
Faster Minimum k-cut of a Simple Graph

Jason Li

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA
jmli@cs.cmu.edu

Abstract—We consider the (exact, minimum) k-CUT prob-
lem: given a graph and an integer k, delete a minimum-weight
set of edges so that the remaining graph has at least k connected
components. This problem is a natural generalization of the
global minimum cut problem, where the goal is to break the
graph into k = 2 pieces.

Our main result is a (combinatorial) k-CUT algorithm on
simple graphs that runs in n(1+o(1))k time for any constant
k, improving upon the previously best n(2ω/3+o(1))k time
algorithm of Gupta et al. [FOCS’18] and the previously
best n(1.981+o(1))k time combinatorial algorithm of Gupta et
al. [STOC’19]. For combinatorial algorithms, this algorithm is
optimal up to o(1) factors assuming recent hardness conjec-
tures: we show by a straightforward reduction that k-CUT on
even a simple graph is as hard as (k−1)-clique, establishing a
lower bound of n(1−o(1))k for k-CUT. This settles, up to lower-
order factors, the complexity of k-CUT on a simple graph for
combinatorial algorithms.

Keywords-minimum k-cut; graph algorithms; randomized
algorithms

I. INTRODUCTION

We consider the (exact, minimum) k-CUT problem: given

a graph and an integer k, delete a minimum-weight set of

edges so that the remaining graph has at least k connected

components. This problem is a natural generalization of

the global minimum cut problem, where the goal is to

break the graph into k = 2 pieces. This problem has been

actively studied in theory of both exact and approximation

algorithms, where each result brought new insights and tools

on graph cut algorithms.

Goldschmidt and Hochbaum gave the first polynomial-

time algorithm for fixed k, with O(n(1/2−o(1))k2

) run-

time [1]. Since then, the exact exponent in terms of k has

been actively studied. The textbook minimum cut algorithm

of Karger and Stein [2], based on random edge contractions,

can be adapted to solve k-CUT in Õ(n2(k−1)) (randomized)

time. This bound was improved recently for the first time by

an algorithm of Gupta et al. [3], which runs in n(1.981+o(1))k

(randomized) time. The deterministic algorithms side has

seen a series of improvements since then [4], [5], [6]. The

fastest algorithm for general edge weights is due to Chekuri

et al. [6]. It runs in O(mn2k−3) time and is based on a

deterministic tree packing result of Thorup [5]. Lastly, if

the edge weights of the input graph are integers bounded by

nO(1) (in particular, exponent independent of k), then k-CUT

can be solved in n(2ω/3+o(1))k deterministic time [7], where

ω < 2.373 is the matrix multiplication constant [8], [9].

Lower bounds for the k-CUT problem have also been

studied actively in the past decade. k-CUT on real-weighted

graphs is at least as hard as minimum weighted (k −
1)-clique [7], the latter of which is conjectured to re-

quire n(1−o(1))k time for any constant k [10]. For k-CUT

on unweighted graphs, the lower bound is weakened to

n(ω/3−o(1))k, again from a reduction to (k−1)-clique, where

ω < 2.3727 is the matrix multiplication constant [7]. How-

ever, for “combinatorial” algorithms as described in [11],

[10], this lower bound is again n(1−o(1))k even for un-

weighted graphs, under the stronger hardness conjecture of

k-clique for combinatorial algorithms [11], [10].

In this paper, we consider the k-CUT on simple graphs:

graphs that are unweighted and have no parallel edges.

Our main result is a (combinatorial) k-CUT algorithm on

simple graphs that runs in n(1+o(1))k time for any constant

k, improving upon the previously best n(2ω/3+o(1))k time

algorithm [7] and the previously best n(1.981+o(1))k time

combinatorial algorithm [3]. For combinatorial algorithms,

this algorithm is optimal up to o(1) factors assuming recent

hardness conjectures: we show by a straightforward reduc-

tion that k-CUT on even a simple graph is as hard as (k−1)-
clique, establishing a lower bound of n(1−o(1))k for k-CUT.

This settles, up to lower-order factors, the complexity of

k-CUT on a simple graph for combinatorial algorithms. We

remark that this is the first setting for k-CUT, except the

restricted k = 2 case, where the running time has been

determined up to o(1) factors.

Theorem I.1 (Main Result). For any parameter k, there is
a (combinatorial, randomized) algorithm that computes the
k-CUT of a simple graph in kO(k)n(1+o(1))k time.

Theorem I.2 (Lower Bound). Suppose we assume the
conjecture that every combinatorial algorithm for k-clique
requires n(1−o(1))k time for any constant k. Then, for any
constant k, every combinatorial algorithm for k-CUT of a
simple graph also requires n(1−o(1))k time.

1056

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00068

A. Our Techniques

Our k-CUT algorithm incorporates algorithmic techniques

from a wide array of areas, from graph sparsification to

fixed-parameter tractability to tree algorithms.

Graph Sparsification: Our first algorithmic ingredi-

ent is the Kawarabayashi-Thorup (KT) sparsification algo-

rithm, which originated from the breakthrough paper of

Kawarabayashi and Thorup on the deterministic minimum

cut problem [12]. At a high level, given any simple graph G
with minimum cut λ, the algorithm contracts G into a multi-

graph of Õ(m/λ) 1 edges so that any minimum cut of G
that has at least two vertices on each side gets “preserved”

in the contraction. That is, we never contract an edge in

any such minimum cut. Kawarabayashi and Thorup used

their contraction procedure to provide the first Õ(m)-time

deterministic algorithm for minimum cut of a simple graph.

They first applied the contraction to G, obtaining a multi-

graph G on m = Õ(m/λ) edges, and then ran the Õ(mλ)-
time minimum cut algorithm of Gabow on G, which works

for multi-graphs. This covers the case when the minimum

cut of G has at least two vertices on each side; the other

case, where the minimum cut consists of a singleton vertex

on one side, is trivial. In the KT sparsification, we can also

ensure that G has Õ(n/λ) vertices, which is the property

that we focus on.

One of our technical contributions is extending the KT

sparsification algorithm to work for k-CUT. Briefly, we

show that modulo a regularity condition, we can contract

the input graph G into a multi-graph G on n = Õ(n/λk)
vertices, where λk is the minimum k-cut of G, to preserve

all minimum k-cuts where each side has at least two vertices.

(For the case when one component of the minimum k-

cut is a singleton vertex, we handle it separately with a

simple branching procedure: try each vertex as a singleton

component and recursively solve (k − 1)-cut.) In the spirit

of Kawarabayashi and Thorup, we then solve k-CUT on the

contracted graph in n(1+o(1))kλk
k time. Since n = Õ(n/λk),

this running time becomes n(1+o(1))k, as needed.

Tree Packing: To solve k-CUT in n(1+o(1))kλk
k time

on multi-graphs,2 we begin with a tree packing result of

Thorup [5], which says that we can compute a small

collection of trees so that for one tree T , at most 2k − 2
edges of T have endpoints in different components of the

minimum k-cut. we apply a reduction in [7] which, at a

multiplicative cost of O(nk) in the running time, produces

a tree T such that exactly k− 1 edges of T have endpoints

in different components of the minimum k-cut. (Note that

k − 1 here is the smallest possible.) In other words, if we

remove these edges from T , then the connected components

1Throughout the paper, we use the standard Õ(·) notation to hide
polylogarithmic factors in the running time.

2Here, we assume the contracted graph is our input graph now, hence n
instead of n.

in the remaining forest are exactly the components of the

minimum k-cut.
Color Coding: Following the last paragraph, our prob-

lem thus reduces to this: given a graph G = (V,E) and a

tree T on the vertices V , remove some (k − 1) edges F of

T to minimize the k-cut (in G) formed by the k connected

components in T − F . Our main technical contribution is

providing such an algorithm that runs in no(k)λk time.
One major ingredient in our algorithm is the technique

of color coding due to Alon et al. [13], who first used it

for the k-PATH problem in the fixed-parameter setting. To

illustrate our approach, let us assume (with loss of generality,

for sake of exposition) that the tree T is a “spider”: it can

be decomposed into an edge-disjoint set of paths sharing a

common endpoint r; see the black edges in Figure 1 for an

example. Call each of the edge-disjoint paths from r be a

branch. Let us further assume (again, with loss of generality)

that the optimal set F ∗ of (k − 1) edges consists of one

edge from each of (k− 1) distinct branches B∗1 , . . . , B
∗
k−1.

Let S∗1 , . . . , S
∗
k ⊆ V be the components of T − F ∗ with

r ∈ S∗k , and let OPT ⊆ E be the minimum k-cut (in G)

with components S∗1 , . . . , S
∗
k .

Our first observation is that if there were no edges between

S∗i and S∗j for every 1 ≤ i < j ≤ k − 1, then the

problem becomes easy, because the following (polynomial-

time) algorithm works:

1) For each branch B, pick the edge e in the branch

to remove so that the two connected components

C1, C2 ⊆ V of T − e minimize |E[C1, C2]| (the

number of edges in G between C1 and C2). Let f(B)
be the minimum value |E[C1, C2]| for branch B.

2) Select the (k − 1) branches B1, . . . , Bk−1 with the

smallest values of f(Bi). The (k−1) edges to remove

are the edges selected in each of these branches, and

the total k-cut value is
∑k−1

i=1 f(Bi).

In other words, the algorithm processes each branch inde-

pendently and selects the best (k − 1) branches.
In general, if there is an edge in the minimum k-cut

between S1 and S2 (say), then this edge may contribute

to both f(B1) and f(B2), in which case it is double-

counted. So we always have
∑k−1

i=1 f(Bi) ≥ |OPT |, and

strict inequality is possible. But if every edge in OPT
connects f(Bk) to some f(Bi) (i ≤ k − 1), then every

edge is counted at most once, so
∑k−1

i=1 f(Bi) = OPT .
This algorithm works in this special setting because no

“double-counting” occurs: every edge in OPT is counted

exactly once in
∑k−1

i=1 f(Bi). What if we consider the

opposite case scenario, where many edges are double-

counted? In particular, suppose that there is at least one edge

between every two branches B∗i , B
∗
j with i, j ≤ k − 1. Let

E2 ⊆ OPT be the edges in OPT in between two such

branches.
These edges may fool the simple algorithm described

above, but they serve a different useful purpose. Namely,

1057

the edges E2 connect the branches B∗1 , . . . , B
∗
k together,

and that is a property we will exploit as follows: Let us

randomly color each edge of E either red or green, hoping

for the following two properties:

1) For each i < j ≤ k − 1, there is at least one edge in

E2 colored green.

2) All edges in E \E2 incident to vertices in B∗1 , . . . , B
∗
k

are colored red.

The properties we require are a bit more specific, but the two

conditions above suffice for illustration. If both properties

as satisfied, then if we consider the connected components

of branches, where two branches are pairwise connected if

they share a green edge, then B∗1 , . . . , B
∗
k exactly mark out a

single component. And if the algorithm iterates over all such

components of branches (and processes each one indepen-

dently, say), then it will come across exactly {B∗1 , . . . , B∗k}
at some point. Thus, in some sense, we may assume that the

algorithm knows B∗1 , . . . , B
∗
k .

Even with this knowledge, the issue of double-counting

still remains. To handle it, we pinpoint down a small set of

edges E′ ⊆ E2 such that if all edges in E′ are green, then

the algorithm learns enough information about the double-

counted edges to provide the correct answer. The size of E′

needs to be small, because we color each edge green with

small probability, and yet require that all of E′ is colored

green with sufficiently large probability.

Tree Algorithms: The algorithm above only handles the

case when T is a “spider”. What about the general case?

Our first idea is to apply heavy-light decomposition on the

(rooted) tree, breaking it into a disjoint union of branches,

with the property that every path from leaf to root intersects

the edges of O(log n) branches. This O(log n) factor will

be paid in the running time as O(log n)k, which (perhaps

surprisingly) can be bounded by max{kO(k), n}; morally,

this means that the O(log n) factor is negligible. The benefit

of the HLD is that we once again have a disjoint union of

branches. Although these branches may not have a common

endpoint, they almost do, in the sense that every path from

leaf to root now intersects O(log n) branches instead of 1,

which is still small.

Lastly, what about the case when multiple edges are cut

from the same branch? To handle this situation, we apply

dynamic programming on a tree in a manner similar to [7].

The key observation is that if we remove an edge e from

T , then the two components of Te become independent

subproblems, thus making the situation amenable to dynamic

programming.

B. Related Work

The k-CUT problem has been studied extensively in the

approximate and fixed-parameter settings as well.

Approximation algorithms.: The first approximation

algorithm k-CUT was a 2(1− 1/k)-approximation of Saran

and Vazirani [14]. Later, Naor and Rabani [15], and also

Ravi and Sinha [16] gave 2-approximation algorithms using

tree packing and network strength respectively. Xiao et

al. [17] extended Kapoor [18] and Zhao et al. [19] and gener-

alized Saran and Vazirani to give an (2−h/k)-approximation

in time nO(h). On the hardness front, Manurangsi [20]

showed that for any ε > 0, it is NP-hard to achieve a (2−ε)-
approximation algorithm in time poly(n, k) assuming the

Small Set Expansion Hypothesis.

Recently [7], Gupta et al. gave a 1.81-approximation for

k-CUT in FPT time f(k)poly(n) and a (1+ε)-approximation

in f(k)n(1+o(1))k time. These algorithms do not contradict

Manurangsi’s work, since k is polynomial in n for his hard

instances.

FPT algorithms.: The k-CUT problem was shown to be

W [1]-hard when parameterized by k by Downey et al. [21].

Kawarabayashi and Thorup give the first f(Opt) · n2-time

algorithm [22] for unweighted graphs. Chitnis et al. [23]

used a randomized color-coding idea to give a better runtime,

and to extend the algorithm to weighted graphs. Here, the

FPT algorithm is parameterized by the cardinality of edges

in the optimal k-CUT, not by the number of parts k. For

more details on FPT algorithms and approximations, see the

book [24], and the survey [25].

II. PRELIMINARIES

All graphs in this paper will be unweighted, undirected

multigraphs without self-loops. We denote by n and m the

number of vertices and edges in the input graph, respectively.

A graph is simple if for every two vertices in the graph,

there is at most one edge between them. For a graph G, let

V (G) and E(G) be its vertex set and edge set, respectively.

