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Abstract—Constructing collision-resistant hash fami-
lies (CRHFs) from one-way functions is a long-standing
open problem and source of frustration in theoretical
cryptography. In fact, there are strong negative results:
black-box separations from one-way functions that are
2−(1−o(1))n-secure against polynomial time adversaries
(Simon, EUROCRYPT ’98) and even from indistin-
guishability obfuscation (Asharov and Segev, FOCS
’15).
In this work, we formulate a mild strengthening of ex-

ponentially secure one-way functions, and we construct
CRHFs from such functions. Specifically, our security
notion requires that every polynomial time algorithm
has at most 2−n · negl(n) probability of inverting two
independent challenges.
More generally, we consider the problem of simul-

taneously inverting k functions f1, . . . , fk, which we say
constitute a “one-way product function” (OWPF). We
show that sufficiently hard OWPFs yield hash families
that are multi-input correlation intractable (Canetti,
Goldreich, and Halevi, STOC ’98) with respect to all
sparse (bounded arity) output relations. Additionally
assuming indistinguishability obfuscation, we construct
hash families that achieve a broader notion of cor-
relation intractability, extending the recent work of
Kalai, Rothblum, and Rothblum (CRYPTO ’17). In
particular, these families are sufficient to instantiate
the Fiat-Shamir heuristic in the plain model for a
natural class of interactive proofs.
An interesting consequence of our results is a poten-

tial new avenue for bypassing black-box separations.
In particular, proving (with necessarily non-black-box
techniques) that parallel repetition amplifies the hard-
ness of specific one-way functions – for example, all one-
way permutations – suffices to directly bypass Simon’s
impossibility result.

I. Introduction
Cryptographically secure hash functions are a funda-

mental building block in cryptography. Some of their most
ubiquitous applications include the construction of digital
signature schemes [2], efficient CCA-secure encryption [3],
succinct delegation of computation [4], and removing in-
teraction from protocols [5]. In their most general form,
hash functions can be modeled as “random oracles” [3],

in which case it is heuristically assumed that an explicitly
described hash function H (possibly sampled at random
from a family) behaves like a random function, as far as a
computationally bounded adversary can tell.
One of the most basic properties one might desire from

a hash function is collision resistance, which requires that
a computationally bounded adversary, given an explicit
(shrinking) function H, cannot find a pair of distinct
inputs (x, y) such that H(x) = H(y). Since their intro-
duction [6], collision-resistant hash functions have proved
extremely useful in designing cryptographic primitives and
protocols. As such, the following problem has received
much attention in theoretical cryptography.

Question I.1. What are the assumptions from which
collision-resistant hash functions can be built? In particu-
lar, can they be built from an arbitrary one-way function?

The question of building CRHFs from arbitrary one-
way functions is particularly intriguing because OWFs
are sufficient to construct a wide class of cryptographic
primitives, including: pseudorandom generators [7], pseu-
dorandom functions [8] and secret-key encryption, uni-
versal one-way hash functions [9] and digital signatures,
commitment schemes [10], zero-knowledge proofs [11], and
garbled circuits [12], [13].
Unfortunately, all known constructions of CRHFs have

required assumptions beyond general one-way functions,
such as structured generic assumptions (e.g. the existence
of claw-free pairs of permutations) or the hardness of
specific problems (e.g. computing discrete logarithms or
finding approximately short vectors on lattices). Even
worse, there are strong negative results on the prospect
of constructing CRHFs from arbitrary OWFs in the form
of black-box impossibility results. The first such result is
due to Simon [14].

Theorem I.2 ([14], informal). There is an oracle relative
to which no collision-resistant hash functions exist, but
exponentially secure one-way permutations exist.
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In fact, CRHFs have proved to be an extremely frus-
trating primitive in theoretical cryptography, as they have
evaded attempts to describe a hierarchy of cryptographic
primitives (with “weaker” objects implied by the existence
of “stronger” objects). In a stark demonstration of this
problem, Asharov and Segev [15] proved that CRHFs
are not even implied (in a black box1 way) by one-way
functions and the extremely powerful notion of indistin-
guishability obfuscation [16], [17].

Theorem I.3 ([15], informal). There is an oracle relative
to which no collision-resistant hash functions exist, but
exponentially secure one-way permutations and indistin-
guishability obfuscation exist.

