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Abstract—The online matching problem was introduced by
Karp, Vazirani and Vazirani nearly three decades ago. In that
seminal work, they studied this problem in bipartite graphs
with vertices arriving only on one side, and presented optimal
deterministic and randomized algorithms for this setting. In
comparison, more general arrival models, such as edge arrivals
and general vertex arrivals, have proven more challenging
and positive results are known only for various relaxations
of the problem. In particular, even the basic question of
whether randomization allows one to beat the trivially-optimal
deterministic competitive ratio of 1/2 for either of these models
was open. In this paper, we resolve this question for both these
natural arrival models, and show the following.

1) For edge arrivals, randomization does not help — no
randomized algorithm is better than 1/2 competitive.

2) For general vertex arrivals, randomization helps — there
exists a randomized (1/2+Ω(1))-competitive online match-
ing algorithm.

Keywords-online algorithms; online matching; edge arrivals;
general vertex arrivals

I. INTRODUCTION

Matching theory has played a prominent role in the area

of combinatorial optimization, with many applications [26,

28]. Moreover, many fundamental techniques and concepts

in combinatorial optimization can trace their origins to its

study, including the primal-dual framework [24], proofs of

polytopes’ integrality beyond total unimodularity [10], and

even the equation of efficiency with polytime computability

[11].

Given the prominence of matching theory in combi-

natorial optimization, it comes as little surprise that the

maximum matching problem was one of the first problems

studied from the point of view of online algorithms and

competitive analysis. In 1990, Karp, Vazirani, and Vazirani

[23] introduced the online matching problem, and studied it

under one-sided bipartite arrivals. For such arrivals, Karp

et al. noted that the trivial 1/2-competitive greedy algo-

rithm (which matches any arriving vertex to an arbitrary

unmatched neighbor, if one exists) is optimal among de-

terministic algorithms for this problem. More interestingly,

they provided an elegant randomized online algorithm for

this problem, called RANKING, which achieves an optimal

(1− 1/e) competitive ratio. (This bound has been re-proven

many times over the years [3, 8, 9, 13, 18].) Online matching

and many extensions of this problem under one-sided bipar-

tite vertex arrivals were widely studied over the years, both

under adversarial and stochastic arrival models. See recent

work [7, 20, 21, 22] and the excellent survey of Mehta [27]

for further references on this rich literature.

Despite our increasingly better understanding of one-sided

online bipartite matching and its extensions, the problem of

online matching under more general arrival models, includ-

ing edge arrivals and general vertex arrivals, has remained

staunchly defiant, resisting attacks. In particular, the basic

questions of whether the trivial 1/2 competitive ratio is

optimal for the adversarial edge-arrival and general vertex-

arrival models have remained tantalizing open questions in

the online algorithms literature. In this paper, we answer

both of these questions.

A. Prior Work and Our Results

Here we outline the most relevant prior work, as well as

our contributions. Throughout, we say an algorithm (either

randomized or fractional) has competitive ratio α, or equiv-

alently is α-competitive, if the ratio of the algorithm’s value

(e.g., expected matching size, or overall value,
∑

e xe) to

OPT is at least α � 1 for all inputs and arrival orders. As is

standard in the online algorithms literature on maximization

problems, we use upper bounds (on α) to refer to hardness

results, and lower bounds to positive results.

Edge Arrivals: Arguably the most natural, and the least

restricted, arrival model for online matching is the edge

arrival model. In this model, edges are revealed one by one,

and an online matching algorithm must decide immediately

and irrevocably whether to match the edge on arrival, or

whether to leave both endpoints free to be possibly matched

later.

On the hardness front, the problem is known to be strictly

harder than the one-sided vertex arrival model of Karp et al.

[23], which admits a competitive ratio of 1 − 1/e ≈ 0.632.

In particular, Epstein et al. [12] gave an upper bound of
1

1+ln 2 ≈ 0.591 for this problem, recently improved by

Huang et al. [21] to 2 − √2 ≈ 0.585. (Both bounds apply

even to online algorithms with preemption; i.e., allowing

edges to be removed from the matching in favor of a

newly-arrived edge.) On the positive side, as pointed out

by Buchbinder et al. [4], the edge arrival model has proven

challenging, and results beating the 1/2 competitive ratio

were only achieved under various relaxations, including:

random order edge arrival [19], bounded number of arrival

batches [25], on trees, either with or without preemption
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[4, 29], and for bounded-degree graphs [4]. The above papers

all asked whether there exists a randomized (1/2 + Ω(1))-
competitive algorithm for adversarial edge arrivals (see also

Open Question 17 in Mehta’s survey [27]).

In this work, we answer this open question, providing it

with a strong negative answer. In particular, we show that no

online algorithm for fractional matching (i.e., an algorithm

which immediately and irrevocably assigns values xe to edge

e upon arrival such that �x is in the fractional matching

polytope P = {�x � �0 | ∑e�v xe � 1 ∀v ∈ V }) is better

than 1/2 competitive. As any randomized algorithm induces

a fractional algorithm with the same competitive ratio, this

rules out any randomized online matching algorithm which

is better than deterministic algorithms.

Theorem 1. No fractional online algorithm is 1/2 + Ω(1)
competitive for online matching under adversarial edge
arrivals, even in bipartite graphs.

This result shows that the study of relaxed variants of

online matching under edge arrivals is not only justified by

the difficulty of beating the trivial bound for this problem,

but rather by its impossibility.

General Vertex Arrivals: In the online matching prob-

lem under vertex arrivals, vertices are revealed one at a

time, together with their edges to their previously-revealed

neighbors. An online matching algorithm must decide im-

mediately and irrevocably upon arrival of a vertex whether

to match it (or keep it free for later), and if so, who to match

it to. The one-sided bipartite problem studied by Karp et al.

[23] is precisely this problem when all vertices of one side

of a bipartite graph arrive first. As discussed above, for this

one-sided arrival model, the problem is thoroughly under-

stood (even down to lower-order error terms [13]). Wang

and Wong [30] proved that general vertex arrivals are strictly

harder than one-sided bipartite arrivals, providing an upper

bound of 0.625 < 1 − 1/e for the more general problem,

later improved by Buchbinder et al. [4] to 2
3+φ2 ≈ 0.593.

