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Abstract—The noise sensitivity of a Boolean function mea-
sures how susceptible the value of f on a typical input x to a
slight perturbation of the bits of x: it is the probability f(x)
and f(y) are different when x is a uniformly chosen n-bit
Boolean string, and y is formed by flipping each bit of x with
small probability ε. The noise sensitivity of a function is a key
concept with applications to combinatorics, complexity theory,
learning theory, percolation theory and more.

In this paper, we investigate noise sensitivity on the p-
biased hypercube, extending the theory for polynomially small
p. Specifically, we give sufficient conditions for monotone
functions with large groups of symmetries to be noise sensitive
(which in some cases are also necessary). As an application,
we show that the 2-SAT function is noise sensitive around its
critical probability.

En route, we study biased versions of the invariance prin-
ciple for monotone functions and give p-biased versions of
Bourgain’s tail theorem and the Majority is Stablest theorem,
showing that in this case the correct analog of “small low
degree influences” is lack of correlation with constant width
DNF formulas.

Keywords-Analysis of Boolean Functions, Noise Sensitivity,
Graph Properties.

I. INTRODUCTION

Analysis of Boolean Functions is an integral part of

theoretical computer science, with many applications in

PCP’s, pseudo-random generators, learning theory and more.

Traditionally, one applies existing analytical results, such

as the case, for example, in many PCP constructions (e.g.

Friedgut’s junta theorem [1] in [2]) and metric nonembed-

dability results (e.g. Bourgain’s noise sensitivity theorem [3]

in [4], [5]). But at other times, the analytical results are not

known and have to be developed for the applications in TCS:

such as the case in the Majority is Stablest theorem, first

appearing in [6] as a conjecture and subsequently proved

in [7] (introducing the invariance principle for this purpose,

which has become an important tool since then). Another

example is the technique of polarizing random walks from

[8] introduced for constructing pseudo-random generators,

that was subsequently used in the context of quantum

computing to prove oracle separation results [9]. In fact,

many developments in the study of Boolean functions are

directly motivated from TCS perspective.

The resolution of the 2-to-2 Games Conjecture of Khot

[10] is a recent such example [11], [12], [13], [14]. Therein,

the correctness of the PCP construction is reduced to a

purely combinatorial/analytical question about the structure

of small sets with small edge boundary in the Grassmann

graph, a question that is intimately related to hypercontrac-

tive inequalities on that graph. The vertices of the Grassmann

graph are all �-dimensional subspaces of a given vector space

V of dimension k, and for the PCP application one has

� � k, thus the graph is closely related to the p-biased

hypercube for small p (identifying subspaces over V with

their indicator vector in {0, 1}V ). The characterization of

small sets with small edge boundary [14] can be indeed

viewed as a hypercontractive-type inequality, and in fact

the phenomenon appearing there also appears in various

of different domains [15], [16]. We remark that in general,

these hypercontractive-type results are only meaningful for

a subclass of functions, making them harder to apply than

in usual domains.

The p-biased hypercube for small p is also prevalent in

the study of critical probabilities and sharp thresholds, dating

back to the work of Erdős and Rényi [17]. Therein, one has

a monotone Boolean function f : {0, 1}n → {0, 1} – for

example a graph property, where the input x is the adjacency

matrix of a graph, and f(x) is 1 if the graph has the

property (such as connectedness and containing hamiltonian

cycle) and one is interested in the behavior of the function

μp(f)
def
= Prx∼μn

p
[f(x) = 1] as p varies. Here, μn

p denotes

the probability measure on {0, 1}n where each input bit

is independently chosen to be 1 with probability p, and

otherwise 0 (e.g. when x specifies a graph, this is the Erdős-

Rényi random graph model). Since f is monotone, μp(f) is

an increasing function of p, and it is natural to ask: what is

its rate of increase? what is its behavior around the point it

is balanced at, e.g. pc such that μpc
(f) = 1/2? It turns out

that many functions of interest have a sharp increase: there

is ε(n) = o(1) such that in the interval [pc−ε(n), pc+ε(n)],
μp(f) increases being almost 0 to being almost 1 (e.g. [18],

[19]). In case ε(n) = o(pc(1−pc)), we say the function has

a sharp threshold.

In case pc is bounded away from 0 and 1, one has a wide
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range of efficient tools to prove sharp-threshold results, most

notably the combination of the Russo-Margulis lemma [20],

[21] with structural results such as the KKL theorem [22]

and Friedgut’s Junta theorem [1]. However, in case pc is

sub-constant,1 and especially when it is polynomially small

in n, these results become ineffective and proving sharp

threshold result is harder; even proving the function has a

sharp threshold (without specifying the value of pc) takes

considerable effort; a notable such example is the k-SAT

function, proved to have sharp threshold by Friedgut [23].

In this regime of pc, there are Friedgut’s characterization of

graph properties with coarse threshold [23], and weaker (but

more general) partial results of Bourgain and Hatami [23],

[24].

The situation becomes more difficult when one wishes to

study properties stronger than having a sharp threshold, such

as noise sensitive, which is the focus of this paper. A func-

tion f is said to be noise sensitive if picking x, y according

to the p-biased measure in a highly correlated manner, the

random variables f(x), f(y) are nearly independent. Here,

by “highly correlated manner”, we mean picking x = y
according to μn

p and resampling each coordinate of y with

probability ε (according to μp).

The current paper extends the theory of noise sensitivity

and structural results for small tail Boolean functions [3],

[25], [7] to the p-biased setting for polynomially small p.

Specifically, we prove a noise sensitivity criteria for mono-

tone functions with large group of symmetries (including,

for example, random CSPs and hypergraph properties) and

p-biased versions of Bourgain’s tail theorem [3] as well as

Majority is Stablest theorem [7] for monotone functions.

For that purpose, we use the new hypercontractive-type

inequalities for the p-biased hypercube proved in [16].

A. Hypercontractivity on the Uniform Hypercube

Consider the uniform hypercube, i.e. the set {0, 1}n with

the uniform measure. The Lq norm of f : {0, 1}n → R, for

q � 1, is given by

‖f‖q =

(
E

x∈R{0,1}n
[|f(x)|q]

)1/q

.

For ρ ∈ (0, 1), the noise operator Tρ acts on functions

f : {0, 1}n → R in the following way: (Tρf)(x) is the

average of f(y), on y ∈ {0, 1}n that are ρ-correlated with

x, i.e. for every i ∈ [n], yi = xi with probability ρ, and

otherwise yi is sampled independently from {0, 1}.

In its most basic form, the hypercontractive inequality

[26], [27], [28] on the hypercube states that there exists

ρ ∈ (0, 1) (ρ � 1/
√
3 will do), such that Tρ is a contraction

from L4 to L2. That is, for every real-valued function f ,

‖Tρf‖4 � ‖f‖2. (1)

1The case pc is very close to 1 is analogous.

Note that any averaging operator, and in particular Tρ, is

a contraction from Lp to itself (e.g. ‖Tρf‖4 � ‖f‖4), and

the power of the hypercontractive inequality is that the right

hand side, ‖f‖2 is always at most ‖f‖4 (and potentially,

especially when it is useful, it is significantly smaller).

This innocent looking inequality has several remarkable

implications that we discuss next.

1) KKL and Friedgut’s Theorem: For a Boolean function

f : {0, 1}n → {0, 1}, and a variable i ∈ [n], the influence

of a variable i ∈ [n], denoted by Ii[f ], is the probability

the ith variable affects the value of f(x). That is, it is the

probability that taking x uniformly from {0, 1}n we have

f(x) �= f(x ⊕ ei) (ei = (0, . . . , 0, 1, 0, . . . , 0), the 1 is on

the ith coordinate). The total influence of the function is

I[f ] =
n∑

i=1

Ii[f ].

It can show without much effort, that if f far from being

constant, I[f ] = Ω(1), hence there is always a variable

with influence Ω(1/n). The KKL Theorem strengthens this

assertion.

Theorem I.1. Let f : {0, 1}n → {0, 1} be Ω(1)-far from
constant. Then there is a variable i ∈ [n] with influence at
least exp(−O(I[f ])).

A more commonly known formulation of the KKL-

theorem asserts that for any function as Theorem I.1, there

is a variable i whose influence is at least Ω(logn/n), and

we quickly show the how to deduce it. If I[f ] � log n
a variable guaranteed to exist from Theorem I.1 has large

influence, and otherwise I[f ] � Ω(logn) and there is a

variable whose influence is at least I[f ]/n = Ω(log n/n)).

Friedgut’s Junta theorem is a strengthening of the KKL

Theorem, stating that not only does a function with small

total influence has a variable with large individual influence,

but actually the function nearly only depends on such

variables.

Theorem I.2. For every f : {0, 1}n → {0, 1} and ε > 0
there exists k(I[f ], ε) = exp(O(I[f ]/ε)), such that f is ε-
close to a k-junta g.

The KKL Theorem and the Friedgut Junta Theorem are

the first applications of discrete Fourier Analysis, and in

particular the hypercontractive ineuqality, in TCS.

2) Talagrand’s Correlation Theorem: The FKG inequal-

ity [29] on the hypercube states that any two monotone

Boolean functions f, g : {0, 1}n → {0, 1} are positively

correlated, i.e cov(f, g) � 0. Talagrand [30] proved a

stronger statement, that qualitatively says the following: if

there are variables that are highly influential in both f and

g, then the correlation between f and g is bounded away

from 0. More precisely:
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Theorem I.3. Let f, g be monotone functions. Then

cov(f, g) � C · φ
(

n∑
i=1

Ii[f ]Ii[g]

)
,

where φ(t) = t/ ln(t/e).

This proof of this theorem uses the hypercontractive

inequality as well.

3) The BKS Noise Sensitivity Theorem: For any function

f : {0, 1}n → {0, 1}, sampling x and y independently, the

probability that f(x) �= f(y) is equal to

2Pr [f(x) = 0] · Pr [f(y) = 1] = 2var(f).

A function is called noise sensitive, if sampling a (1 − ε)-
correlated pair of points x, y, the probability that f(x) �=
f(y) is roughly the same (the formal definition has to

consider a sequence of functions: (fn)n∈N is called noise

sensitive if for any ε, δ > 0 there is n0 such that for any n �
n0, we have that Prx,y (1− ε) correlated [fn(x) �= fn(y)] =
2var(fn)±δ). For instance, the function f(x) = x1+. . .+xn

(mod 2) is easily seen to be noise sensitive, while the

function f(x) = x1 is not. More generally, the class of lin-

ear threshold functions (1α1x1+...+αnxn�t for real numbers

α1, . . . , αn, t) are all noise insensitive, as well as functions

that are correlated with them.

For a monotone function f , being noise sensitive near

the critical probability pc is a strictly stronger property than

having a sharp threshold. To see it is stronger, note that if f
noise sensitive and has a constant variance at p, then taking

x, y that are (1 − ε)-correlated we have that f(x) �= f(y)
with constant probability, and since x, y differ roughly in

≈ εpn coordinate, it follows that the total influence of f at

p is at least 1/(pε). The Russo-Margulis lemma [20], [21]

now implies that the derivative of μz(f) at z = p is at

least 1/ε. To see it is strictly stronger, note that the majority

function f(x) = 1x1+...+xn>n/2 has a sharp threshold but

is noise insensitive.

Benjamini Kalai and Schramm [25] (who also defined

noise sensitivity) proved the following “if and only if”

characterization of monotone, noise sensitive functions. For

a function f define II[f ] =
n∑

i=1

Ii[f ]
2.

Theorem I.4 (BKS Theorem). A monotone function
f : {0, 1}n → {0, 1} is noise sensitive if and only if
II[f ] = o(1). Furthermore, II[f ] = o(1) if and only if
the correlation of f with any linear threshold function is
o(1).

To prove this theorem, Benjamini Kalai and Schramm

extend Talagrand’s key tool from [30] that shows that if a

monotone function has � δ weight on its first Fourier level,

then it has O(δ log(1/δ)) weight on the second Fourier level.

Noise sensitivity has become an important concept with

variety of applications in percolation theory (e.g. [25], [31]),

complexity theory (e.g. [32], [6], [4], [33] and learning

theory (e.g. [34], [35]).

B. The Biased Hypercube

The vertex set of the biased hypercube is {0, 1}n, but this

time it is equipped with the p-biased measure, defined by

μn
p (x) = p|x|(1− p)n−|x|, where p ∈ (0, 1) (i.e., to sample

x ∼ μn
p , sample each coordinate as a Bernouli random

variable with parameter p). In this paper, we shall think of

p as a small function of n, e.g. p(n) = 1/nα for constant

α ∈ (0, 1).
All of the results we discussed so far, namely the results

of KKL, Friedgut, Talagrand and BKS have generalizations

to the p-biased cube, and in some regimes of p – typically

when p is bounded away from 0, 1, are also tight. But when

p is close to 0 or 1 – say p = 1/nα, these generalizations

become very weak (and often time meaningless). The key

reason for that is that while the hypercontractive inequality

along the lines of (1) holds, it is very weak (specifically, the

correlation taken could only be ρ ≈ p1/4), and therefore to

prove stronger results, one has to prove special variants of

the hypercontractive inequality and show how to use them.