These negative results indicate substantial barriers to
building CRHFs from OWFs (or OWPs, or indeed from
any of the vast array of primitives implied by IO and
OWPs). Collision resistance is also just one desirable
property of random oracles, and our question above is a
special case of the following more ambitious question.

Question I.4. Which random oracle properties can be
guaranteed under standard cryptographic assumptions, and
how weak can these assumptions be made?

It is known that some random oracle properties are
not realizable in the standard model [18], [19]. However,
there has been a recent line of work [20]–[22] showing that
under strong assumptions, many random oracle properties
(specifically in the context of “single input correlation
intractability”) can be realized, and Question I.4 in its
full generality remains wide open.

A. Our Contributions
In this work, we make progress on all of the above

questions by defining a natural strengthening of exponen-
tially secure OWFs2 that suffices for building CRHFs and
more. An “uber” version of our assumption – which we
state for the purpose of intuition but is quantitatively
and qualitatively much stronger than what we actually
require – states that for every k = poly(n), there ex-
ists an injective (polynomial-time computable) function
f : {0, 1}∗ → {0, 1}∗ with the following “batch one-
wayness” property: For every polynomial-size adversaryA,
the probability that A(f(X1), . . . , f(Xk)) = (X1, . . . , Xk)
for X1, . . . , Xk

i.i.d.← {0, 1}n is bounded by 2−kn · poly(n).
Based on various significant weakenings of this uber-

assumption, we construct:
• Collision-resistant hash families whose security
against polynomial-time adversaries matches that of
a random oracle.

1“Black box” usage of IO and one-way functions is formalized
through the notion of obfuscation for oracle-aided circuits. We refer
the reader to [15] for details.

2Actually, OWFs where any polynomial-time algorithm can invert
with only exponentially small probability

• More generally, for every k, we construct hash fami-
lies H that are “k-ary output intractable” (inspired
by a related definition of Zhandry [23]). Loosely
speaking, given H ← H, it is computationally
hard to find distinct inputs X1, . . . , Xk such that
(H(X1), . . . , H(Xk)) satisfy any fixed sparse relation
R. The quantitative hardness that we achieve again
matches that of a random oracle.

We are able to construct even stronger hash families
if we additionally assume sub-exponentially secure indis-
tinguishability obfuscation. This construction allows for
applications including an instantiation of the Fiat-Shamir
heuristic [5] for a natural class of interactive proofs.
Our main results and contributions are, in more detail,

as follows.
1) Defining OWPFs: We introduce the notion of a fam-

ily of one-way k-product functions (k-OWPFs), which is a
family of k-tuples of functions (f1, . . . , fk) that are jointly
“extremely one-way”. Such a family is most interesting
when the hardness of inversion exceeds that of any individ-
ual fi. For simplicity, suppose that each fi is injective. In
this case, we consider the assumption that no polynomial-
time algorithm can recover X1, . . . , Xk

i.i.d.← {0, 1}n given
(f1(X1), . . . , fk(Xk)) with probability better than δ. Ide-
ally, this could be true for δ as large as 2−(k−o(k))n. We
call this a δ-hardness assumption of batch inversion for
(f1, . . . , fk).
The existence of such a family would follow from the

following two conditions:
• A δ1/k-secure injective one-way function f , and
• An optimal parallel repetition theorem for the hard-
ness of f , i.e. one which states that if a function f is
(s, δ)-hard to invert, then its k-wise repetition fk is
(s, δk)-hard to invert.

While such a dream parallel repetition property likely does
not hold for general f [24], the counterexample presented
therein does not preclude a similar result for a broad class
of functions f .
In fact, the parallel repetition framework described

above yields a special kind of OWPF family: one in which
all k functions f1, . . . , fk are equal. We say that such
OWPF families are symmetric. Another special case of
interest, which we call a one-way power family, is a OWPF
family of the form Fk, meaning that the k functions
f1, . . . , fk are sampled independently at random from a
fixed family F .
Our constructions (that do not require obfuscation)

are based directly on symmetric injective OWPFs as a
building block rather than general OWPFs. We augment
these constructions by providing generic transformations
between different notions of OWPFs, including construc-
tions of (weaker) symmetric OWPFs from (stronger) gen-
eral OWPFs, and constructions of injective k-OWPFs from
arbitrary k-OWPFs (with some security loss).
One of our main contributions in this work is initiating

the study of OWPFs and establishing their basic proper-
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ties. We expect that OWPFs will prove useful in future
work.

