
Binary Codes with Resilience Beyond 1/4 via
Interaction

Klim Efremenko
Ben-Gurion University

Be’er Sheva, Israel

klimefrem@gmail.com

Gillat Kol
Princeton University

Princeton, USA

gillat.kol@gmail.com

Raghuvansh R. Saxena
Microsoft Research
Cambridge, USA

raghuvansh.saxena@gmail.com

Zhijun Zhang
Princeton University

Princeton, USA

zhijunz@princeton.edu

Abstract—In the reliable transmission problem, a sender, Alice,
wishes to transmit a bit-string x to a remote receiver, Bob, over
a binary channel with adversarial noise. The solution to this
problem is to encode x using an error correcting code. As it is long
known that the distance of binary codes is at most 1/2, reliable
transmission is possible only if the channel corrupts (flips) at
most a 1/4-fraction of the communicated bits.

We revisit the reliable transmission problem in the two-way
setting, where both Alice and Bob can send bits to each other.
Our main result is the construction of two-way error correcting
codes that are resilient to a constant fraction of corruptions
strictly larger than 1/4. Moreover, our code has constant rate
and requires Bob to only send one short message. We mention
that our result resolves an open problem by Haeupler, Kamath,
and Velingker [APPROX-RANDOM, 2015] and by Gupta, Kalai,
and Zhang [STOC, 2022].

Curiously, our new two-way code requires a fresh perspective
on classical error correcting codes: While classical codes have
only one distance guarantee for all pairs of codewords (i.e.,
the minimum distance), we construct codes where the distance
between a pair of codewords depends on the “compatibility” of
the messages they encode. We also prove that such codes are
necessary for our result.

Index Terms—error correcting code, interactive communica-
tion, noise resilience

I. INTRODUCTION

As errors are everywhere, essentially any telecommunica-

tions system crucially uses error correcting codes. Classical

“one-way” error correcting codes date back to the 40’s [1]

and are designed to solve the reliable transmission problem,

where a sender, Alice, wishes to send a message x to a

remote receiver, Bob, but she can only communicate with

him over a noisy one-way channel that corrupts some of her

communication.

As the price of interaction goes down, systems are be-

coming more interactive. In this paper we study two-way
error correcting codes, that are designed to solve the same

problem, but work assuming a two-way channel instead of a

one-way channel, allowing the parties to interact. Specifically,

we consider the reliable transmission problem, where Alice

and Bob are connected by a pair of binary channels with

adversarial corruption noise (bit flips), one in each direction.

Klim Efremenko is supported by the Israel Science Foundation (ISF)
through grant No. 1456/18 and European Research Council Grant number:
949707. Gillat Kol is supported by a National Science Foundation CAREER
award CCF-1750443 and by a BSF grant No. 2018325.

The two most important parameters in the study of error

correcting codes are the (relative) distance and the rate of the

code. Plotkin showed in the 60’s [2] that the minimum (or even

average) relative distance of a binary error correcting code is

at most 1
2 , which implies that binary codes can be resilient to

up to 1
4 fraction of adversarial errors. Can interaction improve

the error resilience of binary codes?

A. Our Result

1) Main Result: Binary Two-Way Codes with Error Re-
silience > 1/4: The main result of this paper is Theorem I.1

(see Theorem V.1 for a formal statement), that gives a positive

answer to the above question, resolving an open problem by

Haeupler, Kamath, and Velingker (Section 6 in [3]) and by

Gupta, Kalai, and Zhang (Section 1.1 in [4]).

Theorem I.1 (Main, Informal). There exists a constant rate,
deterministic, binary two-way error correcting code with error
resilience 1

4 + 10−5, where Bob sends a single message.

We mention that in the two-way code we construct, Bob

sends a single message whose length is less than 2% of

the total communication, thus showing that even a minimal

amount of interaction can already improve the noise resilience

of binary codes, while keeping their rate constant. Finding the

maximal noise tolerance of (constant rate or even zero-rate)

binary two-way codes is an intriguing question we leave open.

2) Impossibility for Equally-Spaced Codes: To construct

the binary two-way code promised by Theorem I.1, we design

a new binary one-way code where the guaranteed distance

between certain carefully chosen pairs of “compatible” code-

words is strictly greater than 1
2 (at a high level, the adversary

is more likely to want to confuse bewteen these pairs of

codewords). Recall, however, that by the Plotkin bound, the

average distance of a binary code is at most 1
2 , thus the

distance between some of the other pairs of codewords is

strictly smaller than 1
2 .

Theorem I.2 below (see Theorem VI.1 for a formal state-

ment) shows that these types of codes are required to obtain

our result, as solely using equally-spaced codes, where the

distance between every pair of codewords is roughly equal, is

insufficient for breaking the 1
4 error resilience barrier. This is

in contrast to the one-way setting where equally-spaced codes

attain the maximum resilience (e.g., random binary codes are

1

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00008

equally-spaced and have resilience of 1
4). We also mention that

all prior work concerned with the noise resilience of two-way

channels and channels with feedback, surveyed in Section I-B,

essentially only uses equally-spaced codes (see Section II-C).

Theorem I.2 (Informal). The maximum error resilience of a
binary two-way error correcting code (of any rate) that uses
equally-spaced codes and has Bob sending a single message
is 1

4 .

a) Why non-equally-spaced: Intriguingly, when we

started this project over a year ago, we believed that the

answer to the above question should be negative, that is, that

binary two-way codes cannot break the 1
4 resilience barrier.

In fact, we had a sketch of an impossibility result designed

to show that any two-way code (say, with three messages,

Alice, Bob, Alice) is essentially of the following form, and

that codes of this form cannot have resilience better than 1
4 : On

input x, Alice sends x encoded by a list-decodable code (for

simplicity, assume lists are of size 2). Bob decodes to obtain

two candidates x1 and x2 with the promise x ∈ {x1, x2}.
Bob sends {x1, x2} encoded by a list-decodable code. Alice

decodes to obtain two candidates of the form {x, x3} and

{x, x4}. Observe that after this second message, the parties

are left with the following communication task F : Bob knows

{x1, x2} such that x ∈ {x1, x2}, Alice knows x, {x3, x4} such

that {x1, x2} ⊆ {x, x3, x4}. Bob wishes to learn x. The two-

way code then solves F with a single message from Alice to

Bob.

Our strategy for proving an impossibility result was to show

the following two lemmas: (1) A round elimination lemma

saying that a reliable transmission protocol with resilience γ
implies a one-message protocol for the task F with re-

silience γ. (2) A lemma showing that F cannot be solved with

a single message of constant size over the noiseless channel.1

We observed that under the assumption that Alice uses an

equally-spaced code C to solve F ,2 the second lemma implies

that the distance between any two messages she may send is at

most 1
2 .3 In this case F cannot have resilience better than 1

4 ,

and using the first lemma, we get our impossibility result.

However, as should be expected, despite our best effort, we

were unsuccessful in showing that the assumption is without

loss of generality... Nevertheless, under this assumption, we

were able to formalize this impossibility sketch, yielding

Theorem I.2 (see additional discussion in Section II-B).

We remark that most proofs are omitted in this version.

Interested readers are referred to the full version [7].

1The task F is interesting on its own right. In Section VI we show that
if x, x1, x2, x3, x4 ∈ [N], then the one-way communication complexity of
F is Θ(log logN). We also mention that F is very related to compression
efforts by [5], [6].

2That is, the set C of all possible messages by Alice for all possible inputs,
forms an equally-spaced code.

3In more detail, for equally-spaced codes, the distance between every pair
of codewords is roughly the minimum distance, and the minimum distance
of codes of super-constant size is 1

2
.

B. Related Work
1) Two-Way Erasure Codes: In a recent work, Gupta, Kalai,

and Zhang [4] study two-way error correcting codes over the

adversarial binary erasure channel, where the adversary may

replace some of the sent bits by ‘?’. Their main result is a code

that is resilient to a 3
5 fraction of adversarial errors, improving

on the noise tolerance of the one-way binary erasure channel

that is known to be 1
2 . Gupta and Zhang [8] give a two-way

code over the same channel that is also of constant rate. We

mention that the two-way coding schemes of [4], [8] exchange

(almost) linear number of messages and are generally very

different than ours.
[4] also give an upper bound of 2

3 on the maximum

tolerance of the two-way adversarial binary erasure channel,

and an upper bound of 2
7 on the maximum tolerance of the

two-way adversarial binary channel (the model assumed by

our work). As mentioned above, bridging the gap between

our lower bound on the noise tolerance and their upper bound

is a great problem.
2) Reliable Exchange and Interactive Coding:

a) Reliable exchange: In the reliable exchange problem,

two parties, Alice, holding a private input x, and Bob, holding

a private input y, communicate over the two-way binary

adversarial channel with the goal of learning each other’s

input. Observe that the reliable transmission problem is at

least as hard as the reliable exchange problem, in the sense

that a transmission protocol with resilience θ implies an

exchange protocol with resilience θ
2 : Alice sends x using the

transmission protocol, then Bob sends y using the transmission

protocol. Now, if an adversary corrupts at most θ
2 fraction of

the total communication, it also corrupts at most θ fraction of

each transmission and both transmissions go through. Since

one-way codes solve the transmission problem with error

resilience 1
4 , the exchange problem is easily solvable with error

resilience 1
8 .