For vertex-disjoint sets S1, . . . , S�, denote by E[S1, . . . , S�]
the set of edges whose endpoints lie in distinct sets Si, Sj

(i �= j). When there are multiple graphs in our context,

we use EG[S1, . . . , S�] instead to indicate that the graph

in question is G; we use similar notation for other graph

functions. For a vertex set S ⊆ V (G) of a graph G, denote

∂S = E[S, V \ S] as the set of edges with exactly one

endpoint in S. For disjoint vertex sets S1, . . . , S� ⊆ V (G),
denote ∂[S1, . . . , S�] = E[S1, . . . , S�, V \

⋃�
i=1 Si] as the

set of edges with at least one endpoint in some Si, but not

both endpoints in the same Si; note that ∂S = ∂[S] for any

subset S ⊆ V (G). The degree of a vertex v ∈ V (G) is the

number of edges incident to it, which equals |∂({v})|.
For a graph G = (V,E), the minimum k-cut will either

be denoted as the subsets S∗1 , . . . , S
∗
k ⊆ V that comprise

the components of the k-cut, or as the edge set OPT =
E[S∗1 , . . . , S

∗
k], the set of edges in the k-cut. We now define

the concept of a nontrivial minimum k-cut:

Definition II.1 (Nontrivial minimum k-cut). A minimum k-
cut {S∗1 , . . . , S∗k} is nontrivial if none of the sets |S∗i | (i ∈
[k]) have size 1.

Since we work with multigraphs throughout the paper,

1058

every edge has a unique identifier. Whenever we declare a

variable e as an edge, we mean its identifier. In particular, if

two edges e, e′ both have endpoints u, v, then it is possible

that e �= e′. We identify each edge by its identifier, rather

than its two endpoints (u, v). That is, every variable e
designated to an edge is set to the edge’s identifier, rather

than the tuple (u, v) or the set {u, v}. We may still say

“an edge (u, v) ∈ E(G)”, by which we mean an arbitrary

edge with endpoints u, v in G (and we do not care about its

identifier). Likewise, “for every edge (u, v) ∈ E(G)” means

every edge with endpoints u, v in G.

Whenever we contract two vertices u, v ∈ V (G) in a

graph G, all edges that survive keep their identifiers. More

formally, contraction produces the following graph G′:

1) We have V (G′) = V (G) \ {u, v}∪ {x} for some new

vertex x.

2) For every edge e with endpoints u′, v′ distinct from u
and v, add edge e with the same endpoints u′, v′ in

G′.
3) For every edge e with endpoints u, v′ for v′ �= v, add

edge e with endpoints x, v′ in G′.
4) For every edge e with endpoints u′, v for u′ �= u, add

edge e with endpoints u′, x in G′.
5) For every edge e with endpoints u, v in G, do not add

it to G′.

In particular, the edge identifiers in G and G′ match. One

benefit to this formulation is that if OPT ⊆ E is a minimum

k-cut with components S∗1 , . . . , S
∗
k and we contract two

vertices u, v ∈ S∗i for some i, then the same set OPT is

still a minimum k-cut in the contracted graph.

For a positive integer �, we denote by [�] the set of integers

from 1 to � (inclusive), {1, 2, . . . , �}.
Tree Terminology (Section IV): The terminology in this

paragraph are specific to Section IV.

For a rooted tree T , let T (v) ⊆ T denote the subtree

of T rooted at v ∈ V (T). For any set S ⊆ V (T), define

T (S) :=
⋃

v∈S T (v), the union of all (vertices and edges

of) trees T (v) over all v ∈ S.

For an edge e = (u, v) ∈ V (T) where v is the child of

u, we say that v is the child vertex of edge e and e is the

parent edge of v.

Given a rooted tree T , the depth depth(v) of vertex v ∈
V (T) is the (unweighted) distance of v to the root of T .

Every time we use depth(v), the tree T will be implicit.

A branch of T is a path in T that travels “downwards”

the rooted tree. More formally, it is a path whose vertices

have distinct depths. The vertex with the minimum depth is

the root of the branch. A maximal branch is a branch from

the root to a leaf in the tree. When we say a branch from u
to v, we mean the path from u and v.

For a rooted tree T and u, v ∈ V (T), we say that u
precedes v if v ∈ T (u). We say that two vertices u, v ∈
V (T) are incomparable if u does not precede v and v does

not precede u. Note that u and v are incomparable iff they

do not lie on a common branch.

Given a set S ⊆ V (T), denote by S↓ the minimal elements
of S, the minimal set S′ ⊆ S such that every vertex in S is

preceded by some vertex in S′ (that is, S ⊆ T (S′)).
Tree Packing.: Our algorithm will use the concept of

tree packing which, at a high level, reduces the k-CUT to a

problem of finding the best way to remove edges in a tree.

Tree packings for the k-CUT problem were first introduced

by Thorup [5], who used them to obtain a deterministic

k-CUT algorithm in time O(mn2k−2).

Definition II.2 (T-tree, Definition 2.1 of [7]). A tree T of
G is a �-T-tree if it crosses some minimum k-cut at most �
times; i.e., ET (S

∗
1 , . . . , S

∗
k) ≤ �. If � = k − 1, the minimum

value possible, then we call it a tight T-tree.

Theorem II.3 (Thorup [5], rephrased in Corollary 2.3 of

[7]). We can find a collection T of Õ(k3m) trees such that
there exists a (2k − 2)-T-tree in T .

Theorem II.4 (Lemma 2.4 of [7]). There is an algorithm
that takes as input a tree T such that |ET (S

∗
1 , . . . , S

∗
k)| ≤

2k − 2, and produces a collection of kO(k)nk−1 log n
trees, such that one of the new trees T ′ satisfies
|ET ′(S∗1 , . . . , S

∗
k)| = k − 1 w.h.p. The algorithm runs in

time kO(k)nk−1m log n.

Combining Theorem II.3 and Theorem II.4, we obtain the

following:

Corollary II.5. We can find a collection T of kO(k)nk+O(1)

trees such that there exists a tight T-tree in T .

For the rest of the paper, only Definition II.2 and Corol-

lary II.5 will be used.

III. ALGORITHM OUTLINE

In this section, we outline our main algorithm, assuming

our two main technical results below. The former is proved

in Section IV and the latter in Section V.

Theorem III.1. Let G be an unweighted multigraph, let T
be a tight T-tree of G, and let s be a parameter. There is an
algorithm TreeCut(G,T, λ) with the following guarantee: if
the minimum k-cut in G has size ≤ λ, then TreeCut outputs
a minimum k-cut of G. The running time of TreeCut is
kO(k)λkno(k).

Theorem III.2. Let G be a simple graph with minimum
degree δ > ω(max{α log n, αk}), and let α ≥ 1 be a
parameter. Then, we can contract G into a (multi-)graph
G such that:

1) Suppose the minimum k-cut has size ≤ αδ in G. Then,
every nontrivial minimum k-cut is preserved in G.
That is, no edge of such a cut is contracted in G.

2) G has Õ(αm/δ) edges and Õ(αm/δ2) vertices.

1059

We will also use the following sparsification routine due

to Nagamochi and Ibaraki below, for which we provide a

quick proof for self-containment:

Theorem III.3 (Nagamochi-Ibaraki [26]). Given a simple
graph G and parameter λ, there is a polynomial-time
algorithm NISparsify(G, λ) that computes a subgraph H
with at most λn edges such that all k-cuts of size ≤ λ are
preserved. More formally, all sets S with |∂GS| ≤ λ satisfy
|∂GS| = |∂HS|.

Proof: For i = 1, 2, . . . , λ, let Fi be a maximal forest

in G \ ⋃j<i Fj . Set H :=
⋃

i Fi, which can easily be

computed in polynomial time. (We note that Nagamochi

and Ibaraki [26] present a way to compute H in linear
time, although we do not need this.) For any edge (u, v)
in G − H = G \ ⋃i Fi, there must be a (u, v) path in

each Fi, otherwise we would have added edge (u, v) to Fi.

These λ paths, along with edge (u, v), imply that every cut

that separates u and v has size ≥ λ+1. Therefore, u and v
must lie in the same component of any k-cut of size ≤ λ,

so removing edge (u, v) cannot affect any such k-cut.

Let us now describe our algorithm in pseudocode:

Algorithm 1 MinKCut(G = (V,E), k)

1: if k = 1 then 	 Base case k = 1
2: return {V }
3: S∗ ← {S0

1 , . . . , S
0
k}, an arbitrary initial k-cut 	 k-cuts

will be represented as partitions of V of size k
4: for each v ∈ V do
5: S1 ← {v} ∪ MinKCut(G− v, k − 1)	 Recursively

call minimum (k − 1)-cut

6: If S1 is a better k-cut than S∗, then set S∗ ← S1
7: if δ > ω(max{k2 log n, k3}) then 	 Assumption of

Theorem III.2. δ is the minimum degree of G
8: H ← NISparsify(G, k2δ) 	 Nagamochi-Ibaraki

sparsification: see Theorem III.3

9: G← KT-Sparsification(H, k2) 	 Replace G
with the KT-sparsification of G (Theorem III.2)

10: T ← TreePacking(G, k) 	 Corollary II.5

11: for each tree T ∈ T do
12: ST ← TreeCut(G,T, k2δ) 	 Theorem III.1

13: If ST is a better k-cut than S∗, then set S∗ ← ST
14: return S∗

A. Correctness

We first state an easy claim from [7]. We then use it

to bound the size of a nontrivial minimum k-cut by the

minimum degree δ of the graph.

Claim III.4 (Claim 2.8 of [7]). Given a set of k + 1

components S1, . . . , Sk+1 that partition V , we have

|OPT | ≤
(
1−

(
k + 1

2

)−1
)
|E[S1, . . . , Sk+1]|.

Lemma III.5. Suppose there exists a nontrivial minimum
k-cut in the graph. Then, we have |OPT | ≤ k2δ.

Proof: Fix a nontrivial minimum k-cut S∗1 , . . . , S
∗
k .

Applying Claim III.4 on Si := S∗1 \ {v} for i ∈ [k] and

Sk+1 = {v}, we get

|OPT | <
(
1− 1

k2

)
|E[S1, . . . , Sk+1]|

≤
(
1− 1

k2

)
(|E[S∗1 , . . . , S

∗
k]|+ δ)

=

(
1− 1

k2

)
(|OPT |+ δ),

so |OPT | ≤ k2(1− k2)δ ≤ k2δ, as needed.

Lemma III.6 (Correctness). MinKCut(G, k) outputs a
minimum k-cut of G.

Proof: If there is a nontrivial minimum k-cut v, then

consider the iteration of line 5 on the vertex v. By induction

on k, we may assume that MinKCut(·, k − 1) outputs a

minimum k-cut. Therefore, S1 will be an optimal k-cut on

this iteration of line 5.

Otherwise, suppose there is no nontrivial minimum k-

cut, so by Lemma III.5, |OPT | ≤ k2δ. First, suppose that

line 7 holds. Then, by Theorem III.3 with s := k2δ, the

graph H in line 8 has the same minimum k-cuts as G
and has at most k2δn edges. By Theorem III.2 with α :=
k2, every (nontrivial) minimum k-cut in H also exists in

KT-Sparsification(H, k2), which we set as our new

G. By the correctness of TreePacking(G, k) (Corollary II.5)

and TreeCut(G,T) (Theorem III.1), the algorithm computes

an optimal k-cut. Otherwise, if line 7 does not hold, then

our situation is even easier, since G does not change.

B. Running time

Fact III.7. (log n)O(k) ≤ max{kO(k), n}.
Proof: If k < logn

log logn , then (log n)k ≤
(log n)

log n
log log n = n. Else log n ≤ O(k log k), and hence

(log n)k ≤ O(k log k)k ≤ kO(k).

Lemma III.8. MinKCut(G, k) runs in kO(k)n(1+o(1))k

time.

Proof: First, we bound the running time outside the

recursive calls in line 5. Suppose first that line 7 does not

hold. Then, δ ≤ O(k2 log n+ k3), so

k2δ ≤ O(k4 log n+ k5). (1)

By Corollary II.5, the collection T has size kO(k)n(1+o(1))k.

For each T ∈ T , TreeCut(G,T, k2δ) is executed in line 12,

1060

which runs in kO(k)(k2δ)kno(k) time by Theorem III.1. In

total, this is kO(k)n(1+o(1))k · kO(k)(k2δ)kno(k) time, which

is at most kO(k)(log n)kn(1+o(1))k by (1). The (log n)k

factor is negligible by Fact III.7.

Otherwise, line 7 holds. By Theorem III.3 with s :=
k2δ, the graph H has at most k2δn edges, so by Theo-

rem III.2, the graph G in line 7 has n = Õ(k2(k2δ)/δ2) =
Õ(kO(1)n/δ) vertices. By the same arguments as in

the previous paragraph, the calls to TreeCut(G,T, k2δ)
take kO(k)(k2δ)kn(1+o(1))k time, which is bounded by

kO(k)(k2δ)k(Õ(kO(1)n/δ))(1+o(1))k = kO(k)n(1+o(1))k.

Finally, we handle the recursive component of the al-

gorithm. Fix an arbitrarily small ε > 0, and fix con-

stants c1, c2 such that the nonrecursive part takes time

kc1kn(1+ε)k+c2 for all k. We prove by induction on k that

the total algorithm takes time (2k)c1kn(1+ε)k+c2 , with the

trivial base case k = 1. For k > 1, the n recursive

calls to (k − 1)-cut take n · (2k)c1(k−1)n(1+ε)(k−1)+c2 =
(2k)−c1(2k)c1kn(1+ε)k+c2 time total. The nonrecursive part

takes time kc1kn(1+ε)k+c2 = 2−c1k(2k)c1kn(1+ε)k+c2 by

assumption. As long as (2k)−c1 + 2−c1k ≤ 1, which holds

for any constant c1 ≥ 1, the sum of the two running times is

at most (2k)c1kn(1+ε)k+c2 , preserving the induction. Hence,

the running time is kO(k)n(1+o(1))k.

IV. ALGORITHM ON TIGHT T-TREES

In this section, we prove the running time guarantee of

TreeCut(G,T, s) in line 12.

Theorem III.1. Let G be an unweighted multigraph, let T
be a tight T-tree of G, and let s be a parameter. There is an
algorithm TreeCut(G,T, λ) with the following guarantee: if
the minimum k-cut in G has size ≤ λ, then TreeCut outputs
a minimum k-cut of G. The running time of TreeCut is
kO(k)λkno(k).

Since the minimum k-cut can be obtained by deleting k−1
edges of T and taking the connected components as the k-

cut, our algorithm will pursue this route: it will look for the

best k− 1 edges of T to delete. Let E∗T := ET [S
∗
1 , . . . , S

∗
k]

be the optimal set of (k − 1) edges to delete.

First, observe that we can assume that for every edge

(u, v) in T , the minimum (2-)cut that separates u and v
has size ≤ λ. This is because if an edge (u, v) in T does

not satisfy this property, then no minimum k-cut of size ≤
λ can separate u and v, so we can contract u and v in

T . Moreover, since s–t minimum cut is polynomial time

solvable, the algorithm can detect which edges to contract.

Assumption IV.1. For every edge (u, v) in T , the minimum
(2-)cut that separates u and v has size ≤ λ.

A. Restricted Case: Union of Branches

We first begin with an algorithm when the tree T is

“spider-like”, as discussed in Section I-A.