On Extreme Hardness Amplification: For all of our
constructions without obfuscation, we actually rely on
symmetric OWPF families. That is, we want a fam-
ily F = {Fn} such that if we sample f ← Fn and
x1, . . . , xk ← {0, 1}n, it is δk-hard to simultaneously invert
f(x1), . . . , f(xk). Clearly a necessary condition for this is
that F is a δ-secure one-way function family. But is this
sufficient? The answer in general is no, as we discuss next.
First of all, this type of attempted hardness amplifi-

cation fails for any family whose functions have short
trapdoors that enable polynomial-time inversion. Given
f, f(x1), . . . , f(xk), an adversary can simply guess the
trapdoor for f , succeed with some small probability that
does not depend on k, and conditioned on guessing cor-
rectly can efficiently invert f(x1), . . . , f(xk).
It is natural to next consider functions (or ensembles of

functions {fn : {0, 1}n → {0, 1}∗}n indexed only by input
length) that are secure against non-uniform adversaries,
and in particular do not have any trapdoors. However,
[24] present an example of a single one-way function f for
which it is as easy to invert f(x1), . . . , f(xk) as it is to
invert a single f(x). Although their counterexample heav-
ily relies on the fact that there are multiple permissible
solutions to each instance x, there is also evidence that
parallel repetition sometimes fails to increase the security
of injective one-way functions [25].
Despite the above negative results, we emphasize that

symmetric OWPFs only require direct products to amplify
hardness for specific functions, rather than broad classes of
functions. Moreover, one-way product functions may exist
even if parallel repetition does not amplify the hardness of
any function f beyond negligible. In particular, f1, . . . , fk

may not all be the same function, and may be sampled
from a joint distribution on k-tuples of functions. These
observations leave us with at least two promising avenues
towards constructing OWPF candidates:
1) Given the contrived nature of known counterex-
amples to one-way function parallel repetition, any
“natural” δ-secure injective OWF family also serves
as a candidate one-way power family with security
roughly δk.

2) It may be possible to “fortify” any one-way function
family F into a related family F ′ whose security does
amplify to an extreme degree, yielding symmetric
OWPFs.

Finally, we mention a concrete candidate symmetric
OWPF family based on the multiple discrete logarithm
problem. That is, in some group Gn of order |Gn| ≈ 2n,
the problem is to simultaneously compute k discrete loga-
rithms X1, . . . , Xk

i.i.d.← [2n] given input (g, gX1 , . . . , gXk),
where g is a generator for Gn. In [26], evidence for the
hardness of computing multiple discrete logarithms is
given in the form of lower bounds in the generic group

model [27]. In particular, [26] show that (in our language)
k-batch inversion is nearly 2−kn-hard for polynomial-time
generic-group algorithms.

2) Constructions from OWPFs: Our first application of
OWPFs is a construction of a collision-resistant hash fam-
ily from suitably secure symmetric 2-OWPFs. Informally,
we prove

Theorem I.5. Suppose that there exist symmetric injec-
tive 2-OWPFs with security 2−n−ω(log n). Then, there exists
a collision-resistant hash family.

This type of OWPF does not follow in a black-box way
from even exponentially-hard one-way permutations; this
is how we avoid the [14], [15] impossibility results.
Through one of our generic transformations of OWPFs,

we also obtain a construction that does not assume injec-
tivity:

Theorem I.6. Suppose that there exist symmetric 2-
OWPFs with security 2−(1.6+ε)n. Then, there exists a
collision-resistant hash family.

Optimality and Implications of Theorem I.5: While we
have explained how our result is not captured by the
[14], [15] framework, one could question the necessity
of this new OWPF assumption. For example, [15] only
rules out black-box constructions of CRHFs from 2−εn-
secure IO and one-way permutations (for ε = 1

50 in
particular), and [14] proves a quantitatively similar impos-
sibility. What about assuming only 2−n/2-secure OWPs,
which are weaker and more standard than our symmetric
OWPFs? As a complementary result, we show that these
are insufficient – we strengthen the Asharov-Segev analysis
to rule out black box constructions from IO and even 2−n-
secure one-way permutations.