Clearly, the general vertex arrival model is no harder than

the online edge arrival model but is it easier? The answer

is “yes” for fractional algorithms, as shown by combining

our Theorem 1 with the 0.526-competitive fractional online

matching algorithm under general vertex arrivals of Wang

and Wong [30]. For integral online matching, however,

the problem has proven challenging, and the only positive

results for this problem, too, are for various relaxations, such

as restriction to trees, either with or without preemption

[4, 5, 29], for bounded-degree graphs [4], or (recently)

allowing vertices to be matched during some known time

interval [20, 21].

We elaborate on the last relaxation above. In the model

recently studied by Huang et al. [20, 21] vertices have

both arrival and departure times, and edges can be matched

whenever both their endpoints are present. (One-sided vertex

arrivals is a special case of this model with all online ver-
tices departing immediately after arrival and offline vertices

departing at ∞.) We note that any α-competitive online

matching under general vertex arrivals is α-competitive in

the less restrictive model of Huang et al. As observed by

Huang et al., for their model an optimal approach might as

well be greedy; i.e., an unmatched vertex v should always

be matched at its departure time if possible. In particular,

Huang et al. [20, 21], showed that the RANKING algorithm

of Karp et al. achieves a competitive ratio of ≈ 0.567.

For general vertex arrivals, however, RANKING (and indeed

any maximal matching algorithm) is no better than 1/2
competitive, as is readily shown by a path on three edges

with the internal vertices arriving first. Consequently, new

ideas and algorithms are needed.

The natural open question for general vertex arrivals is

whether a competitive ratio of (1/2+Ω(1)) is achievable by

an integral randomized algorithm, without any assumptions

(see e.g., [30]). In this work, we answer this question in the

affirmative:

Theorem 2. There exists a (1/2 +Ω(1))-competitive ran-
domized online matching algorithm for general adversarial
vertex arrivals.

B. Our Techniques

Here we outline the techniques underlying our results.

Edge Arrivals: All prior upper bounds in the online

literature [4, 12, 13, 21, 23] can be rephrased as upper

bounds for fractional algorithms; i.e., algorithms which

immediately and irrevocably assign each edge e a value xe

on arrival, so that �x is contained in the fractional matching

polytope, P = {�x � �0 | ∑e�v xe � 1 ∀v ∈ V }. With the

exception of [4], the core difficulty of these hard instances is

uncertainty about “identity” of vertices (in particular, which

vertices will neighbor which vertices in the following ar-

rivals). Our hardness instances rely on uncertainty about the

“time horizon”. In particular, the underlying graph, vertex

identifiers, and even arrival order are known to the algorithm,

but the number of edges of the graph to be revealed (to

arrive) is uncertain. Consequently, an α-competitive algo-

rithm must accrue high enough value up to each arrival

time to guarantee a high competitive ratio at all points in

time. As we shall show, for competitive ratio 1/2 + Ω(1),
this goal is at odds with the fractional matching constraints,

and so such a competitive ratio is impossible. In particular,

we provide a family of hard instances and formulate their

prefix-competitiveness and matching constraints as linear

constraints to obtain a linear program whose objective value

bounds the optimal competitive ratio. Solving the obtained

LP’s dual, we obtain by weak duality the claimed upper

bound on the optimal competitive ratio. See [2, 6, 14]

for more examples of the use of LP duality for proofs of

hardness results for online problems, first advocated by [2].
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General Vertex Arrivals: Our high-level approach here

will be to round online a fractional online matching algo-

rithm’s output, specifically that of Wang and Wong [30].

While this approach sounds simple, there are several obsta-

cles to overcome. First, the fractional matching polytope is

not integral in general graphs, where a fractional matching

may have value,
∑

e xe, some 3/2 times larger than the

optimal matching size. (For example, in a triangle graph

with value xe = 1/2 for each edge e.) Therefore, any

general rounding scheme must lose a factor of 3/2 on the

competitive ratio compared to the fractional algorithm’s

value, and so to beat a competitive ratio of 1/2 would

require an online fractional matching with competitive ratio

> 3/4 > 1−1/e, which is impossible. To make matters worse,

even in bipartite graphs, for which the fractional matching

polytope is integral and offline lossless rounding is possible

[1, 17], online lossless rounding of fractional matchings is

impossible, even under one-sided vertex arrivals [7].

Despite these challenges, we show that a slightly better

than 1/2-competitive fractional matching computed by the

algorithm of [30] can be rounded online without incurring

too high a loss, yielding (1/2+Ω(1))-competitive randomized

algorithm for online matching under general vertex arrivals.

To outline our approach, we first consider a simple

method to round matchings online. When vertex v ar-

rives, we pick an edge {u, v} with probability zu =
xuv/Pr[u free when v arrives], and add it to our matching

if u is free.

If
∑

u zu � 1, this allows us to pick at most one edge per

vertex and have each edge e = {u, v} be in our matching

with the right marginal probability, xe, resulting in a lossless

rounding. Unfortunately, we know of no better-than-1/2-
competitive fractional algorithm for which this rounding

guarantees
∑

u zu � 1.

However, we observe that, for the correct set of pa-

rameters, the fractional matching algorithm of Wang and

Wong [30] makes
∑

u zu close to one, while still ensuring

a better-than-1/2-competitive fractional solution. Namely, as

we elaborate later in Section III-C, we set the parameters

of their algorithm so that
∑

u zu � 1 + O(ε), while

retaining a competitive ratio of 1/2 + O(ε). Now consider

the same rounding algorithm with normalized probabilities:

I.e., on v’s arrival, sample a neighbor u with probability

z′u = zu/max{1,∑u zu} and match if u is free. As the

sum of zu’s is slightly above one in the worst case, this

approach does not drastically reduce the competitive ratio.

But the normalization factor is still too significant compared

to the competitive ratio of the fractional solution, driving the

competitive ratio of the rounding algorithm slightly below

1/2.

