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Abstract—In this article, we present the first deterministic
directed Laplacian L systems solver that runs in time almost-
linear in the number of non-zero entries of L. Previous reductions
imply the first deterministic almost-linear time algorithms for
computing various fundamental quantities on directed graphs in-
cluding stationary distributions, personalized PageRank, hitting
times and escape probabilities.

We obtain these results by introducing partial symmetrization,
a new technique that makes the Laplacian of an Eulerian
directed graph “less directed” in a useful sense, which may be
of independent interest. The usefulness of this technique comes
from two key observations: Firstly, the partially symmetrized
Laplacian preconditions the original Eulerian Laplacian well in
Richardson iteration, enabling us to construct a solver for the
original matrix from a solver for the partially symmetrized one.
Secondly, the undirected structure in the partially symmetrized
Laplacian makes it possible to sparsify the matrix very crudely, i.e.
with large spectral error, and still show that Richardson iterations
convergence when using the sparsified matrix as a preconditioner.
This allows us to develop deterministic sparsification tools for the
partially symmetrized Laplacian.

Together with previous reductions from directed Laplacians
to Eulerian Laplacians, our technique results in the first deter-
ministic almost-linear time algorithm for solving linear equations
in directed Laplacians. To emphasize the generality of our new
technique, we show that two prominent existing (randomized)
frameworks for solving linear equations in Eulerian Laplacians
can be derandomized in this way: the squaring-based framework
of [1] and the sparsified Cholesky-based framework of [2].

Index Terms—Algorithms, Algorithm design and analysis,
Derandomization, Directed Laplacians, Random Walks

I. INTRODUCTION

The development of spectral graph sparsification and nearly-

linear time solvers for Laplacian linear equations initiated

by the seminal article of Spielman and Teng [3], that has

since been split into three parts [4]–[6], is foundational for

algorithmic spectral graph theory and one of the success

stories in the design of graph algorithms. Until recently,

spectral techniques were mainly used for analyzing undi-

rected graphs. While many of the techniques developed in

algorithmic spectral graph theory heavily use that Laplacians

of undirected graphs are symmetric, positive semi-definite

matrices, Cohen-Kelner-Peebles-Peng-Sidford-Vladu [7] first

The research leading to these results has received funding from grant no.
200021 204787 of the Swiss National Science Foundation.

demonstrated that the structure of directed Laplacians can be

used to accelerate linear equation solvers. Together with Rao

they later introduced the first notion of spectral approximation

for directed Laplacians [1], which enabled them to develop

sparsification tools in the directed setting. These tools were

used to build the first almost-linear time directed Laplacian

solver, operating in the framework of an undirected Laplacian

solver by Peng and Spielman [8]. The runtime was improved to

nearly-linear time by Cohen-Kelner-Kyng-Peebles-Peng-Rao-

Sidford [9] and further improved by Peng and Song [2] very

recently. Both operate within sparsified-Cholesky frameworks

for solving undirected Laplacian linear equations: [9] uses

the framework of Kyng and Sachdeva [10] and [2] uses the

framework of Kyng-Lee-Peng-Sachdeva-Spielman [11].

All previous fast algorithms for solving directed Lapla-

cian linear equations rely on sampling for globally spar-

sifying directed graphs while retaining a spectral (1 ± ε)-
approximation guarantee for some ε < 1, according to the

notion of approximation by [1]1. This suggests two main

approaches to derandomizing these solvers: (1) developing a

fast deterministic (1 ± ε)-approximate spectral sparsification

routine or (2) introducing cruder forms of approximation

and adapting the algorithms to cope with weaker guarantees.

However, even for undirected graphs, no deterministic almost-

linear time algorithms that achieve (1±ε)-approximate spectral

sparsification are known, and this is a major obstacle to

approach (1). We circumvent this issue by instead taking the

route (2): we develop a new way of measuring approximation

via the suitability as a preconditoner in Richardson, which

allows cruder guarantees. We achieve this by introducing a

“robustification” step before sparsification, which we call β-

partial symmetrization. Partial symmetrization counteracts the

fragility of directed approximations and is at the core of our

new crude deterministic sparsification procedure for Eulerian

Laplacians. It lets us derandomize the frameworks of [1] and

[2] with an almost-linear runtime.

1When we refer to (1 ± ε)-approximations for Eulerian Laplacians in the
introduction and overview we mean ε-approximations as in Definition III.1.
We use this naming for convenience when comparing to undirected approxi-
mations.
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A. Prior Work

a) Undirected Laplacian Solvers: The first nearly-linear

time Laplacian solver [4]–[6] sparked the development of

a field producing a whole host of distinct algorithms for

solving Laplacian linear equations [8], [10]–[16]. Of these, our

algorithm is most similar to [8] and its directed counterpart

[1], which works by repeatedly squaring the adjacency matrix.

We also derandomize an alternative Cholesky-factorization

based framework, which is motivated by [11] in the undirected

setting and was recently translated to the directed setting by

[2].

b) Spectral Sparsification: A crucial building block for

spectral graph algorithms, including linear equation solvers, is

the ability to sparsify undirected graphs while preserving their

spectral properties. This is a stronger notion of sparsification

than cut-sparsifiers, which only preserve the approximate size

of cuts. Such spectral sparsifiers were first introduced in

[5], and later strengthened and simplified by Spielman and

Srivastava [17]. It is known that for every n-vertex graph

there exists a spectral sparsifier with O(n)-edges, and such

sparsifiers can be constructed deterministically, as shown by

Batson, Spielman, and Srivastava [18]. However, no deter-

ministic almost-linear time algorithms are known for (1± ε)-
spectral sparsification. Recently, Chuzhoy-Gao-Li-Nanongkai-

Peng-Saranurak [19] presented an almost-linear time algorithm

achieving no(1)-spectral sparsifiers for undirected graphs via

deterministic expander decompositions. Our algorithm relies

on both their sparsification and their expander decomposition

results.

c) Directed Laplacian Solvers: Before [1], [7] it was

unclear that directed Laplacians, which are a natural gen-

eralization of undirected Laplacians to directed graphs, also

exhibit properties that allow for useful notions of sparsification

and/or accelerated solving of linear equations. The reduction to

strongly connected Eulerian Laplacians recovered some of the

spectral properties of undirected Laplacians, and allowed for

the development of a useful notion of sparsification. Current

fast algorithms for solving Eulerian Laplacian linear equations

either follow a squaring [1] or a sparsified-Cholesky approach

[2], [9]. Both rely on spectral sparsification techniques devel-

oped in [1].

d) Low Space Algorithms: Recently, the first deter-

ministic Õ(logN)-space solver for Eulerian Laplacians was

introduced by Ahmadinejad-Kelner-Murtagh-Peebles-Sidford-

Vadhan [20]. They show that the Rozeman and Vadhan [21]

deterministic squaring conserves approximation under squar-

ing for a new, stronger measure of approximation. The directed

to Eulerian reduction remains a major obstacle to solving

directed Laplacian linear equations in small space.

e) Applications of Directed Laplacian Solvers: There are

numerous applications of directed Laplacian solvers given in

Section 7 of [22], most of which are deterministic reductions

to directed Laplacian system solving. The deterministic ones

include

• solving large classes of linear systems,

• computing personalized PageRank vectors,

• estimating the stationary distribution,

• and simulating random walks.

Since the reductions are deterministic, we obtain deterministic

almost-linear time algorithms for all these problems2.

B. Our Contributions

We introduce the first notion of crude approximation for

Eulerian Laplacians L. It is defined via the suitability as

a preconditioner in the Richardson iteration and sparse ap-

proximations are constructed using partial symmetrization to

increase robustness. This technique allows us to trade off

additional Richardson iterations for a behavior more akin to

the undirected setting. The obtained deterministic crude global

sparsification routine ultimately allows us to derandomize

two prominent frameworks for solving directed Laplacian

linear equations. We summarize our main result assuming

polynomially bounded edge weights and condition number.

Theorem I.1 (Informal version of our main result). Given an
Eulerian Laplacian LG−→ associated with a strongly connected
Eulerian Graph G−→ with n vertices and m edges, a vector
b ∈ im(LG−→), and a parameter ε ∈ (0, 1) the algorithm
SOLVEEULERIAN(LG−→, ε) in time m1+o(1) log ε−1 computes
a vector x satisfying∥∥∥x − L+

G−→
b
∥∥∥
ULG−→

≤ ε
∥∥∥L+

G−→
b
∥∥∥
ULG−→

where UA = (A+AT )/2 for any square matrix A.

