2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

Parallel Reachability in Almost Linear Work and Square Root Depth

Arun Jambulapati
ICME
Stanford University
Palo Alto, CA
Jjmblpati @ stanford.edu

Abstract—In this paper we provide a parallel algorithm that
given any n-node m-edge directed graph and source vertex s
computes all vertices reachable from s with O(m) work and
n'/#t°(1) depth with high probability in n. This algorithm
also computes a set of O(n) edges which when added to the
graph preserves reachability and ensures that the diameter of
the resulting graph is at most n'/27°()), Our result improves
upon the previous best known almost linear work reachability
algorithm due to Fineman [1] which had depth O(n?/3).

Further, we show how to leverage this algorithm to achieve
improved distributed algorithms for single source reachability
in the CONGEST model. In particular, we provide a distributed
algorithm that given a n-node digraph of undirected hop-
diameter D solves the single source reachability problem with

O(n'/? 4 n'/3+°(M D2/3) rounds of the communication in the
CONGEST model with high probability in n. Our algorithm
is nearly optimal whenever D = O(n'/*~¢) for any constant
€ > 0 and is the first nearly optimal algorithm for general
graphs whose diameter is (n°) for any constant J.

I. INTRODUCTION

Given a n-vertex m-edge directed graph or digraph G =
(V,E) and a vertex s € V the single source reachability
problem asks for the set of vertices 7' C V reachable
from s, i.e. the vertices t € V for which there is a s to
t path in G. This problem is perhaps one of the simplest
graph optimization problems. It easily solvable in linear,
O(n + m), time by any of a number of classic graph
exploration algorithms, e.g. breadth first search (BFS), depth
first search (DFS), etc. and is often one of the first graph
problems considered in an introductory algorithms course.
The reachability problem is prevalent in theory and practice
and algorithms for solving it are leveraged to solve more
complex graph optimization problems, including computing
strongly connected components, shortest paths, maximum
flow, spanning arborescenses, etc.

Given the fundamental nature of the reachability problem
and the utility of reachability algorithms, the reachability
problem is often one of the first considered when investi-
gating resource constrained computation. However, despite
the simplicity of solving single source reachability with
optimal time complexity, obtaining optimal algorithms for
this problem under constraints of parallelism [1]-[3], dis-
tributed computation [4], [S], space utilization [6], [7], and

Yang P. Liu
Department of Mathematics
Stanford University
Palo Alto, CA
yangpatil @ gmail.com

Aaron Sidford
MS&E
Stanford University
Palo Alto, CA
sidford @ stanford.edu

dynamic updates [8] are all notoriously difficult. In many
cases, reachability lies at the heart of well-known long-
standing open problems in complexity theory. For example,
reachability is known to be complete for non-deterministic
log space (NL) computation [6] and obtaining sufficiently
efficient dynamic reachability algorithms would break the
popular 3-SUM conjecture and refute the strong exponential
time hypothesis (SETH) [8].

In the parallel and distributing models of computation,
single-source reachability is itself a fundamental barrier
towards achieving efficient graph optimization. Despite ex-
tensive study, until a recent breakthrough of Fineman [1] the
best parallel reachability algorithm all required trading off
depth versus work and all known algorithms that had linear
work had the trivial O(n) depth. In distributed computation,
for example the popular CONGEST-model [9], though
there have been algorithmic improvements over the trivial
O(n) round protocol [4], [5], the best known algorithms
are polynomial factors larger then the known Q(D + /n)-
round lower bound (where here D denotes the undirected
hop-diameter of the graph) [10].

Given these complexity theoretic barriers related to reach-
ability and the prevalance of parallel and distributed models
of computation, improved parallel and distributed reachabil-
ity algorithms are highly coveted. In this paper we provide
improved reachability algorithms under each computational
model. The main results of this paper are as follows.

Theorem 1 (Parallel Reachability). There is a parallel
algorithm that given a n-node m-edge digraph solves the
single source reachability problem with work O(m) and
depth n*/>+°M) \pith high probability in n.

Theorem 2 (Distributed Reachability). There is a distributed
algorithm that given a n-node digraph of undirected hop-
diameter D solves the single source reachability problem
with O(n'/2 +n/3+°() D2/3) rounds of the communication
in the CONGEST model with high probability in n.

Theorem 1 improves the previous best O(n2/3) depth
bound achieved by a parallel nearly linear work algorithm
due to Fineman [1]. Theorem 2 is nearly optimal whenever
D = O(n'/*=¢) for some ¢ > 0 due to a known Q(/n+D)

2575-8454/19/$31.00 ©2019 IEEE 1664

IEEE
DOI 10.1109/FOCS.2019.00098 (@ computer
soclety

lower bound [10] and is the first nearly optimal algorithm for
general directed graphs where D = Q(n?) for for constant
6 > 0. (See Section I-B for a more detailed comparison to
and discussion of previous work.)

Our results build upon a recent breakthrough result of
Fineman [1] and a simple, yet-powerful decompositional
tool regarding reachability known as hopsets or shortcuts.
Shortcuts are edges which if added to the graph, do not
change which pairs of vertices can reach each other. It is well
known that in a graph of diameter D, i.e. largest shortest-
path distance between a pair of vertices which can reach
each other is D, we can compute reachability in work O(m)
and depth O(D). Consequently, a natural approach towards
improved reachability algorithms would simply be to find a
small set of shortcuts in nearly linear time which decrease
the diameter of a graph.

Computing shortcutters is a tantalizing approach to im-
proved reachability algorithms. A simple folklore random
sampling argument can be used to show that for every n-
node digraph and every parameter ¢ there exists a set of
O(t*log® n) shortcuts such that adding them makes the
diameter of the graph is at most O(n/t). Consequently,
there is a nearly linear, O(n log? n), number of edges which
would reduce the diameter to O(y/n). Finding such a set
of shortcuts in nearly linear work and O(+/n) depth would
immediately yield linear work O(y/n) depth algorithms
for reachability. Unfortunately, even obtaining almost linear
time algorithms for constructing a set of shortcutters which
reduce the diameter to almost square root n was open prior
to this work.

Fortunately, recent work of Fineman [1] provided some
hope towards achieving this goal. This work provided the
first nearly linear time algorithm for computing a nearly
linear number of shortcutters which provide any polyno-
mial diameter reduction from the trivial O(n) bound. In
particular, Fineman’s work provided a nearly linear time
algorithm which computed with high probability a nearly
linear number of shortcutters that decrease the diameter
to O(n?/?) and leveraged this result to obtain a parallel
reachability algorithm with O(m) work and O(n?/3) depth
that succeeds with high probability in n.

Though an impressive result and a considerable break-
through, this work left open the question of how well
parallel almost linear work algorithms could match the depth
bound that would be optimistically predicted by hopsets,
i.e. O(n'/?). Further, this work left open the question of
whether these improvements could be transferred to addi-
tional resource constrained computational problems. In this
paper we make progress on both questions with Theorem 1
and Theorem 2. We provide an O(m) work and n!/2+°()
depth algorithm that computes a set of O(n) shortcutters that
reduces the diameter to n'/2t°(1) and use this to achieve
improved distributed algorithms.

We achieve our results by strengthening and simplifying

1665

parts of Fineman’s algorithm (see Section III for an overview
of the approach). Further, we provide a fairly general
strategy to turn improved parallel reachability algorithms
into improved distributed algorithms in the CONGEST-
model, building off approaches of [4], [5]. Interestingly, we
show that even Fineman’s algorithm can be be modified to
achieve improved distributed algorithms (albeit with weaker
bounds).

Ultimately we hope this work sheds light on the structure
of single source reachability, may lead to faster reachability
in more resource constrained computational environments,
and may ultimately lead to more practical massive scale
graph processing.

Paper Outline: The rest of the paper is structured as
follows. In the remainder of this introduction we formally
state our results in Section I-A and compare to previous
work in Section I-B. In Section II we cover technical
preliminaries and leverage this notation to provide a more
technical approach overview in Section IIL. In Section IV we
then provide an O(m) time algorithm for computing O(n)
shortcuts which decrease the diameter to n'/2t°() with
high-probability. This serial algorithm demonstrates many
of the key insights we ultimately build upon to achieve
our parallel reachability algorithms in Section V and our
distributed reachability algorithms in Section VI.

A. Our results

In this paper we provide several parallel and distributed
algorithms for efficiently constructing diameter-reducing
hopsets and computing reachability in digraphs. Here we
provide a brief overview of these results. Throughout this
section (and the rest of the paper) we use O(:) to hide
polylogarithmic factors in n and we use w.h.p. as shorthand
for “with high probability in n” where in both cases n is
used to denote the number of vertices in the original input
graph.

First, in Section IV we provide a sequential algorithm
for efficiently computing diameter-reducing hopsets. This
algorithm improves upon the previous best diameter bound
of O(n?/3) [1], known to be achievable by a nearly linear
time algorithm. Our main result is as follows:

Theorem 3 (Sequential Diameter Reduction). For any pa-
rameter k, there is an algorithm that given any n-node and
m-edge digraph in O(mk) time computes O(nk) shortcuts
such that adding these edges to the graph reduces to the
diameter to n'/2+00/1ogk) y p

This result forms the basis for our improved parallel
reachability algorithms. We first argue that careful mod-
ification and application of the algorithmic and analytic
insights of Section IV suffice to obtain similar diameter
improvements from a parallel algorithm. Our main result
of Section V is the following parallel analog of Theorem 3.

Theorem 4 (Parallel Diameter Reduction). For any pa-
rameter k, there is a parallel algorithm that given any n-
node and m-edge digraph with O(mk + nk?) work and
poly(k) - n!/2+00/ 108 k) depth computes a set of O(nk)
shortcuts such that adding these edges to the graph reduces
the diameter to n/>+O(1/108k) yp

Setting & = O(logn) immediately gives the following
corollary.

Corollary 1.1. There is a parallel algorithm that given any
n-node and m-edge digraph performs O(m) work in depth
n/2+°) and computes a set of O(n) shortcuts such that
adding these edges to the graph reduces the diameter to
n'/2+o() v pp.

Further, since single source reachability can be solved by
BFS in linear work and depth proportional to the diameter
of the graph applying this corollary and then leveraging BFS
immediately proves Theorem 1, our main result on a parallel
solution to single source reachability.

We leverage this parallel reachability result to provide our
improved distributed reachability algorithms in Section VI.
Formally we consider the CONGEST-model where given a
n-node digraph G there is a separate processor for each node
and in every round, for every vertex wu, its processor may
send O(logn)-bits of information to each of its neighbors
(i.e. vertices v for which either (u,v) or (v,u) is an edge).
Here the distributed reachability question we consider is how
to design a messaging scheme so that each node learns if it
is reachable from a single given source in as few rounds as
possible.

Our main result regarding such distributed algorithms is
given by Theorem 2. Formally, we show that if D is the
diameter of the undirected graph associated with G (i.e.
there is an edge in the undirected graph between v and v if
and only if either (u,v) of (v,u) is an edge in G) then we
can design a distributed algorithm that solves single source
reachability in O(n!/2 4+ n!/3+°() D2/3) rounds of commu-
nication in the CONGEST-model with high probability in
n. Due to a known lower bound of Q(y/n + D) [10] this
result is nearly optimal whenever D = O(n'/*~¢) for any
€ > 0. Further, to the best of our knowledge this is the first
nearly optimal algorithm for general directed graphs when
D = Q(n%) for any constant § € (0,1/4).