Efremenko, Kol, and Saxena [9] show how to go beyond
1
8 and obtain an exchange protocol that is resilient to a 5

39
fraction of adversarial errors with a constant number of rounds

and constant overhead. As explained in Section II, we use [9]

as a stepping stone towards our two-way code. The resilience

constant was later improved by [10] from 5
39 to 1

6 , which was

known to be optimal [11], [12]. Note however, that the [10]

protocol has linear overhead and many communication rounds.
b) Interactive coding: The reliable exchange problem

(and therefore also reliable transmission) are special cases of

the interactive coding problem: Given a two-party communi-

cation protocol Π that works assuming the noiseless channel,

simulate Π by a protocol Π′ that works over a noisy channel.

The study of interactive coding was first suggested in seminal

works by Schulman [13]–[15], and is now an active research

area, see [16] for an excellent survey.
Observe that the transmission problem corresponds to the

noiseless protocol Π where Alice sends her input x, and the

exchange problem corresponds to Π where Alice sends her

input x and Bob sends his input y. The exchange problem

is also “complete” in the sense that after exchanging x and y

2

the parties can run any other protocol without communication.

Thus, an exchange protocol resilient to θ fraction of errors

implies an interactive coding scheme with the same resilience.

Note however that this scheme may have a huge overhead.

Braverman and Rao [17], building on [15], gave an interac-

tive code with constant overhead and optimal resilience of 1
4

for the case where the alphabet set is large, and showed that

it implies a binary interactive code with resilience 1
8 ; see also

[18] on asymmetric corruptions. [9] gave a binary interactive

code with constant overhead that is resilient to a 5
39 fraction of

errors (that is, they showed that their reliable exchange scheme

can be generalized to an interactive coding scheme).

The maximum resilience of interactive coding schemes was

also studied for other channels, such as the erasure channel,

the channel with feedback, and the insertion-deletion channel

[12], [19]–[24]. Another channel that received quite a bit of

attention in this context is the adaptive channel, where several

parties may speak at the same round and collisions may occur4

[25]–[28].
3) Reliable Transmission with Feedback: The works sur-

veyed so far consider two-way channels, but are inspired by

classical results from the 60’s showing that the maximum

resilience of one-way error correcting codes can be improved

assuming the channel provides feedback. At a very high level,

these two-way results work by implementing feedback (over

channels with no build-in feedback) using interaction.

In more detail, the feedback channel allows Alice to commu-

nicate symbols to Bob, but upon receiving each sent symbol,

Bob sends the received symbol back to Alice as feedback [29].

Alice can then use it when deciding what to send next. Note

that it is typically assumed that Bob’s feedback is not corrupted

by the channel.

Observe that any protocol that can be run over a two-way

channel can also be run over the feedback version of the same

channel: Given a communication protocol over the two-way

channel, Alice can simulate the messages sent by Bob as she

knows everything he knows (which, as Bob has no input, is

just his received transcript). The two main differences between

two-way channels and feedback channels are: (1) The noise in

a feedback channel is one-way: while the communication from

Alice to Bob may be noisy, the communication from Bob to

Alice is noiseless. (2) For a feedback channel, the length of the

communication is defined as the number of rounds where Alice

communicates (Bob’s feedback rounds do not count towards

the length of the protocol). In particular, the noise tolerance

is measured as a fraction of Alice’s rounds.

While Shannon showed that feedback does not increase

the maximum noise tolerance of stochastic channels [30],

feedback can, in fact, increase the noise tolerance of adver-

sarial channels [11], [31]–[33]. Specifically, it was shown by

Berlekamp that the noise tolerance of the binary adversarial

channel increases from 1
4 to 1

3 given feedback [11]. Haeupler,

Kamath, and Velingker [3] considered the setting where the

4More formally, the communication order is not predetermined. In every
round, each party may decide whether to send or listen depending on his input
and received transcript.

feedback is partial, and showed that even if Alice receives

feedback bits from Bob for an arbitrarily small constant

fraction of her transmissions, resilience close to 1
3 is possible.

Partial noisy feedback was considered by Wang, Qin, and

Chang [34], who constructed a binary two-way code that is

resilient to any constant fraction strictly smaller than 1 of

adversarial erasures from Bob to Alice, but only up to 1
2

fraction of adversarial erasures from Alice to Bob (cf. [4],

where the total noise tolerance is strictly greater than 1
2).

II. PROOF SKETCH

We now give a detailed overview of our main result, a 3-

message (or a 3-step) protocol for the reliable transmission

problem with error resilience strictly larger than 1
4 . Recall that

the maximum distance possible using a binary code depends

on the number of codewords it has. Precisely, if one wants an

even5 number C of codewords, then the maximum distance6

one can get equals C
2(C−1) . Put another way, this means that

if Alice wants to send one of C strings to Bob over a one-
way channel that corrupts (flips) a γ fraction of the symbols

sent, she can do this if and only if γ < C
4(C−1) . As C goes

to infinity, this bound becomes γ < 1
4 , which is the error

resilience of the one-way channel. However, for smaller values

of C, the error resilience is much higher: It is 1
2 when C = 2,

as demonstrated by the codewords 00 · · · 0 and 11 · · · 1, and 1
3

when C = 4, etc.
As a prelude to our main result, we first overview the result

of [9]. We mention that [9] were concerned with the reliable

exchange problem and the interactive coding question (see

Section I-B2), and that we are presenting a simplified and

slightly modified version of their scheme for the restricted

case where Bob has no input and the channel has one-way

error, meaning that the adversary can only corrupt symbols

sent from Alice to Bob, but cannot corrupt the ones sent from

Bob to Alice7.

A. The [9] Result: Beating 1
4 Given One-Way Error

At an extremely high level, the [9] protocol works by

using two-way communication (with one-way error) to reduce

the effective number of codewords that Alice and Bob need

to consider, and then uses the higher resilience guarantees

achievable by codes with small C to get an improved error

resilience.

In more detail, [9] describe a 3-message protocol where in

the first step, Alice sends to Bob an encoding of her input x
using a list-decodable error correcting code. Bob’s goal in this

step is not to recover x exactly, which would limit the error

5The bound is slightly different for odd numbers, but exhibits the same
phenomenon.

6Recall that the distance of a code is defined as the minimum distance
between any two codewords. However, the bound stated here even holds for
the average distance between pairs of codewords.

7The one-way error setting differs from the noiseless feedback setting
(see Section I-B3) in two respects: (1) It allows Bob to send any value it
wishes as feedback. (2) The length of the protocol is the total number of bits
communicated by both parties.

3

resilience to 1
4 , but instead to compute a set of size 2,8 say

S = {x1, x2} such that x ∈ S. This weaker guarantee, known

as list-decoding, allows the parties to tolerate strictly higher

than 1
4 errors in this step.

Then, in the second step, Bob sends the set S to Alice, and

the one-way error guarantee implies that Alice will always

receive the set S correctly. Additionally, the one-way error

guarantee also means that the second step can be arbitrarily

short.

Overall, these two steps guarantee that before the third step

begins, both Alice and Bob agree on a set S of size 2 that

contains x, and in the third step Alice only needs to tell Bob

which of the two elements in S is her correct input. As S is

of size 2, this can be done with a high error resilience using

the codes with small C discussed above.

B. Challenges in Going from One-Way to Two-Way Error

The [9] protocol described above breaks down once the

adversary is allowed to corrupt the bits sent from Bob to Alice

in the second step, in addition to those sent from Alice to

Bob in the first and the third steps. This poses the following

challenges:

a) No unique-decoding the second step: First and fore-

most, the guarantee that Alice and Bob agree on a small set

S containing x that [9] crucially relied on no longer holds in

the two-way error case. As the number of possible sets Bob

could send in this step is large, by corrupting just a 1
4 fraction

of this step, the adversary can make sure that the set Alice

decodes is different from the set Bob sent. This is fatal to the

protocol, as without the common knowledge of S, Bob has no

way to interpret the message sent by Alice in the third step,

which means he cannot output x.

b) List-decoding the second step seems insufficient: A

possible remedy that one might consider for the foregoing

problem is to have Bob send the set S to Alice using a list-

decodable error correcting code similarly to the way Alice sent

him x in the first step. This would allow Alice to have two

sets T1, T2, both containing x such that one of the two sets

equals S. One may then hope to suitably adapt the third step

of the protocol to work with this weaker guarantee while still

using codes with small C.

