
New Notions and Constructions of Sparsification for Graphs and Hypergraphs

Nikhil Bansal

CWI
Amsterdam, Netherlands

Email: bansal@gmail.com

Ola Svensson

EPFL
Lausanne, Switzerland

Email: ola.svensson@epfl.ch

Luca Trevisan

Bocconi University
Milan, Italy

Email: l.trevisan@unibocconi.it

Abstract—A sparsifier of a graph G (Benczúr and Karger;
Spielman and Teng) is a sparse weighted subgraph G̃ that
approximately retains the same cut structure of G. For
general graphs, non-trivial sparsification is possible only by
using weighted graphs in which different edges have different
weights. Even for graphs that admit unweighted sparsifiers
(that is, sparsifiers in which all the edge weights are equal to
the same scaling factor), there are no known polynomial time
algorithms that find such unweighted sparsifiers.

We study a weaker notion of sparsification suggested by
Oveis Gharan, in which the number of cut edges in each cut
(S, S̄) is not approximated within a multiplicative factor (1+ε),
but is, instead, approximated up to an additive term bounded
by ε times d · |S| + vol(S), where d is the average degree of
the graph and vol(S) is the sum of the degrees of the vertices
in S. We provide a probabilistic polynomial time construction
of such sparsifiers for every graph, and our sparsifiers have a
near-optimal number of edges O(ε−2npolylog(1/ε)). We also
provide a deterministic polynomial time construction that con-
structs sparsifiers with a weaker property having the optimal
number of edges O(ε−2n). Our constructions also satisfy a
spectral version of the “additive sparsification” property.

Notions of sparsification have also been studied for hyper-
graphs. Our construction of “additive sparsifiers” with Oε(n)
edges also works for hypergraphs, and provides the first non-
trivial notion of sparsification for hypergraphs achievable with
O(n) hyperedges when ε and the rank r of the hyperedges are
constant. Finally, we provide a new construction of spectral
hypergraph sparsifiers, according to the standard definition,
with poly(ε−1, r) · n log n hyperedges, improving over the
previous spectral construction (Soma and Yoshida) that used
Õ(n3) hyperedges even for constant r and ε.

Keywords-Graphs; Algorithms; Sparsification

I. INTRODUCTION

Benczúr and Karger [1] introduced the notion of a cut
sparsifier: a weighted graph G̃ = (V, F) is an ε cut sparsifier

of a graph G = (V,E) if, for every cut (S, V −S) of the set

of vertices, the weighted number of cut edges in G̃ is the

same as the number of cut edges in G, up to multiplicative

error ε, that is,

∀S ⊆ V |eF (S)− eE(S)| ≤ ε · eE(S) . (1)

where eX(S) denotes the weighted number of edges in X
leaving the set S. A stronger notion, introduced by Spielman

and Teng [2], is that of a spectral sparsifier: according to this

notion, a weighted graph G̃ = (V, F) is an ε cut sparsifier

of a graph G = (V,E) if

∀S ⊆ V |xTLG̃x− xTLGx| ≤ ε · xTLGx , (2)

where LX is the Laplacian matrix of the graph X . Note

that (1) is implied by (2) by taking x to be the 0/1 indicator

vector of S. A more compact way to express (2) is as

−εLG � LG̃ − LG � εLG . (3)

Batson, Spielman and Srivastava [3] show that, for every

graph, an ε spectral sparsifier (and hence also an ε cut spar-

sifier) can be constructed in polynomial time with O(n/ε2)
weighted edges, which is best possible up to the constant in

the big-Oh. Sparsifiers have several applications to speeding-

up graph algorithms.

For some graphs G, for example the “barbell” graph (that

consists of two disjoint cliques joined by a single edge), it is

necessary for a non-trivial sparsifier of G to have edges of

different weights. This has motivated the question of whether

there are weaker, but still interesting, notion of sparsification

that can be achieved, for all graphs, using sparsifiers that

are “unweighted” in the sense that all edges have the same

weight.

Question 1. Is a non-trivial notion of unweighted sparsifi-
cation possible for all graphs?

Results on unweighted sparsification have focused on

bounding the multiplicative error ε in such cases, allowing it

to be super-constant [4], [5]. For graphs such as the barbell

example one, however gets, necessarily, very poor bounds.

But is there an alternative notion for which one can get

arbitrarily good approximation on all graphs using a linear

number of edges?

If one restricts this question from all graphs to selected

classes of graphs, then a number of interesting results are

known, and some major open questions arise.

If G = (V,E) is a d-regular graph such that ev-

ery edge has effective resistance O(1/d), the Marcus-

Spielman-Srivastava [6] proof of the Kadison-Singer con-

jecture (henceforth, we will refer to this result as the MSS
Theorem) implies that G can be partitioned into almost-

regular unweighted spectral sparsifiers with error ε and

average degree O(ε−2). An interesting class of such graphs

are edge-transitive graphs, such as the hypercube.

910

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00059

Another interesting class of graphs all whose edges have

effective resistance O(1/d) is the class of d-regular ex-

panders of constant normalized expansion φ > 0. Before

the MSS Theorem, Frieze and Molloy [7] proved that such

graphs can be partitioned into unweighted almost-regular

graphs of average degree O(ε−2 log d) and normalized edge

expansion at least φ − ε. They also show how to construct

such a partition in randomized polynomial time under an

additional small-set expansion assumption on G. Becchetti

et al. [8] present a randomized linear time algorithm that,

given a dense regular expander G of degree d = Ω(n) finds

an edge-induced expander in G of degree O(1). While both

[7] and [8] find sparse expanders inside dense expanders,

the work of Frieze and Molloy does not produce constant-

degree graphs and the work of Becchetti et al. only applies

to very dense graphs. Furthermore, neither work guarantees

that one ends up with a sparse graph that is a good sparsifier

of the original one.

Question 2. Is there a polynomial time construction of the
unweighted spectral sparsifiers of expanders whose existence
follows from the Marcus-Spielman-Srivastava theorem?

Notions of cut sparsifiers [9] and spectral sparsifiers [10]

have been defined for hypergraphs, generalizing the analo-

gous definitions for graphs. In a hypergraph H = (V,E),
a hyperedge e ∈ E is cut by a partition (S, V − S) of the

vertices if e intersects both S and V − S. As for graphs,

we can define eE(S) to be the (weighted, if applicable)

number of hyperdges in E that are cut by (S, V − S). As

before, a weighted subset of edges F defines a hypergraph

cut sparsifier with error ε if

∀S ⊆ V |eF (S)− eE(S)| ≤ εeE(S) .

Kogan and Krauthgamer [9] show how to construct such a

(weighted) sparsifier in randomized polynomial time using

O(ε−2n · (r + log n)) hyperedges where r is the maximum

size of the hyperedges which is also called the rank of the

hypergraph.

In order to define a notion of spectral sparsification, we

associate to a hypergraph H = (V,E) the following analog

of the Laplacian quadratic form, namely a function QH such

that

QH(x) =
∑
e∈E

we · max
a,b∈e

(xa − xb)2

where we is the weight (if applicable) of hyperedge e. Note

that with this definition we have that if x = 1S for some

subset S of vertices then QH(x) = eE(S). Following Soma

and Yoshida [10], we say that a weighted hypergraph H̃ is

a spectral sparsifier with error ε of G if we have

∀x ∈ R
V |QH̃(x)−QH(x)| ≤ ε ·QH(x) .

Soma and Yoshida [10] provide a randomized polynomial

time construction of such sparsifiers, using Õ(ε−2n3) hy-

peredges.

Question 3. Is it possible, for every hypergraph, to construct
a weighted spectral sparsifier with Õr,ε(n) hyperedges?

As in the case of graphs, it is also natural to raise the

following question.

Question 4. Is a non-trivial notion of unweighted sparsifi-
cation possible for all hypergraphs?

We provide a positive answer to all the above questions.

A. Our Results

1) Sparsification with additive error: Oveis-Gharan sug-

gested the following weakened definition of sparsification:

if G = (V,E) is d-regular, we say that an unweighted graph

G̃ = (V, F) is an additive cut sparsifier of G with error ε if

we have

∀S ⊆ V |c · eF (S)− eE(S)| ≤ 2εd · |S| ,
where c = |E|/|F |. Note that this (up to a constant factor

change in the error parameter ε) is equivalent to the standard

notion if G has constant normalized edge expansion, because

eE(S) and d · S will then be within a constant factor

of each other. On non-expanding graphs, however, this

definition allows higher relative error on sparse cuts and

a tighter control on expanding cuts. (The factor of 2 has no

particular meaning and it is just there for consistency with

the definition that we give next for non-regular graphs.)

For non-regular graphs G, we say that G̃ = (V, F) is an

additive cut sparsifier of G with error ε if we have

∀S ⊆ V |c · eF (S)− eE(S)| ≤ ε · (davg · |S|+ vol(S))

where c = |E|/|F | and davg := 2|E|/|V | is the average

degree of G and vol(S) is the volume of S that is, the sum

of the degrees of the vertices in S.1

This notion has a natural spectral analog, which we state

directly in the more general form:

−ε · (DG + davgI) � c · LG̃ − LG � ε · (DG + davgI) .

Note, again, that if G is a regular expander then this

definition is equivalent to the standard definition of spectral

sparsifier.

1An error term of the form ε · vol(S) alone is not possible in irregular
graphs, as can be seen considering, for example, a graph with two connected
components: one made of two vertices v1, v2 joined by an edge, and another
being a clique of size n − 2. Suppose we want to achieve additive error
1
2
· vol(S) for all cuts: in order to preserve the cut S = {v1}, of volume

1 and cut by one edge, we must keep the edge (v1, v2) in our sparsifier,
otherwise the additive error would be 1. Furthermore, the scaling factor,
given by the ratio of the number of edges in the original graph over the
number of edges in the sparsifier, can be at most 1.5, which means that we
must keep a constant fraction of the Ω(n2) edges of the original graph.

911

In a hypergraph, the degree of a vertex is the number of

hyperedges it belongs to, and the volume of a set of vertices

is the sum of the degrees of the vertices that belong to it.

With these definitions in mind, the notion of additive graph

sparsifier immediately generalizes to hypergraphs.

2) New Graph Sparsification Constructions: Our first

result is a deterministic polynomial time construction which

achieves a weak form of unweighted additive sparsification.

Theorem I.1 (Deterministic Polynomial Time Construction).
Given a graph G = (V,E) and a parameter ε > 0, in
deterministic polynomial time we can find a multiset F of
edges of size |F | = O(n/ε2) such that, if we let LG =
DG − AG be the Laplacian of G, LG̃ = DG̃ − AG̃ be the
Laplacian of the graph G̃ = (V, F), d = 2|E|/|V | be the
average degree of G, and c = |E|/|F |, we have

2cDG̃−2DG− εDG− εdI � cLG̃−LG � εDG+ εdI (4)

Note, in particular, that we get that for every set of vertices

S ⊆ V we have

−ε|E| ≤ ceF (S)− eE(S) ≤ εvol(S) + εd|S| (5)

The first inequality follows by computing the quadratic

forms of (4) with the ±1 indicator vector x := 1S−1S̄ of S,

and noting that xTLGx = 4eE(S), that xTLG̃x = 4eF (S),
that

xTMx = trace(M)

for every diagonal matrix M , and that trace(DG) =
trace(cDG̃) = trace(dI) = 2|E|. The second inequality

follows by computing the quadratic forms of (4) with

the 0/1 indicator vector x = 1S of S, and noting that

xTLGx = eE(S), xTLG̃x = eF (S), xT Ix = |S| and

xTDGx = vol(S).
Our proof is based on the online convex optimization

techniques of Allen-Zhu, Liao and Orecchia [5]. The con-

struction of [5] involves weights for two reasons: one reason

is a change of basis that maps LG to identity, a step that is

not necessary in our setting and that could also be avoided in

their setting if G is a graph all whose edges have bounded

effective resistance. The second reason is more technical,

and it is to avoid blowing up the “width” on the online

game that they define. The second issue comes up when

one wants to prove cLG̃−LG � −ε · (DG+ dI), but is not

a problem for the upper bound cLG̃ −LG � ε · (DG + dI).
To sidestep this problem, we set the goals of proving the

bounds

cLG̃ − LG � ε · (dI +DG)

cSLG̃ − SLG � ε · (dI +DG)

where SLG denotes the signless Laplacian of a graph G,

defined as DG +AG. Note that the above PSD inequalities

are equivalent to (4).

