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Abstract—Vizing’s celebrated theorem asserts that any graph
of maximum degree Δ admits an edge coloring using at most
Δ+1 colors. In contrast, Bar-Noy, Motwani and Naor showed
over a quarter century ago that the trivial greedy algorithm,
which uses 2Δ− 1 colors, is optimal among online algorithms.
Their lower bound has a caveat, however: it only applies to
low-degree graphs, with Δ = O(log n), and they conjectured
the existence of online algorithms using Δ(1+ o(1)) colors for
Δ = ω(log n). Progress towards resolving this conjecture was
only made under stochastic arrivals (Aggarwal et al., FOCS’03
and Bahmani et al., SODA’10).

We resolve the above conjecture for adversarial vertex
arrivals in bipartite graphs, for which we present a (1+o(1))Δ-
edge-coloring algorithm for Δ = ω(log n) known a priori.
Surprisingly, if Δ is not known ahead of time, we show that
no

(
e

e−1
− Ω(1)

)
Δ-edge-coloring algorithm exists. We then

provide an optimal,
(

e
e−1

+ o(1)
)
Δ-edge-coloring algorithm

for unknown Δ = ω(log n). To obtain our results, we study
a nonstandard fractional relaxation for edge coloring, for
which we present optimal fractional online algorithms and
a near-lossless online rounding scheme, yielding our optimal
randomized algorithms.

Keywords-online algorithms; edge coloring; online coloring;
adversarial arrivals

I. INTRODUCTION

Edge coloring is the problem of assigning a color to

each edge of a multigraph so that no two edges with a

common endpoint have the same color. This classic problem,

even restricted to bipartite graphs, can be used to model

scheduling problems arising in sensor networks [27], switch

routing [1], radio-hop networks [56] and optical networks

[52], among others. Edge coloring can trace its origins back

to the 19th-century works of Tait [55] and Petersen [51],

who studied this problem in the context of the four color

theorem. Shannon [54] later studied edge coloring in the

context of color coding wires in electrical units, and proved

that any multigraph G of maximum degree Δ = Δ(G)
admits a � 3Δ2 �-edge-coloring; i.e., a coloring using at most
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� 3Δ2 � colors. (This is tight.) Inspired by this result, Vizing

[57] proved that any simple graph can be edge colored using

Δ+1 colors. Clearly, Δ colors are necessary to edge color a

graph, and for bipartite graphs multiple near-linear-time Δ-

edge-coloring algorithms are known [2, 12, 29]. For general

graphs, several polytime (Δ + 1)-edge-coloring algorithms

are known [25, 47, 57], and this too is likely optimal, as

determining whether a general graph is Δ-edge-colorable is

NP-hard [32].

In addition to these optimal polytime algorithms, there

exists a simple quasilinear-time (2Δ − 1)-edge-coloring

greedy algorithm, which colors each edge with the lowest

color unused by its adjacent edges. The greedy algorithm

is implementable in many restricted models of computa-

tion, and improving upon its coloring guarantees, or even

matching them quickly in such models, has been the subject

of intense research. Examples include PRAM [41], NC and

RNC [6, 38, 48], dynamic [7, 14] and distributed algorithms

(e.g., [10, 15, 19, 24, 28, 50]).

For online algorithms, little progress was made towards

beating the greedy algorithm. The only positive results are

under random-order edge arrival in “dense” bipartite multi-

graphs. Specifically, under such stochastic arrivals, Aggarwal

et al. [1] showed how to obtain a Δ(1+o(1)) edge coloring

of n-vertex multigraphs if Δ = ω(n2) and Bahmani et al.

[4] showed how to obtain a 1.26Δ edge coloring under

the milder assumption that Δ = ω(log n). The lack of

progress for adversarial arrival order is likely explained by

the following theorem of Bar-Noy et al. [5].

Theorem 1 ([5], informal). No online edge coloring algo-
rithm can 2Δ− 2 edge-color a graph.

However, the lower bound of Bar-Noy et al. requires a

number of nodes n exponential in Δ: that is, it only holds

for some Δ = O(log n). Therefore, this lower bound can be

thought of as an additive lower bound of Δ+Ω(log n), rather

than a multiplicative lower bound of ≈ 2Δ. Put otherwise,

it does not preclude a better-than-(2Δ − 1) edge-coloring

algorithm for Δ = Ω(log n) large enough. Indeed, Bar-Noy

et al. went so far as to conjecture that Δ(1 + o(1))-edge-

colorings are computable online for large enough Δ.

Conjecture 2 ([5]). There exists an online algorithm which
Δ(1 + o(1)) edge-colors graphs with Δ = ω(log n).
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Our focus: In this paper we study edge coloring under

the adversarial online vertex-arrival model of Karp et al.

[39], where vertices on one side of a bipartite graph arrive

over time, with their edges to previously-arrived neighbors.

In this model, an online algorithm colors each edge e upon

arrival, immediately and irrevocably. Recall from above that

edge coloring in bipartite graphs has multiple applications,

including in online settings. Indeed, such an application of

edge coloring bipartite graphs to switch routing (with input

switches on one side and output switches on the other) was

precisely the motivation of Aggarwal et al. [1] to study

online edge coloring. The online edge coloring lower bound

of [5] holds even for bipartite vertex arrivals. We show that

for such arrivals a large enough maximum degree indeed

allows to circumvent Bar-Noy et al.’s lower bound, and prove

their conjecture. In particular, we present optimal algorithms

(up to o(1) terms) both for the known-Δ scenario, as well

as for the stricter online problem where Δ(= OPT ) is

unknown a priori.

A. Our Contributions

We provide the following optimal results for online edge

coloring under adversarial vertex arrivals. For conciseness,

we state our results in terms of competitiveness, calling an

α ·Δ-edge-coloring algorithm α-competitive, as the optimal

edge coloring requires at least Δ colors.

Our first result is an optimal algorithm for known large

Δ.

Theorem 3. There exists a (1 + o(1))-competitive ran-
domized edge coloring algorithm for bipartite graphs of
known maximum degree Δ = ω(log n). A competitive
ratio of 1 + o(1) is optimal – no randomized algorithm is
1 + o(1/

√
Δ) competitive for any Δ.

Like all prior non-trivial online algorithms, the above

algorithm assumes a priori knowledge of a critical parameter

of the input, namely Δ, which is the optimum number of

colors needed to color the bipartite graph. However, in many

online scenarios, such assumptions are unreasonable. We

show that removing this assumption results in a strictly

harder problem, though here too greedy is suboptimal.

Our main contribution is an optimal online algorithm for

unknown large Δ.

Theorem 4. There exists an ( e
e−1 + o(1))-competitive ran-

domized edge coloring algorithm for bipartite graphs of
unknown maximum degree Δ = ω(log n). This is optimal
(up to o(1) terms) – no algorithm is better than e

e−1
competitive for unknown Δ.

Remark 1. For simplicity we stated our positive results

in theorems 3 and 4 for Δ = ω(log n). More gener-

ally, our algorithms’ competitive ratios are of the form

α + O( c
√
log n/Δ)) for some constant c ≥ 1 and α = 1

or α = e
e−1 , respectively (see Section IV). Thus, we obtain

better-than-2 competitive ratios already for sufficiently large

Δ = O(log n).
Remark 2. We stated all our positive results for simple

graphs, though they hold more generally for any multigraph

with maximum edge multiplicity o(Δ). (A necessary condi-

tion – see Section XII).

Our upper and lower bounds rely on a nonstandard frac-

tional relaxation for edge coloring. In particular, we present

matching upper and lower bounds for this relaxation, and

present a nearly-lossless online rounding of solutions to this

relaxation. Using this relaxation, we show a complementary

result: a separation between online edge coloring on general

and bipartite graphs, which we prove by showing a higher

lower bound for the former (as well as a better-than-greedy

fractional algorithm for the latter).

Theorem 5. No fractional online edge coloring algorithm
is better than 1.606(> e

e−1 ) competitive for general graphs
of unknown maximum degree Δ. On the other hand, there
exists a fractional edge coloring algorithm which is 1.777
competitive for general graphs of unknown maximum degree
Δ.

To conclude, relying on our new relaxation, we present the

first online algorithms beating greedy under any adversarial

arrivals. In particular, we prove the conjecture of Bar-Noy

et al. and provide tight bounds for the well-studied model

of Karp et al., both under known and unknown Δ.

B. Techniques

Novel Relaxation: The classic fractional relaxation

for edge coloring asks to minimize
∑

M xM , subject to∑
M�e xe = 1 for every e ∈ E and xM ≥ 0 for every

matching M . That is, this relaxation fractionally uses inte-

gral matchings to cover each edge. For the online problem,

this standard relaxation is not particularly useful, as the set of

matchings in the input graph is unknown a priori (since the

edge set is unknown). Our first insight is a novel fractional

relaxation which allows for more “myopic” assignments

upon vertex arrivals – its variables xe,c are the extent to

which an edge e is colored c. Specifically, our relaxation

integrally uses fractional matchings to cover each edge; i.e.,∑
c xe,c = 1. The goal is to minimize the number of non-

zero fractional matchings used. This simple change to the

relaxation proves particularly useful in the online setting,

and underlies both our upper and lower bounds. We believe

this relaxation may find applications to other incomplete-

information models, such as dynamic, distributed, and local

computation algorithms.

Fractional Algorithms: Our relaxation admits a trivial

1-competitive solution: set xe,c = 1/Δ, for each edge and

c ∈ [Δ]. If Δ is known a priori, this solution can even

be computed by an online fractional algorithm (which must

fix the values xec for each edge e immediately on arrival).

By our lower bounds, for unknown Δ, other algorithms are
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needed. A natural candidate is the greedy “water-filling”

algorithm, which continuously increases an arriving edge’s

assignment for all colors minimizing the maximum load

for either endpoint. However, this approach may yield an

extremely unbalanced allocation. In particular, it can make

a vertex v have load of one in half of the colors used so

far and another vertex u have load of one in the other

half. Adding an edge (u, v) would then force the algorithm

to open a new color – resulting in the trivial 2Δ − 1
bound. (See Section VII-C.) Guided by our lower bounds for

fractional algorithms, we derive simple but crucial changes

to the water-filling algorithm. First, we use an asymmetric
approach, where we pick colors to use based only on the load

on the offline vertex. Secondly, in order to bound the load on

the online vertex, we cap the value of each edge-color pair.

These changes yield bounded loads for the online vertex and

a more balanced allocation, resulting in an optimal online

fractional edge coloring.

Online Rounding: Given an α-competitive fractional

online algorithm, our approach would be to use its αΔ
fractional matchings to obtain αΔ integral matchings, or

colors, which leave the remaining uncolored subgraph hav-

ing low maximum-degree (o(Δ)). Then using greedy on the

remaining uncolored edges requires a further o(Δ) colors, or

(α+o(1))Δ colors overall. The question is how to compute

αΔ colors based on the online fractional edge coloring.

One natural way to do so is to repeatedly round these frac-

tional matchings online, using a near-lossless online round-

ing scheme for fractional matchings ([11]). Unfortunately,

while maximum-degree vertices stand to be matched ≈ Δ
times during such a rounding stage, a constant fraction of

these matches would be along previously-matched (colored)

edges. To see this, note that each edge has a constant

probability of being matched at least twice this way (since

each edge has a constant probability of being colored more

than once).

We therefore employ a more elaborate approach, repeat-

edly rounding subsets of multiple fractional edge colorings’

fractional matchings. Our guiding intuition is the following

simple observation, that the load assigned to the edges of a

maximum-degree vertex by an average fractional matching

among the αΔ matchings is precisely 1/α. Consequently,

rounding a randomly-chosen fractional matching will result

in this vertex being matched with probability ≈ 1/α. If most

such matches are along previously-unmatched(uncolored)

edges, then this vertex’s degree in the uncolored graph will

decrease at the appropriate rate. However, as exhibited by

the previous approach, the probability of matching along

an uncolored edge decreases when we use round many

fractional matchings. Therefore, we only round a subset
of fractional matchings, small enough to not decrease the

probability of v being matched along an uncolored edge

(due to re-matches), yet large enough to apply tail bound

and argue that all high-degree vertices have their uncolored

degree decrease at a rate of ≈ 1/α per color used.

How to sample such a number of fractional matchings,

not too few and not too many, but just right, for unknown

Δ is not immediate, however, as we do not even know how

many fractional matchings we will use (as Δ is unknown

and keeps increasing). To address this, we rely on the fact

that Δ = ω(log n), allowing us to argue that sampling

each fractional matching (including matchings which are

currently trivial) a priori with appropriate probability p gives

the following. We choose p = o(1) (guaranteeing few re-

colors) which also satisfies Δ · p = ω(log n) (in order to

have concentration up to (1 ± o(1)) factors on the number

of non-trivial colors used), we color a ≈ 1 − p fraction of

the edges of high-degree vertices (i.e., ≈ Δ ·p) edges, while

using only ≈ αΔ·p colors, all with high probability. We then

compute another fractional edge coloring, but this time only

on the residual uncolored subgraph. Repeatedly applying this

approach (computing another edge colorings, and rounding

a sampled subset of its matchings) therefore allows us to

decrease the maximum degree of the uncolored graph at the

required rate w.h.p. So, after αΔ colors are used this way, we

safely run greedy, yielding an (α + o(1))-competitive edge

coloring. Plugging in the optimal algorithms for known and

unknown Δ into this rounding scheme then yields our main

positive results: optimal randomized online edge coloring

algorithms.

Lower Bounds: For our lower bounds (including the

tight ones for bipartite graphs) we formulate linear programs

capturing constraints satisfied by any α-competitive frac-

tional online algorithms (for our relaxation) when run on

a tailor-made family of edge coloring instances. We then

present a family of feasible solutions to the dual program,

whose value converges to the claimed lower bounds, imply-

ing the lower bound on α by LP duality. (See [3] for more

examples of this approach.)

C. Related Work

Online Edge Coloring: Several previous papers studied

edge coloring in online settings [1, 4, 5, 18, 20, 21, 45, 46].