A similar phenomenon occurs also for different (but related)

graphs:

1) The Johnson graph is a slice of the hypercube, i.e. its

vertices are all x’s with Hamming weight k, and two

vertices are connected by an edge if their Hamming

distance is 2. The Johnson graph should be thought

of as the “exact” analog of the p-biased cube for p =
k/n, and in fact the two graph are morally equivalent

(in the sense that theorems proven on one can often be

translated, though not automatically, to the other). A

stronger hypercontractivity-type result for the Johnson

graph was given in [15].

2) The Grassmann graph is the subspace analog of the

Johnson graph. In this graph, the “set of coordinates”,

[n], is replaced by a linear space V of dimension k
over F2, and the vertices are all �-dimensional sub-

spaces of V . �-dimensional subspaces can be thought

of as vectors x ∈ {0, 1}V of Hamming weight 2�,
providing some analogy to the p-biased cube for

p = 2�/2k (2k should be compared to n, and � should

be thought of as slowly growing to infinity).

The “ordinary” hypercontractive inequality on the

Grassmann graph is very weak – and for similar

reasons it is weak on the p-biased cube. Proving

strong hypercontractive-type results for this graph for

a subclass of functions is an important step in the proof

of the 2-to-1 Games Conjecture [13], [14].

In this paper, our primary interest is to find extensions of

the BKS noise sensitivity theorem to the p-biased measure.

Keller and Kindler [36] proved an extension of the BKS

Theorem that is often useful for p such that p = 1/no(1): if

f has very small correlation with linear threshold functions
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(say, polynomially small in n), then it is noise sensitive.

Their result, however, has the same drawbacks that stem

from the use of the usual hypercontractive inequality, and is

useless when p is polynomially small in n.

We give a new noise sensitivity condition (that in general

is only sufficient) for functions that have sufficiently nice

group of symmetries. The simplest form of our result is

concerned with graph properties. In this setting, we think of

n =
(
N
2

)
, and think of the input x ∈ {0, 1}n as specifying

the adjacency matrix of a given graph. A graph property

f : {0, 1}n → {0, 1} is a function that is closed under vertex

relabeling, i.e. the action of SN . To state our result, we

define the appropriately normalized BKS parameter: II[f ] =

p
n∑

i=1

Ii[f ]
2.

Theorem I.5. Let f : {0, 1}n → {0, 1} be a monotone
graph property, and let p = 1/n(k−1)/k for an even number
k ∈ N. Then f is noise sensitive if and only if:

• II[f ] = o(1), and
• any constant width DNF formula φ is at most o(1)

correlated with f (i.e. cov(f, φ) = o(1)).

The condition on the specific form of p may look odd

at first, but surprisingly the theorem may fail for different

values of p (a counter example is given in Section VI).

We note that this result is very natural: as in the unbiased

hypercube, if II[f ] = Ω(1) for a monotone f , then it is noise

insensitive. In the p-biased setting however, there are more

examples of noise insensitive functions, such as constant

width DNF formulas. Thus, the above theorem asserts that

for p as in the statement, these are the only reasons for a

monotone graph property to be noise insensitive.

The proof of this result follows similar lines of Tala-

grand’s argument [30] as presented by Keller and Kindler

[36], but relies on the stronger hypercontractive inequality

of [16], and in particular on large deviation bounds similar

to the ones proved in [37]. We remark that since this

hypercontractive inequality is only meaningful for a subclass

of functions, some care has to be taken when choosing which

functions to apply it on, and this is where we exploit the fact

that we have a group of symmetries.

The general form of our result extends beyond graph

properties and this specific value of p (see Theorems IV.14

and IV.16), but in general only provides a sufficient condition

for noise sensitivity. Nevertheless, we are able to recover

some known noise sensitivity results, as well as prove new

ones using our result described in the next section.

C. Main results

DNF correlations: The invariance principle of [7] states

that a low-degree, multilinear functions f(x) over the

uniform hypercube whose individual influences are small,

behave similarly when one plugs into them x ∈R {0, 1}n

and z ∈ R
n where each zi is a standard, independent

Gaussian random variable N(0, 1). 2

Recently, an invariance principle for a class of functions

(called global functions) was established in [16] using new

hypercontractive-type results. We strengthen this result for

the class of monotone functions. Namely, we show that an

analogous invariance principle for the p-biased cube holds

for functions that are not correlated with constant width

DNF formulas (see Theorem III.7 for a precise statement).

Using this theorem, we are able to conclude properties of

the weight distribution of Boolean functions that are not

correlated with DNF formulas (that we use in the proof of

our BKS-style results), as well as the following p-biased

variants of Bourgain’s tail theorem [3].

Theorem I.6. For every k ∈ N, ε > 0, there exists
δ > 0, such that the following holds. If a monotone function
f : {0, 1}n → {0, 1} has var(f) � ε, and at most δ
correlated with width k DNF formulas, then

W�k[f ] � var(f)

2000
√
k
.

Using the same ideas, one can also establish analogous

p-biased variants of other classical applications of the in-

variance principle, such as the Majority is Stablest theorem

[7].

Biased version of BKS for G-symmetric functions: Let

G ⊆ Sn be a subgroup. A function f : {0, 1}n → R is called

G-invariant if f(x) = f(π(x)) for every x ∈ {0, 1}n, π ∈ G
(here π(x) = (xπ(1), xπ(2), . . . , xπ(n))). The general form of

our noise sensitivity result, Theorem IV.16, gives sufficient

conditions for a monotone G-invariant Boolean function to

be noise sensitive, in terms of II[f ], the correlation of f
with constant width DNF functions, and the “bumpiness” of

the group G that we explain next.

Bumpiness.: For simplicity we explain this notion in

the case of graph properties. The input x ∈ {0, 1}n is viewed

as an N -vertex graph (whose adjacency matrix is x, n =(
N
2

)
), and the group G is the action of vertex permutations

on the edges, i.e. action of SN on [n].
Let H be a constant size subgraph with V (H) vertices

and E(H) edges. By linearity of expectation, the expected

number of copies of H that appear when x is sampled from

μn
p (which is nothing but the Erdős–Réyni model G(N, p))

is given by (
N

|V (H)|
)
p|E(H)|.

Depending on V (H), E(H) and p, this number could

be as small as o(1) and as large as ω(1). We say that

we have bumpiness for p if for any constant size H , the

expected number of copies of H exhibits a jump: once

2The two distributions are clearly very different; for start, one is discrete
and the other is continuous. The meaning here is that for every test function,
i.e. smooth φ : R → R, Ex [φ(f(x))] ≈ Ez [φ(f(z))].
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it is asymptotically larger than b(n) = Θ(1), it must

be at least B(n), which grows relatively rapidly with n.

For example, for p = Θ(1/N) = Θ(1/
√
n) we have

a bumpy from b(n) = Θ(1) to B(n) = Θ(
√
n): this

follows from the fact that the expected number of copies

of H is ΘH(1)NV (H)−E(H), so once it is Ω(1) we have

V (H) � E(H) + 1 hence it is Ω(N) = Ω(
√
n).

Applications: In the k-SAT function, we think of n =
2k
(
N
k

)
and think of an input x ∈ {0, 1}n as encoding a

k-CNF fomrula φx, where each index specifies a width k
clause and negation pattern on the variables. The k-SAT

function is the function f(x) that is 1 if and only if φx is

satisfiable.

The k-SAT function is clearly monotone decreasing, so

increasing p causes Prx∼μn
p
[f(x) = 1] to be smaller. It is

known that if p� 1
n(k−1)/k (at least k2k

n(k−1)/k will do), then f
is close to the constant 0 function, and if p� 1

n(k−1)/k , then

the function is close to the 1 function, thus, the interesting

regime for f is around p = Θk(1)/n
(k−1)/k.

Understanding the behavior of the k-SAT function has

been a challenging task; just proving that it exhibits a

sharp threshold, i.e. that there is ck such that on p �
(ck + ε)/n(k−1)/k the function is close to the 0 function

and on p � (ck − ε)/n(k−1)/k the function is close to the 1
function, takes significant amount of work [23]. Benjamini

conjectured in fact that more is true, namely that the k-SAT

function is noise sensitive on p’s in which it is far from being

constant. Using our noise sensitivity condition, we reduce

this task to proving upper bounds on the total influence of

k-SAT:

Corollary I.7. Let f be the k-SAT function. Then f is noise
sensitive on p if and only if Ip[f ] = o(

√
n/p).

We remark that for all monotone functions, Ip[f ] �√
n/p, so the theorem states that if the total influence of the

k-SAT function is asymptotically smaller than the maximum,

then it is noise sensitive. For k = 2, using results from [38],

we are able to prove the required upper bound on the total

influence of 2-SAT, thereby proving:

Corollary I.8. The 2-SAT function is noise sensitive on any
p in which it is far from being constant.

We also recover some of the noise sensitivity results

of Lubetzky and Steif [39] for several graph properties,

including connectivity, containing a perfect matching and

containing a long cycle.

D. General BKS-style result fails

In light of Theorem I.6, it is tempting to wonder if the

restriction of the particular form of p is necessary. That is,

whether the following speculation is correct: if a monotone

graph property f : {0, 1}n → {0, 1} has o(1) correlations

with constant width DNF formulas and II[f ] = o(1), then

f is noise sensitive. If true, that would have been a very clean

analog of the BKS Theorem. Unfortunately, in Section VI

we show that this is too much to ask for, and that there are

noise insensitive f ’s with II[f ] = o(1) and o(1) correlation

with constant width DNF formulas.

E. More related works

Schramm and Steif [31] provide an algorithm-based

method of proving noise sensitivity. They show that if there

is a randomized algorithm A that reads expectedly o(n)
variables of x and determines f(x) when x ∼ μn

p , then

f is noise sensitive. This theorem is not an “if an only if”

statement (e.g. the k-clique for k ≈ 2 logn is known to be

noise sensitive, but there is no algorithm reading o(n) bits

that can compute it), and sometimes it is not clear whether it

applies or not; for k � 3, k-SAT function is also an instance

where the Schramm-Steif method does not work. 3

II. PRELIMINARIES

A. The p-biased Fourier decomposition

For a parameter p ∈ (0, 1), the p-biased measure on

{0, 1} assigns probability p to 1 and probability 1 − p to

0. Let μn
p be the product distribution of μp over {0, 1}n,

i.e. μn
p (x) = p|x|(1 − p)n−|x|. In the paper the parameter

p may (and mostly will) depend on n, and will always

be at most 1/2. Note that the mean of each coordinate in

the p-biased distribution is p, and its standard deviation is

σ
def
=

√
p(1− p).

We consider the space of functions real valued functions

on {0, 1}n, equipped with the inner product 〈f, g〉 =

Ex∼μn
p
[f(x)g(x)]. The p-biased Fourier-Walsh basis is

{χS}S⊆[n], where χS : {0, 1}n → R is given by χS(x) =∏
i∈S

xi−p
σ . The set {χS}S⊆[n] forms an orthonormal basis,

thus any function f can be written as

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where the coefficients are given by f̂(S) = 〈f, χS〉.
Fact II.1 (Plancheral/Parseval equality). For any
f, g : {0, 1}n → R, 〈f, g〉 = ∑

S⊆[n]

f̂(S)ĝ(S).

Definition II.2. For f : {0, 1}n → R and 1 � k � n, the
level k weight of f is W=k[f ] =

∑
|S|=k

f̂(S)2.

Definition II.3. For q � 1, the q-norm of f : {0, 1}n → R

is ‖f‖q =
(
Ex∼μn

p
[|f(x)|q]

)1/q

.

3If, for pc there was an algorithm reading o(n) bits of an input x ∈
{0, 1}n (specifying a k-SAT formula) and deciding satisfiability, then if x
is unsatisfiable it would find an a unsatisfiable sub-formula with o(pcn) =
o(N) clauses (recall n = 2k

(N
k

)
and pc = Θk(1/N

k−1)). This algorithm
would then be able to find o(N) contradictions for random k-SAT formulas
any p � pc of the same order, and thus a 2o(N) resolution proof of
unsatisfiability, contradicting the result of [40].
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We denote the average of a function f according to μp

by μp(f), and sometimes omit the subscript p whenever it

is clear from the context. For x ∈ {0, 1}n and S ⊆ [n], xS

is the string in {0, 1}S corresponding to the S coordinates

of x.