The reasons why, when our goal is the PSD inequalities

above, we are able to control the width without scaling (and

without weighing the edges) are quite technical, and we

defer further discussion to Section III.

Our next result is a probabilistic construction of sparsifiers

with additive error matching the Oveis-Gharan definition.

Theorem I.2 (Probabilistic Polynomial Time Construction).
Given an n-vertex graph G = (V,E) and a parameter ε > 0,
in probabilistic polynomial time we can find a subset F ⊆ E
of size |F | = n · Õ(1/ε2) (where Õ(·) hides log(1/ε)O(1)

factors) such that, if we let LG = DG−AG be the Laplacian
of G, LG̃ = DG̃ − AG̃ be the Laplacian of the graph G̃ =
(V, F), d = 2|E|/|V | be the average degree of G, and c =
|E|/|F |, we have

−εDG − εdI � cLG̃ − LG � εDG + εdI . (6)

When we apply the above result to a d-regular expander

G, we obtain a graph G̃ whose average (and maximum)

degree is Õ(ε−2) and which is itself a good expander. More

precisely, if G has normalized edge expansion φ and G̃ is

as above, then the normalized edge expansion of G̃ is about

φ−2ε. Recall that Frieze and Molloy can find a G̃ as above

but with degree O(ε−2 log d) rather than O(ε−2polylogε−1).
Furthermore, if G is a d-regular expander of normalized edge

expansion φ, we have2 that

DG + dI = 2dI � O(φ−2LG) (7)

and so the unweighted sparsifier G̃ of G given by the above

theorem is also a spectral sparsifier in the standard sense.

This answers Questions 1 and 2 of the previous section.

We briefly discuss the techniques in the proof. Following

Frieze and Molloy [7] and Bilu and Linial [11], we apply

the Lovász Local Lemma [12] (LLL) to construct an additive

cut sparsifier. One difficulty with this approach is that one

has to verify that the sparsifier approximates each of the

exponentially many cuts. Indeed, if one defines a “bad” event

for each one of these cuts, there are too many events that are

dependent in order to successfully apply LLL. A key insight

in [7] is that it is sufficient to verify those cuts (S, V −
S) where S induces a connected subgraph. This makes a

big difference in graphs of maximal degree d � n: for a

vertex v, there are ≈ n�−1 subsets of � vertices containing v
whereas one can prove that there are at most

(
d(�−1)
�−1

)
such

subsets of size � that induce a connected subgraph. This

allows one to manage the exponentially many events and get

almost optimal results with LLL. Indeed, we obtain a close

to optimal average degree Õ(ε−2). This improves upon the

average degree bound in ε−2 log d [7] . We achieve this by

an iterative procedure that intuitively halves the number of

edges, instead of sparsifying the graph “in one go.”

2There is some abuse of notation in (7), because (7) only holds in the
space orthogonal to 1 = (1, 1, · · · , 1).

912

Another difference is that, in contrast to [7] and [11],

we can use recent constructive versions of LLL [13] to

give an efficient probabilistic time algorithm for finding the

sparsifier. To apply the constructive version of LLL in the

presence of exponentially bad events, one needs to find

a subset of bad events of polynomial size such that the

probability that any other bad event is true is negligible.

We show that this can be achieved by selecting the subset

of events corresponding to cuts (S, V −S) so that S induces

a connected graph and |S| = O(logd(n)). This gives us an

efficient probabilistic algorithm for finding a cut sparsifier

which we also generalize to hypergraphs (as we state in

the next section). For graphs, we then adapt the techniques

of Bilu and Linial [11] to go from a cut sparsifier to a

spectral one. To do so we need to consider some more

bad events in the application of LLL than needed by Bilu-

Linial who worked with “signings” of the adjacency matrix.

Specifically, in addition to the events that they considered,

we need to also bound the degree of vertices.

3) New Hypergraph Sparsification Constructions:

Theorem I.3 (Hypergraph cut sparsification with additive

error). Given an n-vertex hypergraph H = (V,E) of rank
r and a parameter ε > 0, in probabilistic polynomial time
we can find a subset F ⊆ E of size |F | = O

(
n
r · 1

ε2 log
r
ε

)
such that, if we let d = r|E|/|V | be the average degree of
H , and c = |E|/|F |, the following holds with probability at
least 1− n−2:

|ceF (S)− eE(S)| ≤ εd|S|+ εvol(S) ∀S ⊆ V . (8)

The proof follows the same approach as the first part of

our proof of Theorem I.2, and in fact we present directly

the proof for hypergraphs, leaving the result for graphs

as a corollary. It might seem strange that the number of

hyperedges in our sparsifier is, for fixed ε, of the form

O
(
n
r log r

)
, since, intuitively, the sparsification problem

should only become harder when r grows. The reason is

that, even in a regular hypergraph, d|S| overestimates the

number of hyperedges incident on S by up to a factor of r,

and so, in order to have a non-trivial guarantee, one has to

set ε < 1/r.

Theorem I.4 (Hypergraph sparsification with multiplicative

error). There is a randomized polynomial time algorithm
that, given a hypergraph of rank r, finds a weighted spectral
sparsifier with multiplicative error ε having O(ε−2r3n log n)
hyperedges.

The above result should be compared with the

O(ε−2n3 log n) hyperedges of the construction of Soma

and Yoshida [10]. Our approach is to provide an “hyper-

graph analog” of the spectral graph sparsifier construction

of Spielman and Srivastava [14]. Given H , we construct

an associated graph G (in which each hyperedge of H
is replaced by a clique in G), we compute the effective

resistances of the edges of G, and we use them to associate

a notion of “effective resistance” to the hyperedges of H .

Then we sample from the set of hyperdedges of H by letting

the sampling probability of each hyperedge be proportional

to its “effective resistance” and we weigh them so that the

expected weight of each hyperedge in the sample is the

same. At this point, to bound the error, Spielman and Srivas-

tava complete the proof by applying a matrix concentration

bound for the spectral norm of sums of random matrices. For

hypergraphs, we would like to have a similar concentration

bound on the error given by,

max
x∈RV :‖x‖=1

∑
e∈H

(1−We) · max
a,b∈e

(xa − xb)2 (9)

where We is a random variable that is 0 if the hyperedge e
is not selected and it is its weight in the sparsifier if it is

selected, with things set up so that 1−We has expectation

zero. (Actually, this would only lead to a sparsifier with

additive error: to achieve multiplicative error we have to

study an expression such as the one above but after a

change of basis defined in terms of the associated graph.

For simplicity we will ignore this point in this overview.)
However, unlike in the graph case, the expression in (9)

does not correspond to the spectral norm, or any other

standard linear-algebraic norm, due to the max term, and

the key difficulty in all previous approaches to the problem

was to get suitable upper bounds on this quantity. Our main

idea is to consider the quantity Vx =
∑
e∈H(1 − We) ·

maxa,b∈e (xa − xb)
2 and view it as a random process

indexed by the set of all unit vectors x, and directly argue

about its supremum over all such x, using the technique of

generic chaining. In particular, we relate the metric given by

the sub-gaussian norm of the increments of the process Vx
to another suitably defined Gaussian random process on the

associated graph G of H , which is much easier to analyze.

This allows us to relate the bound on the supremum of Vx
to a related expression on the graph G, for which we can

use known matrix concentration bounds.

II. PRELIMINARIES

A. Linear Algebra Preliminaries
In this paper all matrices will have real-valued entries.
A matrix M is Positive Semidefinite (abbreviated PSD

and written M � 0) if it is symmetric and all its eigenvalues

are non-negative. Equivalently, M is PSD if and only if

∀x ∈ R
n, xTMx ≥ 0

that is, the quadratic form of M is always non-negative.

The trace of a matrix is the sum of its diagonal entries.

For a symmetric matrix, its trace is equal to the sum of its

eigenvalues, counted with multiplicities. A density matrix is

a PSD matrix of trace one. The operator norm of a matrix

M is

‖M‖ = sup
x:‖x‖2=1

‖Mx‖2

913

If M is symmetric, then the above is the largest absolute

value of the eigenvalues of M and we also refer to it as the

spectral norm or spectral radius of the matrix.

If A and B are matrices of the same size, then their

Frobenius inner product is defined as

〈A,B〉 =
∑
i,j

Ai,jBi,j = trace(ATB)

and we will also sometimes denote it as A •B. Note that if

M is a symmetric matrix we have

‖M‖ = sup
X density matrix

|M •X|

If M is a symmetric n × n matrix with spectral decompo-

sition M =
∑n
i=1 λiviv

T
i then the “absolute value” of M

is the PSD matrix

|M | =
n∑
i=1

|λi|vivTi .

B. Reduction to bounded-degree case

We show that, in proving Theorem I.1, Theorem I.2 and

Theorem I.3, it is enough to prove weaker bounds where

davgI +DG is replaced by dmax · I , and vol(S) is replaced

by dmax|S|, where dmax is the maximum degree.

Consider the following construction: given a graph G =
(V,E) of average degree davg = 2|E|/V , construct a new

graph G′ = (V ′E′) such that

• To each node v ∈ V there corresponds a cloud of

�dv/�davg�� nodes in V .

• To each edge (u, v) ∈ E there corresponds an edge in

E′ between the cloud of u and the cloud of v.

• Each vertex in G′ has degree at most d′max = �davg�.
A construction satisfying the above property can be real-

ized by replacing the vertices of V , in sequence, by a cloud

as required, and then distributing the dv edges incident to

v among the vertices v′ in the cloud of v, so that any v′ is

incident to at most d′max edges.

Now suppose that F ′ ⊆ E′ is a subset of the edges of G′

and that F ⊆ E is the set of edges of G corresponding to

the edges of F ′. Let G̃ be the graph G̃ = (V, F) and G̃′ =
(V, F ′). Let x ∈ R

V be any vector, and define x′ ∈ RV to

be the vector such that x′v′ = xv if v′ is in the cloud of v.

Then we observe that

xTLGx = x′TLG′x′

xTLG̃x = x′TLG̃′x
′

x′T (d′maxI)x
′ ≤ xT (�davg�+DG)x

The only non-trivial statement is the third one. To verify it,

we see that the left-hand side is

x′T (d′maxI)x
′ =

∑
v∈V

⌈
dv

�davg�
⌉
· �davg�x2

v

≤
∑
v∈V

(dv + �davg�) · x2
v

This means that we can start from an arbitrary graph G,

construct G′ as above, find an unweighted sparsifier G̃′ =
(V ′, F ′) of G′, and then obtain a set F of edges such that

G̃ = (V, F) is an unweighted sparsifier for G, with the

property that any bound dependent on d′maxI on the quality

of the sparsification of G̃′ becomes a bound in terms of

(�davg� +DG) (and we can drop the ceiling at the cost of

a constant factor in the error).