Theorem I.7 (Extension of [15] Theorem 1.1, informal).
There is no black-box construction of CRHFs from sub-
exponentially secure IO, sub-exponentially secure OWPs,
and OWPs that ppt algorithms A can invert with probabil-
ity at most size(A)c · 2−n for some absolute constant c.

Theorem I.7 indicates a sharp limit on directly improv-
ing Theorem I.5; in the latter, we show that injective 2-
OWPFs that are 2−n · negl(n)-hard to invert suffice for
constructing CRHFs from IO, while the former result says
that improving the 2−n · negl(n) to 2−n

negl(n) is impossible
for black-box constructions. In particular, for black-box
constructions, exponentially secure one-way permutations
(in the usual sense) are insufficient.

Extension to Output Intractability: Theorem I.5
can be substantially generalized beyond collision-
resistance. In particular, given a 2k-ary relation, we
consider the problem of finding X1, . . . , Xk such that
(X1, . . . , Xk, H(X1), . . . , H(Xk)) ∈ R for H ← Hn. If
this problem is hard, then H is said to be multi-input
correlation intractable for R, a notion due to [18].
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Collision-resistance is the special case when k = 2 and

R = {(x1, x2, y1, y2) : (x1 �= x2) ∧ (y1 = y2)} .

Random oracles are correlation intractable for any
sparse relation R – that is, as long as for every x =
(x1, . . . , xk), PrY←({0,1}n−1)k [(x, Y) ∈ R] ≤ negl(n). In
many applications, this correlation-intractability is the
crucial property of a random oracle, and a fundamental
theoretical question is whether it can be achieved by
concrete hash families.
Despite the initial negative result of [18], which ruled out

correlation intractability for arbitrary (e.g., unbounded-
arity) relations, there has been substantial work on con-
structing hash families that are correlation intractable for
“bounded” single-input/output relations [20]–[22] as well
as hash families that are “output intractable” [23], that
is, correlation intractable with respect to relations of the
form “(xi �= xj for all i �= j) ∧ R(y1, . . . , yk) = 1.”3

Using suitably secure k-OWPFs, we construct hash
families that are output intractable for all sparse output
relations (with known bounded arity). The quantitative
intractability that we prove depends on the sparsity of
the relation, similarly to the situation for a true random
oracle. Equivalently, we rely on weaker assumptions to
show correlation-intractability of sparser relations.
A simplified version of our result is as follows.

Theorem I.8 (informal). Suppose that there exists a
family of symmetric injective k-OWPFs with security
(s + poly(n), δ), let m = m(n) denote any output length,
and let p = p(n) denote any sparsity. Then, there exists a
hash family H = {Hn,m(n)} that is output intractable, with
security (s, δ · p · 2kn), with respect to all k-ary relations of
sparsity p.

In particular, if the k-OWPF family has optimal (2−kn)
security, then the hash family constructed in Theorem I.8
has output intractability matching that of a random ora-
cle.
As an interesting special case, we note that Theorem I.8

gives a construction of k-multi-collision resistant hash
functions (formally introduced in [28] and further stud-
ied in [29]–[31]) from symmetric injective k-OWPFs with
security 2−n−k log(k) · negl(n), an assumption that (up to
a lower order term in the exponent) becomes weaker as k
increases from 2 to any o( n

log(n) ). As any multi-collision-
resistant hash family implies the existence of constant
round statistically hiding commitments [29], [31], this
yields constant round statistically hiding commitments
from 2−n · negl(n)-secure (injective and symmetric) k-
OWPFs for any k = o( n

log(n) ). Unlike the assumptions
required for collision resistance, this assumption would fol-
low from optimal parallel repetition for any polynomially
secure (injective) one-way function.

3 [23] considers a slightly different notion of output intractability.
We elaborate on this in the full version of this paper [1].