It turns out that such an adaptation is impossible. As we

show in Section VI, specifically, in Lemma VI.4, the third step

in any such adaptation must use a super-constant number C of

codewords (also see discussion after Theorem I.2). However,

a super-constant C means that the error resilience guarantee

reduces to 1
4 , and we get no improvement.

c) List-decoding the second step is impossible: Not only

does it seem hard to get a protocol that works given a list-

decoding guarantee for the second step (i.e., assuming Alice

obtains two sets T1, T2 such that one of them is S), but it

is actually impossible for Alice to obtain such sets T1, T2.

The reason is that any protocol for the transmission problem

8We mention that the bounds one gets for list-decoding implies that the set
S needs to be of size at least 3 to get guarantees better than 1

4
. Nonetheless,

for the sake of this sketch, we shall stick to sets of size 2.

with error resilience larger than 1
4 must have Bob speak in

at most a 1
4 fraction of the communication rounds. This is

because of a classical result by [11], [29] showing that even

when Alice knows everything Bob knows, the maximum error

resilience possible (as a fraction of Alice’s rounds) is 1
3 (see

Section I-B3). Therefore, if Bob speaks in more than a 1
4

fraction of the rounds, Alice speaks in at most 3
4 fraction of

the rounds. Now, even if the adversary does not corrupt Bob

at all and Alice knows everything Bob knows, the maximum

error resilience is at most 1
3 · 34 = 1

4 .9

However, the facts that Bob speaks in at most a 1
4 fraction

of the rounds, and that the adversary can corrupt strictly more

than a 1
4 fraction of the rounds, mean that the adversary can, if

he wants, corrupt Bob’s transmission entirely (that is, corrupt

the communication from Bob to Alice in all 3 steps). Since

Bob is effectively shut off with this attack, Alice will not be

able to obtain sets T1, T2 such that one of them is S. Thus,

even if one could adapt the third step of the [9] protocol

to work when Alice has a list of 2 sets (which has its own

challenges), one cannot guarantee that Alice will have this list.

C. Our Main Idea: Non-Equally-Spaced Codes

Although the challenges mentioned above make a pretty

solid case for an impossibility result, we were able to construct

a two-way scheme with resilience better than 1
4 using new

ideas. Our main new idea, and where our work differs most

significantly from all prior work, is the use of codes where

not all codewords are equally-spaced. Note that the distance

between any two codewords sent by Alice roughly captures

the amount of corruptions that the adversary needs to invest to

confuse Bob between those two codewords. We observe that,

in our protocol, some pairs of codewords are more prone to be

corrupted by the adversary than others, and ensure that such

pairs have a high distance to begin with, thereby implying that

the adversary needs a high number of corruptions to confuse

Bob.

Implementing this idea is not simple, as whatever code we

come up with still needs to obey the aforementioned bound

of C
2(C−1) on the average distance between codewords. Thus,

if we want to have a higher distance between some pairs of

codewords, we must also have a lower distance between some

other pair of codewords, and we need to ensure that these low

distance pairs are carefully chosen to not affect the overall

error resilience of our protocol.

Before explaining which pairs of codewords can have a

lower than average distance and which pairs need to be farther

apart, we mention that such a careful analysis of the distance

is a novelty of our paper. Most prior work in the area of error

resilience, and the area of binary codes in general, only uses

one measure, the minimum distance between two codewords,

when understanding the distance properties of a given code.

Moreover, many constructions have a lot of “symmetry”,

e.g., picking codewords at random, that implies the distance

9We mention that this idea can also be used to get an upper bound of 2
7

on the maximum error resilience, without any restriction on the number of
rounds Bob speaks in, see [4].

4

between any two pairs of codewords is more or less the same.

This also holds for the codes with small C that were used

in the [9] protocol and followup work (see Section I-B), with

[10] being a minor exception as the codes in [10], albeit not

equally-spaced overall, can be seen as a union of a small

number (four) of codes that are equally-spaced, and still have

the issues described above.

D. Distance Requirements for Pairs of Codewords

We now explain why our protocol benefits if certain pairs

of codewords are farther apart than other pairs of codewords.

Recall that our protocol has 3 steps, and let L1, L2, L3 be the

lengths of these steps, and let T = L1+L2+L3. Our protocol

sticks to the framework in Sections II-A and II-B for the first

two steps, using equally-spaced codes for these two steps.

In this section we are going to make the following two

simplifying assumptions: first is that at the end of the first step

Bob has a list of size two instead of three, second one is that

at the second round adversary can either completely corrupt

message to another codeword by investing L2/2 errors or not

to corrupt this message at all. Removing this assumptions is

not trivial and we will discuss it in details in Section II-F.

As a result, if x is the input that Alice starts the protocol

with, then at the end of the first step Bob has a set S of size

2 that is guaranteed to contain x. Moreover, Bob knows that

Alice’s encodings for the two elements of S are at least L1/2
apart in Hamming distance (as the list-decoding radius is 1

2).

For the second step, Alice gets a set T of size 2 that contains

x, as she knows that Bob encoded a set that contains x, but

is otherwise arbitrary. As Alice knows both T and x, this is

equivalent to her knowing an ordered pair (x, a), where x is

her input and a is the element in T that is different from her

input. Moreover, Bob knows that if Alice indeed got a set

T �= S, then the adversary must have invested at least L2/2
corruptions in the second step.

For the third step, Alice encodes an ordered pair (x, a), and

sends the encoding to Bob. As Bob knows a set S of size 2
that contains x, say S = {x, x′}, where x �= x′, he knows that

Alice either encoded a pair of the form (x, a) or a pair of the

form (x′, b), for some inputs a �= x, b �= x′, and his goal is

to use the messages he received in the first and third step to

figure out whether the pair sent was of the form (x, a) or the

form (x′, b). Note that he does not need to know what the pair

was exactly as his goal is to output Alice’s input (and not the

pair).

If the target error resilience is 1
4 + θ, Bob can achieve this

goal only if it is impossible for two pairs, one of the form

(x, a) and the other of the form (x′, b), to give rise to the

same messages (m1,m3) in the first and the third steps, with

at most
(
1
4 + θ

)
·T corruptions. With this in mind, let us now

look at the set of messages in the first and third steps that

the adversary can generate using
(
1
4 + θ

)
·T corruptions from

pairs of the form (x, a).
Let ECC1 and ECC3 denote the error correcting codes used

by Alice in the first and third steps respectively, so that

the messages Alice sends are ECC1(x) and ECC3(x, a). As

explained above, we either have a = x′ or the adversary spent

at least L2/2 corruptions in the second step. Let Δ denote the

Hamming distance, and let

f(x, x′,m1,m3) = Δ(ECC1(x),m1) + Δ(ECC3(x, x
′),m3).

The above discussion implies that all the pairs of messages

(m1,m3) that the adversary can generate using
(
1
4 + θ

)
· T

corruptions from the pair (x, a) must either satisfy a = x′ (that

is, Alice’s second element is one of the elements in Bob’s list)

and

f(x, x′,m1,m3) ≤
(
1

4
+ θ

)
· T, (1)

or satisfy a /∈ {x, x′} (that is, Alice’s second element is not

one of the elements in Bob’s list) and

f(x, a,m1,m3) ≤
(
1

4
+ θ

)
· T − L2

2
, (2)

Using these inequalities and the fact that Alice’s encodings

for x and x′ in the first step are L1/2 apart in Hamming dis-

tance, one gets that the following guarantees on the distances

between codewords of ECC3 are both necessary and sufficient

for a protocol to have error resilience 1
4 + θ:

1) For Bob to not be confused between messages for the

pairs (x, x′) and (x′, x) we need there not to be a pair

(m1,m3) that satisfies both f(x, x′,m1,m3) ≤
(
1
4 + θ

)
·

T and f(x′, x,m1,m3) ≤
(
1
4 + θ

)
·T . The reason is that

if Alice has (x, x′) then her input is x and her second

element is in Bob’s list. Similarly, if Alice has (x′, x)
then her input is x′ and her second element is in Bob’s

list. Thus, on both pairs we can use (1).

Take m1 to be the middle point between ECC1(x) and

ECC1(x
′) (a point with equal Hamming distance from

both) and m3 be the middle point between ECC3(x, x
′)

and ECC3(x
′, x). Very roughly, we claim that these are

the “worst” m1 and m3.

By summing the two f inequalities for this m1 and m3

we get

Δ(ECC1(x),ECC1(x
′)) + Δ(ECC3(x, x

′),ECC3(x
′, x))

≤ 2

(
1

4
+ θ

)
· T.