Theorem IV.2. Let G be an unweighted multigraph, let T
be a tight T-tree of G, and let λ be a parameter. Suppose
in addition that:

1) We can root T at a vertex r ∈ V (T) so that T is a
disjoint union of maximal branches.

2) There is an optimal minimum k-cut S∗1 , . . . , S
∗
k such

that ET [S
∗
1 , . . . , S

∗
k] contains at most one edge from

each maximal branch.
Then, there is an algorithm TreeCut(G,T, s) with the fol-
lowing guarantee: if the minimum k-cut in G has size ≤ s,
then TreeCut outputs a minimum k-cut of G. The running
time of TreeCut is kO(k)skno(k).

In this section, we develop an algorithm to solve this

restricted case. Throughout, we assume that the minimum k-

cut of G is indeed at most λ, since otherwise, the algorithm

can output anything.

Since the edges of E∗T lie in distinct branches rooted at

the same vertex, the child vertices of the edges in E∗T are

incomparable, and each subtree rooted at a child vertex is

a component in S. Without loss of generality, let S∗k be the

component containing the root of T . Let v∗1 , . . . , v
∗
k−1 be

the child vertices of E∗T such that component S∗i is exactly

T (v∗i). For each i ∈ [k − 1], consider the maximal branch

containing v∗i , and let u∗i be the child of the root r that

lies on this branch. Lastly, define E′ ⊆ E to be the edges

whose endpoints are incomparable (i.e., they do not lie on

a common branch).

Definition IV.3. An edge (u, v) ∈ E(T) is partially pre-

ceded by a vertex x ∈ V (T) if either x precedes u or x
precedes v (or both).

Define the multigraph H as the graph obtained from

starting with G[
⋃

i∈[k−1] V (T (v∗i))] and contracting each

vertex set V (T (v∗i)) (i ∈ [k − 1]) into a single vertex v∗i ,

with self-loops removed. More precisely, H has vertex set

{v∗1 , . . . , v∗k−1}, and its edge set is as follows: for each edge

e ∈ E′ with endpoints in T (v∗i) and T (v∗j) (i �= j), add that

same edge e between v∗i and v∗j . Note that the two graphs

share common vertices and edges; we make it this way

to facilitate transitioning between the two graphs. Observe

that |E(H)| ≤ λ, since every edge in E(H) corresponds

to an edge in EG(S
∗
1 , . . . , S

∗
k−1). Moreover, for an edge

e ∈ E(H) with endpoints v∗i , v
∗
j , edge e connects T (v∗i)

and T (v∗j) in G; let e|v∗i and e|v∗j denote the endpoint of e
in T (v∗i) and T (v∗j), respectively.

Lemma IV.4. For each connected component C in H , there
exists a spanning tree TC of C satisfying the following
property: Let U be the set of endpoints of edges in TC (more
formally, U :=

⋃
(u,v)∈E(TC){u, v}). Then, every edge e in

C is partially preceded by some vertex in U (in the tree T).

Proof: Fix a connected component C of H , and con-

struct a weighted digraph H ′ as follows: for each edge

1061

e ∈ E(C) with endpoints v∗i , v
∗
j , add an arc (v∗i , v

∗
j) with

weight equal to the depth of vertex e|v∗j in T (v∗j), and an

arc (v∗j , v
∗
i) with weight equal to the depth of vertex e|v∗i in

T (v∗i). Since C is connected, H ′ is strongly connected. Let

r ∈ V (H ′) be arbitrary, and let A ⊆ E(H ′) be a minimum

cost (out-)arborescence of H ′ rooted at r (so that r is the

only vertex with no in-arcs in A). We claim that the tree

A formed by un-directing every arc in A is our desired

spanning tree TC .

To prove this claim, let e ∈ E(C) be arbitrary, with

endpoints v∗i , v
∗
j , and assume without loss of generality

that v∗i does not precede v∗j in the tree A rooted at r
(otherwise we can swap v∗i and v∗j). Let a ∈ E(H ′) be

the arc originating from e in the direction (v∗j , v
∗
i), and let

a′ ∈ H[C] be the in-arc of v∗i in A (note that v∗i cannot be

the root since it does not precede v∗j , and that it is possible

that a = a′). Observe that A\a′∪a is also an arborescence.

Since A is the minimum cost arborescence, the weight of

a′ is at most the weight of a. Let e′ be the edge originating

from a′; we have depth(e′|v∗i) ≤ depth(e|v∗i). It follows that

the endpoint e|v∗i is preceded by e′|v∗i ∈ U .
1) Restricted Case: Algorithm: We first present the main

steps our algorithm. Suppose for simplicity that H is con-

nected; that is, there is only one connected component H .

In fact, we encourage the reader to assume that H
is connected on their first reading, since it simplifies

the presentation while still preserving all the key insights.

Our first insight is color-coding to mark out the spanning

tree TH guaranteed by Lemma IV.4. In particular, all the

edges in the spanning tree should be colored one color

(say, green), while all other edges in ∂G(T (u
∗
i)) should

be colored a different color (say, red); see Figure 1. This

color-coding process will succeed with probability roughly

λ−k, so we need to repeat it roughly λk many times.

This is where we pay the λk multiplicative factor in the

running time. Then, construct a graph with the maximal

branches as vertices, where two vertices are connected

by an edge if their corresponding branches have a green

edge between them. Assuming that H is connected, one

of these connected components corresponds exactly to the

branches T (u∗1), . . . , T (u
∗
k−1). Finally, we iterate over the

connected components C of size k − 1 (one of which

captures T (u∗1), . . . , T (u
∗
k−1)) and, with the information of

the green edges, compute an overestimate of the minimum

possible k-cut formed by cutting one edge from each of the

corresponding k−1 branches of C. The catch is that for the

component containing T (u∗1), . . . , T (u
∗
k−1), this estimate

will actually be exact. This ensures that the minimum k-

cut is indeed returned.

The key insight in the algorithm is coloring the edges

of this tree TH , which serves two purposes. First, it al-

lows the algorithm to figure out which k − 1 branches

contain TH by computing the connected components as

described above. Second, the edges of TH partially precede

u∗1 u∗2 u∗3 v∗3 u∗4 u∗5 u u′

r

S∗1 S∗2 S∗3 S∗4 S∗5

v∗1
v∗2

v∗4

v∗5

Figure 1. In this example, the graph H is connected, so there is only one
component C∗1 . The green edges form T ∗1 (see Condition IV.5); the (solid
and dashed) red edges form

⋃
i ∂G(T (u∗i)) \

⋃
i T
∗
i (see Condition IV.6);

the solid red and green edges form E[S∗1 , . . . , S
∗
k−1]; the gray edges can

be either red or green without affecting Conditions IV.5 or IV.6. (Note that
E[S∗1 , . . . , S

∗
5] is not actually the minimum 6-cut in the graph, but that is

not the focus of this example.)

all edges in H , including all edges that appear twice in

∂GT (v
∗
1), . . . , ∂GT (v

∗
k−1). It turns out that these edges

are the hardest to deal with, since they are the ones

double-counted when merely summing up the boundaries

∂GT (v
∗
1), . . . , ∂GT (v

∗
k−1).

3 However, with the knowledge

of TH , any edge partially preceded by an endpoint in TH

is cut for sure, and this includes all double-counted edges!

And once the double-counted edges are dealt with, we can

simply treat the k − 1 branches independently.4

It turns out that both of these properties—finding the k−
1 branches and dealing with the double-counted edges—

can each be done separately with a λk multiplicative factor,

each with standard color-coding techniques.5 Focusing on

this special tree TH is what enables us to achieve both with

just one λk factor.

We now proceed to the algorithm. Let the connected

components of H be C∗1 , . . . , C
∗
z for z ≤ V (H) = r,

ordered in an arbitrary order, and let T ∗i be the spanning

tree for C∗i promised by Lemma IV.4. The algorithm now

colors the edges of E′ red and green such that the following

two conditions hold:

Condition IV.5. For each C∗i , all edges in T ∗i are colored
green.

Condition IV.6. All edges in
⋃

i ∂G(T (u
∗
i)) \

⋃
i T
∗
i are

colored red.

3Indeed, a reader familiar with the k-Partial Vertex Cover problem may
be familiar with the difficulty of double-counting, an complication that
alone justifies why the problem is W [1]-hard.

4An illustrative analogy for the minimum/maximum k-Partial Vertex
Cover problem is that if we somehow knew that there were no edges
between the k optimal vertices to select, then the problem becomes easy:
simply output the k vertices of minimum/maximum degree.

5Indeed, the (1 + ε)-approximate k-cut algorithm time of [7] can be
adapted this way to solve exact minimum k-cut.

1062

We do this with the following color-coding procedure:

color each edge red with probability 1 − 1/λ and green
with probability 1/λ. For each i, ∂G(T (u

∗
i)) is the (2-)cut

in G formed by removing the parent edge of u∗i , so by

Assumption IV.1, we have |∂G(T (u∗i))| ≤ λ. Therefore, the

success probability is at least

(
1− 1

λ

)|⋃i ∂G(T (u∗
i))|
·
∏
i∈[z]

(
1

λ

)|E(T∗
i)|

≥
(
1− 1

λ

)kλ

·
(
1

λ

)k

= 2−O(k)λ−k. (2)

We describe this algorithm and its guarantees succinctly as

follows:

Algorithm IV.7. Color each edge in E′ red with probability
1 − 1/λ and green with probability 1/λ. With probability
2−O(k)λ−k, Conditions IV.5 and IV.6 hold.

Next, build a graph whose vertices are the children of

r, and for every two children u, u′ of r, connect them by

an edge if there is a green edge between T (u) and T (u′).
Consider all (maximal) connected components in this graph;

for each one, add its set U of vertices into a collection

U . Observe that if Conditions IV.5 and IV.6 hold, then for

each connected component C∗i , there exists a set U∗i ∈ U
of size |V (C∗i)| such that each vertex v∗j in C∗i belongs

on a (different, unique) branch T (u) (u ∈ U∗i). Therefore,

with a success probability of 2−O(k)λ−k, we can assume the

following:

Assumption IV.8. After running Algorithm IV.7, Condi-
tions IV.5 and IV.6 hold, and for each connected component
C∗i , there exists a set U∗i ∈ U of size |V (C∗i)| such that
each vertex v∗j in C∗i belongs on a (different, unique) branch
T (u) (u ∈ U). (This assumption holds with probability at
least 2−O(k)λ−k.)

We will not assume Assumption IV.8 unconditionally

throughout the remainder of this section; rather, we will ex-

plicitly state where Assumption IV.8 is assumed. Hopefully,

this provides more intuition as to how Assumption IV.8 is

used.

2) Restricted case: Processing the sets U ∈ U : In this

section, we process the sets U ∈ U , solving a certain cut

problem on a specific graph for each U (in polynomial

time). Recall that if H is connected, then this is the step

where we should compute the exact value |OPT | for the

corresponding vertex set U∗1 = V (H). In general, for each

set U∗i corresponding to a component C∗i of H with vertices

v∗i1 , . . . , v
∗
i�
∈ V ∗T , we want to compute the exact value

|E[S∗i1 , . . . , S
∗
i�
]|, whose sum over all C∗i will turn out to

equal |OPT |. Moreover, for every other set A ∈ A, we

want to make sure we compute some sort of overestimate,

so that these extraneous sets do not mislead the algorithm.
For each U ∈ U , define MinElts(U) :=(⋃
u∈U

⋃
(v,v′)∈∂T (ui) green({v, v′} ∩ T (u))

)
↓ as the

minimal elements on
⋃

u T (u) of the set of endpoints

of green edges in
⋃

i ∂T (ui), which is clearly pairwise

incomparable. We now define the minimum ancestor cut
problem:

Definition IV.9 (Minimum ancestor cut). Fix some set U =
{u1, . . . , u�} ∈ U , and let MinElts(U) = {s1, . . . , s�} where
si ∈ V (T (ui)). The minimum ancestor cut is the following
problem: For each i ∈ [�], select one edge in the branch
from si to r, and consider the (� + 1)-cut in G formed by
removing these selected edges in T . We want to compute the
(�+ 1)-cut of minimum size, denoted MinAncCut(U).

Why are minimum ancestor cuts relevant? We first show

that for components C∗i of H , MinAncCut(U∗i) has a close

connection with S∗1 , . . . , S
∗
k .

Claim IV.10. Assuming Assumption IV.8, for each
U∗i = {u∗i1 , . . . , u∗i�}, we have |∂G[S∗i1 , . . . , S∗i�]| =
|MinAncCut(U∗i)|. Moreover,

∑
U∗

i
|MinAncCut(U∗i)| =

OPT .

Proof: Recall that the corresponding component C∗i has

vertices v∗i1 , . . . , v
∗
i�

. First, we claim that an ancestor cut of

size |∂G[S∗i1 , . . . , S∗i�]| is achievable: simply cut the parent

edges of v∗i1 , . . . , v
∗
i�

. We now show that this cut is indeed an

ancestor cut. By Conditions IV.5 and IV.6, the only green
edges in any ∂T (u∗ij) lie in T ∗i . Since T ∗i ⊆ H , and since

any edge in H between T (u∗ij) and T (u∗ij′) must lie between

T (v∗ij) and T (v∗ij′), we have that v∗ij precedes any endpoint

of a green edge on T (u∗ij). Therefore, the parent edges of

v∗ij lie on the branches from endpoints in MinElts(U∗i) to r,

so our cut is a valid ancestor cut.
We now show that no better ancestor cut is possible;

suppose otherwise. Then, let Si1 , . . . , Si� be the components

not containing r in MinAncCut(U∗i). First, merge the com-

ponents S∗i1 , . . . , S
∗
i�

together with S∗k . We claim that the

number of cut edges drops by exactly |∂G[S∗i1 , . . . , S∗i�]|:
since C∗i is a component of H , all edges in ∂G[S

∗
i1
, . . . , S∗i�]

have endpoints in S∗i1 , . . . , S
∗
i�

or S∗k (instead of outside these

components). Next, split S∗i1∪. . .∪S∗i�∪S∗k into Si1 , . . . , Si�

and the remaining component; this increases the number of

cut edges by at most |MinAncCut(U∗i)|. We arrive at a k-cut

of smaller size, contradicting the choice of S∗1 , . . . , S
∗
k .

Finally, to prove that
∑

U∗
i
|MinAncCut(U∗i)| =

|∂G[S∗1 , . . . , S∗k]|, observe that over different components

C∗j of H with vertices v∗j1 , . . . , v
∗
j�
∈ V ∗T , the edges

∂G[S
∗
j1
, . . . , S∗j�] are disjoint over distinct C∗j . (This is

because if two distinct C∗j , C
∗
j′ shared an edge in their

respective edge sets ∂G[·, . . . , ·], then the components

C∗j , C
∗
j′ should have become a single connected compo-

nent.) Therefore, |∂G[S∗1 , . . . , S∗k]| equals the sum of the

|∂G[S∗j1 , . . . , S∗j�]| values, which equals the sum of the

1063

u1 u2 u3 v∗3 u4 u5

r

s1

s2

s3

s4

s5

S∗1 S∗2 S∗3 S∗4 S∗5

v∗1
v∗2

v∗4

v∗5

Figure 2. The graph G′ for U∗1 from Figure 1. The green branches
are the vertices in T (MinElts(U∗1)). The dotted orange, brown, blue, and
purple edges are the edges in E considered in step (a), (b), (c), and (d),
respectively. The solid blue and purple edges are the edges in G′. The bold
blue and purple edges are the ones cut in MinAncCut(U∗1), which is also
the cut which produces S∗1 , . . . , S

∗
5 .

|MinAncCut(U∗i)| values.