If H = (V,E) is a hypergraph we can similarly construct

a hypergraph H ′ = (V ′, E′) such that

• To each node v ∈ V there corresponds a cloud of

�dv/�davg�� nodes in V .

• To each edge (u, v) ∈ E there corresponds an edge in

E′ between the cloud of u and the cloud of v.

• Each vertex in H ′ has degree at most d′max = �davg�.
Similarly to the graph case, for every set S ⊆ V we can

define a set S′ ⊆ V ′ (the union of the clouds of vertices

in S′) and for every set F ′ ⊆ E′ we can define a set of

hyperedges F ⊆ E of the same cardinality such that

eE(S) = eE′(S
′)

eF (S) = eF ′(S
′)

d′max|S| ≤ �davg�|S|+ volH(S)

We also note that, in both constructions, the maximum

degree and the average degree of the new graph (or hyper-

graph) are within a constant factor.

III. DETERMINISTIC CONSTRUCTION

In this section we use the online convex optimization

approach of Allen-Zhu, Liao and Orecchia [5] to construct

a weak form of unweighted additive spectral sparsifiers, and

we prove Theorem I.1. Given the reduction described in

Section II-B, it is enough to prove the following theorem.

Theorem III.1. There is a deterministic polynomial time
algorithm that given a graph G = (V,E) of maximum
degree dmax and a parameter ε outputs a multiset F of
O(|V |/ε2) edges such that the graph G̃ = (V, F) satisfies

2cDG̃ − 2DG − εdmaxI � cLG̃ − LG � εdmaxI

where c = |E|/|F |.
We are interested in the following online optimization

setting: at each time t = 1, . . ., an algorithm comes up

with a solution Xt, which is an n × n density matrix,

and an adversary comes up with a cost matrix Ct, which

914

is an n × n matrix, and the algorithm receives a pay-

off Xt • Ct. The algorithm comes up with Xt based on

knowledge of X1, . . . , Xt−1 and of C1, . . . , Ct−1, while the

adversary comes up with Ct based on X1, . . . , Xt and on

C1, . . . , Ct−1. The goal of the algorithm is to maximize the

payoff. After running this game for T steps, one defines the

regret of the algorithm as

RT :=

(
sup

X density matrix

T∑
t=1

X • Ct
)
−
(

T∑
t=1

Xt • Ct
)
.

Theorem III.2 (Allen-Zhu, Liao, Orecchia [5]). There is a
deterministic polynomial algorithm that, given a parameter
η > 0, after running for T steps against an adversary
that provides cost matrices Ct restricted as described below,
achieves a regret bound

RT ≤ O(η) ·
T∑
t=1

(Xt • |Ct|) · ‖X1/4
t CtX

1/4
t ‖+ 2

√
n

η
.

Furthermore, if Ct is block-diagonal, then Xt is also block-
diagonal with the same block structure The restrictions on
the adversary are that at each step t the cost function Ct is
positive semidefinite or negative semidefinite and satisfies

ηX
1/4
t CtX

1/4
t � I

4
.

Remark III.3. The theorem above is the q = 2 case of Theo-
rem 3.3 in [5]. The Furthermore part is not stated explicitly
in [5, Theorem 3.3] but can be verified by inspecting the
proof. Note that what we are calling Ct corresponds to −Ct
in the treatment of [5], which is why their cost minimization
problem becomes a maximization problem here, and the
condition that Ct satisfy ηX1/4

t CtX
1/4
t � − I

4 becomes the
condition that we have in the above theorem.

To gain some intuition about the way we will use the

above theorem, note that the definition of regret implies that

we have

λmax

(
T∑
t=1

Ct

)
= RT +

T∑
t=1

Ct •Xt ,

where λmax(·) denotes the largest eigenvalue of the matrix.

Now suppose that we play the role of the adversary against

the algorithm of Theorem III.2, and that, at time t, we reply

to the solution Xt of the algorithm with a cost matrix of the

form mLat,bt −LG where m := |E| and (at, bt) is an edge

chosen so that

Xt • (mLat,bt − LG) ≤ 0

We know that such an edge (at, bt) must exist, because the

average of the left-hand side above is zero if we compute it

for a uniformly chosen random (at, bt) ∈ E. After playing

this game for T steps we have

λmax

(
m

T∑
t=1

Lat,bt − TLG
)
≤ RT

and, calling F the multiset {(at, bt) : t = 1, . . . , T}, calling

G̃ = (V, F) the multigraph of such edges and c = |E|/|F | =
m/T , and noting that LG̃ =

∑
t Lat,bt we have

c · LG̃ − LG �
1

T
RT · I

which, provided that we can ensure that RT is small, is one

side of the type of bounds that we are trying to prove.

In order to get a two-sided bound, one would like to use

the idea that

λmax

(
M 0
0 −M

)
= ‖M‖

and play the above game using, at step t, a cost matrix of

the form

Ct =

(
mLat,bt − LG 0

0 LG −mLat,bt

)

where the edge (at, bt) is chosen so that

Xt • Ct ≤ 0

Then, if we define c and G̃ as above, we would reach the

conclusion

‖cLG̃ − LG‖ ≤
1

T
RT

and what remains to do is to see for what value of T we

get a sufficiently small regret bound.

Unfortunately this approach runs into a series of difficul-

ties.

First of all, our cost matrix is neither positive semidefinite

nor negative semidefinite.

We could make it positive semidefinite by shifting, that is,

by adding a multiple of the identity. This is not a problem

for the block mLat,bt − LG, whose smallest eigenvalue is

at most 2dmax in magnitude, but it is a serious problem for

the block LG − mLat,bt , whose smallest eigenvalue is of

the order of −m: the shift needed to make this block PSD

would be so big that the terms Xt • |Ct| in the regret bound

would be too large to obtain any non-trivial result.

Another approach, which is closer to what happens in

[5], is to see that the analysis of Theorem III.2 applies also

to block-diagonal matrices in which each block is either

positive semidefinite or negative semidefinite. This way, we

can shift the two blocks in different directions by 2dmaxI
and get the cost function in a form to which Theorem III.2

applies, but then we would still be unable to get any non-

trivial bound because the term Xt • |Ct| could be in the

order of m, while the analysis requires that term to be of

the order of dmax to get the result we are aiming for. To

915

see why, note that if Ct is a block-diagonal matrix with

a positive semidefinite block and a negative semidefinite

block, then |Ct| is just the same matrix except that the

negative semidefinite block appears negated. Recall that we

wanted to select an edge so that X •Ct is small: what will

happen is that the PSD block gives a positive contribution,

the NSD block gives a negative contribution, and X •|Ct| is

the sum of the absolute values of these contributions, which

can both be order of m.
We could work around this problem by scaling the matrix

in a certain way, but this would make the analysis only

work for a weighted sparsifier. This difficulty is the reason

why [5] construct a weighted sparsifier even if the effective

resistances of all the edges of G are small, a situation in

which an unweighted sparsifier is known to exist because of

the Marcus-Spielman-Srivastava theorem.
We work around these difficulties by reasoning about the

signless Laplacian. If G is a graph with diagonal degree

matrix DG and adjacency matrix AG, then the signless

Laplacian of G is defined as the matrix DG+AG. We denote

by SLG the signless Laplacian of a graph G, and by SLa,b
the signless Laplacian of a graph containing only the single

edge (a, b). Equation (10) below shows that, in this case,

the term Xt • |Ct| in the regret bound can be bounded in

term of dmax and are never order of m.
Recall that, like the Laplacian, the signless Laplacian is

a PSD matrix whose largest eigenvalue is at most 2dmax.
To prove Theorem III.1, we will play the role of the

adversary against the algorithm of Theorem III.2 with the

PSD cost matrix

Ct := 2dmaxI +

(
mLat,bt − LG 0

0 mSLat,bt − SLG

)
where the edge (at, bt) is chosen so that

Xt •
(
mLat,bt − LG 0

0 mSLat,bt − SLG

)
≤ 0 .

Since X • I = 1 for every density matrix, we get that, after

T steps, if we define F to be the multiset of selected edges,

c = |E|
|F | =

m
T , and G̃ = (V, F), then we have

cLG̃ − LG �
RT
T
· I

cSLG̃ − SLG �
RT
T
· I

and so it remains to show that we can make RT ≤ εdmax ·T
by choosing T = O(n/ε2).

Let us analyze the quantities that come up in the statement

of Theorem III.2.
Since Ct is PSD, we have

Xt • |Ct| = Xt • Ct
=2dmax +Xt •

(
mLat,bt − LG 0

0 mSLat,bt − SLG

)
≤2dmax . (10)

The non-trivial part of the analysis is the following bound.

Claim 1. At every time step t we have

‖X1/4
t CtX

1/4
t ‖ ≤ O(

√
dmax ·m) (11)

Proof: Recall from Theorem III.2 that matrices Xt will

have the same block structure as the cost matrices Ct. We

can therefore write the matrix Xt as

Xt =

(
Yt 0
0 Zt

)

Then

X
1/4
t =

(
Y

1/4
t 0

0 Z
1/4
t

)

and

‖X1/4
t CtX

1/4
t ‖ = max{‖Y 1/4

t (mLat,bt + 2dmaxI − LG)
Y

1/4
t ‖, ‖Z1/4

t (mSLat,bt + 2dmaxI − SLG)Z1/4
t ‖}

Using the triangle inequality and the fact that all the eigen-

values of Xt, and hence of Yt, of Zt, of Y
1/4
t and Z

1/4
t are

at most one, we have

‖Y 1/4
t (mLat,bt + 2dmaxI − LG)Y 1/4

t ‖
≤m‖Y 1/4

t Lat,btY
1/4
t ‖+ 2dmax

‖Z1/4
t (mSLat,bt + 2dmaxI − SLG)Y 1/4

t ‖
≤m‖Z1/4

t SLat,btZ
1/4
t ‖+ 2dmax

Also recall that we chose (at, bt) so that we would have

Xt •
(
mLat,bt − LG 0

0 mSLat,bt − SLG

)
≤ 0

which is the same as

Yt •mLat,bt + Zt •mSLat,bt ≤ Yt • LG + Zt • SLG
=Xt •

(
LG 0
0 SLG

)
≤ λmax

(
LG 0
0 SLG

)
≤2dmax

which implies

Yt •mLat,bt ≤ 2dmax

Zt •mSLat,bt ≤ 2dmax

Now let us write

Yt =
∑
i

λiyiy
T
i

where λi are the eigenvalues of Yt and yi are a orthonormal

basis of eigenvectors of Yt, and let us also write

mLat,bt = wwT

916

where w is the vector
√
m · (1at − 1bt) of length

√
2m.