Recall that Δ(ECC1(x),ECC1(x
′)) = L1/2 and that T =

L1 + L2 + L3, and get that we must have:

Δ(ECC3(x, x
′),ECC3(x

′, x)) ≥ L3

2
+ 2θT +

L2

2
.

2) For Bob to not be confused between messages for the

pairs (x, a) and (x′, x) (and similarly for pairs (x, x′)
and (x′, b)), we must have:

Δ(ECC3(x, a),ECC3(x
′, x)) ≥ L3

2
+ 2θT.

This follows from a similar argument to Item 1 where we

use (1) on (x′, x) and (2) on (x, a).
3) For Bob to not be confused between messages for the

pairs (x, a) and (x′, b) (note that it is possible that a = b

5

but both are always different from x and x′), we must

have:

Δ(ECC3(x, a),ECC3(x
′, b)) ≥ L3

2
+ 2θT − L2

2
.

This follows from similar argument to Item 1 when we

use (2) on both pairs.

Importantly, as the number of pairs that require the weakest

possible guarantee in Item 3 above is much larger than those

requiring the stronger guarantees, if we choose θ > 0 small

enough so that L2 is significantly larger than θT , say, L2 =
16θT , these distance requirements do not violate the L3/2
bound on the average distance implied by the Plotkin bound.

Thus, such an ECC3 code is theoretically possible, and we

provide a construction below.

E. Location-Sensitive Codes: The Construction

The upshot of the discussion above is that the code Alice

uses in the third step to encode pairs must ensure that the

distance between the encodings of pairs that have one or two

common elements at different locations must be large (Items 1

and 2), while the distance between the encodings of pairs that

have no common elements or the common elements are at

the same location (Item 3) can be smaller than the distance

obtained by a random code.

We call such a code a location-sensitive code and note

that its distance guarantees are very different from standard

equally-spaced codes. To capture the fact that the distances

need to be larger between the encodings of two pairs where

the same element appears in different locations, we employ

the following approach while encoding a pair (s, t): Let C
be an equally-spaced code that encodes a single input s
and has relative distance 1

2 between pairs of codewords. We

construct our location-sensitive code LSC(s, t) by setting each

coordinate i to be coordinate i of C(s) with probability p and

coordinate i of C(t) with probability 1−p, for some carefully

selected p > 0. In other words, the encoding LSC(s, t) is

positively correlated with C(s) and negatively correlated with

C(t).

Roughly speaking, the above approach has the property

that for pairs (x, a) and (x′, x) where the same element

appears at different locations, the encodings LSC(x, a) and

LSC(x′, x) will be positively and negatively correlated with

C(x) respectively, and therefore should have a high distance.

In contrast, for pairs (x, a) and (x′, a) where the same element

appears at the same location, the encodings LSC(x, a) and

LSC(x′, a) will both be negatively correlated with C(a) and

will suffer from a lower distance. By choosing the parameters

carefully, we are able to meet the requirements in Section II-D.

F. Finalizing the Details

We finish the overview with a discussion of some remaining

issues that we have not covered well so far.

a) Other attacks in the second step: One assumption

that we made in our discussion above is that Alice always

gets the encoding of one pair in the second step. This loses

generality as nothing stops the adversary from giving Alice a

combination of the encoding of various pairs. To get around

this, we use list-decoding in the second step to give Alice a

pair of pairs that contains the right pair unless there were too

many corruptions.

When Alice tries to encode this pair of pairs in the third

step using a location-sensitive code, she actually just encodes

both the pairs separately, and simply sends a message that

is positively correlated with both the encodings. The actual

correlations intricately depend on the exact message received

by her in the second step, with larger correlations to one of

the pairs if the encoding of that pair was not too far from what

Alice received in the second step.

b) Sets arising from list-decoding: Another assumption

we made throughout the above sketch was that using list-

decodable codes allows the parties to compute sets of size

2 that are guaranteed to contain the correct codeword even

if there are strictly more than 1
4 errors. This assumption is

not correct for binary codes, and one needs to have sets of

size at least 3. Correspondingly, in the actual proof, we make

the entire argument above work with list-decodable codes that

yield lists of size 3.

One crucial change this entails is that our location-sensitive

codes must also now take triples instead of pairs. While we

believe that such location-sensitive codes still exist, we found

it easier to convert triple to pairs in the following way: When

Alice wants to encode a triple (x, a, b), where x is her true

input and a, b �= x, she instead encodes the pairs (x, a) and

(x, b) and sends a message positively correlated with both

these encodings. We then are able to make the analysis work

by carefully controlling the correlations, which forms a lot of

the technical work in this paper.

III. MODEL AND PRELIMINARIES

A. Notation

All logarithms are base 2. We use log(k) n to denote the

k-times iterated logarithms of n. For n ∈ N, x, y ∈ {0, 1}n,

we denote by Δ(x, y) = |{i ∈ [n] | xi �= yi}| the Hamming

distance between x and y. For a set S and an integer k ≥ 0,

the notation
(
S
k

)
denotes the set of all subsets of S that have

exactly k elements. Also define, for a set S, the set D(S) to

be the set of all distributions over S.

B. The Binary Two-Way Communication Channel

We now define (deterministic) protocols over the binary

two-way communication channel. Such a protocol is defined

by a tuple:

Π =
(
XA,XB ,Y, T, p, fA, fB , out

)
,

where (1) XA is the set of all possible inputs for Alice, (2) XB

is the set of all possible inputs for Bob, (3) Y is the set of all

possible outputs (for Bob), (4) T is the length of the protocol

(the number of rounds), (5) p ∈ {A,B}T is the order of turns,

6

(6) fA : XA×{0, 1}<T → {0, 1} is the message function for

Alice, (7) fB : XB × {0, 1}<T → {0, 1} is the message

function for Bob, (8) out : XB × {0, 1}T → Y is the output

function (for Bob).

a) Execution of a protocol: An adversary for such a

protocol is defined by a function Adv : XA×XB → {0, 1}T .

For i ∈ [T], we shall use Advi(·) to denote the function that

outputs the ith bit of Adv(·). We next define an execution of Π
in the presence of an adversary Adv for Π: At the beginning

of the execution, Alice starts with an input xA ∈ XA and Bob

starts with an input xB ∈ XB . The execution consists of T
rounds and before the ith round, for i ∈ [T], Alice and Bob

have transcripts πA, πB ∈ {0, 1}i−1 respectively. In round

i, if pi = A, then Alice transmits the symbol fA(xA, πA)
while Bob receives the symbol Advi(x

A, xB). Both the parties

add these symbols to πA and πB respectively. Similarly, if

pi = B, then Bob transmits the symbol fB(xB , πB) while

Alice receives the symbol Advi(x
A, xB). Both the parties add

these symbols to πA and πB respectively.

After T such rounds, Bob outputs out(xB , πB). Observe

that this execution, and therefore πA and πB , are completely

determined by xA, xB , Π, and Adv. We denote the output

of Π on inputs xA ∈ XA and xB ∈ XB in the presence of

adversary Adv by outΠ,Adv(x
A, xB).

b) Phases: We say that i ∈ [T − 1] is an alternation
round of Π if pi+1 �= pi. Assume that Π has P alternations

and let i1 < i2 < i3 < · · · < iP be all alternation rounds.

Define i0 = 0 and iP+1 = T . For t ∈ [P + 1], we define

Phase t of Π as the set of rounds (it−1, it]. Informally, Phase

t is the tth message by one of the parties.

c) Corruptions: Consider an execution of Π in the pres-

ence of the adversary Adv. For R ⊆ [T], xA ∈ XA, and

xB ∈ XB , we define the number of corruptions in the rounds

in R to be

corrΠ,Adv,R(x
A, xB) =

∑
i∈R

�
(
πA
i �= πB

i

)
.

Recall that πA, πB are completely determined by xA, xB ,

Π, and Adv and therefore corr is well defined. We omit the

subscript R when R = [T].

d) Computing a function: Let I ⊆ XA × XB and

let γ ∈ [0, 1]. Let F : I → Y be a (possibly par-

tial) function. Let Π =
(
XA,XB ,Y, T, p, fA, fB , out

)
be

a protocol. We say that Π computes F against a γ frac-

tion of corruptions if for all adversaries Adv and all inputs

(xA, xB) ∈ I, it holds that outΠ,Adv(x
A, xB) = F (xA, xB)

as long as corrΠ,Adv(x
A, xB) ≤ �γT 	. Similarly, we say

that Π computes F against a γ fraction of corruptions per
phase if for all adversaries Adv and all inputs (xA, xB) ∈ I,

it holds that outΠ,Adv(x
A, xB) = F (xA, xB) as long as

corrΠ,Adv,(it−1,it](x
A, xB) ≤ �γ(it − it−1)	 for all t ∈ [P +1]

(recall that rounds (it−1, it] constitute Phase t).