Interestingly, we achieve this improved distributed algo-
rithm by following a fairly general framework inspired by
[4], [5]. We argue that there is a fairly general procedure for
converting “nice enough” work-efficient parallel reachability
algorithms into improved bounds on distributed reachability.
This procedure first computes a set of shortcuts using known
prior work on distributed algorithms [9]. Leveraging these
shortcuts, the procedure then solves reachability by applying
a work-efficient parallel reachability algorithm over the a
graph with shortcuts added. We then argue that if the

1666

[[Work | Span]

Parallel BFS O(m) O(n)
Parallel Trans. Closure o(n*) o(1)

Spencer’s [2] O(m + np?) O(n/p)

UY [3] O(mp+p*/n) | O(n/p)

Fineman’s [1] O(m) O(n?/?)

This paper O(m) pl/2+o)
Table I

SUMMARY OF PREVIOUS RESULTS FOR PARALLEL SINGLE-SOURCE
DIGRAPH REACHABILITY. HERE p € [1,n] CAN BE CHOSEN
ARBITRARILY AND w < 2.373 DENOTES THE MATRIX MULTIPLICATION
EXPONENT. THIS TABLE WAS MODIFIED FROM THE ONE IN [1].

reachability algorithm is “nice enough” we can bound the
distributed round complexity of the resulting algorithm as a
function of the work and depth of the parallel reachability
algorithm. Ultimately, Section VI shows that in addition to
proving Theorem 2 we could have used this framework and
Fineman’s recent work [1] to obtain improved distributed
algorithms (even without using our work of Section V);
albeit with worse bounds.

B. Related Work

The problem of computing single-source reachability from
source s in n-node m-edge digraph G is one of the most
fundamental questions in the theory of parallel algorithms.
A more complete survey of previous results can be found in
[1] and we describe them briefly here.

Two folklore algorithms exist for parallel reachability.
First, the complete transitive closure of G' can be computed
in parallel by repeatedly squaring the adjacency matrix of G.
This achieves a polynomial running time with polylogarith-
mic depth, but the O(n®) work algorithm where w < 2.373
is the matrix multiplication constant [11] is currently not
known to be nearly linear even for dense graphs. Second, a
straightforward modification to standard breadth-first search,
called “Parallel BFS,” enables us to compute the single-
source reachability from s in O(m) time and O(n) depth.
This has near optimal work, but its depth is trivial, i.e. it is
essentially a fully serial algorithm.

Procedures by Spencer [2] and Ullman and Yannakis [3]
provide work-depth tradeoffs that interpolate between the
extremes of these two naive procedures, yet neither improve
upon the O(n) depth bound in the case of O(m) work.
Fineman [1] provided a breakthrough by demonstrating the
O(m) work algorithm for single-source reachability achiev-
ing sublinear depth O(n?/?). Our results build on those of
Fineman by improving the depth to n'/2+°(1)_ These results
are summarized in Table I.

Our algorithm, like [1], solves a more general problem
than single-source reachability: we show show that our
algorithm gives work-efficient parallel construction of an
O(n)-edge hopset of diameter n'/2+°(1), With this hopset

we can answer arbitrary single-source reachability queries in
nearly-linear work and n'/2+°(1) depth. A natural question is
whether our hopset construction can be improved. However
even from the perspective of constructibility the true tradeoff
between diameter and number of added edges is not known.
As mentioned previously a straightforward random con-
struction provides a O(t2 log? n)-edge hopset with diameter
O(n/t), but it is not known how to improve upon this
result in any regime. Building off of [12], [13] demonstrates
that O(n)-edge hopsets cannot ensure diameter less than
O(n'/®) and O(m)-edge hopsets cannot achieve O(n'/11)
diameter; no results are known in other parameter regimes.
Nevertheless we conjecture that in the case of nearly-linear
sized hopsets our construction is tight and therefore any
polynomial improvement to our algorithm must somehow
avoid the hopset paradigm.

Distributed algorithms in the CONGEST model [9] have
been studied extensively over the past two decades. Though
there have been multiple improvements to the round com-
plexity of approximately solving single source shortest paths
in this model (see for example [14]-[16] for the relevant
literature), there has been comparatively little progress on
the solving the same problem on directed graphs [4], [15],
[16]. For the single-source reachability problem considered
in this paper the previous state of the art for this problem is
due to [5], which solved the problem in O(D + /nD'/*)
rounds w.h.p. This algorithm in turn improved upon the

O(D + /nD"?) w.h.p. round bound of [4], which was (to
the best of our knowledge) the first non-trivial distributed
algorithm for this problem.

II. PRELIMINARIES

We denote vertex set of a graph G by V(G), and the
edge set by E(G). We simply write these as V' and E when
the graph G is clear from context. For a V' C V, we let
G[V'] denote the induced subgraph on V’, i.e. the graph
with vertices V’ and edges of G that have both endpoints
in V'

Digraph relations: Let G be a directed graph or
digraph for short. We say that u < v if there is a directed
path from u to v in G. In this case we say that u can reach
v, or that v is reachable from u. We say that u A v if
there is no directed path from w to v in G. In this case
we say that u cannot reach v, or that v is not reachable
from u. When v < v and v =< u we say that v and v are
in the same strongly connected component. We define the
descendants of v to be R2**(v) < {u € V(G) : v < u} and
the ancestors of v to be RA™(v) = {u € V(G) : u < v}.
We say that u and v are related if u < v or v < u. We define
the related vertices of v as Rg(v) = &t R5s (v) U RA™ (v).
Throughout, the letter R we use in the notation should be
read as “related” or “reachable”. We say that u is unrelated
to vertex v if u € V(G)\Rg(v).

1667

We extend this notation to subsets V/ C V in the natural
way. We define the ancestors, descendants, and related
vertices to V' as

U B&=(@), kg™(v) = (J R&™(v),
veV’ veV’
and Rg(V') < R2=(V') U

def

RE=(V")

RE™ (V).

We say that a vertex v is related to a subset V' if
v € Rg(V’). When the graph G is clear from con-
text, we will often drop the G subscript and simply
write (for example) RP*(v), RA"¢(v), and R(v) instead of
RO (0), RY™ (v), Re(v).

We further extend this notation to induced subgraphs of
G. Let G’ be a subgraph of G, possibly with a different set
of vertices and edges than G. We say that u <¢+ v if there
is a directed path from u to v in the subgraph G’; we say
that v is reachable from u through G’ in this case. Define

R2S(0) = {u e V(G') : v ¢ u},
RAM©(0) = {u e V(G') : u =< v},
and R (v) = R2$5(v) U RA(v).

We similarly extend this definition to subsets of vertices
V' CV(G) as

def

RDES() = Upevr
and Rg/ (V') = RAM (V') U

def

RDes() RAHC(V/) def UUGV’R

Des(V)

(),

As our algorithm performs recursion on subgraphs of G, this
notation enables us to reference specific subproblems as our
algorithm progresses.

A shortcut refers to adding an edge (u,v) to a graph
G where © < v in G. Adding the edge does not affect the
reachability structure of G. A shortcutter v is a node we add
shortcut edges to and from. A hopset refers to a collection
of shortcuts.

Paths: Our analysis will consider paths in the graph as
well as the relations between the vertices on the path and
other vertices in the graph. Let G be a digraph. We denote
a path P = (vg,v1,...,vs), where all the v; are vertices
of G and (v;,v;+1) € E(G). Here, the length of the path
is ¢, where we have that vp < vy < ... <X v;. We say
that the head of the path is head(P) = v, and the tail is
tail(P) = v,. We now make the following definitions.

Path-related vertices: We adopt a similar convention
as [1] and for a path P = (vg,v1,...,vs) we say that v
is path-related if v € Rg(P). Further, for any path P in
digraph G, we define s(P,G) = |Rg(P)| as the number of
path-related vertices. All path-related vertices are one of the
following three types:

« Descendants: We say that a vertex v is a descendant
of the path P if v € R2*(P)\R2"(P). Note that this
holds if and only if vy < v and v % vy.

« Ancestors: We say that a vertex v is an ancestor of the
path P if v € RA"(P)\R2*(P). Note that this holds
if and only if vy A v and v =< vy.

o Bridges: We say that a vertex v is a bridge of the path
P if v € R2%(P) N RA"(P). Note that this holds if
and only if v9 <X v and v X vy.

A vertex which is not a descendant, ancestor, or bridge for
a path P is called unrelated to P. Later in Section V we
explain how to extend all these definitions to the distance-
limited case.

Subproblems: During our algorithms’ recursions, we
will make reference to the induced recursive calls made.
Consider a graph G and a path P in G. During a call to
an algorithm on the graph G, we define a subproblem to be
an induced subgraph G[V'] along with a subpath P’ of P
which lies inside G[V’] on which we perform a recursive
execution.

Miscellaneous: We let B(n, p) be the binomial random
variables over n events of probability p. We have the
following standard fact about binomial random variables:

Lemma IL1 (Chernoff Bound). Let X ~ B(n,p) be a
binomial random variable. Then

62

21467 > '

The diameter of a directed graph G is defined as
max{d(u,v) : u,v € V(G) and d(u,v) < oo} ie. the
longest shortest path between two vertices u, v where u can
reach v. _

For functions f(n) and g(n) we say that f(n) = O(g(n))
if f(n) = O(g(n) - polylogn). In particular, O(1)
O(poly logn).

Pr(X > (14 0)np] < exp (—

III. OVERVIEW OF APPROACH

Here we provide an overview of our approach towards
achieving our algorithmic improvements on reachability.
First, we provide a blueprint for our sequential nearly linear
time algorithm for computing diameter reducing hopsets.
While further work is needed to make this algorithm im-
plementable in low depth and more insights are needed to
obtain our parallel and distributed results (and we discuss
these briefly), we believe this simple sequential algorithm
demonstrates the primary algorithmic insights of the paper.

For the remainder of this section, let G = (V, E) be a
digraph for which we wish to efficiently compute diameter-
reducing shortcuts. For simplicity we consider the case
where G is a directed acyclic graph (DAG); the analysis of
the general case is essentially identical and for the purposes
of reachability (ignoring parallel computation issues) we can
contract every strongly connected component to a single
vertex.

Our shortcutting algorithms follows the general blueprint
leveraged by Fineman [1] for efficiently computing diameter
reducing shortcuts. Briefly, Fineman’s algorithm consists of

1668

the following iteration: in every step, a “shortcutter” vertex
v is selected from V' uniformly at random. It then constructs
three sets: v’s ancestors RA™(v), v’s descendants denoted
RP(v), and the set of notes unrelated to v Ug(v) =
V\{RE*(v) U RA™(v)}. The algorithm then adds shortcut
edges from v to every node in RP®(v) and from every
node in R3"(v) to v. The algorithm then computes the
induced graphs Gp = G[R2*(v)],G4 = G[RA™(v)] and
Gy = G[Ug(v)] and recursively applies the procedure to
each of these three graphs.

To analyze this procedure, consider any path P in G. The
algorithm in [1] considers how the shortcuts the algorithm
constructs affect the distance between the endpoints of
P. When a shortcutter vertex v is picked, there are four
possibilities with how it interacts with P: it is either

1) Unrelated to every node in P.

2) An ancestor to some nodes in P forming a subpath
P; and unrelated to the remaining subpath Ps.

3) A descendant to some nodes in P forming a subpath
P, and unrelated to the remaining subpath P;.

4) An ancestor to the tail of P and a descendant to the
head of P.

Consider shortcutting through any vertex v and following the
recursion of the above algorithm. By the above, it is clear
that after shortcutting through any vertex v one of three
things can happen: either P remains intact in a subproblem
(case 1), it gets split into exactly two pieces in two different
subproblems (cases 2 or 3), or the connectivity between the
endpoints of P is resolved through v, i.e. we can go from
P’s head to tail in two edges by going through v (case 4).
Thus we either split P into at most two pieces or we ensure
the endpoints P are distance 2 from each other. Let P; be
the pieces P is split into at some state of the algorithm’s
execution, and let V; be the subproblem vertex set containing
P;.