Previous reductions allow us to reduce general directed

Laplacian solvers to logO(1)(nκ−1ε−1) Eulerian solves with

polynomially bounded condition number and edge weights.

We state the main theorem as a corollary.

Theorem I.2. Given a directed Laplacian LG−→ = DG−→ −AT
G−→

associated with a directed Graph G−→ with n vertices and m
edges, a vector b ∈ im(LG−→), a parameter ε ∈ (0, 1) and an
upper bound κ ≥ max(κ(DG−→), κ(LG−→)) there is an algorithm

SOLVEFULL(LG−→, ε) that in time m1+o(1) logO(1)(κε−1) com-
putes a vector x satisfying∥∥∥x − L+

G−→
b
∥∥∥
2
≤ ε

∥∥∥L+
G−→
b
∥∥∥
2

where κ(A) = ‖A‖2 ·
∥∥A+

∥∥
2

denotes the condition number
of a given matrix A.

A key application of these results is the deterministic

simulation of random walks in almost-linear time as presented

in Sections 7.4 and 7.5 of [22].

a) Crude Global Sparsification: Our global sparsification

routine is based on first increasing the robustness via β-

partial symmetrization. Then we bucket by edge weight and

layer partitions of undirected and unweighted graphs into

expanders. First, the directed part in such an expander can

2Note that we require an upper bound κ on the condition number, and
hence mixing time.
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be sparsified in a crude way that conserves the degrees. Then,

the undirected part can be replaced with a sparse expander.

Since the undirected part is scaled with a factor β by β-partial

symmetrization it dominates the directed part which allows us

to bound the error of the first step.

b) Open Questions: Our techniques, in particular β-

partial symmetrization, might be of interest for determinis-

tically simulating random walks in small space. Further, the

development of a composable notion of crude approximation

for Eulerian Laplacians is an interesting task. However, there

are Eulerian Laplacians that do not precondition each other

regardless of stepsize, which is a major obstruction. We

include such a construction in the appendix of the full version

[23] of our article.

II. OVERVIEW

Existing randomized algorithms for solving linear equa-

tions in directed Eulerian Laplacians can be classified as

belonging to one of two general frameworks: squaring-solvers

and sparsified-cholesky-solvers. Both heavily rely on (1± ε)-
approximate graph sparsification techniques for two separate

tasks: 1) globally sparsifying a directed graph G−→ with m-

edges in time close to m and 2) sparsifying the square graph
G−→2 in time close to m. The square graph G−→2 is the graph

with adjacency matrix AG−→D−1
G−→
AG−→ where AG−→ denotes the

adjacency matrix of G−→ and DG−→ denotes the diagonal matrix

containing the degrees of G−→. For some graphs the running

time of 2) is sublinear in the number of edges of the sparsified

graph G−→2 since squaring can drastically increase the density.

We provide derandomized algorithms for both tasks, allowing

us to derandomize two prominent frameworks. We focus on the

squaring-solver [1], and sketch the sparsified-Cholesky solver

[2] in the appendix of our full paper3.

While we match the (1 ± ε)-approximation and roughly

the runtime of randomized routines for 2), our algorithm for

globally sparsifying directed graphs only achieves a crude

no(1)-approximation guarantee. This is not surprising, since

deterministic (1 ± ε)-approximate sparsification in almost

linear time is an open problem even for undirected graphs.

However, the current notions of spectral approximation for

directed graphs due to [1] break down for approximation factor

ε larger than 1. To address this problem, we directly define

approximation via the suitability as a preconditioner in the

Richardson iteration. In particular, suppose we want to solve

a linear equation in M , by preconditioning with a matrix N .

Roughly speaking, if, in an appropriate norm ‖·‖, we have∥∥I im(M ) −N+M
∥∥ ≤ 1 − α, then we can solve the linear

equation in M to high accuracy using Õ(1/α) preconditioned

Richardson iterations where we apply M and N+ once per

iteration. A priori, it may be surprising that our approach relies

on distinguishing the case 1− ∥∥I im(M ) −N+M
∥∥ ≥ no(−1)

3 [2] also relies on randomness for finding a linear sized almost independent
subset. We provide a simple procedure to derandomize this step in the full
version of our paper.

from the case 1− ∥∥I im(M ) −N+M
∥∥ ≈ 0, however, our par-

tial symmetrization technique and a careful choice of norm

makes this possible.

Our notion of high-error approximation is not directly

composable, but it does algorithmically compose: If A is pre-

conditioned by B and B is preconditioned by C , then a solver

for A can be constructed with access to B and C+ using

two layers of preconditioned Richardson. The development

of a directly composable notion of spectral approximation in

directed graphs for approximation factors larger than 1 remains

an interesting open problem.

A. Global Sparsification

Given an Eulerian graph G−→ = G−→0 our sparsification routine

does not directly produce a sparse graph G̃−→ = G−→3, but does

so via a detour involving two other graphs G−→1 and G−→2:

• G−→0 is the initial graph G−→.

• G−→1 is obtained by β-partially-symmetrizing G−→0. It has a

directed and a undirected part.

• G−→2 is obtained from G−→1 by sparsifying its directed part

without touching the undirected part.

• G−→3 is obtained by also sparsifying the undirected part.

We call such a bundle of four directed graphs a quadruple. Our

construction ensures that L+
G−→i+1

is a suitable preconditioner

for LG−→i
with respect to the norm ‖·‖ULG−→i+1

→ULG−→i+1

for

i = 0, 1, 2, meaning that L+
G−→i

can be (approximately) applied

by applying L+
G−→i+1

for N = Exp(O((log n)1/10)) times via

the preconditioned Richardson iteration4. Given an oracle for

applying L+
G−→3

we can use it N times to apply L+
G−→2

, and

then in turn apply L+
G−→1

via N applications of L+
G−→2

, until we

can finally apply L+
G−→0

. This yields a procedure for applying

L+
G−→0

that relies on N3 = Exp(O((log n)1/10)) applications of

L+
G−→3

. Next we describe the way the graphs G−→1, G−→2 and G−→3

are constructed in more detail. Our full global sparsification

results are presented in Section IV.

Fig. 1: Obtaining G−→1 from G−→0 via β-partial symmetrization.

Given the graph G−→0 as depicted on the left hand side, we add

β times its undirectification. This could double the amount

of edges, but the graph G−→1 has much less directed structure,

which we will use to sparsify it in the next steps.

4Because not all approximations refer to the same norm, this does unfor-
tunately not ensure that L+

G−→3
is a suitable preconditioner for LG−→0 .

409



a) From G−→0 to G−→1: Robustness through Partial Sym-
metrization: Let U(G−→0) denote the undirectification of the

graph G−→0, i.e. the graph obtained by replacing each directed

edge with an undirected edge of half the weight. Then we

simply obtain G−→1 = β · U(G−→0) + G−→0 where β = no(1) is a

sub-polynomial factor. Surprisingly, even though G−→1 removes

a lot of directed structure, L+
G−→0

can be applied via O(β)

applications of L+
G−→1

. Although G−→1 might seem similar to

β · U(G−→0), in fact, they behave very differently. The key

technical observation is that∥∥∥L+/2
U(G−→1)

(LG−→0
− LG−→1

)L
+/2
U(G−→1)

∥∥∥
2

=
∥∥∥L+/2

(1+β)·U(G−→0)
Lβ·U(G−→0)L

+/2
(1+β)·U(G−→0)

∥∥∥
2
=

1

β + 1

which relies on the fact that the directed graphs cancel out
additively, only leaving us with symmetric Laplacians. See

Figure 1 for an illustration.

expander

Fig. 2: Obtaining G−→2 from G−→1 via patching. The dashed

box contains the complete bipartite graph, which is a good

expander. We use this information to drastically sparsify the

directed part on the same vertex set V ′, only ensuring that the

degrees match up by increasing the weight of the edges. Since

the induced subgraph on V ′ remains a good expander when

summing up, this does not alter the spectral structure of the

graph by much.