1) Protocols with EQUALLY SPACED CODE: Let n, k ∈ N

and C ⊆ {0, 1}n be such that |C| = k. Let δ > 0. We say

that C is a δ-EQUALLY SPACED CODE if for all c1, c2 ∈ C it

holds that

Δ(c1, c2) ≤
{(

k
2(k−1) + δ

)
n, if k is even(

k+1
2k + δ

)
n, if k is odd

.

We mention that the Plotkin bound implies that for any code

C the average distance, Δ(c1, c2), between two codewords

c1, c2 ∈ C satisfies the last inequality, even with δ = 0. Thus,

a code C is an EQUALLY SPACED CODE if all the distances

are at most the best possible average distance of a binary code.

Let Π be a protocol of length T over the binary two-way

communication channel. For every Phase t ∈ [P +1] of Π, let

Ct,I,γ be the set of all possible messages sent in Phase t for in-

puts in I and adversaries with at most γ fraction of corruptions

per phase. More formally, if Alice is the sender in Phase t,
then Ct,I,γ is πA

(it−1,it]
for all possible transcripts πA obtained

by taking all possible input pairs (xA, xB) ∈ I and adversaries

Adv with ∀t′ ∈ [t − 1] : corrΠ,Adv,(it′−1,it′](x
A, xB) ≤

�γ(it′ − it′−1)	. (Recall that πA is completely determined by

xA, xB , Π, and Adv.) Similarly, for the case that Bob is the

sender in Phase t.
Let δ > 0. We say that Π uses (I, γ, δ)-EQUALLY SPACED

CODE if for all t ∈ [P + 1] the set Ct,I,γ is a δ-EQUALLY

SPACED CODE.

2) The Message Transfer Function: We now define the

message transfer function MsgTrans that is the focus of this

paper. Let n ∈ N. The message transfer function MsgTransn :
{0, 1}n × {⊥} → {0, 1}n is given by MsgTransn(x,⊥) = x
for all x ∈ {0, 1}n.

IV. LOCATION-SENSITIVE CODES

This section is devoted to the construction of our location-
sensitive code C, formally stated in Theorem IV.1 below. This

code encodes a pair of binary strings (x1, x2) ∈ {0, 1}n ×
{0, 1}n such that the distance between the encodings of

two different pairs, Δ = Δ
(
C(x1,1, x1,2), C(x2,1, x2,2)

)
,

satisfies:

1) If the two pairs do not share an element, i.e.,
|{x1,1, x1,2} ∩ {x2,1, x2,2}| = 0, then Δ = 1

2 .

2) If the two pairs share a single element and the element is

in the same location, i.e., |{x1,1, x1,2} ∩ {x2,1, x2,2}| = 1
and ∃j ∈ [2] : x1,j = x2,j , then Δ is a constant smaller

than 1/2.

3) If the two pairs share a single element and the element is

in different locations, i.e., |{x1,1, x1,2} ∩ {x2,1, x2,2}| =
1 and ∃j ∈ [2] : x1,j = x2,3−j , then Δ is a constant

greater than 1/2.

4) If the two pairs share both elements, i.e.,
|{x1,1, x1,2} ∩ {x2,1, x2,2}| = 2, then Δ is a constant

strictly greater than 1 minus the constant in Item 2 (and,

in particular, greater than 1/2).

Theorem IV.1. For all ε > 0, there exists a constant K5 such
that for all K ′ ≥ K5 and n > 0, there exists a code C :

{0, 1}n × {0, 1}n → {0, 1}K
′n such that the following holds

7

for all (x1,1, x1,2), (x2,1, x2,2) ∈ {0, 1}n × {0, 1}n satisfying
xi,1 �= xi,2 for all i ∈ [2]:∣∣∣∣ 1

K ′n
·Δ

(
C(x1,1, x1,2), C(x2,1, x2,2)

)
−
(
1

2
+ η

)∣∣∣∣ ≤ ε,

where:

η = − 1

128
·
∑

j,j′∈[2]
(−7)4−j−j′ · 1(x1,j = x2,j′).

(Note that η may be positive.)

To prove Theorem IV.1, we will need some (fairly standard)

results about random codes (given in Section IV-A), as well

as new ideas (given in Sections IV-B and IV-C).

A. Random Coding

Define the function reg : [4]→ R as follows:

reg(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, z = 1
1
2 , z = 2
3
4 , z = 3
5
4 , z = 4

.

Roughly speaking, reg(z) for z ∈ [4] captures the expected

sum of the fractional Hamming distance of any z codewords

to the bitwise majority of the z codewords when the code is

chosen uniformly at random. Using the probabilistic method,

we show a code for which these fractional Hamming distances

are always attained.

Lemma IV.2. For all ε > 0, there exists a constant K1 such
that for all K ′ ≥ K1 and n > 0, there exists a code C :

{0, 1}n → {0, 1}K
′n such that the following holds for all

z ∈ [4], distinct x1, . . . , xz ∈ {0, 1}n, and (not necessarily
distinct) bits b1, . . . , bz ∈ {0, 1}:∣∣∣∣∣∣

1

K ′n
·

∑
j∈[K′n]

1
(
∀i ∈ [z] : Cj(xi) = bi

)
− 1

2z

∣∣∣∣∣∣ ≤ ε.

Corollary IV.3. For all ε > 0, there exists a constant K2

such that for all K ′ ≥ K2 and n > 0, there exists a code
C : {0, 1}n → {0, 1}K

′n such that the following holds for all
z ∈ [4] and distinct x1, . . . , xz ∈ {0, 1}n:∣∣∣∣∣∣

1

K ′n
·

∑
j∈[K′n]

min
b∈{0,1}

∑
i∈[z]

Δ
(
Cj(xi), b

)
− reg(z)

∣∣∣∣∣∣ ≤ ε.

B. The Code Merging Operation

Lemma IV.4. For all ε > 0, k,m ∈ N, and a set D ∈
(D([k])

m

)
,

there exists a constant K3 such that for all K ′ ≥ K3, n > 0,
a set S with |S| ≤ 2n, and codes Cj : S → {0, 1}n for all
j ∈ [k], there exists a code C : Sk × D → {0, 1}K

′n such
that the following holds for all distinct

(
(si,j)j∈[k], di

)
i∈[2]

∈(
Sk ×D

)2
:∣∣∣Δ(C((s1,j)j∈[k], d1), C((s2,j)j∈[k], d2))−∇∣∣∣ ≤ εK ′n,

where:

∇ = K ′ ·
∑

j,j′∈[k]
d1(j)d2(j

′) ·Δ
(
Cj(s1,j), Cj′(s2,j′)

)
.

C. Proof of Theorem IV.1

Lemma IV.5 below constructs an error correcting code that

encodes a binary string and a bit (x, �) ∈ {0, 1}n × {0, 1}
such that the distance between the encodings of two different

messages, Δ
(
C(x1, �1), C(x2, �2)

)
, is 1/2 if x1 �= x2 and

is 1 if x1 = x2. Note that in the latter case, we must have

�1 �= �2.

Lemma IV.5. For all ε > 0, there exists a constant K4 such
that for all K ′ ≥ K4 and n > 0, there exists a code C :

{0, 1}n × {0, 1} → {0, 1}K
′n such that the following holds

for all x1, x2 ∈ {0, 1}n and �1, �2 ∈ {0, 1}:∣∣∣∣ 1

K ′n
·Δ

(
C(x1, �1), C(x2, �2)

)
−
(
1

2
+ κ

)∣∣∣∣ ≤ ε,

where:

κ =
1

2
· (−1)�1+�2+1 · 1(x1 = x2).

(Note that κ may be negative.)

We are now ready to prove the main result of this section,

Theorem IV.1.

Proof of Theorem IV.1: Let K4 be the constant

from Lemma IV.5 for ε′ = ε
2 , and C ′ : {0, 1}n × {0, 1} →

{0, 1}K4n the code guaranteed by Lemma IV.5 for K4, n.

Define C1(·) := C ′(·, 0) and C2(·) := C ′(·, 1). Let K3

be the constant from Lemma IV.4 for ε′, k = 2,m = 1
and D being the singleton set containing the distribution μ
over [2] that gives a probability of 7

8 to 1 and a probability

of 1
8 to 2. Set K5 = K4K3. For all K ′ ≥ K5, let

C0 : ({0, 1}n)2 × D → {0, 1}K
′n

be the code guaranteed

by Lemma IV.4 for K ′/K4,K4n and codes C1, C2. We show

the following code C satisfies the lemma:

C(x1, x2) := C0(x1, x2, μ).

