
Quasilinear time list-decodable codes for space
bounded channels

Swastik Kopparty∗, Ronen Shaltiel†, Jad Silbak‡
∗Department of Mathematics and Department of Computer Science, Rutgers University. swastik.kopparty@gmail.com

†Department of Computer Science, University of Haifa. ronen@cs.haifa.ac.il
.‡School of Computer Science, Tel Aviv University. jadsilbak@mail.tau.ac.il

Abstract—We consider codes for space bounded chan-
nels. This is a model for communication under noise that
was studied by Guruswami and Smith (J. ACM 2016)
and lies between the Shannon (random) and Hamming
(adversarial) models. In this model, a channel is a space
bounded procedure that reads the codeword in one pass,
and modifies at most a p fraction of the bits of the
codeword.

Guruswami and Smith, and later work by Shaltiel
and Silbak (RANDOM 2016), gave constructions of list-
decodable codes with rate approaching 1 − H(p) against
channels with space s = c log n, with encoding/decoding
time poly(2s) = poly(nc).

In this paper we show that for every constant 0 ≤ p <
1
2

, and every sufficiently small constant ε > 0, there are
codes with rate R ≥ 1−H(p)− ε, list size poly(1/ε), and
furthermore:
• Our codes can handle channels with space s = nΩ(1),

which is much larger than O(log n) achieved by
previous work.

• We give encoding and decoding algorithms that run in
time n ·polylog(n). Previous work achieved large and
unspecified poly(n) time (even for space s = 1 · log n
channels).

• We can handle space bounded channels that read
the codeword in any order, whereas previous work
considered channels that read the codeword in the
standard order.

Our construction builds on the machinery of Guruswami
and Smith (with some key modifications) replacing some
nonconstructive codes and pseudorandom objects (that are
found in exponential time by brute force) with efficient
explicit constructions. For this purpose we exploit recent
results of Haramaty, Lee and Viola (SICOMP 2018) on
pseudorandom properties of “t-wise independence + low
weight noise” which we quantitatively improve using tech-
niques by Forbes and Kelly (FOCS 2018).

To make use of such distributions, we give new explicit
constructions of binary linear codes that have dual distance
of nΩ(1), and are also polynomial time list-decodable from
relative distance 1

2
−ε, with list size poly(1/ε). To the best of

our knowledge, no such construction was previously known.
Somewhat surprisingly, we show that Reed-Solomon

codes with dimension k <
√
n, have this property if

interpreted as binary codes (in some specific interpretation)

which we term: “Raw Reed-Solomon Codes”. A key idea is
viewing Reed-Solomon codes as “bundles” of certain dual-
BCH codewords.

Index Terms—error-correcting codes; online-space chan-
nels; pseudorandomness;

I. INTRODUCTION

A longstanding open problem in coding theory is

to construct binary list-decodable codes that achieve

list-decoding capacity, with efficient encoding and list-

decoding algorithms. We start with a definition of list-

decodable codes. Thinking ahead, the definition of codes

below is stated in terms of algorithmic properties of

encoding and decoding (rather than combinatorial prop-

erties using distance and Hamming balls).

Definition I.1 (Codes). For z ∈ {0, 1}n, let weight(z)
denote the Hamming weight of z. Namely, weight(z) =
| {i ∈ [n] : zi �= 0} |. We say that Enc : {0, 1}k →
{0, 1}n is an encoding function for a code that is:
• decodable from t errors, if there exists a function
Dec : {0, 1}n → {0, 1}k such that for every m ∈
{0, 1}k and every e ∈ {0, 1}n with weight(e) ≤ t,
Dec(Enc(m)⊕ e) = m.

• L-list-decodable from t errors, if the function Dec
is allowed to output a list of size at most L, and
for every m ∈ {0, 1}k and every e ∈ {0, 1}n with
weight(e) ≤ t, Dec(Enc(m)⊕ e) � m.

The rate of a code is R = k
n .

We will be interested in codes for t = pn errors, where

0 ≤ p < 1
2 is a constant, and n is sufficiently large. The

“list-decoding capacity” in this setup is R = 1−H(p),
meaning that for every constant ε > 0, and sufficiently

large n, there exist L-list decodable codes for pn errors,

with rate R ≥ 1−H(p)−ε, and list size L = poly(1/ε).
Despite substantial effort, it is not known how to con-

struct such codes with poly-time encoding algorithms

(even if one does not insist on poly-time list-decoding).

302

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00028

It is known that codes with rate R < 1−H(p) must

have exponential size lists. The best known uniquely

decodable codes have rate R ≤ 1−H(2p), and (unlike

the case of list-decoding) the precise capacity of unique

decoding is not completely understood.
a) Hamming versus Shannon scenarios: The list-

decoding task of Definition I.1 is in the “Hamming sce-

nario” in which the codeword z = Enc(m) is corrupted

by an “unbounded channel” C(·) which given z produces

an arbitrary “error pattern” e = C(z) ∈ {0, 1}n with

weight(e) ≤ pn, and the decoding algorithm is required

to decode (or list-decode) given the “corrupted received

word” z ⊕ C(z) = z ⊕ e.
The “Shannon scenario” considers a “restricted chan-

nel” C which prepares the “error pattern” e ∈ {0, 1}n
without looking at the codeword z = Enc(m). The

most well known example is a binary symmetric channel
(BSC), in which the error pattern e ∈ {0, 1}n is sampled

from a distribution which we denote by BSCn
p , in

which the bits e1, . . . , en are independent, and each

ei is one with probability p. The capacity of such a

channel is R = 1 − H(p), and a long line of works

give explicit codes matching capacity with efficient (and

in fact linear time) encoding and (unique) decoding

algorithms [GI05].
Many other “channel distributions” are considered,

and in some of them (like “bursts of errors”) the indi-

vidual bits of e are not chosen independently, but rather

by a process with “small space”.
b) Computationally bounded channels: Note that

in Shannon’s scenario, channels produce an error pattern

that does not depend on the codeword z = Enc(m),
whereas in Hamming’s scenario there is no restriction,

and channels may choose the error pattern as an arbitrary

function of the codeword z = Enc(m). A natural

intermediate scenario (considered by Lipton [Lip94]) is

to allow the channel C(z) = e to choose the error pattern

as a function of z (while insisting that weight(e) ≤ pn),

but restrict our attention to channels C from some

complexity class.
In this paper (following [GS16, SS16]) we will con-

sider space bounded channels which read z = Enc(m)
in one pass, using limited space. In this scenario it is

helpful to consider stochastic codes in which encoding

and decoding procedures are randomized.
We now explain why randomization helps. If we

insist on the standard notion of deterministic encoding

algorithms for codes, then the notion of codes for

bounded channels coincides with the standard (com-

binatorial) notion of codes (and so we don’t gain by

restricting to bounded channels). More specifically, Let

Enc : {0, 1}k → {0, 1}n be some function, and let m, e
be the “worst message and error pattern” for Enc in

terms of “combinatorial list decoding”. That is, that for

some number L, a Hamming ball of radius pn around

Enc(m) ⊕ e contains more than L codewords. This in

particular means that the code is not L-list decodable

from pn errors. The constant function C(z) = e is

a channel from which L-list decoding is impossible.

This channel has low complexity in any nonuniform

complexity class (as e depends on n, but not on z). In

other words, if encoding is deterministic, then the worse

combinatorial attack has low complexity. This argument

does not apply if encoding algorithms are randomized,

and decoding is only guaranteed to succeed with high

probability (as is the case in stochastic codes that are

defined below).

A. Stochastic codes for space bounded channels

Guruswami and Smith [GS16] considered a notion

of stochastic codes in which encoding is randomized.1

In this framework, the encoding algorithm Enc also

receives d random bits, and the encoding of a message

m, is a random variable X = Enc(m,Ud) (where Ud

denote the uniform distribution on d bits). The channel

C receives the “codeword” X as input, and produces an

error pattern e = C(X). The decoding algorithm Dec
receives the corrupted received word X⊕e = X⊕C(X),
and needs to decode (or list decode) with high probabil-

ity (over the choice of the random coins of encoding

and decoding algorithms). We stress that the decoding
algorithm does not need to receive the random coins of
the encoder. A formal definition follows:

Definition I.2 (Stochastic codes for bounded channels

[GS16]). Let C be a class of functions from n bits to n
bits. We say that Enc : {0, 1}k × {0, 1}d → {0, 1}n is
an encoding function for a stochastic code that is:
• decodable for “channel class” C, with success prob-

ability 1−ν, if there exists a (possibly randomized)
procedure Dec : {0, 1}n → {0, 1}k such that for
every m ∈ {0, 1}k and every C ∈ C, setting X =
Enc(m,Ud), we have that Pr[Dec(X ⊕ C(X)) =
m] ≥ 1−ν, where the probability is over coin tosses
of the encoding and decoding procedures.

• L-list-decodable for “channel class” C, with suc-
cess probability 1 − ν, if the procedure Dec is

1In the definition below we also allow the decoding algorithm to
be randomized. This allows us to speed up decoding algorithms in
some cases. Previous work of [GS16, SS16] did not use randomized
decoding algorithms, partly because the running time of decoding was
inherently large, and there was no gain in using randomness to speed
it up.

303

allowed to output a list of size at most L, and
Pr[Dec(X ⊕ C(X)) � m] ≥ 1 − ν, where the
probability is over coin tosses of the encoding and
decoding procedures.

The rate of a stochastic code is R = k
n .

Following [GS16, SS16] we will be interested in the

class C of functions that are computable in one pass using

small space. This is captured by the model of oblivious

read once branching programs (ROBP). Loosely speak-

ing, a space s ROBP, C : {0, 1}n → {0, 1}n is a model

of computation that on input x ∈ {0, 1}n performs the

following: The ROBP has an internal state q of s bits

(initiated to zeros). At step i, the ROBP reads xi and

uses a “transition function” δi : {0, 1}s × {0, 1} →
{0, 1}s×{0, 1} to update its “internal state”, and output

a bit. Overall, on input x ∈ {0, 1}n, C produces an

output C(x) of n bits. (We sometimes need to consider

ROBPs that output a single bit, and in this case the ROBP

“decides” on its output bits as a function of its final

state). A (more general) precise definition of ROBPs is

given in Section III-B.

We will consider channels that induce pn errors and

are computable by space s ROBPs that may choose to

read the bits of the codeword z in any order. This is

captured by allowing the ROBP to permute the order

of the bits using some permutation σ : [n] → [n]
prior to reading it. We also “un-permute” the output

bits, so that the output is presented in the standard

order. The definition below is restated more formally in

Definition III.2.

Definition I.3 (Space bounded channels, informal). We
say that a function C : {0, 1}n → {0, 1}n induces t
errors if for every z ∈ {0, 1}n, weight(C(z)) ≤ t.

The class of space s channels is the class of functions
C : {0, 1}n → {0, 1}n computed by space s ROBPs.

Let σ : [n] → [n] be a permutation, and for z ∈
{0, 1}n, let σ(z) denote the n bit string z′, in which
z′i = zσ(i). The class of any-order space s channels is
the class of functions from n bits to n bits, of the form
eσC = σ−1 ◦C ◦ σ where σ : [n]→ [n] is a permutation,
and C : {0, 1}n → {0, 1}n is a space s ROBP.

B. Our Results

1) New constructions of stochastic codes for space
bounded channels: Guruswami and Smith [GS16] (and

later work by Shaltiel and Silbak [SS16]) gave con-

structions of stochastic codes for space s = O(log n)
channels with rate approaching 1 − H(p). However, a

significant drawback of these works is that when set

up against channels with space s = c log n for some

constant c, the running time of encoding and decoding

in [GS16, SS16] is polynomial in n, for a polynomial

that is significantly larger than 2s = nc. This means

that one has to pay severely in efficiency, even when

considering channels with moderate space.2

Guruswami and Smith [GS16] posed the open problem

of removing this dependence, and coming up with a code

for space s = c log n channels that has encoding and

decoding that run in time nc0 where c0 is a universal

constant, and does not grow with c. In this paper we

solve this open problem, and in fact, go much farther.

Our techniques give explicit constructions of stochastic

codes with rate approaching 1−H(p), and the following

additional improvements:

• Our codes can handle channels with space s =
nΩ(1), which is much larger than O(log n) achieved

by previous work.

• We give encoding and decoding algorithms that run

in time n·polylog(n). Previous work achieved large

and unspecified poly(n) time (even for space s =
1 · log n channels).

• Our success probability is 1 − ν for ν =

2− logO(1) n = n−ω(1), whereas previous works

could only achieve ν = n−O(1).

• We can handle any-order channels, whereas previ-

ous work considered channels that read the code-

word in the standard order.

These improvements are summarized in the following

theorem (which is our main result). A more general ver-

sion with more precise description of the dependencies

between parameters is stated in Theorem VI.1.

Theorem I.4 (quasilinear time codes for space nΩ(1)

channels). For every constant 0 ≤ p < 1
2 and sufficiently

small constant ε > 0, there is an infinite family of
stochastic codes with rate R ≥ 1 − H(p) − ε, that
are (L = poly(1/ε))-list decodable for any-order space
s = nΩ(1) channels that induce pn errors, with success

2We remark that the construction of Guruswami and Smith [GS16] is
a “Monte-Carlo construction”, meaning that it requires a preprocessing
stage, in which a random string of length poly(nc) is shared between
the encoding and decoding algorithm. The correctness of encoding
and decoding algorithms is guaranteed w.h.p. over the choice of this
string. (This string need not be kept secret from the channel, but note
that this string is longer than the “description length” of the channel).
In the final version of [GS16] it is observed that this Monte-Carlo
approach can be extended to any class of channels where all channels
have description length poly(nc), like for example size nc circuits.
Shaltiel and Silbak removed the need for a ”Monte-Carlo” construction,
and gave a construction that does not require this preprocessing step.
However, their construction still suffers from running time of encoding
and decoding that is exponential in s = c logn. More details are given
in Section I-C.

304

probability 1 − 2− log2 n. Furthermore, encoding and
decoding run in time n · polylog(n).

Our approach builds on the approach of [GS16] (and

refinements of [SS16]) with some modifications and

simplifications. The key to our improvements is a better

explicit construction of some component that we call

“control code” (for which [GS16, SS16] gave construc-

tions based on showing existence by a non-constructive

argument, and then finding the object by brute force

search). We replace these inefficient arguments by an

explicit construction. We give a detailed high level

overview of the proof of Theorem I.4 in Section II.

We can also handle channels with space s =
n/polylog(n), but we only know how to do this for small

values of p, and then, encoding and decoding run in

polynomial time (rather than quasilinear time). A more

general version of the next theorem is stated in Theorem

VI.3.

Theorem I.5 (polynomial time codes for space

n/polylog(n) channels). There exist constants p0 > 0
and c0 ≥ 1 such that for every constant 0 ≤ p < p0
and sufficiently small constant ε > 0, there is an infinite
family of stochastic codes with rate R ≥ 1 −H(p) − ε
that are (L = poly(1/ε))-list decodable for any-order
space s = n

(logn)c0 channels that induce pn errors, with

success probability 1− 2− log2 n. Furthermore, encoding
and decoding run in time poly(n).

a) Perspective: Our results clearly extend to any

channel that is a convex combination of any-order

space s channels. Furthermore, with an additional log n
space, a channel can count the number of error that it

induces, and avoid inducing more than pn errors. This

means that our theorems handle any distribution over

any-order space s channels in which the probability of

inducing significantly more than pn errors is small.

It was pointed out by Guruswami and Smith [GS16]

that all the “stochastic channels” studied in Shannon’s

scenario are captured by this framework. Consequently,

Theorem I.4 can be seen as providing a unified solution

that handles all such channels with rate approaching 1−
H(p) and quasilinear time encoding and decoding.

On a more philosophical level, one may postulate

that the behavior of most conceivable channels that are

not “fully adversarial” is captured by this framework of

Guruswami and Smith, which can now be implemented

in quasilinear time (without the severe penalty of the

dependence of running time on the space of the channel).

2) Raw Reed-Solomon Codes: One of the tools that

we require in order to prove our main theorem, is a

binary linear code Enc : Fk
2 → F

n
2 with the following

properties.3

• Distance (1/2− o(1)) · n.

• Large dual distance of at least nΩ(1). (In fact, we

need a slightly stronger property to be explained

later).

• Polynomial time list-decoding with list size

poly(1/ε) from (12 − ε) · n errors, for every suf-

ficiently small constant ε > 0. (This in particular

implies poly-time unique decoding up (14 − ε) · n
errors, by pruning the list and keeping only the

unique codeword that is closest to the received

word).

To the best of our knowledge, no construction with

these properties is known. In this paper we exhibit such

codes. Interestingly, we show that for some settings of

parameters, Reed-Solomon codes have these properties

if interpreted as binary codes suitably. We call these

resulting binary codes Raw Reed-Solomon codes.

More specifically, let m be an integer, and nRS =
2m − 1. We consider the field F2m , and Reed-Solomon

codes of degree ≤ d with nRS evaluation points given

by D = F2m \ {0}. That is, the encoding of a message

w ∈ F
d+1
2m , is Enc(w) = (

∑
0≤i≤d wi·ti)(t∈S). This code

has distance nRS−d, and alphabet size qRS = 2m. It can

be interpreted as a binary linear code by choosing some

F2-linear bijection Φ : F2m → F
m
2 (which is used to

interpret field elements as m bit vectors), and applying Φ
on each of the nRS symbols of the codeword. This gives

a binary linear code VerySimpleRawRS with dimension

k = (d + 1) · m and block length n = nRS · m. It

immediately follows that this standard construction has

distance at least nRS−d, but note that in terms of relative
distance, this quite general argument does quite poorly,

since it can never show that the relative distance is more

than:
nRS

n
=

1

m
= Θ

(
1

log n

)
= o(1).

In fact, this is the truth, and VerySimpleRawRS truly

does have o(1) relative distance.