Mikkelsen [45, 46] studied the online edge coloring problem,

but with advice about the future. Favrholdt et al. [18, 20, 21]

studied the “dual” problem of maximizing the number of

edges colored using a fixed number of colors. Most relevant

to our paper is the work of Motwani et al. [1, 4, 5].

Aggarwal et al. [1] presented a (1 + o(1))-competitive

algorithm for multigraphs with known Δ = ω(n2). Bahmani

et al. [4], inspired by the distributed algorithm of Panconesi

and Srinivasan [50], gave a 1.26-competitive algorithm for

multigraphs with known Δ = ω(log n). Both algorithms

require random order edge arrivals, and fall short of the

guarantees of Conjecture 2 ([5]), either in the competitive

ratio or in the requirement of Δ. In contrast, we consider

vertex arrivals under the stricter adversarial arrival order,
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for which we match these conjectured bounds for known Δ,

and also achieve optimal bounds for (harder) unknown Δ.

Online Matching: As edge coloring is the problem of

partitioning a graph’s edges into matchings, it is natural

that our work relates to the long line of work on online

matching. This problem was introduced in the seminal work

of Karp et al. [39], who presented the classic RANKING

algorithm, which is (1− 1
e ) competitive for bipartite graphs

under one-sided arrivals, and proved its optimality. A simpler

argument proves this algorithm’s optimality even among

fractional algorithms (see [22]). Alternative analyses of this

algorithm were given over the years ([8, 13, 17, 30]) and

another optimal fractional algorithm with further applica-

tions, WATER FILLING, was given in [36]. Better bounds are

known under structural assumptions [9, 11, 49], and under

stochastic arrivals [23, 37, 43]. See the survey of Mehta [44]

for more on this problem and its extensions. Finally, we

note the recent interest in online matching in general graphs

[26, 33, 34, 58]. Our complementary results of Theorem 5

for online edge coloring in general graphs are another step

towards a better understanding of matching-theory-related

problems in online models in general graphs.

II. THE FRACTIONAL RELAXATION

In this section, we define the online fractional edge color-

ing relaxation we study and discuss several of its properties.

The Classic Fractional Relaxation: The classic relax-

ation for edge coloring has a nonnegative variable xM for

each matching M in G = (V,E), corresponding to the

(fractional) extent to which this matching is used in the

solution. The objective is to minimize
∑

M xM subject to∑
M�e xM = 1 for each edge e ∈ E. This relaxation

clearly lower bounds the chromatic index; i.e., the minimum

number of matchings needed to cover G. A long-standing

conjecture of Goldberg and Seymour is that this relaxation

is at most one lower than the chromatic index [31, 53]. (See

[42, Chapter 7.4] for more discussion of this relaxation.)

Unfortunately, this relaxation seems somewhat unwieldy in

an online setting, as we outline below.

The Relaxation We Study: The standard fractional edge

coloring relaxation is difficult to use in online settings, where

we do not know the edges which will arrive in the future, let

alone which matchings G will contain. This motivates us to

study a more “myopic” relaxation, which allows us to make

our (fractional) assignments immediately upon an edge’s

arrival (due to one of its endpoints’ arrival). Specifically,

rather than relax the integrality of the extent to which we use

integral matchings, we relax the integrality of the matchings

used. That is, while the classic relaxation fractionally uses

integral matchings to color edges, our relaxation integrally
uses fractional matchings to color edges. As we will see, a

useful property of this relaxation is that it allows us to rely

on machinery for rounding fractional matchings online.

The edge coloring relaxation we consider is thus the

following. We say a graph G(V,E) is fractionally k-edge-
colorable if there is a feasible solution to the linear program∑

c∈[k]
xe,c = 1 ∀e ∈ E

∑
e�v

xe,c ≤ 1 ∀v ∈ V, c ∈ [k]

xe,c ≥ 0 ∀e ∈ E, c ∈ [k]

For any graph G, the minimal number of fractional colors

k is equal to G’s maximum degree, Δ. We note that in

bipartite graphs this relaxation and the classic relaxation are

equivalent in an offline sense, in that any solution to one can

be transformed to a solution of equal value to the other (for

general graphs, there can be a gap of one between the two,

as exemplified by the triangle graph). In an online sense it

is not clear how to go from one relaxation to the other, and

so we will rely only on our new relaxation.

An LP Formulation.: For notational simplicity, rather

than discuss fractional algorithms using some k = α · Δ
colors, we will instead use k = Δ colors and relax the

second constraint to∑
e�v

xe,c ≤ α ∀v ∈ V, c ∈ [Δ]

When dealing with fractional solutions, it is easy to “stretch”

such a solution to obtain a feasible edge coloring (i.e.,

satisfying
∑

e�v xe,c ≤ 1) while using 
α ·Δ� ≤ α ·Δ+ 1
colors, and this can be done online. Therefore, our goal will

be to minimize α — the competitive ratio.

Online Algorithms for the LP Relaxation: An online

fractional edge coloring algorithm must assign xe,c values

for all edges e upon arrival, immediately and irrevocably.

For example, if Δ is known a priori, assigning each edge-

color pair a value of 1
Δ trivially yields a 1-competitive online

fractional algorithm. If Δ is unknown, the situation is not

so simple, as our lower bounds of Section V demonstrate.

In the following section we present our online fractional

algorithms for unknown Δ, including an optimal algorithm

for bipartite graphs.

III. THE FRACTIONAL ONLINE ALGORITHM

Our LP relaxation asks to minimize the maximum load
of any vertex u in color c, Lu(c) �

∑
e�u xe,c. The greedy

water-filling algorithm, upon arrival of edge e, increases all

xe,c for all colors c minimizing the maximum load of either

endpoint of e. This natural algorithm is no better than the

integral greedy algorithm, however (see Section VII-A). In

our algorithm, upon arrival of a vertex v, we run a variant

of the water-filling algorithm on each edge (u, v) in an

arbitrary order. One difference in our algorithm compared to

the greedy one is that its greedy choice is asymmetric, and

is only determined by the current loads of the previously-

arrived endpoint, u. The second difference is that we set a
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bound constraint of β/Δ for each color per edge, where

Δ is the current maximal degree, and β is a parameter of

the algorithm which will be determined later. The bound

constraints result in bounded load trivially for the online

vertex, and by careful analysis, also for the offline vertex.

In addition, the bound constraints result in a more balanced

allocation, which uses more colors for each edge, but fewer

colors overall. A formal description of our algorithm is given

in Algorithm 1. Our algorithm is described as a continuous

process, but can be discretized easily.

Algorithm 1 Bounded Water Filling

Input: Online graph G(V,E) with unknown maximum de-

gree Δ(G) under vertex arrivals, parameter β ∈ (1, 2).
Output: Fractional edge coloring {xe,c | e ∈ E, c ∈

[Δ(G)]}.
1: (Implicitly) xe,c ← 0 for all e ∈ E, c ∈ N.

2: for each arrival of a vertex v do
3: Δ← max{current d(u) | u ∈ V }.

/* Δ = current max. degree */

4: for each e = (u, v) ∈ E do
5: while

∑
c∈[Δ] xe,c < 1 do

6: let U := {c ∈ [Δ] | xe,c < β/Δ}.
/* “unsaturated” colors for e */

7: let C := {c ∈ U | Lu(c) = minc∈U Lu(c)}.
/* “currently active” colors for e */

8: for all c ∈ C do
9: increase xe,c continuously.

/* update Lu(c), Lv(c),U and C */

A. Basic properties of the algorithm

Our water filling algorithm preserves important mono-

tonicity properties on the loads of any previously-arrived

vertex v. In particular, the order obtained by sorting colors

by their loads for v remains invariant following its future

neighbors’ arrivals. More formally, for each vertex v, we

define an order permutation σv : Z+ → Z+, where σv(i) is

the index of v’s ith most loaded color index after the vertex

v arrives and its edges are fractionally colored (e.g., σv(1)
is the most-loaded color index). In addition, we define the

load of a color in a vertex with respect to this order; i.e.,

we denote by �tu(i) the load of color σu(i) for vertex u
after its tth neighbor arrives – which we refer to as step
t. In this notation, our monotonicity property will be that

�tu(i) ≥ �tu(i+ 1) for each u and i, t ∈ Z
+.

We denote by δtu the global maximum degree after the

arrival of the tth neighbor of vertex u and denote by Au

the degree of u when it arrives (e.g., Au = 0 for offline

vertices in bipartite graphs). Next, we prove properties of

the load of a specific vertex u after its arrival (i.e., for steps

t > Au), at which point the order σu is already set. For

ease of notation we omit the subscript u from variables �, δ
and A whenever it will be clear from context (i.e., when

considering a single vertex u). In addition, as σ will be clear

from context, we will use color k as shorthand notation to

σ(k). Moreover, due to space constraints, we defer most

proofs to Section VIII.

We first observe that for our bounded water-filling algo-

rithm (as for its unbounded counterpart), the load of u is

monotone decreasing with respect to the σu order, and for

each step t, the increase in the load for i ≤ δt is monotone

increasing in the σu order.

Observation 6. For all color indices i, and any t > A,

• �t(i) ≥ �t(i+ 1).
• �t(i)− �t−1(i) ≥ �t(i−1)− �t−1(i−1), for all i ≤ δt.

In our analysis, we focus on the critical colors at step T
– colors whose load increased at step T and is higher than

the following color load. Formally, color k is critical with

respect to vertex u and its T th neighbor if �T (k) > �T−1(k)
and �T (k) > �T (k+1). Clearly, in order to upper bound the

load at step T , it is sufficient to upper bound the load for

critical colors k for T . If we let V k
1 �

∑k
i=1 �

T (i) be the

total load on colors 1, 2, . . . , k and V k
2 �

∑δT

i=k+1 �
T (i) be

the total load on colors k+1, . . . , δT , we will upper bound

the load of color k by

�T (k) ≤ V k
1

k
≤ δT − V k

2

k
, (1)

where the first inequality is due to the monotonicity of the

loads, and the second inequality is due to the total load

being at most δT . Therefore, we will upper bound the load

by proving a lower bound on the index of any critical color,

and a lower bound on the total load after this index.

The next lemma plays a key role in both lower bounds.

We show that for any color k critical at step T and for all

steps A < t ≤ T during which k’s load increases, all colors

after k that could be increased (i.e. k < i ≤ δT ) have their

load increase by the maximum allowable amount, β/δt.

Lemma 7. For a color k critical at step T , for all A < t ≤
T such that �t(k) > �t−1(k), we have

�t(i)− �t−1(i) = β/δt ∀k < i ≤ δt.

Using the previous lemma, we bound the minimal index

of a critical color at step T .

Lemma 8. If k is a critical color at step T , then k >
δT · (1− 1/β).

Next, using Lemma 7 and some useful claims in Sec-

tion VIII we prove a lower bound on V k
2 .

Lemma 9. If k is a critical color at step T and k∗ ≥
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max{k, δA}, then

V k
2 ≥

δT∑
j=k+1

(
�T (j)− �k

∗
(j)

)

≥ β ·
(
δT − k∗ − k log

δT

k∗

)
.

Bounding the maximum load: Next, we use the previ-

ous lemmas in order to bound the maximum load after an

assignment of an edge. Specifically, we will bound the load

of �u and �v after coloring the edge (v, u), where v is the

newly-arrived vertex. First, it is easy to bound the load of a

vertex v for each color after its arrival, since we bound each

edge-color pair’s value xe,c by β/δAv
v ≤ β/Av at arrival of

v (when it has Av neighbors).

Observation 10. �Av
v (i) ≤ β for all i ∈ [δAv ].

We next use Lemma 9 and Equation (1) to bound the load

of previously-arrived vertex u.

Lemma 11. If k > δAu
u is a critical color at step T with

respect to u, then �Tu (k) ≤ β log β
β−1 .

Lemma 12. If k ≤ δAu
u is a critical color at step T with

respect to u, then �Tu (k) ≤ β2 − β + β log 1
β−1 .

Upper Bounding Algorithm 1’s Competitive Ratio: We

are now ready to bound the competitive ratio of Algorithm 1.

First, we show that Algorithm 1 is e
e−1 competitive for one-

sided bipartite graphs. That is, G(L,R,E) is a bipartite

graph and the offline vertices L arrive before the algorithm

starts (i.e., Au = 0 for all u ∈ L).

Theorem 13. For bipartite graphs under one-sided arrivals,
Algorithm 1 is max{β, β log β

β−1} competitive. Setting β =
e

e−1 , we obtain an ( e
e−1 )-competitive algorithm.

Proof: We bound the load after coloring of edge (v, u),
where v ∈ R is the T th online neighbor of u. First, we bound

the load for any color i of v. By Observation 10, we have

�v(i) = �Av
v (i) ≤ β. For vertex u, we have Au = δAu = 0.

Thus, by Lemma 11 we have that maxi �
T
u (i) ≤ β log β

β−1 .

Finally, in Section VIII we bound our algorithm’s com-

petitive ratio on general graphs, proving that it is better than

greedy.

Theorem 14. For any graph, Algorithm 1 is β2 − β +
β log 1

β−1 competitive. Setting β = 1.586, we obtain a
1.777-competitive algorithm.

IV. ONLINE ROUNDING OF FRACTIONAL EDGE

COLORING

In this section we show how to round fractional edge-

coloring algorithms’ output online. Specifically, we will

round fractional edge colorings provided by algorithms

which assign at most some (small) value ε to each edge-

color pair, which we refer to as ε-bounded algorithms. (As

we shall see, the optimal fractional algorithms we will plug

into this rounding scheme both satisfy this property.) We

now state our main technical result of this section: a nearly-

lossless rounding process for bounded algorithms on graphs

with high enough lower bound on Δ.

Theorem 15. For all α ∈ [1, 2] and ε ≤ 1, if there exists an
ε-bounded α-competitive fractional algorithm A for bipar-
tite graphs with unknown maximum degree Δ ≥ Δ′ ≥ 2/ε,
then there exists a randomized integral algorithm A′ which
is (α + O( 12

√
(log n)/Δ′)-competitive w.h.p on bipartite

graphs of unknown maximum degree Δ ≥ Δ′ ≥ c · log n
for some constant c.