By Lemma IV.4, we get that for all

(x1,1, x1,2), (x2,1, x2,2) ∈ {0, 1}n × {0, 1}n as in the

lemma statement, we have:

∇− ε′K ′n ≤ Δ
(
C(x1,1, x1,2), C(x2,1, x2,2)

)
≤ ∇+ ε′K ′n,

where, using Lemma IV.5, we have:

(κ∗ − ε′) ·K ′n ≤ ∇ ≤ (κ∗ + ε′) ·K ′n,

and:

κ∗ =
∑

j,j′∈[2]

74−j−j′

64
·
(
1

2
+

(−1)j+j′+1

2
· 1(x1,j = x2,j′)

)
.

To finish the proof, note that η = κ∗ − 1
2 and ε = 2ε′.

8

V. OUR PROTOCOL

We formalize Theorem I.1 as Theorem V.1:

Theorem V.1. Define θ = 10−5. There exists a constant K
such that for all n ∈ N there exists a two party protocol Π =
Πn with length T = Kn that computes the message transfer
function MsgTransn against a

(
1
4 + θ

)
fraction of corruptions.

In this section we give the protocol that proves Theorem V.1.

We first give the notation and definitions used by the protocol

(Sections V-A to V-C). The protocol itself is in Algorithm 1

(Section V-D).The analysis of Algorithm 1 (and the proof of

Theorem V.1) is deferred to the full version [7].

For the rest of this section, since Bob has only one possible

input xB = ⊥ in a protocol Π for MsgTransn, we omit Bob’s

input from our notation (e.g., we write outΠ,Adv(x) to mean

outΠ,Adv(x
A = x, xB = ⊥)).

A. Stories

We heavily rely on the following definition of a story.

Definition V.2. Let n,M ∈ N. We define an (n,M)-story to be
a tuple Z = (x, U, V, w) ∈ {0, 1}n×

({0,1}n
2

)
×
({0,1}n

4

)
× [M]

such that U ∩ V = ∅ and x /∈ U ∪ V . Denote by Storiesn,M
the set of all (n,M)-stories.

a) The function story(·): Recall that our algorithm starts

with Alice sending her input x using a list-decodable code.

This allows Bob to compute a set S of size 3 that contains x.

Bob then sends this set S back to Alice using another list-

decodable code, which allows Alice to compute three sets

T1, T2, T3 ∈
({0,1}n

3

)
such that all of them contain x and

(if not too many errors were introduced), one of them is S.

Additionally, Alice can compute the distance w ∈ [M] of

the message she receives to the closest correct codeword (see

Line 4). Thus, before Phase 3, Alice can compute a tuple

T = (T1, T2, T3, w), which is guaranteed to be an element of

the set Data defined next.

Definition V.3. For x ∈ {0, 1}n, we define the set Data(x)
to be the set containing all tuples T = (T1, T2, T3, w) ∈({0,1}n

3

)3 × [M] such that T1, T2, T3 are distinct and x ∈⋂
�∈[3] T�. We also define the set Data =

⋃
x∈{0,1}n Data(x).

Next, we define a function story(·) that Alice can use to

take a tuple T ∈ Data(x) and her input x to output a story

story(x, T) ∈ Storiesn,M she can encode in Phase 3. More

precisely, we define story(x, T) = (x, U, V, w), where U =
T1 \{x} and V is the set (T2∪T3)\T1 padded using dummy

elements to have size 4.

B. Location-Sensitive Codes for Stories

Our protocol uses a location-sensitive code that encodes

stories, given in Lemma V.4, and is based on the location-

sensitive code constructed in Section IV. This code uses the

following functions d1, d2, d3 : [0, 1]→ [0, 1]:

d1(z) = z,

d2(z) = max

(
z,

1

2
− z

)
,

d3(z) = max

(
z,

1

2
− z,

5

12
− z

3

)
.

Lemma V.4. For all ε > 0 and M ∈ N, there exists a constant
K6 such that for all K ′ ≥ K6 and n > 0, there exists a
code C : Storiesn,M → {0, 1}K

′n such that the following
holds for all Z1 = (x1, U1, V1, w1),Z2 = (x2, U2, V2, w2) ∈
Storiesn,M satisfying x1 �= x2:

Δ
(
C(Z1), C(Z2)

)

≥

⎛
⎝0.5511− ε− 0.1 ·

∑
i∈[2]

d(x3−i, Ui, Vi, wi)

⎞
⎠ ·K ′n,

where:

d(y, U, V, w) =

⎧⎪⎨
⎪⎩
d1
(
w
M

)
, if y ∈ U

d2
(
w
M

)
, if y ∈ V

d3
(
w
M

)
, if y �∈ U ∪ V

.

We defer the proof of Lemma V.4 to the full version [7].

C. Protocol Definitions

a) Constants: We shall assume that there are at least

20 “dummy” strings (strings that cannot be inputs for Alice)

in {0, 1}n. This is without loss of generality as one can

simply increase n by 10 and have enough dummy strings. We

define ε = θ10 and M = 480
ε . Let K2 be the constant from

Corollary IV.3 for this value of ε. Similarly, let K6 be the

constant from Lemma V.4 for this value of ε and M . Define

K = 9010 ·max(K2,K6) and the parameters:

L1 =
401

500
·K, L2 =

9

500
·K, L3 =

90

500
·K.

Note that all these parameters are integers divisible by 3 and

larger than max(K2,K6).

b) Error correcting codes: Fix n > 0 for the rest of

this paper. The protocol Π that we define shall use several

different types of codes, which we define next. Let ECC1 and

ECC2 be the codes promised by Corollary IV.3 for L1, n and

L2/3, 3n respectively. Also, let ECC3 be the code promised

by Lemma V.4 for L3, n.

c) The function corr-lb(2)(·): As explained above, in

Phase 3, Alice sends the encoding of a story to Bob. To

compute its output, Bob decodes this message together with

the message he received in Phase 1. During this decoding, he

will also need to estimate (actually, lower bound) the number

of corruptions in Phase 2.

This is done using a function corr-lb(2)(·), parameterized

by the set S ∈
({0,1}n

3

)
that Bob computed in Phase 1, and

9

Algorithm 1 The MsgTrans protocol Π.

Input: Alice has input x ∈ {0, 1}n.

Output: Bob outputs y ∈ {0, 1}n.

Phase 1:

1: Alice sends ECC1(x) bit by bit over L1n rounds.

2: Bob receives ρ ∈ {0, 1}L1n and computes

S = argmin
S′∈({0,1}

n

3)

∑
x′∈S′

Δ(ECC1(x
′), ρ).

Phase 2:

3: Bob sends ECC2(S) bit by bit over L2n rounds.

4: Alice receives σ ∈ {0, 1}L2n. She orders all sets T ∈({0,1}n
3

)
containing x in increasing order of the value

Δ(ECC2(T), σ), and denotes by T1, T2, T3 the first three

sets in this ordering, with T1 being the first. Let T =

(T1, T2, T3, w) where w =
⌈
M · Δ(ECC2(T1),σ)

L2n

⌉
.

Phase 3:

5: Alice sends ECC3(story(x, T)) bit by bit over L3n
rounds.

6: Bob receives τ ∈ {0, 1}L3n and outputs

y = argmin
x′∈S

corr-lb(x′),

where

corr-lb(x′)

= Δ(ECC1(x
′), ρ) + min

T ′∈Data(x′)

(
corr-lb

(2)
S (T ′)

+ Δ
(
ECC3(story(x

′, T ′)), τ
))

.

takes as input T ∈ Data, which is Bob’s candidate for what

Alice may have encoded in Phase 2. Formally,

corr-lb
(2)
S (T) = L2n ·

⎧⎪⎨
⎪⎩
d1
(
w
M

)
, if S = T1

d2
(
w
M

)
, if S = T2 or S = T3

d3
(
w
M

)
, otherwise

.

At a high level, corr-lb
(2)
S (T) is a lower bound on the

number of corruptions in Phase 2 when S is the set Bob

computed in Phase 1 and T is the data Alice computed in

Phase 2. Note however that none of the parties can actually

compute corr-lb
(2)
S (T) as they do not know both S and T .

D. The Protocol

We are now ready to define the protocol Π in Algorithm 1.

We note that ties in all argmin are broken arbitrarily.

VI. IMPOSSIBILITY RESULT FOR EQUALLY SPACED CODE

In this section we prove Theorem VI.1 below, which is the

formal version of Theorem I.2.

Theorem VI.1. For any θ > 0, there exists n0 > 0 such that
for every n ≥ n0, there does not exist a 3-phase protocol using

(
{0, 1}n, 1

4 + θ, θ
2

)
-EQUALLY SPACED CODE that computes

MsgTransn against a
(
1
4 + θ

)
fraction of corruptions.

A. Proof of Theorem VI.1

The proof of Theorem VI.1 uses the following functions:

1) F1,N : Let I1,N = [N]×{⊥}. Define F1,N : I1,N → [N]
by F1,N (x,⊥) = x.