Nevertheless, we show that a slight modification of

this code has extremely good distance (and keeps the

dual distance). Let SimpleRawRS be the subcode of

VerySimpleRawRS which only includes codewords that

3In this section we use a more standard notation of coding theory.
With our notation, a binary linear code is a code that has a linear
encoding function Enc : Fk

2 → F
n
2 . The image of this function is a

subspace C of the vector space F
n
2 . The dual code is the dual subspace

C⊥ =
{
v ∈ F

n
2 : ∀c ∈ C,< v, c >= 0

}
. The dual distance is the

minimum distance of C⊥. The precise standard definitions are given
in Section III-E2.

305

come from polynomials which have 0 constant term.

Using deep algebraic tools (very specific to the algebraic

situation at hand) we show that if the degree bound d <

n
o(1)
RS (so that the dimension k satisfies k = no(1)), then

SimpleRawRS has relative distance 1
2 − o(1). We also

define another variant, OddRawRS, which has the same

relative distance but which can achieve any dimension

that is o(n1/2). Finally, using the powerful algorithmic

decoding algorithms known for Reed-Solomon codes, we

show that these codes are also list-decodable.

A more detailed description of Raw Reed Solomon

codes appears in Section IV. In particular we prove the

following theorem.

Theorem I.6 (Codes with large distance and dual dis-

tance). For every constant 0 < α < 1/2, and every
sufficiently large m, setting n = (2m − 1) · m, and
k = nα, there is a binary linear [n, k]2-code C that
satisfies:

• C has distance (12−O((logn
n)

1
2−α))n = (12−o(1))·

n.
• C has dual distance Ω(nα

logn).
• C has a linear encoding map Enc : Fk

2 → F
n
2 that

runs in time poly(n).
• There exists a universal constant b, such that for

every ε ≥ b
√
α, Enc is O(1

ε2)-list-decodable from
(12 − ε)n errors in time poly(n).

A key property that we use in the analysis is that

(modulo some caveats) a codeword of length nRS ·m of

the SimpleRawRS and OddRawRS codes can be viewed

as the juxtaposition of m binary strings of length nRS

in a natural way. These m binary strings turn out to

be (correlated) codewords of a dual-BCH code, and our

analysis of the distance exploits this. This is explained

more precisely is Section II.

Dual-BCH codes themselves satisfy the first three

requirements above, but they are not known to have

efficient decoding. Curiously, our result shows that a

code of correlated tuples of dual-BCH codewords can
be decoded efficiently, while retaining the other good

properties of dual-BCH codes.

Reed Solomon codes have a lot of structure and many

useful properties (in addition to their distance properties)

and so, we believe that the fact that Raw Reed-Solomon

codes have the additional properties listed above (when

viewed as binary codes) is of independent interest, and

may prove useful in other applications.

C. More related work on codes for bounded channels

1) Stochastic codes for other classes of channels:

a) Additive channels: Guruswami and Smith

[GS16] gave constructions of stochastic codes with rate

approaching 1 − H(p) that are uniquely decodable for

additive channels that induce pn errors, with success

probability 1 − 2−Ω(n/ logn). In our notation these are

the constant functions C(·) = e where e is a constant

string with weight at most pn. The encoding and de-

coding algorithms in [GS16] run in polynomial time.

Our approach can be used in this setup, and can speed

up the encoding and decoding algorithms to run in

quasilinear time, if the success probability is reduced

to 1− 2−polylog(n).
b) poly-size circuits and bounded space channels:

In the same paper, Guruswami and Smith also gave

constructions of stochastic codes with rate approaching

1 − H(p) that are list-decodable for space s = c log n
channels (or size nc circuits) that induce pn errors, with

success probability n−c. As explained earlier in Section

I-B1, a significant drawback of these results is that the

running time of the encoding algorithm was polynomial

in nc, for a large and unspecified polynomial (meaning

that efficiency quickly deteriorates even for conservative

estimates on channel complexity). The construction of

[GS16] is “Monte-Carlo”. Meaning that it requires a

preprocessing stage, in which a random string of length

poly(nc) is shared between the encoding and decoding

algorithm. The correctness of encoding and decoding

algorithms is guaranteed w.h.p. over the choice of this

string. (This string need not be kept secret from the

channel).
Shaltiel and Silbak [SS16] removed the need for a

preprocessing stage by slightly modifying the construc-

tion of Guruswami and Smith, and providing explicit

constructions for the modified components. They give

results for space s = c log n channels, and size nc

circuits (here a complexity assumption that there are

functions in DTIME(2O(n)) that are hard for small cir-

cuits is used, and is necessary). Shaltiel and Silbak also

consider channels that are implementable by constant

depth circuits, and provide constructions of stochastic

codes for this setup.
2) Other coding scenarios with randomized encod-

ing/bounded channels: The notion of computationally

bounded channels was also studied in other setups. We

mention some of these works below.
a) Shared private randomness: We start with the

notion of codes with “shared private randomness”. While

this setup was considered before the notion of stochastic

codes, in this paper, it is natural to view it as a version

of stochastic codes in which the decoding algorithm

does receive the randomness S chosen by the encoding

306

algorithm. This corresponds to a standard symmetric

cryptography setup in which honest parties (the encoder

and decoder) share a uniform private key S, and the bad

party (the channel) does not get the key. Lipton [Lip94]

and following work (see [Smi07] for more details)

gave explicit constructions of uniquely decodable codes

against computationally bounded channels, in this setup,

with rate approaching 1 − H(p), under cryptographic

assumptions.

Note that the setup of stochastic codes is lighter. The

encoder and decoder do not need to share a private

random key. Moreover, a fresh key can be chosen on

the spot every time the encoder encodes a message.

A related notion of “private codes” was studied by

Langberg [Lan04]. This is also in the setup of shared

private randomness. Here channels are computationally

unbounded, codes are existential rather than explicit,

and have rate approaching 1 − H(p). The focus is on

minimizing the length of the shared key. Langberg pro-

vides asymptotically matching upper and lower bounds

of Θ(log n + log(1/ν)), on the amount of randomness

that needs to be shared for unique decoding in this setup,

where ν is the error parameter.

b) Non malleable codes: Non-malleable codes (in-

troduce by Dziembowski, Pietrzak, and Wichs [DPW18])

consider channels that are not restricted in the number

of errors that they induce. Instead, channels are assumed

to come from some limited class of functions (or com-

plexity class). Codes are stochastic (meaning that the

encoding procedure is randomized) and it is required

that following the corruption by the channel, the decoder

either reproduces the encoded message, or an ”unrelated”

message. The definition of ”unrelated” is given using the

simulation paradigm from cryptography. Several classes

have been considered, and some of the constructions rely

on cryptographic assumptions. The reader is referred to

[DPW18] and the references therein for precise definition

and a survey of results in non-mallable codes.

c) Encoding a uniform message: Haviv and Lang-

berg [HL11] consider a model where encoding and

decoding is deterministic, but the message to be encoded

is chosen uniformly at random. They show the existence

of codes in this setup, that have unique decoding, and

beat the Gilbert-Varshamov bound.

d) Public key setup: Micali et al. [MPSW10] con-

sidered computationally bounded channels, and a crypto-

graphic public key setup. Their focus is to use this setup

to convert a given (standard) explicit list-decodable code

into an explicit uniquely decodable codes (in this specific

public key setup).

D. Organization of the paper

In Section II we give a high level overview of the

ideas and techniques in this paper. In Section III we give

definitions and past work on the tools and ingredients

that are used in our construction. In Section IV we state

and prove our results on raw Reed-Solomon codes. In

Section V we use raw Reed-Solomon codes to construct

stochastic control codes. In Section VI we give our

main construction of stochastic codes for space bounded

channels (which relies on stochastic control codes). The

reader is referred to the full version for the proof of

correctness of the main construction.

II. OVERVIEW OF THE TECHNIQUE

In this section we give a high level overview of the

ideas and techniques that we use. We allow ourselves

to be informal and imprecise (in order to highlight the

main ideas). Complete definitions, theorem statements

and proofs, appear in later sections (which do not rely

on the informal description given in this section).

A. Stochastic control codes

The construction of codes for bounded channels of

Guruswami and Smith [GS16], as well as later modifi-

cation by Shaltiel and Silbak [SS16] use a component

which we call a “stochastic control code”.

Definition II.1 (Stochastic control code, informal). A
function Encctrl : {0, 1}k × {0, 1}d → {0, 1}n is a
stochastic control code that is:
• pseudorandom, if for every x ∈ {0, 1}k,
Encctrl(x, Ud) is pseudorandom for small space
ROBPs.

• List decodable, if for every sufficiently small con-
stant ε > 0, there is an explicit list-decoding
algorithm Decctrl with constant size lists, such that
for every x ∈ {0, 1}k, y ∈ {0, 1}d, and e ∈ {0, 1}n
with weight(e) ≤ (12−ε)·n, list-decoding succeeds,
that is, x ∈ Decctrl(Encctrl(x, y)⊕ e).

A more precise definition (with precise quantities)

appears in Section V. The construction of capacity

achieving stochastic codes for space bounded channels

(Theorem I.4) will rely on stochastic control codes that

are pseudorandom and list-decodable. Definition II.1

requires recovery from adversarial errors (that may be

induced by an unbounded channel) while also requiring

the additional pseudorandomness property. This makes

the requirements stronger than the codes for bounded

space channels that we aim to construct.

A key idea is that in the final construction, the control

code will be used to encode a short “control string”, and

307

so, the rate of this code does not need to approach 1−
H(p), and we will be able to use control codes in which

k = nΩ(1) in our final stochastic codes for bounded

channels, and still have rate approaching 1−H(p).

Theorem II.2 (Control code, informal). There is an
explicit control code Encctrl : {0, 1}nΩ(1)×{0, 1}O(n) →
{0, 1}n which satisfies Definition II.1.

We start by explaining this construction, and later

show how to use it to obtain stochastic codes for small

space channels with rate approaching 1−H(p).
1) Raw Reed-Solomon codes: The first step in our

construction of control codes, are explicit (standard)

binary linear codes with large dual distance and poly-

time list decoding. These are the codes stated in Theorem

I.6. For concreteness, let m be an integer, and consider

the field F2m . Let D = F2m \ {0}. We will consider

evaluations of polynomials of degree at most d with

F2m coefficients at the points of D, and then convert

these evaluations to binary vectors of length m using

an F2-linear bijection Φ : F2m → F
m
2 . More generally,

this conversion to binary vectors can also be done

using a different F2-linear bijection Φx at each point

x ∈ D. Overall, this gives us binary codewords of length

n = m · (2m − 1). We call the codes obtained this way

Raw Reed-Solomon Codes, RawRS.

In this high level overview we will explain the analysis

of a particular Raw Reed-Solomon code which we call

Odd Raw Reed-Solomon codes4, OddRawRS. This is

an instance of the above RawRS family of codes (for

a particular choice of Φx), but it has a more direct

description which we give next. Let k = m · (d+1) and

n = m · (2m−1). Given a message w ∈ F
k
2 , we break it

into d+1 blocks of m bits each, use these m-bit blocks

to specify elements γ0, γ1, . . . , γd ∈ F2m , and consider

the polynomial P (X) =
∑d

j=0 γjX
2j+1 which has only

odd degree monomials. The codeword c : D× [m]→ F2

corresponding to this message w is then the n bit long

string obtained by taking all the evaluations of P and

writing them in bits using Φ:

c(x, i) = Φ(P (x))i.

A key observation is that this interpretation is closely

related to the dual-BCH code [MS77]. Dual-BCH codes

are known to satisfy the first three properties in Theo-

rem IV.1. That is they have poly-time encoding, large

distance, and large dual distance. However, they are not

known to have poly-time decoding or list-decoding.

4A similar but more involved analysis applies to the more natural
code SimpleRawRS.

We show that OddRawRS codes satisfy all four re-

quirements. First we elaborate on the connection to dual-

BCH codes. For each i ∈ [m], consider the function

ci : D → F2 given by ci(x) = c(x, i) (this is just a

subset of the bits of c). Then each ci is a codeword

of the dual-BCH code. More specifically, the dual BCH

codeword cdual−BCH : D → F2 that corresponds to

w = (γ0, . . . , γd), can be defined as cdual−BCH(x) =
Tr(

∑d
j=0 γj · x2j+1), where Tr : F2m → F2 is the

F2-linear map that is the field trace. Furthermore, any

bijective linear map Φ : F2m → F
m
2 can be expressed

as m F2-linear maps Φi : F2m → F2, where each Φi is

defined by Φi(x) = Tr(b·x), for some nonzero b ∈ F2m .

It follows that ci(x) = Tr(
∑d

j=0(b · γj) · x2j+1), which

can be viewed as the dual-BCH encoding of the nonzero

word (b · γ0, . . . , b · γd).
Thus the codewords of OddRawRS are just a sequence

of correlated nonzero dual-BCH codewords. Using this

connection to dual-BCH codes we get that OddRawRS
codes have large distance.5 This part of the argument

does not work for general RawRS codes.

The remaining three properties hold for general

RawRS codes. Efficient encoding is clear. The dual

distance of OddRawRS codes follows from the dual

distance of a related Reed-Solomon code, and the fact

that Φ is a bijection.

Finally we come to the decodability. This is where

we go beyond what is known for dual-BCH codes.

The crucial point here is the connection to Reed-

Solomon codes, for which amazing decoding algorithms

are known [Sud97, GS99]. We show that the natural 2-

stage list-decoding algorithm for OddRawRS (which is

naturally viewed as a concatenated code) indeed decodes

from (1/2 − ε)-fraction errors. The first stage is list-

decoding of the inner blocks, which leads to a huge

list of candidate symbols for each coordinate (since the

inner blocks are all codes with minimum distance only

1). Then the efficient list-recovery algorithms known for

Reed-Solomon codes, which can handle huge lists and

(1− o(1))-fraction error, enables us find a large list that

contains all nearby codewords. This implies the unique

decodability from (1/4 − ε)-fraction errors. Finally, for

list-decodability, using the fact that OddRawRS has

relative distance 1/2− o(1), the Johnson bound [Joh62]

implies that the list of (1/2−ε)-fraction close codewords

is in fact poly(1/ε), and we get the desired list-decoding

algorithm.

5In the OddRawRS case it is almost immediate, in the
SimpleRawRS case we need to understand the correlations between
the component dual-BCH codewords.

308

2) From Raw Reed-Solomon codes to stochastic con-
trol codes.: We now explain how to prove Theorem II.2

using OddRawRS codes (and specifically, the code stated

in Theorem I.6). This approach is inspired by a related

argument that was used by Shaltiel and Silbak [SS16] to

construct control codes against AC0 circuits.
We will construct the control code Encctrl :

{0, 1}k/2 × {0, 1}d=k/2+n·log(1/η) → {0, 1}n as fol-

lows: Given x ∈ {0, 1}k/2, r ∈ {0, 1}k/2 and v ∈
{0, 1}n·log(1/η). We use v as random coins to sample an

element from BSCn
η (that is n i.i.d. coins that evaluate

to one with probability η) and define:

Encctrl(x; (r, v)) = EncOddRawRS(r ◦ x)⊕ BSCn
η .

That is, we use the linear code from the previous section

to encode r ◦ x and xor the output with BSCn
η . By

Theorem I.6 the OddRawRS code has dual distance

t = nΩ(1), and this can be used to show that for every

x ∈ {0, 1}k/2, EncOddRawRS(Uk/2 ◦ x) is (t − 1)-wise

independent.
Actually, for this to hold we need a stronger property,

namely that if we consider the code Enctrunc : F
k/2
2 →

F
n
2 defined by Enctrunc(r) = EncOddRawRS(r ◦ 0k/2),

then this linear code has dual distance t. (This stronger

property also holds for OddRawRS codes). Once we

have that, by linearity, EncOddRawRS(Uk/2 ◦ x) =
Enctrunc(Uk/2)⊕L(x) where L is some linear function.

Thus, it is enough to show that Enctrunc(Uk/2) is (t−1)-
wise independent. Note that encoding by Enctrunc is

done by multiplying the message by the generator matrix

of Enctrunc (which is the parity check matrix of the

dual code). As the dual distance of Enctrunc is at

least t, every t − 1 columns of the latter matrix are

linearly independent, and so Enctrunc(Uk/2) is (t− 1)-
wise independent. It follows that the output distribution

Encctrl(x, Ud) is a “t-wise independent distribution plus

low weight BSC noise”.
3) t-wise independence + low weight BSC noise.:

Haramaty, Lee and Viola [HLV18] studied the pseu-

dorandomness of such distributions, and showed that

distributions of this form are pseudorandom for any-

order small space ROBPs if t is sufficiently larger than

n2/3, and η is not too small (any constant η > 0 will

do). Note that the list decoding property of Theorem II.2

immediately follows for our construction (as OddRawRS
codes have list decoding up to (12 − ε) ·n errors, and so,

if η is sufficiently small, the additional relative error of

η can be “swallowed” in ε.
We now turn our attention to the pseudorandomness

property of Theorem II.2. Unfortunately, the dual dis-

tance t of OddRawRS codes cannot be larger than
√
n.

This means, that at best, EncOddRawRS(Uk/2◦x) is t-wise

independent for t <
√
n, whereas the results of [HLV18]

give nothing unless t� n2/3.

Recent work by Lee and Viola [LV17], and Forbes and

Kelly [FK18], showed that “t-wise independence + large
weight noise” is pseudorandom for small space any-

order ROBPs even for small t (e.g., t = O(s + log n)).
However, these results use noise that is a conjunction

of a t-wise independent distribution with a uniform

distribution, and such noise has relative weight roughly
1
4 . This will not do for our list-decoding argument.

Fortunately, we can use the technique of Forbes and

Kelly [FK18] to give a better analysis than Haramaty,

Lee and Viola [HLV18] and show that Enc(x, Ud) is

pseudorandom for any-order space s = Ω(t) ROBPs

even for t = nΩ(1). The precise statement appears

in Theorem V.6. This shows that Encctrl satisfies the

properties in Definition II.1 and proves Theorem II.2.

B. The construction of stochastic codes for space
bounded channels

In this section we give a sketch of the construction of

stochastic codes for any-order space bounded channels.

Our construction heavily builds on the machinery devel-

oped by Guruswami and Smith [GS16] (which in turn

relies on previous ideas by Lipton [Lip94] and Smith

[Smi07]). We also use the refinements of Shaltiel and

Silbak [SS16], as well as several new modifications and

simplification.