In the end of the section we show how to use this

theorem to obtain a (1 + o(1))-competitive for known Δ.

For now, we note that plugging in our optimal fractional

algorithm for unknown Δ into Theorem 15,1 we get an

optimal randomized algorithm for edge coloring graphs with

unknown Δ.

Theorem 16. There exists an ( e
e−1 + O( 12

√
(log n)/Δ′))-

competitive algorithm for n-vertex bipartite graphs G with
unknown maximum degree Δ ≥ Δ′ ≥ c · log n for some
absolute constant c.

Remark. The algorithm of Theorem 16 requires only a

lower bound Δ′ ≤ Δ for some Δ′ = ω(log n) in

order to output an ( e
e−1 + o(1)) · Δ coloring, and not

the exact value of Δ. Alternatively, our algorithm uses

( e
e−1+o(1))·max{Δ,Δ′} colors for any unknown Δ, where

the multiplicative approximation ratio is clearly only worse

than ( e
e−1 + o(1)) for small Δ < Δ′ – in which case the

additive approximation term is only O(Δ′). This result can

therefore be read as an asymptotic approximation scheme,

trading off between the additive term and the asymptotic

competitive ratio.

To describe our rounding scheme, we need the following

online rounding scheme of bounded fractional matchings,

which motivates our study of bounded fractional edge col-

orings.

Lemma 17 (Per-Edge Guarantees [11]). For all ε ∈ [0, 1],
there exists an online dependent rounding algorithm, MARK-

ING, which if presented online with a feasible fractional
bipartite matching 	x with an (a priori) guarantee maxe xe ≤
ε, outputs a matching M which matches each edge e with
probability

xe ·
(
1− 11 3

√
ε · log(1/ε)

)
≤ Pr[e ∈M] ≤ xe.

1Strictly speaking, our optimal fractional algorithm, Algorithm 1, is not
2/Δ′ bounded. However, setting our initial lower bound on Δ to be Δ′ in
Line 3 yields a 2/Δ′-bounded solution without worsening the competitive
ratio. (This is equivalent to adding a dummy star which does not increase
the maximum degree.)
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We now outline our rounding scheme, which consists

of phases, as follows. For each phase i, let Ui be the

uncolored graph at start of phase i. (Initially, U1 = G.)

We compute an α-competitive fractional edge coloring in Ui

online. Upon the algorithm’s initialization, we sample each

of the possible α · n fractional matchings of this fractional

coloring, i.i.d with probability p. We then round and color

the sampled fractional matchings in an online fashion, as

follows. Whenever a sampled fractional matching becomes

non trivial, we assign it a new color. Whenever a new vertex

v arrives, for each phase i in increasing order, we run the

next step of MARKING for each of the sampled fractional

matchings of phase i’s fractional coloring, and color all

newly-matched edges with the color assigned to the relevant

fractional matching. Finally, we greedily color the remaining

uncolored edges of v. Setting p = o(1) (guaranteeing few

re-colors) and also satisfying Δ · p = ω(log n) (in order to

have concentration up to (1 ± o(1)) factors on number of

colors used), this approach will use roughly p · α · Δ(Ui)
colors for the ith phase, while decreasing the uncolored

subgraph’s maximum degree by roughly p · Δ(Ui), or a

(1 − p) factor. Thus, using (1/p) log(1/p) phases yield an

uncolored subgraph of maximum degree p ·Δ (using α ·Δ
colors), which the greedy algorithm colors using 2p ·Δ new

colors. This implies Theorem 15.

A. Our Online Rounding Scheme

Our online rounding scheme, given an ε-bounded frac-

tional edge-coloring algorithm A which is α competitive

on graphs of maximum degree at least 2/ε, for ε =
p4/(12 logn), works as follows. Let p � 12

√
24(log n)/Δ′.

We use P � 
(4/p) log(1/p)� many phases. For phase i, we

sample in advance a subset Si of all possible color indices,

each taken into Si with probability p. Let Ui be the subgraph

of edges not colored before phase i. When online vertex

v arrives, for each phase i ∈ [P ], we update a fractional

coloring x(i) using Algorithm A, based on v’s arrival in

Ui. For all sampled j ∈ Si for which x
(i)
j (the jth fractional

matching of x(i)) is non trivial, we use a distinct color ci,j to

color edges of a matching Mi,j computed online by running

MARKING on x
(i)
j . Finally, all remaining uncolored edges of

v are greedily colored using new colors. This is Algorithm 2,

below.

B. Analysis

We will study changes in the uncolored graph between

subsequent phases and the colors used during the phases.

For each i, let Δi � Δ(Ui) be the maximum degree of

the online graph not colored by phase 1, 2, . . . , i−1. In this

section we will show that during each phase i, provided Δi is

sufficiently large, Algorithm 2 uses some α ·Δi ·p(1+O(p))
new colors w.h.p., and obtain an uncolored subgraph Ui+1

of maximum degree Δi+1 = Δi ·(1−p±O(p2)) w.h.p. This

will imply a degree decrease at a rate of one per α+O(p)

Algorithm 2 Randomized Edge Coloring for Unknown Δ

Input: Online n-vertex bipartite graph G(L,R,E) with

Δ ≥ Δ′ ≥ c · log n, for c a constant TBD.

Parameter p � 12
√
(24 logn)/Δ′(≤ 1/10).

An ε-bounded fractional online edge-coloring algo-

rithm A which is α competitive on graphs U with

Δ(U) ≥ 2/ε, for ε � (p4/12 log n).
Output: Integral (α+O(p)) ·Δ edge coloring, w.h.p.

1: for all i, set Si ⊆ 
α ·n� to be such that each j ∈ 
α ·n�
is in Si independently with probability p.

2: for all i, denote by Ui the online subgraph of G not

colored during phases 1, 2, . . . , i− 1.

3: for each arrival of a vertex v ∈ R do
4: for phase i = 1, 2, . . . , 
(4/p) log(1/p)� do
5: x(i) ← output of Algorithm A on current Ui.

/* run next step of A */

6: for j ∈ Si with x
(i)
j �= 	0 do

7: if ci,j not set then
8: set ci,j to next unassigned color index.

9: Mi,j ← output of MARKING on current x(i)
j .

/* run next step of MARKING */

10: if some e ∈Mi,j previously uncolored then
11: color e using color ci,j .

/* note: e � v */

12: run greedy on uncolored edges of v, using colors

not assigned during the phases.

colors used. Repeating this for 
(4/p) log(1/p)� phases, will

therefore require (α+O(p))Δ colors and yield a subgraph

of maximum degree p · Δ, which we color greedily with

O(p)Δ new colors, implying Theorem 15.

To upper bound the number of colors used in phase i, we

note that the number of non-trivial (i.e., not identically zero)

fractional matchings we round in each iteration is clearly a

p-fraction of the (at most 
α ·Δi�) non-trivial colors of x(i).

Therefore, by standard Chernoff bounds (Lemma 45), if Δi

is large enough, the number of colors in the phase is small,

w.h.p.

Lemma 18. If Δi ≥ (6 log n)/p3, then Ci, the number of
colors used in phase i, satisfies

Pr [Ci ≥ αΔi · p · (1 + p)] ≤ 1

n2
.

Lemma 18 upper bounds the number of colors used in

phase i by αΔi · p · (1 + p). Our main technical lemma,

below, whose full proof is deferred to Section IX, asserts

that these colors result in a decrease of roughly Δi ·p in the

uncolored subgraph’s maximum degree during the phase.

Lemma 19. If Δi ≥ (24 log n)/p4, then
1) Pr

[
Δi+1 ≤ Δi · (1− p− 4p2)

] ≤ 3/n3.
2) Pr

[
Δi+1 ≥ Δi · (1− p+ 7p2)

] ≤ 6/n2.
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Proof Sketch: Let v be a vertex of degree di(v) ≥
Δi/2 in Ui. By Lemma 17 and the ε-boundedness of the

fractional algorithm A (and some simple calculations), each

edge e ∈ Ui is matched in Mi,j (j ∈ Si) with probability

x
(i)
e,j · (1−O(p)) ≤ Pr[e ∈Mi,j ] ≤ x

(i)
e,j . That is, we match

e in Mi,j with probability close to its sampled “load” for

this color. By Chernoff bounds, as we sample each color

of x(i) with probability p, the sampled load on v’s edges

is di(v) · p(1 ± O(p)) w.h.p. So, by linearity and another

Chernoff bound, the number of times v is matched during the

ith phase satisfies Mv ≤ di(v) ·p(1+O(p))2 ≤ di(v) ·p(1+
O(p)), and Mv ≥ di(v) ·p(1−O(p))3 ≥ di(v) ·p(1−O(p)).

However, Mv also counts repeated matchings of edges

of v, which do not contribute to v’s degree decrease in the

uncolored subgraph. We therefore want to bound Rv – the

number of times a previously-colored edge of v is matched

during the phase. By Chernoff’s bound and ε-boundedness

of the fractional algorithm, the load on each edge in the

sampled colors Si, which in expectation is precisely p, is

O(p) w.h.p. So, intuitively, we would expect Rv = Θ(p) ·
Mv w.h.p., implying Rv = Θ(di(v) · p2) w.h.p. Of course,

as re-matches are not independent of matches, we cannot

simply multiply these expressions this way. However, relying

on the theory of negative association (see Section XIII-A),

the intuitive claim that Rv = Θ(di(v) · p2) w.h.p. can be

formalized. We conclude that the degree decrease of vertex

v in the uncolored graph during the ith phase is Mv−Rv =
di(v) · p · (1 − Θ(p)) w.h.p. Taking union bound over all

vertices v, the lemma follows.

Theorem 15 now follows from Lemma 18 and Lemma 19.

We sketch a proof of this theorem and defer its full proof

to Section IX.

Proof of Theorem 15 (Sketch): Clearly, Algorithm 2

colors all edges of G, due to Line 12. By definition, all

color classes computed are matchings. As we shall show,

the number of colors used during the phases is at most

(α + O(p)) · Δ w.h.p., and the greedy algorithm requires

some O(p) · Δ colors w.h.p., implying our claimed result.

We outline this proof using a stronger claim than Lemma 19.

Suppose instead of Lemma 19 we had that with high

probability Δi+1 = Δi · (1 − p). Then, by induction we

would have Δi = Δ · (1 − p)i and in particular for all

i ≤ (1/p) log(1/p) we would have Δi ≥ Δ · p ≥ Δ′ · p.

Taking p ≥ 5
√

(24 logn)/Δ′ would therefore imply that

Δi ≥ Δ′·p ≥ (24 logn)/p4, which in turn would allow us to

appeal to union bound to prove that Δi = Δ·(1−p)i for all i,
or in other words Δi−Δi+1 = Δi ·p, and that the number of

colors used in each phase i is at most Ci ≤ α ·Δi ·p ·(1+p).
Summing over all phases, this would imply that w.h.p., the

number of colors used during the phases is∑
i

Ci ≤
∑
i

(α+ p(1 + p)) · (Δi −Δi+1)

≤ (α+ p(1 + p)) ·Δ0

= (α+ p(1 + p)) ·Δ.

On the other hand, after (1/p) log(1/p) phases we would

get a final uncolored subgraph of maximum degree Δ ·
(1 − p)(1/p) log(1/p) ≈ Δ · p w.h.p., and so the greedy

step of Line 12 would use at most 2Δ · p colors. Overall,

Algorithm 2 therefore uses at most (α+O(p)) ·Δ colors for

p = O( 5
√
(log n)/Δ′) and Δ ≥ 24 log n. Our more involved

bounds are due to the slightly looser bounds for Δi+1 in

terms of Δi in Lemma 19. See full proof in Section IX for

details.

Applications to Known Δ.: Algorithm 2 finds applica-

tions for known Δ, too. In particular, by Lemma 19 we find

that if in each phase i we assign value 1/((1−p+7p2)i ·Δ)
for each edge-color pair, then we obtain a feasible coloring

w.h.p., requiring (1−p+7p2)i ·Δ colors when the maximum

degree is at least (1 − p − 4p2)i · Δ, w.h.p.; i.e., this is a

(1 + O(p2))-competitive fractional algorithm for uncolored

subgraph Ui. Replacing algorithm A in Algorithm 2 with

this approach then yields, as in the proof of Theorem 15, an

optimal randomized algorithm for known Δ.

Theorem 20. There exists a (1 + O( 12
√
(log n)/Δ))-

competitive algorithm for n-vertex bipartite graphs G with
known maximum degree Δ ≥ c · log n for some absolute
constant c.

In this section we provided optimal online edge coloring

algorithms for known and unknown Δ. In Section X we

improve the o(1) term in the 1 + o(1) competitive ratio for

known Δ. In the following section we present our lower

bounds for known and unknown Δ, proving the optimality of

our fractional and randomized algorithms, up to o(1) terms.

V. LOWER BOUNDS

In this section we present our lower bounds for online

edge coloring. We start with by noting that for known Δ,

the competitive ratio of (1+ o(1)) we obtain is optimal (up

to the exact o(1) term).2

Observation 21. No randomized online edge coloring al-
gorithm is (1 + o(1/

√
Δ))-competitive.

Proof: By [11], no online matching algorithm outputs a

matching of expected size (1−o(1/√Δ))·n in Δ-regular 2n-

vertex bipartite graphs under one-sided arrivals. Given a (1+
ε)-competitive edge coloring algorithm, we can randomly

pick one of the (1 + ε) ·Δ color classes upon initialization

and output that as our matching. For Δ-regular graphs on 2n

2A similar argument implies that 1+o(1) competitiveness is impossible
on arbitrary multigraphs. See Section XII.
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vertices, which have Δ · n edges, this results in a matching

of expected size Δ·n
(1+ε)·Δ = (1 − O(ε)) · n, from which we

conclude ε = Ω(1/
√
Δ).