Then

‖Y 1/4
t mLat,btY

1/4
t ‖ = ‖Y 1/4

t w‖2 = wTY
1/2
t w

=
∑
i

√
λiw

Tyiy
T
i w =

∑
i

√
λi〈w,yi〉2

Finally, by Cauchy-Schwarz,∑
i

√
λi〈w,yi〉2 ≤

√∑
i

〈w,yi〉2 ·
√∑

i

λi〈w,yi〉2

=‖w‖ ·
√

wTYtw ≤
√
2m ·

√
2dmax

In a completely analogous way we can prove that

‖Z1/4
t mSLat,btZ

1/4
t ‖ ≤ 2

√
dmaxm

To conclude the proof, take η such that

η‖X1/4CtX
1/4‖ ≤ min{1/4, ε}

which, by the above claim, means that it can be done by

choosing η = ε/O(
√
dmaxm). Then using (10) and that m ≤

dmaxn we have the regret bound

RT ≤ O(η) · T · 2dmax ·O(
√
dmax ·m) +

2
√
n

η

= O(ε · T · dmax) +O
(
ε−1

√
dmaxmn

)
≤ O(ε · T · dmax) +O

(
ε−1dmaxn

)
When T = O(n/ε2), the above upper bound is O(ε · T ·
dmax), which means that we have constructed a graph G̃
with T = O(n/ε2) edges such that

m

T
LG̃ − LG � O(ε) · dmax · I

m

T
SLG̃ − SLG � O(ε) · dmax · I

where the second equation is equivalent to

m

T
LG̃ − LG �

2m

T
DG̃ − 2DG −O(ε) · dmax · I

proving Theorem III.1.

IV. PROBABILISTIC CONSTRUCTION OF ADDITIVE

SPARSIFIERS

In this section, we give probabilistic algorithms for

constructing additive spectral sparsifiers of hypergraphs.

Specifically, we prove the following theorem which, by the

reduction in Section II-B, implies Theorem I.3. That we

can choose the normalization constant c to equal |E|/|F |
in Theorem I.3 is because, in the reduction, the following

theorem is used for a graph where dmax approximately

equals the average degree.

Theorem IV.1. Given an n-vertex hypergraph H = (V,E)
of rank r and of maximal degree dmax together with a

parameter ε > 0, in probabilistic polynomial time we can
find a subset F ⊆ E of size |F | = O

(
n
r · 1

ε2 log
r
ε

)
such

that, if we let c be a normalization constant, the following
holds with probability at least 1− n−2:

|c · eF (S)− eE(S)| ≤ εdmax|S| ∀S ⊆ V . (12)

In Section IV-A we then generalize the techniques for

simple graphs to obtain additive spectral sparsifiers as stated

in Theorem I.2.

Our arguments are inspired by those used by Frieze and

Molloy [7] and subsequently by Bilu and Linial [11]. They

use the Lovász Local Lemma (LLL) [12] with an exponential

number of bad events and may at first seem non-constructive.

However, rather recent results give efficient probabilistic

algorithms even in these applications of LLL. Theorem 3.3

in [13] will be especially helpful for us. To state it we

need to introduce the following notation. We let P be a

finite collection of mutually independent random variables

{P1, P2, . . . , Pn} and let A = {A1, A2, . . . , Am} be a

collection of events, each determined by some subset of P .

For any event B that is determined by a subset of P we

denote the smallest such subset by vbl(B). Further, for two

events B and B′ we write B ∼ B′ if vbl(B)∩vbl(B′) �= ∅.
In other words, B and B′ are neighbors in the standard

dependency graph considered in LLL. Finally, we say that

a subset A′ ⊆ A is an efficiently verifiable core subset if

there is a polynomial time algorithm for finding a true event

in A′ if any. We can now state a (slightly) simplified version

of Theorem 3.3 in [13] as follows:

Theorem IV.2. Let A′ ⊆ A be an efficiently verifiable core
subset of A. If there is an ε ∈ [0, 1) and an assignment of
reals x : A → (0, 1) such that:

∀A ∈ A : Pr[A] ≤ (1− ε)x(A)
∏

B∈A:B∼A
(1− x(B)) ,

(13)

then there exists a randomized polynomial time algorithm
that outputs an assignment in which all events in A are
false with probability at least 1−∑

A∈A\A′ x(A).

The following lemma says that we can roughly half the

degree of vertices without incurring too much loss in the

cut structure. Applying this lemma iteratively then yields a

sparsifier. We use the following notation: For an edge set X
and disjoint vertex subsets S and T , we let δX(S, T) denote

the set of edges with one endpoint in S and one in T ; for

brevity, we also write δX(S) for δX(S, S̄). Also recall that

eX(S, T) = |δ(S, T)| and eX(S) = |δX(S)|.
Lemma IV.3. There exists a probabilistic polynomial-time
algorithm that, given an n-vertex hypergraph H = (V,E)
of maximal degree dmax and of rank r, outputs a subgraph
H̃ = (V, F) with F ⊆ E such that the following holds with

917

probability at least 1− n−3:

|2 · eF (S)− eE(S)| ≤ 10
√
d log(dr) · |S| ∀S ⊆ V .

Proof: Throughout the proof we let d = dmax. The

proof adapts the arguments in [11] (which in turn are

similar to those in [7]) to general hypergraphs. Let G denote

the graph obtained from H = (V,E) by replacing each

hyperedge e = (v1, . . . , vk) ∈ E, by a clique with
(
k
2

)
edges (vi, vj), i, j ∈ [k]. We say that G is associated to

H . By construction, the degree of any vertex in G is at

most d(r − 1).
Graph G will be important due to the following fact: it is

enough to prove the inequality for those subsets S ⊆ V that

induce a connected subgraph of G. To see this, let G[S]
denote the subgraph induced by S. Suppose G[S] is not

connected and let S1, . . . , Sk ⊆ S be the vertex sets of

the connected subgraphs. If the lemma holds for connected

components then |2 · eF (Si)− eE(Si)| ≤ 10
√
d log(dr) ·

|Si| for i = 1, . . . , k, and so

|2 · eF (S)− eE(S)|

=

∣∣∣∣∣
k∑
i=1

(2 · eF (Si)− eE(Si))
∣∣∣∣∣

≤
k∑
i=1

|2 · eF (Si)− eE(Si)|

≤10
√
d log(dr) ·

k∑
i=1

|Si|

=10
√
d log(dr) · |S| ,

where the first equality holds because there are no edges in

E (and F ⊆ E) between the sets S1, . . . , Sk.

It is thus sufficient to prove the inequality for those sets

S that induce a connected subgraph G[S]. Suppose we

select F by including each edge e ∈ E with probability

1/2 independently of other edges. That is, in the notation

of Theorem IV.2, we have that P consists of |E| mutu-

ally independent variables {Pe}e∈E , where Pe indicates

whether e ∈ F and Pr[Pe] = 1/2. Now for each S such

that G[S] is connected, let AS be the “bad” event that

|2 · eF (S)− eE(S)| > 10
√
d log(dr) · |S|. Note that eF (S)

is the sum of at most d|S| independent variables, attaining

values 0 and 1, and that the expected value of eF (S) equals

eE(S)/2. Thus by the Chernoff inequality we get

Pr[AS] < (dr)−6|S| .

To apply Theorem IV.2, we analyze the dependency graph

on the events: there is an edge between AS and AS′ if

vbl(AS) ∩ vbl(AS′) �= ∅ ⇔ δE(S) ∩ δE(S′) �= ∅. Consider

now a fixed event AS and let k = |S|. We bound the number

of neighbors, AS′ , of AS with |S′| = �. Since we are

interested in only subsets S′ such that G[S′] is connected,

this is bounded by the number of distinct subtrees on �
vertices in the associated graph G, with a root in one of

the endpoints of an edge in δ(S) . As G has degree at most

d(r− 1), there are at most |S|+ d(r− 1)|S| = drk choices

of the root. The number of such trees is known to be at most

(see e.g. [7])

drk ·
(
dr(�− 1)

�− 1

)
≤ drk · (edr)�−1 , (14)

where we used that
(
dr(�−1)
�−1

) ≤ (edr)�−1.

Now to verify condition (13) of Theorem IV.2, we set

x(AS) = (dr)−3|S| for every bad event AS . So if we

consider an event AS with k = |S|, then

x(AS)
∏

S′:AS∼AS′

(1− x(AS′))

=(dr)−3k
n∏
�=1

(
1− (dr)−3�

)drk(edr)�−1

≥(dr)−3k exp(−2drk
n∑
�=1

(dr)−3�(edr)�−1)

≥(dr)−3ke−3k > (dr)−6k/2 > Pr[AS]/2 ,

where we used that d is a sufficiently large constant, which

is without loss of generality since if d ≤ 10
√
d log(dr) then

the lemma becomes trivial. In other words, (13) is satisfied

with ε set to 1/2.

It remains to define an efficiently verifiable core subset

A′ ⊆ A such that 1−∑
A∈A\A′ x(A) ≥ 1− n−3. We let

A′ = {AS ∈ A : |S| ≤ s} where s = logdr(n).

By the same arguments as in (14), there is at most n ·(
dr(�−1)
�−1

) ≤ n(edr)�−1 many events with |S| = � (corre-

sponding to connected components in G). Therefore, the

following properties hold:

1) A′ is efficiently verifiable since it contains n ·∑s
�=1(edr)

�−1 = O(n ·(edr)s) = O(n3) many events

that can be efficiently enumerated by first selecting

a vertex r among n choices and the considering all

possible trees rooted at r with � ≤ s vertices.

2) We have

∑
AS∈A\A′

x(AS) ≤
n∑

�=s+1

(dr)−6� · (n · (edr)�)

≤n ·
n∑

�=s+1

(dr)−4� ≤ n(dr)−4s = n−3 ,

where for the first inequality we again used that d is

a sufficiently large constant.

We have verified Condition (13) of Theorem IV.2 and we

have defined an efficiently verifiable core subset A′ such

918

that
∑
AS∈A\A′ x(AS) ≤ n−3 and so the lemma follows.

Applying the above lemma iteratively will give us additive

cut sparsifiers of constant degree. In particular, the condition

in the following lemma will imply that the degree of each

vertex in H̃ is at most O(dmax/2
k) and k can be chosen

so that the degree is at most O(1
ε2 log(r/ε)). The following

lemma therefore implies Theorem IV.1.

Lemma IV.4. There is an absolute constant c such that
the following holds. There is a probabilistic polynomial-time
algorithm that given as input an n-vertex hypergraph H =
(V,E) of maximal degree dmax and of rank r, ε > 0, and
any k ∈ N such that dmax2

−k ≥ c 1
ε2 log(r/ε), outputs a

subgraph H̃ = (V, F) such that the following holds with
probability at least 1− n−2:∣∣2k · eF (S)− eE(S)∣∣ ≤ εdmax|S| for every S ⊆ V .

Proof: Starting with H we apply Lemma IV.3 k times

to obtain H̃ . Let Fi denote the edge set and let di denote

the maximum degree after round i. So F0 = E and d0 =
dmax. By the guarantees of Lemma IV.3, we have that with

probability 1− n−3, for every S ⊆ V

|2di+1 − di| ≤ 10
√
di log(dir) and (15)∣∣2 · eFi+1

(S)− eFi
(S)

∣∣ ≤ 10
√
di log(dir) · |S|. (16)

As we apply Lemma IV.3 k times with k ≤ log(n), the

union bound implies that the above inequalities are true

for all invocations of that lemma with probability at least

1 − k · n−3 ≥ 1 − n−2. From now on we assume that the

above inequalities hold and show that the conclusion of the

statement is always true in that case. Specifically, we now

prove by induction on k that

|2kdk − d0| ≤ εd0, and∣∣2k · eFk
(S)− eF0(S)

∣∣ ≤ εd0 · |S| for every S ⊆ V .

The claim holds trivially for k = 0. Assume it holds for all

i < k, which in particular implies 2idi ≤ 2d0 for all i < k.

By the triangle inequality and (15),

|2kdk − d0| ≤
k−1∑
i=0

|2i(2di+1 − di)|

≤ 10

k−1∑
i=0

2i
√
di log(dir)

≤ 10

k−1∑
i=0

2i
√
2(d0/2i) log(2(d0/2i)r)

where the last term follows by the induction hypothesis on

di. As the terms increase geometrically in i, this sum is

O(2k
√
(d0/2k) log((d0/2k)r) which is εd0 by our assump-

tion on k and selection of c.