b) From G−→1 to G−→2: Patching Expander Parts: The graph

G−→1 = β ·U(G−→0)+G−→0 is made up of two parts: an undirected

graph β · U(G−→0) and a directed graph G−→0. In this step we

aim to sparsify the directed part by constructing a sparse

graph R−→ with the same in- and out-degrees as G−→0. Then

G−→2 = β · U(G−→0)+ R−→. Our strategy for obtaining R−→ relies on

the structure of the undirected graph U(G−→0) and deterministic

expander decompositions as presented in [19]. Our main

technical observation here is that given a vertex set V ′ so

that U(G−→0)[V
′] is a good enough expander, we can replace

the directed graph G−→0[V
′] in G−→1 with any other directed

graph R−→′, as long as G−→0[V
′] and R−→′ have exactly the same

in- and out-degrees, retaining a close approximation between

G−→1−G−→0[V
′]+R−→′ and G−→1. Our algorithm for constructing R−→

first removes the weighted structure from U(G−→0) by bucketing

by edge weight, and then layers deterministic undirected and

unweighted expander decompositions. These are partitions of

undirected and unweighted graphs into expanding parts and a

remainder, and the layering is achieved by recursing on the

remainder. A single expanding part can be greedily sparsified

using any sparse greedily constructed graph R−→′ as introduced

above. Summing up all of these yields R−→. Crucially, while

the error sums up over layers and buckets, the disjointness of

the expander parts ensures this is not the case within a single

decomposition. See Figure 2 for an illustration.

Fig. 3: Obtaining G−→3 from G−→2 via undirected sparsification.

The undirected part β · U(G−→) of G−→2 is sparsified using pre-

viously known spectral sparsification routines for undirected

graphs. Since both remaining parts are sparse, their sum is a

sparse graph.

c) From G−→2 to G−→3: Scaling an Undirected Sparsifier:
Finally we sparsify the undirected part β · U(G−→0) obtaining

a sparse undirected graph H and let G−→3 = H + R−→. This

can be achieved via known theorems for deterministic low-

accuracy undirected graph sparsification provided by [24]. To

obtain a good preconditioner we have to scale H , but not R−→,

with the inverse of an appropriate rate η. This relies crucially

on our observation that when the approximation error is only

on the undirected part, learning rates can be leveraged more

effectively than for general Eulerian approximation. We are

left with a sum of two sparse graphs H and R−→, which is a

sparse directed graph. See Figure 3 for an illustration.

B. Sparsified Squaring

Given a directed graph G−→ with Laplacian LG−→ = DG−→ −
AT

G−→
∈ R

n×n, the Laplacian of its square G−→2 is given by

LG−→2 = DG−→ −AT
G−→
D−1

G−→
AT

G−→︸ ︷︷ ︸
adjacency matrix

= DG−→ −
n∑

i=1

1

DG−→(i, i)
(A(i, :))T · (A(:, i))T

︸ ︷︷ ︸
AT

i

.

We consider the directed product graphs Li = D i−AT
i with

adjacency matrix Ai. Consider the matrix

L =

(
diag(Ai1) 0

0 diag(AT
i 1)

)
−
(

0 Ai

AT
i 0

)
which is the Laplacian of a bipartite product graph G. Such

graphs are constant expanders, which allows for a simple trick.

First, we sparsify the undirected bipartite product graph L
to high accuracy ε, by adapting a procedure from [11] to

be degree preserving. We call the sparse bipartite graph we

obtain L̃. Then we obtain a sparsified version Ã
T

i of AT
i

by simply taking the bottom left block of L̃. We show that

L̃i = D i − Ã
T

i is a ε/Φ2-approximation of Li, where Φ
is the expansion of G. Using the fact that bipartite product

graphs are constant expanders lets us directly translate the

approximation guarantee, up to a constant overhead in runtime.

We obtain an (1± ε)-approximation L
G̃−→

2 =
∑n

i=1 L̃i of LG−→2
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with nnz(L
G̃−→

2) ≤ O(nnz(LG−→)ε−4) in almost linear time.

Similar deterministic squaring techniques were developed for

small space algorithms [20], [21], albeit the slightly different

guarantees. We believe its likely that their approach to be

adapted to our setting, but for convenience we adapt a more

direct approach.

C. The Squaring Framework

Consider an Eulerian Laplacian LG−→ = DG−→ − AT
G−→

where

AG−→ is the adjacency matrix of an Eulerian graph G−→ and

DG−→ is the diagonal matrix containing the degrees. Then

the normalized Laplacian is given by N = I − AT where

A = D
+/2
G−→

AT
G−→
D

+/2
G−→

, having the property that ‖A‖2 ≤ 1.

The Neumann series expansion yields

(I −A)+b =
∞∑
i=0

Aib =
∞∏
i=0

(
I +A2k

)
b

for b orthogonal to the kernel of (I−A)+. Given a 1/ poly(n)
lower bound on the smallest eigenvalue λ∗ of I −A, truncat-

ing the product expansion after Θ(log n) factors (and hence

squarings) yields a constant relative error. A very convenient

equality in the same spirit is given by

(I −A)+b = (I −A2)+(I +A)b (1)

for b orthogonal to the kernel of (I −A)+ which is at the

center of the squaring mechanism of [25], the algorithm our

squaring solver resembles most. Their squaring scheme is in

turn inspired by the squaring solver for symmetric Laplacians

presented in [8].

This leaves us with the task of solving linear equations in

I −A2, which is another normalized Laplacian. However, this

is the normalized Laplacian of the square graph G−→2, and it

can be shown that squaring drastically improves the condition

number of the problem, such that after k = Θ(logn) squaring

steps linear equations can be solved to high accuracy quickly

via a simple iterative scheme. To avoid periodic behaviors

we consider the normalized adjacency matrix A(α)
l := αI +

(1 − α)Aj , which can be interpreted as adding self loops

proportional to the out-degrees of G−→.
a) Sparsified Squaring: Since squaring not only im-

proves the condition number, but may also quickly increase
the density of the graph, we let A0 = A and iteratively

obtain Aj+1 by implicitly sparsifying (A(α)
j )2 using our

sparsified squaring technique with accuracy parameter ε. We
can conclude from (1) that

(I −A)+b ≈
(1− α)d−1 (I −Ad)

+
(
I + (A

(α)
d−1)

2
)
· · ·

(
I − (A

(α)
0 )2

)
︸ ︷︷ ︸

:=Z

b

as we can ensure that b is orthogonal to the known kernel of

(I −A)+. However, the repeated sparsification accumulates

an error proportional to εed, and it is imperative that it stays

below 1 such that Z is an approximate pseudoinverse of

I −A. Therefore, we have to choose ε proportional to e−d.

We conclude from the previous subsection that nnz(Ad) =

O(nnz(A)e4d
2

). Unfortunately, we cannot set d = Θ(logn)
without ending up with potentially dense matrices. Therefore,

we set d = Θ((log n)1/3) and have e4d
2

= no(1).

b) Global Sparsification and Chains of Sparse Matrices:
Since d = Θ((log n)1/3) squarings do not sufficiently decrease

the condition number, we globally sparsify after d sparsified

squarings and repeat. Given A(0)
0 = D

+/2
G−→

AG−→D
+/2
G−→

for i =

0, ...,Θ((log n)2/3) we iteratively construct:

• Given A(i)
0 , construct A(i)

0 , ...,A(i)
d by sparsified squar-

ing as described in the previous paragraph.

• Let H−→ be the graph with adjacency matrix

D
1/2
G−→

A(i)
d D

1/2
G−→

. Globally sparsify H−→ obtaining H̃−→.

Then let A(i+1)
0 = D

+/2
G−→

AH̃−→
D

+/2
G−→

.

We discuss these collections of squaring chains linked by

global sparsification in section 6 of our full paper. For our

algorithm to run in almost-linear time, it is imperative that

these chains are constructed once, and then our algorithm

operates recursively on them.

c) The Recursive Algorithm: Our global sparsification

routine allows us to solve linear equations in I − A(i)
0 by

solving Exp(O((log n)1/10)) linear equations in I −A(i+1)
0 .