Recall that given a constant ε > 0, our goal is to

design a stochastic code Enc : {0, 1}RN × {0, 1}d →
{0, 1}N that has rate R ≥ 1 − H(p) − ε, and is list-

decodable for small space channels that induce pN er-

rors. Furthermore, we aim for quasilinear time encoding

and list-decoding with constant sized lists.

1) The encoding algorithm: To encode a message

m ∈ {0, 1}RN the encoding algorithm will encode m
by a code EncBSC for binary symmetric channels BSCp.

There are explicit constructions of such codes with rate

approaching R = 1 − H(p) and linear time encoding

and decoding [GI05]. Thinking ahead, we set the block

length of EncBSC to be Ndata = (1− ε) ·N , which we

can do by choosing a smaller constant εBSC = ε/10
for the BSC code. The encoding algorithm will also

select random “seeds” to activate several “pseudorandom

components”. The seeds of all these components will be

of length Nα for some small constant α > 0, and so

their length is negligible compared to N .

The first seed sπ will be used to generate an “almost

t-wise independent permutation” π : [Ndata]→ [Ndata].
In this high level overview we will pretend that π is a

309

random permutation. The encoding algorithm computes

x = EncBSC(m), and y = π−1(x) (recall that this means

that the bits of x are “reordered” according to π−1).

Loosely speaking, this is done so that if the channel

is an additive channel (namely one that has a fixed

error pattern e ∈ {0, 1}Ndata of weight pN) and if the

decoding algorithm has a copy of sπ , then the decoding

algorithm can apply π on the received word y ⊕ e and

obtain Enc(m)⊕π(e). For a random permutation π, the

distribution π(e) is very similar to BSCp, and so the

decoding algorithm can decode by applying DecBSC.

The argument above (which was suggested by Lipton

[Lip94]) crucially requires that the decoding algorithm

receives the seed sπ . The approach of Guruswami and

Smith is to encode the seed sπ (as well as other seeds that

we introduce soon) by a “control code” and “merge” y
and this “control encoding” together, in the hope that the

channel is not able to “wipe out” the control information,

and furthermore, that the decoding algorithm is able to

identify and correctly decode the control information.

For this purpose, the encoding algorithm also chooses

a random seed sPRG for a pseudorandom generator G
that fools any-order small space ROBPs (we use the PRG

of Forbes and Kelly [FK18]). When preparing the data

part, the encoding xors the string y = π−1(EncBSC(m))
with G(sPRG) to obtain the “data codeword” cdata =
π−1(EncBSC(m)) ⊕ G(sPRG). Loosely speaking, this

means that cdata looks random to the channel.

The encoding algorithm now prepares the control

codeword. For this purpose, the encoding algorithm

divides the N output bits into n = N1−λ blocks of

length b = Nλ, where λ > 0 is some small constant.

It chooses an additional random seed ssamp for an

“averaging sampler”. This seed is used to specify ε · n
distinct indices i1, . . . , iε·n ∈ [n]. These blocks are called

“control blocks”, and the remaining blocks are called

“data blocks”. In this high level overview we pretend that

the indices of control blocks are uniformly distributed

in [n]. (Loosely speaking, the definition of averaging

samplers allows us to make this assumption).

The final codeword c ∈ {0, 1}N is prepared as

follows: Note that the total length of data blocks is

Ndata, and the encoding algorithm “places” the data

codeword cdata in these blocks. The remaining εn
blocks are used to encode the “control information”

s = (sπ, sPRG, ssamp). This is done as follows: for

each control block i, the encoding algorithm sets ci =
Encctrl(s, Ud) with fresh randomness for each block

(where Encctrl is the stochastic control code of the pre-

vious section).6 Note that this indeed gives a codeword

c of length N .

2) The list decoding algorithm: In order to decode,

the decoding algorithm first applies the list-decoding

algorithm Decctrl on all the n blocks of the received

word. The decoding algorithm obtains � = n
εc outcomes

(where c = 2 is the exponent of the list size of Decctrl),
and it “passes on” each outcome that appears at least

say ε2n times. (Note that there are at most poly(1/ε)
such outcomes). For each such candidate s′ for control

information, the decoding produces a message. Namely,

it identifies the partition of blocks into control blocks and

data blocks according to s′samp. It then xors the data part

with G(s′PRG), and applies the permutation π (defined

by seed s′π). Finally, it performs decoding by DecBSC.

This process indeed produces a list of size poly(1/ε) of

candidate messages.

The analysis will show that for any small space

channel, w.h.p. the “correct control information” s is

one of the candidates s′ considered by the decoding

algorithm, and that with s′ = s, the correct message

m is decoded w.h.p.

3) Analyzing the construction: The analysis of the

construction is quite involved and is presented in detail

in the full version. On a high level, the key observation is

that from the point of view of a space bounded channel,

the data part looks random (as it is xored with the

output of a pseudorandom generator) and each control

block looks random (by the pseudorandom property

of Encctrl). This intuitively means that the channel

cannot distinguish data blocks from control blocks, and

therefore, from its point of view, the position of control

blocks is random (as they were chosen by the sampler).

It intuitively follows that the channel cannot hope to

“wipe out” the short control part. At best, it can place

a p fraction of errors on the control part, and it is

likely that an ε fraction of the control blocks will be

decoded correctly by Decctrl, meaning that the correct

control information s is one of the candidates s′ that is

considered by the decoding algorithm.

The channel C chooses the error pattern e as a

function of the codeword c. However, as c looks random

to the channel, the channel intuitively chooses e in a

way that is independent of the seed sπ . Therefore, the

analysis used earlier for additive channels (in which e is

fixed and π is random) can be applied, and the correct

6We mention that here we simplify previous work by [GS16, SS16]
that also used an “outer control code” that was chosen to be list-
recoverable. This simplification allows us to speed up the encoding
and decoding as explained later.

310

message appears in the list.7

4) Achieving quasilinear time encoding and decod-
ing.: In order to achieve quasilinear time encoding

and decoding, we need to first verify that none of the

components we use, runs in larger polynomial time. In

some cases (e.g., the PRG of Forbes and Kelly [FK18])

we need to delve into the construction and analysis in

order to implement it in a more efficient manner.

A key observation is that we don’t have to optimize the

exponent of the polynomial in the time of encoding and

decoding Encctrl. This is crucial as for example, the time

of the decoding algorithm that we give for OddRawRS
codes is inherently at least quadratic (just for writing all

the large lists in the list recovering stage).

We make the following observation: When encoding,

we run Encctrl (which in turn runs the linear code

EncOddRawRS) many times. Therefore, we only care about

amortized encoding time (rather than worst case running

time). Any linear function L : F
n0.1

2 → F
n
2 can be

computed in amortized time O(n · (log2 n)) (following a

pre-processing step that prepares the matrix of L). This

is because making n such computations, can be reduced

to matrix multiplication of an n × n0.1 matrix by an

n0.1×n matrix (which can be done in time O(n2 ·log2 n)
by Coppersmith [Cop82]. Recall that we have less than

N1−λ applications of Encctrl where each one is over

block length Nλ, and so overall, all these applications

take time O(N · log2 N)
A second observation is that when list-decoding, the

decoding algorithm doesn’t need to try all n = N1−λ

blocks. It can instead sample a polylogarithmic number

of blocks in [n], and only try to decode the control code

on the sampled blocks. Each such block is of length

b = Nλ, and so, even if applying Decctrl takes time bc

7This high level argument is an oversimplification and the actual
proof is quite involved. We need to show that if the channel is able to
prevent the decoding algorithm from decoding, then it can be used to
break one of the pseudorandom components. A significant difficulty,
is that the channel cannot run the decoding algorithm (which cannot
be run by a small space ROBP) and therefore, the channel “does not
know” whether it succeeded in preventing the decoding algorithm from
decoding correctly. This is a problem as the distinguisher (for the
PRG) that we aim to construct, will intuitively want to distinguish
the output of the PRG from random, by distinguishing between the
case that decoding succeeded from the one where it doesn’t (and in
particular, the distinguisher will want to run decoding algorithms).
The argument used to construct this distinguisher relies on additional
specific properties of the BSC code. Our approach to handling this
issue, builds heavily on the previous arguments of [GS16, SS16] with
some modifications.

We also remark that a possible behavior of a channel is to inject
“false control strings” in order to make the decoding algorithm decode
to incorrect values. Indeed, there are bounded space channels that can
cause the decoding algorithm to have incorrect messages in the list (in
addition to the correct one).

for a large constant c, by choosing the constant λ > 0 to

be sufficiently small, this step takes time polylog(N) ·
Nλ·c ≤ N .

Finally, we mention that an obvious bottleneck that

prevents our encoding and decoding to run in linear time,

is that computing a permutation π : [N] → [N] on all

N inputs, requires time Ω(N · logN) just to read the

inputs and write the outputs.

III. PRELIMINARIES, AND INGREDIENTS USED IN

THE CONSTRUCTION

In this section we give formal definitions of the

notions and ingredients used in the construction. We also

cite previous results from coding theory and pseudoran-

domness that are used in the construction.

a) General notation: We use Un to define the

uniform distribution on n bits. The statistical distance be-

tween two distributions P,Q over Ω is maxA⊆Ω |P (A)−
Q(A)|. Random variables R1, . . . , Rn are t-wise inde-

pendent if for every i1, . . . , it ∈ [n], Ri1 , . . . , Rit are

uniform and independent.

The Hamming weight of x ∈ [q]n is weight(x) =
| {i : xi �= 0} |. The Hamming distance between x, y ∈
[q]n is | {i : xi �= yi} | and the relative Hamming dis-

tance is the Hamming distance divided by n.

A. Permuting strings

We will use a permutation π : [n]→ [n] to “reorder”

the bits of a string x ∈ {0, 1}n: The i’th bit in the

rearranged string will be π(i)’th bit in x. This is captured

in the definition below.

Definition III.1 (Permuting strings). Given a string
x ∈ {0, 1}n and a permutation π : [n] → [n]. Let π(x)
denote the string x′ ∈ {0, 1}n with x′i = xπ(i).

B. Read once branching program (in any order)

1) Formal definition of ROBPs and bounded space
channels: We give a more formal definition of bounded

space computation and channels, restating Definition I.3

in a more formal notation. The model that we consider is

that of oblivious read once branching programs (ROBP).

In the definition below, we will consider several variants

depending on whether the ROBP outputs a single bit, or

one bit per any input bit (which is the case for channels

that are function C : {0, 1}n → {0, 1}n). We will also

consider ROBPs that are allowed to choose the order in

which they read the input bits.

Definition III.2 (Read Once Branching Programs

(ROBP)). A space s ROBP C which receives input
in {0, 1}n is defined by picking n transition functions

311

δ1, . . . , δn where for each i, δi : {0, 1}s × {0, 1} →
{0, 1}s. On input x ∈ {0, 1}n, the computation path of
C is the sequence r0, . . . , rn of states defined by r0 = 0s

and for i ≥ 1, ri = δi(ri−1, xi). We distinguish between
two types of ROBPs:

• If C : {0, 1}n → {0, 1} is an ROBP that outputs
a single bit, then C also has an output function
o : {0, 1}s → {0, 1} and C(x) is defined to be
o(rn).

• If C : {0, 1}n → {0, 1}n is an ROBP that outputs n
bits, then C also has n output functions o1, . . . , on
where for each i, oi : {0, 1}s → {0, 1} and C(x)
is defined by the n bit string o1(r1), . . . , on(rn).

We are stating this definition in the terminology of

“transition functions” and “output functions” which is

more convenient when discussing ROBPs that output

more than one bit. However, we stress that this definition

is equivalent to the more common definition of width

w = 2s ROBPs in terms of a layered graph with n+ 1
layers, where the i’th transition function specifics the

edges from the (i− 1)’th level to the i’th level.

Another remark is that the definition above forces an

ROBP that outputs many bits to output its i’th bit before
seeing the (i + 1)’th bit. This is done in order to have

a simple definition of ROBPs that output many bits.

However, all our results hold for a more general model

in which the ROBP can delay outputting the i’th bit to

a later stage and look ahead at the next input bits.8

We now define any-order ROBPs that are allowed to

reorder their input bits using a permutation σ : [n]→ [n]
prior to reading the input. The next claim immediately

follows from the definition.

Definition III.3 (any-order ROBPs). Given an ROBP C
over n bits, and a permutation σ : [n] → [n] we define
Cσ to be the function Cσ(x) = C(σ(x)). (Here σ(x)
is the function from Definition III.1). The class of any-
order space s ROBPs is the class of all functions Cσ

where C is a space s ROBP and σ : [n] → [n] is a
permutation.

8To make this statement more concrete, a space s ROBP that wants
to look ahead and read t additional bits before outputing the i’th output
bit, can store these additional t bits, and the number of bits it outputted
so far, in its memory, and this can be done in space s + t + logn.
Our results on space s channels also apply to these kind of channels,
namely channels that use space Ω(s) and look ahead at the next Ω(s)
input bits. More generally, our results apply to any “reasonable” model
of ROBPs that output many bits, in which if C1, C2 : {0, 1}n →
{0, 1}n are space s ROBPs, then the composition C1 ◦ C2 can be
computed by an ROBP with space, say O(s).

We now observe that if we restrict the input of an

any-order space s ROBP, then we obtain an any-order

space s ROBP.

Claim III.4 (Restrictions of any-order ROBPs). Given
a space s ROBP C : {0, 1}n → {0, 1}, a permutation
σ : [n] → [n], T ⊆ [n] of size t, and v ∈ {0, 1}t,
the function f : {0, 1}n−t → {0, 1} defined by f(y) =
Cσ(x) where xT = v and x[n]\T = y, is computable
by an any-order space s ROBP. That is, there exists a
permutation τ : [n− t] → [n− t] and a space s ROBP
D : {0, 1}n−t → {0, 1} such that Dτ (y) = f(y).

Definition III.3 applies also to ROBPs that output n
bits. Note that in that case, the output of the ROBP is

also ordered by σ. When considering channels, it is more

convenient to reorder the bits back to the natural order.

This is done in the next definition.

Definition III.5 (any-order bounded space channels).
The class of any-order space s channels is the class
of all functions eσC : {0, 1}n → {0, 1}n, where C :
{0, 1}n → {0, 1}n is a space s ROBP, σ : [n] → [n] is
a permutation, and eσC(x) = σ−1(C(σ(x))).

It should be noted that the “reordered function” eσC
is not necessarily computable by a small space ROBP.

However, when applying channels eσC on a codeword, it

is more natural to reorder the bits in the order used by

the codeword.

Using this notation, the bounded space channel model

considered in [GS16, SS16] (which was called “online

space s channels”) corresponds to space s channels with

the identity permutation (namely, channels that read their

input bits in the standard order).

2) PRGs for any-order ROBPs: We need the follow-

ing standard definition of pseudorandom distributions

and generators.

Definition III.6 (Pseudorandom generators). A distribu-
tion X on n bits is ε-pseudorandom for a class C of
functions from n bits to one bit, if for every C ∈ C,
|Pr[C(X) = 1] − Pr[C(Un)] = 1| ≤ ε. A function
G : {0, 1}d → {0, 1}n is an ε-PRG for C if G(Ud) is
ε-pseudorandom for C.

We will use the following PRG by Forbes and Kelly

[FK18]

Theorem III.7. [FK18] For every log n ≤ s ≤ n, there
exists an ε-PRG G : {0, 1}d → {0, 1}n for any-order
space s ROBPs that output one bit, with d = O((s +
log 1

ε)·log2 n). Furthermore, G can be computed in time
O(n · polylog(n)).

312

Forbes and Kelly [FK18] do not carefully estimate the

running time of their pseudorandom generator, and only

claim that it runs in polynomial time. The proof below,

will prove the “furthermore” clause in the theorem

above.

Proof. (of the “furthermore” clause in Theorem III.7)

The construction of Forbes and Kelly works as follows:

Let k be a parameter to be chosen later. The generator

G is constructed iteratively, by setting G0 to be a 320k-

wise independent distribution, and Gi+1 = Di⊕(Ti∧Gi)
where Di is a 2k-wise independent distribution, and Ti

is a k-wise independent distribution. (Different copies

of Di’s and Ti’s are sampled independently). The final

distribution is G = Gr where r is a parameter chosen

by the construction.

Note that sampling a k-wise independent distribu-

tion X on n bits can be done by a deterministic

procedure that receives a seed of length k log n, in

time n · polylog(n). This can be done by the standard

Reed-Solomon based construction. Namely, encoding the

k log n bit seed as k elements a0, . . . , ak−1 ∈ Fn (here

we assume w.l.o.g. that n is a power of 2) and for α ∈ [n]
(which can be interpreted as α ∈ Fn) setting Xα to

be (the first bit of)
∑

0≤i<k aiα
i. This gives a k-wise

independent distribution and can be computed in time

n·polylog(n), using univariate multipoint evaluation, that

can be done with O(n log n) field operations.

Forbes and Kelly show that taking r = O(log n) and

k = O(s + log n + log(1/ε)) gives an ε-PRG for any-

order space s ROBPs. This gives total running time of

r · n · polylog(n) = n · polylog(n).
This follows by the proof of [FK18, Lemma 4.2]

which proves the correctness of the PRG with a slightly

different construction, but also applies to the construction

described above.

C. Averaging Samplers

The reader is referred to Goldreich’s survey [Gol97]

on averaging samplers.

Definition III.8 (Averaging Samplers). A
function Samp : {0, 1}n → ({0, 1}m)t is an
(ε, δ)-Sampler if for every f : {0, 1}m →
[0, 1], Pr(z1,...,zt)←Samp(Un)[| 1t

∑
i∈[t] f(zi) −

1
2m

∑
x∈{0,1}m f(x)| > ε] ≤ δ. A sampler has

distinct samples if for every x ∈ {0, 1}n, the t elements
in Samp(x) are distinct.

The next theorem follows from the “expander sam-

pler”. This particular form can be found (for example)

in [Vad04].