To account for this minor yet significant loss, we therefore

augment the simple algorithm by allowing it, with small

probability (e.g., say
√
ε), to sample a second neighbor

u2 for each arriving vertex v, again with probabilities

proportional to z′u2
: If the first sampled choice, u1, is free,

we match v to u1. Otherwise, if the second choice, u2, is

free, we match v to u2. What is the marginal probability

that such an approach matches an incoming vertex v to a

given neighbor u? Letting Fu denote the event that u is free

when v arrives, this probability is precisely

Pr[Fu] ·
(
z′u + z′u ·

√
ε ·
∑
w

z′w · (1− Pr[Fw | Fu])

)
. (1)

Here the first term in the parentheses corresponds to the

probability that v matches to u via the first choice, and

the second term corresponds to the same happening via the

second choice (which is only taken when the first choice

fails).

Ideally, we would like (1) to be at least xuv for all

edges, which would imply a lossless rounding. However, as

mentioned earlier, this is difficult and in general impossible

to do, even in much more restricted settings including

one-sided bipartite vertex arrivals. We therefore settle for

showing that (1) is at least xuv = Pr[Fu] ·zu for most edges

(weighted by xuv). Even this goal, however, is challenging

and requires a nontrivial understanding of the correlation

structure of the random events Fu. To see this, note that for

example if the Fw events are perfectly positively correlated,

i.e., Pr[Fw | Fu] = 1, then the possibility of picking

e = {u, v} as a second edge does not increase this edge’s

probability of being matched at all compared to if we

only picked a single edge per vertex. This results in e
being matched with probability Pr[Fu] · z′u = Pr[Fu] ·
zu/

∑
w zw = xuv/

∑
w zw, which does not lead to any gain

over the 1/2 competitive ratio of greedy. Such problems are

easily shown not to arise if all Fu variables are independent

or negatively correlated. Unfortunately, positive correlation

does arise from this process, and so we the need to control

these positive correlations.

The core of our analysis is therefore dedicated to showing

that even though positive correlations do arise, they are,

by and large, rather weak. Our main technical contribution

consists of developing techniques for bounding such positive

correlations. The idea behind the analysis is to consider

the primary choices and secondary choices of vertices as

defining a graph, and showing that after a natural pruning

operation that reflects the structure of dependencies, most

vertices are most often part of a very small connected

component in the graph. The fact that connected components

are typically very small is exactly what makes positive

correlations weak and results in the required lower bound

on (1) for most edges (in terms of x-value), which in turn

yields our 1/2 +Ω(1) competitive ratio.

II. EDGE ARRIVALS

In this section we prove the asymptotic optimality of the

greedy algorithm for online matching under adversarial edge

arrivals. As discussed briefly in Section I, our main idea
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Figure 1: G5, together with arrival order. Edges of current

(prior) round are solid (dashed).

will be to provide a “prefix hardness” instance, where an

underlying input and the arrival order is known to the online

matching algorithm, but the prefix of the input to arrive

(or “termination time”) is not. Consequently, the algorithm

must accrue high enough value up to each arrival time, to

guarantee a high competitive ratio at all points in time.

As we show, the fractional matching constraints rule out

a competitive ratio of 1/2 + Ω(1) even in this model where

the underlying graph is known.

Theorem 3. There exists an infinite family of bipartite
graphs with maximum degree n and edge arrival or-
der for which any online matching algorithm is at best(

1
2 + 1

2n+2

)
-competitive.

Proof: We will provide a family of graphs for which no

fractional online matching algorithm has better competitive

ratio. Since any randomized algorithm induces a fractional

matching algorithm, this immediately implies our claim. The

nth graph of the family, Gn = (U, V,E), consists of a

bipartite graph with |U | = |V | = n vertices on either side.

We denote by ui ∈ U and vi ∈ V the ith node on the left

and right side of Gn, respectively. Edges are revealed in n
discrete rounds. In round i = 1, 2, . . . , n, the edges of a

perfect matching between the first i left and right vertices

arrive in some order. I.e., a matching of u1, u2, . . . , ui and

v1, v2, . . . , vi is revealed. Specifically, edges (uj , vi−j+1) for

all i � j arrive. (See Figure 1 for example.) Intuitively, the

difficulty for an algorithm attempting to assign high value to

edges of OPT is that the (unique) maximum matching OPT

changes every round, and no edge ever re-enters OPT .

Consider some α-competitive fractional algorithm A. We

call the edge of a vertex w in the (unique) maximum

matching of the subgraph of Gn following round i the

ith edge of w. For i � j, denote by xi,j the value A
assigns to the ith edge of vertex uj (and of vi−j+1); i.e., to

(uj , vi−j+1). By feasibility of the fractional matching output

by A, we immediately have that xi,j � 0 for all i, j, as well

as the following matching constraints for uj and vj . (For

the latter, note that the ith edge of vi−j+1 is assigned value

xi,j = xi,i−(i−j+1)+1 and so the ith edge of vj is assigned

value xi,i−j+1).

n∑
i=j

xi,j � 1. (uj matching constraint) (2)

n∑
i=j

xi,i−j+1 � 1. (vj matching constraint) (3)

On the other hand, as A is α-competitive, we have that

after some kth round – when the maximum matching has

cardinality k – algorithm A’s fractional matching must

have value at least α · k. (Else an adversary can stop the

input after this round, leaving A with a worse than α-

competitive matching.) Consequently, we have the following
competitiveness constraints.

k∑
i=1

i∑
j=1

xi,j � α · k ∀k ∈ [n]. (4)

Combining constraints (2), (3) and (4) together with

the non-negativity of the xi,k yields the following linear

program, LP(n), whose optimal value upper bounds any

fractional online matching algorithm’s competitiveness on

Gn, by the above.

maximize α
subject to:

∑n
i=j xi,j � 1 ∀j ∈ [n]∑n
i=j xi,i−j+1 � 1 ∀j ∈ [n]∑k
i=1

∑i
j=1 xi,j � α · k ∀k ∈ [n]

xi,j � 0 ∀i, j ∈ [n].

To bound the optimal value of LP(n), we provide a

feasible solution its LP dual, which we denote by Dual(n).