Our main result of the section is a lower bound for

unknown Δ of e
e−1 on the competitive ratio of any fractional

online algorithm for our relaxation (and by extension, for

any randomized algorithm). To obtain this result, we derive

linear constraints that any α-competitive fractional online

algorithm must satisfy and formulate these constraints as

a family of linear programs. Specifically, we will rely on

the modified fractional edge coloring formulation, where the

competitive ratio α � maxv,c
∑

e�v xe,c is the maximum

load of any vertex v for color c, and xe,c ≥ 0 for all c ∈ [Δ]
and xe,c = 0 for all c > Δ, for Δ the current maximum

degree. (See Section II.) We then construct feasible dual

solutions to these LPs, which by LP duality imply our

claimed lower bounds.

A. Matching Lower Bound for Bipartite Graphs

Our first lower bound concerns fractionally edge coloring

bipartite graphs.

Theorem 22. No fractional online edge coloring algorithm
is better than e

e−1 competitive on bipartite graphs under
one-sided arrivals.

Proof: Consider the following construction. For any m,

we construct a bipartite graph Gm = (Lm, Rm, Em), where

Lm is the offline side and Rm is the online side. The offline

side, Lm, contains m! vertices, denoted by v1, · · · , vm!. The

online side, Rm, arrives over m phases. In phase k (k ∈
[m]), some m!/k vertices of degree k arrive. Each vertex

ui which arrives in phase k (i ∈ [m!/k]) neighbors offline

vertices vi, vm!/k+i, · · · , vm!(k−1)/k+i. We can see that each

offline vertex has exactly one more neighbor in phase k and

the maximum degree in phase k is exactly k. See Figure 1

for an illustrative example. The algorithm will have to be α
competitive after each phase, as the adversarial sequence can

“terminate early”, after essentially presenting disjoint copies

of Gm′ for some m′ ≤ m.

offline L

phase 1

phase 2

phase 3

Figure 1: The hard instance for bipartite graphs for m = 3.

We use xkj �
∑

e∈phase k xe,j

|{e∈phase k}| to denote the average assign-

ment of color j to edges of phase k.

The average load for online vertices of phase k for color

j is k · xkj , as each such online vertex has k edges.

Consequently, as their average load is at most α, we have

the following constraints.

k · xkj ≤ α ∀1 ≤ j ≤ k. (2)

Moreover, since each offline vertex has one more edge

during phase k, the average assignment to all edges should

cover all edges of phase k, implying the following constraint.

k∑
j=1

xkj ≥ 1 ∀k. (3)

Finally, as the load of all offline vertices (which have only

one edge in phase k) for any color j cannot exceed α (and so

neither can their average), we have the following constraint.

m∑
k=j

xkj ≤ α ∀j. (4)

Combining constraints (2)-(4), yields the following linear

program LPm, which lower bounds α.

LPm � minα
k∑

j=1

xkj ≥ 1 1 ≤ k ≤ m

k · xkj ≤ α 1 ≤ j ≤ k ≤ m
m∑

k=j

xkj ≤ α 1 ≤ j ≤ m

xkj ≥ 0 1 ≤ j ≤ k ≤ m.

We construct a series of dual feasible solutions to lower

bound α. First, the dual LP is as follows.

max

m∑
k=1

yk

m∑
k=1

k∑
j=1

zkj +
m∑
j=1

wj ≤ 1

−k · zkj − wj + yk ≤ 0 1 ≤ j ≤ k ≤ m

yk, wj , zkj ≥ 0 1 ≤ j ≤ k ≤ m.

Let c(m) � �m/e�. We know that limm→∞ c(m)/m →
1/e. Let t � 1/(m + 1 + c(m) · (Hc(m) − Hm)), where

Hk �
∑k

i=1 1/k satisfies limm→∞Hc(m) − Hm →
log(c(m)/m) → −1. We construct a feasible dual solution

as follows: We let y1 = · · · ym = t, and

wj =

{
t 1 ≤ j ≤ c(m)
0 otherwise

zkj =

{
t/k c(m) + 1 ≤ j ≤ k ≤ m
0 otherwise.
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For any 1 ≤ j ≤ k ≤ m, we have that k ·zkj+wj = t = yk.

For the first dual constraint, we have

m∑
k=1

wk +

m∑
k=1

k∑
j=1

zkj

= c(m) · t+
m∑

k=c(m)

(
k − c(m)

k

)
· t

= c(m) · t+ (m− c(m) + 1) · t− c(m) · t · (Hm −Hc(m)))

=
(
m+ 1 + c(m) · (Hc(m) −Hm

) · t = 1.

The above is therefore a feasible dual solution, of value

m∑
i=k

yk = m · t = m

m+ c(m) · (Hc(m) −Hm)

=
1

1 + c(m)
m · (Hc(m) −Hm)

.

When m → ∞, this tends to 1
1−1/e = e

e−1 . Consequently,

limm→∞ LPm ≥ e/(e − 1), implying our claimed lower

bound for fractional online edge coloring of bipartite graphs.

Making the Graph Dense: The above construction

yields a sparse graph, as the number of vertices in this graph,

n = m! +m!(1 + 1
2 + · · ·+ 1

m ) ≈ m! logm, is exponential

in its maximum degree, m. However, the following change

yields a dense graph where the same lower bound still holds.

Fix any integer t > 0, in the hard instance, we replace

each vertex with t identical copies, and correspondingly,

connecting all copies of pairs (u, v) which are adjacent in

the sparse graph. The obtained graph is still bipartite and the

maximum degree and the number of vertices both increase

by a factor of t, to t · m and t · m! logm, respectively.

Since we can take t to be arbitrarily large, the graph has

maximum degree as high as Ω(n). In order to show that

the lower bound still holds, we only need to slightly change

the meaning of xkj to be the average assignment of colors

(j − 1)t+1, (j − 1)t+2, . . . jt during phase k. Constraints

(2)-(4) still hold with this new meaning in the denser graph.

Thus, we conclude that Theorem 22 holds for graphs of

arbitrarily high degree.

B. Lower Bound for General Graphs

Next, we present a lower bound for general graphs. The

lower bound is based on the construction for bipartite graphs,

but with more alterations. More specifically, recall that in the

construction for bipartite graphs, when the online vertices

of phase k arrive, we always connect them to k offline

vertices. However, in general graphs, we have more freedom.

In phase k, there can be two possible futures: in one we

continue the sequence for bipartite graphs; in the other we

connect all vertices which arrive during phases k, k+1, . . .
to the vertices which arrived in phase k − 1. This example

yields a lower bound of 1.606, showing a separation between

bipartite and general graphs.3 We state this lower bound here

and defer its proof to Section XI.

Theorem 23. No fractional online edge coloring algorithm
is better than 1.606 competitive in general graphs.

VI. CONCLUSION AND OPEN QUESTIONS

In this paper we present optimal online edge coloring

algorithms in bipartite graphs under one-sided vertex ar-

rivals, both when the maximum degree is known and when

it is not. This work suggests a few follow up questions,

most prominent of which is to obtain optimal online edge

coloring algorithms under vertex arrivals, or even under edge

arrivals. Bar-Noy et al. [5] suggested a candidate algorithm

for edge arrivals with known Δ, though this algorithm

seems challenging to analyze. Is their candidate algorithm

(1+o(1)) competitive? For unknown Δ, the problem seems

much more challenging, even if one restricts oneself to

fractional algorithms.

For vertex arrivals in general graphs we provided a better-

than-greedy fractional algorithm. But can this algorithm be

rounded without much loss? We note that our online round-

ing approach of Algorithm 2 works under vertex arrivals in

general graphs too, though it requires an online dependent

rounding scheme for fractional matching in general graphs

with guarantees similar to those of Lemma 17. Such a tool

would likely have applications to other online problems

beyond edge coloring.
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APPENDIX

VII. BAD EXAMPLES FOR NATURAL ALGORITHMS

In this section we present bad examples for a variety of

natural edge coloring algorithms for known and unknown

Δ.

A. Repeated Maximal Online Matching

Here we give a bad example which shows that a family

of natural online algorithms, i.e., algorithms that iteratively

find a maximal matching, are no better than 2-competitive,

even on dense bipartite graphs under one-sided arrivals.

Notice that this family of algorithms includes the natural

extension of the RANKING algorithm. I.e., iteratively find the

maximal matching via the optimal, (1 − 1/e)-competitive,

online matching algorithm, RANKING – an approach which

at first glance one might guess yields an ≈ (e/(e − 1))-
competitive edge coloring.

3In Section VIII-A, we show this example is a tight instance for
Algorithm 1, which is 1.777 competitive on it.
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The bad example is as follows. The graph is made up

of Δ stars with Δ − 1 leaves each, with the stars’ centers,

which are offline vertices, connected to a common vertex

v, which is the last offline vertex to arrive. It is easy to

see that that any algorithm that repeatedly uses a maximal

online matching for each color c = 1, 2, . . . would color

each star’s edges with colors 1, 2, · · · ,Δ− 1 following the

star’s Δ − 1 leaves’ arrivals. The Δ edges of v therefore

require a further Δ colors. Consequently, such an algorithm

would use 2Δ− 1 colors and is thus 2 competitive. Adding

n−Δ2−1 isolated dummy nodes with no edges, we get an

example with n nodes and maximum degree Δ = O(
√
n).

This example therefore rules out this natural family of online

edge coloring algorithms for all Δ = O(
√
n).

B. Repeatedly Running Marking

Our online rounding scheme for fractional edge colorings

of Section IV applies MARKING to multiple fractional edge

colorings. For known Δ, this is done by running MARKING

on some fractional matchings assigning values 1
Δ′ , which we

refer to as MARKINGΔ′ , for increasingly smaller value of Δ′.
Here we show an example underlying the need for rounding

multiple edge colorings. In particular, we show that simply

iteratively coloring the matching output by MARKINGΔ on

the uncolored subgraph – i.e., rounding one trivial edge

coloring – results in suboptimally many colors.

To be precise, for c = 1, 2, . . . ,Δ, the algorithm con-

sidered computes Mc, the c-th color class, by running

MARKINGΔ in the subgraph not colored by the first c − 1
colors, Uc � G \ ⋃c−1

c′=1 Mc′ (and then reverts to some

other algorithm on the uncolored graph, say greedy). For

simplicity (though this is too good be true), let us assume

that MARKINGΔ matches each edge e with probability

precisely 1/Δ in Mc if e ∈ Uc. Consider a star graph of

degree Δ, with the star’s center arriving last. Denote by

pe,c � Pr[e ∈ Mc] the probability that e is colored c.
Then, if we run MARKINGΔ for Δ phases on the uncolored

graph, the probabilities pe,c satisfy the recurrence relation

pe,c = 1
Δ ·

(
1−∑

c′<c pe,c′
)
. But this recurrence captures

non-empty bins in a balls and bins process with Δ balls

(colors) thrown into Δ bins (edges). Specifically, pe,c is the

probability of c being the first ball occupying bin e. The

expected number of unoccupied bins in the above process,

Δ − ∑
e

∑
c pe,c, is ( 1e + o(1))Δ, so this process results

in at least Δ
e − o(Δ) uncolored edges in the star after Δ

colors used. Consequently, this approach would use at least

(1+ 1
e − o(1))Δ colors, even on a star of maximum degree

Δ.

The above bad example rules out running MARKINGΔ

for the first Δ colors and then resorting to some other

algorithm (say, greedy). More generally, extending this idea

to any prefix of colors computed using MARKINGΔ and then

reverting to greedy can be similarly shown to be suboptimal.

For example, standard coupon collector arguments show that

the extreme approach of repeatedly running MARKINGΔ in

Uc for c = 1, 2, . . . until all edges are colored (i.e., without

running greedy) requires at least Δ logΔ colors(!), even on

a star of maximum degree Δ whose center arrives last.

C. Bad Examples for (Unbounded) Water Filling

In this section, we will give bad examples to rule out

a natural candidate algorithm for fractional edge coloring;

i.e., WATER FILLING. It is easy to see that we can make the

level of a color arbitrary large if we only do WATER FILLING

on one side. On the other hand, the following algorithm is

a natural extension of this algorithm which only conducts

WATER FILLING on the maximum of the two endpoints’

loads for any edge (u, v) which arrives. More formally, the

algorithm is as follows.

Algorithm 3 WATER FILLING

Input: Online graph G(V,E) with unknown Δ′ = Δ(G)
under vertex arrivals.

Output: Fractional edge coloring {xe,c | e ∈ E, c ∈ [Δ′]}.
1: for each arrival of a vertex v do
2: Δ← max{current d(u) | u ∈ V }.

/* Δ := current max. degree */

3: for each e = (u, v) ∈ E do
4: while

∑
c∈[Δ] xe,c < 1 do

5: let C := argminc∈[Δ] max{Lu(c), Lv(c)}}.
/* set of “currently active” colors for e */

6: for all c ∈ C do
7: increase xe,c continuously.

/* update Lu(c), Lv(c) and C */

Our first observation here is that WATER FILLING is 2
competitive, even under edge arrivals.

Claim 24. The WATER FILLING algorithm is at most 2
competitive under adversarial edge arrivals.

Proof: We only need to prove � ≤ 2 following updates

due to the arrival of an edge (u, v). This inequality holds

because

2Δ ≥
Δ∑
i=1

�u(i) +
Δ∑
i=1

�v(i) =
Δ∑
i=1

(�u(i) + �v(i))

≥
Δ∑
i=1

max{�u(i), �v(i)}

≥ Δ · �,
where the last inequality holds since we run WATER FILLING

on the maximum of u and v’s loads.

By the above, WATER FILLING is always at most 2
competitive. We will show that there exists a hard instance

on which WATER FILLING is 2 competitive, even under

one-sided vertex arrivals in bipartite graphs. We start first

with a bad example for vertex arrivals in general graphs,
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which illustrates the weakness of WATER FILLING, and also

motivates the hard instance given in Section V.

A Bad Example for General Graphs.: Consider a tree of

height n+1. The root locates in the first level. Each vertex

in level k has n − k + 1 children. In the online process,

vertices arrive from level n+1 down to 1. See Figure 2 for

an example.

n+ 1
n

n− 1

1
levels

Arrival
Order

Figure 2: The hard instance for (unbounded) water filling.