Theorem III.9. For every sufficiently large m and
every ε ≥ δ > 0 such that m ≤ log(1/δ) there
is an (ε, δ)-sampler with distinct samples, Samp :
{0, 1}O(log(1/δ)·poly(1/ε)) → ({0, 1}m)t for any t ≤ 2m

such that t ≥ poly(1/ε) · log(1/δ). Furthermore, Samp
is computable in time t · poly(1/ε, log(1/δ)) and has
distinct samples.

D. Almost t-wise permutations

We also need the following notion of almost t-wise

permutations.

Definition III.10 (Almost t-wise independent permuta-

tions). A function π : {0, 1}d×[n]→ [n] is an (ε, t)-wise
independent permutation if:
• For every s ∈ {0, 1}d the function πs(i) = π(s, i)

is a permutation over [n].
• For every distinct i1, . . . , it ∈ [n], the random

variable R = (R1, . . . , Rt) defined by Rj =
π(s, ij) : s ← Ud, is ε-close to t uniform samples
without repetition from [n].

Theorem III.11. [KNR09] For every t and every suffi-
ciently large n, there exists an (ε, t)-wise independent
permutation with d = O(t · log n + log(1/ε)). Fur-
thermore, computing π(s, i) on inputs s ∈ {0, 1}d and
i ∈ [n] can be done in time poly(d, log n).9

We will use (ε, t)-wise independent permutations to

permute strings. Consider the following example: Let

e ∈ {0, 1}n be a string with Hamming weight pn,

and let π : {0, 1}d × [n] → [n] be an (ε, t)-wise

independent permutation. We will be interested in the

distribution X = πUd
(e) (here, π(e) is the “permuted

string” defined in Definition III.1). We would like to

apply “Chernoff style bounds for t-wise independence”

[BR94, SSS95] on X1, . . . , Xn. A technical issue is that

it is not true that X1, . . . , Xn are t-wise independent

(even in the case that ε = 0). What is true is that

for every t-tuple of distinct indices i1, . . . , it ∈ [n],
Pr[Xi1 = . . . = Xit = 1] ≤ pt + ε. The latter condition

is sufficient to obtain Chernoff style behavior (at least

when ε is sufficiently small compared to pt) by the

following lemma.

Lemma III.12 (tail bounds for almost t-wise indepen-

dent permuted strings). Let X1, ..., Xn be binary random
variables, such that for every set of distinct t indices

9We will be interested in the time it takes to compute the permutation
on all i ∈ [n] (namely given s, we want to compute (π(s, i))i∈[n])
and will use n ·poly(d) as a bound on the time for this task. Note that
this also gives that computing (π−1(s, i))i∈[n] can be done within the
same time bound.

313

i1, · · · , it ∈ [n], Pr[Xi1 = . . . = Xit = 1] ≤ μt. If
0 < δ ≤ 1 and t ≤ δ·μ·n

2 then

Pr[

n∑
j=1

Xj ≥ (1 + δ) · μ · n] ≤ e−Ω(δt)

This type of lemma follows by using the approach of

[SSS95]. It was applied for t-wise independent permuta-

tions (in a related setup) in [DHRS07]. For completeness

we provide a proof.

Proof. (of Lemma III.12) We use X to denote the n bit

long random variable composed of (X1, . . . , Xn). For

every t-tuple y = (i1, . . . , it) of indices in [n], let Ay

be the event Ay = {Xi1 = . . . , Xit = 1}. Let Y be an

independent, uniformly chosen t-tuple of indices in [n].
We have that Pr[AY] ≤ μt. Let � = (1+ δ) · μ · n. Note

that for every x ∈ {0, 1}n such that
∑

j∈[n] xj ≥ �, we

have that:

Pr[AY |X = x] ≥
(
�
t

)(
n
t

) =
� · . . . · (�− t+ 1)

n · . . . · (n− t+ 1)

≥ (�− t+ 1)t

nt
≥ μt · (1 + δ

2
)t.

This gives that,

Pr[AY] ≥ Pr[AY ∩ {X ≥ �}]
≥ Pr[X ≥ �] · Pr[AY |X ≥ �]

≥ Pr[X ≥ �] · μt · (1 + δ

2
)t.

Rearranging, we get that:

Pr[X ≥ �] ≤ Pr[AY]

μt · (1 + δ
2)

t
≤ μt

μt · (1 + δ
2)

t
= e−Ω(δ·t).

E. Error-Correcting Codes

In this section we give definitions of the various

notions of error correcting codes used in this paper. We

also state some previous constructions that will be used

in this paper.

1) The standard notion of error correcting codes:
We give a more general version of Definition I.1 that

discusses codes over non-binary alphabets, as well as

codes in Shannon’s scenario. For our purposes it is more

natural to define codes in terms of a pair (Enc,Dec) of

encoding and decoding algorithms. Different variants are

obtained by considering different properties required by

the encoding and decoding algorithms and different types

of error patterns.

Definition III.13 (Codes). Let k, n, q be parameters and
let Enc : {0, 1}k → ({0, 1}log q)n be a function. We say
that Enc is an encoding function for a code that is:

• decodable from t errors, if t ∈ [n], and there exists
a function Dec : ({0, 1}log q)n → {0, 1}k such that
for every m ∈ {0, 1}k and every e ∈ ({0, 1}log q)n

with Hamming weight at most t, Dec(Enc(m) ⊕
e) = m.

• L-list-decodable from t errors, if the function Dec
is allowed to output a list of size at most L, and for
every m ∈ {0, 1}k and every e ∈ ({0, 1}log q)n with
Hamming weight at most t, Dec(Enc(m)⊕e) � m.

• decodable from P , with success probability 1− ν,
if P is a distribution over ({0, 1}log q)n, 0 ≤
ν ≤ 1, and there exists a function Dec :
({0, 1}log q)n → {0, 1}k such that for every m ∈
{0, 1}k, Pre←P [Dec(Enc(m)⊕ e) = m] ≥ 1− ν.

A code has encoding time [resp. decoding time] T (·),
if Enc [resp. Dec] can be computed in time T (n log q).
The code is explicit if both encoding and decoding run in
polynomial time. (Naturally, this makes sense only for a
family of encoding and decoding functions with varying
block length n, message length k(n), and alphabet size
q(n)).

The rate of the code is the ratio of the message
length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n·log q .

2) Linear Codes and Dual Distance: We also define

the standard notion of linear codes.

Definition III.14 (Linear codes and dual codes). Let q
be a prime power, and let Fq denote the field with q
element. An [n, k]q linear code is a linear subspace of
C ⊆ F

n
q of dimension k. We say that C has distance d, if

the Hamming weight of every nonzero vector in C is at
least d. Such codes are called [n, k, d]q codes. A linear
map Enc : Fk

q → F
n
q is an encoding function for C, if

Enc(Fk
q) = C. For a code C, we use C⊥ to denote the

dual vector space. We say that C has dual distance d if
C⊥ has distance d.

It is standard that C is an [n, k, 2t + 1]q code iff C
has a linear encoding function Enc : Fk

q → F
n
q that is

decodable from t errors. We will use the standard fact

that encoding functions for codes with dual distance r
yield (r − 1)-wise dual independent distributions.

Lemma III.15 ((t − 1)-wise independence from linear

codes with dual distance t). Let Enc : Fk
q → F

n
q be an

encoding function for a linear [n, k]q-code C with dual
distance t. Applying Enc on a uniformly chosen message

314

m← F
k
q yields a distribution (Z1, . . . , Zn) over Fn

q that
is (t − 1)-wise independent, and every Zi is uniformly
distributed over Fq .

Proof. Applying Enc on some v ∈ F
k, can be seen

as multiplying v by a generator matrix of C (which is

a transposed parity check matrix of C⊥). As C⊥ has

distance t, every t−1 columns of the generator matrix of

C are linearly independent, and the lemma follows.

3) Stochastic Codes: We restate Definition I.2 using

slightly more precise notation.

Definition III.16 (Stochastic codes for channels). Let
k, n, d be parameters and let Enc : {0, 1}k ×{0, 1}d →
{0, 1}n be a function. Let C be a class of functions from
n bits to n bits. We say that Enc is an encoding function
for a stochastic code that is:
• decodable for “channel class” C, with success prob-

ability 1−ν, if there exists a (possibly randomized)
procedure Dec : {0, 1}n → {0, 1}k such that for
every m ∈ {0, 1}k and every C ∈ C, setting X =
Enc(m,Ud), we have that Pr[Dec(X ⊕ C(X)) =
m] ≥ 1−ν, where the probability is over coin tosses
of the encoding and decoding procedures.

• L-list-decodable for “channel class” C, with suc-
cess probability 1 − ν, if the procedure Dec is
allowed to output a list of size at most L, and
Pr[Dec(X ⊕ C(X)) � m] ≥ 1 − ν, where the
probability is over coin tosses of the encoding and
decoding procedures.

A code has encoding time [resp. decoding time] T (·), if
Enc [resp. Dec] can be computed in time T (k+n+d).
The code is explicit if both encoding and decoding run in
polynomial time. (Naturally, this makes sense only for a
family of encoding and decoding functions with varying
block length n, message length k(n) and seed length
d(n)).

The rate of the code is the ratio of the message
length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n .

4) Codes for binary-symmetric channels and related
variants: We will make use of known constructions of

codes for binary symmetric channels.

Definition III.17 (Binary symmetric channel). Let
BSCn

p denote the distribution over n bit strings in which
individual bits are i.i.d. and each is one with probability
p.

There are constructions of codes with rate approaching

1−H(p) that are decodable from BSCn
p with very high

suvcess probability, and have linear time encoding and

decoding [GI05].

We are interested in codes for an intuitively similar

(but more general) scenario in which the error dis-

tribution is obtained by taking a string e ∈ {0, 1}n
of weight pn, an (ε, t)-wise independent permutation

π : {0, 1}d × [n] → [n] and considering the error

distribution e′ = πUd
(e).

This distribution is somewhat similar to BSCp in the

sense that if we project both distributions to a “not too

large” tuple of indices, the distributions are statistically

close. More precisely, for every choice of t distinct

indices I = (i1, . . . , it), the distribution (BSCp)I and

(πUd
(e))I are (ε+t2/n)-close in statistical distance. This

can be used to argue that current constructions for BSCp

also work for πUd
(e) (for certain parameters).

However, for technical reasons, this isn’t sufficient for

our purposes, and we will require that the code has

some additional structure (which we will use in our

construction). We now explain the additional structure

that we need: The known codes for BSCp are constructed

by code concatenation, and for technical reasons, we will

be interested in some properties of the inner and outer

codes (and not just properties of the concatenated code).

We first give the following standard definition of code

concatenation.

Definition III.18 (Concatenated code). Given functions:
• Encout : {0, 1}kout → ({0, 1}log qout)nout , and
• Encin : {0, 1}kin → ({0, 1}log qin)nin ,

such that log qout = kin we define the concate-
nated encoding function Enc : {0, 1}kout →
({0, 1}log qin)nout·nin denoted by Encout ◦ Encin as fol-
lows: For iout ∈ [nout], iin ∈ [nin], and i = (iout − 1) ·
nin+iin we define Enc(m)i = Encin(Encout(m)iout

)iin .

Concatenated codes can be decoded by “concatenated

decoding”.

Definition III.19 (Concatenated decoding). Let Enc =
Encout ◦ Encin be a concatenated code, and let
Decout : ({0, 1}log qout)nout → {0, 1}kout , Decin :
({0, 1}log qin)nin → {0, 1}kin be functions. For i ∈ [nout]
we define Deciin : ({0, 1}log qin)nout·nin → {0, 1}kin by:

Deciin(z) = (z(i−1)·nin+1, . . . , zi·nin
).

The concatenated decoding function Dec :
({0, 1}log qin)nout·nin → {0, 1}kout is defined by:

Dec(z) = Decout(Dec1in(z), . . . ,Decnout

in (z)).

In the following theorem we revisit the code con-

struction of [GI05] for BSCn
p , and observe that the

315

constructed concatenated code has some properties that

we will use later on.

Theorem III.20. For every constant 0 < p < 1/2, and
every sufficiently small constant ε > 0, there exist integer
constants kin, nin, qout and real constants λ1, λ2, λ3 > 0
such that kin = log qout ≤ 1

ε7 , and for infinitely many
choices of nout there exist functions:
• Encout : {0, 1}kout → ({0, 1}log qout)nout ,
• Encin : {0, 1}kin → {0, 1}nin ,

such that:
• Rout = kout

nout·log qout
≥ 1 − ε

10 , and Encout is
decodable from w = λ1 · nout errors with linear
time encoding and decoding.

• Rin = kin

nin
≥ 1 − H(p) − ε/10, and Encin is de-

codable from BSCnin
p with probability 1−2−λ2·nin .

This decoding is achieved by a function Decin that
implements “maximum likelihood decoding”.

• Consequently, setting n = nout · nin, and qin =
2, the concatenated code Enc = Encout ◦ Encin :
{0, 1}kout → {0, 1}n is well defined, has rate R =
kout

n ≥ 1−H(p)−ε, and is encodable in time O(n)
(where the constant c hidden in the O(·) depends
on ε, and c = c(ε) = 2poly(1/ε)).

• Let t ≤ n0.1, and let π : {0, 1}d × [n] → [n] be a
(2−10·t, t)-wise independent permutation. Let m ∈
{0, 1}kout , and let Am : {0, 1}n → {0, 1} be the
function that on input e′ ∈ {0, 1}n, outputs one iff

|{i ∈ [nout] : Deciin(Enc(m)⊕ e′) �= Encout(m)i
} |

≤ w

10
.

(Note that Am(e′) = 1 implies that concatenated
decoding that is applied on Enc(m) ⊕ e′ indeed
recovers m).
For every e ∈ {0, 1}n of Hamming weight at most
pn,

Pr[Am(πUd
(e)) = 1] ≥ 1− 2−λ3·t.

• Consequently, for every e ∈ {0, 1}n of Hamming
weight at most pn, the code Enc is decodable from
πUd

(e) with probability 1−2−λ3·t. Furthermore, the
concatenated decoding algorithm runs in time O(n)
(where the constant c hidden in the O(·) depends
on ε, and c = c(ε) = 2poly(1/ε)).

The final item in Theorem III.20 follows from the

penultimate item. However, for our purposes, the final

item will not be sufficiently strong, and we will need to

use the penultimate item (as well as the previous items).

The advantage of the penultimate item is that we get that

for every m, there exists a space O(log n) ROBP which

implements the function Am, in contrast to the entire

concatenated decoding algorithm that does not seem to

be implemented by small space ROBPs.
Theorem III.20 follows by noticing that the proofs

of known construction of codes for binary symmetric

channels (see e.g., [For65]) are achieved by code con-

catenation of codes with the properties listed above. The

fourth item follows by using Lemma III.12 to analyze

the behavior of this concatenated code on errors from

the distribution πUd
(e). The proof appears in the full

version.
Very similar arguments to the proof of Theorem III.20

were made by Smith [Smi07] and in an early version of

[GS16].

IV. RAW REED-SOLOMON CODES

For our intended application, we need linear binary

[n, k]2 codes with:

• Relative distance (1/2− o(1)).
• Large dual distance of at least nΩ(1). (In fact, we

need a slightly stronger property to be explained

below).

• Polynomial time encoding.

• Polynomial time unique decoding from p-fraction

errors for every p < 1
4 .

• Polynomial time list-decoding with list size

poly(1/ε) from (12 − ε)-fraction errors, for every

constant ε > 0.

In this paper, we construct binary codes with the

properties above. To the best of our knowledge, this is

the first construction of such codes.
First a slight abuse of notation: for this section only,

we will use the word distance to denote relative distance,

as opposed to absolute distance. This helps with the

exposition.
Reed Solomon codes exhibit all the properties above

(in addition to constant rate, and larger dual distance) but

only for large alphabets. As far as we are aware, there

are only two known families of codes over the binary

alphabet which have Ω(1) distance and nΩ(1) absolute

dual distance. The first family is dual-BCH codes, but we

do not know decoding algorithms for these codes from

Ω(1)-fraction errors for this setting of parameters (it is

known [KS07, KS13] how to decode from Ω(1)-fraction

errors only when the absolute dual distance is O(log n)).
The second family is based on Algebraic-Geometric

codes (see the appendix to [Shp09] for a detailed expo-

sition). AG codes are generalizations of Reed-Solomon

codes, and retain many of the good features of Reed-

Solomon codes while having the advantage of being

316

realizable over constant size alphabets. An AG code with

suitable parameters over a constant size alphabet F2t

has Ω(1) distance and Ω(1) dual distance. To bring the

alphabet down to binary, one can do code concatenation.

However, typically concatenation destroys dual distance.

But not always! If we concatenate with a trivial code,10

that maps F2t to t-bit strings, the absolute dual distance

is preserved under concatenation. On the other hand,

using the trivial code makes the distance shrink by a

factor t. This yields codes with Ω(1) distance and dual

distance with efficient decoding algorithms (these are

the codes that we use to prove Theorem I.5). However

the lower bound on the distance that follows is nowhere

near11 1/2.

The binary codes that we construct here are obtained

by concatenating Reed-Solomon codes (over a large

alphabet) with a different trivial code for each coordinate

of the Reed-Solomon code. We call the general class of

such codes Raw Reed-Solomon codes. In the positive

direction, concatenating with trivial codes preserves the

absolute dual distance, and we get the required dual-

distance property. On the other hand, since the outer

Reed-Solomon code is over a large alphabet, the trivial

codes must have superconstant block-length, and thus

o(1) distance. By default, concatenating with inner codes

of o(1) distance leads to the final codes having o(1)
distance (O(1/ log n) to be precise). However, for spe-
cial choices of the trivial codes, we use some deep

algebraic tools12 to give a direct analysis of the distance

of these codes, which miraculously turns out to be

1/2 − o(1). Finally, using the powerful list-decoding

machinery available for Reed-Solomon codes, we show

that Raw Reed-Solomon codes can be list-decoded from

nearly (1/2− ε)-fraction errors.

Reed Solomon codes have a lot of structure and many

useful properties (in addition to their distance properties)

and so, we believe that the fact that Reed-Solomon codes

have the additional properties listed above (when viewed

as binary codes appropriately) is of independent interest

and may prove useful in other applications.