By weak duality, any dual feasible solution’s value upper

bounds the optimal value of LP(n), which in turn upper

bounds the optimal competitive ratio. Using the dual vari-

ables �j , rj for the degree constraints of the jth left and

right vertices respectively (uj and vj) and dual variable ck
for the competitiveness constraint of the kth round, we get

the following dual linear program. Recall here again that

xi,i−j+1 appears in the matching constraint of vj , with dual

variable rj , and so xi,j = xi,i−(i−j+1)+1 appears in the

same constraint for vi−j+1.)
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minimize
∑n

j=1 (�j + rj)

subject to:
∑n

k=1 k · ck � 1
�j + ri−j+1 −

∑n
k=i ck � 0 ∀i ∈ [n], j ∈ [i]

�j , rj , ck � 0 ∀j, k ∈ [n].

We provide the following dual solution.

ck =
2

n(n+ 1)
∀k ∈ [n]

�j = rj =

{
n−2(j−1)
n(n+1) if j � n/2 + 1

0 if n/2 + 1 < j � n.

We start by proving feasibility of this solution. The

first constraint is satisfied with equality. For the second

constraint, as
∑n

k=i ck = 2(n−i+1)
n(n+1) it suffices to show that

�j + ri−j+1 � 2(n−i+1)
n(n+1) for all i ∈ [n], j ∈ [i]. Note

that if j > n/2 + 1, then �j = rj = 0 > n−2(j−1)
n(n+1) .

So, for all j we have �j = rj � n−2(j−1)
n(n+1) . Consequently,

�j + ri−j+1 � n−2(j−1)
n(n+1) + n−2(i−j+1−1)

n(n+1) = 2(n−i+1)
n(n+1) for all

i ∈ [n], j ∈ [i]. Non-negativity of the �j , rj , ck variables is

trivial, and so we conclude that the above is a feasible dual

solution.

It remains to calculate this dual feasible solution’s value.

We do so for n even,1 for which
n∑

j=1

(�j + rj) = 2 ·
n∑

j=1

�j

= 2 ·
n/2+1∑
j=1

n− 2(j − 1)

n(n+ 1)

=
1

2
+

1

2n+ 2
,

completing the proof.

Remark 1. Recall that Buchbinder et al. [4] and Lee and

Singla [25] presented better-than-1/2-competitive algorithms

for bounded-degree graphs and bounded number of arrival

batches. Our upper bound above shows that a deterioration

of the competitive guarantees as the maximum degree and

number of arrival batches increase (as in the algorithms of

[4, 25]) is inevitable.

Remark 2. Recall that the asymptotic competitive ratio

of an algorithm is the maximum c such that the algorithm

always guarantees value at least ALG � c · OPT − b for

some fixed b > 0. Our proof extends to this weaker notion of

competitiveness easily, by revealing multiple copies of the

hard family of Theorem 3 and letting xik denote the average

of its counterparts over all copies.

1A similar bound and calculation for odd n holds. As it is unnecessary
to establish the result of this theorem, we omit it.

III. GENERAL VERTEX ARRIVALS

In this section we present a (1/2 + Ω(1))-competitive

randomized algorithm for online matching under general

arrivals. As discussed in the introduction, our approach will

be to round (online) a fractional online matching algorithm’s

output. Specifically, this will be an algorithm from the family

of fractional algorithms introduced in [30]. In Section III-A

we describe this family of algorithms. To motivate our

rounding approach, in Section III-B we first present a simple

lossless rounding method for a 1/2-competitive algorithm in

this family. In Section III-C we then describe our rounding

algorithm for a better-than-1/2-competitive algorithm in this

family. Finally, in Section III-D we present the high level

analysis of this rounding scheme. We defer the full proof

that this rounding scheme yields a (1/2+Ω(1))-competitive

algorithm to the full version [16].

A. Finding a fractional solution

In this section we revisit the algorithm of Wang and Wong

[30], which beats the 1/2 competitiveness barrier for online

fractional matching under general vertex arrivals. Their

algorithm (technically, family of algorithms) applies the

primal-dual method to compute both a fractional matching

and a fractional vertex cover – the dual of the fractional

matching relaxation. The LPs defining these dual problems

are as follows.

Primal-Matching

maximize
∑

e∈E xe

subject to:
∑

u∈N(v) xuv � 1 ∀u ∈ V

xe � 0 ∀e ∈ E

Dual-Vertex Cover

minimize
∑

u∈V yu
subject to: yu + yv � 1 ∀e = {u, v} ∈ E

yu � 0 ∀u ∈ V

Before introducing the algorithm of [30], we begin by

defining the fractional online vertex cover problem for vertex

arrivals. When a vertex v arrives, if Nv(v) denotes the

previously-arrived neighbors of v, then for each u ∈ Nv(v),
a new constraint yu + yv � 1 is revealed, which an online

algorithm should satisfy by possibly increasing yu or yv .

Suppose v has its dual value set to yv = 1 − θ. Then

all of its neighbors should have their dual increased to

at least θ. Indeed, an algorithm may as well increase yu
to max{yu, θ}. The choice of θ therefore determines an

online fractional vertex cover algorithm. The increase in

the dual cost due to the newly-arrived vertex v is thus

1− θ +
∑

u∈Nv(v)
(θ − yu)

+.2 In [30] θ is chosen to upper

bound this term by 1 − θ + f(θ) for some function f(·).
The primal solution (fractional matching) assigns values

xuv so as to guarantee feasibility of �x and a ratio of β
between the primal and dual values of �x and �y, implying 1

β -

competitiveness of this online fractional matching algorithm,

2Here and throughout the paper, we let x+ := max{0, x} for all x ∈ R.
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by feasibility of �y and weak duality. The algorithm, param-

eterized by a function f(·) and parameter β to be discussed

below, is given formally in Algorithm 1. In the subsequent

discussion, Nv(u) denotes the set of neighbors of u that

arrive before v.

Input : A stream of vertices v1, v2, . . . vn. At step i,
vertex vi and Nvi

(vi) are revealed.

Output: A fractional vertex cover solution �y and a

fractional matching �x.

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v.

2 foreach v in the stream do

3

maximize θ
subject to: θ � 1∑

u∈Nv(v)
(θ − yu)

+ � f(θ)

4 foreach u ∈ Nv(v) do
5 xuv ←− (θ−yu)

+

β

(
1 + 1−θ

f(θ)

)
.

6 yu ←− max{yu, θ}.
7 yv ←− 1− θ.