Since linear equations in I − A(Θ(logn)2/3)
0 are easy to

solve using standard iterative procedures, this is the depth

of our recursion. Therefore, the total amount of branches is

Exp(O((log n)2/3+1/10)) = no(1). Since all involved matrices

contain an almost linear amount of entries, this gives an almost

linear time deterministic algorithm for solving linear equations

involving Eulerian Laplacians. That is, because preconditioned

Richardson only does matrix vector multiplications with the

matrix and the preconditioner.

D. The Sparsified-Cholesky Framework

Very recently [2] showed that the framework of [11] directly

works for Eulerian Laplacians by developing new tools for

analyzing the accumulation of error. Our sparsification tools

can also be used to derandomize this algorithm. Unlike the

squaring framework, which makes progress by improving the

condition number, sparsified-Cholesky frameworks operate by

eliminating rows and columns like Gaussian elimination. Such

elimination steps can be directly interpreted as deleting a

vertex from the graph and adding a weighted clique.

Some algorithms eliminate one vertex at a time [9], [10],

but [11] and [2] eliminate a large set of Ω(n) vertices together.

To do so, a linear sized ρ-row-column-diagonally-dominant (ρ-

RCDD) subset V ′ of the vertices is chosen for some constant

ρ. A set of vertices is ρ-RCDD, if for each vertex a ρ-fraction

of the weighted in-edges come from V \ V ′ and a ρ-fraction

of the weighted out-edges go to V \ V ′5. Then the vertices

belonging to this set can be eliminated using O(log log n)
sparsified squaring operations. While randomized algorithms

using this paradigm can afford to globally sparsify after each

squaring step, we have to allow for some build up of the

5Notice that [11] is concerned with the undirected case.
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edge count. Namely, we wait for a subpolynomial number of

elimination rounds, and then globally sparsify and recurse.

As previously, global sparsifications correspond to branching

points when applying the inverse. We give a more detailed

description in the appendix of the full version of our paper.

E. Reduction to the Eulerian Setting with bounded Condition
Number

Previous work [22], [25] reduced solving linear equations in

directed Laplacians L = D−AT to solving logO(1)(nκ−1ε−1)
systems involving Eulerian Laplacians with polynomially

bounded condition number and edge weights to constant

accuracy, where κ is an upper bound on the maximum of κ(D)
and κ(L) (See Appendix D and F of [25] and Sections 5, 7.1

and 7.3 of [22]). They use that edge weights are polynomially

bounded in the proof of Lemma C.3 in Appendix C of

[25]. Different reductions to the Eulerian case were presented

by Ahmadinejad-Jambulapati-Saberi-Sidford [26] and in the

thesis of Peebles [27].

III. PRELIMINARIES

A. Linear Algebra
a) Matrices: We denote matrices as bold upper case

letters A. For a matrix A ∈ R
n×n, we let nnz(A) denote its

number of non-zero entries and for X ⊆ [n], Y ⊆ [n] we let

A(X,Y ) = AXY denote the |X| × |Y | submatrix containing

the entries with index in X × Y . If X = Y , we write A[X]
as a shorthand for A(X,X). When selecting submatrices, we

let l : u denote the set {l, l+1, . . . , u} for u ≥ l and : the set

of all columns/rows, e.g. A(1 : 3, :) denotes the submatrix

of A consisting of the first 3 rows of A. Further, we let

A+ denote the Moore-Penrose-Pseudoinverse of matrix A.

Finally, I denotes the identity matrix. Sometimes we denote

its dimension with I n.
b) Vectors: We denote vectors as bold lower case letters

v . Further, we let 1 denote the all ones vector, 0 the zero

vector and e i denotes the i-th vector of the standard basis.

Sometimes we indicate the dimension with 1n and 0n.
c) The Loewner-order: For symmetric matrices A and

B , we let A 	 B iff for all vectors x : xTAx ≤ xTBx .

We define ≺,� and � analogously. If a symmetric matrix A
satisfies 0 	 A we call it PSD. For a PSD matrix A, we let

A1/2 denote the unique matrix so that A1/2A1/2 = A.
d) Norms : For every vector x , we let ‖x‖H :=√

xTHx for a PSD matrix H . We let ‖M ‖H→H :=

maxx �=0
‖Mx‖H
‖x‖H for a PSD matrix H . Notice that

‖M ‖H→H =
∥∥∥H1/2MH+/2

∥∥∥
2
. Further, we let ‖M ‖1 and

‖M ‖∞ denote the maximum 	1 norm of a column and row

of M respectively.
e) Condition Number: For a matrix A ∈ R

n×n we let

κ(A) := ‖A‖2
∥∥A+

∥∥
2

denote its condition number. Further,

for PSD matrices A and B with the same kernel we let

κ(A,B) := κ(A+/2BA+/2).
f) Misc: We let Exp(x) := ex. In this paper Õ(·)

suppresses poly-logarithmic factors in n. For a PSD matrix

A, we let λ∗(A) denote its smallest nonzero eigenvalue.

B. Graphs

a) General Notation: We let G = (V,E, ω) denote an

undirected graph where ω(e) = ω(u, v) denotes the weight

of edge e = (u, v). Further, we let G−→ = (V,E, ω), where

the edge weight ω(e) = ω(u, v) of edge e now depends on

its direction. Sometimes we omit ω for unit weight (aka un-

weighted) graphs. When sometimes also write V (G−→), E(G−→)

and ωG−→ to avoid ambiguity. We let ωmax and ωmin denote the

maximum and minimum edge weight respectively.

b) Undirectification: For a directed graph G−→ =
(V,E, ω), we let U(G−→) = (V,E′, ω), with {u, v} ∈ E′ iff

(u, v) ∈ E or (v, u) ∈ E and ω{u, v} = 1
2 (ω(u, v)+ω(u, v)),

denote its undirectification (where we use the convention

ω(u, v) = 0 for (u, v) /∈ E).

c) Induced Subgraphs: For G = (V,E, ω) and X ⊆ V
we let G[X] denote the induced subgraph on X . For a directed

graph G−→ we define G−→[X] analogously.

C. Graph Laplacians

a) General Notation: For a undirected graph G =
(V,E, ω) we denote its (graph) Laplacian as LG = DG−AG

where DG is the diagonal matrices containing the degrees and

AG(i, j) = AG(j, i) = ω((i, j)). Generalizing this notation

to directed graphs G−→ = (V,E, ω), we let LG−→ = DG−→ −AT
G−→

where the adjacency matrix is given by AG−→(i, j) = ω((i, j))

and the diagonal matrix DG−→(i, i) =
∑

j AG−→(i, j) contains the

out degrees. Naturally 1TLG−→ = 0. For an undirected graph

G, we let degG(v) be the (weighted) degree of vertex v. For

directed graphs we let deg−G(v) and deg+G(v) denote in- and

out-degree respectively.

b) Eulerian Laplacians: If LG−→1 = 0 we call a Laplacian

Eulerian. This correspond to the underlying directed graph G−→
being Eulerian, i.e. having equal in- and out-degree for each

vertex.

c) Symmetrization: For any matrix A we denote UA =
U (A) := 1

2 (A+AT ). Notice that for an Eulerian Laplacian

LG−→ we have ULG−→
= LU(G−→). This is a crucial fact exploited

by all algorithms for directed Laplacians including ours.

Symmetric Laplacians are PSD.

d) Induced subgraphs and submatrices: The reader

should note that for a Laplacian LG−→ the matrices LG−→[X] and

LG−→[X] are not equivalent unless there is no edge from X to

V \X or vice versa. Specifically, while the off-diagonal entries

are equal, we have DG−→[X](i, i) ≤ DG−→[X](i, i).

D. Directed Graph Approximation

Definition III.1 (Asymmetric Matrix Approximation, Defini-

tion 3.1 in [25]). A (possibly asymmetric) matrix Ã is said to
be an ε-matrix-approximation of A if

1) UA is a symmetric PSD matrix, with ker(UA) ⊆
ker(Ã−A) ∩ ker((Ã−A)T ).

2)
∥∥∥U+/2

A (Ã−A)U
+/2
A

∥∥∥
2
≤ ε

Remark III.2. Notice that Definition III.1 is not symmetric.
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E. Expanders

Whenever we use the term expander, we mean expander

graphs with respect to conductance. We follow the notational

conventions of [24].