In the theorem below, we focus on codes with the

parameters that we require for our application. The

10In this paper, “trivial code” will always refer to bijective F2-linear
maps Φ : F2m → F

m
2 for some m. They are trivial because their

absolute minimum distance equals 1. Note that for any given m, there
are many different choices of trivial codes (corresponding to invertible
m×m matrices over F2).

11The lower bound obtained on the distance of the resulting codes
is always at most 5

84
< 0.06.

12The Weil bounds, which are also used to analyze the distance of
dual-BCH codes.

theorem below will follow from a more general result

on Raw Reed-Solomon codes stated later.

Theorem IV.1 (Codes with large distance and dual

distance). For every constant 0 < α < 1/2, and every
sufficiently large m, setting n = (2m − 1) · m, and
k = nα, there is a binary linear [n, k]2-code C that
satisfies:

• C has a linear encoding map Enc : Fk
2 → F

n
2 that

runs in time poly(n).
• C has relative distance (12−O((logn

n)
1
2−α)) = (12−

o(1)).
• For every constant p < 1/4, Enc is decodable from
p-fraction errors in time poly(n).

• There exists a universal constant b such that for
every ε ≥ b

√
α, Enc is O(1

ε2)-list-decodable from
(12 − ε)-fraction errors in time poly(n).13

• C has absolute dual distance Ω(nα

logn).

• Moreover, define Enctrunc : F
k/2
2 → F

n
2 by

Enctrunc(x) = Enc(x ◦ 0k/2), and consider the
linear code C ′ = Enctrunc(F

k/2
2). It holds that C ′

has absolute dual distance Ω(nα

logn).

In the remainder of the section we introduce Raw

Reed-Solomon codes, study their properties, and use

them to prove Theorem IV.1.

A. General Raw Reed-Solomon codes

Let q = 2m. We will discuss a family of binary codes

that are derived from Reed-Solomon codes over Fq .

Start with an evaluation domain D ⊆ Fq and a

degree bound d, and consider the Reed-Solomon code

of evaluations on D of polynomials of degree at most d
over Fq . In order to convert this code to a binary code,

we also choose a sequence Φ = (Φx)x∈D, where each

Φx is an F2-linear bijection between Fq and F
m
2 .

In terms of this data, we define the Raw Reed-

Solomon code RawRS[Fq, d,D,Φ] as follows. The coor-

dinates of the code are indexed by pairs (x, i) ∈ D×[m],
and the codewords are indexed by polynomials P (X) ∈
Fq[X] of degree at most d. The codeword corresponding

to P (X) is c : D × [m]→ F2 given by:

c(x, i) = Φx(P (x))i.

This can also be expressed as the Reed-Solomon code

concatenated with a different trivial code Φx : Fq → F
m
2

13We remark that the constant hidden in the notation poly(n) here
(and in the previous item) is universal and does not depend on α.
However, the choice of which m is sufficiently large, does depend on
α.

317

in each coordinate (in the spirit of Justesen [Jus72] and

Thommesen [Tho83]).

A lot, but not all, of requirements for the code we

desire are already satisfied by arbitrary Raw Reed-

Solomon codes. We now pick out two special codes

in this family, SimpleRawRS and OddRawRS which do

satisfy all the requirements (and whose analysis will be

more specialized).

• SimpleRawRS: Let Φ be an F2-linear bijection

from Fq to F
m
2 . Let D = Fq \ {0}. For each

x ∈ D, define14 Φx(y) = Φ(xy) for all y,

and take Φ = (Φx)x∈D. The Simple Raw Reed-

Solomon code SimpleRawRS[Fq, d,Φ] is defined to

be RawRS[Fq, d,D,Φ].
In this code, the codeword corresponding to poly-

nomial P (X) is obtained by writing down, for each

x ∈ D, the m bits of Φ(xP (x)). Observe that

XP (X) is a polynomial of degree at most d+1 with

0 constant term. Thus, the codewords are obtained

by taking a polynomial of degree at most d + 1
with 0 constant term and writing down all its values

using Φ. This is the way these codes are described

in the introduction.

• OddRawRS: Let Φ be an F2-linear bijection from

Fq to F
m
2 . Let D = Fq \ {0}. For each

x ∈ D, define15 Φx(y) = Φ(xy2) for all y,

and take Φ = (Φx)x∈D. The Odd Raw Reed-

Solomon code OddRawRS[Fq, d,Φ] is defined to be

RawRS[Fq, d,D,Φ].
In this code, the codeword corresponding to poly-

nomial P (X) is obtained by writing down, for

each x ∈ D, the m bits of Φ(xP (x)2). Observe

that XP (X)2 is a polynomial of degree at most

2d + 1 with only odd degree monomials. Thus,

the codewords are obtained by taking a polynomial

of degree at most 2d + 1 with only odd degree

monomials and writing down all its values using

Φ. This is the way these codes are described in the

introduction.

Our results for OddRawRS are technically simpler and

quantitatively stronger, but SimpleRawRS is arguably a

more natural code whose parameters are not far behind,

so we feel it is interesting to see that too.

For contrast, it is also worth keeping in mind the

following example:

• VerySimpleRawRS: Let Φ be an F2-linear bijec-

tion from Fq to F
m
2 . Let D = Fq \ {0}. For

each x ∈ D, define Φx = Φ, and take Φ =

14Note that for x ∈ D, y �→ xy is a linear bijection of Fq .
15Note that y �→ y2 is a linear bijection of Fq .

(Φx)x∈D. The Very Simple Raw Reed-Solomon

code VerySimpleRawRS[Fq, d,Φ] is defined to be

RawRS[Fq, d,D,Φ].
In this code, the codeword corresponding to poly-

nomial P (X) is obtained by writing down, for each

x ∈ D, the m bits of Φ(P (x)). Thus, the codewords

are obtained by taking a polynomial of degree at

most d and writing down all its values using Φ.

Note that this code is the usual concatenation of

Reed-Solomon codes with the trivial code given by

the map Φ. Also note that this code is very closely

related to SimpleRawRS: it is obtained by adding

the constant functions to a suitable SimpleRawRS.

Our plan now is as follows. First we study some

properties of all Raw Reed-Solomon codes, including

the rate and dual-distance. Next we prove the list-

decodability of all Raw Reed-Solomon codes: this is

more sophisticated, but still works in full generality.

Finally, we give a specialized analysis to show

that SimpleRawRS and OddRawRS have good distance

(nearly 1/2 for the setting of interest). This is in contrast

to VerySimpleRawRS which has distance O(1/ log n).

Lemma IV.2 (Easy Properties of Raw Reed-Solomon

codes). Let Fq, d,D,m,Φ be as above, and let C =
RawRS[Fq, d,D,Φ]. Then:

1) The block-length of C is m · |D|.
2) The dimension of C is m · (d+ 1).
3) C has absolute dual distance at least (d+ 2).

Proof. The first two items are trivial.

To show the final item, we use an alternate character-

ization of the dual distance: a linear code has absolute

dual distance at least b if and only if the uniform

distribution on the codewords of the code is (b−1)-wise

independent.

Let P (X) ∈ Fq[X] be a uniformly random poly-

nomial of degree at most d. We need to show that

for any set S ⊆ D × [m], the random variables

(Φx(P (x))i)(x,i)∈S are independent.

To see this, first note that for

A = {x ∈ D | ∃i ∈ [m] with (x, i) ∈ S},
we have that the random variables (P (x))x∈A are uni-

form and independent. This is because |A| ≤ |S| ≤ d+1,

and the evaluations of uniformly random degree d poly-

nomials are uniform and (d+ 1)-wise independent.

Next, we observe that for any x, setting Sx = {i ∈
[m] | (x, i) ∈ S}, the random variables (Φ(P (x))i)i∈Sx

are independent. This is because P (x) is uniformly

distributed over Fq , and since Φ is a bijection, the image

318

under Φ of a uniformly random element of Fq is uniform

on F
m
2 .

Combining these facts, we get the desired (d+1)-wise

independence.

B. List-decoding algorithm

We now give a list-decoding algorithm for (general)

Raw Reed-Solomon codes, which is interesting in the

setting of polynomially small rate and where |D| =
Ω(q).

Lemma IV.3 (Decodability of Raw Reed-Solomon

codes). Let Fq, d,m,D,Φ be as above, and let C =
SimpleRawRS[Fq, d,Φ]. Let η > 0, and suppose

d ≤ η2 · q
O(η2)

q
· |D|.

(If |D| = Ω(q), this is roughly the same as d ≤ η2 ·
|D|O(η2).) Let n = m · |D| be the block-length of C.

Then C is list-decodable from 1/2− η fraction errors
in time poly(n) with list size O(n2).

Proof. We use the natural 2-stage list-decoding strategy

for concatenated codes. This will reduce our problem to

list-recovery of Reed-Solomon codes, for which we have

the following fundamental result.

Theorem IV.4 (List-recovery of Reed-Solomon

codes [Sud97, GS99]). Suppose we are given, for each
x ∈ D, an “input list” Lx ⊆ Fq with |Lx| ≤ �. Then
we can find, in poly(q) time, the list of all polynomials
P (X) of degree at most d such that:

Pr
x∈D

[P (x) ∈ Lx] ≥ α,

provided:

α ≥
√

d�

|D| .

Furthermore, the output list size is at most O(q2).

Let w : D ×m → F2 be a given received word. For

x ∈ D, let w(x) ∈ F
m
2 denote the vector whose ith

coordinate is w(x, i).
For each x ∈ D, we define the input-list Lx ⊆ Fq as

follows:

Lx = {u ∈ Fq | Δ(Φx(u), w(x)) ≤ 1/2− η/2}.
Then for any c ∈ C with Δ(w, c) < 1/2 − η, we have

that:

Pr
x∈D

[c(x) ∈ Lx] ≥ η/2.

This is because Ex∈D[Δ(w(x), c(x))] = Δ(w, c) <
1/2− η, and so by Markov’s inequality,

Pr
x∈D

[Δ(w(x), c(x)) < 1/2− η/2] > η/2. (1)

We have that each Lx has size

� = V ol(Ball of radius (1/2− η/2) in F
m
2)

≤ 2(1−Ω(η2))m = q1−Ω(η2).

Thus we have that√
d�

|D| ≤
√

dq1−Ω(η2)

|D| ≤ η/2.

Thus the list-recovery algorithm of Theorem IV.4 will

find all P (X) ∈ Fq[X] of degree at most d such that

Pr
x∈D

[P (x) ∈ Lx] ≥ η/2.

By Equation (1), all the codewords we are interested in

will be recovered by this procedure.

We summarize the algorithm below:

• Create, for each x ∈ D, an input list Lx ⊆ Fq .

• Use the Reed-Solomon list-recovery algorithm to

find all polynomials P (X) for which P (x) ∈ Lx

for a noticeable fraction of x ∈ D.

• For each such polynomial P (X), include the corre-

sponding codeword c : Fq× [m]→ F2 in the output

list.

C. Explicit RawRS codes with good distance

Now we come to the most delicate part: the minimum

distance.

In general, a Raw Reed-Solomon code could have

minimum distance as small as 1/m = O(1/ log n). In-

deed VerySimpleRawRS does have small distance. If we

take some α ∈ Fq for which Φ(α) has absolute weight

equal to 1, then the codeword of a VerySimpleRawRS
code which corresponds to the constant polynomial α
has minimum distance O(1/ log n).

Nevertheless, the following results shows that

OddRawRS and SimpleRawRS have good minimum dis-

tance. Our first result shows that OddRawRS has distance

1/2−o(1) for d = o(q1/2). Our second result shows that

SimpleRawRS has distance about 1−ε
2 when d < qε for

any ε < 1/2 (and in particular the distance is 1/2−o(1)
for d = qo(1)).

Lemma IV.5 (Distance of OddRawRS). Let Fq, d,m,Φ
be as above, and let C = OddRawRS[Fq, d,Φ].

319

Then C has minimum distance at least(
1

2
− 2d√

q

)
.

Proof. The key ingredient in the proof is the Weil bound

on additive character sums.

First we recall the field trace function Tr : Fq → F2.

This is an F2-linear function given by:

Tr(x) = x+ x2 + x4 + . . .+ x2i + . . .+ x2m−1

.

Theorem IV.6 ([Wei48]). Let Tr : Fq → F2 denote
the finite field trace. Let R(X) ∈ Fq[X] be a nonzero

polynomial of degree at most d with only odd degree

monomials. Then:∣∣∣∣∣∣
∑
x∈Fq

(−1)Tr(R(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

It says that for low degree polynomials R with only

odd degree monomials, Tr(R(x)) is approximately uni-

formly distributed over F2. The hypothesis about odd

degree is needed to avoid pathological situations where

Tr(R(x)) is constant (for example, Tr(x+ x2) = 0 for

all x). The statement above can be found in [Sch06,

Chapter II.2, Theorem 2E]. Elementary proofs were

given by Stepanov, Schmidt and Bombieri (see [Sch06,

Mor93, Kop10] for expositions).

We also need some simple facts about Tr.

• Every F2-linear function g : Fq → F2 is of the form

g(x) = Tr(βx) for some β ∈ Fq .

• Tr(y) = Tr(y2) for all y ∈ Fq .

By the first fact above, there are β1, . . . , βm ∈ Fq

such that Φ : Fq → F
m
2 is given by:

Φ(y) = (Tr(β1y),Tr(β2y), . . . ,Tr(βmy)).

Since Φ is injective, we get that β1, . . . , βm are linearly

independent over F2, and thus are a basis for Fq over

F2.

Let c : Fq × [m] → F2 be a nonzero codeword. We

break it into m functions c1, c2, . . . , cm : Fq → F2 given

by:

ci(x) = c(x, i).

It will turn out that each ci is a nonzero codeword of a

dual-BCH code.

Let P (X) be the polynomial underlying c. We have

deg(P (X)) ≤ d. Let P (X) =
∑d

j=0 γjX
j .

By definition of OddRawRS, we have Φx(y)i =
Tr(βixy

2) = Tr(βixP (x)2). The crucial point is that

ci(x) = Φx(P (x))i = Tr(βixP (x)2)

= Tr

⎛
⎝βix

⎛
⎝∑

j≤d

γ2
j x

2j

⎞
⎠
⎞
⎠

= Tr

⎛
⎝βi

∑
�≤2d+1,� odd

γ2
(�−1)/2x

�

⎞
⎠

= Tr(Ri(x)),

where:

Ri(X) =
∑

�≤2d+1,� odd

βiγ
2
(�−1)/2X

�

is a nonzero polynomial of degree at most 2d + 1 with

only odd degree monomials. This allows us to apply the

Weil bound (Theorem IV.6) directly. It tells us that for

all i ∈ [m],∣∣∣Pr
x
[Tr(Ri(x)) = 0]− Pr

x
[Tr(Ri(x)) = 1]

∣∣∣ ≤ 2d√
q
+

1

q
.

So, using wt to denote the relative weight,

wt(ci) = Pr
x∈D

[Tr(Ri(x)) �= 0] ≥
(
1/2− d√

q
− 1

2q

)
.

Averaging over all i, we get that

wt(c) = Ei∈[m][wt(ci)] ≥
(
1/2− d√

q
− 1

2q

)
.

Thus the minimum distance of C is at least that quantity,

as desired.

Lemma IV.7 (Distance of SimpleRawRS).
Let Fq, d,m,Φ be as above, and let C =
SimpleRawRS[Fq, d,Φ].

Then C has minimum distance at least(
1− log(d+ 1)

log q

)(
1

2
− d√

q

)
.

Proof. The proof is very similar to the previous one.

Again we have a basis β1, . . . , βm of Fq over F2 such

that

Φ(y) = (Tr(β1y),Tr(β2y), . . . ,Tr(βmy)).

Let c be a nonzero codeword. We define c1, . . . , cm :
D → F2 as before:

ci(x) = c(x, i).

Here again we will get that the ci are codewords of

the dual-BCH code. However, unlike the previous proof,

320

here it might be the case that some ci is identically 0.

We will show that at most log2(d + 1) of these ci are

identically 0, and the remaining ci have weight at least(
1
2 − d√

q

)
. This will imply that:

wt(c) ≥ Ei∈[m][wt(ci)]

≥
(
1− log(d+ 1)

log q

)(
1

2
− d√

q

)
,

and thus the minimum distance of C is at least that

quantity, completing the proof.

Let P (X) be the polynomial underlying c. We have

deg(P (X)) ≤ d. Let P (X) =
∑d

j=0 γjX
j . By

construction, ci(x) = Tr(βixP (x)). The polynomial

βiXP (X) may have monomials of even degree, and so

we cannot directly apply Theorem IV.6 to it. Instead we

will reduce the even degree monomials using the identity

Tr(y2) = Tr(y), and then hope that the reduction does

not leave us with the zero polynomial.

βiXP (X) = βi

⎛
⎝d+1∑

j=1

γj−1X
j

⎞
⎠

=

d+1∑
j=1

βiγj−1X
j

=
∑

�≤d+1,� odd

⎛
⎝ ∑

r≥0,2r�≤d+1

βiγ(�·2r−1)X
�·2r

⎞
⎠ ,

where in the last equality, we grouped all the powers of

X according to the largest odd factor of the exponent

(for example, X3, X6, X12, X24, . . . are all in the same

group).

Thus for every x ∈ Fq , we have:

Tr(βixP (x))

=
∑

�≤d+1,� odd

⎛
⎝ ∑

r≥0,2r�≤d+1

Tr(βiγ(�·2r−1)x
�·2r)

⎞
⎠

=
∑

�≤d+1,� odd

⎛
⎝ ∑

r≥0,2r�≤d+1

Tr

((
β
1/2r

i γ
1/2r

(�·2r−1)x
�
)2r

)⎞
⎠

=
∑

�≤d+1,� odd

⎛
⎝ ∑

r≥0,2r�≤d+1

Tr
(
β
1/2r

i γ
1/2r

(�·2r−1)x
�
)⎞⎠

Since Tr(y2
r

) = Tr(y)

= Tr

⎛
⎝ ∑

�≤d+1,� odd

⎛
⎝ ∑

r≥0,2r�≤d+1

β
1/2r

i γ
1/2r

(�·2r−1)

⎞
⎠x�

⎞
⎠

= Tr

⎛
⎝ ∑

�≤d+1,� odd

E�(βi)x
�

⎞
⎠ ,

where E� : Fq → Fq is the function

E�(y) =
∑

r≥0,2r�≤d+1·
y1/2

r

γ
1/2r

(�·2r−1).