Therefore, for each U∗i , we may define MinAncCut(U∗i)
as not just any arbitrary minimum ancestor cut, but the

specific one formed by cutting the edges ET [S
∗
i1
, . . . , S∗i�].

(By Claim IV.10, this is a minimum ancestor cut.)

We now compute a function f(U) for each set U ∈ U .

For each U∗i , we want f(U∗i) = |MinAncCut(U∗i)| so that

it exactly captures the contribution of U∗i to the minimum

k-cut. (We will need Assumption IV.8 to achieve this.) For

any other U , we want f(U) ≥ |MinAncCut(U)|. Lastly, we

want f(U) to be computable in polynomial time.

Fix a set U = {u1, . . . , u�} and let MinElts(U) =
{s1, . . . , s�} where si ∈ V (T (ui)). To compute f(U),
we construct the following multigraph G′ on the vertices

(
⋃
V (T (ui))) ∪ r (see Figure 2):

(a) For each edge in E \ E′ 6 with both endpoints in

T (MinElts(U)), do nothing: these edges are not cut

in any ancestor cut.

(b) For each edge in E′ with at least one endpoint in

T (MinElts(U)), do nothing: these edges are always
cut in an ancestor cut, and we will account for these

edges separately.

(c) For each edge in E \E′ with at most one endpoint in

T (MinElts(U)), add it to G′.
(d) For each edge (u, v) ∈ E′ with both endpoints not in

T (MinElts(U)), add edges (u, r) and (v, r) to G′.
Note that all edges in G′ have both their endpoints in the

same branch. Now, for each i ∈ [�], compute the vertex

ti ∈ T (ui) that minimizes |∂G′T (ti)|. Take the sum of the

costs of these � cuts, and finally, add the number of edges

considered in step (b) to this sum. The final value is f(U).

6 Recall that E′ ⊆ E is the edges with incomparable endpoints in T .

Algorithm IV.11. For each set U ∈ U , construct the graph
G′ as above, and compute the vertex ti ∈ T (ui) that
minimizes |∂G′T (ti)|. Take the sum of the costs of these
cuts, and add the number of edges considered in step (b) to
this sum. Let f(U) be the final value.

Let us now explain the intuition of the construction of G′,
relating it to MinAncCut(U). First, every edge considered

in (a) has both endpoints on the same maximal branch, both

of which are below si on the appropriate branch, so it is

never cut in an ancestor cut and can therefore be ignored.

Every edge considered in (b) is always cut in an ancestor

cut: if the edge is (u, v) with u ∈ T (si), then u and si
will always belong in the same component in the ancestor

cut, but never v and si because v is on a different branch.

Every edge in (c) can either be cut or not cut depending

on the specific ancestor cut, and it is easy to see that it is

included in
⋃
∂G′T (ti) iff it is cut in the ancestor cut that

cuts the parent edges of each ti. Finally, every edge in (d)

splits into two edges, possibly adding two edges to a cut in

G′. Indeed, if neither endpoint of edge (u, v) in (d) is in r’s

side of the cut, then both corresponding edges in G′ are cut.

This is where the overestimate f(U) ≥ |MinAncCut(U)|
will come from. However, assuming Assumption IV.8, there

cannot be any overestimate for each U∗i : by definition

of T ∗i , every edge in E(S∗1 , . . . , S
∗
k−1) with an endpoint

(equivalently, both endpoints) in the maximal branches con-

taining vertices in MinElts(U∗i) is partially preceded by

MinElts(U∗i). Therefore, we have equality for each U∗i :

f(U∗i) = |MinAncCut(U∗i)|.
We now formalize our intuition. Define the following

natural correspondence between ancestor cuts and the “G′-
cuts”

⋃
i ∂G′T (ti) over the choices of {ti : i ∈ [�]}: two

correspond to each other if the edges in the ancestor cut are

the same as the parent edges of ti.

Lemma IV.12. For two corresponding cuts, the size of the
ancestor cut is at most the size of the G′-cut plus the number
of edges in step (b).

Proof: The proof essentially following the intuition

paragraph above. An edge in (a) contributes 0 to the sizes

of both cuts, and an edge in (b) contributes 1 to the ancestor

cut and 1 to the number of edges in step (b). An edge in

(c) contributes an equal amount to both cuts. Finally, if an

edge in (d) contributes 0 to the ancestor cut, then both of

its endpoints belong to the component containing r, so in

the G′-cut, neither of its endpoints is in their respective

T (ti); hence, it also contributes 0 to the G′-cut. If the edge

contributes 1 to the ancestor cut, then it contributes either

1 or 2 to the G′-cut depending on whether exactly one

endpoint belongs to r’s component in the ancestor cut (1
to G′-cut), or no endpoints belong to it (2 to G′-cut).

Lemma IV.13. Assuming Assumption IV.8, for each U∗i ,
MinAncCut(U∗i) has size exactly f(U∗i).

1064

Proof: In the proof of Lemma IV.12, the only potential

source of inequality is in (d): an edge with no endpoints

in r’s component of MinAncCut(U∗i) contributes 1 to

|MinAncCut(U∗i)| and 2 to the corresponding G′-cut. If such

an edge e existed, then it must be in ∂G[S
∗
i1
, . . . , S∗i�] where

V (C∗i) := {v∗i1 , . . . , v∗i�}, which means e is in component

C∗i . Also, neither of its endpoints is preceded by a vertex

in MinElts(U∗i), which means neither of its endpoints is

preceded by any endpoint in G of any edge in C∗i , and

therefore any endpoint in G of any edge in T ∗i as well.

We thus have an edge e in C∗i not partially preceded by

any endpoint in T ∗i , contradicting the definition of T ∗i (see

beginning of Section IV-A1). Therefore, no such edge exists,

and we have equality.

We run Algorithm IV.11, computing the value f(U) for

each set U ∈ U in polynomial time. Finally, the algorithm

seeks to minimize

min
U1,...,U�∑
i |Ui|=k−1

�∑
i=1

f(Ui). (3)

The expression (3) can be formulated as a knapsack problem

with small, integral costs, which can easily be solved in

polynomial time.

Since the branches in any two distinct U,U ′ are disjoint,

the sum
∑

i f(Ui) for any U1, . . . , U� is a (
∑

i |Ui|)-cut.

This fact, along with Lemma IV.12, proves that (3) is

at least OPT . Furthermore, assuming Assumption IV.8,

OPT can be achieved by Lemma IV.13. Thus, as long as

Assumption IV.8 is true, (3) is exactly OPT .

Algorithm IV.14. Compute (3) in polynomial time by formu-
lating it as a knapsack problem. Assuming Assumption IV.8,
the result is exactly OPT .

Lemma IV.15. (3) is always at least OPT .

Proof: Let U1, . . . , U� be the sets achieving the min-

imum in (3). For each Ui, consider the best G′-cut in

the graph G′ constructed for Ui. By Lemma IV.12, the

corresponding ancestor cut has size at most f(Ui). Also,

the ancestor cut has one edge sharing a maximal branch

with each vertex in MinElts(Ui). Since MinElts(Ui) and

MinElts(Uj) lie on different branches for i �= j, if we

take the union of the ancestor cuts over all Ui, then every

maximal branch is cut at most once, so we cut one edge

from each of exactly k − 1 maximal branches. This union

is a k-cut of cost at most
∑

i f(Ui) (it could be smaller if

an edge appears twice in the union, once from each side),

which means that
∑

i f(Ui) ≥ OPT .

Lemma IV.16. Assuming Assumption IV.8, (3) equals OPT .

Proof: By Lemma IV.15, it suffices to show that

(3) is at most OPT (assuming Assumption IV.8). By

Lemma IV.13, |MinAncCut(U∗i)| = f(U∗i) for each i.
Finally, by Claim IV.10,

∑
U∗

i
|MinAncCut(U∗i)| = OPT .

Thus,
∑

i f(U
∗
i) = OPT , and the minimum in (3) can only

be smaller.

Thus, by Lemma IV.16, the algorithm below outputs an

optimum k-cut w.h.p., proving THM-MAIN.

Algorithm IV.17. For O(2O(k)λk log n) repetitions, run
Algorithms IV.7, IV.11 and IV.14, and output the minimum
value of (3) ever computed.

B. General Case

In this section, we present our general algorithm, proving

Theorem III.1, restated below.

Theorem III.1. Let G be an unweighted multigraph, let T
be a tight T-tree of G, and let s be a parameter. There is an
algorithm TreeCut(G,T, λ) with the following guarantee: if
the minimum k-cut in G has size ≤ λ, then TreeCut outputs
a minimum k-cut of G. The running time of TreeCut is
kO(k)λkno(k).

Before we begin, let us briefly describe the differences of

the general setting and state the techniques we will use to

overcome the new difficulties.

1) The first difference is that in general, the k − 1
edges in ET [S

∗
1 , . . . , S

∗
k] may not be incomparable.

For example, in the extreme case, they can all lie on

a single maximal branch. We resolve this issue with

dynamic programming on the tree, in a similar fashion

to Section 2.3.2 of [7]. At a high level, we only focus

on the minimal vertices, which are incomparable,

and capture the remaining vertices through dynamic

programming.

2) The second difference is that the tree T is no longer a

union of disjoint maximal branches. However, we still

want to define a suitable ordering on the endpoints of

the relevant edges, so that we can define a similar

notion of partial precedence and use Lemma IV.4.

Intuitively, we want a set of disjoint branches, one

containing each minimal vertex, such that a variant of

Lemma IV.4 still holds, so that we can set up a similar

minimum s–t cut problem. We handle this issue with

heavy-light decomposition, a well-known routine that

breaks up a tree into long chains, combined with color-

coding as before, since we do not know beforehand

which chains are useful for us.

1) General Case: Algorithm: We will perform dynamic

programming on the tree T , rooted at an arbitrary vertex

r0.7 We define the dynamic programming states as follows:

Definition IV.18 (DP State). For vertex x ∈ T and integer
k′ ∈ [0, k − 1], define State(x, k′) as the minimum number
of edges cut in G[V (T (x))] over all partitions of V (T (x))

7In this section, we will free up variable r to be used as an integer, to
be more consistent with the variable choice in Section 2.3.2 of [7].

1065

obtained by cutting k′− 1 edges from T (x). More formally,

State(x, k′) := min
S1,...,Sk′

|EG[V (T (x))][S1, . . . , Sk′], (4)

where the minimum is over all partitions S1, . . . , Sk′ of
V (T (x)) satisfying |ET (x)[S1, . . . , Sk′]| = k′ − 1. If there
is no valid partition S1, . . . , Sk′ , then State(x, k′) =∞.

Observation IV.19. |OPT | = State(r, k − 1).

For the rest of this section, we will only be concerned

with computing the actual value State(r, k − 1) = |OPT |.
The k-cut that achieves this value can be recovered from the

dynamic program using standard backtracking procedures (at

no asymptotic increase in running time).

The base cases are:

1) State(x, 0) = 0 for all vertices x ∈ V (T), and

2) State(x, k′) = ∞ for all leaves x and integer k′ ∈
[1, k − 1].

Fix a non-leaf vertex x, and assume that the values

State(v, s) have already been computed for all v ∈ T (x) \
{x} 8 and integer k′ ∈ [0, k − 1]. We seek to compute the

states State(x, k′) for k′ ∈ [0, k − 1].
We can easily detect whether or not State(x, k′) =∞: it

is ∞ iff there are less than k′−1 edges in T (x). Therefore,

let us also assume that State(x, k′) < ∞. Consider the

components that achieve the minimum in (4), as well as

the k′ − 1 edges in T (x) cut by those components. Let the

children of these k′−1 edges be v∗1 , . . . , v
∗
k′−1. Furthermore,

suppose that they are ordered so that {v∗1 , . . . , v∗k′−1}↓ =
{v∗1 , . . . , v∗r} for some r ∈ [k′ − 1]. For each i ∈ [r], let

k∗i := |{v∗1 , . . . , v∗k′−1}∩V (T (v∗i))| ∈ [k′−1] be the number

of these vertices preceded by v∗i , so that
∑r

i=1 k
∗
i = k′− 1.

Definition IV.20 (HLD). A heavy-light decomposition

(HLD) of a tree T is a partition B of the edges of T into
disjoint branches, such that for each vertex v ∈ V (T), the
branch from v to the root x of T shares edges with at most
O(log n) branches in B.

Fact IV.21. For any tree, a HLD of the tree exists and can
be computed in linear time.

Fix a HLD of T (x) with branches B. For a vertex v ∈
V (T (x))\{x}, define B(v) to be the branch in B containing

the parent edge of v. For convenience, define B∗i := B(v∗i)
for i ∈ [r]; here, r is now an integer, not the root of

T (x), since x is now that root. Note that since v∗1 , . . . , v
∗
r

are pairwise incomparable, the branches B∗1 , . . . , B
∗
r are

always distinct. For each branch B ∈ B, define subroot(B)
to be the child of the root of B that lies on B (hence

subroot). We now focus on the “minimal” branches B∗i ,

formalized as follows: Let q := |{subroot(B∗i) : i ∈ [r]}↓|,
8For the rest of this section, the reader may assume that T = T (x) for

convenience. Every time we refer to T (v), we always have v ∈ T (x), so
T (v) = (T (x))(v), but the latter is more cumbersome to write.

and order v∗1 , . . . , v
∗
r so that {subroot(B∗i) : i ∈ [q]} =

{subroot(B∗i) : i ∈ [r]}↓. In particular, the vertices

subroot(B∗i) for i ∈ [q] are incomparable. Finally, for each

i ∈ [r], define u∗i := subroot(B∗i).
This time, define E′ ⊆ E as the edges whose end-

points u, v satisfy the property that subroot(B(u)) and

subroot(B(v)) are incomparable. Define H to be the graph

on {v∗1 , . . . , v∗r} with edge set as follows: for each edge

e ∈ E′ with endpoints in T (u∗i) and T (u∗j) (i �= j,

i, j ∈ [r]), add that same edge e between v∗i and v∗j . The

main difference of H compared to Section IV-A is that this

H does not include edges between v∗i and v∗j in a common

minimal branch B∗h, h ∈ [q].