Definition III.3 (Conductance). For a weighted but undi-
rected graph G = (V,E, ω), given a set ∅ ⊂ S ⊂ V
we let δG(S) :=

∑
(u,v)∈E:u∈S,v/∈S ω(u, v) and volG(S) :=∑

v∈S
∑

u∈V ω(u, v). Then we define the conductance

ΦG(S) =
δG(S)

min{volG(S), volG(V \ S)} .

Definition III.4 (Expander). We call a graph G =
(V,E, ω) a Φ-expander (with respect to conductance)
if minS:∅⊂S⊂V ΦG(S) ≥ Φ. We further let ΦG =
minS:∅⊂S⊂V ΦG(S).

Given a vector d ∈ R
n
>0 we let G(d) denote the weighted

and undirected graph on n vertices with ω(i, j) = d(i)·d(j)
‖d‖1 .

Note that LG(d) = diag(d)− ddT

‖d‖1 .

Lemma III.5 (Non Uniform Degree Bound, see [24]). Given
a Φ-expander G with Laplacian LG = DG −AT

G we have

Φ2

4
(DG − dGd

T
G

‖dG‖1
) 	 LG 	 4

Φ2
(DG − dGd

T
G

‖dG‖1
)

for dG = diag(DG) and Φ ≤ 1/2.

Next we state the definition of the expander decomposition

for unweighted and undirected graphs in the notation of [24].

Definition III.6 (See Section 6 of [24], Proposed by [28],

[29]). A (ε,Φ)-expander decomposition of a undirected and
unweighted graph G = (V,E) is a partition P = {V1, ..., Vk}
of the vertex set V such that for all i ∈ [k] the conductance
of G[Vi] is at least Φ and

∑k
i=1 δG(Vi) ≤ ε volG(V ).

The next theorem shows that expander decompositions can

be computed in almost linear time.

Theorem III.7 (See Corollary 7.7 in [24]). There is a
deterministic algorithm EXPDECOMP(G, γ) that, given an
undirected and unweighted graph G = (V,E) with m edges
and a constant γ ∈ (0, 1), computes a (1/2, 1

Exp((logn)γ) )-
expander decomposition in time m1+o(1).

F. Preconditioned Richardson

The next lemma analyses preconditioned Richardson (Al-

gorithm 1) for asymmetric matrices.

Lemma III.8 (Preconditioned Richardson, Lemma 4.2 in

[25]). Let b ∈ R
n and M ,Z ,U ∈ R

n×n such that U is sym-
metric positive definite, ker(U ) ⊆ ker(M ) = ker(M T ) =
ker(Z ) = ker(Z T ), and b ∈ im(M ). Then N iterations of
preconditioned Richardson with step size η > 0, result in a
vector xN = PRECONRICHARDSON(M ,Z , b, η,N) so that∥∥xN −M+b

∥∥
U
≤ ∥∥I im(M ) − ηZM

∥∥N
U→U

∥∥M+b
∥∥
U
.

Furthermore preconditioned Richardson implements a linear
operator, in the sense that xN = ZNb for some matrix ZN

only depending on Z ,M , η and N .

The previous lemma leads to the notion of an approximate

pseudoinverse by measuring the suitability of a matrix as a

preconditioner.

Definition III.9 (Approximate Pseudoinverse, Definition 4.3 in

[25]). Matrix Z is an ε-approximate-pseudoinverse of matrix
M with respect to a PSD matrix U , if ker(U ) ⊆ ker(M ) =
ker(M )T = ker(Z ) = ker(Z T ), and∥∥I im(M ) − ZM

∥∥
U→U

≤ ε.

Algorithm 1: PRECONRICHARDSON(M ,Z , b, η,N )

1 x 0 = 0
2 for i = 0, ..., N - 1 do x i+1 = x i + ηZ (b −Mx i) ;

3 return xN

Finally, we state three more lemmas that are cru-

cial for arguing about approximate pseudoinverses. The

first two are often applied consecutively to upper bound∥∥I im(M ) − ZM
∥∥
UZ→UZ

with a variational form.

Lemma III.10 (Part of Lemma B.9 in [25]). If L is a matrix
with ker(L) = ker(LT ) = ker(UL), and UL is positive
semidefinite, then for any matrix A with the same left and
right kernels as L we have

‖A‖UL→UL
≤

∥∥∥U+/2
L LAU

+/2
L

∥∥∥
2

Lemma III.11 (Part of Lemma B.2 in [25]). For all A ∈
R

n×n and symmetric PSD M ,N ∈ R
n×n such that

ker(M ) ⊆ ker(AT ) and ker(N ) ⊆ ker(A) we have∥∥∥M+/2AN+/2
∥∥∥
2
= 2 max

x ,y �=0

xTAy

xTMx + yTNy

where we define 0/0 to be 0.

Lemma III.12 (Part of Lemma B.4 in [25]). For a PSD

diagonal matrix D and any matrix M ∈ R
n×n∥∥∥D−1/2MD−1/2

∥∥∥
2
≤ max{∥∥D−1M

∥∥
∞ ,

∥∥∥D−1M T
∥∥∥
∞
}

= max{
∥∥∥M TD−1

∥∥∥
1
,
∥∥MD−1

∥∥
1
}.

IV. GLOBAL SPARSIFICATION FOR DIRECTED LAPLACIANS

In this section we describe our low accuracy global sparsifi-

cation routine. This constitutes the backbone of our algorithm.

We first formally define the β-partial-symmetrization of an

Eulerian graph G−→.

Definition IV.1. For an Eulerian directed graph G−→ we call
U (β)(G−→) := β · U(G−→) + G−→ its β-partial-symmetrization.
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Remark IV.2. LU(β)(G−→) = βULG−→
+ LG−→.

There are three steps in our sparsification procedure.

1) The first step relies on what may be the most crucial ob-

servation. Given an Eulerian directed graph G−→ = G−→0, we

let G−→1 = U (β)(G−→) = β ·U(G−→)+G−→ be the graph obtained

from G−→0 by β-partial symmetrization. Then, surprisingly,

LG−→1
can be used as a preconditioner for solving linear

equations in LG−→0
in time O(β) using Richardson. We

call U (β)(G−→) the β-partial-symmetrization of G−→.

2) A partial-symmetrization is naturally interpreted as the

sum of an undirected graph β · U(G−→) and a directed

graph G−→. We expander decompose the undirected graph

β · U(G−→) into parts V1, V2, ..., Vk. Then a simple greedy

patching scheme can be used to sparsify the induced sub-

graphs G−→[Vi] leveraging the expander structure for error

control. In our actual algorithm we additionally bucket

by edge weight and layer expander decompositions. The

former allows us to treat the graph as unweighted and

the latter ensures that every edge is in an expander after

O(log n) layers. The Laplacian of the obtained graph

G−→2 = β ·U(G−→)+R−→ can then be used as a preconditioner

for LG−→1

3) Lastly, the undirected graph β · U(G−→) can be sparsified

via previously known deterministic algorithms presented

in [24]. We obtain G−→3 = β
η G̃ + R−→ which in turn is a

preconditioner for G−→2.

We define pseudoinverse sparsification quadruples. Con-

structing these is at the core of our global sparsification

routine.

Definition IV.3. (Sparsification quadruple) We call strongly
connected n-vertex Eulerian graphs G−→0, G−→1, G−→2, G−→3 a
(γ, β, η)-quadruple for some constant γ ∈ (0, 1) if

1) L+
G−→i

is a
(
1− 1

Exp(O((logn)γ))

)
-approximate pseudoin-

verse of LG−→i−1
with respect to ULG−→i

for i = 1, 2, 3.
2) 1

Exp(O((logn)γ))ULG−→i−1
	 ULG−→i

	
Exp(O((log n)γ))ULG−→i−1

for i ∈ {1, 2, 3}.
3) |E(G−→3)| = Õ(n). |E(G−→i)| ≤ 2|E(G−→0)|+ Õ(n) for i =

1, 2.
4) For all vertices v: deg+G−→0

(v) = deg−G−→0
(v) = (1 +

β) deg+G−→i
(v) = (1 + β) deg−G−→i

(v) for i = 1, 2 and

deg+G−→0
(v) = (1 + β

η ) deg
+
G−→3

(v) = (1 + β
η ) deg

−
G−→3

(v).