1) Derivatives:

Definition II.4. The derivative of f : {0, 1}n → R with
respect to S ⊆ [n] is the function ∂Sf : {0, 1}[n]\S → R

defined by

∂Sf(z) =
∑

a∈{0,1}S
(−1)|S|−|a|f(xS = a, xS = z).

Here, y = (xS = a, xS = z) is the point whose in which
yS = a and yS = z.

The square of the 2-norm of ∂Sf is called the generalized

influence of f on S (in case S contains a single variable,

this definition coincides with the usually definition of influ-

ences). Expanding each term in the definition, one gets the

following Fourier expression for the derivative.

Lemma II.5. For any f : {0, 1}n → R and S ⊆ [n],
∂Sf(z) =

1
σ|S|

∑
T⊇S

f̂(T )χT\S(z).

Therefore, by Parseval we have that the S-generalized

influence is
1

σ2|S|
∑
T⊇S

f̂(T )2. (2)

Sometimes it will be convenient for us to consider the

derivative as multiplied by σ|S|, we denote that by

∂̃Sf(z) =
∑
T⊇S

f̂(T )χT\S(z).

Thus, we have ‖∂̃Sf‖22 =
∑
T⊇S

f̂(T )2.

2) Influences:

Definition II.6. For f : {0, 1}n → R, p ∈ (0, 1) and i ∈ [n],
the p-biased influence of variable i is Ii[f ] = ‖∂if‖22. The

p-biased total influence of f is I[f ] =
n∑

i=1

Ii[f ].

The influences of monotone functions f are closely related

to the singleton Fourier coefficients, stated precisely in the

following fact.

Fact II.7. For any monotone f : {0, 1}n → {0, 1} we have:
1) for all i ∈ [n], f̂({i}) = σIi[f ].
2) I[f ] �

√
n
σ2 .

3) The noise operator: Let ε > 0. For any point x ∈
{0, 1}n, consider the probability distribution Nεx over y ∈
{0, 1}n defined as follows: for every i ∈ [n] independently,

set yi = xi with probability 1− ε, and otherwise resample

yi ∼ μp. The points (x, y) when x ∼ μn
p and y ∼ Nεx, are

called (1− ε) correlated.

The noise operator T1−ε acts on a function f on the hyper-

cube by averaging over Nεx. That is, T1−εf : {0, 1}n → R

is defined by

T1−εf(x) = E
y∼Nεx

[f(y)].

The operator T1−ε has the Fourier–Walsh basis {χS}S⊆[n]

as eigenvectors, with eigenvalues (1 − ε)|S| respectively.

Since T1−ε is a linear operator, we have T1−εf(x) =∑
S⊆[n]

(1− ε)|S|f̂(S)χS(x).

B. Refined hypercontractivity

In this section we recall the refined hypercontracitivity of

[16].

Theorem II.8. For any f : {0, 1}n → R it holds
‖T 1

2
√

3
f‖44 �

∑
S⊆[n]

‖∂Sf‖22‖∂̃Sf‖22.

We also have the more general form for higher norms:

Theorem II.9. For any f : {0, 1}n → R and m ∈ N, it
holds that ‖T 1

4m2
f‖2m2m �

∑
S⊆[n]

‖∂Sf‖2m−2
2 ‖∂̃Sf‖22.

For our proofs we require a noiseless version of the

hypercontractivity above for low-degree functions, which is

easily deduced.

Theorem II.10. Let f : {0, 1}n → R be a function of degree
at most d, and m ∈ N. We have that

‖f‖2m2m � (2m)8md
∑
S⊆[n]

‖∂Sf‖2m−2
2 ‖∂̃Sf‖22.

Proof: Let g be the function such that f(x) =
T1/4m2g(x), i.e. g =

∑
S

(4m2)|S|f̂(S)χS(x). Applying

Theorem II.9 on g we get that ‖f‖2m2m = ‖T 1
4m2

g‖2m2m �∑
S⊆[n]

‖∂Sg‖2m−2
2 ‖∂̃Sg‖22. By Parseval,

‖∂̃Sg‖22 =
∑
T⊇S

ĝ(T )2 =
∑
T⊇S

(4m2)2|T |f̂(T )2

� (4m2)2d
∑
T⊇S

f̂(T )2 = (2m)4d‖∂̃Sf‖22,

and thus also ‖∂Sg‖22 � (2m)4d‖∂Sf‖22. Plugging these two

bounds finishes the proof.

C. A concentration bound

Definition II.11. A function f is called (r, ε) quasi-regular
if for every S of size at most r, ‖∂Sf‖22 � ε.

A function f is simply called ε quasi-regular if for every
S, ‖∂Sf‖22 � ε.

Lemma II.12. Let f : {0, 1}n → R be a degree d, ε-quasi-
regular function, and let t � e20d. Then

Pr
x∼μn

p

[|f(x)| � t
√
ε
]
� e−2d·t1/10d .
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Proof: Let 2m be a parameter to be determined. Taking

power 2m and using Markov’s inequality, we get that

Prx∼μn
p
[|f(x)| � t

√
ε] � ‖f‖2m2m

t2mεm . By Theorem II.10 and the

quasi-regularity of f we have

‖f‖2m2m � (2m)8md
∑
S⊆[n]

‖∂Sf‖2m−2
2 ‖∂̃Sf‖22

� (2m)8mdεm−1
∑
S⊆[n]

‖∂̃Sf‖22

= (2m)8mdεm−1
∑
T

2|T |f̂(T )2

� 2d(2m)8mdεm−1‖f‖22
� m10mdεm.

Therefore, Prx∼μn
p
[|f(x)| � t

√
ε] � m10md/t2m. Choos-

ing m = �t1/10d� gives the desired bound.

D. Functions with groups of symmetries

Let G ⊆ Sn be a group, and f : {0, 1}n → R. Recall

that f is G-invariant if for every π ∈ G and x ∈ {0, 1}n,

we have that f(πx) = f(x). Important examples of G’s

and functions that are invariant under G’s action are graph

properties: we think of n as
(
N
2

)
, where each coordinate

corresponds to a potential edge in a graph, and the input

x ∈ {0, 1}n specifies which edges exist (those edges with

corresponding coordinate 1). In this case we take G ⊆ Sn

to be the permutations corresponding to graph isomorphism

(i.e. action of SN on [n]), and functions that are invariant

under G are called graph properties.

Examples.: typical examples of graph properties are

connectedness – f(x) = 1 if and only if the graph described

by x is connected, containing a large cycle and containing a

prescribed, fixed subgraph H . In some applications we will

also consider hypergraph properties.

Lemma II.13. Let f : {0, 1}n → R be G invariant. Then
for any S ⊆ [n], π ∈ G we have

1) f̂(S) = f̂(π(S)).
2) ‖∂Sf‖2 = ‖∂π(S)f‖2.

Proof: For the first item, f̂(π(S)) =

Ex∼μn
p

[
f(x)χπ(S)(x)

]
= Ex∼μn

p

[
f(x)χS(π

−1(x))
]
.

Since f is G invariant, f(x) = f(π−1(x)) so letting

y = π−1(x) and noting that it is distributed according to

μn
p , we have that

f̂(π(S)) = E
x∼μn

p

[
f(π−1(x))χS(π

−1(x))
]

= E
y∼μn

p

[f(y)χS(y)] = f̂(S).

The second item follows immediately by (2).

Definition II.14. For a set S ⊆ [n] and a group G ⊆ Sn,
the orbit of G on S is denoted by orbG(S) is defined to be
{π(S) |π ∈ G}.

III. DNF CORRELATION RESULTS

In this section we show that the error term arising in

the invariance principle we have on the p-biased cube is

related to the correlation the function has with constant

width DNF formulas. Throughout this section we assume

p � 1/2 (analogous results may be shown for p > 1/2 by

considering the dual function g(x) = 1 − f(x̄)). We first

recall the invariance principle of [16].

A. Invariance Principle

The Fourier expansion of f : {0, 1}n → R over the p-

biased measure is given by f(x) =
∑

S⊆[n] f̂(S)χS(x), and

using it we extend the definition of f to R
n (since the left

hand side makes sense for all x ∈ R
n).

Let z = (z1, ..., zn) be Gaussian random variables with

mean p and standard deviation σ. Define

Err(f)
def
= var(f)

∑
0<|S|

σ2|S|‖∂Sf‖42.

Theorem III.1. Let φ : R → R be smooth with third
derivative bounded by B, and let f : {0, 1}n → R be of
degree d. Then∣∣∣∣Ex [φ(f(x))]− E

z
[φ(f(z))]

∣∣∣∣ � B104d+1
√
Err(f).

This is the basic form of the invariance principle for

smooth functions φ, analogous to the basic invariance prin-

ciple of [7] (see also [41, Chapter 11]). Therein, using

approximation arguments and anti-concentration bounds in

Gaussian space, the basic invariance principle is extended

for wider class of functions φ with only slightly worse error

bounds. The same arguments apply also here, so we do not

repeat the proofs and only state the generalization that we

need for the purpose of this paper.

Theorem III.2. Define ζ : R → [0,∞) by ζ(t) = (t −
1t�1/2)

2. Then for every f : {0, 1}n → R of degree d we
have∣∣∣∣∣ E
x∼μn

p

[ζ(f(x))]− E
z∼N(p,σ)

[ζ(f(z))]

∣∣∣∣∣ � eO(d) · Err(f)1/3.

The significance of the above version of the invariance

principle, is that the function ζ measures the distance of a

given function f from Boolean. Thus, if f has small Fourier

weight above level d, then its truncation f�d is close to

Boolean, and so if Err(f�d) is small, we conclude that f(z)
is also close to Boolean.

The Levy distance between two random variables R,S
is denoted by dL(R,S) and is defined to be the infimum

over the set of λ’s on which we have Pr [S � t− λ]− λ �
Pr [R � t] � Pr [S � t+ λ] + λ for all t ∈ R.

Theorem III.3. For every f : {0, 1}n → R of degree d we
have dL(f(x), f(z)) � eO(d) · Err(f)1/8.
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B. Corollaries for quasi-random functions

Using the technique of Kindler and O’Donnell [42], one

has the following corollary.

Theorem III.4. For every k, there are r ∈ N, τ > 0 such
that the following holds. Let f : {0, 1}n → {0, 1} be a func-
tion with constant variance. If max0<|S|�r ‖∂Sf�k‖22 � τ ,
then ∑

|S|�k

f̂(S)2 � c
var(f)√

k
.

In the next section we state and prove a qualitatively

stronger version of the above result. The proof of this

theorem follows the same lines, and hence we omit it. We

remark that one may prove in a similar fashion p-biased

versions of many classical results, such as the Majority is

Stablest Theorem [7].

C. DNF correlations

Let us assume now that the function f is monotone.

In this section we show that in Theorem III.4, the quasi-

randomness condition could be relaxed to “small correlation

with DNFs”. The general strategy is to show that assuming

the converse (namely that the tail of the function is small,

or that its stability is small), we show (by invoking the

invariance principle) that the error term is large on the

low-degree part of f , i.e. Err(f<k) must be large. This

step follows the argument of [42]. In the second step, we

show that if Err(f<k) is large, then we may find a DNF

formula correlated with f . To simplify notations we write

Errk(f) = Err(f<k).
1) Step 1: small tail implies large error term:

Proposition III.5. For every k ∈ N, ε > 0 there is δ > 0
such that the following holds. If f : {0, 1}n → {0, 1} has
W�k[f ] � var(f)

2000
√
k

, then

Errk(f) � e−O(k)var(f)8.

Proof: In the proof we define 2 more functions: g =
f<k, and h(z) which is the rounding of g(z) into Boolean

for any z ∈ R
n. We use [42, Theorem 2.8] on h, stating

that for any Boolean function h : Rn → {0, 1}, W�k[h] �
Ω(var(h)/

√
k), and using invariance we show that unless

Errk(f) is significant, W�k[f ] would be large as well.

If Errk(f) � C−k100−8 for some constant C, we are

clearly done, so assume otherwise.

Let g = f<k, z ∈ R
n where for each i, zi is an

independent Gaussian random variables with mean p and

variance σ, and x ∈ {0, 1}n where for each i, xi is an

independent p-biased bit, and let ζ(t) = (t− 1t�1/2)
2.

Then:

W�k[f ] = E
x

[
(f(x)− g(x))2

]
� E

x
[ζ(g(x))],

since the expectation on the right hand side measures the

distance of g from the closest Boolean function, and f is a

specific one. By Theorem III.2,

E
x
[ζ(g(x))] � E

z
[ζ(g(z))]− eO(k) · Errk(g)1/3, (3)

and note that Errk(g) = Errk(f). Additionally, defining

h(z) = 1g(z)�1/2 we have

E
z
[ζ(g(z))] = E

z

[
(h(z)− g(z))2

]
� W�k[h] � var(h)

10
√
k
.