Finally, we note that
∣∣2k · eFk

(S)− eF0
(S)

∣∣ ≤ εd0 · |S|
follows by the same calculations (using (16) instead of (15)).

A. Additive spectral graph sparsifiers

In this section we describe how the proof in the previous

section generalizes to spectral additive graph sparsifiers.

Theorem IV.5. Given an n-vertex graph G = (V,E) and
a parameter ε > 0, in probabilistic polynomial time we can
find a subset F ⊆ E of size |F | = n · O((log(1/ε)3/ε2)
such that, if we let LG = DG −AG be the Laplacian of G,
LG̃ = DG̃−AG̃ be the Laplacian of the graph G̃ = (V, F),
and c a normalization constant, we have

−εdmaxI � cLG̃ − LG � εdmaxI . (17)

Similar to before, this implies Theorem I.2 by the reductions

in Section II-B.

To prove Theorem IV.5, we need the following modifica-

tion of Lemma IV.3 in the case of simple graphs.

Lemma IV.6. There exists a probabilistic polynomial-time
algorithm that, given an n-vertex graph G = (V,E) of
maximal degree d, outputs a subgraph G̃ = (V, F) with
F ⊆ E such that the following properties hold with
probability at least 1− n−3:

1) For every disjoint S, T ⊆ V we have
|2 · eF (S, T)− eE(S, T)| ≤ 10

√
d log d ·√|S||T |.

2) For every vertex v ∈ V we have |2 · eF (v)− eE(v)| ≤
10
√
d log d.

The above lemma is similar to Lemma 3.2 in [11] with

the exception that here we also need the degree constraints

(the second condition). Similar to Lemma IV.7 we obtain

the following by applying Lemma IV.6 iteratively.

Lemma IV.7. There is an absolute constant c such that
the following holds. There is a probabilistic polynomial-time
algorithm that on input an n-vertex graph G = (V,E) of
maximum degree d, ε > 0, and any k ∈ N such that d2−k ≥
c 1
ε2 log(1/ε), outputs a subgraph G̃ = (V, F) such that the

following properties hold with probability at least 1− n−2:
1) For every disjoint S, T ⊆ V we have∣∣2k · eF (S, T)− eE(S, T)∣∣ ≤ εd ·

√
|S||T |.

2) For every vertex v ∈ V we have∣∣2k · eF (v)− eE(v)∣∣ ≤ εd.

The proofs of Lemma IV.6 and Lemma IV.7 are very

similar to the proofs of Lemma IV.3 and Lemma IV.4, re-

spectively. We have therefore deferred them to Appendix A.

We now explain how Lemma IV.7 implies an additive

spectral sparsifier for graphs via the following result of Bilu

and Linial [11]:

919

Lemma IV.8 (Lemma 3.3 in [11]). Let A be an n× n real
symmetric matrix such that the �1 norm of each row in A
is at most �, and all diagonal entries of A are, in absolute
value, O(α log(�/α)+1)). Assume that for any two vectors,
u,v ∈ {0, 1}n, with supp(u) ∩ supp(v) = ∅:

|uTAv|
‖u‖‖v‖ ≤ α .

Then the spectral radius of A is O(α(log(�/α) + 1)).

Here supp(u) = {i : ui �= 0} denotes the support of

a vector u. Now let G and G̃ be the input and output

graph of Lemma IV.7. We set A = 2kLG̃ − LG. Since

the Laplacian of a graph is a symmetric real matrix we

have that A is a symmetric n × n real matrix where n is

the number of vertices in G and G̃. We now verify that A
satisfies the assumptions of the above lemma assuming that

the algorithm of Lemma IV.7 was successful (which happens

with probability at least 1− n−2).

• The �1 norm of a row in A is at most the �1 of that

row in 2kLG̃ plus the �1 norm of that row in LG. This

can be upper bounded as follows. The �1 norm of a

row of a Laplacian matrix corresponding to a vertex v
equals twice the (weighted) degree of v. As any vertex

in G has degree at most d, it follows that the �1 norm

of any row in LG is at most 2d. For a row in 2kLG̃ we

use Property 2 of Lemma IV.7 to bound the �1 norm

by 2(eE(v) + 10
√
d log d) ≤ 2(d + 10

√
d log d). We

therefore have that �1 norm of any row in A is bounded

by

� = 2d+ 2(d+ 10
√
d log d) = O(d) .

• For the other two conditions, set α = εd where ε is

selected as in Lemma IV.7. Then we have that the

absolute value of any diagonal entry in A corresponding

to a vertex v equals∣∣2k · eF (v)− eE(v)∣∣ ≤ εd ,

where the inequality is implied by Property 2 of

Lemma IV.7. Similarly, consider any vectors u,v ∈
{0, 1}n with supp(u)∩supp(v) = ∅. Let S = supp(u)
and T = supp(v). Then∣∣uTAv∣∣ = ∣∣uT (2kLG̃)v − uTLGv

∣∣
= ‖ − 2kδF (S, T)− (−δE(S, T))‖
≤ εd ·

√
|S||T | ,

where the last inequality is implied by Property 1 of

Lemma IV.7. The second equality is by the identity

uTLGv =
∑

{i,j}∈E
(uivi + ujvj − uivj − ujvi)

= −δ(S, T)
(and similar for 2kLG̃).

We thus have that the assumptions of Lemma IV.8 are

satisfied with � = O(d) and α = εd. It follows that A has a

spectral radius of O(ε log(1/ε)d). Or equivalently:

−c′ε log(1/ε)dI � 2kLG̃ − LG � c′ε log(1/ε)dI ,

for an absolute constant c′. To summarize, we obtain the

following lemma which in turn implies Theorem IV.5 (by

selecting k as large as possible):

Lemma IV.9. There are absolute constants c and c′ such
that the following holds. There is a probabilistic polynomial-
time algorithm that on input an n-vertex graph G = (V,E)
of maximum degree d, ε > 0, and any k ∈ N such that
d2−k ≥ c 1

ε2 log(1/ε), outputs a subgraph G̃ = (V, F) such
that the following holds with probability at least 1− n−2:

−c′ε log(1/ε)dI � 2kLG̃ − LG � c′ε log(1/ε)dI .

V. SPECTRAL HYPERGRAPH SPARSIFICATION

Let H = (V,E) be a weighted hypergraph on n ver-

tices, with weights we ≥ 0 on hyperedges e ∈ E. Let

r = maxe∈E |e| be the maximum size of hyperedges in

H , i.e., the rank of the hypergraph.

For a hyperedge e, the hypergraph Laplacian operator Qe :
R
n → R, acts on a vector x ∈ R

n as

Qe(x) = we max
a,b∈e

(xa − xb)2 = we max
a,b∈e

xTLabx

where Lab is the standard graph Laplacian for an (un-

weighted) edge ab.

Definition 1. (Hypergraph Laplacian) Given a weighted
hypergraph H , the hypergraph Laplacian operator QH :
R
n → R for H is defined as

QH(x) =
∑

e∈E(H)

Qe(x) =
∑

e∈E(H)

we max
a,b∈e

xTLabx

Definition 2. (Multiplicative hypergraph spectral sparsi-
fier.) A weighted hypergraph H̃ = (V, F) is a (1 + ε)-
multiplicative spectral sparsifier of H if

|QH̃(x)−QH(x)| ≤ εQH(x) for all x ∈ R
n. (18)

We show the following result, which generalizes the result

of Spielman and Srivastava [14] from graphs to hypergraphs.

Theorem V.1. For any hypergraph H of rank r, and ε > 0,
there is a (1 + ε)-multiplicative spectral sparsifier H̃ of H
with O(1

ε2 r
3n log n) edges. Moreover, there is an efficient

randomized algorithm that computes H̃ with probability 1−
n−Ω(1), and runs in time Õr,ε(n).

Unlike in the graph case, where it can be checked if F
satisfies (18) by an eigenvalue computation, we do not know

of any efficient way to check Condition (18) for hypergraphs.

The following simple lemma shows that to prove Theorem

V.1, it suffices to consider the case where all hyperedges

920

have size between r/2 and r. We will make this assumption

henceforth.

Lemma V.2. If Theorem V.1 holds for hypergraphs where
each edge has size between r/2 and r, then it holds for all
rank r hypergraphs.

Proof: For i = 1, . . . , log r, let Hi be H restricted to

edges of size (2i−1, 2i]. For each i, we apply the claimed

algorithm to Hi to find a (1 + εi)-sparsifier H̃i of Hi with

εi = ε2(i−log r)/2 and return H̃ = ∪iH̃i.

As H̃i has O(1
ε2i
23in log n) = O(1

ε2 2
log r+2in log n) hy-

peredges, summing over all i from 1 to log r gives that H
has O(1

ε2 r
3n log n) hyperedges. Moreover, for any x ∈ R

n,

H̃ satisfies (18) as

|QH̃(x)−QH(x)| = |
∑
i

(QH̃i
(x)−

∑
i

QHi
(x))|

≤
∑
i

|QH̃i
(x)−QHi(x)|

≤
∑
i

εiQHi
(x) ≤ ε

∑
i

QHi(x) = εQH(x)

A. Algorithm

The algorithm is a natural generalization of the sampling

by effective resistances algorithm for graphs [14].

Definition 3. (Associated graph.) Let G denote the
multi-graph obtained by replacing each hyperedge e =
(v1, . . . , vk) ∈ H , by a clique with

(
k
2

)
edges (vi, vj),

i, j ∈ [k], each with the same weight as that of e. We call
G the associated graph of H .

To avoid confusion, we will use (a, b) to denote the edges

in G and e for the hyperedges in H .

Algorithm: Given the hypergraph H , let G be its

associated graph, and let LG =
∑

(ab)∈E Lab be the (graph)

Laplacian of G. Let Yab = L
−1/2
G LabL

−1/2
G , where L−1

G is

the pseudo-inverse of LG. Then rab := ‖Yab‖ is the effective

resistance of the edge ab. For a hypergraph e ∈ E(H), define

re = max
a,b∈e

rab

Let L = cε2/(r4 log n), where c is a fixed constant that

can be computed explicitly from the analysis described later.

For each hyperedge e, set

pe = min(1,
re
L
).

H̃ is obtained by sampling each e ∈ H independently

with probability pe and scaling its weight by 1/pe.

B. Analysis

Our goal in the next few sections is to prove Theorem V.1.

We first show that H̃ has O((r3n log n)/ε2) edges with high

probability, and then focus on showing that (18) holds with

probability 1− nΩ(1).

Bounding the number of edges: The expected number

of edges in H̃ is
∑
e pe, which is at most (

∑
e re)/L. So it

suffices to bound,∑
e∈E(H)

re =
∑

e∈E(H)

max
a,b∈e

rab.

The effective resistances in a graph satisfy the metric prop-

erty, rab ≤ rac+rcb for all a, b, c, and so for any e ∈ E(H)
with k = |e|, and any a, b ∈ e, summing over all c ∈ e gives

krab ≤
∑
c∈e

(rac + rcb) ≤ 2
∑
c,d∈e

rcd

As k ≥ r/2 by our assumption from Lemma V.2, this gives

that ∑
e∈E(H)

re ≤
∑

e∈E(H)

4

r

∑
a,b∈e

rab =
4

r

∑
(ab)∈E(G)

rab.