We then state the main lemma of this section. It shows that

it is possible to construct a (γ, β, η)-quadruple in almost linear

time.

Lemma IV.4 (Global Sparsification). For every
m-edge, strongly connected Eulerian graph
G−→ = G−→0 and a constant γ ∈ (0, 1) the routine
G−→1, G−→2, G−→3 = GLOBALSPARSIFICATION(G−→, γ) yields a
(γ, β = Exp(O((log n)γ)), η = Exp(−3(log n)γ))-quadruple
G−→0, G−→1, G−→2, G−→3. The runtime is m1+o(1).

Remark IV.5. While in the description of our algorithm, β

scales linearly in O

(
log

(
ωmax

G−→
ωmin

G−→

))
, we assume throughout

the paper that β = Õ(1) ·Exp(2(log n)γ) is fixed to a global

upper bound as log

(
ωmax

G−→
ωmin

G−→

)
= Õ(1) for all graphs G−→ we

work with. This avoids clutter in the analysis.

Algorithm 2: GLOBALSPARSIFICATION(G−→, γ)

1 β = L · Exp(2 · (log n)γ) for L = 128 · 20 · P · log n
and P =

⌈
log

(
ωmax

G−→
ωmin

G−→

)⌉
.

2 η = Exp(−3 · (log n)γ)
3 G−→1 = βU(G−→) + G−→ ; // Note that

G−→1 = U (β)(G−→).

4 R−→ = SPARSIFYDIRECTED(G−→, γ)

5 G−→2 = βU(G−→) + R−→
6 G̃ = SPECTRALSPARSIFYDEG(U(G−→), γ)

7 G−→3 = β
η G̃+ R−→

8 return G−→1, G−→2, G−→3

A. Preconditioning with the Partial-Symmetrization

Our next lemma shows that LU(β)(G−→) is a good precondi-

tioner in terms of Lemma III.8.

Lemma IV.6. For every Eulerian Laplacian LG−→0
the matrix

L+
G−→1

is an (1− 1
1+β )-approximate pseudoinverse of LG−→0

with

respect to ULG−→1
if G−→1 = U (β)(G−→0).

Proof. First recall that L+
G−→1

= L+
U(β)(G−→)

. We have∥∥∥∥I im(LG−→) − L+
U(β)(G−→)

LG−→

∥∥∥∥
ULU(β)(G−→)

→ULU(β)(G−→)

≤
∥∥∥∥U+/2

LU(β)(G−→)
(LU(β)(G−→) − LG−→)U

+/2
LU(β)(G−→)

∥∥∥∥
2

by Lemma III.10. With Remark IV.2 we conclude∥∥∥∥U+/2
LU(β)(G−→)

(LU(β)(G−→) − LG−→)U
+/2
LU(β)(G−→)

∥∥∥∥
2

= β

∥∥∥∥U+/2
LU(β)(G−→)

ULG−→
U

+/2
LU(β)(G−→)

∥∥∥∥
2

=
β

1 + β

∥∥∥U+/2
LG−→

ULG−→
U

+/2
LG−→

∥∥∥
2
= 1− 1

1 + β

where we use that ULU(β)(G−→)
= LU(U(β)(G−→)) = (1+β)ULG−→

.

The lemma follows from chaining the calculations.

B. Sparsifying the Directed Part

Given LG−→1
= βULG−→

+ LG−→, we aim to obtain a sparse

directed graph R−→ with the same in- and out-degrees as G−→ so

that the directed Laplacian LG−→2
= βULG−→

+LR−→ preconditions

LG−→. Our strategy closely follows common strategies for
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sparsifying undirected graphs via expander decompositions.

First we get rid of most of the weighted structure by bucketing

by edge weight. We obtain Õ(1) graphs G−→(i) with close to

uniform edge weight such that
∑

i G−→(i) = G−→.

We let H(i) denote the unweighted and undirected graph

with the same edges as G−→(i). Then we layer j =
1, ..., O(log n) undirected and unweighted expander decom-

positions on this graph, where each of them peels of at least

1/2 of the remaining edges E
(i,j)
r . This procedure computes

O(log n) partitions V
(i,j)
1 , ..., V

(i,j)
k(i,j) of the vertex set, such

that for each component V
(i,j)
p the graph H(i)[V

(i,j)
p ] is an

expander. In the j-th layer, we put the remaining edges of the

directed graph G−→(i) that do not go across sets in the partition

V
(i,j)
1 , ..., V

(i,j)
k(i,j) into the graph G−→(i,j) and remove them from

the set of remaining edges.

The expander structure allows us to sparsify G−→(i,j) via a

greedy patching scheme obtaining G̃−→
(i,j)

. Finally, we sum up

across layers and buckets and obtain R−→ =
∑

i,j G̃−→
(i,j)

. We

leverage the robustness introduced by partial symmetrization

to bound the error. See Algorithm 3 for detailed pseudocode.

We first state the main lemma of this subsection, which

analyzes this algorithm.

Lemma IV.7. Let R−→ = SPARSIFYDIRECTED(G−→, γ) for
γ ∈ (0, 1) constant. Then L+

G−→2
= (βULG−→

+ LR−→)+ is a 1/2-
approximate pseudoinverse of LG−→1

= LUβ(G−→) with respect to

ULG−→2
for β = Õ(1) · Exp(2 · (log n)γ). Further, the graph

R−→ has Õ(n) edges and the same in- and out-degrees as G−→.

The proof of Lemma IV.7 relies on analyzing the error

incurred by sparsifying each individual expander decompo-

sition, i.e. the cost of replacing G−→(i,j) with G̃−→
(i,j)

. Then

we conclude by just summing up the error. The next lemma

carefully analyzes the amount of error sparsifying such an

expander decomposition creates. It crucially relies on the fact

that the expander parts form a disjoint partition, and therefore

the error does not scale in the number of expanders.

Lemma IV.8. In the context of SPARSIFY() in Algorithm 3
we have∥∥∥U+/2

LG−→
(G−→

(i,j) − G̃−→
(i,j)

)U
+/2
LG−→

∥∥∥
2
≤ 128 · Exp(2 · (log n)γ)

for every edge weight bucket i and expander decomposition
layer j.

Proof. G−→(i,j) and G̃−→
(i,j)

are directed graphs with the same

in and out degrees since PATCH() in Algorithm 3 preserves

degrees exactly. Therefore 1 is in both the left and right kernel

of G−→(i,j) − G̃−→
(i,j)

. We apply Lemma III.11 twice and obtain

∥∥∥∥U+/2
LG−→

(LG−→(i,j) − L
G̃−→

(i,j))U
+/2
LG−→

∥∥∥∥
2

Algorithm 3: SPARSIFYDIRECTED(G−→, γ) and subrou-

tines SPARSIFY() and PATCH()

1 Algorithm SPARSIFYDIRECTED(G−→, γ)

2 P =

⌈
log

(
ωmax

G−→
ωmin

G−→

)⌉
3 for i = 1, ..., P do
4 E(i) = {e ∈ E(G−→) : ωmin

G−→
· 2i−1 ≤ ωG−→(e) <

ωmin
G−→

· 2i}
5 G̃−→

(i)
= SPARSIFY(G−→(i) = (V (G−→), E(i), ωG−→))

6 return R−→ =
∑P

i=1 G̃−→
(i)

7 Procedure SPARSIFY(G−→(i))

8 Let H(i) denote the unweighted and undirected

graph with the same edges as U(G−→(i))

9 for j = 1, ..., 10 log n do
10 E

(i,j)
r = E(H(i))−⋃j−1

l=1 E(H(i,j));

E−→
(i,j)
r = E(G−→(i))−⋃j−1

l=1 E(G−→(i,j))

11 V
(i,j)
1 , ..., V

(i,j)
k(i,j) =

EXPDECOMP((V (H(i)), E
(i,j)
r ), γ)

12 E(H(i,j)) =
⋃k(i,j)

p=1 {(u, v) ∈ E
(i,j)
r : u ∈

V
(i,j)
p ∧ v ∈ V

(i,j)
p }

13 E(G−→(i,j)) =
⋃k(i,j)

p=1 {(u, v) ∈ E−→
(i,j)
r : u ∈

V
(i,j)
p ∧ v ∈ V

(i,j)
p }

14 H(i,j) = (V (H(i)), E(H(i,j)));
G−→(i,j) = (V (G−→(i)), E(G−→(i,j)), ωG−→(i))

15 G̃−→
(i,j)

=
∑k(i,j)

p=1 PATCH(G−→(i,j)[V
(i,j)
p ])

16 return G̃−→
(i)

=
∑10 logn

j=1 G̃−→
(i,j)

17 Procedure PATCH(H−→)

18 Let aaa, b ∈ Rn
≥0 so that aaa(v) = deg+H−→

(v) and

b(v) = deg−H−→
(v). // Note ‖aaa‖1 = ‖b‖1.