2) F2,N : Let I2,N =
{
(x,B) ∈ [N]×

(
[N]
2

)
| x ∈ B

}
. De-

fine F2,N : I2,N → [N] by F2,N (x,B) = x.

3) F3,N : Let I3,N =
{(

(x,A), B
)
∈
(
[N]×

(
[N]
2

))
×
(
[N]
2

)
| x ∈ B, x /∈ A, B ⊆ A∪{x}

}
. Define F3,N : I3,N →

[N] by F3,N

(
(x,A), B

)
= x.

For i ∈ [3], we are interested in (4 − i)-phase protocols

using EQUALLY SPACED CODE that computes Fi,N against a(
1
4 + θ

)
fraction of corruptions per phase for θ > 0. Without

loss of generality, we assume protocols alternate between Alice

and Bob across phases with Alice always sending in the last

phase.

To prove Theorem VI.1, we first note that for N = 2n, F1,N

is MsgTransn, thus we need to prove a lower bound against 3-

phase protocols for F1,N . To this end, we show that a 3-phase

protocol using EQUALLY SPACED CODE that computes F1,N

against a
(
1
4 + θ

)
fraction of corruptions per phase for θ > 0,

implies a similar 2-phase protocol that computes F2,N ′ , for

some smaller N ′ (Lemma VI.2). We then show that a 2-phase

protocol that computes F2,N ′ implies a 1-phase protocol that

computes F3,N ′′ , for some even smaller N ′′ (Lemma VI.3).

Finally, we give a lower bound against any 1-phase protocol

that computes F3,N ′′ (Lemma VI.4).

We mention that the (noiseless) communication complexity

of F2,N was studied by [5], who showed a tight bound of

Θ(logN). Furthermore, his upper bound protocol consists of

only two phases. Observe that a 2-phase protocol for F2,N

implies a 1-phase protocol for F3,N . Lemma VI.4 gives an

Ω(log logN) lower bound on the communication complexity

of a 1-phase protocol for F3,N . While our result in this

paper does not require an upper bound for this problem,

in Section VI-B we include a matching O(log logN) upper

bound as we believe it may be of independent interest. We also

remark that the 1-phase complexity of F3,N is closely related

to the question of deterministic compression with uncertain

priors studied in [6].

We will use the following definition: For n > 0 and x, y ∈
{0, 1}n we define the string mid(x, y) ∈ {0, 1}n. Informally,

mid(x, y) is a string whose Hamming distance from x and

from y is equal (up-to ±1). Formally, if i1 < i2 < · · · <
iΔ(x,y) are the elements of {i ∈ [n] | xi �= yi}, then, for all

i ∈ [n], coordinate i of the string mid(x, y) is defined as:

mid(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
xi, if ∀j ∈ [Δ(x, y)] : i �= ij

xi, if ∃j ∈
[⌈

Δ(x,y)
2

⌉]
: i = ij

yi, if ∃j ∈ [Δ(x, y)] \
[⌈

Δ(x,y)
2

⌉]
: i = ij

.

10

1) Going from 3 Phases to 2:

Lemma VI.2. If there exists a 3-phase protocol Π us-
ing

(
I1,N , 1

4 + θ, θ
2

)
-EQUALLY SPACED CODE that computes

F1,N against a
(
1
4 + θ

2

)
fraction of corruptions per phase,

where N, θ > 0, then there also exists a 2-phase protocol
Π′ using

(
I2,θN , 1

4 + θ, θ
2

)
-EQUALLY SPACED CODE that

computes F2,θN against a
(
1
4 + θ

2

)
fraction of corruptions per

phase.

2) Going from 2 Phases to 1:

Lemma VI.3. If there exists a 2-phase protocol Π us-
ing

(
I2,N , 1

4 + θ, θ
2

)
-EQUALLY SPACED CODE that computes

F2,N against a
(
1
4 + θ

2

)
fraction of corruptions per phase,

where N, θ > 0, then there also exists a 1-phase protocol
Π′ using

(
I3,logθ N , 1

4 + θ, θ
2

)
-EQUALLY SPACED CODE that

computes F3,logθ N against a
(
1
4 + θ

2

)
fraction of corruptions

(per phase).

3) Lower Bound for 1 Phase:

Lemma VI.4. For any 1-phase protocol Π computing F3,N ,
Alice uses at least log logN distinct codewords across all
possible inputs.

Finally, we are ready to prove Theorem VI.1.

Proof of Theorem VI.1: We first claim that a 3-phase

protocol that computes MsgTransn (even against a 0 fraction

of corruptions) must have at least logn
10 rounds. Suppose there

exists a 3-phase protocol that computes MsgTransn with T <
logn
10 rounds, then there also exists a 1-phase protocol that

computes MsgTransn with 4T rounds. But a 1-phase protocol

that computes MsgTransn (one message from Alice to Bob)

must communicate at least n bits, a contradiction.

Fix θ > 0 and let n0 be an arbitrary integer such that

log log
(
log

θ
100

(
θ

100 · n0

))
≥ 100

θ . Let n ≥ n0. We next claim

that any 3-phase protocol Π that computes MsgTransn against

a
(
1
4 + θ

)
fraction of corruptions, also computes MsgTransn

against a
(
1
4 + θ′

)
fraction of corruptions per phase, where

θ′ = θ
2 . To see this, for t ∈ [3], let Lt be the length of Phase

t of Π, and let T = L1 + L2 + L3. Let Adv be an adversary

for Π that corrupts at most
⌈(

1
4 + θ′

)
Lt

⌉
rounds in Phase t.

The total number of rounds that are corrupted by Adv is at

most
(
1
4 + θ′

)
T + 3, which is no more than

⌈(
1
4 + θ

)
T
⌉

as

T ≥ logn
10 ≥ 10

θ .

Let N = 2n. Observe that F1,N is exactly MsgTransn.

Thus, it remains to show that there is no 3-phase protocol Π us-

ing
(
I1,N , 1

4 + θ, θ′
)
-EQUALLY SPACED CODE that computes

F1,N against a
(
1
4 + θ′

)
fraction of corruptions per phase.

We prove the last claim by contradiction. Assume that there

exists a 3-phase protocol Π using
(
I1,N , 1

4 + θ, θ′
)
-EQUALLY

SPACED CODE that computes F1,N against a
(
1
4 + θ′

)
frac-

tion of corruptions per phase. We can apply Lemmas VI.2

and VI.3 in sequence to get a 1-phase protocol Π′ using(
I3,N ′ , 1

4 + θ, θ′
)
-EQUALLY SPACED CODE that computes

F3,N ′ against a
(
1
4 + θ′

)
fraction of corruptions, where N ′ =

logθ
′
(θ′N). Furthermore, Lemma VI.4 shows Alice must use

Algorithm 2 The protocol computing F3,N .

Input: Alice has input A =
(
xA
1 ,
{
xA
2 , x

A
3

})
∈ [N] ×

(
[N]
2

)
,

and Bob has input B =
{
xB
1 , x

B
2

}
.

Output: Bob outputs y ∈ [N].

Alice:

1: Alice finds the smallest index i1 ∈ [logN] such that

xA
1,i1

�= xA
2,i1

and the smallest index i2 ∈ [logN] such

that xA
1,i2

�= xA
3,i2

. Alice also tries to find an index

j ∈ [log logN] such that i1,j �= i2,j .

2: Alice sends a codeword to Bob as follows (the first

satisfying case applies):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0, 0), xA
2 , x

A
3 ≥ xA

1

(0, 1, 1), xA
2 , x

A
3 ≤ xA

1(
j,1

(
xA
1 > xA

2

)
,1
(
xA
1 > xA

3

))
, i1,j < i2,j(

j,1
(
xA
1 > xA

3

)
,1
(
xA
1 > xA

2

))
, i1,j > i2,j

. (3)

Bob:

3: Bob finds the smallest index i′ ∈ [logN] such that xB
1,i′ �=

xB
2,i′ .

4: Bob receives (j′, b0, b1) from Alice and outputs

y =

{
min

(
xB
1 , x

B
2

)
, (j′, b1, b2) = (0, 0, 0) or bi′

j′
= 0

max
(
xB
1 , x

B
2

)
, (j′, b1, b2) = (0, 1, 1) or bi′

j′
= 1

.

at least N ′′ = log logN ′ distinct codewords across all possible

inputs in Π′. However, this contradicts the assumption that

Π′ is using
(
I3,N ′ , 1

4 + θ, θ′
)
-EQUALLY SPACED CODE since

1
2 + 1

2(N ′′−1) + θ′ is less than 2 ·
(
1
4 + θ′

)
under the above

assumptions.

B. Tightness of Lemma VI.4

In this section, we present a simple 1-phase protocol com-

puting F3,N . It shows the lower bound of Lemma VI.4 is

essentially tight up to constant factors.

Theorem VI.5. There exists a 1-phase protocol computing
F3,N in which Alice uses O(log logN) distinct codewords
across all possible inputs.