Without loss of generality we can assume that G is con-

nected, in which case LG has rank exactly n − 1 and

LG1 = 0. This gives that
∑

(ab)∈E(G) Yab = In−1, which

upon taking traces on both sides, and using that Yab is rank

1, gives
∑

(ab)∈E(G) rab = n− 1.
So the expected number of edges is O(n/rL) =

O((nr3 log n)/ε2), and as the hyperedges are sampled in-

dependently, by standard tail bounds the number of edges is

tightly concentrated around the mean.

Proving condition (18): We now focus on showing

that (18) holds. It is useful to first consider the analysis

of Spielman and Srivastava [14] for the graph case.

The graph case: In the graph setting, (18) becomes

|xT (LG̃ − LG)x| ≤ εxTLGx for all x ∈ R
n, (19)

where LG̃ =
∑

(ab)∈F (1/pab)Lab is the Laplacian of G̃.

Setting z = L
1/2
G x, and Yab = L

−1/2
G LabL

−1/2
G , this is

equivalent to showing that, for all z in the range of LG, we

have ∑
(ab)∈G

zT (Xab − Yab)z ≤ ε‖z‖2

where Xab is the random matrix which is Yab/pab with prob-

ability pab and is the all-0 matrix otherwise. So E[Xab] =
Yab. As

∑
(ab)∈G Yab = I (on the range of LG), this

reduces to show that zT (
∑

(ab)∈GXab − I)z ≤ ε‖z‖2 or

equivalently,

‖
∑
ab

(Xab − E[Xab])‖ ≤ ε. (20)

921

This can be done using standard matrix concentration

bounds for the spectral norm such as the following.

Theorem V.3. (Matrix Bernstein inequality, [15].) Let
X1, . . . , Xm be independent, symmetric d× d random ma-
trices, and S =

∑
iXi, L = maxi ‖Xi‖. Then

Pr[‖S − E[S]‖ ≥ t] ≤ d exp

(
− t2/2

‖∑i E[X
2
i]‖+ Lt/3

)

In particular, this gives the following useful corollary.

Corollary V.4. If A1, . . . , Am are PSD with
∑
iAi � I ,

and Xi = Ai/pi with probability pi and 0 otherwise, then
for any ε ≤ 1,

Pr[‖S − E[S]‖ ≥ ε] ≤ d exp(−ε2/3L)
where L = maxi ‖Ai‖/pi.

Applying Corollary V.4 with Ai = Yab and pi = pab,
we have L = maxab ‖Yab‖/pab = maxab rab/pab =
O(ε2/ log n), which gives that (20) holds with probability

at least 1− n−Ω(1) as desired.

The hypergraph case: We first reduce the condition

(18) for hypergraphs to a simpler form. Let G be the graph

associated to H and LG be its Laplacian. We have following

simple relation.

Lemma V.5. For a k-edge e, let Le =
∑
a,b∈e Lab. Then,

for all x ∈ R
n

2

k(k − 1)
xTLex ≤ Qe(x) ≤ 2

k
xTLex

If the hyperedges in H have size in (r/2, r], then for all
x ∈ R

n

2

r(r − 1)
xTLGx ≤ QH(x) ≤ 4

r
xTLGx.

Proof: Suppose that x1 ≤ . . . ≤ xk. Then Qe(x) =
(xk−x1)2, while e contributes

∑
i,j∈[k](xi−xj)2 to xTLGx.

So the lower bound in the first inequality follows directly.

For the upper bound, we observe that (xk−x1)2 ≤ 2(xk−
xj)

2 + 2(xj − x1)
2 for each j = 2, . . . , k − 1. Summing

these gives (k−2)(xk−x1)2 ≤ 2
∑k−1
j=2 ((xk−xj)2+(xj−

x1)
2). Adding 2(xk − x1)

2 to both sides, and noting that

the resulting right side is at most 2xTLex, the upper bound

follows.

Summing up over all e ∈ E(H), and using r/2 < k ≤ r
gives the second set of inequalities.

By Lemma V.5, to show (18) it suffices to show that for

x ∈ R
n,

|QH̃(x)−QH(x)| ≤ ε

r2
xTLGx (21)

As before, setting z = L
1/2
G x and Yab = L

−1/2
G LabL

−1/2
G

gives

Qe(x) = max
a,b∈e

xTLabx = max
a,b∈e

zTYabz.

Let us define

We(z) = max
a,b∈e

zTYabz,

and let Xe be the random variable that is 1/pe with

probability pe and 0 otherwise. Then (21) is equivalent to

|
∑
e∈H

(Xe − 1)We(z)| ≤ ε

r2
‖z‖2 for all z ∈ Im(LG).

As We(z) scales as ‖z‖2, it suffices to show that

|
∑
e∈H

(Xe − 1)We(z)| ≤ ε

r2
‖z‖2 for all z ∈ B2, (22)

where B2 is the unit �2-ball in the subspace restricted to the

image of LG,

However, unlike in the graph case, it is not immediately

clear how to show concentration to prove (22). In particular,

as the operator We(z) involves the max term, the left hand

side does not correspond to any standard linear-algebraic

quantity like the spectral norm, for which we can use matrix

concentration bounds.

A natural idea might be to replace We(z) by the larger

term
∑

(a,b)∈e z
TYabz, and reduce the problem to the graph

case, for which we can use matrix Bernstein inequality. But

this does not work as the multiplier (Xe − 1) in (22) can

be negative (so |∑e∈H(Xe− 1)We(z)| could be arbitrarily

large even though |∑e∈H(Xe − 1)
∑
a,b∈e z

TYabz| is 0).

So our approach will be to directly consider the inequality

(18) for each z in the unit �2-ball, and bound the probability

of violation for any z by applying a union bound over all

such points z by a careful net argument. More precisely, we

view the left hand side of (22) as a random process indexed

by z ∈ B2, and use generic chaining arguments to bound

the supremum of this process.

Summarizing, let WH(z) =
∑
e∈EWe(z), and WH̃(z) =∑

e∈E XeWe(z) be the corresponding operator for H̃ . Prov-

ing Theorem V.1 reduces to the following.

Theorem V.6. With probability 1− n−Ω(1), it holds that

|WH̃(z)−WH(z)| ≤ ε

r2
for all z ∈ B2 (23)

This will be accomplished in the next few sections.

C. Supremum of random processes

We first give some background on the theory of supremum

of random processes and mention the results we need. For

more details, we refer the reader to Chapters 7 and 8 of the

excellent recent text [16].

Definition 4. (Random process) A random process is a col-
lection of random variables (Xt)t∈T on the same probability
space, which are indexed by the elements t of some set T .

The random variables Xt − Xs for s, t ∈ T are the

increments of the random process. A random process is

922

called mean-zero if all Xt have mean-zero. We will only

consider mean-zero processes in this paper.

Definition 5. (Gaussian process) A random process (Xt)t∈T
is called a Gaussian process, if Xt are jointly Gaussian,
i.e. if every finite linear combination of the Xt is Gaussian.

Any Gaussian process can be written in a canonical way

as Xt = 〈g, t〉, where t ∈ R
n and g ∼ N(0, In) is the

standard normal vector. This gives that for any s, t ∈ T , the

increments of a Gaussian process satisfy,

(E[(Xt −Xs)
2])1/2 = ‖t− s‖2

where ‖t − s‖2 denotes the Euclidean distance between t
and s.

As a (mean-zero) Gaussian process is completely deter-

mined by its covariance, the supremum E supt∈T Xt of a

gaussian process is completely determined by the geome-

try of the metric space (T, d). In particular, we have the

following celebrated result.

Theorem V.7. (Talagrand’s majorizing measures theorem.))
Let (Xt)t∈T be a mean-zero Gaussian process on a set T ,
with the canonical metric on T , d(s, t) = ‖t−s‖2. Then for
some absolute constants c, C

cγ2(T, d) ≤ E sup
t∈T

Xt ≤ Cγ2(T, d)

where γ2(T, d) = inf(Tk) supt∈T
∑∞
k=0 2

k/2d(t, Tk), and
where the infimum is over all sets Tk ⊂ T , satisfying
|Tk| ≤ 22

k

for all k.

We now consider sub-gaussian processes (see section 8.1

in [16] for details).

Definition 6. (Sub-gaussian increments.) Consider a ran-
dom process (Xt)t∈T on a metric space (T, d). We say that
the process has sub-gaussian increments if there exists some
K ≥ 0, such that

‖Xt −Xs‖ψ2 ≤ Kd(t, s) for all t, s ∈ T .

Here ‖ · ‖ψ2
is the sub-gaussian norm for real-valued

random variable X , defined as

‖X‖ψ2 = inf{t > 0 : E[exp(X2/t2)] ≤ 2}.
We need the following two basic facts about the ψ2-norm

(section 2.6 in [16]).

Fact V.8. For any random variable X , ‖X‖ψ2
≤ c‖X‖∞

(with c = 1/
√
ln 2).

Fact V.9. For X1, . . . , Xn independent ‖∑n
i=1Xi‖2ψ2

≤
c
∑n
i=1 ‖Xi‖2ψ2

, where c is an absolute constant.

The following result follows directly from Theorem V.7

(see section 8.6 in [16] for details).

Theorem V.10. (Talagrand’s comparison inequality.) Let
(Xt)t∈T be a mean-zero random process on a set T , and

let (Yt)t∈T be a Gaussian process with the canonical metric
d(s, t) = (E[(Ys − Yt)2])1/2 = ‖Ys − Yt‖2. Assume that for
all s, t ∈ T , we have

‖Xt −Xs‖ψ2
≤ K‖Yt − Ys‖2.

Then, for some absolute constant C,

E sup
t∈T

Xt ≤ CK E sup
t∈T

Yt

More generally, for every u ≥ 0,

Pr

[
sup
s,t∈T

Xt −Xs ≥ CK

(
E sup
t∈T

Yt + u diam(T)

)]
≤ 2 exp(−u2)

where diam(T) is the diameter of T with respect to the
metric d.

In other words, if we can find a Gaussian process Yt such

that its Gaussian increments upper bound the corresponding

sub-gaussian increments of Xt, then we can bound the

supremum of Xt by that of Yt.

D. Random process for hypergraph sparsification

We now consider the relevant random processes arising

in our setting of hypergraph sparsification.

Gaussian Process on the associated graph: Let G
be the associated graph of H , and consider the random

matrix U =
∑

(ab)∈E(G) gabYab, where gab are independent

N(0, 1).
For z ∈ R

n, consider the Gaussian process Uz = zTUz =∑
(ab)∈E(G)(z

TYabz)gab. As ‖U‖ = maxz∈B2 z
TUz, it

follows that ‖U‖ = supz∈T Uz with T = B2. As,

Uz − Uz′ =
∑
ab

(zTYabz − z′TYabz′)gab,

the canonical metric induces the distance

du(z, z
′)2 := E[(Uz − Uz′)2] =

∑
ab

(zTYabz − z′TYabz′)2.
(24)

Hypergraph sampling process: Let us now consider the

random process corresponding to (22). We consider the case

when pe = 1/2 (the theory of sub-gaussian does not work

well for pe � 1) (in section V-E we will show that the case

of general pe reduces to that of pe = 1/2. For pe = 1/2,

(Xe− 1) takes value −1 or 1 with probability 1/2 each. So

we define

Vz :=
∑

e∈E(H)

εeWe(z) =
∑

e∈E(H)

εe max
a,b∈e

zTYabz

where εe are independent Rademacher random variables.

The following key Lemma will allow us to bound the

(complicated) sub-gaussian process Vz by the simpler Gaus-

sian process Uz .