For each i ∈ [r] and vertex v ∈ T (v∗i), let b(v) be the

first vertex in B∗i on the branch from v to r. Clearly, such

a vertex always exists and is inside T (v∗i). For a vertex set

U ⊆ ⋃i T (v
∗
i), define b(U) :=

⋃
u∈U b(u). We now have a

lemma resembling Lemma IV.4 from Section IV-A:

Lemma IV.22. For each connected component C in H ,
there exists a spanning tree TC of C satisfying the following
property: Let U be the set of endpoints of edges in TC . Then,
every edge in C is partially preceded by some vertex in b(U).

Proof: The proof essentially follows from applying

Lemma IV.4 on an appropriately chosen graph. Construct

the graph Gb as follows: the vertex set is
⋃

i B
∗
i , and for

each edge in C with endpoints u, v in G, add that edge with

endpoints b(u), b(v) in Gb. Note that if we contract each

vertex set V (B∗i) in Gb, we get exactly H . Define a tree Tb

by taking the branches B∗1 , . . . , B
∗
r and adding a root rb of

Tb connected to the root of each B∗i . Apply Lemma IV.4 on

the graph Gb∪Tb (we take union with Tb only to include the

root rb), which gives us a spanning tree TC . Let U be the

endpoints of TC in G, which means that the set of endpoints

in Gb is exactly b(U). By the guarantee of Lemma IV.4 and

the definition of partially precede Definition IV.3, every edge

e in C with endpoints u, v in G has one of its endpoints

b(u), b(v) preceded by a vertex in b(U) in Tb, and hence

also in T (x). Since b(u) always precedes u in T (x) and the

same for b(v) and v, one of u, v is preceded by a vertex in

b(U) in T (x).

As in Section IV-A, let the connected components of H
be C∗1 , . . . , C

∗
z for z ≤ V (H) = r, ordered in an arbitrary

order, and let T ∗i be the spanning tree for C∗i promised by

Lemma IV.4. We first color the edges of E′ identically to

Section IV-A1:

Condition IV.23 (Same as Condition IV.5). For each C∗i ,
all edges in T ∗i are colored green.

Condition IV.24 (Same as Condition IV.6). All edges in⋃
i∈[q] ∂G(T (u

∗
i)) \

⋃
i T
∗
i are colored red.

Algorithm IV.25 (Same as Algorithm IV.7). Color each
edge in E′ red with probability 1 − 1/λ and green

1066

x

u∗1

v∗1
v∗4 u∗4

b(v)

v

v∗5

u∗2
v∗2

v′

b(v′)
u∗3

C∗1

C∗2

Figure 3. An example with r = 6 and q = 3. There are two components
C∗1 , C

∗
2 , and one component C+

1 . For Condition IV.26 to hold, none of the
black branches can be contracted. For Condition IV.27 to hold, the purple
branches must be contracted. For Condition IV.28 to hold, the magenta
branches must be contracted. Whether the gray branch is contracted or not
does not affect the three conditions.

with probability 1/λ. With probability 2−O(k)λ−k, Condi-
tions IV.23 and IV.24 hold.

Unlike Section IV-A1, we do not build the graph on

the children of the root yet. This time, the algorithm now

contracts every branch of the HLD independently with

probability 1/ log n. We would like the following three

conditions to hold (see Figure 3):

Condition IV.26. For each i ∈ [r], B∗i is not contracted.

Condition IV.27. For each C∗i and each edge e in T ∗i
with endpoints u, v in G, all branches in B intersecting the
branch from u to b(u) are contracted, and the same holds
for the branch from v to b(v).

Condition IV.28. For all i ∈ [q], all branches in B \ {B∗i }
intersecting the branch from v∗i to x are contracted.

Clearly, Condition IV.26 holds with probability exactly

1/(log n)r, which is negligible (see Fact III.7). We now

claim the following for Condition IV.27:

Claim IV.29. Conditioning on the event that Condition IV.26
holds, Condition IV.27 is true with probability 2−O(r).

Proof: Every T ∗i has O(|V (C)|) endpoints in G, and

for each such endpoint v, at most O(log n) branches in B
intersect the branch from v to b(v) by the guarantee of HLD.

Over all T ∗i , this is
∑

C O(|V (C)|) ·O(log n) = O(r log n)

many branches. We now show that none of these branches

in B can be B∗j for some j ∈ [r].
Fix i ∈ [r], and consider an endpoint v ∈ T ∗i . First,

suppose for contradiction that the branch from v to b(v)
intersects the branch B∗i . Let (u′, v′) be an edge in B∗i on

the branch from v to b(v), with v′ as the child of u′. Since v′

lies on the branch from v to b(v), we have that b(v) precedes

v′. But then v′ is a vertex on B∗i encountered before b(v)
on the branch from v to x, contradicting the choice of b(v).

Next, suppose for contradiction that the branch from v
to b(v) intersects the branch B∗j for i �= j. Extend the

branch from v to b(v) into the branch from v to v∗i , which

by assumption contains a vertex in B∗j . First, if v∗i is on

B∗j , then both v∗i and v∗j lie on a common branch B∗j ,

contradicting the fact that they are incomparable. Otherwise,

the path from v to v∗i must travel beyond B∗j , so every

vertex in B∗j is preceded by v∗i . In particular, v∗j ∈ V (B∗j)
is preceded by v∗i , again contradicting the fact that they are

incomparable.

Therefore, even if we condition on Condition IV.26, none

of the O(r log n) relevant branches are automatically con-

tracted (so that the probability of success is not automatically

0). Thus, the probability that none of the O(r log n) branches

are contracted is (1− 1/ log n)O(r logn) = 2−O(r).

Finally, conditioned on Conditions IV.26 and IV.27,

Condition IV.28 holds with probability at least (1 −
1/ log n)O(r logn) = 2−O(r), since by the HLD property,

there are O(log n) many branches that still need to be

contracted for each v∗i in Condition IV.28. Thus, we have

the following:

Algorithm IV.30. Compute a HLD of T (x) into branches
B, and contract each branch with probability 1/ log n. With
probability at least 1/(log n)k · 2−O(k), Conditions IV.26
to IV.28 hold. Let T ′ be the resulting tree; note that x is
still the root of T ′.

Define T ′ as in Algorithm IV.30; we have the observation

below:

Observation IV.31. Assuming Condition IV.28, all minimal
branches B∗1 , . . . B

∗
q now have x as their root.

Moreover, the following observation follows immediately

from Lemma IV.22:

Observation IV.32. Assume Condition IV.27. Fix any com-
ponent C∗i , and let U be the set of endpoints in T ′ of edges
in T ∗i . Then, every edge in C∗i is partially preceded by some
vertex in U (in the tree T ′).

We now define the set U similarly to Section IV-A2,

except this time using the tree T ′. Build a graph whose

vertices are the children of x in T ′, and for every two

children u, v of x, connect them by an edge if there is a

green edge between T ′(u) and T ′(v). For each (maximal)

connected component in this graph, add its set U of vertices

1067

into a collection U .

Next, define the following graph H ′. Its vertex set is

{v∗1 , . . . , v∗q}, and it is obtained from H as follows: for each

i ∈ [q], contract into v∗i all vertices v∗j (j ∈ [r]) such that

u∗j is preceded by u∗i . For each connected component C of

H ′, let C+ be the set of vertices in H contracted to a vertex

in C. Every C+ is a union of some connected components

C∗i of H; let C+
1 , . . . , C+

y be all such vertex sets C+.

Lemma IV.33. If Conditions IV.23, IV.24 and IV.28 hold,
then for each C+

i , there exists a set U+
i ∈ U whose subtrees

contain precisely all vertices v∗i in C+
i (and no more).

Proof: Consider a vertex set C+
i whose vertices get

contracted into v∗i1 , . . . , v
∗
i�

in H ′. For each vertex v∗h in C+
i ,

there is a vertex v∗ij (i ∈ [�]) such that u∗h is preceded by u∗ij ,

which means that v∗h is also preceded by u∗ij . Therefore, all

vertices v∗h in C+
i must be inside T ′(u∗ij) for some vertex

v∗ij .

By Condition IV.28, all the vertices u∗i1 , . . . , u
∗
i�

are

children of the root x of T ′. By Condition IV.23, there

must be green edges connecting each connected component

C∗h ⊆ C+. These components C∗h are connected together

through vertices in different C∗h getting contracted into the

same v∗ij , which means they share vertices in a common

T ′(u∗ij). It follows that all vertices in C+
i belong to subtrees

in a single U ∈ U . By Condition IV.24, there cannot be any

green edges in
⋃

ij
∂G(T (u

∗
ij
)) \⋃i T

∗
i , so there cannot be

any other vertices v∗h in U .

Assumption IV.34. After running Algorithms IV.25
and IV.30, Conditions IV.23, IV.24, IV.26, IV.27, and IV.28
hold, and for each C+

i , there exists a set U+
i ∈ U

whose subtrees contain precisely all vertices v∗j in
C+

i (and no vertices v∗j outside C+
i). (Note that⋃

i U
+
i = {u∗1, . . . , u∗q}. This assumption holds with

probability at least 2−O(k)(log n)−kλ−k.)

Before we move on to the next section, for each U ∈ U ,

let us define

MinElts(U) :=
(⋃
u∈U
{v : v ∈ T ′(u) and

∃(v, v′) ∈ ∂T ′(u) green}
)
↓.

Note that if we assume Conditions IV.23, IV.24 and IV.27,

then for each U+
i = {u∗i1 , . . . , u∗i�}, we also have

MinElts(U+
i) =

(⋃
j{b(v) : v ∈ T (uij) and ∃(v, v′) ∈

∂T (uij) green}
)
↓ ⊆ ⋃

j B
∗
ij

. After constructing

MinElts(U) for each U ∈ U , the algorithm may forget the

construction of T ′; indeed, T ′ was only needed to construct

the sets U and MinElts(U). However, we will still need T ′

for our analysis.

2) General Case: Processing the Sets U ∈ U : We

begin similarly to Section IV-A2: define a similar minimum
ancestor p-cut problem for p ∈ [k′ − 1]:

Definition IV.35 (Minimum ancestor p-cut). Fix some
set U = {u1, . . . , u�} ∈ U , and let MinElts(U) =
{s1, . . . , sm}. The minimum ancestor p-cut is the following
problem: For each i ∈ [�], remove at least one edge in T (ui)
(note: not T ′(ui)) such that after removal, no sj ∈ V (T (ui))
is in the same component as ui, and such that exactly p− 1
edges are removed in total (over all i). Consider the p-cut in
G from the connected components of the remaining forest.
We want to compute the p-cut of minimum size, denoted
MinAncCut(U, p).

Claim IV.36. Assuming Assumption IV.34,
for each U+

i = {u∗i1 , . . . , u∗i�} with p+i :=
|⋃j V (T (u∗ij)) ∩ {v∗1 , . . . , v∗k′−1}|, we have
|∂G[S∗i1 , . . . , S∗i�]| = |MinAncCut(U+

i , p+i)|. Moreover,∑
U+

i
|MinAncCut(U+

i , p+i)| = OPT .

Proof: The proof resembles the proof of Claim IV.10,

except with the additional HLD and Assumption IV.41 added

in.

Let the set C+
i have vertices v∗i1 , . . . , v

∗
i�′

for �′ ≥ �.
Assume that the components C∗1 , . . . , C

∗
y are reordered so

that C∗1 , . . . , C
∗
z ⊆ C+

i are the connected components

of H whose vertices form C+
i . For simpler notation, de-

fine p := p+i , and let v∗i�+1
, . . . , v∗ip be the other ver-

tices in
⋃

j V (T ′(u∗ij)), that is, those in
⋃

j V (T ′(u∗ij)) ∩
{v∗r+1, . . . , v

∗
k′−1}. First, we claim that a p-ancestor cut of

size |∂G[S∗i1 , . . . , S∗i�]| is achievable: simply cut the parent

edges of v∗i1 , . . . , v
∗
ip

. We now show that this cut is indeed

an ancestor cut. By Conditions IV.23 and IV.24, the only

green edges in any ∂G(T (u
∗
ij
)) lie in some T ∗i , i ∈ [z]. By

Condition IV.27, all endpoints of T ∗1 , . . . , T
∗
z in T ′ are on

the branches B∗i1 , . . . , B
∗
i�′

. Inside each branch B∗ij , vertex

v∗ij precedes any endpoint in T (x) of a green edge on B∗ij ,

and these branches cover all green edges. Therefore, every

vertex in MinElts(U+
i) is preceded by some vertex v∗ij in T ′.

Since T ′ is a contraction of T (x), precedence is unchanged,

so every vertex in MinElts(U+
i) is also preceded by some

vertex v∗ij in T (x). In other words, the parent edges of v∗ij
lie on the branches in T (x) from vertices in MinElts(U+

i)
to x, so our cut is a valid ancestor cut.

The proof that no better ancestor cut is possible is

identical (see the proof of Claim IV.10), so we omit it.

We now construct our graph G′, similar to the one

in Section IV-A2. Fix a set U = {u1, . . . , u�} and let

MinElts(U) = {s1, . . . , s�} where si ∈ V (T (ui)). For

each p ∈ [k′ − 1], we will compute a value f(U, p). First,

we construct the following multigraph G′ on the vertices

(
⋃

i V (T (ui))) ∪ {x}:
(a) For each edge in E \ E′ with both endpoints in

T (MinElts(U)), do nothing: these edges are not cut

in any ancestor cut.

(b) For each edge in E′ with at least one endpoint in

T (MinElts(U)), do nothing: these edges are always

1068

cut in an ancestor cut, and we will account for these

edges separately.

(c) For each edge in E \E′ with at most one endpoint in

T (MinElts(U)), add it to G′.
(d) For each edge (u, v) ∈ E′ with both endpoints not in

T (MinElts(U)), add edges (u, r) and (v, r) to G′.

Note that all edges in G′ have both their endpoints in

V (T (ui)) ∪ {x} for some i. Next, for each sequence

p1, . . . , p� of positive integers summing to p, do the fol-

lowing: For each i ∈ [�], consider all ways to select pi
vertices v1, . . . , vpi

∈ T (ui) so that if we remove their

parent edges, then no vertex in MinElts(U) ∩ V (T (ui)) is

in the same component as ui; find the way that minimizes

|⋃j ∂G′(T (vj))|. Then, sum over the costs of the (pi + 1)-
cuts for each i ∈ [�]. Finally, compute the minimum sum

over all sequences p1, . . . , p�, and add the number of edges

considered in step (b) to this minimum. The final value is

f(U, p).

It is not clear how to compute f(U, p) quickly, and this is

where we will use the previously computed State(·, ·)’s; we

defer this to Section IV-B3. The intuition for the construction

of G′ is the same as in Section IV-A2.

Again, define the following natural correspondence be-

tween ancestor cuts and the “G′-cuts”: two correspond to

each other if their cut edges are identical.

Lemma IV.37. For two corresponding cuts, the size of the
ancestor cut is at most the size of the G′-cut plus the number
of edges in step (b).