(4)

The second transition holds because g is a degree < k
function, and W�k[f ] is minimum the distance of h from

a degree < k function, and the last transition we used [42,

Theorem 2.8]. Combining (3) and (4) we get

W�k[f ] � var(h)

10
√
k
− eO(k) · Errk(f)1/3, (5)

so it suffices to show that the variance of h is at least

a multiple of the variance of f minus an error term (i.e.

depending on Err). To show that, first note that

Pr
x
[g(x) � 2/3],Pr

x
[g(x) � 1/3] � var(f)/2,

otherwise if one of them failed, say the first, then we would

have that g(x) ∈ [1/3,∞) with probability at least 1 −
var(f)/2. Since f(x) = 0 with probability at least var(f),
we would have f(x) = 0, g(x) > 1/3 with probability at

least var(f)/2 and thus

W�k[f ] = ‖f − g‖22 � var(f)

2

1

9
,

contradiction to the assumption that f has small tail.

Using the invariance principle for Levy distance, The-

orem III.3, and the assumption Errk(g) � C−k100−8

(recall that Errk(g) = Errk(f)), we get that both

Prz [h(z) � 1/3 + 1/100] and Prz [h(z) � 2/3− 1/100]
are at least var(f)/2− e−O(k)Errk(g)

1/8, and therefore

var(h) � (1/3− 2/100)2 ·
(
var(f)/2− eO(k)Errk(f)

1/8
)2

� 1

196
var(f)− eO(k)Errk(f)

1/8.

Plugging this into (5) we get

W�k[f ] � var(f)

1960
√
k
− eO(k)Errk(f)

1/8,

using the assumption of the proposition that upper bounds

the left hand side, we conclude that

Errk(f) � e−O(k)var(f)8.
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2) Step 2: large error term implies correlation with DNF
formula: We show that if Errk(f) is large, then f is

correlated with a DNF formula. We shall use the following

simple relation between generalized influences and boosters
for a function f . For a subset S ⊆ [n] and a ∈ {0, 1}S , the

function fS→a is the restriction of f where the bits of S are

fixed to a. A restriction (S, a) of f is called a δ-booster, if

μ(fS→a) � μ(f) + δ. We have the following easy relation

between generalized influences and restrictions (see Section

A for a proof).

Lemma III.6. Let f be a monotone function, and let S be
of size at most k, and assume p � 1/2. Then

‖∂Sf‖22 � 8k(μ(fS→1)− μ(f)).

Stated otherwise, if ‖∂Sf‖22 � δ, then (S,�1) is a 8−kδ
booster for f .

Recall that Errk(f) = var(f)
∑

0<|S|�k

σ2|S|‖∂Sf�k‖42 =

var(f)
∑

0<|S|�k

‖∂Sf�k‖22‖∂̃Sf�k‖22.

Theorem III.7. For every k ∈ N, ε > 0 there exists δ > 0,
such that if a monotone f : {0, 1}n → {0, 1} has Errk(f) �
ε, then there exists a DNF formula φ of width k such that
Cov[f, φ] � δ. Furthermore, δ = exp(−exp(O(k)))ε2

k+4,
and each one of the clauses of φ is a δ-booster for f .

The rest of this section is devoted to the proof of this

result. This step is done by several smaller claims, the first of

which easily follows from the fact that Errk(f) only contains

derivatives of order at most k. Denote g = f<k.

Claim III.8. There exists 0 < j � k, C(k, ε) = ε/k > 0,
such that

∑
S⊆[n]
|S|=j

σ2|S|‖∂Sg‖42 � C(k, ε).

Proof: In the definition of Errk(f), we see that only

generalized derivatives of g of order � k are considered,

so there is one order that contributes at least 1
k fraction of

Errk(f).
Fix C(k, ε) from the above claim, and define the set F ={
S | ‖∂Sg‖22 � C2(k, ε)

}
, for C2(k, ε) = 2−k−1C(k, ε).

We have

C(k, ε) �
∑
S⊆[n]
|S|=j

‖∂̃Sg‖22‖∂Sg‖22

� 42kσ2j |F|+ C2(k, ε)
∑
S⊆[n]
|S|=j

‖∂̃Sg‖22,

for the second inequality we used ‖∂Sg‖22 � 4k, ‖∂̃Sg‖22 �
4kσ2j to upper bound the contribution from S ∈ F . 4 The

4To see this, note that by Parseval ‖∂Sg‖22 � ‖∂Sf‖22 and since f is
Boolean, |S| � j, the values of ∂Sf are at most 2j in absolute value,
hence ‖∂Sf‖22 � 22j � 4k .

second sum is easily seen to be equal to∑
|T |�k

(|T |
j

)
f̂(T )2 � 2k,

so the second term is at most C(k, ε)/2 and hence |F| �
4−2kσ−2j · 1

2C(k, ε) � C3(k, ε)p
−j (for appropriate con-

stant C3(k, ε) > 0). Also, since the sum of the degree

j generalized influences of g is at most 2k, we get that

|F| � 2k

C2(k,ε)
p−j .

Define the DNF formula JF (x) =
∨

S∈F
∧

i∈S xi and the

function hF (x) =
∑
S∈F

1xS=1.

Claim III.9. Prx [JF (x) = 1] � C4(k, ε) for C4(k, ε) �
e−O(k)ε5.

Proof: We use the second moment method. By Cauchy–

Schwarz Prx [JF (x) = 1] � Ex[hF (x)]2

Ex[hF (x)2] . The numerator is

the square of pj |F| � C3(k, ε). Let FA be the family of all

sets in F containing A. The denominator is at most∑
|A|�j

∑
S1,S2∈F
S1∩S2=A

p2j−|A| �
∑
|A|�j

p2j−|A| |FA|2 .

Next, we upper bound the size of FA for any A of size at

most j. The idea is to show an upper bound and a lower

bound on the sum of all generalized influences of S ∈ FA.

On the one hand, since S ∈ FA have large influence, it is at

least C2(k, ε) |FA|. On the other hand, we may bound their

sum using their Fourier expression as follows:∑
S⊃A
|S|=j

‖∂Sg‖22 = σ−2j
∑
T⊇A

(|T | − |A|
j − |A|

)
ĝ2(T )

� 2kσ−2j‖∂̃Ag‖22 � 8kσ−2j+2|A|.

In the last inequality we used ‖∂̃Ag‖22 � 4kσ2|A|. Hence

|FA| � 8k

C2(k,ε)
σ−2j+2|A|. Upper bounding one of the |FA|

factors using the above bound, we see that the denominator

is at most

8k

C2(k, ε)

∑
|A|�j

p2j−|A|σ−2j+2|A| |FA|

=
8k

C2(k, ε)
pj

∑
|A|�j

(1− p)|A|−j |FA|

� 16k

C2(k, ε)
pj

∑
|A|�j

|FA| .

In the last inequality we used p � 1/2. In the above sum,

each element of F is counted 2j � 2k times, so it is at most

2k |F|, and the denominator is at most

32k

C2(k, ε)
pj |F| � 64k

C2(k, ε)2
,
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in the last inequality we used the upper bound on

the size of F . The claim follows for C4(k, ε) =
64−kC3(k, ε)

2C2(k, ε)
2.

The above claim asserts that the DNF J has significant

probability of being 1, and it is tempting to argue that it

is correlated with f . This may indeed be the case, but we

do not know how to argue that. The issue is that while for

each S ∈ F , restricting xS = 1 increases the average of f
significantly, there could be delicate overlaps between the

points that contribute to this increase on different S’s. We

circumvent this issue by identifying “potential overlaps” and

replacing them if it is necessary.

Define a sequence ε0 = C2(k, ε), and recursively εi+1 =
2−8kε2i . This sequence should be thought of as: a set S of

size j − i would be considered influential if its generalized

influence is at least εi (note that for i = 0, this is the original

set F we started with). We consider all sets T ⊆ [n] of size

j − i starting with i = 1 to i = j − 1. If ‖∂T g‖22 � εi we

remove from F all supersets of T and add T to F instead.

Since whenever we remove a set S we add a proper subset

of it T , we only increase Ex [JF (x)] during this process and

in particular in the end it is at least C4(k, ε). We choose a

uniform-sized subset of F that contributes at least 1
j of the

measure of JF , and redefine F to be that set, call that size

s, so that we have Ex [JF (x)] � C5(k, ε) (for C5(k, ε) =
C4/k).

We may assume that ps � 2−5k−2εj−s, otherwise for

any S ∈ F , the function
∧

i∈S xi is δ correlated with f

for δ = ps8−kεj−s � exp(−exp(O(k)))ε2
k

(using Lemma

III.6), and we are done.

Denote μ = Ex [hF (x)], and note that μ � Ex [JF (x)] �
C5. If μ � 2−5kεj−s we continue in the argument with

C6
def
= C5, and otherwise we remove elements from F until

we have μ � 2−5k−1εj−s, and in the end of the process

have 2−5k−1εj−s − ps � μ � 2−5k−1εj−s, implying (by

ps � 2−5k−2εj−s) that μ � C6(k, ε)
def
= 2−5k−2εj−s.

Claim III.10. Ex

[
hF (x)2

]
� μ2 + μ+ 2−5kμεj−s

Proof: The proof is similar to the proof of Claim III.9,

and we use the notation FA therein. We have

E
x

[
hF (x)2

]
�

∑
|A|�s

∑
S1,S2∈F
S1∩S2=A

p2s−|A| �
∑
|A|�s

p2s−|A| |FA|2 .

From A = ∅, we get that the contribution is μ2, and from all

A’s of size s we get a contribution of μ. For any 0 < r < s
and A of size r, we upper bound |FA| (whenever it is non-

empty) by considering the sum of generalized influences of

S containing A.∑
S⊃A
|S|=s

‖∂Sg‖22 = σ−2s
∑
T⊇A

(|T | − r

s− r

)
ĝ2(T )

� 2kσ−2s+2|A|‖∂Ag‖22 � 2kσ−2s+2|A|εj−r,

in the last inequality, we used the fact that as F con-

tains proper supersets of A, we have ‖∂Ag‖22 � εj−r.

On the other hand, the sum of generalized influences of

S that contain A is at least εj−s |FA|, and we conclude

|FA| � 1
εj−s

2kσ−2s+2|A|εj−r. Since r < s we have by the

definition of εi that this is at most 2−8k2kσ−2s+2|A|εj−s �
2−6kp−s+|A|εj−s. Thus we get

E
x

[
hF (x)2

]
� μ2 + μ+ 2−6kεj−s

∑
0<|A|<s

ps |FA|

� μ2 + μ+ 2−6kεj−s · 2k |F| ps
= μ2 + μ+ 2−5kμεj−s.

Claim III.11. cov(f, JF ) � C7(k, δ) for C7(k, ε) =

exp(−exp(O(k)))ε2
k+4.

Proof: Note that for every x, f(x)JF (x) �
f(x)hF (x) − (hF (x)2 − hF (x)). Indeed, if hF (x) = 0, 1
then we have equality, and if hF (x) � 2 we have that the

right hand side is at most 2hF (x)−hF (x)2 � 0. Therefore,

E
x
[f(x)JF (x)] � E

x
[f(x)hF (x)]+E

x
[hF (x)]−E

x

[
hF (x)2

]
.

The first expectation is at least μ · (μ(f) + 8−kεj−s) by

linearity of expectation (and Lemma III.6, that implies that

for every S ∈ F , μ(fS→1) � μ(f) + 8−kεj−s) . The

second expectation is, by definition, equal to μ. The third

expectation is upper bounded using the last claim. Thus, we

get that

E
x
[f(x)JF (x)] � μ · (μ(f) + 8−kεj−s)− μ2 − 2−5kμεj−s

� μ · (μ(f) + 8−kεj−s)− 2−5k+1μεj−s

� μ · (μ(f) + 16−kεj−s).

The second inequality holds since μ � 2−5kεj−s. Since

Ex [JF (x)] � Ex [hF (x)] = μ, we get that

cov(f, JF ) � μ · (μ(f) + 2−3kεj−s)− μ(f)μ

= 2−3k · μεj−s = C7(k, ε).

Finally, to get the dependency of C7(k, ε) on k, ε, one sees

that εj−s � exp(−exp(O(k)))ε2
k−1

, and μ � C6(k, ε) �
exp(−O(k))min(ε2

k−1

, ε4).

D. Corollaries

Combining the two steps, one has the following result:

Theorem III.12. For every k ∈ N, ε > 0 there is δ > 0
such that the following holds. If a monotone f : {0, 1}n →
{0, 1} with var(f) � ε has W�k[f ] � var(f)

2000
√
k

, then f is δ
correlated with a DNF formula φ of width k. Additionally,
each term S of φ is a δ-booster for f , i.e. μ(fS→1) �
μ(f) + δ.
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As remarked earlier, one may also prove analogous p-

biased results for other classical applications of the invari-

ance principle, such as the Majority is Stablest theorem of

[7].