Algorithm 1: Online general vertex arrival fractional

matching and vertex cover

Algorithm 1 is parameterized by a function f and a

constant β. The family of functions considered by [30] are

as follows.

Definition 4. Let

fκ(θ) :=

(
1 + κ

2
− θ

) 1+κ
2κ
(
θ +

κ− 1

2

)κ−1
2κ

.

We define W := {fκ | κ � 1}.
As we will see, choices of β guaranteeing feasibility of

�x are related to the following quantity.

Definition 5. For a given f : [0, 1] −→ R+ let

β∗(f) := max
θ∈[0,1]

1 + f(1− θ) +

∫ 1

θ

1− t

f(θ)
dθ.

For functions f ∈ W this definition of β∗(f) can be

simplified to β∗(f) = 1+ f(0), due to the observation (see

[30, Lemmas 4,5]) that all functions f ∈W satisfy

β∗(f) = 1 + f(1− θ) +

∫ 1

θ

1− θ

f(θ)
dθ ∀θ ∈ [0, 1]. (5)

As mentioned above, the competitiveness of Algorithm 1

for appropriate choices of f and β is obtained by relating

the overall primal and dual values,
∑

e xe and
∑

v yv . As

we show (and rely on later), one can even bound individual

vertices’ contributions to these sums. In particular, for any

vertex v’s arrival time, each vertex’s contribution to
∑

e xe,

can be bounded in terms of its dual variable’s value by this

point, yu, as follows.

Lemma 6. For any vertex u, v ∈ V , let yu be the dual
variable of u prior to arrival of v. Then the fractional degree
just before v arrives, xu :=

∑
w∈Nv(u)

xuw, is bounded as
follows:

yu
β

� xu � yu + f(1− yu)

β
.

Broadly, the lower bound on xu is obtained by lower

bounding the increase xu by the increase to yu/β after

each vertex arrival, while the upper bound follows from a

simplification of a bound given in [30, Invariant 1] (implying

feasibility of the primal solution), which we simplify using

(5). See the full version ([16]) for a full proof.

Another observation we will need regarding the functions

f ∈W is that they are decreasing.

Observation 7. Every function f ∈W is non-increasing in
its argument in the range [0, 1].

Proof: As observed in [30], differentiating (5) with

respect to z yields −f ′(1 − z) − 1−z
f(z) = 0, from which

we obtain f(z) · f ′(1 − z) = z − 1. Replacing z by 1 − z,

we get f(1− z) ·f ′(z) = −z, or f ′(z) = − z
f(1−z) . As f(z)

is positive for all z ∈ [0, 1], we have that f ′(z) < 0 for all

z ∈ [0, 1].
The next lemma of [30] characterizes the achievable

competitiveness of Algorithm 1.

Lemma 8 ([30]). Algorithm 1 with function f ∈ W and
β � β∗(f) = 1 + f(0) is 1

β competitive.

Wang and Wong [30] showed that taking κ ≈ 1.1997 and

β = β∗(fκ), Algorithm 1 is ≈ 0.526 competitive. In later

sections we show how to round the output of Algorithm 1

with fκ with κ = 1 + 2ε for some small constant ε and

β = 2 − ε to obtain a (1/2 + Ω(1))-competitive algorithm.

But first, as a warm up, we show how to round this algorithm

with κ = 1 and β = β∗(f1) = 2.

B. Warmup: a 1/2-competitive randomized algorithm

In this section we will round the 1/2-competitive fractional

algorithm obtained by running Algorithm 1 with function

f(θ) = f1(θ) = 1−θ and β = β∗(f) = 2. We will devise a

lossless rounding of this fractional matching algorithm, by

including each edge e in the final matching with a probability

equal to the fractional value xe assigned to it by Algorithm 1.

Note that if v arrives after u, then if Fu denotes the event

that u is free when v arrives, then edge {u, v} is matched

by an online algorithm with probability Pr[{u, v} ∈ M ] =
Pr[{u, v} ∈ M | Fu] · Pr[Fu]. Therefore, to match each

edge {u, v} with probability xuv , we need Pr[{u, v} ∈M |
Fu] = xuv/Pr[Fu]. That is, we must match {u, v} with

probability zu = xuv/Pr[Fu] conditioned on u being free.

The simplest way of doing so (if possible) is to pick an edge

{u, v} with the above probability zu always, and to match it

only if u is free. Algorithm 2 below does just this, achieving
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a lossless rounding of this fractional algorithm. As before,

Nv(u) denotes the set of neighbors of u that arrive before

v.

Input : A stream of vertices v1, v2, . . . , vn. At step i,
vertex vi and Nvi(vi) are revealed.

Output: A matching M .

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v.

2 Let M ← ∅.
3 foreach v in the stream do
4 Update yu’s and xuv’s using Algorithm 1 with

β = 2 and f = f1.

5 foreach u ∈ Nv(v) do
6 zu ← xuv

Pr[u is free when v arrives] .

// zu = xuv/(1− yu), as shown later

7 Sample (at most) one neighbor u ∈ Nv(v)
according to zu.

8 if a free neighbor u is sampled then
9 Add {u, v} to M .

Algorithm 2: Online vertex arrival warmup randomized

fractional matching

Algorithm 2 is well defined if for each vertex v’s arrival,

z is a probability distribution; i.e.,
∑

u∈Nv(v)
zu � 1.

The following lemma asserts precisely that. Moreover, it

asserts that Algorithm 2 matches each edge with the desired

probability.

Lemma 9. Algorithm 2 is well defined, since for every vertex
v on arrival, z is a valid probability distribution. Moreover,
for each v and u ∈ Nv(v), it matches edge {u, v} with
probability xuv .