19 E(H̃−→) = ∅; ωH̃−→
(e) = 0 for all e.

20 while ‖aaa‖ �= 0 do
21 Let i and j be arbitrary such that aaa(i) > 0 and

b(j) > 0.

22 w = min{aaa(i), b(j)}; aaa(i) = aaa(i)− w;

b(j) = b(j)− w
23 E(H̃−→) = E(H̃−→) ∪ {(i, j)}; ω(i, j) = w

24 return H̃−→

= 2 max
x ,y �=0

xT (LG−→(i,j) − L
G̃−→

(i,j))y

xTU LG−→
x + yU LG−→

yT

i)

≤ 2 max
x ,y �=0

xT (LG−→(i,j) − L
G̃−→

(i,j))y

xTLU(G−→(i,j))x + yLU(G−→(i,j))y
T

ii)

≤ 2

ωmin
G−→
· 2i−2

max
x ,y �=0

xT (LG−→(i,j) − L
G̃−→

(i,j))y

xTLH(i,j)x + yLH(i,j)yT

=
1

ωmin
G−→
· 2i−2

∥∥∥∥L+/2

H(i,j)(LG−→(i,j) − L
G̃−→

(i,j))L
+/2

H(i,j)

∥∥∥∥
2

(2)
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where i) follows since LU(G−→(i,j)) 	 U LG−→
because U(G−→(i,j))

is a subgraph of U(G−→) and ii) uses that all edge weights in

U(G−→i,j) are in [ωmin
G−→

· 2i−2, ωmin
G−→

· 2i]. Next we can use that

the expander parts V
(i,j)
p are disjoint in both G−→(i,j) and G̃−→

(i,j)

to bound
∥∥∥∥∥∥
L
+/2

H(i,j)
(L

G−→
(i,j) − L

G̃−→
(i,j) )L

+/2

H(i,j)

∥∥∥∥∥∥
2

≤ max
p

∥∥∥∥∥∥
L
+/2

H(i,j)[V
(i,j)
p ]

(L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)[V
(i,j)
p ]

)L
+/2

H(i,j)[V
(i,j)
p ]

∥∥∥∥∥∥
2
(3)

since the spectral norm of a block diagonal matrix is upper
bounded by the maximum spectral norm of a block (See the
appendix of the full version for a proof). Then, for every p ∈
{1, ..., k(i, j)} we have
∥∥∥∥L+/2

H(i,j)[V
(i,j)
p ]

(L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)
[V

(i,j)
p ]

)L
+/2

H(i,j)[V
(i,j)
p ]

∥∥∥∥
2

i)
= 2 max

x ,y �=0

xT (L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)
[V

(i,j)
p ]

)y

xTL
H(i,j)[V

(i,j)
p ]

x + yL
H(i,j)[V

(i,j)
p ]

yT

ii)

≤ 8 · 22(logn)γ max
x ,y �=0

xT (L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)
[V

(i,j)
p ]

)y

xTL
G(d

(i,j)
p )

x + yL
G(d

(i,j)
p )

yT

(4)

for d (i,j)
p being the degree vector of H(i,j)[V

(i,j)
p ], where i) is

by Lemma III.11 and ii) is by the expansion of H(i,j)[V
(i,j)
p ]

and Lemma III.5. Let x ,y ⊥ 1 be maximizing the right hand

side of the previous inequality. Then, also x ′ = x − xT d(i,j)
p∥∥∥d(i,j)

p

∥∥∥
2

1

and y ′ = y − yT d(i,j)
p∥∥∥d(i,j)

p

∥∥∥
2

1 are maximizing. We obtain

2

xT (L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)
[V

(i,j)
p ]

)y

xTL
G(d

(i,j)
p )

x + yL
G(d

(i,j)
p )

yT

= 2

x ′T (L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)
[V

(i,j)
p ]

)y ′

x ′TL
G(d

(i,j)
p )

x ′ + y ′L
G(d

(i,j)
p )

y ′T

= 2

x ′T (L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)
[V

(i,j)
p ]

)y ′

x ′TD
H(i,j)[V

(i,j)
p ]

x ′ + y ′D
H(i,j)[V

(i,j)
p ]

y ′T

=

∥
∥
∥
∥
D

+/2

H(i,j)[V
(i,j)
p ]

(L
G−→

(i,j)[V
(i,j)
p ]

− L
G̃−→

(i,j)
[V

(i,j)
p ]

)D
+/2

H(i,j)[V
(i,j)
p ]

∥
∥
∥
∥

(5)

where the last equality is by Lemma III.11. Next we upper

bound ∥∥∥∥D+/2

H(i,j)[V
(i,j)
p ]

L
G−→(i,j)[V

(i,j)
p ]

D
+/2

H(i,j)[V
(i,j)
p ]

∥∥∥∥
and ∥∥∥∥D+/2

H(i,j)[V
(i,j)
p ]

L
G̃−→

(i,j)
[V

(i,j)
p ]

D
+/2

H(i,j)[V
(i,j)
p ]

∥∥∥∥ .
By Lemma III.12 we have
∥∥∥∥∥∥
D
+/2

H(i,j)[V
(i,j)
p ]

L
G−→

(i,j)[V
(i,j)
p ]

D
+/2

H(i,j)[V
(i,j)
p ]

∥∥∥∥∥∥

≤ max

⎧⎪⎨
⎪⎩

∥∥∥∥∥∥
L
G−→

(i,j)[V
(i,j)
p ]

D
+

H(i,j)[V
(i,j)
p ]

∥∥∥∥∥∥
1

,

∥∥∥∥∥∥
L
T

G−→
(i,j)[V

(i,j)
p ]

D
+

H(i,j)[V
(i,j)
p ]

∥∥∥∥∥∥
1

⎫⎪⎬
⎪⎭

.

Since for every v, the undirected graph ωmin
G−→

· 2i+1 ·
H(i,j)[V

(i,j)
p ] satisfies

deg
ωmin

G−→
·2i+1·H(i,j)[V

(i,j)
p ]

(v)

≥ max

{
deg+

G−→(i,j)[V
(i,j)
p ]

(v), deg−
G−→(i,j)[V

(i,j)
p ]

(v)

}

we have∥∥∥∥D+/2

H(i,j)[V
(i,j)
p ]

L
G−→(i,j)[V

(i,j)
p ]

D
+/2

H(i,j)[V
(i,j)
p ]

∥∥∥∥ ≤ ωmin
G−→
· 2i+2.

(6)

Since we only used the in and out degrees of G−→(i,j)[V
(i,j)
p ]

in the above, and G̃−→
(i,j)

[V
(i,j)
p ] has exactly the same degrees,

we analogously conclude∥∥∥∥D+/2

H(i,j)[V
(i,j)
p ]

L
G̃−→

(i,j)
[V

(i,j)
p ]

D
+/2

H(i,j)[V
(i,j)
p ]

∥∥∥∥ ≤ ωmin
G−→
· 2i+2.

(7)

Chaining inequalities (2), (3), (4), (5), (6) and (7) yields∥∥∥(U LG−→
)+/2(G−→

(i,j) − G̃−→
(i,j)

)(U LG−→
)+/2

∥∥∥
2

≤ 128 · Exp(2 · (log n)γ)

which concludes our proof.

Next we analyze the number of edges of G̃−→
(i,j)

Lemma IV.9. |E(G̃−→
(i,j)

)| = O(n).

Proof. It is easy to see that the patching routine adds at most

2|V (i,j)
p | edges to graph G̃−→

(i,j)
[V

(i,j)
p ], since each added edge

repairs either the desired in-degree or the desired out-degree

of a vertex. The result follows since
∑

p |V (i,j)
p | = n.