The key insight of Fineman is to define the following
function (which we defined in Section II) and to use it to
reason about the effect of this random process:

s(Pi, G;) = |[{u € V(G)|u is related to some node in P;}|.

Observe that s(P;, G;) is an overestimate of the length of
P;, and that s(P, G) < n. Define

L(P) = Z s(P;, Gi)
2
to be the sum over all s(P;, G;) at this state of our algorithm.
L(P) is a random variable, but by reasoning about the above
cases we can reason about how L(P) changes in expectation.
For any subpath P;, consider the induced subproblems after
shortcutting through a randomly selected node v. If v lands
in case 1 nothing changes, and if v lands in case 4 we resolve
the connectivity of P; and set s(P;,G;) to 0, as there is
no remaining subproblem. In cases 2 and 3 however, we

split P; into two pieces: call these P;; and Pjs. In these
cases, Fineman is able to argue that a randomly chosen node
can ensure that the number of nodes which are related to
either P;; or P; decreases by some constant factor ¢ in
expectation. Thus if f(x) is the expected shortcut length of
a path P; with s(P;,G;) = z we can essentially guarantee
by induction that f(z) < maxg4p=c: f(a) + f(). Fineman
achieves a constant ¢ = 3/4: this gives a bound of f(n) <
O(n!/1°8(8/3)) " A sophisticated refinement of this argument
allows him to obtain his claimed O(n?/3) bound.

Our algorithm is almost identical to that of Fineman with
one crucial modification: we pick more than one shortcutter
node before we recurse. Specifically, we shortcut from k
random vertices in the graph instead of only a single vertex.
After shortcutting, we partition the vertices of the graph
into subsets, much like Fineman’s algorithm partitioned the
vertices in ancestors, descendants, and unrelated vertices.
In our partitioning scheme, two vertices are in the same
subset if and only if they have the same relationship to
each of the k shortcutters. As an example, two vertices uq
and uy are not in the same subset if say u; is an ancestor
of shortcutter v and uo is a descendant of shortcutter v.
If we pick k shortcutter nodes from cases 2, 3, or 4 at
a time and partition in the way described, we are able to
guarantee that the number of path-related nodes after we
recurse decreases by a factor of I%}—l in expectation after we
recurse (Lemma IV.4). Although the path splits into k + 1
pieces after recursing, analyzing the resulting recursion in
the same manner as Fineman reveals that k = w(1) will
ensure our algorithm will shortcut paths to length n'/2+o(1)
as desired. Unfortunately, we are not able to guarantee this
directly. The above analysis requires that in any recursive
level we pick either 0 or k path-relevant shortcutters in any
recursive level; however we do not know how to obtain such
fine-grained control without knowing the path.

Intuitively, we would like to pick as many shortcutter ver-
tices as possible while staying within our nearly-linear work
bound- the more shortcutters we pick, the more likely we are
to obtain the kiﬂ reduction in path-related nodes. However,
we cannot simply pick the same number of shortcutters in
every level of recursion: because the number of path-related
nodes goes down rapidly, picking k shortcutters per level
of recursion will eventually only enable us to pick a single
path-relevant shortcutter per round. Instead, we show that
after each level of recursion the structure of the subproblems
is such that we can pick k times more shortcutters while
still having nearly-linear work. This, combined with a new
inductive analysis in Lemma IV.6 to get around the fact that
we don’t have as precise control over the change in L(P)
enables us to obtain our result.

Parallel Implementation: Our techniques as described
give us a nearly-linear work algorithm which constructs a
nearly-linear number of shortcuts that reduce the diameter
to n'/2+°(1) We make our construction parallel in a similar

1669

fashion to Fineman. The key insight to [1]’s parallelization is
to consider D**“*"_restricted searches; instead of computing
the ancestor, descendant, and unrelated sets with full graph
traversals from a vertex v, Fineman computes collections of
Dseaeh_ancestors and D***P-descendants. These are the set
of ancestors (resp. descendants) which are reachable from
v at distance at most D" Now although these can be
computed in low depth, we cannot use these as a direct
replacement for the full ancestor and descendant sets as we
can no longer guarantee an expected decrease in L(P).
Fineman gets around this issue with a new idea. Let G
be a digraph. Assume that we could efficiently find a set
of edges F' to add to G such that if s and ¢ are nodes at
distance D from each other their distance in GUF’ is at most
D/5 w.h.p. Then for any nodes u,v at distance more than
D from each other we observe that their distance in G U F'
is halved w.h.p., i.e. this breaks up the uv — v shortest path
into chunks of length D and observe that each subpath’s size
falls by a constant factor with constant probability. Thus by
repeating this procedure on G U F' and iterating O(logn)
times we observe that every pair of reachable nodes wu,v
can be brought within distance D. Doing this reduction only
costs logarithmic factors in total work and parallel depth.
Fineman therefore modifies his recursion in the following
way. In every level set D" = (x 4 1)D, where & is
a random variable. Fineman then constructs the Dach-
ancestors and D2 _descendants, but he then defines the
unrelated set to be set of all nodes which are not kKD-
ancestors or kD-descendants. This modification duplicates
all nodes at distance between kD and (x + 1)D from the
shortcutter v, but now any path of length D is partitioned
into two contiguous subpaths, copies of which can be found
in these three induced sets. Fineman argues that the expected
increase in the number of nodes can be controlled and
that an analogous bound on L(P) in expectation can be
obtained as in the serial setting by picking and choosing the
specific copies of subpaths to split P into in the recursion.
Combining these pieces allows him to obtain his claimed
O(n?/3) depth algorithm. Our approach (Section V) will
build off of these ideas with several modifications for our
new algorithm to leverage our inductive analysis.
Application to Distributed Reachability: Let G be a
n-vertex directed graph with undirected hop diameter D.
We describe our approach for solving the single source
reachability problem in the CONGEST model on G. Our
approach involves combining our parallel diameter reduction
algorithm with the approaches of Ghaffari and Udwani
[5] and Nanongkai [4]. The approach (loosely) involves
using O(a 4+ n/a) rounds of communication in the CON-
GEST model to reduce the problem to computing reacha-
bility on a set of vertices S of size a, with the difference
that the vertices must communicate via global broadcasting,
as the vertices in S aren’t actually connected in the original
graph. We then simulate our parallel reachability algorithm

on S. By analyzing our parallel reachability algorithm, we
can analogously get a bound on the number of rounds needed
to simulate it in the CONGEST model.

IV. SEQUENTIAL ALGORITHM

The main goal of this section is_to prove Theorem 3
showing that for all & there is an O(mk) time algorithm
which adds O(nk) shortcuts which reduce the diameter
to n!/2+00/logk) whp In Section IV-A we present our
algorithm for achieving this result. In Section IV-B we bound
the work of the algorithm and the number of shortcuts it
adds. In Section IV-C we provide our main technical lemma
regarding diameter reduction and then in Section IV-D we
apply this lemma repeatedly to prove that the algorithm
reduces diameter, thereby proving Theorem 3.

A. Algorithm Description

Here we present our sequential short-cutting algorithm
(see Algorithm 1). Before stating the algorithm, we give
some definitions and intuition for the quantities defined in
the algorithm. Let G be the graph that we input to our
algorithm and consider the following.

e Inputs k,r: k is a parameter governing the speed
that we recurse at. Intuitively, our algorithm picks
shortcutters so that graphs at one level deeper in the
recursion are “smaller” by a factor of k. This is made
precise in Lemma IV.1. r < log, n is the depth of
recursion that the algorithm is currently at, where we
start at 7 = 0.

Set S: S is the set of vertices from which we search
and build shortcuts from.

Set F: F is the final set of shortcuts we construct.
Probability p,: At recursion depth r, for each vertex
v € V(G), we put v in S with probability p,..

Labels vP° vA1¢ X: We want to distinguish vertices
by their relations to vertices in S. Therefore, when
we search from a vertex v we add a label vP® to
add vertices in R2%(v)\RA"(v), a label vA1° to all
vertices in R3¢ (v)\R2%(v), and a label X to all
vertices in R2°(v) N RA"(v). The label X should be
understood as “eliminating” the vertex (since it is in
the same strongly connected component as v and we
have shortcut through v already).

1670

Algorithm 1 SEQ(G, k,r). Takes a graph G, parameter k
and recursion depth r» < log, n (starts at » = 0). Returns
a set of shortcut edges to add to G. Sequential diamater
reduction algorithm. n denotes the number of vertices at the
top level of recursion.

i r1
I: pr. + min {17 20k™ ! logn

—~ > Begin level r of

recursion.
2. S« 0;
3: for v e V do
4: With probability p, do S <+ S U {v};
5: end for
6: F + :
7. for v € S do
8: for w € R2*(v) do add edge (v, w) to F;
9: end for

10. for w € RA"(v) do add edge (w,v) to F.

11: end for

122 for w € R2%(v)\R2"(v) do add label vP* to
vertex w.

13: end for

14: for w € RA™(v)\R2*(v) do add label v to
vertex w.

15: end for

16: for w € R2%(v) N RA™(v) do add label X to vertex
w.

17: end for

18: end for

19: W < {v € V : v has no label of X}.

20: V1, Vo, ..., Vy < partition of W such that z,y € V; if
and only if x and y have the same exact labels. >
Vertices in the V; have no label of X.

21: for 1 < i</ do

22: F + FUSEQ(G[V;], k,r + 1)

23: end for

24: return F

Our algorithm can be thought of as an extension of Fine-
man’s shortcut construction procedure. In every iteration, we
seek to add as many shortcutters as possible while staying
within our claimed work bound. Thus, in the first iteration
we add O(k) shortcutters w.h.p. and perform O(mk) work.
We then partition the nodes into clusters such that any two
nodes x and y which are in the same V; have exactly the
same labels assigned to them by the shortcutters, none of
which are X. We will show how to implement this step
later (Lemma IV.3). We then recursively apply the algorithm
within each cluster with a sampling probability that is a
factor of k larger. We will show two things. First, we
show that the increase in sampling probability is offset by
a decrease in the number of related pairs such that the
work done in an iteration is the same w.h.p. (Lemma IV.1
and Lemma IV.2). Second, we show that if we pick ¢
shortcutters that are path related to a path P we get an

expected decrease in the number of path-related nodes to all
the induced subproblems of P (Lemma IV.4). This second
fact enables us to replace the recursion in Fineman with one
that decreases more quickly (Lemma IV.6): this gives our
depth improvement.

B. Work and Shortcut Bound

In this section we bound the work and number of short-
cuts added by Algorithm 1. In any recursion level of our
algorithm there are two sources of work. The first source is
from computing the requisite labels v, vA"¢ and X for
every node v we shortcut from. The second source comes
from grouping the nodes by these labels to generate the
subproblems for the next level. We will bound both of these
sources of work by using a useful fact on the number of
ancestors and descendants a node has in the subproblem it
belongs to in any level.

Lemma IV.1. Consider an execution of SEQ(G, k,0) on n-
node m-edge G. With probability 1 —n~' in each recursive
execution of SEQ(G',k,r) in line 22 of Algorithm 1 the
following holds

R2S(v) <nk™™ and RAM(v) <nk™ forallve G’

Proof: We prove by induction on r. Clearly the claim
is true for the one recursive call at » = 0. We will show
that assuming the claim for all recursive calls with r = j
the result holds for all » = j + 1 problems with probability
at least 1 — n~11. By applying union bound over all O(1)
values of r encountered in the algorithm implies the result.

Assume the result holds for every recursive execution with
r = j. Let v € V be any vertex, and let G’ be the induced
subgraph our algorithm is recursively called on with r =
j -+ 1 which contains v. We prove the claim for R2¢(v) as
the claim for Ré‘f‘c(v) follows by a symmetric argument.