The following claim can be proven by induction and we

omit the proof here.

Claim 25. The loads for all vertices in level k when they
first arrive are
• If (n − k + 1) is odd, the load is(

2(n−k+1)
(n−k+2) , · · · , 2(n−k+1)

(n−k+2) , 0, · · · , 0
)

.
• If (n − k + 1) is even, the load is(

2n−2k+1
(n−k+1) , · · · , 2n−2k+1

(n−k+1) ,
1

(n−k+1) , · · · , 1
(n−k+1)

)
.

When n is large and we set k = 1, then the competitive
ratio goes to 2.

A Bad Example for Bipartite Graphs.: Notice that the

bad example above is a bipartite graph, but vertices can

arrive from either side. Here we construct a slightly more

complicated bipartite example under one-sided arrivals on

which WATER FILLING is 2 competitive. In the following

claim, we use (a, b) to denote (a, · · · , a︸ ︷︷ ︸
Δ/2

, b, · · · , b︸ ︷︷ ︸
Δ/2

).

Claim 26. For large enough Δ, there exists a sequence of
online vertices such that (2− 4/Δ, 4/Δ) is achievable for
offline vertices.

Proof: We only sketch the sequence here.

(1, 0)
(a)→ (2/Δ, 1 + 2/Δ)

(b)→ (1 + 2/Δ, 0)

→(c)· · ·→ (2− 4/Δ, 0).

The initial state (1, 0) is achieved by connecting an offline

vertex v to Δ/2 online vertices one by one. (a) is reached

by having an online vertex u neighbor Δ/2 + 1 offline

vertices (1, 0) and one offline vertice (1 + 1/Δ, 1/Δ),
which can be produced in the former step. While (b) is

achievable by connecting (2/Δ, 1+2/Δ) (online) and (1, 0)
(offline). Finally, we repeat the above process in (a)(b) to get

(2−4/Δ, 0). When Δ is large enough, we conclude that the

water filling algorithm is exactly 2 competitive.

VIII. OMITTED PROOFS OF SECTION III

Here we provide the missing proofs of lemmas whose

proof was deferred from Section III, restated here for ease

of reference.

Lemma 7. For a color k critical at step T , for all A < t ≤
T such that �t(k) > �t−1(k), we have

�t(i)− �t−1(i) = β/δt ∀k < i ≤ δt.

Proof: Suppose there exists A < t ≤ T such that

k + 1 ≤ δt and �t(k + 1) − �t−1(k + 1) < β/δt and

�t(k) − �t−1(k) > 0, then we can immediately derive

that �t(k) = �t(k + 1), since k and k + 1 are active

at the end of the iteration. But by Observation 6 we

know that �T (k) = �T (k + 1) – a contradiction. Finally,

�t(i)− �t−1(i) ≥ �t(k+1)− �t−1(k+1) for all k < i ≤ δt

by Observation 6.

Lemma 8. If k is a critical color at step T , then k >
δT · (1− 1/β).

Proof: By Lemma 7, �T (k) > �T (k + 1) and �T (k) >
�T−1(k) imply �T (i)−�T−1(i) = β/δT , for k+1 ≤ i ≤ δT .

Hence, if k ≤ δT ·
(
1− 1

β

)
, we would obtain

k∑
i=1

(�T (i)− �T−1(i)) = 1−
δT∑

i=k+1

(�T (i)− �T−1(i))

= 1− (δT − k)β/δT

< 1− (β/δT ) · (δT /β)
= 0,

which would imply �T (k) = �T−1(k) – contradicting the

fact that k is critical.

In order to lower bound V 2
k , we first prove the following

two useful claims.

Claim 27. If k is a critical color at step T , then for any
j > k and for any S ≥ A,

�T (j)− �S(j) =
∑
S<t≤T
δt≥j

β

δt
.

Proof: We prove that for any t ≥ A and δt ≥ k, then

�t(k) > �t−1(k). Assume not, then we have

1 =

δt∑
i=1

(�t(i)− �t−1(i))

=
δt∑

i=k+1

(�t(i)− �t(i− 1))

≤ (δt − k) · β/δt
≤ (δT − k) · β/δT
< 1.

12



Where that last inequality is due to k > (1 − 1/β)δT ,

by Lemma 8. Therefore, by Lemma 7, we have �t(j) −
�t−1(j) = β/δt for j ≤ δt. Consequently,

�T (j)− �S(j) =
T∑

t=S+1

(�t(j)− �t−1(j))

=

T∑
t=S+1

I{δt ≥ j}(�t(j)− �t−1(j))

=
∑
S<t≤T
δt≥j

β

δt
.

Next, we bound the total load on the colors after a critical

color k.

Claim 28. If k is a critical color at step T , then for any
S ≥ A

δT∑
j=k+1

(
�T (j)− �S(j)

) ≥ δT∑
j=S+1

β · δ
j − k

δj
.

Proof: By Claim 27, we have

δT∑
i=k+1

(
�T (i)− �S(i)

) ≥ δT∑
i=k+1

∑
S+1≤j≤δT

δj≥i

β

δj

=
δT∑

j=S+1

∑
δj≥i≥k

β

δj

=
δT∑

j=k∗+1

β · δ
j − k

δj
.

We are now ready to prove the main lower bound volume

lemma.

Lemma 9. If k is a critical color at step T and k∗ ≥
max{k, δA}, then

V k
2 ≥

δT∑
j=k+1

(
�T (j)− �k

∗
(j)

)

≥ β ·
(
δT − k∗ − k log

δT

k∗

)
.

Proof: Substituting S with k∗ in Claim 28 (note that,

k∗ ≥ δA ≥ A), we have

δT∑
j=k+1

(
�T (j)− �k

∗
(j)

)
=

δT∑
j=k∗+1

β · δ
j − k

δj

≥
δT∑

j=k∗+1

β · j − k

j

≥ β · (δT − k∗)− β · k log δT

k∗

= β ·
(
δT − k∗ − k log

δT

k∗

)
,

where the first inequality is since δj ≥ j.

Lemma 11. If k > δAu
u is a critical color at step T with

respect to u, then �Tu (k) ≤ β log β
β−1 .

Proof: As k is critical at step T , by Lemma 9, taking

k∗ = k > δA, we have

V k
2 =

δT∑
i=k+1

�T (i)

≥
δT∑

i=k+1

(
�T (i)− �k(i)

)
≥ β ·

(
δT − k − k log

δT

k

)
.

In addition, by Lemma 8, we have k ≥ δT ·
(
1− 1

β

)
.

Thus, we find that indeed, by Equation (1)

�T (k) ≤ δT − V k
2

k

≤
δT − β ·

(
δT − k − k log δT

k

)
k

= (1− β)
δT

k
+ β + β log

δT

k

≤ β log
β

β − 1
.

Lemma 12. If k ≤ δAu
u is a critical color at step T with

respect to u, then �Tu (k) ≤ β2 − β + β log 1
β−1 .

Proof: For ease of notation, in this lemma we will let

Δ = δT . We will consider two cases and show the bound

holds for both cases.

Case 1: δA/β ≤ k ≤ δA: By Lemma 9 with k∗ =
δA ≥ k, we have

V k
2 ≥ β ·

(
Δ− δA − k log

δT

δA

)
.

13



As a consequence, by Equation (1), we have

�T (k) ≤ Δ− V k
2

k

≤
(
Δ− β(Δ− δA) + βk log

Δ

δA

)
/k

= (1− β)
Δ

k
+ β

δA

k
+ β log

Δ

δA

=
δA

k
((1− β)

Δ

δA
+ β) + β log

Δ

δA

≤ β((1− β)
Δ

δA
+ β) + β log

Δ

δA

≤ β2 − β + β log
1

β − 1
,

where the third inequality above holds because δA

k ≤ β and
Δ
δA
≤ Δ

k ≤ β/(β − 1), by Lemma 8 and the last inequality

holds because β((1 − β) Δ
δA

+ β) + β log Δ
δA

is maximized

when Δ
δA

= 1/(β − 1) (as can be verified by differentiating

with respect to x = Δ
δA

).

Case 2: k ≤ δA/β: Note that after the arrival of

vertex u, the color load is at most β, by Observation 10.

We may safely assume that A ≥ βk, since we can always

increase A to βk without increasing volume in V k
2 (which

we aim to lower bound), by Observation 10.

V k
2 =

Δ∑
i=k+1

�Δ(i)

=
Δ∑

i=k+1

�A(i) +
Δ∑

i=k+1

(�δ
A

(i)− �A(i))

+
Δ∑

i=k+1

(�Δ(i)− �δ
A

(i))

≥ (A− βk) +
δA∑

j=A+1

β · δ
j − k

δj

+ β ·
(
Δ− δA − k log

Δ

δA

)

≥ (A− βk) + (δA −A) · β · δ
A − k

δA

+ β ·
(
Δ− δA − k log

Δ

δA

)
(5)

≥ (δA − βk) · β · δ
A − k

δA
+ β · (Δ− δA)− βk log

Δ

δA
.

The first inequality holds by Observation 10, Claim 27 and

Lemma 9 with k∗ = δA ≥ βk ≥ k. The second inequality

holds since for j > A, δj ≥ δA. For the last inequality, sub-

stituting A with βk, a lower bound of A, will only decrease

Equation (5), since the coefficient of A is non-negative; i.e.

1 − β + β k
δA
≥ 1 − β + β k

Δ ≥ 1 − β + β · (1 − 1
β ) = 0,

where the last step follows by Lemma 8. Consequently, by

Equation (1), we have that �T (k) is at most

≤ Δ− V k
2

k

≤
Δ−

(
(δA − βk) · β · δA−k

δA
+ β · (Δ− δA)− βk log Δ

δA

)
k

≤ (1− β)
Δ

k
+ β2 + β − β2 k

δA
+ β log

Δ

δA

= (1− β)
Δ

k
+ β2 + β − β2 k

δA
+ β(log

Δ

k
+ log

k

δA
)

= β2 + β + (β log
k

δA
− β2 k

δA
) + (β log

Δ

k
+ (1− β)

Δ

k
)

≤ β2 + β + (β log
1

β
− β) + (β log

β

β − 1
− β)

= β2 − β + β log
1

β − 1
.

Finally, we will need the following simple inequalities for

our analysis.

Fact 29. For β ∈ (1, 2) we have β ≤ β2 − β + β log 1
β−1 ,

as well as β log β
β−1 ≤ β2 − β + β log 1

β−1 .

Proof:
For both inequalities, we rely on x − 1 ≥ log(x) for all

x ≥ 1 to obtain the claimed inequalities. For the first, we

have

β2 − β + β log
1

β − 1
− β

= β2 − β + β log
1

β − 1
− β

= β ((β − 1)− 1− log (β − 1))

≥ 0.

For the second inequality, we have

β2 − β + β log
1

β − 1
− β log

β

β − 1

= β(β − 1− log β)

≥ 0.

A. Tight Example for Bounded Water Filling

Here we give a tight instance for Algorithm 1 in general

graphs, showing our analysis in Section III-A is tight. We

use the same construction shown in Theorem 23. Moreover,

we assume that the state is “old” until phase k = (β − 1)n.

We only consider the case when b is sufficiently large. For

sufficiently large t, where t < k, we can see the color status

for vertex v is roughly

�tv(i) =

{
β log β

β−1 i ≤ (1− 1
β )t∑t

x=i
β
x (1− 1

β )t < i ≤ k.
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Meanwhile, the color status for vertex ut is roughly

�tut
(i) =

{
0 i ≤ (1− 1

β )t

β (1− 1
β )t < i ≤ k.

After the arrival of uk, the coin is up, and the final color

status for uk(in round n) is

�nuk
(i) =

⎧⎪⎨
⎪⎩

β log 1
β−1 i ≤ (β−1)2

β n

β2 − β + β log 1
β−1n

(β−1)2

β < i < (β − 1)n∑n
x=i

β
x (β − 1)n ≤ i ≤ n.

Consequently, our analysis for Algorithm 1 in Section III-A

is tight and 1.777 is the best achievable competitive ratio for

this algorithm.

IX. OMITTED PROOFS OF SECTION IV

Here we provide the missing proofs of lemmas and

theorem deferred from Section IV, restated here for ease

of reference.

We start by bounding the number of colors used during

each phase.

Lemma 18. If Δi ≥ (6 log n)/p3, then Ci, the number of
colors used in phase i, satisfies

Pr [Ci ≥ αΔi · p · (1 + p)] ≤ 1

n2
.

Proof: As Δi ≥ (6 log n)/p3, we have E[Ci] =
E[|Si|] ≤ αΔi ·p ≤ α ·6(log n)/p2. Plugging ε = p into the

upper multiplicative tail bound of Lemma 45, we get

Pr[C ≥ αΔi · p(1 + p)] ≤ exp

(
−αΔi · p(1 + p)

3

)

≤ exp

(
− ((6 log n)/p3) · p3

3

)
= 1/n2.

The main technical lemma of this section, bounding the

maximum degree of the uncolored graph Ui+1 in terms of

its ith phase counterpart, Ui, is as follows.

Lemma 19. If Δi ≥ (24 logn)/p4, then
1) Pr

[
Δi+1 ≤ Δi · (1− p− 4p2)

] ≤ 3/n3.
2) Pr

[
Δi+1 ≥ Δi · (1− p+ 7p2)

] ≤ 6/n2.

Before proving this lemma (in turn deferred to Sec-

tion IX-A), we show how it implies our main theorem,

restated below.

Theorem 15. For all α ∈ [1, 2] and ε ≤ 1, if there exists an
ε-bounded α-competitive fractional algorithm A for bipar-
tite graphs with unknown maximum degree Δ ≥ Δ′ ≥ 2/ε,
then there exists a randomized integral algorithm A′ which
is (α + O( 12

√
(log n)/Δ′)-competitive w.h.p on bipartite

graphs of unknown maximum degree Δ ≥ Δ′ ≥ c · log n
for some constant c.