Let Ri(X) ∈ Fq[X] be given by:

Ri(X) =
∑

�≤d+1,� odd

E�(βi)X
�.

Summarizing, we have

ci(x) = Tr(Ri(x)).

Since P (X) is a nonzero polynomial, some coefficient

γj0 �= 0. Let j0 = �0 · 2r0 − 1, where �0 is odd. Observe

that E�0 satisfies:

1) E�0 is F2-linear,

2) E�0(y) = A(y1/2
ρ

) for some nonnegative integer ρ
and some polynomial A(Z) ∈ Fq[Z] of degree at

most d+ 1,

3) A(Z) has some power of γj0 as a coefficient of

some monomial, and is thus a nonzero polynomial.

These three facts imply that E�0 can vanish on at most

log2(d + 1) of the βi. Indeed, since the βi are linearly

independent, if E�0 vanishes on t of them, then by

linearity we get that E�0 vanishes on their span, which

has 2t points. However E�0 cannot have more than

d + 1 roots (since A has degree at most d + 1). Thus

t ≤ log2(d+ 1).
In particular, this means that at most log2(d + 1) of

the Ri(X) are identically zero.

321

Fix an i where Ri(X) is not identically 0. We have

that Ri(X) is a nonzero polynomial of degree at most

d + 1 with only monomials of odd degree. Thus Theo-

rem IV.6 applies. It tells us that∣∣∣∣ Prx∈D
[Tr(Ri(x)) = 0]− Pr

x∈D
[Tr(Ri(x)) = 1]

∣∣∣∣
≤ d+ 1√

q
+

1

q
.

Then we get:

wt(ci) = Pr
x∈D

[Tr(Ri(x)) �= 0] ≥
(
1

2
− d+ 1

2
√
q
− 1

q

)
.

Since there are at least log2 q − log2(d + 1) such

i, we get the desired claim about the weight of c.
This completes the proof of the minimum distance of

SimpleRawRS codes.

D. Discussion

1) Consider (general) Raw Reed-Solomon codes with

D = Fq and d ≤ q0.01. Somewhat surprisingly,

even though these codes need not have Ω(1) dis-

tance, they all have polynomial list-size for list-

decoding upto radius almost 1/2.

Indeed, since the linear bijections Φx are com-

pletely arbitrary, we can choose them so that some

particular polynomial P (X) has the property that

Φx(P (x)) has Hamming weight ≤ 1 for all x ∈ D.

The codeword of C corresponding to P (X) will

have relative Hamming weight 1/m = Θ(1/ log n).
However, as the list-decodability implies, the under-

lying algebraic structure somehow forces that one

cannot choose the (Φx)x∈Fq so that this happens

for many other P (X).
2) Thommesen [Tho83] showed that if we choose

the entries of Φ = (Φx)x∈Fq
independently and

uniformly at random (i.e., each Φx is an indepen-

dently chosen uniformly random F2-linear bijection

from Fq to F
m
2), then for all d the resulting Raw

Reed-Solomon code C = RawRS(Fq, d,D,Φ), for

arbitrary D, meets the Gilbert-Varshamov bound16

with high probability. In particular, even for d =
Ω(|D|) (when the rate is Ω(1)), there are Raw Reed-

Solomon codes that have distance Ω(1). It is easy

to see that no Simple Raw Reed-Solomon code has

this property.

16The Gilbert-Varshamov bound R = 1 −H(δ) is the best known
rate for codes with relative distance δ. This result is not constructive
- deterministically constructing codes that meet this bound is a central
open question.

Finding an explicit such code seems like a deep and

very interesting open question.

3) VerySimpleRawRS and SimpleRawRS are closely

related, yet have very different minimum distances.

The results about SimpleRawRS explain the struc-

ture of VerySimpleRawRS. VerySimpleRawRS is

the space spanned by SimpleRawRS along with

codewords corresponding to the constant polyno-

mials. SimpleRawRS has good minimum distance,

it is only the small dimensional space of constant

polynomials that spoils the minimum distance. This

also explains why VerySimpleRawRS has good list-

decodability despite having bad distance.

4) An important fact underlying our analysis of the

distance of SimpleRawRS and OddRawRS is that

Raw Reed-Solomon codes are just a bunch of

(correlated) dual-BCH codewords written together.

We don’t know how to decode dual-BCH codes

efficiently, but if we take about log n dual-BCH

codewords together, then this resulting code magi-

cally can be decoded, while still retaining the good

distance and dual distance of dual-BCH codes.

E. Proof of Theorem IV.1

We can now put everything together and prove Theo-

rem IV.1.

Proof. Take q = 2m, and let d = qα be an even number.

Let Φ : Fq → F
m
2 be an arbitrary F2-linear bijection.

Take C = OddRawRS[Fq, d,Φ]. Recall that this code

is the Raw Reed-Solomon code with evaluation domain

D = Fq \ {0} with certain special Φx : Fq → F
m
2 .

We now specify a linear encoding map for C. We take

the encoding map Enc : Fk
2 → F

n
2 to be the one which

partitions the k input bits into blocks of size m, interprets

the ith block as specifying (in an F2-linear way) the

coefficient of the Xi monomial in a polynomial P (X),
and outputs the codeword c of C corresponding to the

polynomial P (X). Then clearly Enctrunc is simply the

encoding map of C ′ = OddRawRS[Fq, d/2,Φ].
Since OddRawRS is an instance of RawRS, we can

apply Lemma IV.2. It gives us the following basic

properties of C:

1) The blocklength n of C equals m · (2m − 1).
2) The dimension k of C equals m·(d+1) ≥ m·qα ≥

m1−α · nα.

3) The absolute dual distance of C is at least d+2 ≥
qα ≥

(
n

logn

)α

.

Apply the same lemma to C ′ tells us that the absolute

dual distance of C ′ is at least d/2+ 2 ≥ Ω
((

n
logn

)α)
.

322

Next we invoke Lemma IV.5. This is the place where

we use the specific structure of Odd Raw Reed-Solomon

codes. We get that C has distance at least:

δ =
1

2
−O

(
qα

q

)
≥ 1

2
− n−Ω(1).

Next we invoke Lemma IV.3. Set η = b
√
α for some

absolute constant b. Since |D| = q − 1, we get that

d = qα ≤ η2qO(η2) ≤ η2qO(η2) · |D|
q

.

Thus C can be list-decoded from 1/2 − η fraction

errors in time poly(q) ≤ poly(n). As an immediate

consequence, since 1/2 − η > δ/2, we get that C can

be unique decoded from δ/2 > 1/4− o(1) > p fraction

errors in polynomial time: we simply run the list-decoder

and find the unique (if any) element of the output list

which is within distance p from the received word.

The list-size guaranteed by Lemma IV.3 only implies

that the list-size is at most poly(n), which is weaker than

what we want. However now we only seek a combinato-

rial bound on the list-size, and this follows immediately

from the Johnson bound [Joh62], which states that binary

codes with minimum distance ≥ 1/2−o(1) have list-size

at most O(1/ε2) for list-decoding from (1/2−ε)-fraction

errors.

This completes the proof of the theorem.

V. STOCHASTIC CONTROL CODES

In this section we consider a more stringent notion

of stochastic codes that are decodable from t errors.

We will also require that such codes have an additional

“pseudorandom property”, namely that for every mes-

sage m ∈ {0, 1}k, Enc(m,Ud) is pseudorandom for

small space ROBPs.

Definition V.1 (Pseudorandom stochastic Codes decod-

able from errors). Let k, n, d be parameters and let
Enc : {0, 1}k × {0, 1}d → {0, 1}n be a function. We
say that Enc is an encoding function for a stochastic
code that is:
• ε-pseudorandom for a class C of functions from
n bits to one bit, if for every m ∈ {0, 1}k,
Enc(m,Ud) is ε-pseudorandom for C.

• decodable from t errors, if t ∈ [n], and there exists
a function Dec : {0, 1}n → {0, 1}k such that for
every m ∈ {0, 1}k, s ∈ {0, 1}d, and e ∈ {0, 1}n
with Hamming weight at most t, Dec(Enc(m, s)⊕
e) = m.

• L-list-decodable from t-errors, if the function Dec
is allowed to output a list of size at most L, and for

every m ∈ {0, 1}k, s ∈ {0, 1}d, and e ∈ {0, 1}n
with Hamming weight at most t, Dec(Enc(m, s)⊕
e) � m.

A code has encoding time [resp. decoding time] T (·), if
Enc [resp. Dec] can be computed in time T (k+n+d).
(Naturally, this makes sense only for a family of encoding
and decoding functions with varying block length n,
message length k(n) and seed length d(n)).

Remark V.2 (This notion is only interesting for pseudo-

random codes). We remark that the notion of stochastic
codes decodable (or list-decodable) from t-errors is not
interesting by itself. This is because for any such code
Enc(m, s), we can define a standard (not stochastic)
code Enc′(m) = Enc(m, s′) for some fixed seed s′, and
this code will be decodable (or list decodable) from t-
errors.

This means that designing stochastic codes that are
decodable from t errors is a harder task than designing
standard codes that are decodable from errors, and we
don’t gain (and in fact make our task more difficult) by
allowing Enc to receive a seed.

This notion of codes decodable from errors becomes
interesting when it is coupled with the pseudorandom-
ness requirement. Loosely speaking, one can think of
such codes as “standard codes” with an additional
pseudorandomness property.

Remark V.3 (The use of this notion in past work).
Similar notions appear in [GS16, SS16]. Specifically,
Guruswami and Smith [GS16] considered a notion sim-
ilar to “list-decodable from errors” with the stronger
requirement that the decoding function needs to produce
the randomness s, in addition to the message m.

Shaltiel and Silbak [SS16] referred to this stronger
requirement as “strongly list-decodable” and to the
weaker notion defined here as “weakly list-decodable”.
The fact that the weaker notion (in which decoding does
not need to produce the randomness) suffices for the
intended application of stochastic codes for bounded
channels, was key in [SS16] (as this weaker codes are
easier to construct). The same also holds for this paper,
as the list-decoding algorithms that we construct will
not be able to reproduce the randomness s used by the
encoding.

The main result of this section (that is stated in the

theorem below) is a construction of stochastic codes that

are pseudorandom for small space ROBPs. We plan to

use these codes to encode very short strings, and so, their

rate is not that important to us. The construction uses the

OddRawRS of Section IV.

323

The theorem below gives a construction of a stochastic

code that will be used as a “control code” in the

construction of Section VI. We will use this “control

code” in the proof of Theorem I.4, which is our main

construction for bounded channels.

Theorem V.4 (Stochastic control codes for space nΩ(1),

with list-decoding up to 1
2). For every constant β > 0

there exists a constant 0 < α ≤ 0.1 such that for every
sufficiently large m, setting n = (2m − 1) ·m, k = nα,
d = n log n, and s = nα

log3 n
, there is a stochastic code

Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:
• 2−s-pseudorandom for any-order space s ROBPs.
• For every constant p < 1/4, Enc is decodable from
pn errors in time poly(n).

• For every constant ε > β, Enc is O(1/ε2)-list
decodable from (12 − ε) · n errors in time poly(n).

• There exists a constant c, such that Enc can be
computed in time nc. Furthermore, encoding nc

inputs takes “amortized time” O(n·log2 n), namely,
for every (m1, s1), . . . , (mnc , snc) ∈ {0, 1}k ×
{0, 1}d, computing (Enc(mi, Si))(i∈[nc]) takes time
nc ·O(n · log2 n).

In the construction proving Theorem I.4 we will apply

the stochastic control code many times, and this is why

we care about amortized encoding time (that can be

made quasilinear) rather than the time of encoding one

message.

We can also get a different tradeoff that gives pseudo-

randomness for larger space. However, this comes with a

cost of decoding only from p0 · n errors for some small

constant p0 > 0 (rather than a number of errors that

approaches 1
2 · n). The encoding algorithm for this code

is also less efficient than the one in Theorem V.4, and we

don’t get encoding in amortized linear time. The theorem

below will be used in the proof of Theorem I.5.

Theorem V.5 (Stochastic control codes for space

n/polylog(n), that decode from few errors). There exist
constants pmax > 0, and R > 0 such that for every
sufficiently large m, setting n = 8m − 8, k = Rn,
d = n log n, and s = n/ log2 n there is a stochastic
code Enc : {0, 1}k × {0, 1}d → {0, 1}n that is:
• 2−s-pseudorandom for any-order space s ROBPs.
• Enc is decodable from pmax · n errors in time
poly(n).

• Enc is encodable in time poly(n).

In the remainder of the section we prove Theorem

V.4 and Theorem V.5. In Section V-A we revisit the

idea of “bounded independence plus noise” of [HLV18,

LV17, FK18]. We state and prove a quantitative variant

of this approach that will be used in our proof. In Section

V-B we use the method of “bounded independence plus

noise” to transform linear codes with certain additional

properties into stochastic control codes that are pseudo-

random for ROBPs. Finally, in Section V-C we prove

Theorem V.4 (by relying on the OddRawRS of Section

IV) and Theorem V.5 (by relying on algebraic geometric

codes of Garcia and Stichtenoth [GS96]).

A. Bounded independence plus low weight noise fools
ROBPs

Haramaty, Lee and Viola [HLV18] showed that “k-

wise independence plus low weight noise” is pseudo-

random for certain classes of distinguishers. Specifically,

they consider xoring a k-wise independent distribution

Dn
k on n bits, with low weight noise, chosen according

to BSCn
η for some small η > 0. They show that

this distribution, namely Dn
k ⊕ BSCn

η (where the two

distributions are independent) is pseudorandom for small

space ROBPs if k is sufficiently larger than n2/3, and

η > 0 is a positive constant (that can be arbitrarily

small).

This result is specifically appealing as this gives a

distribution that is pseudorandom for ROBPs, regardless

of the order in which they read the n bits. However, it

requires a very large seed length, of at least n2/3, (even

for generating the distribution Dn
k).

We are interested in constructing stochastic control

codes (which combine requirements from coding theory

and pseudorandomness) and will make use of the partic-

ular structure of the distribution of [HLV18] (in addition

to their pseudorandomness properties). More specifically,

the fact that w.h.p. BSCη has low hamming weight, will

be important in our intended application.

Unfortunately, for our intended application, taking

k > n2/3 is too large, and we need k to be smaller.

Subsequent work [LV17, FK18], gives pseudorandom

distribution in which k is much smaller, but they use

a different distribution in which the “noise distribution”

BSCη is replaced by distributions which have large

hamming weight of≈ n
4). Such large weight is not useful

for our application.17

17Lee and Viola [LV17] and Forbes and Kelly [FK18] consider
the noise distribution Tn

k ∧ Un (where Tn
k is a k-wise independent

distribution). Their motivation is that using this approach, one can
think of Tn

k as selecting approximately n/2 of the n indices, and
then placing uniform bits on these n/2 indices. This view enables
a recursive construction in which the n/2 uniform bits are replaced
with pseudorandom bits, and this approach can yield pseudorandom
generators with polylogarithmic seed [FK18].

324

In this paper we observe that the ideas and technique

use by Forbes and Kelly [FK18] to reduce the amount

of independence for “high weight noise”, can also be

applied in the case of noise with low hamming weight.

This is stated precisely in the following theorem.

Theorem V.6 (Improved analysis for [HLV18]). For
every integers n, s and ε, η > 0, the distribution Dn

k ⊕
BSCn

η where Dn
k is independent of BSCn

η , and is k-wise
independent over {0, 1}n, for k = O(s+logn+log(1/ε)

η),
is ε-pseudorandom for any-order space s ROBPs.

Note that Theorem V.6 kicks in, whenever k > log n
whereas the previous analysis by [HLV18] only kicked

in if k ≥ n2/3.

Proof. Forbes and Kelly [FK18, Lemma 6.3] show that

the distribution Dn
2k ⊕ (Tn

k ∧Un) where the three distri-

butions are independent, and:

• Dn
2k is 2k-wise independent over {0, 1}n.

• Tn
k is k-wise independent over {0, 1}n.

is ε-pseudorandom for width w = 2s ROBPs, with ε =
nw
2k/2 . We first note that BSCn

η = BSCn
2η ∧ Un. Thus,

if we change Dn
k to Dn

2k (which we can do because of

the O(·) notation in our statement) we can think of our

target distribution Dn
2k⊕BSCn

η as Dn
2k⊕(BSCn

2·η∧Un).
Consequently, in order to prove our result, we need to

show that the analysis of [FK18] can be carried out in

case Tn
k is replaced by BSC2η . This is indeed the case,

and the analysis gives ε = nw · (1 − 2η)k/2 under this

modification. This is sufficient to derive our result.

On an intuitive level, this follows because the distri-

bution Tn
k is only used to argue that if α ∈ {0, 1}n is a

“Fourier coefficient” with weight k, then Pr[Tn
k ∧ α =

0] = (12)
k. The distribution BSCn

2η (which plays the

role of Tn
k in our case) gives the similar (though slightly

weaker) bound of Pr[BSCn
2η ∧α = 0] = (1− 2η)k, and

this suffices for the argument.

More precisely, inspecting the proof of [FK18, Lemma

6.3], one can observe that the only place where a

specific property of the distribution Tn
k is used is at

the final equality in the proof of Lemma 6.2, and that

replacing Tn
k with BSCn

2η yields a version of Lemma

6.2. in which the term (12)
k. is replaced by (1 − 2η)k.

Finally, Lemma 6.2 is used to derive the last inequality

in Lemma 6.3. and substituting the modified quantity

gives the final result. (The rest of the proof goes through

unchanged).

B. Linear codes with large dual distance yield pseudo-
random stochastic codes

In this section we show that linear codes with large

dual distance can be used to construct stochastic control

codes.
In the definition below we define a function BSCn

η (·)
which when given uniform input, generates the distri-

bution BSCn
η . We then consider a truncated version

BSCn,trunc
η (·) which evaluates to 0n if the generated

string has hamming weight larger than 2η · n. This

is done to guarantee that with probability one, over

a uniform input, BSCn,trunc
η produces a string with

hamming weight ≤ 2η · n.