Observe that the recursive call SEQ(G’, k,j + 1) is ulti-
mately called through an execution of SEQ(H, &, j) on some
H C G. Let @ be the set of nodes in V(G’) which are
descendants of v in H. Now if |Q| = RY®(v) is less than
nk™" we are done since the induced subgraphs we recurse
on only decrease in size. Thus assume |Q| > nk™".

Let Q1,Q2, - -- be the strongly connected components of
@, and consider any topological order over these subsets of
Q, where @); precedes Q; whenever a path from @; to Q;
exists. Consider any z,y €) where y precedes z in this
order. We investigate the random choices in SEQ(H, k, j)
that lead to G”’s formation. Observe that if we chose y as a
shortcutter for H, G’ would not contain z since v is in G’
yet « and v receive different labels from y: v is y’s ancestor
but z is either a descendant of or unrelated to y. Further, we
observe that if we shortcut from y any node z in y’s strongly
connected component would also fail to be in G’: z would
be given an X label. Thus if we shortcut the graph with any
of the nk~7 nodes which are earliest in the topological order

1671

of @ (which are closest to v in H) we can guarantee that
v in the G’ level has at most nk~7 descendants. Since we
choose each node with probability 20’“]% we fail to do
this with probability at most

(-

By union bounding over all vertices in G’ and over all
induced subgraphs encountered at level » = j we see that
our bound holds for all recursive calls with » = 5 with
probability at least 1 — n~'1. The result follows. [

We now bound the number of labels any vertex v receives
in any recursive execution which contains it. This will
provide us with an elegant way to bound the total work
of our procedure.

20k7 log n
n

—20

nk™’
) S e—QOlogn =n

Lemma IV.2. Consider an execution of SEQ(G, k,0) on n-
node m-edge G with k > 2. With probability 1 — 2n~10,
every recursive execution SEQ(G[V;], k,r) assigns at most
80k logn labels to every node w € V; in lines 12, 14, and
16, where X labels assigned by different shortcutters are
counted as distinct labels.

Proof: Note that v receives a label from a shortcutter
u only if u is related to v. By Lemma IV.1 we have that at
most 2nk™" nodes are related to v for all v in all executions
of SEQ with probability 1 — n~1°. Since we pick nodes in
the r** level with probability p, = w we see that
the probability that more than 80k logn labels are given to
v, assuming that at most 2nk~" vertices are related to v, is
at most
20k™ 1 log n

)

Pr [B (an‘_r, > 80k log n}

< exp (—?klogn) <n 12

by Lemma II.1. Thus v receives at most 80k log n labels with
probability at least 1 — n~'2. Union bounding this over all
nodes in all recursive executions of SEQ implies the result.
|

Finally, we conclude this subsection by bounding the total
work of SEQ, as well as the number of shortcut edges it adds.

Lemma IV.3. Consider an execution of SEQ(G, k,0) on n-
node m-edge G with k > 2. With probability 1 — 210
SEQ(G, k,0) runs in O(mk) time and adds O(nk) short-
cuts.

Proof: By our given probability of failure, we may
assume Lemma I'V.1 and Lemma IV.2 hold deterministically.
We begin by considering a single recursive execution
SEQ(G[Vi], k,r) generated by SEQ. We will bound the
number of shortcuts added by this call and amount of work
it performs before it recurses in 22. We will then aggregate
these bounds over all recursive executions and obtain our

final result. For convenience, let G[V;] have 7 nodes and 7
edges.

We first bound the number of shortcuts added by
SEQ(G[Vi], k,r). By Lemma IV.2 we observe that every
recursive execution SEQ(G|[V;], k,r) assigns O(k) labels to
every w € V;. As each label corresponds to a shortcut we
add in lines 8 and 10, we see that SEQ(G[V;], k,r) adds
O(k) edges to every w € V;: this is O(nik) edges in total.

We now bound the work performed by SEQ(G[V;], k,).
Within a call to SEQ, we perform work in two places: within
the loop in line 7 and when generating the partition in line
19. We bound the contributions of these sources in order.
First, observe that the loop in 7 can be implemented by
computing breadth-first searches forwards and backwards
from every w in the shortcutter set S. The amount of work
needed to apply the labels and and the shortcuts themselves
is clearly O(nk) by the above argument, so we need only
to bound the cost of running these traversals.

Observe that by IV.2 SEQ(G[V;], k, r') assigns O(k) labels
to every w € V;. Now the number of labels w receives is
within a factor of two the number of times it is visited in
searches. Thus w is visited O(k) times in our traversals.
Each time we encounter w in a traversal we perform a
constant amount of work for each edge incident upon it.
Thus if §;(w) is the undirected degree of w in G[V;], the
total work performed by SEQ(G[V;], k,r) is

9] (Z kb (w)

weV;

We finally bound the cost of generating the partition in
line 19. We implement this in two parts. First, we check
each vertex to see whether it has an X label and discard any
vertex which does. Next, we define an order over all possible
combinations of labelings a node could receive. We then sort
the remaining nodes by this order: we can then trivially read
off the partition. To implement this order of labelings, pick
an arbitrary ordering on the individual labels we distribute
to nodes. To compare two labeling schemes a and b we
internally sort a and b by our arbitrary ordering, and then
determine the order amongst a and b lexicographically.

To implement this procedure, we first note that by
Lemma IV.2 every node receives at most O(k) labels. De-
termining which of the 7 nodes have an X label clearly takes
O(nk) time. It is straightforward to verify that comparing
two labelings each with at most O (k) labels with this scheme
requires O(k) time: thus this partitioning can be found
in O(nk) time using a mergesort. Combining this with
the previous bound we see that SEQ(G[Vi], k,r) requires
O(rnk) time before recursing.

We now obtain our final work and shortcut bounds
by aggregating. If we consider the set of recursive calls
SEQ(H, k,r) for any fixed value of r, we see that the calls
are applied to a disjoint collection of subgraphs of G. Thus,

) = O(rnk).

1672

the total number of nodes in all of these subproblems is 7,
and the total number of edges is at most m. Thus cost of
performing all of these calls without recursing is O(mk),
and these calls collectively add O(nk) shortcuts. As there
are at most O(1) different values of r our claim follows. W

C. Path Related Nodes and Main Helper Lemma

We now prove a significant helper lemma that will enable
us to prove our diameter bound. We begin with some
context. Recall that the goal of our algorithm is, for any
path P € G with endpoints s and t, to find a bridge for
P. If in a recursive call to S we succeed in finding a
bridge for P we add the corresponding shortcuts to connect
s and t with a length 2 path: there is nothing more for
us to do. If instead we do not find a bridge in S, we
observe that P gets split amongst several different node-
disjoint subproblems: we then seek to find bridges for each
of these subproblems separately. Thus the collection of paths
P; represents the “residual” paths left for our algorithm to
resolve: we either pick a bridge and entirely resolve the
path or split it into pieces. While this splitting of the path
may seem counterproductive, we show that the total number
of path-related vertices in the next recursion level summed
over all P; decreases significantly in expectation when we
recurse. We thus can ensure some form of progress whether
we resolve the path or not.

In the below lemma, for a path P’ in a subgraph G’ C G,
we define s(P’, G’) to be the number of vertices in G’ that
are related to P’, as was done in Section II.

Lemma IV4. Let G be a digraph and let P be a path in
G. Let T be a uniformly random subset of V[G), where any
node v € V[G] is in T with some probability p. Define
S = T N Rg(P), and let |S| = t. Consider running
lines 5-13 of SEQ(G, k,r) (Algorithm 1) with this choice
of S. Then there exists a partition of P into exactly t + 1
(possibly empty) subpaths Py, Ps,--- , Pi11 which satisfies
the following conditions:

1) If S contains a bridge for P, then all the P; are empty.

2) If S contains no bridges for P, then the vertex disjoint
union of the P; is exactly P.
Each P; is inside some G|V} ;)] generated by SEQ for
a recursive execution for some f(j).

Further,

E|s=t l

Here, the expectation is conditioned on the event that |S| =
t; equivalently, we may take the expectation over a uniformly
random subset of t elements from Re(P).

3)

<

S s(PL GV | < g 5(P.G)

i

Before we prove this lemma, we describe our general
proof strategy. Depending on what S is, we will construct
a partition of P which satisfies our four constraints. If the

set S contains a bridge for P, our partition will be empty:
P’s endpoints are connected through the bridge. If S does
not contain any bridges, we simply consider all nonempty
subpaths of P inside the recursively generated subproblems
induced by S: we will show that this partition does not
form too many pieces. To prove the expected decrease in
the number of path-related nodes, we will explicitly use
the randomness of S. Consider any set C' of ancestors and
decendants of P. Let v be a vertex inside C, and imagine
shortcutting P with C' — {v} and forming the subpaths by
our partition. Now consider the event that v is path-relevant
for one of these induced subpaths. We will show that there
are at most two choices of v from C' such that this happens.
The result follows with some computation.

Lemma 1IV.5. Letr P be a path, and let A
{a1,a9, -+ ,a;41} be ancestors (resp. descendants) of nodes
in P. If we pick a; at random from this collection and
shortcut using the other | points, a; is path-relevant for one
of the subproblems with probability at most 1/(l + 1).

Proof: Index the path from head to tail !, and let ()
be the lowest-indexed node p such that x < p. Assume node
a € A remains path-relevant after shortcutting through all
the other a;. We will show that ¢ must satisfy the following:

e a is a strictly minimal element amongst the A: no a;
can have a as an ancestor.
o Amongst all a; which are unrelated to a, a(a) > a(a;).

For the first claim, assume for the sake of contradiction that
some a; had a as an ancestor. Note that since we shortcut
from a; it labels a with either a?nc or X depending on
whether a an reach a;. In the latter case we are done since
we do not recurse on nodes which receive X. In the former
case we observe that all the a; can reach the path yet no node
in the path can reach any a; since the a; are all ancestors.
Thus every node p € P receives either no label from a; or
a a?es label. As a receives a different label from every node
in P we conclude that it cannot be path-relevant to any path
subproblem in the next level of the recursion.

For the second claim, assume there existed a; which was
unrelated to o such that o(a;) < (a). This implies that if
a is an ancestor to a node p € P then a; is also an ancestor
for p. Thus every node in the path is either unrelated to a
or a descendant of a;. As all of a;’s descendants get a label
a]jDeS yet a receives no label from a;, we conclude that a
can only be placed in a subproblem (if at all) with a piece
of the path that it is unrelated to: thus a ceases to be path
relevant.

We now show that there is at most one vertex amongst
A which satisfies both of these conditions. Assume for the
sake of contradiction that both a; and a; would remain
path relevant if we shortcutted through A\a; and A\a,
respectively. If these two vertices were related, then by the

'We assign the head an index of 0.

1673

first of our conditions the one which was an ancestor will not
remain path-related; contradiction. If the two vertices were
unrelated, then «(a;) > a(a;) or vice-versa: the vertex with
the smaller « value cannot remain path related by our second
condition. Thus at most one node satisfies our condition, and
the claim follows.

An identical proof can be used in the case where the a;
are all path descendants.]

With this, we complete the proof of Lemma IV.4.

Proof of Lemma IV.4: We begin by defining the
partition P;. If S contains a bridge for P, we set all the
P; = (: this clearly satisfies the conditions. If S does not
contain a bridge, we look at the induced subgraphs generated
by SEQ in a recursive call. Let (); denote P intersected with
Vi— the part of P that lies in G[V;]. We choose the P; to be
exactly those); which are nonempty. We need only show
that there are at most |.S|+ 1 nonempty P;: conditions 1, 2, 3
are trivial. Observe that as S does not contain any bridges,
every path-relevant shortcutter picked is either an ancestor
or a descendant of P. Thus every shortcutter s € S induces
a “cut” of P into two contiguous pieces each assigned a
different label from P. It is straightforward to verify that this
implies that P can be split into at most |S| + 1 contiguous
regions each internally with the same labels: this forms our
partition P;.

