . , d, we define prev
(t)
i to be the most

recent iteration at or before t that a re-computation of LSDs

occurs at level i. For graphs at level d which contain only

mo(1) vertices, we enforce a rebuild everytime and always

have prev
(t)
d = t. We show in Lemma 7.9 that the cycle

output by the data structure in the t-th IPM iteration has length

at most mo(1)
∑d

i=0 ‖w(prev
(t)
i )‖1. This inequality is a natural

generalization of the Õ(1) (‖w(f)‖1 + ‖w(f +Δ)‖1)-bound

when taking recursive structure into account.

At this point, we want to emphasize that the fact that we
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can prove this guarantee depends on certain “monotonicity”

properties of both our core and spanner graph constructions. In

the core graph construction, it is essential that we can provide

a fixed length upper bound for most edges. In the spanner

construction, we crucially use that the set of edges routing into

any fixed edge in the spanner is decremental for most spanner

edges. This allows us to produce an initial upper bound on the

width for edges in the spanner and continue using this bound

as long as the spanner edge routes a decremental set.

The cycle output by the data structure yields enough de-

crease in the IPM potential if its 1-norm is small enough. Oth-

erwise, the 1-norm of the output cycle is large and we know

that
∑d

i=0 ‖w(prev
(t)
i )‖1 is much more than mo(1)‖w(t)‖1. In

this way, the data structure can fail because some lower level

i has ‖w(prev
(t)
i )‖1 � ‖w(t)‖1. A possible fix is to rebuild

the entire data structure which sets prev
(t)
i = t at any level i.

However, this costs linear time per rebuild, and this may need

to happen almost every iteration because there are multiple

levels. In the next section we show how to leverage that lower

levels have cheaper rebuilding times (levels i, i+1, . . . , d can

be rebuilt in time approximately m1+o(1)/ki) to design a more

efficient rebuilding schedule.

F. The Rebuilding Game

Our goal in Section 8 is to develop a strategy that finds

approximate min-ratio cycles without spending too much time

rebuilding our data structure when it fails to do so. In the

previous overview section, we carefully characterized the

conditions under which our data structure can fail against

adversarial updates, given the promise that f∗ − f remains

a good witness circulation. In this section, we set up a game

which abstracts the properties of the data structure and the

adversary. The player in this game wants to ensure our data

structure works correctly by rebuilding levels of it when it

fails. We show that the player can win without spending too

much time on rebuilding.

Recall w(t) def
= w(f (t)) is a hidden vector that we use to

upper bound the �1 cost of the hidden witness circulation

Δ(f). We will refer to ‖w(t)‖1 as the total width at time

t. We argued in the previous Section II-E that our branching-

tree data structure can find a good cycle whenever the total

width ‖w(t)‖1 is not too small compared to the total widths

at the times when the levels 0, 1, . . . , d of the data structure

were last initialized or rebuilt. We let prev
(t)
i denote the stage

when level i was last rebuilt, and refer to ‖w(prev
(t)
i )‖1 as the

total width at level i. As we saw in the previous section, the

only way our cycle-finding data structure can fail to produce a

good enough cycle is if
∑d

i=0 ‖w(prev
(t)
i )‖1 � mo(1)‖w(t)‖1.

We can estimate the quality of the cycles we find, and if we fail

to find a good cycle we can conclude this undesired condition

holds. However, even if the condition holds, we might still find

a good cycle “by accident”, so finding a cycle does not prove

that the data structure currently estimates the total width well.

Because the total widths ‖w(t)‖1 are hidden from us, we do

not know which level(s) cause the problem when we fail to

find a cycle.

We turn this into a game that abstracts the data structure

and IPM and supposes that total width ‖w(t)‖1 is an arbitrary

positive number chosen by an adversary, while a player (our

protagonist) manages the data structure by rebuilding levels of

the data structure to set prev
(t)
i = t when necessary. Now, be-

cause of well-behaved numerical properties of our IPM, we are

guaranteed that log(‖w(t)‖1) ∈ [−poly log(m), poly log(m)],
and we impose this condition on the total width in our

game as well. By developing a strategy that works against

any adversary choosing such total widths, we ensure our

data structure will work with our IPM as a special case. In

Definition 8.1 we formally define our rebuilding game.