Proof: The proof is identical to the one in

Lemma IV.12, so we omit it.

Lemma IV.38. Assuming Assumption IV.8, for each U+
i and

p+i , MinAncCut(U+
i , p+i) has size exactly f(U+

i , p+i).

Proof: In the proof of Lemma IV.12 (adapted to

suit Lemma IV.37), the only potential source of in-

equality is in (d): an edge with no endpoints in

x’s component of MinAncCut(U+
i , p+i) contributes 1 to

|MinAncCut(U+
i , p+i)| and 2 to the corresponding G′-cut. If

such an edge e existed, then it must be in ∂G[S
∗
i1
, . . . , S∗i�]

where V (C+
i) := {v∗i1 , . . . , v∗i�}, which means e is in

component C+
i . Also, neither of its endpoints is preceded

by a vertex in MinElts(U+
i), which means that for any edge

in any C∗j ⊆ C+
i with endpoints u and v in G, neither of e’s

endpoints is preceded by b(u) or b(v). In particular, this is

true for any edge in any T ∗j as well. We thus have an edge

e in some C∗j ⊆ C+
i not partially preceded by any endpoint

in T ∗j , contradicting the definition of T ∗j . Therefore, no such

edge exists, and we have equality.

Let us first assume that for each U ∈ U and p ∈ [k′ − 1],
we can compute f(U, p) in time no(k). (Unlike the one in

Section IV-A2, this assumption is nontrivial and is covered

in Sections IV-B3 and IV-B4.) Then, as in Section IV-A2,

we can compute the minimum similar to (3) as a knapsack

problem:

Algorithm IV.39. Compute

min
U1,...,U�∑
i |Ui|=r−1
p1,...,p�∑
i pi=k′−1

�∑
i=1

f(Ui, pi). (5)

in polynomial time by formulating it as a knapsack problem.
Assuming Assumption IV.34, the result is exactly OPT .

We have the final algorithm below, which proves Theo-

rem III.1:

Algorithm IV.40. For O(2O(k)λk log n) repetitions, run
Algorithms IV.25 and IV.39, and output the minimum value
of (5) ever computed.

3) Computing f(U, p): In this section, we describe how

to compute f(U, p) in a rather ad-hoc way, which is where

we pick up the no(k) multiplicative factor. Note that it can

be easily computed in O(kO(k)np+O(1)) time by brute force,

which is fine if p = O(1) or even o(k). However, p could

be as large as Θ(k).
First, let us make an additional assumption for now. We

later show how to remove this assumption, at a cost of a

multiplicative no(k) factor.

Assumption IV.41. For each U+
i = {u∗i1 , . . . , u∗i�}, we

have |V (T ′(u∗ij)) ∩ {v∗1 , . . . , v∗r}| ≤
√
k for all j ∈ [�].

(Note that V (T ′(u∗ij))∩{v∗1 , . . . , v∗r} is also
(
V (T ′(u∗ij))∩

{v∗1 , . . . , v∗k′−1}
)
↓.)

In this case, the algorithm computes an estimate f ′(U, p)
of f(U, p) so that f ′(U, p) ≥ f(U, p) always, and

f ′(U∗i , p) = f(U∗i , p). First, fix a set U = {u1, . . . , u�} ∈ U
and integer p ∈ [k′− 1]. Next, for each sequence p1, . . . , p�
of positive integers summing to p, for each sequence of

positive integers r1, . . . , r� with ri ≤ min{pi,
√
k} (for

all i ∈ [�]), do the following: For each i ∈ [�], consider

all ways to select ri incomparable vertices v1, . . . , vri ∈
T ′(ui)\{ui} and remove their parent edges so that no vertex

in MinElts(U)∩ V (T (ui)) is in the same component as ui;

find the way that minimizes

min
k′
1,...,k

′
ri
≥1

∑
j k′

j=pi

ri∑
j=1

State(vj , k′j) +
∣∣∣∣

ri⋃
j=1

∂G′(T (vj))

∣∣∣∣. (6)

Let the minimum of (6) over all selections of v1, . . . , vri be

Mi. Finally, compute the minimum sum
∑

i∈[�] Mi over all

sequences p1, . . . , p�, and add the number of edges consid-

ered in step (b) to this minimum. The final value is f ′(U, p).
Clearly, f ′(U, p) can be computed in O(kO(k)n

√
k+O(1))

time.

1069

Claim IV.42. For all U ∈ U and p ∈ [k′ − 1], f ′(U, p) ≥
f(U, p).

Proof: Let U = {u1, . . . , u�} as before. Given i ∈ [�]
and values pi, ri and vertices v1, . . . , vri , (6) represents

the way to select (pi − ri) vertices vri+1, vri+2, . . . , vpi

so that v1, . . . , vpi form an ancestor pi-cut for U and

{v1, . . . , vpi}↓ = {v1, . . . , vri}. This is because the values

State(vj , k′j) capture the way to cut k′j−1 additional edges

inside each T (vj) that minimizes the number of edges cut

in Gj . Note that which edges we cut in each T (vj) does not

affect whether v1, . . . , vpi is a valid ancestor cut, since the

component containing ui in the G′-cut is already determined

by {v1, . . . , vpi
}↓ = {v1, . . . , vri}.

Therefore, f ′(U, p) is essentially computing the same as

f(U, p), except that in f ′(U, p), the values ri are artificially

limited by
√
k. So f ′(U, p) can only be larger than f(U, p).

Claim IV.43. Assuming Assumption IV.41, for each U+
i ,

f ′(U+
i , p) = f(U+

i , p).

Proof: By the proof of Claim IV.42, the only way for

f ′(U+
i , p) > f(U+

i , p) to happen is if the optimal selection

of r1, . . . , r� has ri >
√
k for some i. However, this is

precisely what Assumption IV.41 prevents.

4) Removing Assumption IV.41: In this section, we deal

with Assumption IV.41 in another ad-hoc way. Essentially,

we show that if Assumption IV.41 does not hold, then we can

preprocess the tree T (x) in an efficient way (more precisely,

with no(k) multiplicative overhead) so that Assumption IV.41

does hold.

Definition IV.44 (Rank). Given a vertex u∗i , i ∈ [q] (that is,
u∗i is in some U+

i′), define the rank of a vertex v ∈ T (u∗i) as
follows: Consider the branch from v to T (u∗i), which we call
B. If B contains any vertex v∗j , then the rank(v) = −∞.
Otherwise, let rank(v) be the number of vertices v∗j ∈ T (u∗i)
such that if we travel along the branch from v∗j to u∗j , then
we encounter a vertex in B before or at the same time as
we encounter a vertex in {u∗1, . . . , u∗r} \ {u∗j}.
Lemma IV.45. Fix i ∈ [q], and let a be the
maximum rank of a vertex in T (u∗i). Then,∣∣(V (T (u∗ij)) ∩ {v∗1 , . . . , v∗k′−1}

)
↓
∣∣ ≤ 2a.

Proof: We induct on a > 1, with the trivial base case

a = 0. Now suppose that a > 0. Consider the set S :=(
{u∗1, . . . , u∗r} ∩ (V (T (u∗i)) \ {u∗i })

)
↓.

If S = ∅, then v∗i is the only vertex in {v∗1 , . . . , v∗r} ∩
T (u∗i), so a = 1 and the bound holds. Otherwise, let S =
{u∗i1 , . . . , u∗i�}; we claim that for all j ∈ [�], every vertex

in T (u∗ij) has rank at most a− �. Suppose not: there exists

j ∈ [�] and a vertex v ∈ T (u∗ij) with rank more than a− �.
Let B′ be the branch from v to the parent of u∗ij . Then, there

are more than a − � vertices v∗i′ such that if we travel the

branch from v∗i′ to the parent of u∗ij , then we encounter a

u∗i

v∗i

u∗j

v∗j

u∗j′v
v∗j′

u∗i
v∗i

u∗ju∗j′
v∗j′ v∗j

=⇒

Figure 4. Contracting the branch from v to the parent of u∗i (dashed red).
The rank of v is 3. After the contraction, for the vertices v∗j and v∗

j′ , their

new vertices u∗j and u∗
j′ are no longer preceded by any other u∗

i′ .

vertex in B′ no later than we encounter some u∗i′′ for i′′ �= i′.
Extend the branch B′ to B′′ so that B′′ travels from v to the

parent of u∗i ; clearly, the previous statement still holds if we

travel the branch from v∗i′ to the parent of u∗i instead, and

with B′ replaced by B′′. Moreover, for each j′ �= j, if we

travel the branch from v∗ij′ to u∗i , then we also encounter

a vertex on B′′ no later than we encounter any vertex in

{u∗1 . . . , u∗r}\{u∗ij′ } (which has to be u∗i). Thus, these �−1

vertices v∗ij′ increase the rank of v in T (u∗i) to more than

(a− �) + (�− 1) = a− 1. Finally, v∗i always increases the

count by 1, so v has rank more than a, contradicting the

assumption that the maximum rank inside T (u∗i) is a.

By induction, each u∗ij ∈ S satisfies
∣∣(V (T ′(u∗ij)) ∩

{v∗1 , . . . , v∗k′−1}
)
↓
∣∣ ≤ 2a−�. Therefore,

∣∣(V (T ′(u∗ij)) ∩ {v∗1 , . . . , v∗k′−1}
)
↓
∣∣

=

∣∣∣∣{vi} ∪
�⋃

j=1

(
V (T (u∗ij)) ∩ {v∗1 , . . . , v∗k′−1}

)
↓
∣∣∣∣

≤ 1 + � · 2a−�

< 1 + 2� · 2a−�

= 1 + 2a,

as desired.

By Lemma IV.45, either Assumption IV.41 holds, or

there exists some i ∈ [q] such that a ≥ log2(
√
n). In

the former case, we compute f ′(U, p) as before. In the

latter case, consider this integer i and a vertex v with

rank(v) ≥ log2(
√
n). Contract the branch from v to the

parent of u∗i , and consider the new contracted graph with

the same HLD (except with some edges contracted). Let the

branch from v to u∗i be B. Observe that for each vertex

v∗j ∈ V (T (u∗i)) satisfying the property in the definition of

1070

rank,9 the vertex u∗j is no longer preceded by any other

u∗j′ (see Figure 4). Previously, this property was only true

for v∗i . Therefore, if we perform the contraction, keep the

contracted HLD, and compute the new values u∗1, . . . , u
∗
r ,

then q increases by (at least) rank(v)−1. We can repeat this

process at most
⌈

k
log2(

√
k)−1

⌉
times before Assumption IV.41

must hold, since otherwise, q would be greater than k. Let

t† be the number of repetitions, let v†1, . . . , v†t the selected

vertices, and let T † be the contracted tree.

Our algorithm is as follows. Start with an arbitrary HLD

of T (x). Choose a random number t ∈
[⌈

k
log2(

√
k)−1

⌉]
, and

choose t random vertices v1, . . . , vt ∈ V (T (x)). Contract all

the edges on the branches from each vi to x. With probability

n−o(k), we have t = t† and vi = v†i for each i ∈ [t]. Note

that in this case, our contracted tree is T † with possibly more

edges contracted above any u∗i . Therefore, the new HLD

with branches B on our new tree satisfies Assumption IV.41.

We then proceed with Algorithms IV.25 and IV.30, except

we do not recompute the HLD in Algorithm IV.30. The

algorithms in Sections IV-B2 and IV-B3 are the same,

except we now have Assumption IV.41. Finally, repeat the

entire algorithm no(k) times, starting from guessing v and

v1, . . . , vt, so that w.h.p., Assumption IV.41 holds in one of

the trials.

V. KAWARABAYASHI-THORUP SPARSIFICATION

In this section, we prove the following:

Theorem III.2. Let G be a simple graph with minimum
degree δ > ω(max{α log n, αk}), and let α ≥ 1 be a
parameter. Then, we can contract G into a (multi-)graph
G such that:

1) Suppose the minimum k-cut has size ≤ αδ in G. Then,
every nontrivial minimum k-cut is preserved in G.
That is, no edge of such a cut is contracted in G.

2) G has Õ(αm/δ) edges and Õ(αm/δ2) vertices.

The algorithm iteratively contracts vertices in G, possibly

producing a multigraph. It is morally the same as the one in

[27], [12], except with worse bounds since we are in the ap-

proximate, k-cut setting. The one key difference is that since

we are not concerned with a near-linear running time, we

replace their inner PageRank/UnitFlow subroutines with a

simpler one that iteratively computes low-conductance cuts.

Our algorithm is described in pseudocode in Algorithm 3.

Below, we introduce the terminology from [12] that we use

in our algorithm and analysis.

Terminology: Here, we list the terminology specific to

Section V.

For a vertex subset S, define vol(S) =
∑

v∈S deg(v) as

the sum of degrees of vertices in S. A connected subgraph

9Namely, “if we travel along the branch from v∗j to u∗j , then we encounter
a vertex in B before or at the same time as we encounter a vertex in
{u∗1, . . . , u∗r} \ {u∗j}.”

H ⊆ G is cut by edge set F ⊆ E if H−F is disconnected.

A set of vertices C ⊆ V is cut by F if G[C] − F is

disconnected.

The terminology below originate from [12]. In all the

definitions, the graph G is fixed and has m edges.

Definition V.1 (Regular vertex and supervertex). A vertex v
in G is a supervertex if more than one vertex in G contracts
to v. Otherwise, it is a regular vertex.

Observation V.2. Every regular vertex v ∈ V (G) satisfies
degG(v) ≥ δ.

Definition V.3 (Passive supervertex). A vertex v ∈ V (G) is
a passive supervertex if it is a supervertex with degG(v) ≤
3αδ/γ. (γ := 1

100 logm from Definition V.5.)

Definition V.4 (Conductance). Given a graph H , a set S :
∅ � S � V (H) has conductance

|∂HS|
min{vol(S), vol(V (H) \ S) .

Definition V.5 (γ, γ-expander). Define γ := 1
100 logm

throughout this entire section. A graph H is a γ-expander

if every set S ⊆ V (H) has conductance at most γ.

Definition V.6 (Trim). Let H be a subgraph of G. By
trimming H , we mean iteratively removing from H any
vertex v ∈ V (H) satisfying degH(v) < 2

5 degG(v), until
no such vertices are left.

Definition V.7 (Loose vertex). Let C be a subgraph of G.
A vertex v ∈ V (C) is loose if it is a regular vertex and
dC(v) ≤ dG(v)/2.

Definition V.8 (Shave). Let C be a subgraph of G. By shav-

ing C, we mean (simultaneously) removing all loose vertices
in C. (Unlike trimming, this operation is not iterative.)

Definition V.9 (Scrap). Let C be a subgraph of G. Suppose
we shaved C into a subgraph A ⊆ H . By scrapping A,
we mean removing all vertices from A if volG[C](A) ≤
volG(C)/4 (and doing nothing otherwise).

Definition V.10 (Core). Let C be a subgraph of G. The core

is the subgraph left over after shaving C into A and then
scrapping A (that is, replacing A with ∅ if volG[C](A) ≤
volG(C)/4.)