Definition V.7 (Generating and truncating BSC). For
an integer k, η = 1

2k
, and an integer n, we define

the function BSCn
η : {0, 1}n·log(1/η) → {0, 1}n by

BSC(s)i = 1 iff s(i−1)·log(1/η)+1, . . . , si·log(1/η) = 1,
so that BSCn

η (Un·log(1/η)) is the distribution BSCn
η .

The truncated version BSCn,trunc
η : {0, 1}n·log(1/η) →

{0, 1}n is defined as follows: Given s ∈ {0, 1}n·log(1/η),
if BSCn

η (s) has hamming weight larger than 2η ·n, then
BSCn,trunc

η (s) is set to 0n, and otherwise, it is set to
BSCn

η (s).

Note that by a multiplicative Chernoff bound, the

statistical distance between BSCn
η (Un·log(1/η)) and

BSCn,trunc
η (Un·log(1/η)) is 2−Ω(n). (This will allow us

to replace the former by the latter).
The next definition shows how to convert a linear code

Enc into a stochastic code Encη (and we soon show

that Encη is pseudorandom for any-order small space

ROBPs).

Definition V.8 (stochastic control codes from linear

codes). Given a function Enc : {0, 1}k → {0, 1}n, we
define Enctrunc : {0, 1}k/2 → {0, 1}n by Enctrunc(x) =
Enc(x ◦ 0k/2).

Given a function Enc : {0, 1}k → {0, 1}n and η >
0, we define d = k/2 + n · log(1/η), and the function
Encη : {0, 1}k/2 × {0, 1}d → {0, 1}n as follows: Given
inputs m ∈ {0, 1}k/2 and s ∈ {0, 1}d, we interpret s
as a pair s = (s1, s2) where s1 ∈ {0, 1}k/2 and s2 ∈
{0, 1}n·log(1/η), and define:

Encη(m, s) = Enc(s1 ◦m)⊕ BSCn,trunc
η (s2)

The following lemma shows that if Enc is a linear

encoding map for a code with large dual distance, then

Encη is a stochastic code which is pseudorandom, and

inherits the decoding capabilities of Enc.
We plan to apply the stochastic code on many inputs,

and are therefore interested in the amortized encoding

325

time. The last item of the following lemma says that if

k is sufficiently small compared to n, encoding Encη
takes amortized quasilinear time even if one evaluation

of Enc takes polynomial (but not necessarily quasilinear)

time.

Lemma V.9. Let Enc : Fk
2 → F

n
2 be a linear function.

Let η > 0, and d = k/2 + n · log(1/η).
• If the linear code C ′ = Enctrunc(F

k/2
2) has dual

distance r ≥ 10 logn
η , then Encη : {0, 1}k/2 ×

{0, 1}d is 2−s-pseudorandom for any-order, space
s ROBPs, for s = Ω(r · η).

• If Enc is decodable [resp. L-list decodable] from
pn errors, then Encη is decodable [resp. L-list
decodable] from (p − 2η) · n errors. Furthermore,
the decoding time for Encη is the same as that of
Enc.

• Computing Encη takes time O(n · log(1/η)) plus
the time it takes to compute Enc.18

• If k ≤ n0.1 and Enc can be computed in time nc for
some constant c, then computing Encη on nc pairs
(m1, s1), . . . , (mnc , snc) ∈ {0, 1}k/2 × {0, 1}d,
takes time nc · O(n · (log2 n + log(1/η))) (that is
amortized time O(n · (log2 n+ log(1/η)))).

Proof. We start with the first item. By Lemma III.15 we

have that Enctrunc(Uk/2) is (r − 1)-wise independent.

Let Encsuf : F
k/2
2 → F

n
2 be the function Encsuf(x) =

Enc(0k/2 ◦ x). We first observe that using the linearity

of Enc:

Enc(s1 ◦m) = Enctrunc(s1)⊕ Encsuf(m)

It follows that for every m ∈ {0, 1}k/2, Enc(Uk/2 ◦
m) = Enctrunc(Uk/2)⊕Encsuf(m) is also (r− 1)-wise

independent. Therefore,

Encη(m,Ud) = Enc(Uk/2◦m)⊕BSCn,trunc
η (Un·log(1/η)),

is 2−Ω(n)-close to a distribution of the form Dn
r−1 ⊕

BSCn
η , for some (r − 1)-wise independent distribution

Dn
r−1. Therefore, Encη(m,Ud) is a distribution that is

very close to “(r−1)-wise independent plus low weight

noise”. By Theorem V.6 with ε = 2−2s, Dn
r−1 ⊕ BSCn

η

is 2−2s-pseudorandom for any-order ROBPs with space

Ω(r · η)− log n− 2s ≥ s for our choice of parameters.

The distribution Encη(m,Ud) is therefore ε′-
pseudorrandom for any-order ROBPs with space s, for

18We will use η which is only slightly smaller than constant, and so
the term log(1/η) is immaterial. We could have been more careful and
reduce the running time from n · log(1/η) to expected running time
2n by observing that determining whether log(1/η) uniform bits are
all one, can be done by querying only two of the bits (in expectation).

ε′ = 2−2s + 2−Ω(n) ≤ 2−s by noting that s ≤ r ≤ n
and choosing the constant hidden in the definition of s
to be sufficiently small.

For the second item, note that if we encode a message

m, by Encη(m, s) = Enc(s1 ◦m)⊕BSCn,trunc
η (s2) and

xor it with an error vector e ∈ {0, 1}n is of hamming

weight (p − 2η) · n, then (as the hamming weight of

BSCn,trunc
η (s2) is at most 2η ·n) we obtain a string that

is within hamming distance (p−2η)·n+2η·n = pn from

Enc(s1◦m). Consequently, decoding (or list decoding) is

guaranteed to decode (or list decode) the message s1◦m
from which we can recover m.

The third item follows directly by construction.

For the fourth item, we note that by the previous

item, we only need to show how given x1, . . . , xnc ∈
{0, 1}k, we can compute Enc(x1), . . . ,Enc(xnc) in time

nc·O(n·log2 n). Using the fact that Enc can be computed

in time nc, gives that in time nc+1 we can compute the

k × n generator matrix G of Enc.

We will use fast matrix multiplication. Specifically,

that multiplying an n × n0.1 matrix by an n0.1 ×
n matrix can be performed in time O(n2 · log2 n)
[Cop82] (See [Wil14] for more details on this algorithm).

For i ∈ [nc−1], let A(i) be the n × k matrix in

which the j’th row is x(i−1)n+j . Note that the out-

puts Enc(x1), . . . ,Enc(xnc) that we want to compute

are the rows of the matrices A(i) · G where i ranges

over [nc−1]. Each multiplication of A(i) · G takes time

O(n2·log2 n) and therefore nc−1 such computations take

time O(nc+1 · log2 n). Overall, the entire computation

takes time O(nc+1 · log2 n), which gives amortized

O(n · log2 n) time.

C. Proof of Theorem V.4 and Theorem V.5

In this section, we put everything together and prove

Theorem V.4 and Theorem V.5.

Proof of Theorem V.4. We use the linear code of Theo-

rem IV.1, and apply Lemma V.9, choosing η = 1
2·log n ,

so that k/2 + n log(1/η) ≤ n · log n. The properties

in Theorem V.4 follow directly from Theorem IV.1 and

Lemma V.9, and the fact that η = o(n).

The proof of Theorem V.5 follows in the same way,

by using the following construction of error correcting

codes, due to Garcia and Stichtenoth [GS96].

Theorem V.10. [GS96] There exist constants pmax > 0,
δ > 0 and R > 0 such that for every sufficiently large
m, setting n = 8m−8, k = Rn, there is a binary linear
[n, k]2-code that satisfies:

326

• C has a linear encoding map Enc : Fk
2 → F

n
2 that

runs in time poly(n).
• Enc is decodable from pmax · n errors in time
poly(n).

• C has dual distance δ · n.
• Moreover, define Enctrunc : F

k/2
2 → F

n
2 by

Enctrunc(x) = Enc(x ◦ 0k/2), and consider the
linear code C ′ = Enctrunc(F

k/2
2). It holds that C ′

has dual distance δ · n.

The code of Garcia and Stichtenoth is not a binary

code, but rather a code over constant size alphabet. The

statement above is obtained by interpreting the code as

a binary code. The reader is referred to the appendix of

[Shp09] (which was written by Venkat Guruswami) for a

precise description of this code and a proof of Theorem

V.10.

VI. STOCHASTIC CODES FOR SPACE BOUNDED

CHANNELS

In this section we state our main construction of

stochastic codes for any-order bounded space channels.

We start by restating Theorem I.4 more precisely. The

statements below allow a wider range of parameters, and

also give a more precise dependence of the parameters

on each other.

Theorem VI.1. There exists a universal constant c0,
such that for every constant 0 ≤ p < 1

2 , there exists
a constant δ > 0, such that for every constant cν ≥ 1,
and every sufficiently small constant ε > 0, there exists
a constant L = poly(1/ε), such that for infinitely
many N , there is a stochastic code Enc : {0, 1}RN ×
{0, 1}O(N ·logN) → {0, 1}N that satisfies the following
properties:
• Enc has rate R ≥ 1−H(p)− ε.
• There is a list-decoding algorithm Dec showing that
Enc is L-list decodable for any-order space s =
Nδ channels that induce at most pN errors, with
probability 1− ν, for ν = 2−(logN)cν .

• Enc can be computed in time N · (logN)c0·cν .
• Dec can be computed in time N · (logN)c0·cν .

Remark VI.2 (Dependence on constants). In this re-
mark we give more details on the dependence of the
parameters on the chosen constants.
• The list size achieved in the proof of Theorem VI.1

is L = O(1
ε4). However, if p is sufficiently smaller

than 1/2 (say p < 0.49) then the list size can be
reduced to L = O(1

ε2) by a more careful argument,
and if p is sufficiently smaller than 1/4 (say p <
0.24) then it can be further reduced to L = O(1/ε).

• The running time of encoding and decoding depends
on ε as follows: For every ε > 0 there exists
a constant cε = 2poly(1/ε) such that the running
time is cε · N · (logN)c0·cν . This dependence is
inherited from the use of explicit codes for binary
symmetric channels [For65, GI05]. All other ingre-
dients allow cε = poly(1/ε). Polar codes [GX15,
HAU14] achieve running time cεn log n, where cε =
poly(1/ε). It is plausible that using polar codes
(and some other modifications) the dependence on
ε can be reduced to poly(1/ε).

• The theorem statement does not explicitly state
which choices of infinitely many N are possible.
Again, the reason that we don’t get “for every
sufficiently large N” is solely because linear time
codes for binary symmetric channels [For65, GI05]
are stated for infinitely many N . We remark that an
inspection of these results reveals that (in the very
least) there exists a universal polynomial q(·) such
that for every ε > 0, there is a constant c′ε such that
for every sufficiently large m, a suitable N can be
found between c′ε · q(m) and c′ε · q(m + 1). The
same property is inherited by our construction. We
remark that we are less picky and can allow quasi-
linear time codes for binary symmetric channels,
which can be constructed more easily using code
concatenation and yield a denser family of N ’s.

We can also achieve a different tradeoff where the

channel has space N/polylog(N), for small p, in poly-

nomial time. The following theorem is the more formal

restatement of Theorem I.5.

Theorem VI.3. There exist universal constants pmax >
0 and c1, such that for every constants 0 ≤ p ≤ pmax,
and cν ≥ 1, and every sufficiently small constant
ε > 0, there exists a constant L = poly(1/ε), such
that for infinitely many N , there is a stochastic code
Enc : {0, 1}RN × {0, 1}O(N ·logN) → {0, 1}N that
satisfies the following properties:
• Enc has rate R ≥ 1−H(p)− ε.
• There is a list-decoding algorithm Dec showing that
Enc is L-list decodable for any-order space s =

N
(logN)c1+cν channels that induce at most pN error,
with probability 1− ν, for ν = 2−(logN)cν .

• Enc can be computed in time poly(N).
• Dec can be computed in time poly(N).

In Section VI-A we present our construction. The

construction expects to receive a stochastic control codes

with certain properties. In Section VI-B we plug in the

specific control codes of Section V to obtain our main

327

results. The correction of the construction is proven in

the full version.

A. The construction
In this section we present our construction of stochas-

tic codes for bounded channels. The construction is

detailed in three figures. Figure 1 lists parameters and

ingredients, Figure 2 which describes the encoding al-

gorithm, and Figure 3 which describes the decoding al-

gorithm. We start with some notation and definitions. We

remark that an intuitive explanation of the construction

appears in Section II-B.
a) Partitioning codewords into control blocks and

data blocks: The construction will think of codewords

c ∈ {0, 1}N as being composed of n = nctrl + ndata

blocks of length b = N/n. Given a subset I ⊆ [n]
of nctrl distinct indices, we can decompose c into its

data part cdata ∈ {0, 1}Ndata=ndata·b and its control part

cctrl ∈ {0, 1}Nctrl=nctrl·b. Similarly, given strings cdata
and cctrl we can prepare the codeword c (which we

denote by (cdata, cctrl)
I by the reverse operation. This

is stated formally in the definition below.

Definition VI.4. Let I = {i1, . . . , inctrl
} ⊆ [n] be a

subset of indices of size nctrl.
• Given strings cdata ∈ {0, 1}Ndata and cctrl ∈
{0, 1}Nctrl we define an N bit string c denoted by
(cdata, cctrl)

I as follows: We think of cdata, cctrl, c
as being composed of blocks of length b (that
is cdata ∈ ({0, 1}b)ndata , cctrl ∈ ({0, 1}b)nctrl

and c ∈ ({0, 1}b)n). We enumerate the in-
dices in [n] \ I by j1, . . . , jndata

and set c� ={
(cctrl)k if � = ik for some k;
(cdata)k if � = jk for some k

• Given a string c ∈ {0, 1}N (which we think of
as c ∈ ({0, 1}b)n) we define strings cIdata, c

I
ctrl by

cIctrl = c|I and cIdata = c|[n]\I , (namely the strings
restricted to the indices in I , [n] \ I , respectively).

We omit the superscript I when it is clear from the
context.

Theorem VI.5 (correctness of the construction). There
exists a universal constant c0 such that for every
constants 0 ≤ p < 1

2 , cν ≥ 1, and every suffi-
ciently small constant ε > 0, for infinitely many N
we have that: for every b, �, s′, and stochastic code
Encctrl : {0, 1}� × {0, 1}d → {0, 1}b that satisfy the
requirements in Figure 1. The encoding and decoding
functions Enc : {0, 1}Rn × {0, 1}�+nctrl·d → {0, 1}N
and Dec : {0, 1}N → ({0, 1}RN)

100·Lctrl
ε2 specified in

Figures 2 and 3 using the ingredients and parameter
choices in Figure 1 satisfy the following properties:

• Enc has rate R ≥ 1−H(p)− ε.
• Dec is a list-decoding algorithm showing that Enc

is O(Lctrl

ε2)-list decodable for any-order space s
channels, with probability 1 − ν, for s = s′ − sA,
sA ≤ (logN)2cν+3, and ν = 2−(logN)cν .

• Enc can be computed in time N · (logN)c0·cν +
T , where T is a bound on the time it takes
to perform the following task: Given n pairs
(m1, s1), . . . , (mn, sn) ∈ {0, 1}� × {0, 1}d output
Encctrl(m1, s1), . . . ,Encctrl(mn, sn).

• Dec can be computed in time Lctrl · N ·
(logN)c0·cν +n′ ·T ′, where n′ = (logN)cν+2 and
T ′ is the running time of Decctrl on input in {0, 1}b.

We prove Theorem VI.5 in the full version. In the next

section, we plug in our control codes from Section V to

get specific constructions.

B. Deriving the main theorems

In this section we use specific stochastic control codes

to derive our main results. We first use the control code

of Theorem V.4 to prove Theorem VI.1.

Proof. (of Theorem VI.1) We want to choose parameters

b, �, s′ and a control code to plug into Theorem VI.5.

Our plan is to use Theorem V.4 as a control code. Let

β = 1
2 − p− 2ε and note that β is a positive constant as

p < 1
2 is a constant, and ε > 0 is sufficiently small. Given

β > 0, Theorem V.4 provides a constant 0 < α < 0.1.

The running time of encoding and decoding algorithms

in Theorem V.4 is nc for some universal constant c. Let

λ = 1
2(c+1) . We want to choose b = Nλ and use it as a

block length in Theorem V.4. However, we must verify

that b is of the form (2m − 1) ·m in Theorem V.4, and

so we choose a number b of this form such that Nλ ≤
b ≤ N2λ (and such a number exists). We apply Theorem

V.4 to obtain a code Enc : {0, 1}bα ×{0, 1}d → {0, 1}b
that is 2−ŝ-pseudorandom for any order space ŝ ROBPs

with ŝ = bα

log3 b
. We also obtain that this code is O(1/ε̂2)-

list decodable from (12 − ε̂)b errors in time bc for every

constant ε̂ > β.

We choose � = bα and s′ = �
log3 N

≤ ŝ. It follows

that Enc is 2−s′ -pseudorandom for any-order space s′

ROBPs. It also follows that Enc is Lctrl-list decodable

from (p+ ε) · b errors for Lctrl = O(1
(1
2−(p+ε))2

) in time

bc. This follows because p+ ε < p+ 2ε = 1
2 − β. This

means that Encctrl : {0, 1}�×{0, 1}d → {0, 1}b satisfies

the requirements from a control code in Figure 1.

328

Constants:
• p > 0 - The fraction of errors we need to recover from.
• ε > 0 - The final code will have rate R ≥ 1−H(p)− ε. We assume that ε > 0 is sufficiently small compared to p.

• cν ≥ 1 - We are shooting for a code with success probability 1− ν for ν = 2−(logN)cν .