In our branching tree data structure, level i can be rebuilt at a

cost of m1+o(1)/ki and it can last through roughly m1−o(1)/ki

cycle updates before we have to rebuild it because the core

graph has grown too large (we call this a “winning rebuild”).

But, if we are unable to find a good cycle, we are forced to

rebuild sooner (we call this a “losing rebuild”). Which level

should we rebuild if we are unable to find a good cycle? The

answer is not immediately clear, because any level could have

too large total width. However, by tuning our parameters such

that the mo(1) factor in our condition
∑d

i=0 ‖w(prev
(t)
i )‖1 �

mo(1)‖w(t)‖1 is larger than 2(d+1), we can deduce that if a

failure occurs, then maxdi=0 ‖w(prev
(t)
i )‖1 > 2‖w(t)‖1. Thus,

if the total width at level i is too large, then a losing rebuild

at level i (and hence updating w(prev
(t+1)
i ) to w(t)) will reduce

its total width by at least a factor 2.

This means that for any level i, if we do a losing rebuild of

level i poly log(m) times before a winning rebuild of level i,
we can conclude that the too-large total width is not at level

i. This leads to the following strategy: Starting at the lowest

level, do a losing rebuild of each level i up to poly log(m)
times after each winning rebuild, and then move to rebuilding

level i−1 in case of more failures. We state this strategy more

formally in Algorithm 6. This leads to a cost of O(mo(1)(m+
T )) to process T cycle updates in the rebuilding game, as we

prove in Lemma 8.3.

Finally, at the end of Section 8, we combine the data

structure designed in the previous sections with our strategy

for the rebuilding game to create a data structure that handles

successfully finds update cycles in our hidden stable-flow

chasing setting in amortized mo(1) cost per cycle update,

which is encapsulated in Theorem 6.2.

G. Dynamic Embeddings into Spanners of Decremental
Graphs

It remains to describe the algorithm to maintain a spanner

S(G,Fi) on the graphs G/Fi. Let us recall the requirements

on the spanner given in Section 2.4:

1) Sparsity: at all times the spanner should be sparse,

i.e. consist of at most Õ(|V (S(G,Fi))|) edges. This is

crucial for reducing the problem size and as we ensure

that Fi has only Õ(m/k) connected components, we
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have that S(G,Fi) consists of Õ(m/k) edges, reducing

the problem size by a factor of almost k.

2) Low Recourse: we further require that for each update

to G/Fi, there are at most γr = mo(1) changes to

S(G,Fi) on average. This is crucial as otherwise the

updates to S(G,Fi) could trigger even more updates in

the B-Branching Tree Chain (see Section II-D).

3) Short Paths with Embedding: we maintain the spannner

such that for every edge e in G, its endpoints in S(G,Fi)
are at distance at most γl ·�(e) and even maintain witness

paths ΠG→S(G,Fi)(e) between the endpoints consisting

of γl edges. This is crucial as we need an explicit way to

check whether e⊕ΠG/Fi→S(G,Fi)(e) is a good solution

to the min-ratio cycle problem.

4) Small Set of New Edges That We Embed Into: we ensure

that after each update, we return a set D consisting of

mo(1) edges such that each edge e in G/Fi is embedded

into a path ΠG/Fi→S(G,Fi)(e) consisting of the edges on

the path of the old embedding path ΠG/Fi→S(G,Fi)(e)
of e and edges in D.

5) Efficient Update Time: we show how to maintain

S(G,Fi) with amortized update time kmo(1).

We note that additionally, we need our spanner to work

against adaptive adversaries since the update sequence is

influenced by the output spanner. Although spanners have been

studied extensively in the dynamic setting, there is currently

only a single result that works against adaptive adversaries.

While this spanner given in [7] appears promising, it does not

ensure our desired low recourse property for vertex splits and

this seems inherent to the algorithm (additionally, it also does

not maintain an embedding ΠG/Fi→S(G,Fi)).

While we use similar elements as in [7] to obtain spanners

statically, we arrive at a drastically different algorithm that

can deal well with vertex splits. We focus first on obtaining

an algorithm with low recourse and discuss afterwards how to

implement it efficiently.

a) A Static Algorithm.: We first consider the static ver-

sion of the problem on a graph G/Fi, i.e. to give a static

algorithm that computes a spanner with short path embeddings.