We first begin with a sparsification algorithm that makes

calls to an exact minimum conductance cut algorithm. Of

course, since conductance is an NP-hard problem, this

algorithm is not polynomial-time. Then, we explain at the

end how to make the algorithm approximate. We choose

this approach for two reasons. First, the algorithm utilizing

exact conductance cuts is cleaner to state and analyze,

and transitioning to the approximate conductance case is

straightforward. Second, for potential future applications

which do not require a polynomial time algorithm (and

1071

mainly existence of the sparsification), the exact algorithm

would suffice and give better bounds, so nothing needs to

be reproven.

Algorithm 2 KT-Sparsification(G = (V,E), α)

1: G← G; G has min degree δ
2: while < 1

20 fraction of the edges in G are incident to

passive supervertices do
3: H ← G
4: Remove passive supervertices from H and trim H
5: while there exists a connected component C in H

such that H[C] is not a γ-expander do
6: Compute a γ-conductance cut in H[C], remove

these edges from H , and trim H

7: Take each connected component of H and contract

its core (if nonempty) to a supervertex in G

8: return G

For the rest of this section, let us state the assumption on

δ in Theorem III.2 as a formal assumption below:

Assumption V.11. δ is larger than some absolute constant,
and

δ > ω(max{α log n, αk}).

For the rest of this section, we divide the proof of

Theorem III.2 into three parts. In Section V-A, we show that

the graph G returned by Algorithm 3 satisfies Condition 1 of

Theorem III.2, the “correctness” guarantee. In Section V-B,

we show that G satisfies Condition 2, the “quality” guar-

antee. Finally, in Section V-C, we show that Algorithm 3

indeed terminates, rather than looping indefinitely at line 2.

A. Correctness

In this section, we will prove the following lemma, which

argues that the algorithm correctly preserves nontrivial k-

cuts of small enough size (Condition 1 of Theorem III.2):

Lemma V.12 (Condition 1 of Theorem III.2). Suppose that
the optimal k-cut has size ≤ αδ in G. Then, every non-
optimal nontrivial k-cut is preserved in G. That is, no edge
of the cut is contracted in G.

The structure of the proof follows that of [12], except

adapted to the approximate and k-cut settings.

Lemma V.13. Consider a point in the algorithm’s execution,
just after it trimmed H . Let C be a connected component
of H . Take a subset S ⊆ V (C) containing only regular
vertices, and satisfies |∂S| ≤ αδ. Then, either |S| ≤ 3α or
|S| ≥ δ/5.

Proof: Since every vertex v ∈ S is regular, we have

degG(v) ≥ δ, and moreover, since v is not trimmed from

H , we have degH(v) ≥ 2
5 degG(v) ≥ 2

5δ. Moreover, since

all other vertices in S are regular, at most |S| − 1 of v’s

edges can go to another vertex in S. Since degH(v) ≥ 2
5δ,

this leaves at least 2
5δ−(|S|−1) edges to a vertex outside S.

Altogether, the |S| regular vertices in S are responsible for

at least |S| · (25δ− (|S| − 1)) many edges in ∂S. Therefore,

|S| · (2
5
δ − (|S| − 1)) ≤ |∂S| ≤ αδ

⇐⇒ − |S|2 + (
2

5
δ + 1)|S| ≤ αδ

⇐⇒ |S|2 − (
2

5
δ + 1)|S|+ αδ ≥ 0.

The solution to x2 − (25δ + 1)x+ αδ is

x =
(25δ + 1)±

√
(25δ + 1)2 − 4αδ

2
.

By Assumption V.11, (25δ+1)2− 4αδ ≥ 0, so x has real

solutions, and |S| must satisfy

|S| ≤
(25δ + 1)−

√
(25δ + 1)2 − 4αδ

2
or

|S| ≥
(25δ + 1) +

√
(25δ + 1)2 − 4αδ

2
.

For the second scenario, we clearly have |S| ≥ δ/5. Now

consider the first scenario. We claim that

(
2

5
δ + 1)−

√
(
2

5
δ + 1)2 − 4αδ ≤ 6α,

which would imply that |S| ≤ 3α. This can be seen from

(
2

5
δ + 1)− 6α ≤

√
(
2

5
δ + 1)2 − 4αδ

⇐⇒ (
2

5
δ + 1)2 − 12α(

2

5
δ + 1) + 36α2 ≤ (

2

5
δ + 1)2 − 4αδ

⇐⇒ − 0.8αδ − 12α+ 36α2 ≤ 0,

the last of which follows from Assumption V.11.

Lemma V.14. Consider a point in the algorithm’s execution,
just after it trimmed H . Let C be a connected component of
H that is a γ-expander. Suppose that H[C] is cut by ∂H[C]S
for some S ⊆ C satisfying |∂H[C]S| ≤ αδ and |S| ≤ |C|/2.
Then, S has at most 3α regular vertices and no supervertex
in C.

Proof: First, suppose for contradiction that S contains

a supervertex s ∈ C. Then, since s is active, degG(s) ≥
3αδ/γ, and since it’s not trimmed, degH(s) ≥ 2

5 degG(s) ≥
2
5 · 3αδ/γ, so in particular, volH[C](S) ≥ degH[C](s) =
degH(s) ≥ 1.2αδ/γ. Therefore, the conductance of the set

S ∩ C inside C is at most

|∂H[C]S|
volH[C](S)

≤ αδ

1.2αδ/γ
< γ,

1072

so the set S contradicts the assumption that H[C] is a γ-

expander.

Now suppose for contradiction that S contains more than

3α regular vertices and no supervertex. By Lemma V.13,

since |S| > 3α, it must be that |S| ≥ δ/5. Since each vertex

in S is regular and is not trimmed, it has degree at least 2
5δ

in H (Observation V.2), so volH[C](S) ≥ |S| · 25δ ≥ 2
25δ

2.

Again, the conductance of the set S ∩ C inside H[C] is at

most

|∂H[C]S|
volH[C](S)

≤ αδ
2
25δ

2

(AV.11)
< o

(
1

log n

)
< γ, (7)

so the set S contradicts the assumption that H[C] is a γ-

expander.

Corollary V.15. Consider a point in the algorithm’s execu-
tion, just after it trimmed H . Let E∗ be a k-cut of size ≤ αδ
in G, and let C be a connected component of H that is a γ-
expander and is cut by E∗. Then, all but one component
of E∗ (in G) have at most 3α regular vertices and no
supervertices in C.

Proof: Suppose not: there exist two such components

that either contain more than 3α regular vertices or one

supervertex in C. Let S∗ be one such component with

|S∗ ∩ C| ≤ |C|/2. Observe that ∂H[C](S
∗ ∩ C) ⊆ ∂GS

∗,
since every edge going across S∗∩C in H[C] must also go

across S∗ in G. Therefore,

|∂H[C](S
∗ ∩ C)| ≤ |∂GS∗| ≤ αδ,

so we can apply Lemma V.14 on the set S ∩X , proving the

statement.

Lemma V.16. Suppose the algorithm is at line 7 of an
iteration. Let A be a core of a connected component C that
we contract. Let E∗ be a nontrivial k-cut of size ≤ αδ in
G. Then, A cannot be cut by E∗.

Proof: Suppose not: G[A]−OPT splits G[A] into more

than one component. Let S∗0 be the single component of

OPT with |S∗0 ∩C| > |C|/2, if it exists, and let S∗1 , . . . , S
∗
r

be the components of OPT which intersect A and are not S∗0
(by assumption, one must exist). Since the last action of the

algorithm before line 7 was trim H , by Corollary V.15, each

of S∗1 , . . . , S
∗
r has at most 3α regular vertices in C and no

supervertex. Let v ∈ S∗1 be arbitrary; we have |E[{v}, S∗i ∩
C]| ≤ 3α for each i ≥ 1, which means that |E[{v}, (S∗1 ∪
· · · ∪ S∗r) ∩ C]| ≤ 3αk. Since v was not shaved, we have

degC(v) ≥ 0.51 degG(v)

≥ 1

2
degG(v) + 0.01δ

(AV.11)
>

1

2
degG(v) + 3αk

≥ 1

2
degG(v)− |E[{v}, (S∗1 ∪ · · · ∪ S∗r) ∩ C]|,

so in particular, more than 1
2 degG(v) edges of v go to

vertices in C \ (S∗1 ∪ · · · ∪ S∗r). This means that S∗0 must

exist, and |E[v, S∗0]| ≥ |E[v, S∗0 ∩C]| > 1
2 degG(v). Hence,

we also have |E[v, S∗1]| < 1
2 degG(v).

Now consider another k-cut formed by moving v from

S∗1 to S∗0 . This is still a k-cut, since the old k-cut E∗ is

nontrivial. Moreover, the value of the new k-cut is

|OPT |+ |E[v, S∗1]| − |E[v, S∗0]|

< OPT +
1

2
degG(v)−

1

2
degG(v)

= OPT,

contradicting the choice of OPT .

Finally, Lemma V.12 easily follows from Lemma V.16,

since the only way the lemma can break is if we contract

a set of vertices that OPT cuts in line 7, but this cannot

happen by Lemma V.16. This concludes Lemma V.12.

B. Quality

In this section, we prove the lemma below (Condition 2

of Theorem III.2):

Lemma V.17 (Condition 2 of Theorem III.2). At the end
of the algorithm, G has Õ(αm/δ) edges and Õ(αm/δ2)
vertices.

We first introduce two lemmas, one directly from [12],

and one we reprove:

Lemma V.18 (Lemma 17 of [12]). There are Ω(δ2) edges
from G contracted in each supervertex of G.

Lemma V.19 (Lemma 18 of [12], reproven). The total
number of edges leaving passive supervertices is O(α log n ·
m/δ).

Proof: By Lemma V.18, every passive supervertex

has Ω(δ2) edges contracted to it, and since there are m
edges total, there are O(m/δ2) passive supervertices. By

definition, a passive supervertex has degree ≤ 3αδ/γ, which

is at most O(m/δ2) · 3αδ/γ = O(α logm ·m/δ).
We now prove Lemma V.17. Since

KT-Sparsification terminates when a constant

fraction of the edges of G are incident to passive

supervertices, we conclude that when the algorithm

terminates, G has O(α logm · m/δ) edges. We now

focus on the vertex bound of Lemma V.17. Since each

regular vertex in G must have degree ≥ δ, there are at

most O(α logm · m/δ2) many of them. From the proof

of Lemma V.19, there are O(m/δ2) supervertices in G,

so altogether, G has O(α logm · m/δ2) vertices. This

concludes the proof of Lemma V.17.

C. Termination

In [12], since they aimed at a near-linear time algorithm,

they needed the graph G to shrink by a constant factor per

1073

iteration. Here, all we need is some progress in G, i.e.,

one single contraction, so that the algorithm does not loop

indefinitely. Nevertheless, we will still prove that the number

of edges of G decreases by a constant factor:

Lemma V.20 (Lemma A.5 of [27]). In each except for the
last iteration of the outer loop, i.e., the repeat loop, the
number of edges in the graph G is decreased by a factor of
at least 7/10.

The following lemma, which relates the total number of

edges cut during an iteration to the low-conductance cuts in

line 6, is mostly unchanged.

Lemma V.21 (Lemma A.4 of [27]). If the total number of
edges cut in line 6 during an iteration of the outer loop is
c, then the total number of edges lost from all clusters due
to trimming, shaving, and scrapping during this iteration is
6c.

The only part of its proof that is different is the scrapping

part, since we defined loose vertices slightly differently from

[12]. We prove our version of this part below, which is

conveniently captured as Lemma A.3 in [27]. (The use of k
in Lemma A.3 clashes with our notion of k (in k-cut), so

we changed it to k′ instead.)

Lemma V.22 (Lemma A.3 of [27], reproven). If a compo-
nent C has k′ edges leaving it in G and the core of C is
scrapped, then volG(C) ≤ 4k′.

Proof: Call an edge with at least one endpoint in C
internal to the core if both of its endpoints are inside the

core. We first prove that there are always at most 3k′ edges

in C that are not internal to the core. There are two types of

edges incident to C and not internal to the core: the edges

incident to loose vertices in C and the edges in E[C,G −
C]. For the first type, since every loose vertex v ∈ C has

|E[v, V (G) \ C]| ≥ 0.49 degG(v), the number of edges of

the first type, denoted n1, is at most∑
loose v

degG(v) ≤
1

0.49

∑
loose v

|E[v, V (G) \ C]|.

But the number of second type edges, denoted n2, is exactly

k′ −∑loose v |E[v, V (G) \ C]|, so altogether, there are

n1 + n2 ≤
1

0.49

∑
loose v

|E[v, V (G) \ C]|

+

(
k −

∑
loose v

|E[v, V (G) \ C]|
)

≤ 1

0.49
k′ ≤ 2.1k′ < 3k′

many edges not internal to the core.

Now suppose the core A is scraped. By definition, this

means that volH[C](A) ≤ volG(C)/4. Now observe that

volG(C) is exactly volH[C](A) + n1 + n2, so

volG(C) = volH[C](A) + n1 + n2 ≤ volG(C)/4 + 3k

=⇒ volG(C) ≤ 4k′.

We now bound the number of edges cut by low-

conductance cuts (line 6). Instead of using the more compli-

cated procedures in [27], [12], we resort to simply iteratively

computing low-conductance cuts. As for why the low-

conductance cuts cut a small number of edges in total, the

reasoning is the same as the one in [12], and we sketch it

here for convenience.

Lemma V.23. For an appropriate γ in the definition of γ,
the total number of edges cut in line 6 during an iteration
of the outer loop is at most 0.04|E(G)|.

Proof: We set up a charging scheme as follows: every

time we compute a low-conductance cut E′ in a connected

component C of H , we charge a total cost of |E′| uniformly

to the edges of the smaller side S of C (the side with smaller

volG(S)). Since E′ has conductance ≤ γ, we have

|E′|
volG(S)

=
|E′|

2|E[S]|+ |E′| ≤ γ

=⇒ |E′| ≤ 2γ

1− γ
|E[S]| ≤ 4γ|E[S]|,

so every edge in E[S] is charged at most 4γ. Now observe

that every time an edge is charged, since it belongs to the

smaller side of the cut, the size of the component containing

this edge halves, so an edge is charged at most logm times.

In total, an edge is charged a cost of at most 4γ logm.

Therefore, at most 4γ|E(G)| logm = 0.04|E(G)| cost was

charged in total, and this also upper bounds the total edges

cut.

Therefore, by Lemmas V.21 and V.23, the algorithm cuts

at most 7 ·0.04|E(G)| edges in G on a given iteration. Since

it contracts the rest, we have proven Lemma V.20.