The protocol proving Theorem VI.5 is presented in Algo-

rithm 2. In Algorithm 2, we identify an integer x ∈ [N]
with a (logN)-bit string corresponding to its binary repre-

sentation, from its most significant bit to its least significant

bit. Similarly, we also identify an integer i ∈ [logN] with a

(log logN)-bit string corresponding to its binary representa-

tion, from its most significant bit to its least significant bit.

The length of the string can always be inferred from context.

It is not hard to see Alice uses O(log logN) distinct

codewords across all possible inputs. Now, we first show that

the protocol is well-defined as (3) covers all possible cases.

In particular, if there exists no such index j (equivalently,

i1 = i2), one of the first two cases of (3) must hold.

11

Claim VI.6. If i1 = i2, then it holds that either xA
1 =

min
(
xA
1 , x

A
2 , x

A
3

)
or xA

1 = max
(
xA
1 , x

A
2 , x

A
3

)
.

Then, we finish the proof of Theorem VI.5 by showing the

correctness of Algorithm 2.

Proof of Theorem VI.5: When j′ = 0, since

xA
1 ∈

{
xB
1 , x

B
2

}
⊆

{
xA
1 , x

A
2 , x

A
3

}
, it is clearly that either

y = min
(
xB
1 , x

B
2

)
= min

(
xA
1 , x

A
2 , x

A
3

)
= xA

1 or y =
max

(
xB
1 , x

B
2

)
= max

(
xA
1 , x

A
2 , x

A
3

)
= xA

1 . Now consider

the case where j′ = j ∈ [logN]. Assume without loss

of generality that i1,j < i2,j , implying that i1,j = 0 and

i2,j = 1. (The other case where i1,j > i2,j is symmetric.)

Observe that Bob must have i′ = i1 if
{
xB
1 , x

B
2

}
=
{
xA
1 , x

A
2

}
and i′ = i2 if

{
xB
1 , x

B
2

}
=

{
xA
1 , x

A
3

}
. Moreover, Bob can

distinguish between the cases by simply examining the value

of i′j′ : i
′
j′ = 0 implies the former case while i′j′ = 1 implies the

latter one. By the construction of Alice’s message in (3), bi′
j′

always conveys the critical information about the relative order

of the correct answer xA
1 in the two-candidate set

{
xB
1 , x

B
2

}
.

Therefore, the correctness of y follows as Bob already figures

out which one of b0, b1 conveys the correct information.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001. Originally appeared in Bell System Tech. J.
27:379–423, 623–656, 1948.

[2] M. Plotkin, “Binary codes with specified minimum distance,” IRE
Transactions on Information Theory, vol. 6, no. 4, pp. 445–450, 1960.

[3] B. Haeupler, P. Kamath, and A. Velingker, “Communication with partial
noiseless feedback,” in Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques (APPROX/RANDOM), ser.
LIPIcs, vol. 40, 2015, pp. 881–897.

[4] M. Gupta, Y. T. Kalai, and R. Y. Zhang, “Interactive error correcting
codes over binary erasure channels resilient to 1/2 adversarial corrup-
tion,” in Symposium on Theory of Computing (STOC), 2022.

[5] A. Orlitsky, “Worst-case interactive communication. i. two messages
are almost optimal,” IEEE Transactions on Information Theory, vol. 36,
no. 5, 1990.

[6] E. Haramaty and M. Sudan, “Deterministic compression with uncertain
priors,” Algorithmica, vol. 76, no. 3, pp. 630–653, 2016.

[7] K. Efremenko, G. Kol, R. Saxena, and Z. Zhang, “Binary codes with
resilience beyond 1/4 via interaction,” Electron. Colloquium Comput.
Complex., p. 129, 2022.

[8] M. Gupta and R. Y. Zhang, “Positive rate binary
interactive error correcting codes resilient to ¿1/2 adversarial
erasures,” CoRR, vol. abs/2201.11929, 2022. [Online]. Available:
https://arxiv.org/abs/2201.11929

[9] K. Efremenko, G. Kol, and R. R. Saxena, “Binary interactive error
resilience beyond 1/8,” in Foundations of Computer Science (FOCS),
2020, pp. 470–481.

[10] M. Gupta and R. Y. Zhang, “The optimal error resilience of interactive
communication over binary channels,” in Symposium on Theory of
Computing (STOC), 2022.

[11] E. R. Berlekamp, “Block coding for the binary symmetric channel with
noiseless, delayless feedback,” Error-correcting codes, pp. 61–68, 1968.

[12] K. Efremenko, R. Gelles, and B. Haeupler, “Maximal noise in interactive
communication over erasure channels and channels with feedback,”
IEEE Trans. Inf. Theory, vol. 62, no. 8, pp. 4575–4588, 2016.

[13] L. J. Schulman, “Communication on noisy channels: A coding theorem
for computation,” in Foundations of Computer Science (FOCS), 1992,
pp. 724–733.

[14] ——, “Deterministic coding for interactive communication,” in Sympo-
sium on Theory of computing (STOC), 1993, pp. 747–756.

[15] ——, “Coding for interactive communication,” IEEE Transactions on
Information Theory, vol. 42, no. 6, pp. 1745–1756, 1996.

[16] R. Gelles, “Coding for interactive communication: A survey,” Founda-
tions and Trends® in Theoretical Computer Science, vol. 13, no. 1–2,
pp. 1–157, 2017.

[17] M. Braverman and A. Rao, “Towards coding for maximum errors in
interactive communication,” in Symposium on Theory of computing
(STOC), 2011, pp. 159–166.

[18] M. Braverman and K. Efremenko, “List and unique coding for interactive
communication in the presence of adversarial noise,” SIAM J. Comput.,
vol. 46, no. 1, pp. 388–428, 2017.

[19] M. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schulman, “Optimal
coding for streaming authentication and interactive communication,”
IEEE Transactions on Information Theory, vol. 61, no. 1, pp. 133–145,
2015.

[20] R. Gelles and B. Haeupler, “Capacity of interactive communication
over erasure channels and channels with feedback,” SIAM Journal on
Computing, vol. 46, no. 4, pp. 1449–1472, 2017.

[21] D. Pankratov, “On the power of feedback in interactive channels,”
Manuscript, 2013.

[22] M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky, “Coding for
interactive communication correcting insertions and deletions,” IEEE
Transactions on Information Theory, vol. 63, no. 10, pp. 6256–6270,
2017.

[23] A. A. Sherstov and P. Wu, “Optimal interactive coding for inser-
tions, deletions, and substitutions,” in Foundations of Computer Science
(FOCS), 2017, pp. 240–251.

[24] B. Haeupler, A. Shahrasbi, and E. Vitercik, “Synchronization strings:
Channel simulations and interactive coding for insertions and deletions,”
in International Colloquium on Automata, Languages, and Programming
(ICALP), vol. 107, 2018, pp. 75:1–75:14.

[25] M. Ghaffari, B. Haeupler, and M. Sudan, “Optimal error rates for
interactive coding i: Adaptivity and other settings,” in Symposium on
Theory of computing (STOC), 2014, pp. 794–803.

[26] M. Ghaffari and B. Haeupler, “Optimal Error Rates for Interactive
Coding II: Efficiency and List Decoding,” in Foundations of Computer
Science (FOCS), ser. FOCS, 2014, pp. 394–403.

[27] K. Efremenko, G. Kol, and R. Saxena, “Interactive error resilience
beyond 2/7,” in Symposium on Theory of Computing (STOC). ACM,
2020.

[28] K. Efremenko, G. Kol, and R. R. Saxena, “Optimal error resilience of
adaptive message exchange,” in Symposium on Theory of Computing
(STOC), 2021, pp. 1235–1247.

[29] E. R. Berlekamp, “Block coding with noiseless feedback,” Ph.D. disser-
tation, Massachusetts Institute of Technology (MIT), 1964.

[30] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE
Transactions on Information Theory, vol. 2, no. 3, pp. 8–19, 1956.

[31] K. Zigangirov, “On the number of correctable errors for transmission
over a binary symmetrical channel with feedback,” Problems of Infor-
mation Transmission, vol. 12, pp. 85–97, 1976.

[32] J. Spencer, P. Winkler, and S. St, “Three thresholds for a liar,” Combi-
natorics, Probability and Computing, vol. 1, pp. 81–93, 1992.

[33] R. Ahlswede, C. Deppe, and V. S. Lebedev, “Non-binary error correcting
codes with noiseless feedback, localized errors, or both,” in International
Symposium on Information Theory (ISIT), 2006, pp. 2486–2487.

[34] G. Wang, Y. Qin, and C. Chang, “Communication with partial noisy
feedback,” in IEEE Symposium on Computers and Communications
(ISCC), 2017, pp. 602–607.

12