Proof: We prove both claims in tandem for each v, by

induction on the number of arrivals. For the base case (v is

the first arrival), the set Nv(v) is empty and thus both claims

are trivial. Consider the arrival of a later vertex v. By the

inductive hypothesis we have that each vertex u ∈ Nv(v)
is previously matched with probability

∑
w∈Nv(u)

xwu. But

by our choice of f(θ) = f1(θ) = 1 − θ and β = 2, if w
arrives after u, then yu and θ at arrival of w satisfy xuw =
(θ−yu)

+

β ·
(
1 + 1−θ

f(θ)

)
= (θ−yu)

+. That is, xuw is precisely

the increase in yu following arrival of w. On the other hand,

when u arrived we have that its dual value yu increased by

1 − θ =
∑

v′∈Nu(u)
(θ − yv′)

+ =
∑

v′∈Nu(u)
xuv′ . To see

this last step, we recall first that by definition of Algorithm 1

and our choice of f(θ) = 1− θ, the value θ on arrival of v
is chosen to be the largest θ � 1 satisfying∑

u∈Nv(v)

(θ − yu)
+ � 1− θ. (6)

But the inequality (6) is an equality whether or not

θ = 1 (if θ = 1, both sides are zero). We conclude

that yu =
∑

v′∈Nv(u)
xuv′ just prior to arrival of v.

But then, by the inductive hypothesis, this implies that

Pr[u free when v arrives] = 1 − yu (yielding an easily-

computable formula for zu). Consequently, by (6) we have

that when v arrives z is a probability distribution, as∑
u∈Nv(v)

zu =
∑

u∈Nv(v)

(θ − yu)
+

1− yu

�
∑

u∈Nv(v): yu�θ

(θ − yu)
+

1− θ

=
∑

u∈Nv(v)

(θ − yu)
+

1− θ

� 1.

Finally, for u to be matched to a latter-arriving

neighbor v, it must be picked, and free when

v arrives. These events happen independently

with probabilities xuv

Pr[u is free when v arrives]
and

Pr[u is free when v arrives] respectively. Consequently,

each edge {u, v} is indeed matched with probability

precisely

Pr[{u, v} ∈M ] = xuv.

In the next section we present an algorithm which allows

to round better-than-1/2-competitive algorithms derived from

Algorithm 1.

C. An improved algorithm

In this section, we build on Algorithm 2 and show how

to improve it to get a (1/2 + Ω(1)) competitive ratio.

There are two concerns when modifying Algorithm 2 to

work for a general function from the family W . The first

is how to compute the probability that a vertex u is free

when vertex v arrives, in Line 6. In the simpler version, we

inductively showed that this probability is simply 1 − yu,

where yu is the dual value of u as of v’s arrival (see the proof

of Lemma 9). With a general function f , this probability

is no longer given by a simple formula. Nevertheless, it

is easily fixable: We can either use Monte Carlo sampling

to estimate the probability of u being free at v’s arrival

to a given inverse polynomial accuracy, or we can in fact

exactly compute these probabilities by maintaining their

marginal values as the algorithm progresses. In what follows,

we therefore assume that our algorithm can compute these

probabilities exactly.

The second and more important issue is with the sampling

step in Line 7. In the simpler algorithm, this step is well-

defined as the sampling probabilities indeed form a valid

distribution: I.e.,
∑

u∈Nv(v)
zu � 1 for all vertices v.

However, with a general function f , this sum can exceed

one, rendering the sampling step in Line 7 impossible.

Intuitively, we can normalize the probabilities to make it
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Input : A stream of vertices v1, v2, . . . , vn. At step i,
vertex vi and Nvi(v) are revealed.

Output: A matching M .

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v.

2 Let M ← ∅.
3 foreach v in the stream do
4 Update yu’s and xuv’s using Algorithm 1 with

β = 2− ε and f = f1+2ε.

5 foreach u ∈ Nv(v) do
/* Compute

Pr[u is free when v arrives] as
explained in Section III-C */

6 zu ← xuv

Pr[u is free when v arrives] .

7 foreach u ∈ Nv(v) do
8 z′u ← zu/max

{
1,
∑

u∈Nv(v)
zu

}
.

9 Pick (at most) one u1 ∈ Nv(v) with probability

z′u1
.

10 if
∑

u∈Nv(v)
zu > 1 then

11 With probability
√
ε, pick (at most) one

u2 ∈ Nv(v) with probability z′u2
.

/* Probability of dropping edge
{u, v} can be computed using
(7). */

12 Drop u2 with minimal probability ensuring

{u2, v} is matched with probability at most

xu2v .

13 if a free neighbor u1 is sampled then
14 Add {u1, v} to M .

15 else if a free neighbor u2 is sampled then
16 Add {u2, v} to M .

Algorithm 3: A randomized online matching algo-

rithm under general vertex arrivals.

a proper distribution, but by doing so, we end up losing

some amount from the approximation guarantee. We hope

to recover this loss using a second sampling step, as we

mentioned in Section I-B and elaborate below.

Suppose that, instead of β = 2 and f = f1 (i.e., the

function f(θ) = 1− θ), we use f = f1+2ε and β = 2− ε to

define xuv and yu values. As we show later in this section,

for an ε sufficiently small, we then have
∑

u∈Nv(v)
zu �

1 +O(ε), implying that the normalization factor is at most

1 + O(ε). However, since the approximation factor of the

fractional solution is only 1/2 + O(ε) for such a solution,

(i.e.,
∑
{u,v}∈E xuv � (1/β) ·∑u∈V yu), the loss due to

normalization is too significant to ignore.

Now suppose that we allow arriving vertices to sample a

second edge with a small (i.e.,
√
ε) probability and match

that second edge if the endpoint of the first sampled edge is

already matched. Consider the arrival of a fixed vertex v such

that
∑

u∈Nv(v)
zu > 1, and let z′u denote the normalized zu

values. Further let Fw denote the event that vertex w is free

(i.e, unmatched) at the arrival of v. Then the probability that

v matches u for some u ∈ Nv(v) using either of the two

sampled edges is

Pr[Fu] ·
⎛
⎝z′u + z′u

√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

⎞
⎠ ,

(7)

which is the same expression from (1) from Section I-B,

restated here for quick reference. Recall that the first term

inside the parentheses accounts for the probability that v
matches u via the first sampled edges, and the second term

accounts for the probability that the same happens via the

second sampled edge. Note that the second sampled edge

is used only when the first one is incident to an already

matched vertex and the other endpoint of the second edge

is free. Hence we have the summation of conditional proba-

bilities in the second term, where the events are conditioned

on the other endpoint, u, being free. If the probability given

in (7) is xuv for all {u, v} ∈ E, we would have the same

guarantee as the fractional solution xuv , and the rounding

would be lossless. This seems unlikely, yet we can show

that the quantity in (7) is at least (1 − ε2) · xuv for most

(not by number, but by the total fractional value of xuv’s) of

the edges in the graph, showing that our rounding is almost
lossless. We postpone further discussion of the analysis to

Section III-D where we highlight the main ideas before

proceeding with the formal proof.