We now turn our attention to the second fact. Consider
picking a random point v from Rg(P). We will show that
v is counted in some s(P;, G[Vy(;]) (that is, it remains
path-relevant for some subpath) with probability at most
t%. Let the points of S be si,S2,---,8:, and observe
that the ¢ + 1 points v, s1,---,s; form a random sample
from s(P, G). Amongst the s1,...s; we chose, some points
are path ancestors, some are path descendants, and some
are both (bridges). Assume that there are a ancestors,
descendants, and (3 bridges amongst the s(P, G) path related
points. We relabel the s; as x1,---,%q, Y1, ,Yd, and
z1,- -+ , 2, Where the x are path ancestors, the y are path
descendants, and the z are path bridges. Here, among the s;
there are a ancestors, d descendants, and b bridges. There
are two cases: either we picked at least one path bridge (in
which case the endpoints of the path are linked and the path
gets completely resolved) or we picked O bridge nodes. The
probability that we picked 0 bridge vertices is at most

t
TP
s(P, Q)
Now as v is also a randomly chosen vertex: with probability
p= ﬁ it is an ancestor, with probability ¢ = ﬁ it is
a descendant, and with probability g = ﬁ it is a bridge.
If we condition on the event that none of the s; were bridges,
we observe that a ~ B(t,-2-) and d ~ B(t, --). Thus the

ptq
probability v is path relevant is at most
E{p q

p
p+q

+

a+1 d+1}+9

by simply applying Lemma IV.5 to the cases where v is an
ancestor and v is a descendant separately and union bound-
ing the events. We now recall a useful fact: if X ~ B(n,p),

E[(X+1)"1] = 1—1()}7:)1;“ < p(n+1) By applying this fact
we observe that the probability v is path relevant condmoned
on us never picking a bridge shortcut is at most ; +1 +g. Thus
by multiplying by the chance of us never picking a bridge,

we see that the final probability v survives is at most

BN\t 2
(1= sma) (o) —a-9(
and the result follows.

s(P,G t+1
This can be verified to be at most —
|]

2 4
t+19)

t+1°

D. Recursion and Inductive Diameter Bound

With this helper lemma in place, we now use it to prove
our claimed diameter bound.

Lemma IV.6 (Inductive diameter bound). Consider run-
ning SEQ(G,k,0), and consider a recursive execution
SEQ(G[V'], k,r) with path P’ inside G[V']. Let t < log; n
be the largest value of r ever encountered in our recur-
sive calls. If we complete our algorithm’s recursion from
SEQ(G[V'], k,r), the expected distance from head(P') to
tail(P’") after applying our computed shortcuts is at most

(4v/2)7s(P',G")'/2, where T = log;n — 7. >

Proof: We proceed by induction on r with base case
r = log, n. Note that at this stage we have no more recursion
to do: P’ must consist of a single node and thus the distance
from head(P’) to tail(P’) is 0. Therefore, the result holds
for r = log, n.

For our induction step, consider an inductive execution
of algorithm SEQ(G[V’],k,r), and assume the result for
depth r + 1. Consider the subexecutions directly induced
by SEQ(G[V'], k,r). We shortcut P’ in the following way.
Say that our algorithm chose a set .S of ¢ vertices in R (P’)
as shortcutters. If one of the vertices in S is a bridge of P’,
we would simply traverse the bridge and go from our path’s
head to tail in 2 edges. Otherwise, by Lemma IV.4 we would
split P’ into t + 1 subpaths P{, P3,--- , P{, ; where

 The disjoint vertex union of the P/ is P’.

o Each P/ is inside some G[V(;)] on which SEQ executes

SEQ(G[Vy()l, k,r + 1) on for some f(i).

We can get from the head to tail of P’ by inductively
traversing each P/ in the order we encounter them, while
using ¢ extra edges to go between these paths. Now in either
case we use at most ¢t + 2 edges to traverse between the
subpaths formed by our recursion. We additionally use some
number of edges to traverse from the tail to head of each
of the subpaths we form. By our inductive hypothesis, we

2We note that the bound obtained here is weaker than the one obtained in
the parallel setting. We give a less tight analysis for this lemma in pursuit
of a shorter proof.

1674

see that the length of each P/ after applying our shortcuts
satisfies

E [shortcut length of P] < (4v/2)"*E[s(P/, G[V{])'/?].

Thus if we condition on the fact that |S| = ¢ the expected
shortcut length of P’ is at most
E [shortcut length of P’
t+1

<t+2+) (V2R [s(PiQ G[V;])W“S\ - t]
=1

t+1

<243 V2) VRV E o7, 60D IS =

Kl :t}

as (4/2)"'E[s(P],G[V{])}/?] > 1 for every i. We obtain
E [shortcut length of P'||S| = t}

t+1
<243 (2v2) (V)R [s(PL GIV)2|1S] = 1]

i=1

t+1

<2+Z (2v2) L (4vV2)'E [(P;,G[w])\|5|:tf

1
2

t+1
<24 (22) (4B VI IE Z (P, [v;})m:t]
<2+ VDV ViE [6]
<24 271 (4V2) s(P, GV'])?
< (4V2)7s(P,G[V')'/2,

where we used Jensen’s inequality in the second inequality,
Cauchy-Schwarz in the third, and Lemma IV.4 in the fourth.
As our final bound is independent of the value of ¢, the result
follows. |
With this result in place, we can now prove our final
theorem statement by setting » = 0 in Lemma IV.6.

Theorem 5. Let G = (V, E) be a digraph with n nodes
and m edges. Then with probability 1 — 2010 algorithm
SEQ(G, k,0) runs in O(mk) time and constructs a set F' of

O(nk) shortcuts such that an arbitrary path P is shortcut
to length n'/2+00/logk) v p 1,

Proof: By Lemma IV.3 our claimed work and shortcut
bound follow immediately. Let P be any path from s to
t. By Lemma IV.6 we observe that the expected length
of P after applying our constructed shortcuts is at most
(4v/2)o8r " (s(P,G))/2. As s(P,G) < n, this equals
nl/2+0(1/logk) a5 claimed. [

We observe that Theorem 3 follows from this by calling
SEQ(G, k,0) O(logn) times: the probability that any given
pair s,t fails to have a path of length twice the bound in
Theorem 5 between them after clogn calls is at most 1/n¢

by Markov’s inequality. By union bounding over all n? pairs
of points the claim follows.

V. PARALLEL ALGORITHM

In this section, we show how to extend the nearly linear
work sequential shortuctting algorithm of Section IV into a
work-efficient, low depth parallel algorithm. In Section V-A
we extend the definitions in Section II to the setting of
distance limited searches and reachability, which we need
throughout the section. In Section V-B we state our main
algorithms PARALLELSC and PARALLELDIAM, and give
intuition for how to reason about them. In Section V-C we
bound the total work, depth, and number of shortcut edges
added in the algorithm. Finally, in Section V-D we bound
the diameter of the resulting graph after the execution of our
algorithms.

A. Notation for Distance Limited Searches

Digraph distances and distance-limited relations: Let
G be a digraph. For vertices u,v € V define d(u,v) to
be the length of the shortest path from u to v. We define
d(u,v) = +oo if v & R2%(u), i.e. v is not reachable from
u. We also define distance-limited reachability, which is a
natural extension of the notion of reachability defined in
Section II. For a parameter D, we define the D-descendants,
D-ancestors, and D-related vertices to v as

RE*(v, D) = {u €V :d(v,u) < D}
and RE"(v, D) = {u € V : d(u,v) < D}
and Rg(v, D) = R2%(v, D) U RA" (v, D).

We extend all this notation to subgraphs G’ of G in the
natural way. Define dg (u,v) to the length of the shortest
path from u — v only using only vertices and edges in G’.
Then we define R2$(v, D), RAM (v, D), and Re/ (v, D) as
above. A vertex u is unrelated within distance D to a vertex
v (with respect to a subgraph G’) if u € V[G'|\R¢ (v, D).
Distance limited path relations: In Algorithm PAR-
ALLELSC, our searches are limited to distance D for
some random parameter . Here we define distance limited
path relations, analogous to the vertex and path relations
defined in Section II. As before, we denote a path P =
(vg,v1,...,v), where all the v; are vertices of G. We now
make the following definitions. As the range the parameter s
is chosen from depends on r, the current recursion depth of
the algorithm, our below definitions also depend on r. This
dependence is made explicit in lines 3 and 4 of Algorithm
PARALLELSC.
Throughout, we say that u <*® v if dg(u,v) < s, i.e. there
is a path of length at most s from u to v. We say that u A% v
if dg(u,v) > s.
o Fully path-related vertices. We say that a vertex v
is fully path-related if v € Rg(P, kor41D). In other
words, v € Rg(P, kD) for all k € [Kari1, Kar].

1675

Partially path-related vertices. We say that a vertex v
is partially path-related if v € Rg(P, ko, D). In other
words, v € Rg(P, kD) for some & € [Kory1, Kar)-

We distinguish three types of fully or partially path-
related vertices. The below definitions depend on the
parameter x chosen.

kD-Descendants. We say that a vertex
v is a kD-descendant of the path P if
v € RD®(P,kD)\RA"(P,kD). Note that then
we have that vy <("*tDD 4 and v £5P v,.
rD-Ancestors. We say that a vertex
v is an kD-ancestor of the path P if
v € RA™(P,kD)\R2*(P,kD). Note that then
we have that vy 2P v and v <(5+DD ¢,
xD-Bridges. We say that a vertex v is a kD-bridge of
the path P if v € R2*(P,kD) N RA"(P, kD). Note
that then we have that vy <(*tDD g and v <(ETDD 4,

Now, we define the following quantities and briefly ex-
plain their importance in Algorithm 2. Further details are ex-
plained in the paragraph below (explanation of Algorithm 2
and Algorithm 3). Let G be the n-vertex m-edge digraph
which we input, with vertex set V' and edge set E.

o Inputs k,r,r""2°: The input k denotes the speed that
our algorithm recurses at, and intuitively digraphs one
level lower in the recursion are “smaller” by a factor
of k. This is made precise by Lemma V.1. The level
r < log;, n denotes the level of recursion the algorithm
is at. Additionally, we have an inner recursion level
riringe < og n for the “fringe vertices” (defined below).
For each level of recursion r, it has at most logn inner
levels of recursion.

Set S: S is the set of vertices from which we search
and build shortcuts from.

Set F': F' is the final set of shortcuts we construct.
Search scale / distance D: The parameter D denotes
the scale on which the algorithm is running breadth
first searches. Our main claim is that through one
call of PARALLELSC(G, k,0,0) an arbitrary path in
G of length D will be shortcut to expected length %
(Lemma V.8).

Parameters x;, x: In the r-th recursion level, we ran-
domly choose the parameter k € [Ka,4+1, K2,] to Obtain
our search radius kD for our breadth first searches.
Probability p,.: At recursion depth r, for each vertex
v € V(G), we put v in S with probability p...

Labels v, vA7¢ X: We want to distinguish vertices
by their relations to vertices in S. Therefore, when
we search from a vertex v we assign a label v to
add vertices in RP (v, D)\ RA™(v, D), label v to
all vertices in RA™ (v, D)\ RP® (v, D), and label X to
all vertices in RP®(v, D) N R4%¢(v, D). The label X
should be understood as “eliminating” the vertex (since
it is in the same strongly connected component as v and

we have shortcut through v already).