Proof: For our proof, we will require the following fact.

Fact 30. All p ∈ [0, 1/10] satisfy (1−p−4p2) ≥ exp(−2·p)
and (1− p+ 7p2) ≤ exp(−p/4).

For p = 12
√
(24 logn)/Δ′ ≤ 1/10 to hold, we need Δ′ ≥

24 · 1012 · log n. That is, c = 24 · 1012.

By Lemma 19 and Fact 30, Pr[Δi+1 ≤ Δi ·exp(−2·p)] ≤
Pr[Δi+1 ≤ Δi · (1 − p − 4p2)] ≤ 3/n2, provided Δi ≥
(24 logn)/p4. By our choice of p = 12

√
(24 logn)/Δ′, this

implies that for all i < 
(4/p) log(1/p)�,
Δ · exp(−2 · p)i ≥ Δ · p8 ≥ Δ′ · p8 = (24 logn)/p4.

Consequently, if we let Ai � [
∧

i Δi ≥ (24 log n)/p4] be

an indicator for the event that Δi is large enough to appeal

to Lemma 18 and Lemma 19 for phase i, then taking union

bound (Lemma 47) over all j < i, we have

Pr[Ai] = Pr
[
Δi ≤ (24 logn)/p4

]
≤ Pr

⎡
⎣∨
j<i

(Δj ≤ Δ · exp(−2 · p)j)
⎤
⎦

≤ n · 3/n3 = 3/n2.

Now, by Lemma 19 and p ≤ 1/10, we have

Pr [Δi −Δi+1 ≤ p(1− 7p) ·Δi | Ai]

= Pr
[
Δi+1 ≥ Δi · (1− p+ 7p2) | Ai

] ≤ 6/n2.

On the other hand, by Lemma 18, if we denote by Ci

the number of colors used during the ith phase, then the

probability of any of the Ci being large is at most

Pr [Ci ≥ αΔi · p(1 + p) | Ai] ≤ 1/n2.

Now, by α ∈ [1, 2] and p ≤ 1/10, we find that α+54p ≤
α(1 + 27p) ≤ α · 1+p

1−7p . Therefore, if we let Bi = 1[Ci ≥
(α + 54p) · (Δi − Δi+1)] be the bad event that we use a

significantly higher number of colors in phase i than the

amount by which we decrease the maximum degree in the

uncolored graph in that phase. Then, we have

Pr[Bi] ≤ Pr[Ci ≥ (α+ 54p) · (Δi −Δi+1) | Ai] + Pr[Ai]

≤ Pr[Ci ≥ α ·Δi · p(1 + p) | Ai]

+ Pr[Δi −Δi+1 ≤ p(1− 7p) ·Δi | Ai] + Pr[Ai]

≤ 1/n2 + 6/n2 + 3/n2 = 10/n2.

Therefore, by union bound, we have that with probability

at least 1 − 10/n, the number of colors used during the

phases is at most∑
i

(α+ 54p) · (Δi −Δi+1) ≤ (α+ 54p) ·Δ.

Finally, we upper bound the number of colors used by the

greedy step of Line 12, by upper bounding the uncolored

subgraph’s maximum degree before Line 12. We note that
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by Lemma 19 and Fact 30, we have Pr[Δi+1 ≥ Δi ·
exp(−p/4) | A] ≤ Pr[Δi+1 ≥ Δi·(1−p+7p2) | A] ≤ 6/n2.

Therefore, we find that the final uncolored subgraph U
has maximum degree Δ(U) ≤ Δ · p, as the probability

Pr[Δ(U) ≥ Δ · p] is at most

≤ Pr[Δ
(4/p) log(1/p)� ≥ Δ · exp(−p/4 · 
(4/p) log(1/p)�)]

≤ Pr

[∨
i

(Δi+1 ≥ Δi · exp(−p/4))
]

≤ Pr

[∨
i

(Δi+1 ≥ Δi · exp(−p/4))
∣∣∣∣∣A

]
+ Pr[A]

≤ n · 6/n2 + 3/n

= 9/n.

Consequently, the greedy step of Line 12 uses a further 2Δ·p
colors, and so Algorithm 2 is an (α+56p)-competitive online

edge coloring algorithm.

A. Progress in degree decrease

In this section we will show that each phase i of Al-

gorithm 2 with Δi ≥ 24(log n)/p3 decreases the maximum

degree of the uncolored graph by a 1/(1−p±O(p2)) factor.

That is, we will prove Lemma 19. As outlined in Section IV,

our general approach will be to bound the number of times

each near-maximum-degree vertex v in Ui is matched during

the phase and the number of times it is matched without

having an edge colored.

For the remainder of this section, we will need the

following random variables. First, for any vertex v and index

i, we let di(v) denote v’s degree in the uncolored subgraphs

Ui. Moreover, for each edge e we let L
(i)
e,j = x

(i)
j if j ∈ Si

and zero otherwise, and similarly L
(i)
v,j �

∑
e�v L

(i)
e,j . We

refer to the above as the load of edge e and vertex v in

color j of phase i. Finally, we denote by �
(i)
e �

∑
j L

(i)
e,j

and �
(i)
v �

∑
j L

(i)
v,j the load of the edge e and vertex v in

the sampled colors of phase i. Clearly, as each color index j
is in Si with probability p, and as each edge is fractionally

matched exactly once, we have that E[�
(i)
e ] = p and therefore

E[�
(i)
v ] = di(v) · p. The following lemma asserts that these

variables are concentrated around their mean. In all notation,

we omit i, which will be clear from context.

Lemma 31. If Δi ≥ (24 log n)/p3, then

1) for each edge e we have Pr[�e ≥ p(1 + p)] ≤ 1/n4,
and

2) for each vertex v of degree di(v) ≥ Δi/2 in Ui we
have Pr[|�v − di(v) · p| ≥ di(v) · p2] ≤ 2/n3.

Proof: As noted above, E[�e] = p. Moreover, by

the (p3/12 log n)-boundedness of f we have that �e =∑
j Le,j is the sum of bounded independent variables Le,j ∈

[0, p3/12 log n]. So, by Chernoff bounds (Lemma 45) with

ε = p, we obtain

Pr[�e ≥ p(1 + p)] = Pr [�e ≥ E[�e] · (1 + p)]

≤ exp

(
− p · p2
3p3/(12 logn)

)
= exp (−4 logn) = 1/n4.

Similarly, as noted above, E[�v] = p · di(v). Moreover, as

x(i) is a feasible fractional matching, we have |Lv,j | ≤ 1
for all j. So, by Chernoff bounds (Lemma 45), with ε = p,

we obtain

Pr[|�v − E[�v]| ≥ p2 · di(v)]
= Pr[|

∑
j

Lv,j − E[Lv,j ]| ≥ p ·
∑
j

E[Lv,j ]]

≤ 2 exp

(
−di(v) · p · p2

3

)

≤ 2 exp

(
−Δi · p · p2

6

)
≤ 2 exp (−3 logn)
≤ 2/n3.

We will now want to bound the number of times a vertex is

matched during a phase. We will rely on Lemma 31 together

with the following lemma.

Lemma 32. Let 	x be a fractional matching with maxe xe ≤
p4/(12 logn). Then for each edge e, MARKING run with
input 	x outputs a matching M which matches each edge e
with probability

xe · (1− 3p) ≤ Pr[e ∈M] ≤ xe

Proof: The upper bound on Pr[e ∈ M] is true for all

	x. For the lower bound, we have that by Lemma 17, as

p ∈ [0, 1/10] and as we may safely assume n ≥ 2 (otherwise

the problem is trivial), we have that the probability of e
belonging to M is at least

Pr[e ∈M]

≥ xe · (1− 11p 3
√
p · log(12 logn/p3)/12 log n)

≥ xe · (1− 11p 3
√
3p log(1/p)/12 log n+ p)

≥ xe · (1− 11p 3
√
3(1/e)/12 log n+ p) p ∈ [0, 1]

≥ xe · (1− 11p 3
√
3/(e · 12 log 2) + p) n ≥ 2

≥ xe · (1− 11p 3
√
3/(e · 12 log 2) + 1/10) p ≤ 1/10

≥ xe · (1− 3p).

Relying on Lemma 31.2 and Lemma 32, we obtain the

following bounds on Mv , the number of times v is matched

during the ith phase.
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Lemma 33. If Δi ≥ (24 logn)/p4, for each vertex v with
degree at least di(v) ≥ Δi/2, then Mv, the number of times
v is matched during the ith phase, satisfies

1) Pr[Mv ≥ di(v) · p(1 + 4p)] ≤ 3/n4.
2) Pr[Mv ≤ di(v) · p(1− 5p)] ≤ 3/n3.

Proof: Let M j
v be an indicator variable for the event that

v is matched in Mi,j . For any instantiation of the variables

Le,j , Lemma 32 implies that each edge e is matched in Mi,j

with probability Le,j ·(1−3p) ≤ Pr[e ∈Mi,j ] ≤ Le,j , and so

by linearity we have Lv,j ·(1−3p) ≤ Pr[M j
v ] ≤ Lv,j . In par-

ticular, if we let A � [di(v)·p(1−p) ≤ �v ≤ di(v)·p(1+p)],
then, by linearity we have both E[Mv | A] ≤ di(v) ·p(1+p)
as well as E[Mv | A] ≥ di(v)·p(1−p)(1−3p) ≥ di(v)·p(1−
4p). Now, clearly, Mv =

∑
j∈Si

M j
v is the sum of binary

random variables. Moreover, for any subset Si sampled,

these {M j
v | j ∈ Si} are independent, as all matchings

Mi,j for j ∈ Si are computed using independent copies of

MARKING. By Chernoff’s upper tail bound (Lemma 45) with

ε = 2p, we thus obtain

Pr[Mv ≥ di(v) · p(1 + 4p) | A]

≤ Pr[Mv ≥ di(v) · p(1 + p)(1 + 2p) | A]

≤ Pr[Mv ≥ E[Mv | A] · (1 + 2p) | A]
≤ exp

(
−E[Mv | A] · 4p2

3

)

≤ exp

(
−di(v) · p(1− 4p) · 4p2

3

)

≤ exp

(
− (48 logn)p3(1− 4p)

3p4

)
≤ exp (−4 logn) p ≤ 1/5

≤ 1/n4.

Therefore, we obtain the first claim, as

Pr[Mv ≥ di(v) · p(1 + 4p)]

≤ Pr[Mv ≥ di(v) · p(1 + 4p) | A] + Pr[A]

≤ 3/n3.

Similarly, by Chernoff’s lower tail bound (Lemma 45)

with ε = p, we obtain

Pr[Mv ≤ di(v) · p(1− 5p) | A]

≤ Pr[Mv ≤ di(v) · p(1− p)(1− 3p)(1− p) | A]
≤ Pr[Mv ≤ E[Mv | A] · (1− p) | A]

≤ exp

(
−E[Mv | A] · p2

2

)

≤ exp

(
−di(v) · p(1− p)(1− 3p) · p2

2

)

≤ exp

(
−12(log n)p3(1− p)(1− 3p)

2p4

)
≤ exp (−3 logn)
≤ 1/n3,

where the second to last inequality holds for all p ≤ 1/10.

From the above we obtain the second claim, as

Pr[Mv ≤ di(v) · p(1− 5p)]

≤ Pr[Mv ≤ di(v) · p(1− 5p) | A] + Pr[A] ≤ 3/n3.

The above lemma asserts that the number of times a vertex

v of high degree in Ui is matched during the ith phase is

Θ(di(v) · p). The following lemma relies on the theory of

Negative Association (NA, see Section XIII-A) to show that

all but O(di(v) · p2) matches of v during this phase result

in an edge of v being colored.

Lemma 34. If Δi ≥ (24 logn)/p3, for each vertex v with
degree at least di(v) ≥ Δi/2, the number of times v
is matched along a previously colored edge, Rv , satisfies
Pr[Rv ≥ 2di(v) · p2] ≤ 2/n2.

Proof: Fix the realizations of Le,j for all e, j. For any

edge e � v, let Me,j � 1[e ∈ Mi,j ] be an indicator

for edge e being matched in iteration j of phase i. By

the 0-1 rule, since at most one edge e � v is in any

matching, for each j the binary variables {Me,j | e � v}
are NA. On the other hand, for j �= j′ the joint distributions

{Me,j | e � v} and {Me,j′ | e � v} are independent.

Thus, by closure of NA distributions under independent

union (Property 1), the {Me,j | j ∈ Si, e � v} are NA.

By closure of NA distributions under monotone increas-

ing functions of disjoint variables (Property 2), if we let

Re �
∑

j Me,j ·min{1,∑j′<j Me,j′} denote the number of

times e is matched and not colored, then these {Re | e � v}
are NA. In this terminology, we have that Rv =

∑
e�v Re is

the sum of NA variables. Moreover, as the Me,j are NA and

as E[Me,j ] ≤ Le,j by Lemma 17, we have by the definition
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of NA variables (see (39)) that

E

⎡
⎣∑

j

Me,j ·
∑
j′<j

Me,j′

⎤
⎦ ≤ ∑

j

E [Me,j ] · E
⎡
⎣∑
j′<j

Me,j′

⎤
⎦

≤
∑
j

Le,j ·
∑
j′<j

Le,j′

≤ �e · �e.
Let A = 1[∀e � v : �e ≤ p(1 + p)] be an indicator for

the high probability event that every edge e � v has load at

most 2p in the sampled matchings.

E[Re | A] ≤ E

⎡
⎣∑

j

Me,j ·
∑
j′<j

Me,j′

∣∣∣∣∣A
⎤
⎦

≤ E[�e | A] · E[�e | A]
≤ p2(1 + p)2.

Therefore, by linearity of expectation, E[Rv] =∑
e�v E[Re] ≤ di(v) · p2(1 + p)2. Now, as

di(v) ≥ Δi/2 ≥ 12(log n)/p3 and as Rv =
∑

e Re

is the sum of binary NA variables, we can upper bound Rv

using the upper multiplicative Chernoff bound of Lemma 42

with ε =
√
p to obtain

Pr[Rv ≥ di(v) · p2(1 + p)2(1 +
√
p) | A]

≤ exp

(
−di(v) · p2(1 + p)2 · p

3

)
≤ exp

(
−12 log n

3

)
≤ 1

n2
.