Proof of Lemma IV.7. Notice that each expander decomposi-

tion peels of half of the edges, and thus every edge is part of an

unique expander part by the end of the procedure SPARSIFY()

in Algorithm 3. Thus our algorithm exactly preserves the

in- and out-degrees of G−→1 = β · U(G−→) + G−→, since each

individual patching exactly preserves degrees. Since the graph

G−→2 = β · U(G−→) + R−→ remains connected the null-spaces are

unaltered. Further, since R−→ is the sum of ˜O(1) graphs with

O(n) edges the total amount of edges of R−→ is bounded by

Õ(n).

Finally, we show the approximation bound. By

Lemma III.10 we have∥∥∥I im(U(β)(G−→
)− L+

G−→2
LG−→1

∥∥∥
ULG−→2

→ULG−→2

≤
∥∥∥U+/2

LG−→2
(LR−→ − LG−→)U

+/2
LG−→2

∥∥∥ .
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We use Lemma III.11 to obtain∥∥∥U+/2
LG−→2

(LR−→ − LG−→)U
+/2
LG−→2

∥∥∥
= 2 max

x ,y �=0

xT (LR−→ − LG−→)y

xT (βULG−→
+ULR−→

)x + yT (βULG−→
+ULR−→

)y

≤ 2 max
x ,y �=0

xT (LR−→ − LG−→)y

βxTULG−→
x + βyTULG−→

y
.

Using Lemma III.11 again we have

2 max
x ,y �=0

xT (LR−→ − LG−→)y

βxTULG−→
x + βyTULG−→

y

=
1

β

∥∥∥U+/2
LG−→

(LR−→ − LG−→)U
+/2
LG−→

∥∥∥
2

=
1

β

∥∥∥∥∥∥U+/2
LG−→

∑
i,j

(LG̃−→(i,j) − LG−→(i,j))U
+/2
LG−→

∥∥∥∥∥∥
2

≤ 1

β

∑
i,j

∥∥∥U+/2
LG−→

(LG̃−→(i,j) − LG−→(i,j))U
+/2
LG−→

∥∥∥
2

i)

≤ 10 · P · log n · 128 · Exp(2 · (log n)γ)
β

ii)

≤ 1

2

where i) follows from Lemma IV.8 and ii) is by β ≥ 128 ·20 ·
P · log n · Exp(2 · (log n)γ). Chaining the inequalities shows

the approximation statement and concludes our proof.

C. Sparsifying the Undirected Part

The final task we have left is to sparsify the undirected

graph U(G−→). This can be more or less directly achieved by

employing a sparsification theorem presented in [24]. Mainly

for notational convenience in our algorithm, we adapt this

sparsifcation technique to be degree preserving in the full

paper and state the resulting lemma here.

Lemma IV.10. (Degree Preserving Sparsification) There is a
deterministic algorithm
SPECTRALSPARSIFYDEG(G, γ) that given a parameter γ ∈
(0, 1) and an undirected graph G = (V,E, ω) with n vertices
and m edges such that that P := maxe∈E ω(e)

mine∈E ω(e) = poly(n)

computes G̃ satsifying
1) Exp(−(log n)γ)LG 	 LG̃ 	 Exp((log n)γ)LG

2) nnz(A) = Õ(n)

in time

Õ(m1+O(1/(logn)γ/2) · (logm)O((logn)γ)) = m1+o(1).

The graph G̃ has self loops and exactly the same degrees as
G.

Next we apply degree preserving sparsification together with

an appropriate scaling to sparsify the undirected part.

Lemma IV.11. There exists a routine G̃ =
SPECTRALSPARSIFYDEG(U(G−→), γ) that given the
undirected graph U(G−→) computes an undirected graph
G̃ with Õ(n) edges so that L+

G−→3
= (βηLG̃ + LR−→)+ is

an
(
1− 1

2·Exp(4·(logn)γ)

)
-approximate pseudoinverse of

LG−→2 = βULG−→
+ LR−→ with respect to ULG−→3

. The degrees of

G̃ and U(G−→) are the same.

Proof. The sparsity and degree preservation follows directly

from Lemma IV.10. To show the approximation property, we

use Lemma III.10 and obtain∥∥∥I im(LG−→) − L+
G−→3

LG−→2

∥∥∥
ULG−→3

→ULG−→3

≤
∥∥∥∥U+/2

LG−→3

(
β

η
LG̃ − βLU(G−→)

)
U

+/2
LG−→3

∥∥∥∥
2

. (8)

Then we use Lemma III.11 twice with β
ηLG̃ 	 β

ηLG̃ +ULR−→
to obtain∥∥∥∥U+/2

LG−→3

(
β

η
LG̃ − βLU(G−→)

)
U

+/2
LG−→3

∥∥∥∥
2

= 2 max
x ,y �=0

xT
(

β
ηLG̃ − βLU(G−→)

)
y

xT (βηLG̃ +ULR−→
)x + yT (βηLG̃ +ULR−→

)y

≤ 2 max
x ,y �=0

xT
(

β
ηLG̃ − βLU(G−→)

)
y

xT (βηLG̃)x + yT (βηLG̃)y

=
∥∥∥L+/2

G̃
(LG̃ − ηLU(G−→))L

+/2

G̃

∥∥∥ . (9)

Next we compute∥∥∥L+/2

G̃
(LG̃ − ηLU(G−→))L

+/2

G̃

∥∥∥ (10)

=
∥∥∥I im(LG̃) − ηL

+/2

G̃
LU(G−→)L

+/2

G̃

∥∥∥
2
. (11)

We use the standard strategy of bounding the square. Let

M := L
+/2

G̃
LU(G−→)L

+/2

G̃
be a shorthand. Then we have

∥∥∥I im(L
G̃
) − ηM

∥∥∥
2

= max
x∈im(L

G̃)
:‖x‖2=1

xT (I imU(G−→) − ηM )T (I imU(G−→) − ηM )x

= 1 + max
x∈im L

G̃
:‖x‖2=1

−2ηxTMx + η2xTM 2x

≤ 1− 2ηλ∗(M ) + η2 ‖M ‖22
where λ∗(M ) denotes the smallest non-zero eigenvalue of M .

We first lower bound λ∗(M ). By Lemma IV.10 we have

1

2(logn)γ
LG̃ 	 LU(G−→)

1

2(logn)γ
I im(G̃) 	 L

+/2

G̃
LU(G−→)L

+/2

G̃

and thus Exp(−(log n)γ) ≤ λ∗(M ). We obtain ‖M ‖2 ≤
Exp(2 · (log n)γ) in an analogous way from Lemma IV.10.

Then, we use η = Exp(−3(log n)γ) ≤ λ∗(M )

‖M‖22
to conclude.

∥∥I im(LG̃) − ηM
∥∥
2
≤ 1− 1

2 · Exp(4 · (log n)γ) (12)

where we use
√
1− ε ≤ 1 − ε/2 for ε ∈ (0, 1). Chaining in-

equalities (8), (9), (11) and (12) shows the desired approximate

pseudoinverse property and finishes the proof.
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D. Proof of Lemma IV.4

Now that we have assembled the pieces we are ready to

prove Lemma IV.4, the main lemma of this section.

Proof of Lemma IV.4. We show each point in the enumeration

separately.

1) The statement for i = 1 is by Lemma IV.6 and β =
Õ(1) · Exp(2(log n)γ), for i = 2 it is by Lemma IV.7

and for i = 3 it is by Lemma IV.11.

2) The analysis of the condition number is deferred to the

full version of our paper.

3) Clearly, G−→1 has at most twice as many edges as

G−→ = G−→0. Further, |E(G−→2)| ≤ |E(G−→1)| + |E(R−→)| and

|E(R−→)| = Õ(n) by Lemma IV.7. Finally |E(G−→3)| ≤
|E(G̃)| + |E(R−→)| = Õ(n) by Lemma IV.11 and

Lemma IV.7. .

4) Adding β times the undirectifaction to an Eulerian graph

increases the in- and out- degrees by exactly a factor

of (1 + β). Then the statement follows from the de-

gree preservation of our sparsification routines shown in

Lemma IV.7 and Lemma IV.11 and the extra scaling by
1
η of the undirected part of G−→3

Finally, the runtime follows from Theorem III.7.
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