B. Main Algorithm Description

Algorithm 2 PARALLELSC(G, k, r, '"8¢), Takes a digraph
G, parameter k, recursion depth r < log, n (starts at r =
0), and inner fringe node recursion depth rfi"ge < logn.
Returns a set of shortcut edges to add to G. n denotes the
number of vertices at the top level of recursion, not the
number of vertices in G.

10"t logn
1, ==
n

I: pp %min(

2. S+ 0. I

3 ko1 — 10%k21log’n (1 + @) and Ko,
10542 log® n (1 + @) 2r.

4: Choose Kk € [Kar+1, f2r| uniformly at random. >
Picking a random search distance

5. D 100 V2" 03 log?n.

6: for v e V do

7: With probability p, do S < S U {v}.

8: end for

9: F 0.

10: for v € S do

1 for w € RP*(v, (k + 1)D) do add edge (v,w) to
F.

12: end for

13: for w € R*"(v, (k+1)D) do add add (w,v) to F.

14: end for

15: for w € RP* (v, kD)\R**(v, kD) do add label

16: A" to vertex w.

17: end for

18: for w € RA"(v, kD)\RP* (v, kD) do add label

19: vP* to vertex w.

20: end for

21: for w € RP*(v,kD) N RA"*(v, kD) do add

22: label X to vertex w.

23: end for

24: Vine ¢ R(v, (k+ 1)D)\R(v, (k — 1)D).

25: F < FUPARALLELSC(G[V}8] k, r, ritinee 4 1),
> Recursion on fringe nodes

26: end for

27: W« {v € V : v has no label of X}.

28: V1, Vo, ..., Vp < partition of W such that z,y € V; iff
z and y have exactly the same labels. > Vertices in the
V; have no label of X.

29: for 1 <7</ do

30: F <+ F UPARALLELSC(G[V;], k, 7 + 1,0).

31: end for

32: return F'

1676

Algorithm 3 PARALLELDIAM(G, k). Takes a digraph G =
(V,E), parameter k. Modifies digraph G. Parallelizable
diameter reduction algorithm.
1: for i =1 to 10logn do
2: for j =1 to 10logn do
3: S; <= PARALLELSC(G, k,0,0), aborting if the
work or shortcut edge count exceeds 10 times the bound
in Lemma V.7.

4: end for
s E(G) « E(G)U (Uj sj)
6: end for

Overview of Algorithm 2: Algorithm 2 is similar to
Algorithm 1. All parts of Algorithm 1 can be implemented in
low parallel depth except for the breadth first searches from
the vertices in S (lines 10 to 24). To resolve this, a natural
idea is to limit the distance of the breadth first searches to D,
where D denotes the diameter bound given by Lemma IV.6.
Running these incomplete searches introduces issues in the
analysis though. To get around this, we follow an approach
similar to [1] and perform some additional computation on
the fringe of our breadth first searches. Specifically, we
choose a random integer « in the range [K2,11, kor] (think
of these as parameters which are poly(logn, k)), and search
from a vertex v to distance approximately ~D. Then, we
call the vertices in the set R(v, (x + 1)D)\R(v, (x — 1)D)
the fringe vertices. We chose x randomly to ensure that the
expected number of fringe vertices is sufficiently small. We
then recurse on the fringe vertices, which is done in line 25
of Algorithm 2.

In addition, we assign labels based on reachability within
distance kD. As we show later in the section, the analysis as
done in Section IV can be modified to tolerate these changes
and obtain a similar result.

We would like to note some differences between the ways
fringe vertices are handled in our algorithms compared to
those in [1]. One difference is that we directly handle fringe
vertices by recursing on only that set, while in Fineman’s
algorithm the fringe vertices are lumped into the recursion on
ancestor sets. The reason for the difference is that our way of
partitioning our vertex set before recursing is more involved.
Additionally, in our algorithm, we explicitly track the depth
of recursion on fringe vertices (parameter r*1"&°) inside our
algorithm. We must do this as our algorithm requires good
control on the number of ancestors and descendants of a
vertex (Lemma IV.1), and we do not obtain the required
bound on the number of ancestors or descendants when we
recurse on fringe vertices. Additionally, we must ensure that
rfringe < logn so that our algorithm still has low parallel
depth.

Explanation of Algorithm 2 and Algorithm 3: Here, we
give a detailed description of what each part of Algorithm 2
and Algorithm 3 is doing. Lines 1 and 2 of Algorithm 2

are simply initializing the set of vertices we search from S
to the empty set and picking the probability p, for which
v € S. In line 5, we choose our search scale D. This is
chosen to be a constant factor larger than the bound given in
Lemma IV.6 and the analogous Lemma V.8. In lines 3 and
4, we define the parameters k € [Ka,41, k2|, Which will
define our search radius xD. Note that kg > k1 > Ko > - -+
and that x; > %no for all ¢, as r < log;, n. This way, the
search radius is decreasing with every recursion level. In
lines 6 and 7, we are choosing the set of vertices to breadth
first search from, and we are adding them to S. In line 9, we
initialize the set of shortcut edges we are going to eventually
add to the empty set.

In lines 11 and 13, we are adding all the shortcut edges
through a vertex v € S. In lines 16 to 22 we are applying
the ancestor, descendant, and ‘“eliminated” labels to other
vertices. In line 25, we are running a recursion on the fringe
vertices in our search from v. Note that we have increased
ritinge o rfringe 4 1 but have kept the parameter r the same.

In lines 27 and 28, we are processing the labels assigned to
the vertices. We first remove from consideration all vertices
which have a X label, and then we partition the remaining
ones into groups based on matching labels. In lines 29 and
30 we recurse on these groups we have created. Note that
we have increased r to r + 1 and reset 8¢ to 0.

In Algorithm 3 we are simply running PARALLELSC for
multiple iterations. Specifically, we can guarantee that the
expected head to tail distance of any path of original length
at most D is now at most TDO' Running this O(logn)
times ensures that any fixed path of length D has been
shortcut to length % with high probability. Now, if we run
this procedure O(logn) times, it is easy to see that any
path’s head to tail distance will get reduced to D with high
probability: split this path into polynomially many paths of
length at most D and note that with high probability each of
these paths’ lengths gets reduced by a constant factor. Thus
the original path’s length falls by a constant factor, and we
continue to do this until the original path’s length becomes
at most D.

How to reason about the randomness: In order to
reason about the randomness used in sampling x and
S, we should imagine that the during an execution of
PARALLELSC(G, k, r, rFin8°) the algorithm first samples
before doing anything else. After sampling x, we then know
precisely which vertices are xD-descendants, xD-ancestors,
and «D-bridges with respect to the specific path P that
we are analyzing. Given this, we can essentially proceed
forwards with similar arguments to those in Section IV.

C. Shortcut and Work Bound

In this section, we prove many lemmas which help us
bound the total amount of work and shortcut edges added.
We attempt to make the bounds with high probability
whenever possible, but some are in expectation.

1677

We start by proving an analogue of Lemma IV.1.

Lemma V.1. Consider an execution of
PARALLELSC(G, k,0,0) on n-node m-edge digraph
G. With probability 1 — n~'0 in each recursive execution
of the form PARALLELSC(G’, k,r,r"8®) of Algorithm 2
the following holds:

|R255(v, ko, D)| <mk™" and |RAM(v, ke D)| < nk™"
forallve V(G .

Proof: We proceed by induction. The base case r =
rfringe — (0 is clear. All recursive calls are one of the
following forms: let G’ be a digraph in which we made a
call to PARALLELSC(G', k, r, rrn8¢), We consider the cases
of a recursive call to PARALLELSC(G'[V;"8], k, r, rfringe 4
1) and a recursive call to PARALLELSC(G'[V;],k,r +
1,0) separately (line 25 and 30). In the former
case, the claim is clear, as in our recursive call to
PARALLELSC(G'[V}"8] k, r,riinge 4 1) the parameter r
stays fixed, and the digraph G’ already satisfied

RES (v, kg, D) <mk™" and RAM(v, kg D) < nk™"
for all v € V(G') .

Now we consider the case referring to G'[V;]. Consider
a vertex v € V;. Order the vertices in Rg?s(v,/izTHD)
as wi,wa,...,wy, where M = |RB?S(U,/<52T+1D)|. The
ordering is such that if ¢ < j then either w; ¥ w; or w;
and w; are in the same strongly connected component. It is
easy to see that such an ordering is possible.

Now, note for any ¢ we have that

’RA]/HC(’wt, HQT_HD) n Rg?s(’l}, ng_i'_lD)} <t.

Therefore, if w; € S for some t < nk~"~! then we would
have that

(RDSy,) (0, e 42D)| < k™",
as Kor42 < Kor41. The probability of this is at least
1—(1—p)wT >1—n"10

from our choice of p,., as desired. |

As we must recurse separately on fringe vertices (hence
redoing the computation on them), we need to be able to
control the number of fringe vertices. Therefore, it is natural
to bound the expected number of times a fixed vertex is a
fringe vertex for some breadth-first search.

Lemma V.2. Consider an execution of
PARALLELSC(G, k, 0, 0) on n-node m-edge
digraph G and a recursive execution of the form
PARALLELSC(G', k,r,r"8¢). Let v € V(G'). The
expected number of times w is in a recursive fringe
subproblem, i.e.

u € Rgr (v, (k+ 1)D))\Rg (v, (k — 1)D))

. . 1
for some v € S (line 25), is at most 1000k log® -

Proof: For a vertex v € Rgr(u, k2,D), the probability
that v € S and u € R/ (v, (k + 1)D))\Re (v, (k — 1) D))
over a random Kk € [Koy41, k2. is clearly at most p, -
#@TH. Also, we have that |Rg(u, k2, D)| < 22 with
high probability by Lemma V.1, so the expected number of
times w is in a fringe subproblem is at most

2 2n 1
Kor — Kar41 k" = 1000k log® n

from our choice of kg, k2,41, P, and a direct computation.

|

Now, we can show that the total size of all the digraphs

we process during the algorithm doesn’t increase much

between levels of recursion. Additionally, at deep fringe

recursion levels (for large r11"8°) exponentially few vertices
are processed.

DPr -

Lemma V.3 (Expected total size bounds). Consider an
execution of PARALLELSC(G,k,0,0) on n-node m-edge
digraph G. For any recursion depth r < log; n and fringe
recursion depth "8 we have that:

o The expected value of the total number of ver-

tices of the digraphs G' in all recursive execu-
tions PARALLELSC(G, k,r,r""8®) is at most n -

(1+55) L

o The expected value of the total number of
edges of the digraphs G' in all recursive
executions PARALLELSC(G', k,r,rfrinee) s at

T
mostm-(lJr@) W
Proof: We focus on proving the first point, as
the second is analogous. The first point follows di-
rectly by induction from a combination of Lemma V.1
and Lemma V.2. Specifically, we separate the cases
ritinge () and rfringe — (. In the former case, note
that this must result as a recursive call of the form
PARALLELSC(G” [V 18] k, r, ritinee) where we also made
a recursive call of the form PARALLELSC(G”, k, r, rfrinee —
1). By induction and Lemma V.2, we know that the ex-
pected total number of vertices in all recursive calls to
PARALLELSC(G"[V}"8] |, r, rfinee) is at most

1 1 r 1
—— n- [1+ . .
1000k log® n (log n) (2logn)r e -1
< 14+ 1 ' 1
>~ log n (2 log n)rfrlnge

as desired. We would like to note that the value Wloggn
is much smaller than we need to prove Lemma V.3; instead
it is needed in Lemma V.9 below.

In the case "8 — (), it must have resulted in a recursive
call to PARALLELSC(G”[V;], k,r + 1,0) for some digraph
G", where we also made a recursive call of the form

1678

PARALLELSC(G”, k,r,r1"8°) As the V; form a partition
of V(G"), we can see that the total number of vertices over
all calls to PARALLELSC(G"[V;], k,r + 1,0) for such G”

and V; is at most
r r+1
) e =1 5k)

> w1+

,rfringezo

as desired.]
Because exponentially few vertices are processed at large

fringe recursion depths, we can guarantee that with high
probability that "8 < logn always.