IV. BIASED ANALOGS OF THE BKS THEOREM

In this section we prove our results for noise sensitivity.

Definition IV.1. Let f : {0, 1}n → {0, 1}, and let ε > 0.
The noise sensitivity of f is

NSε(f) = Pr
x,y ε correlated

[f(x) �= f(y)].

Recall that a function f is called noise sensitive if for

every ε > 0, NSε(f) = 2var(f) + on(1).
In this section, we present sufficient conditions for func-

tions f invariant under well behaved groups G to be noise

sensitive at μn
p . First, recall the well-known relation between

the noise sensitivity of f and its Fourier coefficients:

Fact IV.2. For any f : {0, 1}n → {0, 1}n and ε ∈ (0, 1),

NSε(f) = 2var(f)− 2
n∑

i=1

(1− ε)iW=i[f ].

A. BKS analog for some graph properties

In this section, we prove the basic form of our result, and

in later sections we generalize it.

Theorem IV.3. Let p = Θ(1/n1/2). For every ε, δ > 0.
there are η > 0, d ∈ N such that if a monotone graph
property f : {0, 1}n → {0, 1} satisfies:

1) The correlation of f with any width d DNF formula
is at most η, and

2) I[f ] � η
√

n
σ2 ,

then NSε(f) � 2var(f)− δ.

Remark IV.4. It is easy to check that for any f symmetric
under a transitive group, and in particular for graph prop-
erties, the conditions I[f ] = o(

√
n/σ2) and II[f ] = o(1)

are equivalent.

To prove Theorem IV.3, by Fact IV.2 it suffices to prove

an upper bound on the weight of f on the low levels, say

on i � r, since the contribution from i > r is at most

(1− ε)r � δ/2 for large enough r(ε, δ).

Lemma IV.5. Let f : {0, 1}n → {0, 1} be a monotone
graph property, p = Θ(1)/

√
n, k ∈ N and δ > 0. There

is η(k, δ) > 0 such that if:
1) The correlation of f with any width k DNF formula

is at most η,
2) Ip[f ] � η

√
n
σ2 ,

then W=k[f ] � δ.

Using Fact IV.2, one sees that Theorem IV.3 is easily

implied by the above lemma. The rest of this section is

dedicated for the proof of this lemma.

Define g(x) = f=k(x), i.e. the homogenous degree k
part of the Fourier decomposition of f , and let G ⊆ Sn be

the action of vertex permutations on [n]. Since f is invariant

under the action of G, so is g. Since the number of unlabeled

graphs with d edges is some constant C(d), we have that the

number of different orbits of S ⊆ [n] of size k is bounded by

C(k); we partition these orbits into several different classes,

and bound the contribution of each one of them.

We shall need the following observation about G: the orbit

of S under G may only be of size Θd(n
v/2) (if S describes

a v-vertex graph). Thus, there exist constants Ad, ad > 0,

such that if the orbit size exceeds Adn
v/2, then it must be

at least of size adn
(v+1)/2.

Consider P =
{
S | |S| = k, σ2k |orbG(S)| � Ak

}
, and

denote W =
∑
S∈P

‖∂̃Sg‖22. Since there are at most C(k)

different orbits for characters of size d, there is S ∈ P such

that
∑

T∈orbG(S)

‖∂̃Sg‖22 � W
C(k) . Since all terms on the right

hand side are equal we get that |orbG(S)| ‖∂̃Sg‖22 � W
C(k) ,

and therefore∑
T∈orbG(S)

‖∂̃Sg‖22 · ‖∂Sg‖22 = |orbG(S)| · ‖∂̃Sg‖22 · ‖∂Sg‖22

=
1

σ2korbG(S)

(
|orbG(S)| · ‖∂̃Sg‖22

)2

� W 2

C(k)2Ak
.

By Theorem III.7, if W > δ/2, the above inequality

implies that f is η1-correlated with a width k DNF formula

for some η1(k, δ) > 0. Therefore, restricting η � η1, we

have W � δ/2. Note that W �
∑

S:∃T∈P,T⊆S

f̂(S)2, so

we may drop these character from g and upper bound the

contribution from the rest, i.e. redefine

g(x) =
∑
|S|=k

T⊆S→T �∈P

f̂(S)χS(x),

and have that W=k[f ] � δ
2 + ‖g‖22.

Claim IV.6. For any S �= ∅, we have ‖∂Sg‖22 � ck
1√
n

for
some ck > 0.

Proof: Note that if S ∈ P , then the generalized

influence of g on S is 0. Thus, we may assume that

σ2k |orbG(S)| > Ak, and in particular |orbG(S)| >
Akp

−k � Akn
k/2, and by the definition of Ak this implies

that the orbit of S is of size at least adn
(k+1)/2. Therefore,

σ2k |orbG(S)| � ak
√
n, and since all generalized influences

of g in the orbit of S are equal we get∑
T∈orbG(S)

‖∂̃T g‖22 = σ2k
∑

T∈orbG(S)

‖∂T g‖22

= σ2k |orbG(S)| ‖∂Sg‖22 � ak
√
n‖∂Sg‖22.
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On the other hand∑
T∈orbG(S)

‖∂̃T g‖22 �
∑
T

∑
Q⊇T

ĝ(Q)2

=
∑
Q

2|Q|ĝ(Q)2 � 2k‖g‖22 � 2k.

We used the fact that all non-zero Fourier coefficients of g
are of size � k and Parseval. By combining the upper and

lower bounds we conclude that there is ck > 0 such that

‖∂Sg‖22 � ck
1√
n

.

The next and final part of the proof bounds ‖g‖22, using

a variant of an argument of [36].

Claim IV.7. ‖g‖22 � Ckn
−1/4σ2Ip[f ] ln

10d

(√
n/σ2

Ip[f ]

)
for

some Ck > 0.

Before proving this claim, we show that it quickly finishes

the proof. Indeed, taking into account that σ = Θ(1)/n1/4,

the bound that we have on ‖g‖22 is

Ck
Ip[f ]√
n/σ2

ln10d

(√
n/σ2

Ip[f ]

)
Thus, we may take small enough η2(k) > 0 so that given

Ip[f ] � η2(k)
√
n/σ2, the last expression is at most δ.

Taking η = min(η1, η2) finishes the proof.

Proof of Claim IV.7: Choose a partition [n] = I ∪ J
randomly, where each i ∈ [n] it put in I with probability

1/k and otherwise in J. Since each S of size k intersects I
in a single element with probability k · 1k (1− 1/k)k−1 � 1

e ,

we have that

E
I,J

⎡⎣ ∑
S:|S∩I|=1

ĝ(S)2

⎤⎦ � 1

e
‖g‖22. (6)

Thus, there are I, J that give value at least 1
e‖g‖22 for the

left hand side. Fix such I and J , and bound the left hand

side. Write x = (y, z) where y ∈ {0, 1}I , z ∈ {0, 1}J and

for each i ∈ I define

gi(z) =
1

σ

∑
S⊆J,|S|=k−1

ĝ(S ∪ {i})χS(z).

Then note that∑
S:|S∩I|=1

ĝ(S)2 = σ
∑
i∈I
〈f, giχi〉 = σ

∑
i∈I
〈fχi, gi〉. (7)

The following claim bounds each summand in (7) sepa-

rately.

Claim IV.8. Let ξ be the bound on the S �= ∅ derivatives
from Claim IV.6. Then for every i ∈ I , 〈fχi, gi〉 is at most

T
√

ξσIi[f ] + Ck

√
ξe−T 1/10k

√√√√
E
z

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]
.

Proof:

〈fχi, gi〉 = E
y∼μI

p

z∼μJ
p

[f(y, z)χi(y)gi(z)]

= E
z∼μJ

p

[
gi(z)E

y
[f(y, z)χi(y)]

]
� E

z∼μJ
p

[
|gi(z)|

∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣].
Writing |gi(z)| =

∫∞
0

1s�|gi(z)|ds, we get that

〈fχi, gi〉 �
∫ ∞

0
E

z∼μJ
p

[
1s�|gi(z)| ·

∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣]ds.
Recall that by Claim IV.6, all S �= ∅ derivatives are ξ
pseudo-random for ξ = cd

1√
n

. We partition the range of

integration [0,∞) into [0, T
√
ξ], call this integral α and

[T
√
ξ,∞), call this integral β, for T > e20d to be chosen

later. For α, since the value of an indicator is at most 1 we

get that

α �
∫ T

√
ξ

0
E

z∼μJ
p

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣]ds
= T

√
ξ E
z∼μJ

p

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣]
� T

√
ξ E
z,y−i

[∣∣∣∣Eyi

[f(y, z)χi(y)]

∣∣∣∣],
here we denote y−i by all variables of y except coordinate

i, and used the triangle inequality. Note that if variable i
is not influential on (y−i, z) for f , the contribution to the

expectation is 0, and when it is influential the contribution

is σ, therefore we get that α � T
√
ξσIi[f ].

For β, we have by Cauchy-Schwarz (on z) that

β �
∫ ∞

T
√
ξ

√
E
z

[
1s�|gi(z)|

]√√√√
E
z

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]
ds.

The second term does not depend on s, thus it can be pulled

outside the integral. The expectation of the first term is the

probability |gi(z)| � s. Making the change of variables s =
x
√
ξ, we get that β is at most√√√√ξE
z

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]∫ ∞

T

√
Pr
z

[
|gi(z)| � x

√
ξ
]
dx.

For all S, by Parseval ‖∂Sgi‖22 � ‖∂S∪{i}g‖22 �
√
ξ

where the last inequality is by Claim IV.6. Therefore, since

x � T � e20k we may apply Lemma II.12 to bound the

probability inside the integral, i.e.

β �
√
ξ

√√√√
E
z

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]∫ ∞

T

e−x1/10k

dx.
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To evaluate the last integral, we change variables s = x1/10k

to get that it is equal to

10k

∫ ∞

T 1/10k

s10k−1e−s ds � Cke
−T 1/10k

,

since the integrand is exponentially decaying starting from

large enough s(k). Hence,

β � Ck

√
ξe−T 1/10k

√√√√
E
z

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]
.

Plugging Claim IV.8 to (7), we get that it is at most

T
√

ξσ2
∑
i∈I

Ii[f ]

+ Ckσ
√

ξe−T 1/10k ∑
i∈I

√√√√
E
z

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]
.

Let us observe that the second sum is upper bounded by√
n. Indeed, by Cauchy-Schwarz it is at most

√
n

√√√√∑
i∈I

E
z

[∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]

=
√
n

√√√√
E
z

[∑
i∈I

∣∣∣∣Ey [f(y, z)χi(y)]

∣∣∣∣2
]
.

The inner-most expectation is the Fourier coefficient

f̂z({i}), where fz the function f with z fixed, so

the sum of their squares is at most 1. Therefore,

(7) � T
√
ξσ2Ip[f ] + Ck

√
ξσ
√
ne−T 1/10k

. Choosing T =

ln10k
(√

n/σ2

I[f ]

)
(which is large enough by assumption

on I[f ]), we get (7) � Ck

√
ξσ2Ip[f ] ln

10k

(√
n/σ2

Ip[f ]

)
.

Therefore, from (6) (or more precisely the choice of I, J
that we have made), and the value of ξ, it follows that

‖g‖22 � Ckn
−1/4σ2Ip[f ] ln

10k

(√
n/σ2

Ip[f ]

)
.

B. General graph properties

Theorem IV.9. Let k ∈ N be even, and p = Θ(1/n(k−1)/k).
Then for every ε, δ > 0. there are η > 0 and d ∈ N such that
if a monotone graph property f : {0, 1}n → {0, 1} satisfies:

1) The correlation of f with any width d DNF formula
is at most η.

2) Ip[f ] � η
√

n
σ2 .

then NSε(f) � 2var(f)− δ.

The proof of this Theorem goes along the lines of the

proof of Theorem IV.3, with small modifications, and to

explain them we first re-examine the proof of Theorem

IV.3. In the proof we considered generalized derivatives

on S’s of two types: the collection P of S’s that have

σ2|S| |orbG(S)| smaller than some constant Ad, and the rest.

The first type is bounded using the assumption that the

function is not correlated with DNF formulas. The second

type is bounded using refined hypercontractivity, and the

crucial property used about the constant Ad, is that once

σ2|S| |orbG(S)| > Ad for S of size d, σ2|S| |orbG(S)| has

to be in fact much larger than that (cd
√
n there). That is, this

expression “bumps” from constant value Ad to polynomial

value in n. This bump is then used in Claim IV.6 to show

that the function g consisting of coefficients are still to be

accounted for, is quasi-random, and all of its generalized

influences are at most 1 over the “bump”.

Finally, to express the bound on ‖g‖2 in terms of

I[f ]/
√
n/σ2, we use the precise value of p (and more

specifically, its relation to the bump we had).