By using a simple bucketing scheme over edge lengths, we can

assume wlog that all lengths have unit-weight. We partition

the graph into edge-disjoint expander graphs H1, H2, . . . , Hk

where each Hi has roughly uniform degree, i.e. its average

degree is at most a polylogarithmic factor larger than its

minimum degree Δmin(Hi), and each vertex v in G is in

at most Õ(1) graphs Hi. Here, we define an expander to be

a graph Hi that has no cut (X,X) where X = V (Hi) \ X
with |EHi

(X,X)| < Ω
(

1
log3(m)

)
min{volHi

(X), volHi
(X)}

where EHi
(X,X) is the set of edges in Hi with endpoints in

X and S and volHi
(Y ) is the sum of degrees over the vertices

y ∈ Y .

Next, consider any such expander Hi. It is well-known that

sampling edges in expanders with probability pi ∼ log4(m)
Δmin(Hi)

gives a cut-sparsifier Si of Hi, i.e. a graph such that for each

cut (X,X), we have |EHi(X,X)| ≈ |ESi(X,X)|/pi (see

[45, 7]). This ensures that also Si is an expander. It is well-

known that any two vertices in the same expander are at small

distance, i.e. there is a path of length at most Õ(1) between

them. We use a dynamic shortest paths data structure [17] for

expander graphs on Si to find such short paths between the

endpoints of each edge e in G/Fi and take them to be the

embedding paths (here we lose an mo(1) factor in the length

of the paths due to the data structure).

It remains to observe that each spanner Si has a nearly

linear number of edges because each graph Hi has average

degree close to its minimum degree, and edges are sampled

independently with probability pi. Thus, letting S(G,Fi) be

the union of all graphs Si and using that each vertex is in at

most Õ(1) graphs Hi, we conclude the desired sparsity bound

on S(G,Fi). We take ΠG/Fi→S(G,Fi) to be the union of the

embeddings constructed above and observe that the length of

embedding paths is at most mo(1) as desired.

b) The Dynamic Algorithm.: To make the above algo-

rithm dynamic, let us assume that there is a spanner S(G,Fi)
with corresponding embedding ΠG/Fi→S(G,Fi) and after its

computation, a batch of updates U is applied to G/Fi (consist-

ing of edge insertions/deletions and vertex splits). Clearly, after

forwarding the updates U to the current spanner S(G,Fi),
by deleting edges that were deleted from G/Fi and splitting

vertices, we have that for some edges e ∈ G/Fi, the updated

embedding ΠG/Fi→S(G,Fi)(e) might no longer be a proper

path.

We therefore need to add new edges to S(G,Fi) and fix the

embedding. We start by defining S to be the vertices that are

touched by an update in U , meaning for the deletion/insertion

of edge (u, v) we add u and v to S and for a vertex split of

v into v and v′, we add v and v′ to S. Note that |S| ≤ 2|U |
and that all ΠG/Fi→S(G,Fi)(e) that are no longer proper paths

intersect with S.

We now fix the embedding by constructing a new static

spanner on a special graph J over the vertices of S. More pre-

cisely, for each e = (a, b) in G/Fi where ΠG/Fi→S(G,Fi)(e)

intersects with S, we find the vertices â, b̂ in S that are closest

to a and b on ΠG/Fi→S(G,Fi)(e), and then insert an edge

ê = (â, b̂) into the graph J . We say that e is the pre-image of

ê (and ê the image of e in J).

Finally, we run the static algorithm from the last paragraph

to find a sparsifier J̃ of J and let ΠJ→J̃ be the corresponding

embedding. Then, for each edge ê that was sampled into J̃ ,

we add its pre-image e to the current sparsifier S(G,Fi).

To fix the embedding, for each ê = (â, b̂) ∈ J̃ , we observe

that since e = (a, b) was added to S(G,Fi), we can simply

embed the edge into itself. We define for each such edge ê the

path

Pê =ΠG/Fi→S(G,Fi)(e)[â, a]

⊕ (a, b)⊕ΠG/Fi→S(G,Fi)(e)[b, b̂]

which is a path between the endpoints of ê. This path is in the

current graph S(G,Fi) since we added (a, b) to the spanner
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and by definition of â, we have that ΠG/Fi→S(G,Fi)(e)[â, a]

is still a proper path, the same goes for b̂.
But this means we can embed each edge f = (c, d) even

if its image f̂ = (ĉ, d̂) �∈ J̃ , since we can simply set it to the

path

ΠG/Fi→S(G,Fi)(f)[c, ĉ]⊕

⎛
⎜⎝ ⊕

ê∈ΠJ→J̃ ( f̂ )

Pê

⎞
⎟⎠

⊕ΠG/Fi→S(G,Fi)(f)[d̂, d].