1
logn

1
2logn

1
logn

Corollary V.4 (Fringe depth is at most logarithmic).
Consider an execution of PARALLELSC(G, k,0,0) on an
n-node m-edge digraph G. With probability at least
1 — n7 % we make no recursive calls of the form
PARALLELSC(G', k,r, r'ing®) and ringe > logn.

Proof: The expected value of the total number of
vertices of the digraphs G’ in all calls to
PARALLELSC(G, k, r, r'f"®) where rf"8¢ > logn is at

most
T
n . <1)
r=0 Tfringe>logn

< 3n < 1
— (log n)logn — plo
by Lemma V.3. Thus, the claim follows. |
Additionally, we can bound the total sizes of all digraphs
we process during the algorithm.

log, n

1
+
logn

1
(2 log n),,.fringc

Corollary V.5 (Total size bound). Consider an execution of
PARALLELSC(G, k,0,0) on an n-node m-edge digraph G.
e The expected value of the total number of ver-
tices in the digraphs G’ in all recursive calls

to PARALLELSC(G', k,r,r'"&®) for some r <
log, n, rM"8¢ is at most 3nlogn.

o The expected value of the total number of
edges in the digraphs G’ in all recursive

calls to PARALLELSC(G’,k,r,r'"&®) for some
r < log, n, "8 is at most 3m logn.

Proof: Note that the total number of vertices over all
the G’ in recursive calls is at most

" 1
1 : fringe
(2logn)rre

by Lemma V.3. The edge bound follows similarly. |

We now proceed towards proving our ultimate bounds on
expected total work and expected number of shortcut edges
added.

log, n

2. >

r=0 Tfringezo

1
+
logn

< 3nlogn

execution
n-node,

Lemma V.6. Consider
PARALLELSC(G, k,0,0) on

an
an

of

m-edge

digraph ~ G. Consider a recursive execution of
PARALLELSC(G, k, r, ririnee), For all integers
Kk € [Kari1,kar], with probability 1 — n=10 over the

choice of S we have that for all vertices v € V(G'), the
number of vertices uw € S such that v € Rg/(u, kD) is at
most 50k logn.

Proof: Fix v € V(G’). By Lemma V.1, the number of
u for which v € Rg/(u, kD) is at most 2nk~". Therefore,
the expected number of u € S for which v € Rg(u, kD)
is at most p, - 2nk™" < 20klogn. By a Chernoff bound
(Lemma II.1), we have that the number of vertices u € S
such that v € Rg/(u,kD) is at most 50klogn with
probability at least

1 —exp(—1lklogn) >1—n"'%

The claim follows by union bound.]

Lemma V.7 (Work and depth bound). An execution of
PARALLELDIAM(G, k) on_an n-node, m-edge digraph G
can be implemented to do O(mk+nk?) total work in expec-

tation, add O(nk) shortcut edges in expectation, and have
1

parallel depth 5(poly(k})\/§log'C nnﬁ) with high probability.

Proof: Tt suffices to show that an execution of
PARALLELSC(G, k,0,0) on an n-node, m-edge digraph G
can be implemented to do O(mk) total work in expectation,
add O(nk) shortcut edges in expectation, and have paral-
lel depth O(poly(k)v2 °** "n?) with high probability. We
show this in the two paragraphs below. Then the lemma fol-
lows as all digraphs G that we call PARALLELSC(G, k, 0, 0)
on during an execution of PARALLELDIAM(G, k) will have
O(m + nk) edges with high probability.

Work bound: By Lemma V.6, it is clear that the
number of shortcut edges added is within a multiplicative
O(k) of the total number of vertices in all digraphs in all
recursive subproblems with high probability, hence is O(nk)
in expectation by Lemma V.3.

Similarly, the total W(lrk from the breadth first searches is
within a multiplicative O(k) of the total number of edges in
all digraphs in all recursive subproblems, hence is O(mk)
in expectation by Lemma V.3. The remaining nontrivial
work comes from line 28. We implement line 28 in the
following manner. Consider a recursive execution of the
algorithm on a digraph PARALLELSC(G’, k, r, r1"8¢). We
put an arbitrarily total ordering on the labels vA"¢ and vP®s,
and for each vertex v € V(G’) we assume that its set of
labels, none of which are X, are sorted according to this
total ordering. Now, we sort all vertices u € V(G’) that have
no label which is X lexicographically by their set of labels
using Cole’s mergesort algorithm [17], and then group them
into the sets V; based on contiguous groups that have the
same label. Each comparison takes work O(k) with high
probability as every vertex u has O(k) labels with high

probability by Lemma V.6. The total work of the merge
sort is thus O(k|V(G")|) as desired.

Depth bound: Clearly, the breadth ﬁrgt searches
(lines 10 to 24) can be implemented in O(koD) =

O(poly(k)\/?logk nn%) parallel depth by our choice of k.
Line 28 can be implemented in parallel depth O(k) via
Cole’s merge sort [17] as described in the above paragraph.
|

D. Diameter Bound after Shortcutting

In this section we show the analogue of Lemma IV.6.

Lemma V.8 (Inductive parallel diameter bound). Per-
form an execution of PARALLELSC(G,k,0,0) on an n-
node, m-edge digraph G. Consider a recursive execution
of PARALLELSC(G, k,r, r'""8®), with all shortcut edges
added. For any path P C G’ with length at most D, the
expected distance from head(P) to tail(P) using edges in
G’ and shortcut edges is at most

_ 1\ 1

where 7 = logpn — r, and s(P,G') is the number of
partially path related vertices to P in G', i.e. s(P,G') =
|Rc (P, karD)|.

Note that we have that

Nl=

f 1 log, n
5(1 1 2
o+ 1) (Va4 i)

s D
n =

— 107

so that any path of length D will be shortcut to expected
length % in one run of PARALLELSC(G, k, 0, 0).

Setup for proof of Lemma V.8: An execution
of PARALLELSC(G', k,r,rfrinee) will generate

ogp n

< 10log m/él

many recursive subproblems, each of the form
PARALLELSC(G'[V}"8] |, r, rfinge 4 1) or
PARALLELSC(G'[Vi], k,» + 1,0). These recursive

subproblems (other than the fringe vertices) all involve
disjoint sets of vertices, hence the path P that we are trying
to analyze gets “split” into subpaths when we look at the
recursive subproblems. Our next claim gives structure on
how we can split up the path P into subpaths, which are
contained in our various subproblems.

Lemma V.9 (Splitting up a path). Consider the setup
described in the above paragraph and Lemma V.8. Let k
be such that kar41 < k < ko and S C R/ (P, kD) be the
set of shortcutters. There exists paths PiS’K” (possibly empty)
Jor 1 < i < |S|+1 and Pis"“frlnge (possibly empty) for
1 <@ < |S| such that

1) If a vertex uw € S is a kD-bridge, then all Pis"'C and

F;S,mfringe are empty.

1679

2) If no vertex u € S is a liD-bridge, then the vertex
disjoint union of all P Ffor1 <i < |S|+1 and
poriinee g1 < < |S| is exactly P.

3) Each PS " is inside V,, for some index a;.

4) Each PZS mfringe ;o o subset of V& for some vertex
u; € S (line 25).

Additionally, we have that

t+1 T

% 2

Ex[s)=t lZS(Pf’ G| < 5gs(PG) (M)
i=1

and

.]
1
Do s(PIEE V) | < g s(PG),
= ‘ 1000k log” n
@

where B, g refers first selecting k € [kori1,Kar] uni-
formly at random and then picking the shortcutter set S as
a random subset of R (P, kD) of size exactly t (as opposed
to the way S is selected in Algorithm 2). E, g refers to first
selecting K € [Kory1,kar| uniformly at random and then
selecting S as in Algorithm 2, where every vertex u € V(G')
is in S with probability p,.

]En,S

Here, we assert that S C R/ (P, kD) as searching to
distance D from vertices u ¢ R/ (P, kD) does not affect
the path P.

Proof: We describe a process for constructing the Pf”
and Pis"{’fringc, and then verify that this construction satisfies
all the necessary constraints.

If a vertex u € S is a xkD-bridge, then we set all the
P%" and P8¢ (o be empty. Otherwise, first consider
the case where v € S is a kD-descendent. Let vg < v; <

- <X vy be the vertices on the path P. Define

bot(u)
and top(u) = min (bot(u) +1,

=min{i: 0 <i</,v; € RA(u,xD)}

max{i : 0 < i < {,v; € R (u, (k — l)D)})

and top(u) = bot(u) 4+ 1 in the case that the set {i : 0 <
i < l,v; € RA(u, (k — 1)D)} is empty. Define

WP (y) = {v; : 0 < i < top(u)},

WP (4) = {w; : bot(u) < i < £},

wirinee () = {top(u) < i < bot(u)}.

In particular, it is easy to verify that Winee(y) C V/fringe,
For the case where u € S is a kD-ancestor, define

top(u) = max{i: 0 < i < ¢,v; € R (u,kD)}

and bot(u) = max (top(u) -1,

min{i: 0 <i </, v; € R2S(u, (k — 1)D)});

where bot(u) = top(u) — 1 in the case that the set {7 :
0<i</lv; €RE%(u,(k—1)D)} is empty. We can now
define WP (u), WPt (v), and Winee(y) analogously.

Now, our goal is to define a set of natural subpaths of
P which are inside various V; (line 28). Specifically, for a
subset T' C S, we define

Wy = (ﬂ WtOp(u)> N

ueT

m Wbot (u)

u€S\T

W was defined so that it is inside some subset V; (line 28)
and is a subpath of P. To show that W is contained inside
some V; it suffices to show that all vertices in WP (u)
receive the same label from v (and by symmetry the same
holds for WP°(u)). In the case where u is a xD-descendant
of P, it is easy to verify that WP (u) C RA2(u, kD), and
that all vertices in WP°(u) are unrelated to u. In the case
where u is a k D-ancestor, it is easy to verify that WPt (u) C
R5¢%(u, kD), and that all vertices in W*°P () are unrelated
to w. This shows that W always lies inside V; for some i.

It is easy to check that the number of nonempty Wr
over subsets 7 C S is at most |S| + 1. We denote
these sets Wy, Wa, ..., Wg ;1. For simplicity, label the
paths Wnee(y) for u € S as Wig|42, ..., Was|+1. By
definition, we see that P itself is the (not necessarily disjoint)
union of Wy, Wy, ..., Wy 511 . Now, one can easily check
that for any paths Wi, Wy, ..., Wy 511 whose union is
P, then there are subpaths 71, Zs,. .., Zy 5141 (possibly
empty) such that Z; C W; and that the vertex disjoint union
of the Z; is P.

Now, we define the PZ-S’” as the subpaths Z; for 1 <
j < |S] + 1, and define the Pf’”’fringe as the subpaths Z;
for |S| + 2 < j < 2|S| + 1, which then by definition were
subpaths of Winee(y) for some u. Now we verify that these
choices satisfy the conditions of Lemma V.9.

Construction satisfies item 1: This is by definition (see
the first sentence of the proof).
Construction satisfies item 2: We have defined the Z;

so that their vertex disjoint union is P, and each of the PS "
and P> is one of the Z; or empty.

Construction satisfies item 3: The definition

Wy = <ﬂ WtOP(u)> N

ueT

ﬂ Wbot (u)

ueS\T

corresponds to assigning the labels to vertices V(G’) and
partitioning into sets V;. As each Pf"i was a subpath of
some W, the claim follows.