To prove Theorem IV.9 one may use the same outline

with the following modifications:

1) For p such as in the theorem, for any d there is Ad

such that whenever σ2|S| |orbG(S)| > Ad, one has

σ2|S| |orbG(S)| > cdn
1/k. To see this, note that the

left hand side is cdn
α for α > 0 of the form m1

k−1
k +

m2
1
2 for m1,m2 ∈ Z, and using the fact k is even this

must be at least 1/k. Consequently, taking this Ad, the

bound on P stays as is, and the bound in Claim IV.6

changes to cdn
1/k.

2) In the end, the bound on W=k[f ] we would get is

Cdn
−1/2kσ2I[f ] ln10d

(√
n/σ2

I[f ]

)
, and for our specific

p we have n−1/2kσ2 = Cd√
n/σ2

and the bound may be

rewritten as Cd
I[f ]√
n/σ2

ln10d
(√

n/σ2

I[f ]

)
. In particular,

provided thatI[f ] = o(
√
n/σ2) we get that W=k[f ] =

o(1).

It is now clear that the only property that we used for

graph properties, is that in this case the symmetry group G ⊂
Sn would be bumpy: namely, that if the expected number

of occurrences of copies of a subgraph S (which is equal

to p|S| |orbG(S)| ≈ σ2|S| |orbG(S)|) exceeds some constant

Ad, then in fact it should at least some polynomial in n.

Continuing in this fashion, one may state similar statement

about hypergraph properties and further about sufficiently

nice general group of symmetries. In the following section

we state such result. We remark however, that while the

previous result, Theorem IV.9, gives a sufficient condition

for noise sensitivity that is also necessary, the more general

result is does not give a condition that is necessary (but is

sufficient).

C. Results for general groups of symmetry

Let G ⊆ Sn be a group, p(n) be a probability parameter,

and let S ⊆ [n]. We associate with S the parameter

ep(S)
def
= σ2|S| |orbG(S)| that roughly counts the expected

number of T ∈ orbG(S) to have xT = 1 when x ∼ μn
p
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(since σ2|S| ≈ p|S| when p = o(1) and |S| = O(1)). As

discussed in the previous section, the key property we used

in Theorems IV.3 and IV.9, is that this expectation is bumpy

– namely, for any d ∈ N there is a constant Ad, such that if S
of size d has ep(S) > Ad, then in fact ep(S) is significantly

larger (and in fact some power of n). We formalize this

property below.

Definition IV.10. Let p(n) ∈ (0, 1), B : N → N and G ⊆
Sn. The group G is called (p,B)-bumpy if for any d ∈ N,
there are constants Ad, cd > 0 such that if S ⊆ [n] of size
d has ep(S) > Ad, then ep(S) � cdB(n).

Another property we used, is that for any d ∈ N, the

number of different orbits of S of size d only depends on

d.

Definition IV.11. A group G ⊆ Sn is called bounded, if for
any d ∈ N there is Cd > 0 such that the number of different
orbits of sets of size d from [n] is at most Cd.

We can now state our general result.

Theorem IV.12. Let G ⊆ Sn be a bounded, (p, nτ )-bumpy
group for τ > 0. For every ε, δ > 0, there are η > 0, d ∈ N

such that if a monotone, G-invariant function f : {0, 1}n →
{0, 1} has:

1) The correlation of f with any width d DNF formula
is at most η.

2) Ip[f ] � η
√

n
σ2 .

then W=d[f ] � Cd
σ2

nτ/2 I[f ] ln
10d

(√
n/σ2

I[f ]

)
.

For this statement to be meaningful, we need, at the very

least to have σ2

nτ/2 I[f ] = o(1), but in general it is not

sufficient (since the logarithmic term may be large) and also

may not be necessary.

Remark IV.13. In some cases, such as k-uniform hyper-
graphs properties for constant k, and p = Θ(1/n(r−1)/r) for
r divisible by k, the condition σ2

nτ/2 Ip[f ] = o(1) is sufficient
and necessary.

The following result gives a sufficient condition for noise

sensitivity and follows immediately by the bound of Theo-

rem IV.12.

Theorem IV.14. Let G ⊆ Sn be a bounded, (p, nτ )-bumpy
group for τ > 0. For every ε, δ > 0, there are η > 0, d ∈ N

such that if a monotone, G-invariant function f : {0, 1}n →
{0, 1} has:

1) The correlation of f with any width d DNF formula
is at most η.

2) Ip[f ] � nτ/2

σ2
1

log1/η n
.

then NSε(f) � 2var(f)− δ.

D. General groups

Some interesting functions f have critical probability not

of the form p = 1
nr for a rational number r, but some

may have more complicated critical probabilities such as

p = logn
nr (for example, the connectivity property); or for

some function f , we do not know p precisely, but only some

bounds on it. In the first case, the “bump” of ep(S) occur

at a different point, polyd(log n) value (instead of constant

value Ad), and in the second case, we do not really know

where or if the bump occurs.

Our noise sensitivity method extends to some of these

cases as well, at least when the correlation with DNF

formulas is very small.

Definition IV.15. We say a group G is (p, b(n), B(n))
bumpy, if for every d there is ad, Ad > 0 such that if for
some S of size d we have ep(S) � b(n)Ad , then in fact
ep(S) � adB(n).

Clearly, every group is (p, b(n), b(n)) bumpy (and this is

sometimes useful when we have little information about p).

Theorem IV.16. Let b, B : N→ N be two increasing func-
tions, and let G ⊆ Sn be a bounded, (p, b(n), B(n)) bumpy
group. For every ε, δ > 0, there are D, d ∈ N such that if a
monotone, G-invariant function f : {0, 1}n → {0, 1} has:

1) The correlation of f with any width d DNF formula
is at most 1

b(n)D
.

2) I[f ] �
√

B(n)

σ2
1

logD(n)
.

then NSε(f) � 2var(f)− δ.

The proof of this theorem follows the proof of Theorem

IV.3 closely as well. The difference is that generalized

influences of the first type are now P = {S | ep(S) � b(n)}.
Repeating the argument therein, if W =

∑
S∈P

‖∂Sf‖22 is at

least δ/2, then
∑
S∈P

‖∂Sf‖22‖∂̃Sf‖22 � cdW
2 1
b(n)

def
= ε for

some cd > 0. Therefore, using Theorem III.7, we conclude

that f is ρ-correlated with DNF formula of width d, where

ρ = c′dε
2d+4 = C(d, δ)

1

b(n)2d+4
>

1

b(n)D
,

for some D(d, δ), and contradiction to the first assumption

of the theorem.

The rest of the proof proceeds exactly as there, and we

omit it.

V. APPLICATIONS

In this section we use Theorems IV.3, IV.9, and IV.14 to

prove noise sensitivity for specific interesting functions.

A. k-SAT

Let n =
(
N
k

)
. A k-CNF formula φ can be described by a

bit string x ∈ {0, 1}n, where each coordinates corresponds

to a potential clause, and its value is 1 if and only if
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it appears in the formula. Let k-SAT : {0, 1}n → {0, 1}
be the function that gives x the value 1 if and only if

the formula described by x is unsatisfiable, meaning every

Boolean assignments to its N variables fails to satisfy at

least one clause.

Friedgut [23] showed that k-SAT problem has a sharp

threshold at p = c(k,n)
n(k−1)/k for some bounded c(k, n) (the

value of c(k, n) is not known and it is conjectured to only

depend on k). Theorem IV.12 implies a sufficient condition

(which is also necessary) for the k-SAT function to be noise

sensitive.

Corollary V.1. Let f be the k-SAT function, and let p be
a point where μp(f) is a constant bounded away from 0
and 1. Then f is noise sensitive at p if and only if Ip[f ] =
o(
√
n/σ2).

Proof: An argument by Friedgut [23] shows that f = k-

SAT is not correlated with constant width DNF formulas

(for completeness we include a proof in Section A). Thus,

if Ip[f ] = o(
√
n/σ2) the function would be noise sensitive

by Theorem IV.12. If, on the other hand, we had Ip[f ] =
Ω(

√
n/σ2), then by Claim A.1 the function has constant

weight on level 1 and in particular it is not noise sensitive.

Though we suspect that the total influence of k-SAT

should be o(
√
n/σ2) for any constant k, we do not know

how to show that, except for the case k = 2.

2-SAT.: In [38], the 2-SAT function is studied in

great details, and in particular using their techniques one

may bound the total influence of 2-SAT near its critical

probability. Denoting n = 4
(
N
2

)
where N is the number

of variables in the 2-SAT formula, the critical probability of

2SAT is known to be p = 1/(2N).

Corollary V.2. Let f be the 2SAT function. For any p =
1

2N (1+ λ
N1/3 ) for λ ∈ [−1, 1], we have Ip[f ] = o(

√
n/σ2).

Hence, f is noise sensitive on any such p.

Proof: We shall use a few results from [38], so we begin

with some terminology. Given a 2SAT formula φx encoded

by x, we may construct a directed graph Hx = (V,E) whose

vertex set has size 2N and corresponds to variables and their

negations, and edges correspond to clauses, i.e. if the clause

(u ∨ v) appears in φx then we add the implication edges

(ū, v), (v̄, u).
For the graph Hx, one has the following simple facts (for

a proof, see for example [38]). We denote the fact “in Hx

there is a path from u to v” by u �x v.

Proposition V.3 ([38]). For every x, we have:
1) φx is satisfiable if and only if Hx does not contain a

cycle that contains a variable and its negation, which
we call a contradictory cycle.

2) Reversal: for all u, v ∈ V , if u �x v, then it has a
path from v̄ �x ū.

Since f is symmetric under transitive group, all variables

have the same influence and it suffices to bound the influence

of the first variable, say (u, v). Since f is monotone,

I1[f ] = μp(fx1→1)− μp(fx1→0) = E
x
[f(1,x)− f(0,x)].

Therefore, x’s that contribute to I1[f ] are x’s in which H(0,x)

does not contain a contradictory cycle, but H(1,x) does, so

we know that in (1, x) we have a negative cycle passing

through (u, v), say

z → . . .→ z̄ → . . .→ u→ v → . . .→ z.

Since z̄ �x u, by reversal we have a path from ū �x z, and

then using z �x u we have a path from ū to u. Similarly,

since v �x z̄, by reversal z �x v̄, so using the path from v
to z we have v �x v̄. We note that both paths we constructed

do not use the edge (u, v).
Thus, whenever (u, v) appears in a negative cycle, there

is a path from w to w̄ and s to s̄ for some w ∈ {u, ū}
and s ∈ {v, v̄}. Thus, I1[f ] � 4Prx [ū �x u ∧ v �x v̄].
Let us take λ = 1, then applying [38, Theorem 3.2 (ii)], the

probability that Hx contains a path from u to ū and from v
to v̄ is at most

Pr
x
[ū �x u]Pr

x
[v �x v̄] +O(N−2/3),

and applying [38, Theorem 3.1 (ii)] each probability is

O(N−1/3), so we get that Prx [ū �x u ∧ v �x v̄] =
O(N−2/3). Now observe that this probability only decreases

when λ < 1, thus we have this inequality for every λ ∈
[−1, 1]. In particular, I1[f ] = O(N−2/3) for every p in our

range and consequently Ip[f ] = O(nN−2/3) = O(n2/3) =
o(
√
n/σ2) (in the last transition we used σ2 = Θ(1/

√
n)).

B. Lubetzky-Steif

Based on Theorem IV.16, we give alternative proofs for

some noise sensitivity results obtained in [39].

1) Large minimum degree:

Corollary V.4. For any constant k ∈ N, let fk : {0, 1}n →
{0, 1} be the graph property of having minimum degree �
k in the graph. Let p(n) be such that μp(fk) is constant
bounded away from 0 and 1.

Then fk is noise sensitive, that is NS(fk) = 2var(fk) +
o(1)

Proof: Fix k and consider fk. Write n =
(
N
2

)
, so that

N is the number of vertices in the graph fk operates on.

It is well known (see [43]) that μp(fk) is constant bounded

away from 0, 1 only when

p =
lnN + (k − 1) ln lnN +O(1)

N
,

so assume p is of this form. To show noise sensitivity, we

use Theorem IV.16 with b(n) = log n,B(n) = n1/2, and to

do that we argue that (1) fk is not δ-correlated with d =
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O(1) width DNF formulas for any δ = 1/polylog(n), and

(2) I[fk] = Ok(
√
n) (3) the symmetry group G of fk is

(p, b(n), B(n)).
Plugging this three properties into Theorem IV.16 es-

tablishes the result, and next we prove each one of these

properties.

• Fix d, and assume for contradiction fk is δ-correlated

with DNF formula of constant width. Since f is mono-

tone, we may assume the DNF formula to be monotone

(otherwise we may remove negated variables and not

decrease the correlation). Using Proposition A.5, fk has

a δ-booster of size d, say S. By the bound on the width

of the formula, S is a set of at most d edges, and hence

it involves at most 2d vertices of the graph. Call this

set of vertices V , and let S2 denote a clique on V . By

monotonicity

μ((fk)S2→�1) � μ((fk)S→1) � μ(fk) + δ.