Parameters that are allowed to vary with N :
• N - The length (in bits) of the codeword. Throughout, we assume that N is sufficiently large, and that other parameters

are chosen as a function of N . Later choices will also restrict N to be a number of a special form.
• b - We divide the N output bits to n := N/b blocks of length b.
• � - This is the total length of a “control seed”. Let �′ = �/3. This will be the length of individual “seeds”.
• s′ - The code will work for any-order space s channels, for s = s′ − (logN)2cν+3.

Stochastic control code: The construction receives as a component a stochastic code Encctrl : {0, 1}� × {0, 1}d → {0, 1}b
such that:

• Encctrl is (2−s′)-pseudorandom for any-order space s′ ROBPs.
• Encctrl is Lctrl-list-decodable from (p + ε) · b errors (for some parameter Lctrl to be chosen later) with decoding
Decctrl : {0, 1}b → ({0, 1}�)Lctrl .

Requirements: (logN)cν+10 ≤ b ≤ N
(logN)cν+10 , s′ ≥ (logN)cν+3, and � ≥ s′ · (logN)3.

Some more parameters:
• ε′ = ε/3 will be the fraction of “control blocks”, and set nctrl = ε′ · n, ndata = n− nctrl.
• Let Nctrl = b · nctrl and Ndata = b · ndata. (Note that: n = nctrl + ndata, N = Nctrl +Ndata).

Other ingredients that are used:
• Let α = ε

10 log 1
p

, pBSC = p+α, and RBSC = 1−H(pBSC)− ε/3. We apply Theorem III.20 using pBSC, ε/3, Ndata

as choices for p, ε, n, respectively. Theorem III.20 only guarantees the code for infinitely many block lengths, and so
we require that Ndata = (1 − ε′) ·N is one of these block lengths. This translates into a restriction on N (which is
satisfied for infinitely many N). (See Remark VI.2 for a discussion on the “density” of the block lengths). We obtain
an encoding function EncBSC : {0, 1}RBSC·Ndata → {0, 1}Ndata .

• Let t = (logN)cν+2. We use the (2−10·t, t)-wise permutation π : {0, 1}�′ × [Ndata] → [Ndata]. By Theorem III.11
we have an explicit construction with seed length O(t · logN) ≤ �′.

• We use Theorem III.9 to obtain an (α
100

, ν
N3)-sampler with distinct samples Samp : {0, 1}�′ → [n]nctrl . By Theorem

III.9 we have an explicit construction with seed length O(log N3

ν
) = O((logN)cν+1) ≤ �′. We use nctrl samples,

and indeed nctrl = ε′ · n ≥ ε′ · (logN)cν+10 � log N3

ν
(as required in Theorem III.9).

• Let G : {0, 1}�′ → {0, 1}Ndata be the (2−s′)-PRG for any-order space s′ ROBPs, provided by Theorem III.7. We
verify that for the constant c hidden in the statmement of Theorem III.7, for sufficiently large N , �′ ≥ c·s′ ·(logNdata)

2.

Fig. 1: Parameters and ingredients for stochastic code

Furthermore, the requirements in Figure 1 are met by

our choices of b, � and s′. Specifically:

(logN)cν+10 ≤ Nλ ≤ b ≤ N2λ ≤ N

(logN)cν+10
,

s′ =
�

log3 N
=

bα

log3 N
≥ Nλ·α

log3 N
≥ (logN)cν+3,

and we chose s′ = �
log3 N

so that the requirement

� ≥ s′ · (logN)3 is met. It follows that we meet all

the conditions of Theorem VI.5 and obtain that:

• Enc has rate R ≥ 1−H(p)− ε.
• Let L = O(Lctrl

ε2) = O(1
(1
2−(p+ε))2·ε2) = O(1

ε4).

There is a list-decoding algorithm Dec showing that

Enc is L-list decodable for any-order space s =
s′ − sA ≥ N

α·λ
2 channels, with probability 1 − ν.

In other words, we can have δ = α·λ
2 .

• Enc can be computed in time N · (logN)c0·cν + T
where T is the time it takes to perform n = N/b
encodings of Encctrl. By Theorem V.4 there exists

a constant c such that performing bc encodings takes

time O(bc+1 ·log2 b). We can break the n = N
b ≥ bc

encodings into n/bc groups of size bc. Each such

group takes time O(bc+1 log2 b) and so,

T =O(
n · bc+1 · log2 b

bc
)

=O(n · b · log2 b) ≤ O(N · log2 N).

• As ε is constant, Dec can be computed in time N ·
(logN)c0·cν + n′ · T ′ where n′ = (logN)cν+2 and

T ′ ≤ bc ≤ N2λc ≤ N .

This completes the proof of Theorem VI.1

329

Input:
• A message m ∈ {0, 1}RBSC·Ndata . (This gives R = RBSC·Ndata

N
).

• A “random part” for the stochastic encoding that consists of: a string s = (ssamp, sπ, sPRG) where ssamp, sπ, sPRG ∈
{0, 1}�′ so that s ∈ {0, 1}�, and r1, . . . , rnctrl ∈ {0, 1}d.

Output: A codeword c = Enc(m; (s, r1, . . . , rnctrl)) of length N .
Operation:

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl} ⊆ [n]. These blocks will be called “control
blocks”, and the remaining ndata blocks will be called “data blocks”.

Prepare data part: We prepare a string cdata of length Ndata as follows:

• Encode m by x = EncBSC(m).
• Generate an Ndata bit string y by reordering the Ndata bits of the encoding using the (inverse of) the permutation
πsπ (·) = π(sπ, ·). More precisely, y = π−1

sπ (x) = π−1
sπ (EncBSC(m)).

• Mask y using PRG. That is, cdata = y ⊕G(sPRG) = π−1
sπ (EncBSC(m))⊕G(sPRG).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks of length b) as follows:

• (cctrl)j = Encctrl(s, rj).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging cdata and cctrl. That is,
c = (cdata, cctrl)

I .

Fig. 2: Encoding algorithm for stochastic code

Input: A “received word” c′ ∈ {0, 1}N .
Output: A list of messages m ∈ {0, 1}RN , where the list is of size at most 100·Lctrl

ε2
.

Operation:
Determine candidates for control information:

Decode control code: Generate n′ = (logN)cν+2 lists of size Lctrl as follows: choose uniformly distributed and
independent n′ indices i1, . . . , in′ ∈ [n], and for every j ∈ [n′] apply the list decoding algorithm, Decctrl on
c′ij (here, c′i is the i’th block of c′). This gives a size Lctrl list, Listi = Decctrl(c

′
ij).

Prune list of candidates: Let Listctrl consist of all s ∈ {0, 1}� such that s ∈ Listi for at least ε2·n′
100

of i ∈ [n′].
Note that Listctrl is of size at most 100·Lctrl

ε2
.

Use each control candidate to decode data: For each s = (ssamp, sπ, sPRG) ∈ Listctrl we produce a candidate
messages ms ∈ {0, 1}RN .

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl}. Compute c′data = (c′)Idata.
Unmask PRG: Compute y′data = c′data ⊕G(sPRG).
Reverse permutation: Let x′ be the Ndata bit string obtained by “undoing” the permutation. More precisely, let

πsπ (·) = π(sπ, ·), and let x′ = πsπ (y
′
data) = πsπ (c

′
data ⊕G(sPRG)).

Decode data: Compute ms = DecBSC(x
′).

Prepare output list: The final output is List = {ms : s ∈ Listctrl}.

Fig. 3: List-decoding algorithm for stochastic code

We use the control code of Theorem V.5 to prove

Theorem VI.3.

Proof. (of Theorem VI.3) We want to choose parameters

b, �, s′ and a control code to plug into Theorem VI.5.

Our plan is to use Theorem V.5 as a control code.

We want to choose b = N
(logN)c1+cν and use it as

a block length in Theorem V.5. However, we must

verify that b is of the form 8m − 8 in Theorem V.4,

and so we choose a number b of this form such that
N

(logN)c1+cν ≤ b ≤ N
(logN)c1+cν−1 (and such a number

exists). We apply Theorem V.5 to obtain a code Enc :
{0, 1}R·b×{0, 1}d → {0, 1}b that is 2−ŝ-pseudorandom

for any order space ŝ ROBPs with ŝ = b
log2 b

. We also

obtain that this code is decodable from pmax · b errors,

where pmax > 0 is the constant from Theorem V.5.

We choose � = R · b and s′ = �
log3 N

≤ ŝ. It follows

that Enc is 2−s′ -pseudorandom for any-order space s′

ROBPs. This means that Encctrl : {0, 1}� × {0, 1}d →
{0, 1}b satisfies the requirements from a control code in

Figure 1.

330

Furthermore, the requirements in Figure 1 are met by

our choices of b, � and s′. Specifically, for a sufficiently

large constant c1:

(logN)cν+10 ≤ N

(logN)c1+cν
≤ b

≤ N

(logN)c1+cν−1
≤ N

(logN)cν+10
,

s′ =
�

log3 N
=

R · b
log3 N

≥ N

(logN)c1+cν · log3 N ≥ (logN)cν+3,

and we chose s′ = �
log3 N

so that the requirement

� ≥ s′ · (logN)3 is met. It follows that we meet all

the conditions of Theorem VI.5 and obtain that:

• Enc has rate R ≥ 1−H(p)− ε.
• Let L = O(Lctrl

ε2) = O(1
ε2). There is a list-

decoding algorithm Dec showing that Enc is L-

list decodable for any-order space s = s′ − sA ≥
N

(logN)c1+cν ·log3 N
channels, with probability 1− ν.

• Enc can be computed in time poly(N).
• As ε is constant, Dec can be computed in time

poly(N).

This completes the proof of Theorem VI.3

VII. CONCLUSION AND OPEN PROBLEMS

A natural open problem is to improve the running time

of encoding and decoding to linear time. We remark that

the step of applying a permutation π[n] → [n] on all n
inputs, takes at least time O(n log n) (just to write down

the inputs and outputs) and this is an obvious bottleneck

for the approach used in this paper.

Guruswami and Smith [GS16] showed that we cannot

expect to have uniquely decodable stochastic codes for

space log n channels if p > 1
4 . However, it is not

known whether for p < 1
4 , uniquely decodable stochastic

codes for bounded space channels are possible with rate

R > 1−H(2p) that is larger than the Gilbert-Varshamov

bound (or even with a rate that matches the Gilbert-

Varshamov bound, and efficient encoding and decoding).

ACKNOWLEDGEMENT

We are very grateful to Benny Applebaum, Michael

Forbes, William Hoza, Shachar Lovett, Or Meir, Noga

Ron-Zewi, Chris Umans and Emanuele Viola for helpful

conversations and advice.

We are very grateful to the organizers of Dagstuhl

seminar 18391 on “Algebraic Methods in Computational

Complexity” held on September 23-28, 2018. Some

progress on this project was inspired by talks and per-

sonal conversations at the seminar.

We are very grateful to anonymous referees for a

detailed and very helpful comments.

Swastik Kopparty was supported in part by NSF grants

CCF-1253886, CCF-1540634, CCF-1814409 and CCF-

1412958, and BSF grant 2014359. Some of this research

was done while visiting the Institute for Advanced Study.

Ronen Shaltiel was supported by ISF grant 1628/17.

Jad Silbak was supported by an ERC starting grant

638121 and by ISF grant 1628/17. Some of this research

was done while Jad Silbak was a student at the Univer-

sity of Haifa.

REFERENCES

[BR94] Mihir Bellare and John Rompel.

Randomness-efficient oblivious sampling.

In 35th Annual Symposium on Foundations
of Computer Science, pages 276–287, 1994.

[Cop82] Don Coppersmith. Rapid multiplication of

rectangular matrices. SIAM J. Comput.,
11(3):467–471, 1982.

[DHRS07] Y. Ding, D. Harnik, A. Rosen, and

R. Shaltiel. Constant-round oblivious trans-

fer in the bounded storage model. J. Cryp-
tology, 20(2):165–202, 2007.

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak,

and Daniel Wichs. Non-malleable codes. J.
ACM, 65(4):20:1–20:32, 2018.

[FK18] Michael A. Forbes and Zander Kelley. Pseu-

dorandom generators for read-once branch-

ing programs, in any order. In 59th IEEE
Annual Symposium on Foundations of Com-
puter Science, FOCS, pages 946–955, 2018.

[For65] G David Forney. Concatenated codes. PhD

thesis, Massachusetts Institute of Technol-

ogy, 1965.

[GI05] Venkatesan Guruswami and Piotr Indyk.

Linear-time encodable/decodable codes

with near-optimal rate. IEEE Transactions
on Information Theory, 51(10):3393–3400,

2005.

[Gol97] Oded Goldreich. A sample of samplers

- a computational perspective on sampling

(survey). Electronic Colloquium on Compu-
tational Complexity (ECCC), 4(20), 1997.

[GS96] A. Garcia and H. Stichtenoth. On the

asymptotic behavior of some towers of func-

tion fields over finite fields. Journal of
Number Theory, 61(2):248–273, 1996.

331

[GS99] V. Guruswami and M. Sudan. Improved

decoding of reed-solomon and algebraic-

geometry codes. IEEE Transactions on In-
formation Theory, 45(6):1757–1767, 1999.

[GS16] Venkatesan Guruswami and Adam Smith.

Optimal rate code constructions for compu-

tationally simple channels. Journal of the
ACM (JACM), 63(4):35, 2016.

[GX15] Venkatesan Guruswami and Patrick Xia. Po-

lar codes: Speed of polarization and polyno-

mial gap to capacity. IEEE Transactions on
Information Theory, 61(1):3–16, 2015.

[HAU14] Seyed Hamed Hassani, Kasra Alishahi, and

Rüdiger L Urbanke. Finite-length scaling

for polar codes. IEEE Transactions on In-
formation Theory, 60(10):5875–5898, 2014.

[HL11] Ishay Haviv and Michael Langberg. Beat-

ing the gilbert-varshamov bound for online

channels. In 2011 IEEE International Sym-
posium on Information Theory Proceedings,
ISIT 2011, St. Petersburg, Russia, July 31 -
August 5, 2011, pages 1392–1396, 2011.

[HLV18] Elad Haramaty, Chin Ho Lee, and Emanuele

Viola. Bounded independence plus noise

fools products. SIAM J. Comput.,
47(2):493–523, 2018.

[Joh62] Selmer Johnson. A new upper bound for

error-correcting codes. IEEE Transactions
on Information Theory, 8(3):203–207, 1962.

[Jus72] Jørn Justesen. Class of constructive asymp-

totically good algebraic codes. IEEE Trans-
actions on Information Theory, 18(5):652–

656, 1972.

[KNR09] E. Kaplan, M. Naor, and O. Reingold. De-

randomized constructions of k-wise (almost)

independent permutations. Algorithmica,

55(1):113–133, 2009.

[Kop10] Swastik Kopparty. Algebraic methods in
randomness and pseudorandomness. PhD

thesis, Massachusetts Institute of Technol-

ogy, 2010.

[KS07] Tali Kaufman and Madhu Sudan. Sparse

random linear codes are locally decodable

and testable. In 48th Annual IEEE Sympo-
sium on Foundations of Computer Science
(FOCS 2007), October 20-23, 2007, Prov-
idence, RI, USA, Proceedings, pages 590–

600. IEEE Computer Society, 2007.

[KS13] Swastik Kopparty and Shubhangi Saraf. Lo-

cal list-decoding and testing of random lin-

ear codes from high error. SIAM Journal on
Computing, 42(3):1302–1326, 2013.

[Lan04] Michael Langberg. Private codes or succinct

random codes that are (almost) perfect. In

45th Symposium on Foundations of Com-
puter Science (FOCS 2004), pages 325–334,

2004.

[Lip94] Richard J. Lipton. A new approach to

information theory. In 11th Annual Sym-
posium on Theoretical Aspects of Computer
Science, pages 699–708, 1994.

[LV17] Chin Ho Lee and Emanuele Viola. More

on bounded independence plus noise: Pseu-

dorandom generators for read-once polyno-

mials. Electronic Colloquium on Computa-
tional Complexity (ECCC), 24:167, 2017.

[Mor93] Carlos Moreno. Algebraic curves over finite
fields. Number 97 in Cambridge Tracts in

Mathematics Series. Cambridge University

Press, 1993.

[MPSW10] Silvio Micali, Chris Peikert, Madhu Su-

dan, and David A. Wilson. Optimal er-

ror correction for computationally bounded

noise. IEEE Trans. Information Theory,

56(11):5673–5680, 2010.

[MS77] Florence Jessie MacWilliams and Neil

James Alexander Sloane. The theory of
error-correcting codes, volume 16. Elsevier,

1977.

[Sch06] Wolfgang M Schmidt. Equations over fi-
nite fields: an elementary approach, volume

536. Springer, 2006.

[Shp09] Amir Shpilka. Constructions of low-degree

and error-correcting epsilon-biased genera-

tors. Computational Complexity, 18(4):495–

525, 2009.

[Smi07] Adam D. Smith. Scrambling adversarial

errors using few random bits, optimal in-

formation reconciliation, and better private

codes. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 395–404, 2007.

[SS16] Ronen Shaltiel and Jad Silbak. Explicit

list-decodable codes with optimal rate for

computationally bounded channels. In AP-
PROX/RANDOM, pages 45:1–45:38, 2016.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and

Aravind Srinivasan. Chernoff-hoeffding

bounds for applications with limited in-

dependence. SIAM J. Discrete Math.,

332

8(2):223–250, 1995.

[Sud97] M. Sudan. Decoding of Reed Solomon

codes beyond the error-correction bound.

Journal of Complexity, 13, 1997.

[Tho83] Christian Thommesen. The existence of

binary linear concatenated codes with reed -

solomon outer codes which asymptotically

meet the gilbert- varshamov bound. IEEE
Trans. Information Theory, 29(6):850–853,

1983.

[Vad04] Salil P. Vadhan. Constructing locally com-

putable extractors and cryptosystems in the

bounded-storage model. J. Cryptology,

17(1):43–77, 2004.

[Wei48] André Weil. On some exponential sums.

Proceedings of the National Academy of
Sciences of the United States of America,

34(5):204, 1948.

[Wil14] Ryan Williams. Faster all-pairs shortest

paths via circuit complexity. In Symposium
on Theory of Computing, STOC, pages 664–

673, 2014.

333