Observing that for p ≤ 1/10 we have 2 ≤ (1+p)2(1+
√
p),

we find that

Pr[Rv ≥ 2di(v) · p2 | A]
≤ Pr[Rv ≥ di(v) · p2(1 + p)2(1 +

√
p) | A]

≤ 1/n2.

Now, by Lemma 31.1 we have for every e � v that

Pr[�e ≥ p(1 + p)] ≤ 1/n3 and so by union bound we have

Pr[A] ≤ n·1/n3 = 1/n2. We therefore conclude that indeed

Pr[Rv ≥ 2 · di(v) · p2]
≤ Pr[Rv ≥ 2 · di(v) · p2 | A] + Pr[A]

≤ 2/n2.

Lemma 19, restated below for ease of reference, follows

from lemmas 33 and 34 and union bound of relevant subsets

of vertices.

Lemma 19. If Δi ≥ (24 logn)/p4, then
1) Pr

[
Δi+1 ≤ Δi · (1− p− 4p2)

] ≤ 3/n3.
2) Pr

[
Δi+1 ≥ Δi · (1− p+ 7p2)

] ≤ 6/n2.

Proof: For each vertex v, the decrease in v’s degree

in the uncolored subgraph during the ith phase, denoted by

Dv � di(v) − di+1(v), is precisely the number of times v
is matched and its matched edge is colored. That is, in the

terminology of Lemma 33 and Lemma 34, Dv = Mv −Rv .

So, by Lemma 33, every maximum degree vertex v in Ui

(i.e. di(v) = Δi ≥ Δi/2) satisfies

Pr[di+1(v) ≤ Δi · (1− p− 3p2)]

= Pr[di+1(v) ≤ di(v) · (1− p− 3p2)]

= Pr[di(v)− di+1(v) ≥ di(v) · p(1 + 3p)]

= Pr[Dv ≥ di(v) · p(1 + 3p)]

≤ Pr[Mv ≥ di(v) · p(1 + 3p)]

≤ 3/n4.

The first claim then follows by union bound over all

maximum degree vertices v in Ui.

Pr[Δi+1 ≤ Δi · (1− p− 3p2)]

≤
∑

v: di(v)=Δi

Pr[di+1(v)

≤ Δi · (1− p− 3p2)]

≤ 3/n3.

Now, we let λ � p(1− 7p) and note that (1− λ) ·Δi ≥
Δi/2, since p ≤ 1/2. All vertices v of degree di(v) ≤ (1−
λ)·Δi in Ui clearly have di+1(v) ≤ di(v) ≤ (1−λ)·Δi. On

the other hand, for every v with di(v) ≥ (1−λ)·Δi ≥ Δi/2,

we have by lemmas 33 and 34 that

Pr[di+1(v) ≥ (1− λ) ·Δi]

≤ Pr[di+1(v) ≥ (1− λ) · di(v)]
= Pr[di(v)− di+1(v) ≤ di(v) · λ]
= Pr[Dv ≤ di(v) · λ]
= Pr[Dv ≤ di(v) · p(1− 7p)]

≤ Pr[Mv ≤ di(v) · p(1− 5p)] + Pr[Rv ≥ di(v) · p · 2p]
≤ 6/n3.

The second claim then follows by union bound over all

vertices v of degree di(v) ≥ (1 − λ) · Δi in Ui, recalling

that λ = p(1− 7p), since

Pr[Δi+1 ≥ (1− λ) ·Δi]

≤
∑

v: di(v)≥(1−λ)·Δi

Pr[di+1(v) ≥ (1− λ) ·Δi]

≤ 6/n2.

X. IMPROVED o(1) TERMS FOR KNOWN Δ

In this section we present an improved algorithm for

known Δ. Recall that for the known Δ regime, using

our online rounding scheme of Theorem 15 we obtained
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a 1 + O( 12
√
(log n)/Δ)-competitive algorithm (see Theo-

rem 20). In this section we will show how to decrease

this competitive ratio to 1 + O( 4
√
(log n)/Δ). That is, we

improve the o(1) term when Δ = ω(log n).
We now turn to describing our approach, starting with

an offline description. Iterating over c ∈ [Δ], we compute

and color a matching Mc in the uncolored subgraph G \⋃c−1
c′=1 Mc′ . We then color the remaining uncolored subgraph

with new colors using the greedy algorithm. This approach

can be implemented online, by iteratively running online

matching algorithms on the relevant uncolored subgraphs

to compute and color matchings. More concretely, when a

vertex v arrives, we iterate over c ∈ [Δ] and update Mc in

the current uncolored graph G \⋃c−1
c′=1 Mc′ , as follows. We

run the next step of the online matching algorithm used to

compute Mc in the current uncolored graph after v’s arrival

in this subgraph. We then color v’s newly-matched edge

(if any) using color c. Finally, we run steps of the greedy

algorithm on the remaining uncolored edges of v.

For our analysis, we will analyze the above algorithm

according to its offline description. Since the greedy al-

gorithm requires a number of colors linear in its input

graph’s maximum degree, our objective will be to reduce the

uncolored subgraph’s maximum degree to o(Δ) w.h.p. after

computing and coloring the first Δ matchings. In particular,

this will require us to match each maximum-degree vertex

in G with probability roughly one for each of these Δ
matchings. One way of matching vertices v of degree Δ
in the uncolored subgraph with probability roughly one is

to guarantee each edge e � v a probability of roughly
1
Δ of being matched. An online matching algorithm which

does just this is obtained from Lemma 17 applied to the

trivial fractional matching which assigns a value of 1
Δ to

each edge. We will refer by MARKINGd to the application

of MARKING to the trivially-feasible fractional matching

assigning xe = ε = 1
d for each edge in a graph of (known)

maximum degree at most d.

Corollary 35. Algorithm MARKINGd is an online matching
algorithm which in graphs of maximum degree at most d
outputs a matching M which matches each edge e with
probability

1

d
·
(
1− 11 3

√
(log d)/d

)
≤ Pr[e ∈M] ≤ 1

d
.

The first natural approach given Corollary 35 is to itera-

tively run MARKINGΔ. However, as shown in Section VII-B,

this approach is suboptimal. Instead, we will increase the

probability of high-degree vertices in the uncolored subgraph

to have an edge colored, by running MARKINGd with a

tighter upper bound d than Δ for the uncolored graph’s

maximum degree for each phase. Unfortunately, upon arrival

of some vertex v, we do not know the uncolored graph’s

maximum degree for all phases, as this depends on future
arrivals and random choices of our algorithm. To obtain

a tight (up to o(Δ)) bound d on the uncolored graph’s

maximum degree for each phase, we divide the Δ coloring

iterations into phases of � =
√
Δ log n iterations each,

during which we use the same upper bound. As � = o(Δ)
and � = ω(log n), this gives us sharply concentrated upper

bounds di+1 on the resulting uncolored graph’s maximum

degree at the end of each phase i, which in turn serves as

a tight upper bound for the next phase. This results in the

desired rate of decrease in the uncolored graph’s maximum

degree, namely 1 − o(1) per iteration. Greedy thus runs

on a subgraph of maximum degree o(Δ). Our 1 + o(1)
competitive ratio follows.

A. The Improved Algorithm

We now present our online edge coloring algorithm,

starting with an offline description. Our algorithm consists of

Δ iterations, equally divided into
√

Δ/ log n phases. During

each iteration of phase i, we color a matching output by

MARKINGdi
run on Ui – the uncolored subgraph prior to

phase i, for di � Δ − i · (� − 8
√
� log n). After all phases,

we run greedy with new colors, starting with Δ+ 1. In the

online implementation, after each online vertex v’s arrival,

for phase i = 1, 2, . . . , we run the next step of � =
√
Δ log n

independent runs of MARKINGdi
in Ui, color newly-matched

edges and update Ui′ for i′ > i accordingly. We then

greedily color v’s remaining uncolored edges with new

colors. The algorithm’s pesudocode is given in Algorithm 4.

Algorithm 4 Improved Algorithm for Known Δ

Input: Online bipartite graph G(L,R,E) with maximum

degree Δ = ω(log n).
Output: Integral (1 + o(1))Δ edge coloring, w.h.p.

1: let � � �√Δ log n�. � phase length

2: let di � Δ− i · (�− 8
√
� log n) for i ∈ [0,Δ/�]. �

degree upper bound for each phase

3: for all i, denote by Ui the online subgraph of G not

colored by colors [i · �].
4: for each arrival of a vertex v ∈ R do
5: for phase i = 0, 1, . . . , �Δ/�� − 1 do
6: for colors c ∈ [i · �+ 1, (i+ 1) · �] do
7: Mc ← output of copy c of MARKINGdi

on

current Ui.

/* run next step of MARKINGdi */

8: if some e ∈Mc is previously uncolored then
9: color e using color c.

/* note: e � v */

10: run greedy on all uncolored edges of v, using new

colors starting from Δ+ 1.

B. Analysis

The crux of our analysis is that for each phase i, we

have di ≥ Δ(Ui) w.h.p. Consequently, the final uncolored

subgraph after the Δ iterations (and colors) has maximum
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degree at most d�Δ/�
 = o(Δ), so greedily coloring this

subgraph requires a further o(Δ) colors. The following

lemma asserts that if di ≥ Δ(Ui), then di+1 ≥ Δ(Ui+1),
w.h.p.

Lemma 36. For all i ∈ [0,Δ/� − 1], if Δ(Ui) ≤ di, then
Pr[Δ(Ui+1) > di+1] ≤ 1/n3.

Proof: If Δ(Ui) ≤ di − �, the claim is trivial, as then

di+1 ≥ di − � ≥ Δ(Ui) ≥ Δ(Ui+1). We therefore focus

on the case di − � ≤ Δ(Ui) ≤ di. For this latter case,

we will rely on the fact that for all i ≤ Δ/�, we have di =
Δ−i·(�−8

√
� log n) ≥ (Δ/�)·8√� log n > 3Δ3/4 log1/4 n.

Vertices of degree less than Δ(Ui) − � ≤ di − � < di+1

clearly have degree at most di+1 in Ui+1, as we only

decrease their degree in the uncolored subgraph over time.

We therefore turn our attention to vertices v of degree

at least Δ(Ui) − � in Ui. Such a vertex v cannot have

more than � edges colored during phase i, regardless of

our algorithm’s random choices, as at most one of v’s

edges is colored per iteration. So, before each color c
used in the phase, v has at least Δ(Ui) − 2� ≥ di − 3�
uncolored edges, each of which is matched by MARKINGdi

with probability at least 1
di
(1−11 3

√
(log di)/di). Therefore,

if we let Xc � 1[
∨

e�ve colored c] be an indicator for

the event that v has an edge colored c, then, regardless of

the realization 	x of variables Xc−1, Xc−2, . . . , X(i−1)·�+1

corresponding to previous iterations of the ith phase, vertex

v will have an edge colored c with probability at least

Pr[Xc = 1 | (Xc−1, Xc−2, . . . , X(i−1)·�+1) = 	x]

≥ (di − 3�) · 1
di

(
1− 11 3

√
(log d)/d

)
≥ 1− 3�

di
− 11 3

√
(log di)/di

≥ 1−
(
3

8
+

11

2

)
4
√
(log n)/Δ

≥ 1− 6 4
√
(log n)/Δ,

where the penultimate inequality follows from � ≤ √Δ log n
and n ≥ di ≥ 8Δ3/4 log1/4 n.

Therefore, the expected decrease of v’s degree in the

uncolored graph during the � iterations of the ith phase

is at least E[
∑(i+1)·�

c=i·�+1 Xc] ≥ � ·
(
1− 6 4

√
(log n)/Δ

)
≥

� − 6
√
� log n. But the probability of v having an edge

colored c is at least 1 − 6 4
√
(log n)/Δ independently of

previous colors during the phase. Consequently, we can

appeal to standard coupling arguments (Lemma 44) together

with Hoeffding’s inequality (Lemma 46) to show that the

sum of these � binary variables satisfies

Pr

⎡
⎣ (i+1)·�∑
c=i·�+1

Xc ≤ �− 6
√
� log n−

√
2� log n

⎤
⎦

≤ exp

(
−2(

√
2� log n)2

�

)
= 1/n4.

Put otherwise, v’s degree in the uncolored subgraph

decreases during phase i by less than � − 6
√
� log n −√

2� · log n > �− 8
√
� log n with probability at most 1/n4.

Thus, as v has degree at most Δ(Ui) in Ui by definition, we

find that vertex v’s degree in Ui+1, denoted by Dv , satisfies

Pr[Dv ≥ di+1] = Pr[Dv ≥ di − �+ 8
√
� log n]

≤ Pr[Dv ≥ Δ(Ui)− �+ 8
√
� log n]

≤ 1/n4.

Taking union bound over all vertices, the lemma follows.

The above lemma implies this section’s main result, given

by the following theorem.

Theorem 37. Algorithm 4 is (1 + O( 4
√

(log n)/Δ))-
competitive w.h.p. in n-vertex bipartite graphs with known
maximum degree Δ = Ω(log n).

Proof: Algorithm 4 computes a feasible edge coloring.

It colors each edge, by Line 10, and each color class –

computed during iterations or by greedy – constitutes a

matching (here we rely on the colors used by greedy and

the phases being disjoint). It remains to bound the number

of colors this algorithm uses. Each phase requires at most �
colors, so the phases require at most Δ colors. The number

of colors the greedy step requires is at most twice the

maximum degree of the remaining uncolored subgraph after

the phases, which we now bound.