923

Lemma V.11. There is an absolute constant c, such that for
any z, z′ ∈ B2,

‖Vz − Vz′‖ψ2 ≤ c‖Uz − Uz′‖2.
Before proving this lemma, we need the following simple

fact.

Lemma V.12. For any numbers c1, . . . , cs and d1, . . . , ds,

(max
i
ci −max

i
di)

2 ≤
∑
i

(ci − di)2

Proof: Let ca = maxi ci and db = maxi di. If ca ≥ db,
then

|ca − da| = ca − da ≥ ca − db
= max

i
ci −max

i
di ≥ |max

i
ci −max

i
di|.

The other case when ca ≤ db is completely analogous.

We now prove Lemma V.11.

Proof: (Lemma V.11). Fix z, z′ ∈ B2. For a hyper-

edge e, let a(e), b(e) ∈ e be the indices that maximize

zTYa(e)b(e)z, and a′(e), b′(e) ∈ e be those that maximize

z′TYa′(e)b′(e)z′. Then,

Vz − Vz′ =
∑

e∈E(H)

εe(z
TYa(e)b(e)z − z′TYa′(e)b′(e)z′).

By Facts V.8 and V.9, there is an absolute constant c such

that,

‖Vz − Vz′‖2ψ2
≤ c

∑
e∈E(H)

(
zTYa(e)b(e)z − z′TYa′(e)b′(e)z′

)2
(25)

On the other hand, by (24) we have that

‖Uz−Uz′‖22 := du(z, z
′)2 =

∑
(ab)∈E(G)

(zTYabz−z′TYabz′)2

(26)

Even though Ya(e)b(e) could be different from Ya′(e)b′(e), we

can use Lemma V.12 to show that the right hand side of (25)

is upper bounded by the right side of (26).

Fix a hyperedge e ∈ H and let k = |e|. Applying Lemma

V.12 to the s = k2 pairs a, b ∈ [k] with cab = zTYabz and

dab = z′TYabz′, we get(
zTYa(e)b(e)z − z′TYa′(e)b′(e)z′

)2
≤

∑
a,b∈e

(
zTYabz − z′TYabz′

)2
. (27)

Summing over the hyperedges e ∈ E(H), using (25) and

(26), and noting that∑
e∈E(H)

∑
a,b∈e

(
zTYabz − z′TYabz′

)2
=

∑
(ab)∈E(G)

(
zTYabz − z′TYabz′

)2
gives the result.

Remark: It might seem that the inequality (27) can be

tightened by a factor O(1/r), by using that for any z1 ≤
. . . ≤ zr, we have that (zr − z1)

2 ≤ 2
r

∑
ij(zi − zj)

2 (we

used similar ideas in Lemma V.5). However, this following

example shows that this is not possible.

Suppose, Yab = Lab, i.e. zTYabz = (za − zb)
2. Con-

sider z = (z1, . . . , zr) = (−1, 0, . . . , 0,M) and z′ =
(0, 0, . . . , 0,M). The term on the left side of (27) is

(max
ab∈e

zTYabz − max
a′b′∈e

z′TYa′(e)b′(e)z′)2

=((M + 1)2 −M2)2 ≈ 4M2.

On the other hand, the terms on the right side of (27)

correspond to

(zTYabz − z′TYabz′)2 = ((za − zb)2 − (z′a − z′b)2)2.
However, it is easily verified that for each of the r2−1 pairs

(a, b) except (a, b) = (1, r), (za − zb)
2 − (z′a − z′b)

2 ≤ 1.

Making M arbitrarily large, this shows that we really need

the full contribution of each of the r2 terms on the right side

of (27), and we cannot improve the inequality.

Bounds on the process Vz: Lemma V.11 and Theorem

V.10 will let us bound the supremum of Vz by that of Uz .

We can directly bound the latter using the following variant

of the matrix Bernstein inequality.

Theorem V.13. ([15], Theorem 4.1.1.) If A1, . . . , Am are
symmetric d × d matrices, and gi are independent N(0, 1)
random variables, then for Y =

∑
i giAi

Pr[‖Y ‖ ≥ t] ≤ d exp(−t2/2‖
∑
i

A2
i ‖)

In particular, Theorem V.13 has the following corollary.

Corollary V.14. If Ai are PSD, and satisfy ‖Ai‖ ≤ δ and∑
iAi � I , then ‖∑iA

2
i ‖ ≤ δ and so for c ≥ 2

Pr[‖Y ‖ ≥ c
√
δ log d] ≤ d exp(−(c2 log d)/2) ≤ d−c

2/4.

We now show that a similar tail bound holds for supz Vz .

Theorem V.15. Let S ⊂ E(H) be a subset of hyperedges
with re ≤ δ for all e ∈ S. For independent Rademacher εe,
and z ∈ R

n, let

Vz =
∑
e∈S

εeWe(z).

Then E supz∈B2
Vz = O(

√
δ log n), and for all u ≥ 0

Pr

[
sup
z∈B2

Vz ≥ O(
√
δ log n+ 2u

√
δ)

]
≤ 2 exp(−u2).

Proof: Let E(G[S]) = {(ab) : a, b ∈ e, e ∈ S} be

the multi-set of edges in the associated graph G[S] for H
restricted to S. Consider the process

Uz =
∑

(ab)∈E(G[S])

gabz
TYabz

924

where gab are independent N(0, 1). Then

sup
z∈B2

Uz = ‖U‖, where U =
∑

(ab)∈E[G[S])

gabYab

As re = maxa,b∈e ‖Yab‖, we have ‖Yab‖ ≤ δ for all (ab) ∈
E(G[S]). Moreover as∑

(ab)∈E(G[S])

Yab ≤
∑

(ab)∈E(G)

Yab � I,

Corollary V.14 gives that ‖U‖ = O(
√
δ log n). By Lemma

V.11 and the Talagrand comparison inequality Theorem

V.10, we have that for some constant C,

sup
z∈B2

Vz ≤ C sup
z∈B2

Uz = C‖U‖ = O(
√
δ log n).

To compute the tail bound on supz Vz , we need to compute

the diameter diam(T) with respect du. By the definition of

du(z, z
′),

diam(T)2 = max
z,z′

du(z, z
′)2

=
∑

(ab)∈E(G[S])

(zTYabz − z′Yabz′)2

Using (c− d)2 ≤ 2c2 + 2d2 for any c, d ∈ R,

diam(T)2 ≤ 4max
z∈T

∑
ab∈E(G[S])

(zTYabz)
2

≤4max
z∈T

(
(max
ab∈E(G[S])

zTYabz) (
∑

ab∈E(G[S])

zTYabz)

)

≤4δ (as T = B2, ‖Yab‖ ≤ δ,
∑
ab

Yab � I)

The claimed tail bound on supz Vz now follows from

Theorem V.10.

E. Putting it all together

We now prove Theorem V.6. Given H , we compute

G and pe as described earlier. By rounding pe up to

nearest integer powers of 2, we can assume that for each

e ∈ E(H), pe = 2−j for some j ∈ {0, . . . , �}. This ensures

pe ≥ min(1, re/L), while at most doubling the expected

size of H̃ . Let Cj = {e ∈ E(H) : pe = 2−j}. As pe = 1
for hyperedges e with re ≥ L, the sampling error in H̃ is

only due to edges with re < L, and so in the analysis of

the sampling error below we will assume that re < L for

all e ∈ E(H).
We view the process of sampling H̃ in the following

iterative way. Let H0 = H , and for i = 1, . . . , �, Hi is

obtained from Hi−1 by picking each hyperedge e of classes

Cj for j ∈ {�−i+1, �}, independently with probability 1/2,

and doubling the weight of e if it is picked. Or equivalently,

for i = 1, . . . , �, Hi is obtained by picking each edge e ∈ Cj
in H independently with probability min(1, 2�−j−i) and

scaling its weight by max(1, 2j+i−�). So H� = H̃ , and an

edge e in Cj survives independently in H� with probability

pe = 2−j .
Proof: (Theorem V.6.) By the discussion above, for i =

0, . . . , �,

WHi
(z) =

�∑
j=0

∑
e∈Cj∩E(Hi)

max(1, 2i+j−�)We(z).

and note that WH0(z) =WH(z) and WH̃(z) =WH�
(z).

For any z ∈ B2, by triangle inequality

|WH̃(z)−WH(z)| = |WH�
(z)−WH(z)|

≤
�∑
i=1

|WHi(z)−WHi−1(z)|

Taking supremum over all z, and taking the sup inside the

summation,

sup
z
|WH̃(z)−WH(z)| ≤

�∑
i=1

sup
z
|WHi

(z)−WHi−1
(z)|
(28)

As Hi is obtained by Hi−1 by sampling each edge of

class j ∈ [�− i+1, �] with probability 1/2 and doubling its

weight, we have

WHi(z)−WHi−1(z)

=
�∑

j=�−i+1

∑
e∈Cj∩E(Hi−1)

εe2
i+j−�−1We(z)

For j ∈ {� − i + 1, �} and any e ∈ Cj , We(z) =
maxa,b∈e zTYabz with ‖Yab‖ ≤ re ≤ 2−jL for all a, b ∈ e.
So ‖2i+j−�Yab‖ ≤ 2i−�L, and applying Theorem V.15 with

Vz =WHi
(z)−WHi−1

(z) and u =
√
log n gives that

Pr[sup
z
Vz ≥ O(

√
2i−�L log n)] ≤ n−Ω(1)

Together with (28), and taking union bound over the � =
O(log n) classes, we get that

sup
z
|WH̃(z)−WH(z)| ≤ O(

�∑
i=1

√
2i−�L log n) = O

(ε

r2

)
,

with probability n−Ω(1), as desired.

ACKNOWLEDGMENT

NB was supported by the ERC Consolidator Grant 617951

and the NWO VICI grant 639.023.812. OS was supported

by the Swiss National Science Foundation project 200021-

184656 “Randomness in Problem Instances and Randomized

Algorithms”. LT was supported by the NSF under grant

CCF 1815434 and his work on this project has received

funding from the European Research Council (ERC) under

the European Unions Horizon 2020 research and innovation

programme (grant agreement No. 834861).

925

REFERENCES

[1] A. A. Benczúr and D. R. Karger, “Approximating s-t min-

imum cuts in Õ(n2) time,” in Symposium on Theory of
Computing, STOC, 1996, 1996, pp. 47–55.

[2] D. Spielman and S.-H. Teng, “Nearly linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems,” in Symposium on Theory of Computing, 2004, pp.
81–90.

[3] J. D. Batson, D. A. Spielman, and N. Srivastava, “Twice-
Ramanujan sparsifiers,” SIAM J. Comput., vol. 41, no. 6, pp.
1704–1721, 2012.

[4] D. G. Anderson, M. Gu, and C. Melgaard, “An efficient
algorithm for unweighted spectral graph sparsification,” arXiv
preprint arXiv:1410.4273, 2014.

[5] Z. Allen Zhu, Z. Liao, and L. Orecchia, “Spectral sparsifi-
cation and regret minimization beyond matrix multiplicative
updates,” in Symposium on Theory of Computing, STOC 2015,
2015, pp. 237–245.

[6] A. W. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing
families II: Mixed characteristic polynomials and the Kadison
Singer problem,” Annals of Mathematics, pp. 327–350, 2015.

[7] A. M. Frieze and M. Molloy, “Splitting an expander graph,”
J. Algorithms, vol. 33, no. 1, pp. 166–172, Oct. 1999.

[8] L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and
L. Trevisan, “Finding a bounded-degree expander inside a
dense one,” arXiv, vol. 1811.10316, 2018.