Construction satisfies item 4: Each P>™"0&° jg g
subpath of one of Wg|y2,..., Wa 5|41, Wthh were each
Wiringe (y) for some u. We have noted that Wiringe (4) C
Vrlng

ng,

1680

Construction satisfies Eq. (2): Note that

EH,S

t
Z 8(1—_-,Z_£v',n,fringe7 G/[Vurlmg])
i=1

<Eis Z ‘ering N Re/ (P, HQTD>’

vES

3

|

as no vertices outside of Rg (P, ko, D) can become path
related. The right hand side of Eq. (3) is counting for every
vertex u in Rgr (P, ko D) the expectation over the choices of
K, S of the number of times that v is in a fringe subproblem,
i.e. u € VI8 for some v € S. By applying Lemma V.2, we
can see that this expression in Eq. (3) is with high probability
at most

]EmS Z |ering N Rgr (P, K2TD)|

veS

|Ra: (P, Koy D)| = s(P,G").

= 3 3
1000k log® n 1000k log” n
Construction satisfies Eq. (1): The proof essentially

follows the same shape as Lemma IV.4 and Lemma IV.5.
Our main claim is the following.

Claim V.10. Consider an arbitrary subset of vertices
{ur,u2, -+ ,ut41} C Re/ (P, kD). Then there are at most
2 indices 1 < h <t + 1 such that setting S = {u; : j # h}
and running the procedure described so far in the proof of
Lemma V.9 to produce the sets P>" and P28 results
in up still being path related in a non-fringe subproblem,
i.e up € RG/[Vai](PiS"”, kD) for some 1 <1i <t+ 1.

Now we explain why Claim V.10 implies Eq. (1). In-
tuitively, in Eq. (1), we can think of choosing the set S
with |S| = t instead as first uniformly randomly choos-
ing a subset S’ C Rg/(P,kD) with |[S'] = ¢ + 1 and
then choosing uniformly randomly choosing S C S’ with
|S| = t. We then apply Claim V.10. Formally, we have
the following, where 1(.S,w) is the function evaluating to 1
when u € RG,[Vai](PiS’K’, kD) for some 1 < i < ¢+ 1 and
0 otherwise.

t+1
E s=t [

Z S(Piswv G/[Vai])

=1
uwER g (P,kD)
< s(G", P) .]E~,|S,‘:t+1EfSC‘§; [1(S'\S, S)]

=Ey |s1=t 1(S,u)

<
T t4+1

by Claim V.10 as desired. Between the second and third
lines we have used linearity of expectation on the inner sum
and symmetry. For the remainder of this proof, we focus on
proving Claim V.10. We instead prove a slightly stronger

s(G', P)

1681

and more restrictive version of Claim V.10 in the case that
all the u; are path ancestors (or all path descendants).

Claim V.11. Consider an arbitrary subset of vertices
{ur,ug, -+ ,ut41} C R/ (P, kD) such that the u; are all
path ancestors or all path descendants. Then there is at most
one index 1 < h < t+1 such that setting S = {u; : j # h}
and running the procedure described so far in the proof of
Lemma V.9 to produce the sets PZ.S’K' and]—71-S’N’frimg’.e results
in uy still being path related in a non-fringe subproblem,
ie up € RG/[VW](HS"{, kD) for some 1 <i <t+ 1.

We now explain why Claim V.10 follows from Claim V.11
and then show Claim V.11. To show Claim V.10, note that
the claim is trivial if the set S = {uj,ug, -+ , w41}
contains a bridge. Indeed, as picking the set S to contain
a bridge leaves no path related subproblems, the only index
J satisfying the constraints of Claim V.10 must be the j
where u; is the bridge. Now, assume that all of the vertices
in S’ are either path ancestors or descendants (not bridges).
Applying Claim V.11 on the subset of path ancestors among
S’ and the subset of path descendants among S’ immediately
implies Claim V.10: we get one valid index from the path
ancestors and one from the descendants, for a total of two.

We now show Claim V.11. Consider the set S’
{u1,u2, -+ ,us41}, where all the u,; are path ancestors.
Therefore, for any subset S C S’, if we shortcut using
vertices in S, then all vertices in P will only get labels of
the form u?es, and no u;f*nc labels. For every vertex u € S,
define

a(u) =min{i : 0 <i < ¢ and v; € RES(u, kD) for all j > i},

where we recall that the path P consists of vertices vy =<
v1 X --- =2 vp. We claim that the only index j that could
satisfy the condition in Claim V.11 is such that

« We have that u; A" u; for all j/ # j.

o o(u;) is unique and minimal out of all the values of

a(u;) for the vertices u;s satisfying the first point.

Indeed, for an index j, if there is an index j’ such that
u; =<*P u; then vertex u; receives the label uf,“c when we
shortcut from /. On the other hand, no vertices on the path
P receive the label "¢ as u;: is a path ancestor. Now, let

i
I'={j:u; 2P uy forall j' # j},
the set of indices which satisfied the first condition. Note that
by definition, for any distinct indices j,j’ € I, the vertices
u; and u; are unrelated within distance xD. Now, assume
that a(u;) > a(u;/). We aim to show that in this case that
uj & Raryy, |(P;", D) forany 1 < i < t+1, which would
P>" kD),
then by the definition of a(u;) we would need for P>" to
be a subset of the path P from v,y;) to ve. Otherwise, the
path Pis’“ would be forced to be part of a fringe subproblem
induced by u;. Now, again by the definition of «(u;), we

complete the proof. Indeed, if u; € Rerpy, |(

know that all vertices in the path P from v (y;) to v, will
receive a label of ub® because a(u;) > a(uj), while
vertex u; does not receive a label from u;/, as u; A% u;.
Therefore, u; & RG/[VM](PZ.S”‘, kD) forany 1 <i<t+1,
which completes the proof.
|
Now, we prove Lemma V.8.

Proof of Lemma V.8: The proof is via induction and
Lemma V.9. Indeed, the claim is trivial for # = 0, as
Algorithm 2 chooses all vertices as shortcutters as p, = 1.

We first claim that (using the same notation as
Lemma V.9) that with probability 1 — n~19 we have that
|Re (P, kD)| < 100k log n. Indeed, note that

|Re: (P, kD)|
< |Rey (head(P), (5 + 1)D)| + | R (tail(P), (x + 1)D)|
< 100k logn

with probability at least 1 — n~!0 by Lemma V.6.

For a path P, parameter x, and set S we have by
Lemma V.9 that we can partition P into disjoint paths PZ-S o
and Pis minge Then the final length of P after shortcutting
through S and recursive shortcutting is clearly at most the
total length of all the P and P> "8 after shortcutting,
plus at most 2|S| + 2 (for edges between adjacent paths).
Note that this even holds in the case where S contains a
bridge: in this case all the Pis’“ and Pf’”’fﬂnge are empty
by definition, and the shortcutted length of P is 2, which is
at most 2|S| + 2.

By induction, we have that the expected length of P after
shortcutting through S and recursive shortcutting is at most

Ens[21S] +2 “
[S|+1) o
r S,k / %
+ ; 57 (\/§+ 210gn> s(P", GV,]) (5)
|S| -
1 . .)
+ Z 5(7: + 1) (\/5 + 21Ogn> S(Pis,fi,frlnge7 G/[VJ:ng])E}
i=1
(6)
=2+ 2E, s[|5]] s
r— [S]+1
+ 57 \/§+ 1 1E,{S[Z S(P,S’“ G/[Va.])%}
2logn w4 i 5
3
1 ’ 151 . . L
+ 5(77 + 1) (\/§+ m) EN,S[ZS(PZ-’S’H’hlnge7 G/[Vur’mg])i]

B ©)

by induction, where E, g refers to first selecting x €
[K2r+1, Kor] uniformly at random and then selecting .S anal-
ogous to Algorithm 2, where every vertex u € Rg: (P, kD)
is in S with probability p,.. We only care about those
u € Rg/ (P, kD) as those are the only path related vertices,

1682

and picking other vertices can only make less vertices path
related in the future.
We bound the pieces of Eqgs. (7) to (9) now. We split the
analysis into cases depending on the size of E, g[|S]].
Case I: E, g[|S|]] > s(P,G')2: We assume that the
length ¢ of the path P must satisfy

!) s(P, G’)%7

2logn

(>5(F+1) <\/§ +
or else the claim is trivially true. If
pr-8(P,G') > s(P,G')%, then p, > s(P,G')"*

so we have that the probability that some vertex of P is in
S is at least

1—(1=py) >1—exp(—Lp,) >1—n"°

by our assumed bounds on ¢ and p,.. Therefore, our path P
is shortcut to length 2 with high probability. This completes
the analysis for this case.

Case 2: E, s[|S|] < s(P,G')2: We now bound each
of the pieces of Egs. (7) to (9).

Bound on E,; 5[|S|]: Note that

E..s[|S[] < prs(P,G') < 5(P,G')*

by our assumed bound on p,..
Bound on rightmost term in Eq. (8): Using the Cauchy-
Schwarz inequality and Lemma V.9 Eq. (1) we can see that

e |S]+1
1 ' S. 1
r 2 E P> GV, 1)z
57 <\[+ 210gn> ms[; s(P7", GV,)
1 o1
<57 2 P =t
< 57 <\f+ 210gn> zt: [|S] = ¢

t+1)
By, 5=t [Z S(Pi&ﬁa G,[Vai])é]

i=1

1 7—1
. — 1.
< 57 (\/§+ 210%) ;mm t]
t4+1 3
IEm,|5’|:t <(t + 1) Z S(Pis"i? G/[Vaz])>
=1
1 7—1
< 57 = t|.
< 57 (\/§+ 210gn> zt:Pr[|S| t]
t+1 2
EKZ,lSl:t ((t + 1) Z S(PiSJia G/[VGID>
i=1
1 r—1 .
< BF =1 . . "2
< 57 (ﬁ+ 210%) zt:Pr[|S| t]-V2-s(P,G")
7—1
=5r<\/§+ ! > V2 8(P,G)3.
2logn

Bound on Eq. (9): We follow the same plan as in
the above paragraph. Using the Cauchy-Schwarz inequal-
ity, Lemma V.9 Eq. (2), and our observation above that

|Re: (P, korD)| < 100k log n with high probability we can
see that

5(F + 1) <f+ 2logn>rl~

S|

EH,S {Z S(PiS,/i,fringe’ G/[Vurlmg]) %:|
i=1
r—1
S5(r+1) (f + 2 logn) '
[/ s | N\
ER,S |S| Z 8([)I‘S,n,ﬁrmge7 G/ [V;:ng])
i=1
) 71
< 5(r .
5(F41) (f+ 210gn)
B | . :
ER,S |S| Z 8([)145’,;:,,frl]ﬂge7 G/ [V;:ng])
i=1
<5(F41) <f+> ZPr [1S] = 1]-
|RG’(Pa "i2’r‘D)| . S(P G/)%
1000k log® n ’

5(F+1) <\/§+ mlgn) zt:Pr[|S| =t

100k 1 1
00k og;i Cs(P.G')
1000k log” n
F—1 1
< 57 .— . 5(P ’*,
sor <\[+210gn> 2logn (PG

Summing all our contributions gives that the expression in
Egs. (7) to (9) is at most

2+2EH,SHS|]
F—1 [S|+1
_ PS,N / %
+ 57 <f+210gn) Exs| ; S(PP",G' Vi)
ro- 11 s

EK,,S [S(ID_ASf,;Q)f'ring;e7 G/[Vlflmg])%]

>T1 V2-s(P,G)?

<2+42s(P,G): +57 (V2 +
2logn
r—1

" 1 1
57 P,G)=
* T<\[+210gn) 210gn (B
1 1
<5(F+1 P,G")>
<5+ 1) (V2) (P
as desired. [|

To conclude the proof of the correctness of Algorithm 3,
it suffices t