D. Polynomial-time Algorithm

Next, we modify the algorithm KT-Sparsification
to take an approximate conductance cut algorithm instead,

making it run in polynomial time. We use the O(
√
log n)-

approximation algorithm of Arora, Rao, and Vazirani below:

Theorem V.24 ([28]). There exists a universal constant C >
0 and a polynomial-time C

√
logm-approximation algorithm

for minimum conductance cut.

1074

Algorithm 3 KT-Sparsification-Polytime(G =
(V,E), α)

1: G← G; G has min degree δ
2: while < 1

20 fraction of the edges in G are incident to

passive supervertices do
3: H ← G
4: Remove passive supervertices from H and trim H
5: while there exists a connected component C in H

such that H[C] is not a γ-expander do
6: Compute a C

√
logm · γ-conductance cut in

H[C], remove these edges from H , and trim H

7: Take each connected component of H and contract

its core (if nonempty) to a supervertex in G

8: return G

The entire analysis goes through without change, except

for the following differences:

1) We re-define the parameter γ := 1
100C log1.5 m

through-

out the entire algorithm and analysis.

2) Assumption V.11 is replaced by the assumption that

δ > ω(max{α log1.5 n, αk}) (8)

instead.

3) In the proof of Lemma V.14, Equation (7) is replaced

with

|∂H[C]S|
volH[C](S)

≤ αδ
2
25δ

2

(8)
< o

(
1

log1.5 n

)
< γ,

and the rest of the proof of Lemma V.14 is identical.

4) In the proof of Lemma V.23, every instance of γ is

replaced by C
√
logm · γ (with the new value of γ).

Since C
√
logm · γ = 1

100 logm , which is exactly the

old value of γ, the rest of the proof of Lemma V.23

is unchanged.

REFERENCES

[1] O. Goldschmidt and D. S. Hochbaum, “A polynomial
algorithm for the k-cut problem for fixed k,” Math. Oper.
Res., vol. 19, no. 1, pp. 24–37, 1994. [Online]. Available:
http://dx.doi.org/10.1287/moor.19.1.24

[2] D. R. Karger and C. Stein, “A new approach to the minimum
cut problem,” Journal of the ACM (JACM), vol. 43, no. 4, pp.
601–640, 1996.

[3] A. Gupta, E. Lee, and J. Li, “The number of minimum k-
cuts: Improving the karger-stein bound,” in STOC 2019, to
appear, 2019.

[4] Y. Kamidoi, N. Yoshida, and H. Nagamochi, “A deterministic
algorithm for finding all minimum k-way cuts,” SIAM J.
Comput., vol. 36, no. 5, pp. 1329–1341, 2006/07. [Online].
Available: http://dx.doi.org/10.1137/050631616

[5] M. Thorup, “Minimum k-way cuts via deterministic greedy
tree packing,” in Proceedings of the fortieth annual ACM
symposium on Theory of computing. ACM, 2008, pp. 159–
166.

[6] C. Chekuri, K. Quanrud, and C. Xu, “Lp relaxation
and tree packing for minimum k-cuts,” arXiv preprint
arXiv:1808.05765, 2018.

[7] A. Gupta, E. Lee, and J. Li, “Faster exact and approximate
algorithms for k-cut,” in Foundations of Computer Science
(FOCS), 2018 IEEE 59th Annual Symposium on, 2018.

[8] F. Le Gall, “Powers of tensors and fast matrix multiplication,”
in Proceedings of the 39th international symposium on sym-
bolic and algebraic computation. ACM, 2014, pp. 296–303.

[9] V. V. Williams, “Multiplying matrices faster than
Coppersmith–Winograd,” in Proceedings of the forty-
fourth annual ACM symposium on Theory of computing.
ACM, 2012, pp. 887–898.

[10] V. V. Williams and R. Williams, “Subcubic equivalences
between path, matrix and triangle problems,” in Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Sym-
posium on. IEEE, 2010, pp. 645–654.

[11] A. Abboud, A. Backurs, and V. V. Williams, “If the current
clique algorithms are optimal, so is Valiant’s parser,” in
Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on. IEEE, 2015, pp. 98–117.

[12] K.-i. Kawarabayashi and M. Thorup, “Deterministic edge
connectivity in near-linear time,” Journal of the ACM (JACM),
vol. 66, no. 1, p. 4, 2018.

[13] N. Alon, R. Yuster, and U. Zwick, “Color-coding,” J. ACM,
vol. 42, no. 4, pp. 844–856, 1995.

[14] H. Saran and V. V. Vazirani, “Finding k-cuts within twice
the optimal,” SIAM Journal on Computing, vol. 24, no. 1, pp.
101–108, 1995.

[15] J. Naor and Y. Rabani, “Tree packing and approximating
k-cuts,” in Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms (Washington, DC, 2001).
SIAM, Philadelphia, PA, 2001, pp. 26–27.

[16] R. Ravi and A. Sinha, “Approximating k-cuts using network
strength as a Lagrangean relaxation,” European J. Oper.
Res., vol. 186, no. 1, pp. 77–90, 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.ejor.2007.01.040

[17] M. Xiao, L. Cai, and A. C.-C. Yao, “Tight approximation ratio
of a general greedy splitting algorithm for the minimum k-
way cut problem,” Algorithmica, vol. 59, no. 4, pp. 510–520,
2011.

[18] S. Kapoor, “On minimum 3-cuts and approximating k-cuts
using cut trees,” in Integer programming and combinatorial
optimization (Vancouver, BC, 1996), ser. Lecture Notes
in Comput. Sci. Springer, Berlin, 1996, vol. 1084,
pp. 132–146. [Online]. Available: http://dx.doi.org/10.1007/
3-540-61310-2 11

[19] L. Zhao, H. Nagamochi, and T. Ibaraki, “Approximating the
minimum k-way cut in a graph via minimum 3-way cuts,”
J. Comb. Optim., vol. 5, no. 4, pp. 397–410, 2001. [Online].
Available: http://dx.doi.org/10.1023/A:1011620607786

1075

[20] P. Manurangsi, “Inapproximability of Maximum Edge
Biclique, Maximum Balanced Biclique and Minimum k-
Cut from the Small Set Expansion Hypothesis,” in 44th
International Colloquium on Automata, Languages, and
Programming (ICALP 2017), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 80, 2017, pp.
79:1–79:14. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2017/7500

[21] R. G. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, and
F. A. Rosamund, “Cutting up is hard to do: The parameterised
complexity of k-cut and related problems,” Electronic Notes
in Theoretical Computer Science, vol. 78, pp. 209–222, 2003.

[22] K.-i. Kawarabayashi and M. Thorup, “The minimum k-
way cut of bounded size is fixed-parameter tractable,” in
Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on. IEEE, 2011, pp. 160–169.

[23] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk,
and M. Pilipczuk, “Designing FPT algorithms for cut
problems using randomized contractions,” SIAM J. Comput.,
vol. 45, no. 4, pp. 1171–1229, 2016. [Online]. Available:
http://dx.doi.org/10.1137/15M1032077

[24] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized
algorithms. Springer, Cham, 2015. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-21275-3

[25] D. Marx, “Parameterized complexity and approximation al-
gorithms,” The Computer Journal, vol. 51, no. 1, pp. 60–78,
2007.

[26] H. Nagamochi and T. Ibaraki, “Computing edge-connectivity
in multigraphs and capacitated graphs,” SIAM J. Discrete
Math., vol. 5, no. 1, pp. 54–66, 1992. [Online]. Available:
http://dx.doi.org/10.1137/0405004

[27] M. Henzinger, S. Rao, and D. Wang, “Local flow parti-
tioning for faster edge connectivity,” in Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics,
2017, pp. 1919–1938.

[28] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric
embeddings and graph partitioning,” Journal of the ACM
(JACM), vol. 56, no. 2, p. 5, 2009.

VI. PROOF OF THEOREM I.2

Given a (k − 1)-clique graph instance G = (V,E),
construct the following graph H: Let W be a clique of size

k2n. Take the union of G and W , and then for each vertex

v ∈ V , add n − deg(v) edges to arbitrary vertices in W .

This is the graph H . Note that a k-cut of size ≤ (k − 1)n
can be formed by isolating any (k − 1) vertices in G. We

now claim that G has a (k − 1)-clique iff H has minimum

k-cut (k − 1)n−
(
k−1
2

)
.

Fix a minimum k-cut S∗1 , . . . , S
∗
k in H . First, if W is

not entirely contained in one component, then the cut has

size ≥ k2n−1 already, so we can assume that this does not

happen. Let us assume that W is contained in S∗k . Next, if

|S∗1 |+ |S∗2 |+ · · ·+ |S∗k−1| > k−1, then this k-cut will have

size ≥ kn−
(
k−1
2

)
> (k − 1)n (we can assume n� k), so

this cannot happen either. Therefore, S∗i is a singleton vertex

v∗i ∈ V for all i ∈ [k−1]. It follows that the minimum k-cut

has cost exactly (k − 1)n − |E[{v∗1}, . . . , {v∗k−1}]|. This is

exactly (k − 1)n−
(
k−1
2

)
iff G has a (k − 1)-clique.

REFERENCES

[1] O. Goldschmidt and D. S. Hochbaum, “A polynomial
algorithm for the k-cut problem for fixed k,” Math. Oper.
Res., vol. 19, no. 1, pp. 24–37, 1994. [Online]. Available:
http://dx.doi.org/10.1287/moor.19.1.24

[2] D. R. Karger and C. Stein, “A new approach to the minimum
cut problem,” Journal of the ACM (JACM), vol. 43, no. 4, pp.
601–640, 1996.

[3] A. Gupta, E. Lee, and J. Li, “The number of minimum k-
cuts: Improving the karger-stein bound,” in STOC 2019, to
appear, 2019.

[4] Y. Kamidoi, N. Yoshida, and H. Nagamochi, “A deterministic
algorithm for finding all minimum k-way cuts,” SIAM J.
Comput., vol. 36, no. 5, pp. 1329–1341, 2006/07. [Online].
Available: http://dx.doi.org/10.1137/050631616

[5] M. Thorup, “Minimum k-way cuts via deterministic greedy
tree packing,” in Proceedings of the fortieth annual ACM
symposium on Theory of computing. ACM, 2008, pp. 159–
166.

[6] C. Chekuri, K. Quanrud, and C. Xu, “Lp relaxation
and tree packing for minimum k-cuts,” arXiv preprint
arXiv:1808.05765, 2018.

[7] A. Gupta, E. Lee, and J. Li, “Faster exact and approximate
algorithms for k-cut,” in Foundations of Computer Science
(FOCS), 2018 IEEE 59th Annual Symposium on, 2018.

[8] F. Le Gall, “Powers of tensors and fast matrix multiplication,”
in Proceedings of the 39th international symposium on sym-
bolic and algebraic computation. ACM, 2014, pp. 296–303.

[9] V. V. Williams, “Multiplying matrices faster than
Coppersmith–Winograd,” in Proceedings of the forty-
fourth annual ACM symposium on Theory of computing.
ACM, 2012, pp. 887–898.

[10] V. V. Williams and R. Williams, “Subcubic equivalences
between path, matrix and triangle problems,” in Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Sym-
posium on. IEEE, 2010, pp. 645–654.

[11] A. Abboud, A. Backurs, and V. V. Williams, “If the current
clique algorithms are optimal, so is Valiant’s parser,” in
Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on. IEEE, 2015, pp. 98–117.

[12] K.-i. Kawarabayashi and M. Thorup, “Deterministic edge
connectivity in near-linear time,” Journal of the ACM (JACM),
vol. 66, no. 1, p. 4, 2018.

[13] N. Alon, R. Yuster, and U. Zwick, “Color-coding,” J. ACM,
vol. 42, no. 4, pp. 844–856, 1995.

1076

[14] H. Saran and V. V. Vazirani, “Finding k-cuts within twice
the optimal,” SIAM Journal on Computing, vol. 24, no. 1, pp.
101–108, 1995.

[15] J. Naor and Y. Rabani, “Tree packing and approximating
k-cuts,” in Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms (Washington, DC, 2001).
SIAM, Philadelphia, PA, 2001, pp. 26–27.

[16] R. Ravi and A. Sinha, “Approximating k-cuts using network
strength as a Lagrangean relaxation,” European J. Oper.
Res., vol. 186, no. 1, pp. 77–90, 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.ejor.2007.01.040

[17] M. Xiao, L. Cai, and A. C.-C. Yao, “Tight approximation ratio
of a general greedy splitting algorithm for the minimum k-
way cut problem,” Algorithmica, vol. 59, no. 4, pp. 510–520,
2011.

[18] S. Kapoor, “On minimum 3-cuts and approximating k-cuts
using cut trees,” in Integer programming and combinatorial
optimization (Vancouver, BC, 1996), ser. Lecture Notes
in Comput. Sci. Springer, Berlin, 1996, vol. 1084,
pp. 132–146. [Online]. Available: http://dx.doi.org/10.1007/
3-540-61310-2 11

[19] L. Zhao, H. Nagamochi, and T. Ibaraki, “Approximating the
minimum k-way cut in a graph via minimum 3-way cuts,”
J. Comb. Optim., vol. 5, no. 4, pp. 397–410, 2001. [Online].
Available: http://dx.doi.org/10.1023/A:1011620607786

[20] P. Manurangsi, “Inapproximability of Maximum Edge
Biclique, Maximum Balanced Biclique and Minimum k-
Cut from the Small Set Expansion Hypothesis,” in 44th
International Colloquium on Automata, Languages, and
Programming (ICALP 2017), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 80, 2017, pp.
79:1–79:14. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2017/7500

[21] R. G. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, and
F. A. Rosamund, “Cutting up is hard to do: The parameterised
complexity of k-cut and related problems,” Electronic Notes
in Theoretical Computer Science, vol. 78, pp. 209–222, 2003.

[22] K.-i. Kawarabayashi and M. Thorup, “The minimum k-
way cut of bounded size is fixed-parameter tractable,” in
Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on. IEEE, 2011, pp. 160–169.

[23] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk,
and M. Pilipczuk, “Designing FPT algorithms for cut
problems using randomized contractions,” SIAM J. Comput.,
vol. 45, no. 4, pp. 1171–1229, 2016. [Online]. Available:
http://dx.doi.org/10.1137/15M1032077

[24] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized
algorithms. Springer, Cham, 2015. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-21275-3

[25] D. Marx, “Parameterized complexity and approximation al-
gorithms,” The Computer Journal, vol. 51, no. 1, pp. 60–78,
2007.

[26] H. Nagamochi and T. Ibaraki, “Computing edge-connectivity
in multigraphs and capacitated graphs,” SIAM J. Discrete
Math., vol. 5, no. 1, pp. 54–66, 1992. [Online]. Available:
http://dx.doi.org/10.1137/0405004

[27] M. Henzinger, S. Rao, and D. Wang, “Local flow parti-
tioning for faster edge connectivity,” in Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics,
2017, pp. 1919–1938.

[28] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric
embeddings and graph partitioning,” Journal of the ACM
(JACM), vol. 56, no. 2, p. 5, 2009.

1077