[9] D. Kogan and R. Krauthgamer, “Sketching cuts in graphs
and hypergraphs,” in Innovations in Theoretical Computer
Science, ITCS. ACM, 2015, pp. 367–376.

[10] T. Soma and Y. Yoshida, “Spectral sparsification of hyper-
graphs,” in Symposium on Discrete Algorithms (SODA), 2019,
pp. 2570–2581.

[11] Y. Bilu and N. Linial, “Lifts, discrepancy and nearly optimal
spectral gap,” Combinatorica, vol. 26, no. 5, pp. 495–519,
Oct 2006.

[12] E. Paul and L. Lovász, “Problems and results on 3-chromatic
hypergraphs and some related questions,” Coll Math Soc J
Bolyai, vol. 10, 01 1974.

[13] B. Haeupler, B. Saha, and A. Srinivasan, “New constructive
aspects of the lovász local lemma,” J. ACM, vol. 58, no. 6,
pp. 28:1–28:28, 2011.

[14] D. A. Spielman and N. Srivastava, “Graph sparsification by
effective resistances,” SIAM J. Comput., vol. 40, no. 6, pp.
1913–1926, 2011.

[15] J. A. Tropp, “An introduction to matrix concentration inequal-
ities,” Foundations and Trends in Machine Learning, vol. 8,
no. 1-2, pp. 1–230, 2015.

[16] R. Vershynin, High-Dimensional Probability: An Introduction
with Applications in Data Science. Cambridge University
Press, 09 2018.

APPENDIX

A. Proofs of Lemma IV.6 and Lemma IV.7

For completeness we give the proofs of Lemma IV.6 and

Lemma IV.7 that are very similar to those of Lemma IV.3

and Lemma IV.4, respectively.

Lemma IV.6. There exists a probabilistic polynomial-time
algorithm that, given an n-vertex graph G = (V,E) of
maximal degree d, outputs a subgraph G̃ = (V, F) with
F ⊆ E such that the following properties hold with
probability at least 1− n−3:

1) For every disjoint S, T ⊆ V we have
|2 · eF (S, T)− eE(S, T)| ≤ 10

√
d log d ·√|S||T |.

2) For every vertex v ∈ V we have |2 · eF (v)− eE(v)| ≤
10
√
d log d.

Proof: The proof closely follows that of Lemma IV.3

and is similar to the proof of Lemma 3.2 by Bilu and

Linial [11]. We first observe that we only need to verify

Property 1 for those disjoint sets S, T ⊆ V such that

G[S ∪ T] is connected. To see this, let G[S ∪ T] denote

the subgraph induced by S ∪ T . Suppose G[S ∪ T] is not

connected and let S1∪T1, S2∪T2, . . . , Sk∪Tk be the vertex

sets of the connected components where S1, . . . , Sk ⊆ S and

T1, . . . , Tk ⊆ T . If Property 1 holds for connected com-

ponents then |2 · eF (Si, Ti)− eE(Si, Ti)| ≤ 10
√
d log d ·√|Si||Ti| for i = 1, . . . , k, and so

|2 · eF (S, T)− eE(S, T)|

=

∣∣∣∣∣
k∑
i=1

(2 · eF (Si, Ti)− eE(Si, Ti))
∣∣∣∣∣

≤
k∑
i=1

|2 · eF (Si, Ti)− eE(Si, Ti)|

≤10
√
d log d ·

k∑
i=1

√
|Si||Ti|

≤10
√
d log d ·

√
|S||T | ,

It is thus sufficient to prove the inequalities for those disjoint

vertex sets S, T that induce a connected subgraph G[S∪T].
Suppose we select F by including each edge e ∈ E

with probability 1/2 independently of other edges. That is,

in the notation of Theorem IV.2, we have that P consists

of |E| mutually independent variables {Pe}e∈E , where

Pe indicates whether e ∈ F and Pr[Pe] = 1/2. Now

for each S and T such that G[S ∪ T] is connected, let

AS,T be the “bad” event that |2 · |δF (S, T)| − |δE(S, T)|| >
10
√
d log d · √|S||T |. Note that |δF (S, T)| is the sum of

at most d
√|S||T | independent variables, attaining values

0 and 1, and that the expected value of |δF (S, T)| equals

|δE(S, T)|/2. Thus by the Chernoff inequality we get

Pr[AS,T] < d−6|S∪T | .

926

Similarly, if we let Dv denote the bad event that the

degree constraint of v is violated, i.e., |2 · eF (v)− eE(v)| >
10
√
d log d. Then

Pr[Dv] < d−6 .

To apply Theorem IV.2, we analyze the dependency graph

on the events:

• There is an edge between AS,T and AS′,T ′ if

vbl(AS,T) ∩ vbl(AS′,T ′) �= ∅
⇔δE(S, T) ∩ δE(S′, T ′) �= ∅.

• There is an edge between AS,T and Dv if

vbl(AS,T) ∩ vbl(Dv) �= ∅ ⇔ δE(S, T) ∩ δE(v) �= ∅.
• There is an edge between Du and Dv if

vbl(Du) ∩ vbl(Dv) �= ∅ ⇔ δE(u) ∩ δE(v) �= ∅.
Consider now a fixed event AS,T and let k = |S ∪ T |.

We bound the number of neighbors, AS′,T ′ , of AS,T with

|S′ ∪T ′| = �. Since we are interested in only subsets S′, T ′

such that G[S′ ∪ T ′] is connected, this is bounded by the

number of distinct subtrees on � vertices in the associated

graph G, with a root in one of the endpoints of an edge

in δ(S, T). There are thus at most 2dmin(|S|, |T |) ≤ dk
many choices of the root and, as G has degree at most d,

the number of such trees is known to be at most (see e.g. [7])

dk ·
(
d(�− 1)

�− 1

)
≤ dk · (ed)�−1 , (29)

where we used that
(
d(�−1)
�−1

) ≤ (ed)�−1. Moreover, it is

easy to see that AS,T has at most 2dmin(|S|, |T |) ≤ dk
neighbors Bv .

Now to verify condition (13) of Theorem IV.2, we set

x(AS∪T) = d−3|S∪T | for every bad event AS,T and

x(Bv) = d−3 for every bad event Bv . So if we consider

an event AS,T with k = |S ∪ T |, then

x(AS,T)
∏

(S′,T ′):AS,T∼AS′,T ′

(1− x(AS′,T ′))
∏

v:AS,T∼Bv

(1− x(Bv))

≥d−3k
n∏
�=1

(
1− d−3�

)dk(ed)�−1

· (1− d−3
)dk

≥d−3k exp(−2dk
n∑
�=1

d−3�(ed)�−1 − 2dkd−3)

≥d−3ke−3k > d−6k/2 > Pr[AS,T]/2 ,

where we used that d is a sufficiently large constant, which is

without loss of generality since if d ≤ 10
√
d log(d) then the

lemma becomes trivial. In other words, (13) is satisfied for

events AS,T with ε set to 1/2. Let us now consider an event

Bv . Clearly there is at most d other events Bu such that

Bu ∼ Bv . Moreover, by the same arguments as above there

are at most 2d(ed)�−1 neighbors AS,T such that |S∪T | = �.
Hence

x(Bv)
∏

(S,T):Bv∼AS,T

(1− x(AS,T))
∏

u:Bv∼Bu

(1− x(Bu))

≥ d−3
n∏
�=1

(
1− d−3�

)d(ed)�−1

· (1− d−3
)d

≥ d−6/2 ≥ Pr[Bv]/2 ,

where the second to last inequality follows because of the

same simplifications as done above with k = 1. We have

thus verified that (13) is satisfied for all events with ε set to

1/2.

It remains to define an efficiently verifiable core subset

A′ ⊆ A such that 1−∑
A∈A\A′ x(A) ≥ 1− n−3. We let

A′ = {Bv}v∈V ∪ {AS,T ∈ A : |S ∪ T | ≤ s}
where s = logd(n).

By the same arguments as in (29), there is at most n ·(
d(�−1)
�−1

) ≤ n(ed)�−1 many vertex sets U such that |U | = �

and G[U] is connected. Moreover, for each U there are 2�

possible ways of partitioning it into S and T . Therefore, the

following properties hold:

1) A′ is efficiently verifiable since it contains n ·∑s
�=1(ed)

�−12� = O(n · (ed · 2)s) = O(n3) many

events AS,T that can be efficiently enumerated by first

selecting a vertex r among n choices, then considering

all possible trees rooted at r with � ≤ s vertices, and

all possible ways of partitioning such a component

into S and T . Moreover, the remaining n events Bv
in A′ contains n are easy to verify in polynomial time.

2) We have

∑
AS,T∈A\A′

x(AS,T) ≤
n∑

�=s+1

d−6� · (n · (ed · 2)�)

≤ n ·
n∑

�=s+1

d−4� ≤ nd−4s = n−3 ,

where for the first inequality we again used that d is

a sufficiently large constant.

We have verified Condition (13) of Theorem IV.2 and we

have defined an efficiently verifiable core subset A′ such

that
∑
AS∈A\A′ x(AS) ≤ n−3 and so the lemma follows.

Lemma IV.7. There is an absolute constant c such that
the following holds. There is a probabilistic polynomial-time
algorithm that on input an n-vertex graph G = (V,E) of
maximum degree d, ε > 0, and any k ∈ N such that d2−k ≥
c 1
ε2 log(1/ε), outputs a subgraph G̃ = (V, F) such that the

following properties hold with probability at least 1− n−2:

927

1) For every disjoint S, T ⊆ V we have∣∣2k · eF (S, T)− eE(S, T)∣∣ ≤ εd ·
√
|S||T |.

2) For every vertex v ∈ V we have∣∣2k · eF (v)− eE(v)∣∣ ≤ εd.

Proof: Starting with G we apply Lemma IV.6 k times

to obtain G̃. Let Fi denote the edge set and let di denote the

maximum degree after round i. So F0 = E and d0 = d. By

the guarantees of Lemma IV.6, we have that with probability

1− n−3, for every disjoint S, T ⊆ V ,

|2di+1 − di| ≤ 10
√
di log(di) and (30)

∣∣2 · eFi+1
(S, T)− eFi

(S, T)
∣∣ ≤ 10

√
di log(di) ·

√
|S||T |

(31)

As we apply Lemma IV.6 k times with k ≤ log(n), the

union bound implies that the above inequalities are true

for all invocations of that lemma with probability at least

1 − k · n−3 ≥ 1 − n−2. From now on we assume that the

above inequalities hold and show that the conclusion of the

statement is always true in that case. Specifically, we now

prove by induction on k that for every disjoint S, T ⊆ V ,

|2kdk − d0| ≤ εd0, and∣∣2k · eFk
(S, T)− eF0

(S, T)
∣∣ ≤ εd0 ·

√
|S||T |.

The claim holds trivially for k = 0. Assume it holds for all

i < k, which in particular implies 2idi ≤ 2d0 for all i < k.

By the triangle inequality and (30),

|2kdk − d0| ≤
k−1∑
i=0

|2i(2di+1 − di)|

≤ 10

k−1∑
i=0

2i
√
di log(di)

≤ 10

k−1∑
i=0

2i
√
2(d0/2i) log(2(d0/2i))

where the last step follows by the induction hypothesis on

di). As the terms increase geometrically in i, this sum is

O(2k
√
(d0/2k) log((d0/2k)) which is εd0 by our assump-

tion on k and selection of c.
Finally, we note that

∣∣2k · eFk
(S, T)− eF0

(S, T)
∣∣ ≤ εd0 ·√|S||T | follows by the same calculations (using (31) instead

of (30)).

928