Let Ai � 1[Δ(Ui) ≤ di] be an indicator for the event

that di upper bounds Δ(Ui). By Lemma 36 we have that

Pr[Ai | Ai−1, Ai−2, . . . ] = Pr[Ai | Ai−1] ≤ 1/n3. Also,

trivially Pr[A0] = 0. Taking union bound over all i, we find

that the probability of any Ai not being one is at most

Pr

⎡
⎣Δ/�∨

i=0

Ai

⎤
⎦ ≤ Δ/�∑

i=1

Pr
[
Ai, Ai−1, Ai−2, . . .

]

≤
Δ/�∑
i=1

Pr
[
Ai | Ai−1, Ai−2, . . .

]
≤ (Δ/�)/n3

≤ 1/n2.

Consequently, all applications of MARKINGdi+1 during

phase i+1 match each edge of Ui+1 with probability at least
1

di+1
(1− 11 3

√
(log di+1)/di+1), as required by our analysis

for phase i + 1. Moreover, di ≥ Δ(Ui) for all i ∈ [0,Δ/�]
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w.h.p. implies that the uncolored subgraph following the

Δ/� phases has maximum degree at most

d�Δ/�
 = Δ− �Δ/�� · (�− 8
√
� log n)

≤ �+ (Δ/�) · 8
√
� log n

≤ Δ1/2 log1/2 n+ 8Δ3/4 log1/4 n

≤ 9Δ3/4 log1/4 n.

The greedy algorithm therefore colors the remaining un-

colored graph using at most a further 18Δ3/4 log1/4 n − 1
colors. That is, it uses Δ · O( 4

√
(log n)/Δ) colors in the

range Δ+1,Δ+2, . . . . The theorem follows, including the

stated bound for Δ = ω(log n).
Remark. Algorithm 4 is (1 + O( 4

√
(log n)/Δ)) compet-

itive w.h.p. for all Δ = Ω(log n) large enough, so for

Δ = Ω(log n) large enough it yields a constant competitive

ratio strictly smaller than 2.

XI. OMITTED PROOFS OF SECTION V

Here we present our proof for the lower bound for online

edge coloring in general graphs.

Theorem 23. No fractional online edge coloring algorithm
is better than 1.606 competitive in general graphs.

Proof: The adversarial instance has m + 1 possible

futures. Neither the number of phases m nor the choice

of future are known to the online algorithm. There is a

state associated with the input, and there are two possible

states, “old” and “new”. Initially, the graph contains m!
vertices and the state is “old”. There are m′ ≤ m phases

in total. We use Vk to denote the set of online vertices

which arrive in phase k (k ∈ [m′]) and V0 to denote the

initial m! vertices which arrive in phase 0. Moreover, we

use vki to denote the ith vertex arrived in phase k. In phase

k, newly-arrived vertices have degree k. If the state is “old”,

m!/k vertices arrive and the ith vertex, vki , is adjacent to

v0i , v
0
m!/k+i, · · · , v0(k−1)m!/k+i. On the other hand, if the

state is “new” and it changed from “old” to “new” at the end

of phase t (k > t), then m!/kt vertices arrive and the ith

vertex, vki , will neighbor vti , v
t
m!/kt+i, · · · vtm!(k−1)/kt+i. At

the end of phase k, the adversary decide whether to switch

state to “new”. Notice that the state can only transition from

“old” to “new".

Again, we let xkj denote the average assignment of color

j to edges of phase k, but this time only if the state is “old”

during this phase. The following constraints still hold for

the same reason as Constraints (2) and (3) for the bipartite

hard instance of Theorem 22.

k∑
j=1

xk,j ≥ 1 ∀k. (6)

m∑
k=j

xi,j ≤ α ∀j. (7)

Furthermore, We use ytk,j to denote the average assignment

of color j to edges between Vk and Vt when the state

transitions from “old” to “new” in phase t. (I.e., this is the

average assignment of color j to edges of phase k > t, for

t the phase at which the transition occurred.)

Again, as each edge between a Vt vertex and its neighbor

in Vk (k > t) must be fractionally colored, we have

k∑
j=1

ytk,j ≥ 1 ∀t < k ≤ m. (8)

Moreover, the maximum load of every vertex for every color

is at most α, and so we have

t · xt,j +
m∑

k=t+1

ytk,j ≤ α ∀1 ≤ j ≤ t ≤ m (9)

m∑
k=j

ytk,j ≤ α ∀1 ≤ t < j ≤ m (10)

k · ytk,j ≤ α ∀1 ≤ t < k ≤ m. (11)

To summarize, constraints (6)-(11) for any m are all satisfied

by any α-competitive online fractional edge coloring algo-

rithm on this distribution of inputs. Therefore, the optimal

value of an LP with objective of minimizing α subject to

these constraints is a lower bound on the optimal competitive

ratio α of any such online algorithm on general graphs.

Using commercial solvers, we solve this LP for m = 50
and find that its optimal value, which lower bounds any

algorithm’s competitive ratio on general graphs, is 1.606.

Again, using the same trick as Section V-A, we find that

this lower bound also holds for dense graphs.

XII. EXTENSION TO MULTIGRAPHS

In this section we outline the extension of our positive

results to multigraphs (the negative results carry over triv-

ially).

Fractional Algorithms.: Our fractional results carry

over unchanged to multigraphs. To see this, note that our

algorithms’ analyses do not require the graph to be simple,

as our analysis implies a bound on the maximum load after

each edge has its value increased, and the relevant bounds

do not require there to be no parallel edges.

Randomized Algorithms.: For multigraphs, we “merge”

parallel edges into a single edge. When running MARKING

on some fractional matching, we have a merged edge’s

fractional assignment be the sum of its constituent edges’

fractional assignment. If each edge has multiplicity a suf-

ficiently small o(Δ) term, this would assign each edge a

value of o(1). By the properties of MARKING (Lemma 17),

this implies that when we round a fractional matching 	x
to compute a matching M, each edge e is matched in M
with probability xe · (1 − o(1)) ≤ Pr[e ∈ M] ≤ xe. Our

arguments carry through, though with possibly worse o(1)
terms.
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We note that the above stipulation that each edge have

bounded multiplicity is necessary in order to obtain (1 +
o(1)) competitiveness for known Δ.4

Observation 38. No algorithm is (1+ o(1)) competitive on
multigraphs of arbitrary multiplicity.

Proof: By [11], no online matching algorithm outputs

a matching of expected size c · n in 2-regular 2n-vertex

bipartite graphs under one-sided arrivals, for some constant

c < 1. Given an input online 2-regular graph, we simulate

the online arrival of a multigraph with k copies of each

edge of the input (simple) graph, to obtain a 2k-regular

multigraph with each edge having multiplicity k. Given a

(1+ ε)-competitive edge coloring algorithm for multigraphs

of maximum degree Δ = 2k, we can randomly pick one of

the (1 + ε) · 2k color classes upon initialization and output

that matching. For 2-regular graphs on 2n vertices, which

have 2 ·n edges, this results in a matching in the multigraph

(which has 2kn edges) of expected size 2kn
(1+ε)·2k = n/(1+ε),

from which we conclude ε = Ω(1).

XIII. USEFUL PROBABILISTIC INEQUALITIES

For completeness, we cite here some useful probabilistic

inequalities and notions of negative dependence, starting

with the latter.

A. Negative Association and Other Negative Dependence
Properties.

In our analysis we rely on several notions of negative

dependence between random variables. In particular, one

notion we will rely on is the notion of negative association,

introduced by Khursheed and Lai Saxena [40] and Joag-Dev

and Proschan [35].

Definition 39 (Negative Association [35, 40]). A joint
distribution X1, X2, . . . , Xn is said to be negatively asso-

ciated (NA) if for any two functions f, g both monotone
increasing or both monotone decreasing, with f( 	X) and
g( 	X) depending on disjoint subsets of the Xi, f( 	X) and
g( 	X) are negatively correlated; i.e.,

E[f( 	X) · g( 	X)] ≤ E[f( 	X)] · E[g( 	X)].

Clearly, independent random variables are NA. Another

class of NA distributions is captured by the zero-one rule.

This rule asserts that if X1, X2, . . . , Xn are zero-one random

variables whose sum is always at most one,
∑

i Xi ≤ 1,

then X1, X2, . . . , Xn are NA (see [16]). Additional, more

complex, NA distributions can be “built” from simpler NA

distributions using the following closure properties.

(P1)

4Aggarwal et al. [1] showed that one cannot even achieve 5/4 − ε
competitiveness in multigraphs with unbounded edge multiplicities, though
under the possibly harder adversarial edge arrival model.

1) Independent Union. If X1, X2, . . . , Xn are NA,

Y1, Y2, . . . , Ym are NA, and {Xi}i are independent of

{Yj}j , then X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are NA.

2) Concordant monotone functions. Let f1, f2, . . . , fk :
R

n → R be functions, all monotone increasing or all

monotone decreasing, with the fi( 	X) depending on

disjoint subsets of the {Xi}i. Then, if X1, X2, . . . , Xn

are NA, so are f1( 	X), f2( 	X), . . . , fk( 	X).

Negative association implies several useful properties,

including the applicability of Chernoff-Hoeffding type

bounds [16] (we elaborate on this below). In addition, NA

clearly implies pairwise negative correlation. More gener-

ally, NA implies the stronger notion of negative orthant
dependence.

Definition 40. A joint distribution X1, X2, . . . , Xn is said
to be Negative Upper Orthant Dependent (NUOD), if for all
	x ∈ R

n it holds that

Pr[
∧
i∈[n]

Xi ≥ xi] ≤
∏
i∈[n]

Pr[Xi ≥ xi],

and Negative Lower Orthant Dependent (NLOD) if for all
	x ∈ R

n it holds that

Pr[
∧
i∈[n]

Xi ≤ xi] ≤
∏
i∈[n]

Pr[Xi ≤ xi].

A joint distribution is said to be Negative Orthant Dependent

(NOD) if it is both NUOD and NLOD.

Lemma 41 (NA variables are NOD ([16, 35])). If
X1, . . . , Xn are NA, then they are NOD.

In our analysis we will prove some scaled Bernoulli

random variables are NUOD. To motivate our interest in

this form of negative dependence, we note that for binary

NUOD variables X1, X2, . . . , Xn, we have that for each set

I ⊆ [n], Pr[
∧

i∈I Xi = 1] ≤ ∏
i∈I Pr[Xi = 1]. As shown by

Panconesi and Srinivasan [50, proof of Theorem 3.2, with

λ = 1], this property implies that the moment generating

function of the sum of the Xi is upper bounded by the

moment generating function of the sum of independent
copies of the Xi variables. A simple extension of their

argument shows the same holds if the Xi are NUOD scaled
Bernoulli variables. As in [50], following the standard proofs

of Chernoff-Hoeffding type bounds, this upper bound on

the moment generating function implies the applicability

of the following upper tail bounds to the sum of NUOD

scaled Bernoulli variables “as though these variables were

independent”.

Lemma 42 (Chernoff Bound for NUOD Bernoulli Variables,

[50]). Let X =
∑

i Xi be the sum of binary NUOD random
variables X1, X2, ..., Xn. Then, for any ε ∈ [0, 1] and R ≥
E[X]

Pr[X > (1 + δ) ·R] ≤ exp

(−ε ·R
3

)
.
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Lemma 43 (Bernstein’s Inequality for NUOD Scaled

Bernoulli Variables). Let X be the sum of NUOD random
variables X1, X2, ..., Xn with Xi ∈ {0,Mi} and Mi ≤ M
for each i ∈ [n]. Then, if σ2 =

∑n
i=1 V ar(Xi), we have for

all a > 0,

Pr[X > E[X] + a] ≤ exp

( −a2
2(σ2 + aM/3)

)
.

In addition we will use the following simple coupling

argument, stated here for completeness.

Lemma 44. Let X1, X2, . . . , Xm be random variables and
Y1, Y2, . . . , Ym be binary random variables such that Yi =
fi(X1, X2, . . . , Xi) for all i such that for all 	x ∈ R

m,

Pr

⎡
⎣Yi = 1

∣∣∣∣∣ ∧
�∈[i]

X� = x�

⎤
⎦ ≤ pi.

Then, if Zi = Bernoulli(pi) are independent random
variables, we have

Pr

[∑
i

Yi ≥ k

]
≤ Pr

[∑
i

Zi ≥ k

]
.

B. Standard Concentration Inequalities

In addition, we will need the following standard tail

bounds.

Lemma 45 (Chernoff Bound). Let X1, X2, . . . , Xm be
independent random variables. If Xi ∈ [0, b] always, then,
for all ε ∈ (0, 1) and R ≥ E[X], we have

Pr[X ≥ (1 + ε) ·R] ≤ exp

(
−R · ε2

3b

)
,

Pr[X ≤ (1− ε) · E[X]] ≤ exp

(
−E[X] · ε2

2b

)
.

Lemma 46 (Hoeffding’s Inequality). Let X1, X2, . . . , Xm

be independent random variables. If Xi ∈ [ai, bi] always,
then, for all δ,

Pr[X ≥ E[X] + δ] ≤ exp

(
− 2δ2∑

i(bi − ai)2

)
,

Pr[X ≤ E[X]− δ] ≤ exp

(
− 2δ2∑

i(bi − ai)2

)
.

C. Conditional Union Bound

Finally, we will also need the following simple extension

of union bound, proven below for completeness.

Lemma 47. Let A1, A2, . . . , An be random indicator vari-
ables such that Pr[Ai |

∧
j<i Aj ] ≤ p. Then

Pr

[∨
i

Ai

]
≤ n · p.

Proof: Let Bi = Ai ∧
∧

j<i Aj be the event that i is

the first index j for which Aj holds. Then

Pr

[∨
i

Ai

]
= Pr

[∨
i

Bi

]
≤

∑
i

Pr
[
Bi

]
,

by standard union bound. But then, we find that the above

is at most

∑
i

Pr

⎡
⎣Ai ∧

∧
j<i

Aj

⎤
⎦ =

∑
i

Pr

⎡
⎣Ai

∣∣∣∣∣∣
∧
j<i

Aj

⎤
⎦ · Pr

⎡
⎣∧
j<i

Aj

⎤
⎦

≤
∑
i

Pr
[
Ai | Ai−1

]
≤ n · p.
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