By the guarantees from the previous paragraph, we have that

the sparsifier J̃ has average degree Õ(1), and we only added

the pre-images of edges in J̃ to S(G,Fi). Since J (and J̃)

are taken over the vertex set S, we can conclude that we

only cause Õ(|S|) = Õ(|U |) recourse to the spanner. Further,

since each new path ΠG→S(G,Fi)(e) for each e now consists

of Õ(1) path segments from the old embedding ΠG→S(G,Fi)

(plus Õ(1) edges), the maximum length of the the embedding

paths has only increased by a factor of Õ(1) overall. Finally,

we take D to be the set of edges on Pê for all ê ∈ J̃ . Clearly,

each edge f embeds into a subpath of its previous embedding

path (to reach the first and last vertex in S) and into some

paths Pê all of which now have edges in D. To bound the

size of D, we observe that also each path Pê is of short

length since it is obtained from combining two old embedding

paths (which were short) and a single edge. Thus, we have

|D| = |⋃ê∈J̃ Pê | = Õ(|J̃ |) = Õ(|U |) which again is only

Õ(1) when amortizing over the number of updates. Figure 4

gives an example of this spanner maintenance procedure in

action.

By using standard batching techniques, we can also deal

with sequences of update batches U (1), U (2), . . . to the spanner

and ensure that we cause only mo(1) amortized recourse per

update/ size of D to the spanner.

c) An Efficient Implementation.: While the algorithm

above achieves low recourse, so far, we have not reasoned

about the run-time. To do so, we enforce low vertex-congestion
of ΠG/Fi→S(G,Fi) defined to be the maximum number of paths

ΠG/Fi→S(G,Fi)(e) that any vertex v ∈ V (G/Fi) occurs on.

More precisely, we implement the algorithm above such that

the vertex congestion of ΠG/Fi→S(G,Fi)(e) remains of order

γcΔmax(G/Fi) for some γc = mo(1) over the entire course

of the algorithm. We note that by a standard transformation,

we can assume wlog that Δmax(G/Fi) = Õ(k).
Crucially, using our bound on the vertex congestion, we can

argue that the graph J has maximum degree γcΔmax(G/Fi).
Since we can implement the static spanner algorithm in time

near-linear in the number of edges, this implies that the

entire algorithm to compute a sparsifier J̃ only takes time

∼ |U |γcΔmax(G/Fi) ≈ |U |mo(1)k, and thus in amortized

time kmo(1) per update.

It remains to obtain this vertex congestion bound. Let us

first discuss the static algorithm. Previously, we exploited that

each sparsifier Si is expander since it is a cut-sparsifier of Hi

S

J J̃

G/Fi S(G,Fi)

G/Fi S(G,Fi)

ΠG/Fi→S(G,Fi)

J

J̃

J J̃

ΠJ→J̃

G/Fi

S(G,Fi)

ΠG/Fi→S(G,Fi)

e1

e2

e3

e1

e2

e3

e1

e2

e3

ê3

ê2

ê1 ê3

ê2

ê1

Fig. 4: Illustration of the procedure for maintaining S(G,Fi)
under edge deletions.

in a rather crude way. But it is not hard to see via the multi-

commodity max-flow min-cut theorem [36] that this property

can be used to argue the existence of an embedding ΠHi→Si

that uses each edge in Si on at most Õ(1/pi) embedding paths

and therefore each path has average length Õ(1). In fact, using

the shortest paths data structures on expanders [17], we can

find such an embedding and turn the average length guarantee

into a worst-case guarantee.

This ensures that each edge has congestion at most

Õ(1/pi) = Õ(Δmax(G/Fi)) and because S(G,Fi) has aver-

age degree Õ(1), this also bounds the vertex congestion. We

need to refine this argument carefully for the dynamic version

but can then argue that due to the batching we only increase

the vertex congestion slightly. We refer the reader to Section

5 for the full implementation and analysis.
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