However as we argue next, this implies δ = Ok(1/N).
Indeed, note that

μ((fk)S2→�1)−μ(fk) = E
a∈{0,1}n

[
fk(xS2

= �1,aS2
)− fk(a)

]
,

so the difference is at most the probability the graph

a describes has minimum degree < k, but when the

clique on V is inserted it has minimum degree � k.

But the only vertices whose degree is different between

the two graphs is different are vertices of V , so this

probability is at most

Pr
a
[∃v ∈ V deg(v) < k] �

∑
v∈V

Pr
a
[deg(v) < k].

Note that all of these probabilities are equal and are at

most the probability a vertex v in G(N, p) has degree

< k. The latter probability may be upper bounded as

k−1∑
i=0

(
N

i

)
pi(1− p)N−i

� Ck

k−1∑
i=0

N ipi(1− p)N � Ck

k−1∑
i=0

lni(n)e−pN

� Ck

k−1∑
i=0

lni(n)e− lnN−(k−1) ln lnn

� Ck

N
.

• We upper bound the influence variables i ∈ [n], that by

symmetry are all equal. The influence of i is equal to

μ((fk){i}→1)−μ(fk), which by the previous argument

is Ok(1/N). Therefore, Ip[fk] = Ok(n/N) = Ok(N).
• For any constant d, if ep(S) � Ad log

d(n), then

ep(S) � N = Θ(n1/2). This is true, since by expand-

ing the left hand side is Θd(log
d(n)N−dNv) where v

is the number of vertices in the graph described by S,

so since it is significantly larger than logd(n), we must

have v � d+ 1.

Remark V.5. As shown in [39], Theorem V.6 implies noise
sensitivity for several natural graph properties including
connectivity, containing Hamiltonian cycle and containing
a perfect matching.

2) Containing a large cycle: Let n =
(
N
2

)
.

Corollary V.6. Let � : N → N such that �(n) = ω(1),
�(n) = O(N1/3), and let f� : {0, 1}n → {0, 1} be the graph
property of containing a cycle of length � �(n). Let p(n)
be such that μp(fk) is constant bounded away from 0 and
1. Then f is noise sensitive.

Proof: It is well know that for �(n) = O(N1/3), we

have p(n) � (1+O(N−1/3))/N . We apply Theorem IV.16

with b(n) = 2
√
logn, B(n) =

√
n, and check the conditions

(the (p, b(n), B(n)) bumpiness is clear):

1)
Assume f is δ-correlated with width d DNF formula

(which as before may assume to be monotone since

f is monotone). Then by Proposition A.5 f has a δ-

booster of size d. I.e., there is a set of edges S of

size d, such that fixing them to 1, the probability to

contains a cycle of length � increase by at least δ.

On the other hand, observe that since d � �,
μ(fS→�1) − μ(f) is at most the probability a graph

H ∼ G(N, p) has a path between a pair of vertices

u, v that appear in S (perhaps in different edges).

By the union bound the latter probability is at most

d2 · PrH∼G(N,p) [u �H v].
Denote by C(u) the connected components of u, and

note that PrH∼G(N,p) [u �H v] is at most

Pr
H

[
|C(u)| � N2/3 logN

]
+ Pr

H

[
N2/3 � |C(u)| � N2/3 logN

]
· N

2/3 logN

N

+

logN∑
t=0

Pr
H

[
N2/3

2t
� |C(u)| � N2/3

2t+1

]
· N2/3

2t+1N
.

We recall some basic facts regarding connected com-

ponents of G(N, p): first they are all of size �
N2/3 logN except with probability O(1/N) (see

[44]), hence we get a bound on the first term. For the

second and third, we use the fact that for t � 0, the

probability the connected component of u is of size
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� N2/3/2t is at most O(2t/2N−1/3) 5. Therefore, we

get PrH∼G(N,p) [u �H v] is at most

O(1/N) +O(N−2/3 logN) +

logN∑
t=0

N−2/3

2t/2

= O(N−2/3 logN).

so δ = O(N−2/3 logN).
2) The argument from before in particular shows that

Ii[f ] = O(N−2/3 logN) for every i ∈ [n], and hence

I[f ] = O(N4/3 logN) = o(n3/4−0.01).

VI. GENERAL BKS FAILS

In this section, we show a counter example to the follow-

ing speculation. We shall think of an input as a graph over

N vertices, and n =
(
N
2

)
.

Speculation VI.1. For every p = o(1), if a graph property
f : {0, 1}n → {0, 1} is o(1) correlated with constant width
DNF formulas, has II[f ] = o(1), then f is noise sensitive.

The example we consider is as follows. Let p = 1
N5/8 , and

consider the random variable Z defined to be the number of

triangles in a G(N, p) graph. It is a straightforward computa-

tion to show that Z has expectation μ =
(
N
3

)
p3 = Θ(N9/8)

and variance σ2 = μ + O(N4p5) = μ + O(N7/8). Let

t be the median of Z, i.e. the least integer t for which

Pr [Z � t] � 1
2 , and set f(G) = f�(G) = 1#�(G)�t.

Theorem VI.2. The function f = f� is a counter example
to the above speculation. More precisely, we have the
following properties:

1) II[f�] = o(1).
2) f� is o(1) correlated with any constant width DNF.
3) f� is noise insensitive, and more precisely

W=3[f�] � Ω(1).

Proof: We shall use the following Gaussian-type behav-

ior of Z, proved in [46]. First, by Chebyshev’s inequality we

have Pr [|Z− μ| � 10σ] � 1/100, thus t ∈ [μ − 10σ, μ +
10σ].

Lemma VI.3 ([46, Theorem 4.11]). There are constants c, C
such that for all integers k ∈ [μ − 10σ, μ + 10σ] we have
that Pr [Z = k] is between c/σ and C/σ.

5The idea is as in [45, Theorem 7]. Using their notation (except our N
is n in their notation), setting H = N1/32−t/2 therein, if |C(u)| �
N2/3/2t then either Sγ � H , or else in < H steps, the connected

components of u has gotten to size N2/3/2t. For the probability of the
first event, the proof therein gives Pr [Sγ � H] � O(2t/2N−1/3). For
the second event, one may calculate the expected number of new members
discovered at each step is at most O((1 + O(N−1/3))H) = O(1), so
the expected number of members in < H steps is O(H), and hence by
Markov the probability it exceeds N2/3/2t is at most O(2t/2N−1/3).

From this lemma it is already clear that EG [f(G)] =
1
2+o(1). Next, we show that II[f ] = o(1). Recall that since

f is symmetric under transitive group, we have that II[f ] =
npIi[f ]

2. Below we upper bound the probability that i is

influential. An edge i = (u, v) is influential if sampling the

input G on all coordinates except i, G has < t triangles

but G ∪ {i} has � t triangles. The expected number of

triangles i is adjacent to is Np2 = N−1/4, and by an easy

computation the probability it is adjacent to at least 8 is at

most O(N8p16) = O(1/n). Thus, letting E be the event

that i is adjacent to at most 8 triangles, we have that

Ii[f ] � Pr
G

[
Ē
]
+ Pr

G
[ i influential |E].

Clearly, conditioned on E, for i to be influential we need

it to be adjacent to at least one triangle (that happens with

probability O(Np2)) and that G would contain between t−8
and t− 1 triangles. Therefore,

Ii[f ] = O(1/n) +O(Np2)Pr
G

[t− 8 � Z[G] � t− 1]

� O(1/n) +O(Np2)Pr
G′

[t− 8 � Z[G′] � t− 1],

where G′ ∼ G(N, p) without the restriction of not con-

taining the edge i (here we use the fact that the probability

i is in G′ is 1 − p � 1/2, so removing this conditioning

increases the probability by at most constant factor). Since

the probability G′ contains between t−8 and t−1 triangles is

O(σ−1), we conclude that Ii[f ] � O(1/n)+O(Np2σ−1) =
O(N−13/16), and therefore II[f ] = npO(N−26/16) =
O(N−1/4), and the first bullet is proved.

To show the second bullet, suppose f has ε correlation

with width k DNF where ε = Ω(1), k = O(1). Then by

Proposition A.5 there exists a set of k edges J , such that

μp(g) � μp(f) + ε for g which is the function f when the

variables of J are set to 1. We may assume without loss

of generality J is a clique of size k (by possibly restricting

more edges). Note that since the size of J is constant, the

probability edges in J participate in any triangles other than

the ones appearing in J is at most JNp2 = o(1), thus we

get that the difference μp(g)−μp(f) is (up to o(1)) at most

the probability that a randomly chosen graph G has between

t and t − J3 triangles. This probability is o(1) by Lemma

VI.3, and contradiction to the assumption that ε = Ω(1).
Thus, the second bullet is proved.

Next we prove the third bullet. Let C3 be potential

triangles on an N -vertex graph, then W=3[f ] is at least

∑
S∈C3

f̂(S)2 �
(
N

3

)
p3

∣∣∣∣∣∣
∑

a∈{0,1}S
(−1)|S|−|a|μp(fS→a)

∣∣∣∣∣∣
2

�
(
N

3

)
p3
(
A− 3B

)2

,

where we choose a specific triangle S (arbitrarily) with

edges i1 = (u, v), i2 = (v, w), i3 = (u,w), and
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define A =
∣∣μp(fS→(1,1,1))− μp(fS→(0,0,0))

∣∣, B =∣∣μp(fS→(1,1,0))− μp(fS→(1,0,0))
∣∣. Note that A is at least

the probability that sampling a random graph G ∼ G(N, p),
G \ {i1, i2, i3} has t− 1 triangles, which is at least

Pr
G∼G(N,p)

[Z[G] = t− 1]− 3p = Ω(1/σ),

where we used Lemma VI.3 and p = o(σ−1). Therefore

A � Ω(1/σ).
Next, we show that B = o(1/σ). Consider the distribution

Gu,v.w over graphs G(N, p) conditioned on (i1, i2, i3) →
(1, 0, 0). Using a similar argument to the computation of the

influence, the difference μp(fS→(1,1,0))− μp(fS→(1,0,0)) is

at most the probability i2 is adjacent � 8 triangles (which

is O(1/n)), plus the probability i2 is adjacent to some

triangle (which is O(Np2) = o(1)), times the probability

that sampling G ∼ Gu,v,w, G \ {i1} has between t− 8 and

t− 1 triangles, i.e.

B � O(1/n)+o(1) Pr
G∼Gu,v,w

[t− 8 � Z[G \ {i1}] � t− 1].

We evaluate the last probability. The distribution of G\{i1}
is G ∼ G(N, p) conditioned on i1, i2, i3 being 0. Since

the probability of this conditioning is at least (1 − p)3 =
Ω(1), we may drop it and only increase the probability by

a constant factor. Thus,

Pr
G∼Gu,v,w

[t− 8 � Z[G \ {i1}] � t− 1]

� O(1) Pr
G∼G(n,p)

[t− 8 � Z[G] � t− 1]

= O(σ−1),

where we used Lemma VI.3. Therefore we get

B � O(1/n) + o(1) ·O(σ−1) = o(σ−1).

Plugging this in, we get that

W=3[f ] �
(
N

3

)
p3(Ω(1/σ)− o(1/σ))2

= Ω(N3p3σ−2) = Ω(1),

and the third bullet is proved.

VII. OPEN PROBLEMS

We list a few open problems that we believe are interest-

ing.

Question 1. Show that the total influence of the k-SAT
problem is o(

√
n/σ2) for any constant k.

For a predicate P : {0, 1}k → {0, 1}, an instance in

the constraint satisfaction problem (CSP(P ) in short) with

variables X = {X1, . . . , XN} is a set of k-tuples E ⊆ Xk,

and the instance is called satisfiable if there is a Boolean

assignment to the variables, A : X → {0, 1} such that

for every e ∈ E, say e = (Xi1 , . . . , Xik), we have

P (A(Xi1), . . . , A(Xik)) = 1.

The P -SAT function receives an input x ∈ {0, 1}Nk

de-

scribing an instance of CSP(P ) (each coordinate specifying

whether the corresponding k-tuple appears in E, and P -

SAT(x) = 1 if and only if x is satisfiable.

Question 2. For what predicates P : {0, 1}k → {0, 1} is
the P -SAT function noise sensitive?
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[26] A. Bonami, “Étude des coefficients de fourier des fonctions
de lp(g),” Annales de l’Institut Fourier, vol. 20, no. 2, pp.
335–402, 1970.