Our improved algorithm is outlined in Algorithm 3. Up

until Line 6, it is similar to Algorithm 2 except that it uses

β = 2− ε and f = f1+2ε where we choose ε > 0 to be any

constant small enough such that the results in the analysis

hold. In Line 8, if the sum of zu’s exceeds one we normalize

the zu to obtain a valid probability distribution z′u. In Line 9,

we sample the first edge incident to an arriving vertex v. In
Line 11, we sample a second edge incident to the same

vertex with probability
√
ε if we had to scale down zu’s

in Line 8. Then in Line 12, we drop the sampled second

edge with the minimal probability to ensure that no edge

{u, v} is matched with probability more than xuv . Since

(7) gives the exact probability of {u, v} being matched, this

probability of dropping an edge {u, v} can be computed

by the algorithm. However, to compute this, we need the

conditional probabilities Pr[Fw | Fu], which again can be

estimated using Monte Carlo sampling3. In the subsequent

lines, we match v to a chosen free neighbor (if any) among

its chosen neighbors, prioritizing its first choice.

For the purpose of analysis we view Algorithm 3 as

constructing a greedy matching on a directed acyclic graph

(DAG) Hτ defined in the following two definitions.

3It is also possible to compute them exactly if we allow the algorithm
to take exponential time.
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Definition 10 (Non-adaptive selection graph Gτ ). Let τ
denote the random choices made by the vertices of G. Let
Gτ be the DAG defined by all the arcs (v, u1), (v, u2) for
all vertices v ∈ V . We call the arcs (v, u1) primary arcs,
and the arcs (v, u2) the secondary arcs.

Definition 11 (Pruned selection graph Hτ ). Now construct
Hτ from Gτ by removing all arcs (v, u) (primary or
secondary) such that there exists a primary arc (v′, u) with
v′ arriving before v. We further remove a secondary arc
(v, u) if there is a primary arc (v, u); i.e., if a vertex u
has at least one incoming primary arc, remove all incoming
primary arcs that came after the first primary arc and all
secondary arcs that came after or from the same vertex as
the first primary arc.

It is easy to see that the matching constructed by Algo-

rithm 3 is a greedy matching constructed on Hτ based on

order of arrival and prioritizing primary arcs. The following

lemma shows that the set of matched vertices obtained by

this greedy matching does not change much for any change

in the random choices of a single vertex v, which will

prove useful later on. It can be proven rather directly by

an inductive argument showing the size of the symmetric

difference in matched vertices in Gτ and Gτ ′ does not

increase after each arrival besides the arrival of v, whose

arrival clearly increases this symmetric difference by at most

two. See full version for details.

Lemma 12. Let Gτ and Gτ ′ be two realizations of the
random digraph where all the vertices in the two graphs
make the same choices except for one vertex v. Then
the number of vertices that have different matched status

(free/matched) in the matchings computed in Hτ and Hτ ′

at any point of time is at most two.

D. High-Level Description of Analysis
In this section we outline the analysis of Algorithm 3,

highlighting its main ideas. See the full version for full

details [16].
As described in Section III-C, the main difference com-

pared to the simpler 1/2-competitive algorithm is the change

of the construction of the fractional solution, which in turn

makes the rounding more complex. In particular, we may

have at the arrival of a vertex v that
∑

u∈Nv(v)
zu > 1.

The majority of the analysis is therefore devoted to such

“problematic” vertices since otherwise, if
∑

u∈Nv(v)
zu � 1,

the rounding is lossless due to the same reasons as described

in the simpler setting of Section III-B. We now outline the

main ideas in analyzing a vertex v with
∑

u∈Nv(v)
zu > 1.

Let Fw be the event that vertex w is free (i.e., unmatched)

at the arrival of v. Then, as described in Section III-C, the

probability that we select edge {u, v} in our matching is the
minimum of xuv (because of the pruning in Line 12), and

Pr[Fu] ·
⎛
⎝z′u + z′u

√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

⎞
⎠ .

By definition, Pr[Fu] · zu = xuv , and the expression inside

the parentheses is at least zu (implying Pr[{u, v} ∈ M ] =
xuv) if

1 +
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu]) �
zu
z′u

. (8)

To analyze this inequality, we first use the structure of the

selected function f = f1+2ε and the selection of β = 2− ε
to show that if

∑
w∈Nv(v)

zw > 1 then several structural

properties hold (see full version). In particular, there are

absolute constants 0 < c < 1 and C > 1 (both independent

of ε) such that for small enough (constant) ε > 0

1)
∑

w∈Nv(v)
zw � 1 + Cε;

2) zw � C
√
ε for every w ∈ Nv(v); and

3) c � Pr[Fw] � 1− c for every w ∈ Nv(v).

The first property implies that the right-hand-side of (8) is at

most 1 +Cε; and the second property implies that v has at

least Ω(1/
√
ε) neighbors and that each neighbor u satisfies

z′u � zu � C
√
ε.

For simplicity of notation, we assume further in the high-

level overview that v has exactly 1/
√
ε neighbors and each

u ∈ Nv(v) satisfies z′u =
√
ε. Inequality (8) would then be

implied by ∑
w∈Nv(v)

(1− Pr[Fw | Fu]) � C . (9)

To get an intuition why we would expect the above inequal-

ity to hold, it is instructive to consider the unconditional

version:∑
w∈Nv(v)

(1− Pr[Fw]) � c|Nv(v)| = c/
√
ε
 C ,

where the first inequality is from the fact that Pr[Fw] � 1−c
for any neighbor w ∈ Nv(v). The large slack in the last

inequality, obtained by selecting ε > 0 to be a sufficiently

small constant, is used to bound the impact of conditioning

on the event Fu. Indeed, due to the large slack, we have

that (9) is satisfied if the quantity
∑

w∈Nv(v)
Pr[Fw|Fu] is

not too far away from the same summation with uncondi-

tional probabilities, i.e.,
∑

w∈Nv(v)
Pr[Fw]. Specifically, it

is sufficient to show∑
w∈Nv(v)

(Pr[Fw|Fu]− Pr[Fw]) � c/
√
ε− C . (10)

We do so by bounding the correlation between the events

Fu and Fw in a highly non-trivial manner, which constitutes

the heart of our analysis. The main challenges are that

events Fu and Fw can be positively correlated and that, by

conditioning on Fu, the primary and secondary choices of

different vertices are no longer independent.