[27] W. Beckner, “Inequalities in Fourier Analysis,” Annals of
Mathematics, vol. 102, no. 1, pp. 159–182, 1975. [Online].
Available: http://www.jstor.org/stable/1970980

[28] L. Gross, “Logarithmic Sobolev Inequalities,” American
Journal of Mathematics, vol. 97, no. 4, pp. 1061–1083, 1975.
[Online]. Available: http://www.jstor.org/stable/2373688

[29] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, “Correlation
inequalities on some partially ordered sets,” Comm. Math.
Phys., vol. 22, pp. 89–103, 1971.

[30] M. Talagrand, “How much are increasing sets
positively correlated?” Combinatorica, vol. 16, no. 2,
pp. 243–258, Jun 1996. [Online]. Available:
https://doi.org/10.1007/BF01844850

[31] O. Schramm and J. E. Steif, “Quantitative noise sensitivity
and exceptional times for percolation,” Ann. of Math. (2),
vol. 171, no. 2, pp. 619–672, 2010. [Online]. Available:
https://doi.org/10.4007/annals.2010.171.619
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APPENDIX

A. Proof of Lemma III.6

Assume without loss of generality |S| = k. By definition,

‖∂Sf‖22 = E
x

⎡⎢⎣
⎛⎝ ∑

a∈{0,1}S
(−1)k−|a|fS→a(xS)

⎞⎠2
⎤⎥⎦

= E
x

⎡⎢⎣
⎛⎝ ∑

a∈{0,1}S
(−1)k−|a|(fS→a(xS)− f(x))

⎞⎠2
⎤⎥⎦.

Using Cauchy-Schwarz, this is at most

2kE
x

⎡⎣ ∑
a∈{0,1}S

(fS→(a,1)(xS)− f(x))2

⎤⎦.
For all a and x, (fS→a(x) − f(x))2 �
fS→1(xS) − fS→0(xS), so we get that ‖∂Sf‖22 �
4k (μ(fS→1)− μ(fS→0)) and it suffices to show that

μ(fS→1) − μ(fS→0) � 2k(μ(fS→1) − μ(f)). Indeed, by

conditioning on xS , we have

μ(f) =
∑

a∈{0,1}S
p|a|(1− p)k−|a|μ(fS→a).

Using monotonicity for all a �= �0, we have μ(fS→a) �
μ(fS→�1) so we get

μ(f) � (1− p)kμ(fS→0) + (1− (1− p)k)μ(fS→1),

and rearranging gives μ(fS→1) − μ(fS→0) � (1 −
p)−k(μ(fS→1)− μ(f)). Since p � 1

2 , we are done.

Claim A.1. If a monotone function f has I[f ] � c
√

n/σ2,
then W=1[f ] � c2.

Proof: By Fact II.7, Ii[f ] = σf̂({i}) and hence by

Cauchy-Schwarz σI[f ] =
n∑

i=1

f̂({i}) � √
n
√

W=1[f ].

Using the lower bound on I[f ] and rearranging finishes the

proof.

Claim A.2. Let p � 1
2 . If a monotone function f is

ε-correlated with a DNF formula φ of width w, then
W=D[f ] � δ for D, δ that only depend on w, ε.

Proof: By Cauchy-Schwarz,

δ = cov(f, φ) =
∑
S �=∅

f̂(S)φ̂(S) =

n∑
d=1

∑
|S|=d

f̂(S)φ̂(S)

�
n∑

d=1

√
W=d[f ]W=d[φ].

Since φ has width w, pI[φ] � 4w (see [41, Chapter 8,

Exercise 8.26]), and therefore for k = 16w/ε2 we have

W�k[φ] � 1
4ε

2. Therefore, by Cauchy-Schwarz

n∑
d=k

√
W=d[f ]W=d[φ] �

√
W�k[f ] ·W�k[φ]

�
√
W�k[φ] � 1

2
ε.

Plugging this into the first inequality, we conclude that
k−1∑
d=1

√
W=d[f ]W=d[φ] � 1

2ε. Therefore, there is 1 �
D(k) = D(w, ε) � k − 1 for which the Dth summand

is at least ε/(2k), implying W=d[f ] � ε2/(2k)2.

Claim A.3. Let f be the k-SAT function, and let p be such
that μp(f) is constant bounded away from 0 and 1. Then
the correlation of f with any constant width DNF formula
is o(1).

Proof: We think of the k-SAT problem as a hyper-

graph, where vertices are variables and their negations and

hyperedges correspond to clauses in the formula the input x
describes. Write n =

(
N
k

)
, and recall that the relevant range

of p is p = Θk(1)/N
k−1 = Θk(1)/n

1−1/k .

Suppose f is δ-correlated with width d DNF formula φ,

for constants δ > 0, d ∈ N. Since f is monotone, we may

assume without loss of generality φ is monotone, otherwise

we could increase the correlation by flipping negations on

variables.

The formula φ may contain a clause ANDi∈Sxi that is a

certificate for the function f (i.e. small set of clauses that

cannot be satisfied together, e.g. for k = 2, this could be

(x∨ y)∧ (ȳ ∨ x)∧ (x̄∨ z)∧ (z̄ ∨ x̄)). Suppose there is such

S, and let S′ ⊆ S be a set of clauses that is still a certificate

that minimizes the ratio between the number of hyperedges

it has and the number of variables it has.
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Proposition A.4 ([47]). The number of hyperedges in S′ is
greater than the number of vertices in it.

Proof: Assume towards contradiction this is not the

case. Consider the biparatite graph in which the left side

consists of the variables of S′, the right side consists of

the hyperedges of S′, and (v, e) is an edge if v or its

negation appear in e. Then assumption and minimality of S′

implies that Hall’s condition holds, and hence the graph has

a perfect matching. Setting variables to values 0, 1 according

to whether they appear with their negation in the hyperedge

that is matched with them, we see that S′ is satisfiable, and

in particular it is not a certificate for f .

Hence, any certificate S for f contains S′ that has more

hyperedges than variables, so the total μp mass of x’s

covered by certificates of f is at most

cd

d−1∑
s=1

Nsps+1 � 2cdNp2 = o(1),

and since the expectation of φ is constant, we may delete

all clauses that are certificates and only decrease correlation

by o(1). Then, by proposition A.5 we may choose a clause

S of φ such that

μp(fS→1) � μp(f) + δ − o(1) � μp(f) +
δ

2
.

We may choose a possibly larger S that has only a single

satisfying assignment (still of constant size � 2dk
2

) , and

by monotonicity still have μp(fS→1) � μp(f)+δ/2. Fixing

such S, we show that μp(fS→1) = μp(f)+o(1), and hence

δ = o(1) and contradiction.

Let V be the set of r = O(1) variables participating in

hyperedges of S. Fix this set, and consider the following

process that samples a k-SAT instance x:

1) Sample y: hyperedges of size k only among [N ] \ V ,

each with probability p.

2) Sample z: hyperedges of size � k− 1 from [N ], each

with probability rkp (these hyperedges correspond to

original hyperedges that had some variables from V ).

Note that after the first step, by monotonicity the probability

that f(y, 0) = 1 is at most μp(f). We claim that after

the second step, the probability that f(y, z) = 1 is at

least μp(fS→1) − o(1) � μp(f) + δ/4. To see that, note

that choosing xS̄ from μp, (a) the probability an hyperedge

clause with only vertices in V would appear is O(p) = o(1),
(b) hyperedges that only contain vertices from [N ] \V have

equal probability in this process (c) hyperedges that contain

some vertices from [N ] \ V and some from V have higher

probability of appearing in z (taking into account the forced

value of variables in V ).

Denoting qy = Prz [f(y, z) = 1], the above argument

implies that Ey [qy] � μp(f)+δ/4. Note that on the second

stage, the expected number of hyperedges added is at most

kNk−1rkp = Ok,d(1), so except with probability δ/8, it

adds only C = Ok,d,δ(1) hyperedges to x. Thus, adding z′,
which is C random hyperedges of size � k − 1, instead of

the second stage would and letting q′y = Prz′ [f(y, z
′)], we

have Ey

[
q′y
]
� μp(f) + δ/8. Since hyperedges of size 1

are the most restrictive (i.e. increase q′y the most), we may

assume that these hyperedges in z′ are of size 1.

For each y, let SAT(y) denote the set of satisfying

assignments of the formula given by y. The above im-

plies that choosing y randomly and C dictators at random

D1, . . . ,DC (noting that choosing a hyperedge of size 1
among to forcing the value of a variable, i.e. intersecting

with dictatorship), we have that

SAT(y) ∩ (D1 ∩ . . . ∩DC) = ∅,
with probability at least μp(f) + δ/8.

Fix y. We show that the choice of each Di could be

replaced by choosing w(n) random k-clauses (unions of

k-dictatorships), where we only require w(n) → ∞. We

start from replacing the last one, DC , with w(n) random

k-clauses. For D = (D1, . . . , DC−1), let α(D) be the

probability DC makes the intersection empty, and con-

sider only D with α(D) � δ/32C. Then this means that

SAT(y)∩(D1∩. . .∩DC−1) is contained in at least 2α(D)N
dictatorships, call their intersection W . Choosing a k-clause

randomly, the probability it intersects W in ∅ is at least(
2α(D)N

2N

)k

= α(D)k � (δ/32C)k,

so choosing w(n) k-clauses independently, the probability

their intersection intersects W in ∅ is 1 − o(1). Therefore,

we see that choosing (D1, . . . ,DC−1,TC) where TC is the

intersection of w(n) random k-clauses,

SAT(y) ∩ (D1 ∩ . . . ∩DC−1 ∩TC) = ∅
with probability � q′y − δ/32C − o(1) (the −δ/32C is

accounts for contribution from D’s with α(D) � δ/32C
that we ignored). We may now interchange the order in

which we sample things, i.e. first sample TC and then

D1,D2, . . . ,DC−1, and then apply the argument on DC−1

as before.

Hence, we conclude that choosing T1, . . . ,TC , each one

being an intersection of w(n) independently chosen k-

clauses, we have

SAT(y) ∩ (T1 ∩ . . . ∩TC) = ∅
with probability at least q′y−C ·δ/32C−C ·o(1) � q′y−δ/16.

From this argument it follows, that for every y, choosing

T, a collection of Cw(n) random k-clauses, we have

PrT [f(y ∨ eT) = 1] � q′y − δ/16, and hence

Pr
y,T

[f(y ∨ eT) = 1] � E
y

[
q′y
]− δ/16 � μp(f) + δ/16.
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Finally, we reach a contradiction by showing that this is

false. Let q = 2Cw(n)/n, and note that we may replace

by choice of “exactly Cw(n) k-clauses” by “sampling each

k-clause with probability q”since the probability we would

get � Cw(n) clauses this way is o(1), and have

Pr
y∼μn

p ,z∼μn
q

[f(y ∨ z) = 1] � μp(f)+δ/16−o(1) � μp(f)+δ/32.

Note that in y∨z, the bits are independent and each one is 1
with probability at most p+q, and hence by monotonicity the

last inequality implies μp+q(f) � μp(f) + δ/32. However

by the mean-value theorem and the Russo-Margulis Lemma

[20], [21] (see also [41]) we have μp+q(f)−μp(f) = qIp′ [f ]
for some p′ ∈ (p, p + q). Since f is monotone, by Fact

II.7 we have Ip′ �
√
n/p(1− p), and recalling that p =

Ok(1)/n
1−1/k we get

μp+q(f)−μp(f) � Ok(1)
w(n)

n
·
√
n2−1/k = Ok(1)

w(n)

n1/2k
,

which tends to 0 by choosing, say, w(n) = log n, and

contradiction.

Proposition A.5. Let f : {0, 1}n → {0, 1} be a monotone
function, and let φ : {0, 1}n → {0, 1} be a monotone DNF

formula. If f, φ are δ correlated, then at least one of the
clauses of φ is a δ-booster of f .

Proof: Assume this is not the case, let S1, . . . , Sr be

the clauses of φ, and let φi be the disjunction of clauses

S1, . . . , Si. By telescoping we may write Ex [f(x)φ(x)] =
r−1∑
i=0

Ex [f(x)(φi+1(x)− φi(x))]. The inner expectation is

Pr
x
[φi+1(x) = 1, φi(x) = 0]·E

x

[
f(x) |xSi+1

= 1, φi(x) = 0
]
.

Let C be the subcube xSi+1
= �1, and consider the

μp measure on it. The conditional expectation above is

Ex∈C [f(x) |φi(x) = 0]. Since f, φi are increasing in C,

it follows by the FKG inequality [29] that

E
x∈C

[f(x) |φi(x) = 0] � E
x∈C

[f(x)] = μ(fSi+1→�1)

< μp(f) + δ.

Therefore, Ex [f(x)φ(x)] <
r−1∑
i=0

Prx [φi+1(x) = 1, φi(x) = 0] · (μp(f) + δ) =

μp(φ)(μp(f) + δ), and in particular cov(f, φ) < δ
and contradiction.
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