We overcome the last difficulty by replacing the condi-

tioning on Fu by a conditioning on the component in Hτ
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u

u

Figure 2: Two examples of the component of Hτ containing

u. Vertices are depicted from right to left according to

their arrival order. Primary and secondary arcs are solid and

dashed, respectively. The edges that take part in the matching

are thick.

(at the time of v’s arrival) that includes u. As explained

in Section III-C, the matching output by our algorithm is

equivalent to the greedy matching constructed in Hτ and

so the component containing u (at the time of v’s arrival)

determines Fu. But how can this component look like,

assuming the event Fu? First, u cannot have any incoming

primary arc since then u would be matched (and so the

event Fu would be false). However, u could have incoming

secondary arcs, assuming that the tails of those arcs are

matched using their primary arcs. Furthermore, u can have

an outgoing primary and possibly a secondary arc if the

selected neighbors are already matched. These neighbors

can in turn have incoming secondary arcs, at most one

incoming primary arc (due to the pruning in the definition of

Hτ ), and outgoing primary and secondary arcs; and so on.

In Figure 2, we give two examples of the possible structure,

when conditioning on Fu, of u’s component in Hτ (at the

time of v’s arrival). The left example contains secondary

arcs, whereas the component on the right is arguably simpler

and only contains primary arcs.
An important step in our proof is to prove that, for most

vertices u, the component is of the simple form depicted to

the right with probability almost one. That is, it is a path

P consisting of primary arcs, referred to as a primary path

that further satisfies:

(i) it has length O(ln(1/ε)); and

(ii) the total z-value of the arcs in the blocking set of P is

O(ln(1/ε)). Informally, the blocking set contains those

arcs that if appearing as primary arcs in Gτ would

cause arcs of P to be pruned (or blocked) from Hτ .

Let P be the primary paths of above type that appear with

positive probability as u’s component in Hτ . Further let

EQP be the event that u’s component equals P . Then we

show (for most vertices) that
∑

P∈P Pr[EQP | Fu] is almost
one. For simplicity, let us assume here that the sum is

equal to one. Then by the law of total probability and since∑
P∈P Pr[EQP | Fu] = 1, we have that, denoting the set

Nv(v) by S,∑
w∈S

(Pr[Fw | Fu]− Pr[Fw])

=
∑
P∈P

Pr[EQP | Fu] ·
∑
w∈S

(Pr[Fw | Fu,EQP ]− Pr[Fw]) .

But since the component P containing u determines Fu (i.e.,

it determines whether or not u is matched), the above can

be simplified to∑
w∈Nv(v)

(Pr[Fw | Fu]− Pr[Fw])

=
∑
P∈P

Pr[EQP | Fu] ·
∑

w∈Nv(v)

(Pr[Fw | EQP ]− Pr[Fw]) .

The proof is then completed by analyzing the term inside

the parentheses for each primary path P ∈ P separately. As

we prove in the full version, the independence of primary

and secondary arc choices of vertices is maintained after

conditioning on EQP .4 Furthermore, we show that there is

a bijection between the outcomes of the unconditional and

the conditional distributions, so that the expected number

of vertices that make different choices under this pairing

can be upper bounded by roughly the length of the path

plus the z-value of the edges in the blocking set. So,

for a path P as above (for which these edges’ total z-

value is O(ln(1/ε))), we have that the expected number of

vertices that make different choices in the paired outcomes

is O(ln(1/ε)) which. By Lemma 12, this implies that the

expected number of vertices that change matched status if

we condition on EQP is also upper bounded by O(ln(1/ε)).
In other words, we have for every path P ∈ P as above that∑

w∈Nv(v)

(Pr[Fw | EQP ]− Pr[Fw])

�
∑
w∈V

(Pr[Fw | EQP ]− Pr[Fw])

= O(ln(1/ε)),

which implies (10) for a small enough choice of ε. This

completes the overview of the main steps in the analysis. The

main difference in the formal proof is that not all vertices

satisfy that their component is a short primary path with

probability close to 1. To that end, we define the notion of

good vertices, which are the vertices that are very unlikely

to have long directed paths of primary arcs rooted at them.

These are exactly the vertices v for which we can perform

the above analysis for most neighbors u (in the proof of

4To be precise, conditioning on a primary path P with a so-called
termination certificate T (see the full version). In the overview, we omit
this detail and consider the event EQP,T (instead of EQP ) in the formal
proof.
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the “key lemma”) implying that the rounding is almost

lossless for v. Then, we show using a rather simple charging

scheme that most of the vertices in the graph are good.

Finally, putting everything together yields Theorem 2. See

full version for details [16].

IV. CONCLUSION AND OPEN QUESTIONS

In this work we resolve the open questions of whether

the greedy algorithm is optimal for online matching under

edge and vertex arrivals. There are still many questions left

unanswered. We mention a few here.

For bipartite graphs with one-sided vertex arrivals the

RANKING algorithm of Karp et al. [23] yields an optimal

competitive ratio. In the same work, Karp et al. asked

whether RANKING is optimal in general graphs. While there

are several ways one could generalize their algorithm to an

algorithm for general graphs, it seems that all would result

in a greedy algorithm with some random tie breaking. For

general vertex arrivals, it is easy to see that this would result

in a competitive ratio of 1/2. Our algorithm therefore shows

that RANKING is sub-optimal for general vertex arrivals.

What is the optimal competitive ratio achievable for this

arrival model?

Next, for edge arrivals, our impossibility result further

motivates the study of this arrival model under relaxations.

One particularly appealing question is whether one can

outperform greedy with preemption (see e.g., [5, 12, 29]).

The power of preemption also still remains to be determined

for edge-weighted matching under bipartite one-sided vertex

arrivals [15].
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