3) Combining OWPFs with Indistinguishability Obfus-
cation: Our results above, Theorem I.5 and Theorem I.8,
are constructions of cryptographic hash families from
(symmetric) OWPFs alone, and hence (partially) address
the question of what hash families can be constructed from
assumptions in the realm of one-wayness.
We additionally consider which hash families can be

constructed in the plain model under stronger assump-
tions. Namely, we combine OWPFs with the powerful
notion of indistinguishability obfuscation [16], [17]. This
line of reasoning yields another construction of CRHFs,
and more generally a construction of multi-input corre-
lation intractable hash functions for a broader class of
relations than achieved by Theorem I.8. In our IO-based
construction, we are able to handle relations R which
depend on both the input variables x and the output
variables y, as long as the relation R is efficiently locally
samplable. Informally, we need to be able to efficiently
sample a random outputY such that (x, Y) ∈ R such that
each output Yi is sampled only knowing the corresponding
input xi (with arbitrary preprocessed shared randomness
“between the variables”).
Moreover, our construction is extremely simple and

confirms typical intuition about obfuscation: our hash
family is an obfuscated (puncturable) PRF O(Fs(·)). We
only require the existence of suitably secure OWPFs in
the security proof; they are not needed in the construc-
tion. This result extends the framework of [20], [21] on
constructing strong hash functions from obfuscation (and
additional assumptions).
Our main result utilizing obfuscation is proved by view-

ing OWPFs themselves as a (weak) form of obfuscation:
an injective k-OWPF (f1, · · · , fk) allows us to obfuscate
multi-point functions, i.e., programs of the form

Px1,...,xk
(x) =

{
i x = xi for some i

0 otherwise.
Since this construction is oblivious to whether or not the

OWPF family F is symmetric, this yields a construction of
correlation intractable hash families (and in particular, of
CRHFs) relying on weaker OWPF assumptions, at the cost
of additionally assuming IO. That is, the assumptions on
asymmetric OWPFs required here are quantitatively (and
even qualitatively) weaker than those required without
obfuscation, as we avoid the cost of converting asymmetric
OWPFs into symmetric OWPFs.
As an interesting special case, the notion of correla-

tion intractability that we achieve is powerful enough
to capture nontrivial cases of the Fiat-Shamir paradigm
for converting (constant round, public-coin) interactive
proof systems into non-interactive argument systems. We
elaborate on one such formal result in the full version
of this paper, but the main intuition is that we can
instantiate the Fiat-Shamir transform for any proof system
that has the property that a malicious prover can effi-
ciently determine which verifier messages he can cheat on.
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This captures protocols that follow the “commit-challenge-
response” framework. This approach yields a construction
of NIZK argument schemes (in the common reference
string model) through the Fiat-Shamir transform whose
security relies on IO and the existence of exponentially
secure one-way functions – no OWPF assumptions are
needed in this case.

B. Related Work
a) Multi-Instance Security: There are a few other

cryptographic constructions in the literature that are se-
cure assuming a strong form of hardness amplification for
one-way functions, or more generally some notion of multi-
instance security. Several notable examples, although not
a comprehensive listing, are as follows.

• In the context of password-based cryptography,
[32] study the multi-instance security of encryption
schemes and key derivation functions. Their work is
motivated by the common practice of “salting”, which
is intended to insure that the running time required
for an adversary to compromise k users scales linearly
with k.

• In the context of chosen ciphertext security, [33]
consider the problem of simultaneously inverting
(f(x1), . . . , f(xk)) where (x1, . . . , xk) are sampled
from a joint distribution (rather than i.i.d.). In con-
trast to our work, they only ask that the inversion
probability should be negl(λ); that is, they do not
ask for hardness to amplify. They show that trapdoor
functions satisfying certain security properties of this
flavor suffice to construct CCA-secure public key
encryption.

• Inspired by Merkle puzzles, [34] construct a public-
key encryption scheme that allows for adversaries
that run in time at most quadratically larger than
that of the honest parties. They prove the security
of their scheme under the assumption that there is a
injective one-way function f , a polynomial k = k(n),
a constant 0 < δ < 1

2 , and a (randomized) “multi-
source hard-core predicate” H such that for random
x1, . . . , xk ← {0, 1}n, every algorithm running in
time 2(1−δ)n on input

(
f(x1), . . . , f(xk), r

)
success-

fully guesses H(x1, . . . , xk, r) with advantage at most
2−ω(n).

• In concurrent and independent work, Bitansky and
Lin [35] introduce the notion of an amplifiable one-
way function. Roughly speaking, a one-way function
f is (sub-exponentially) amplifiable if for all k =
poly(n) there exists a hard-core predicate hcb for f
and an efficiently computable combiner C such that
given (y1 = f(x1), . . . , yk = f(xk)) it is 2−kε-hard (for
2nε-time algorithms) to predict the combined hard-
core bit C(hcb(x1), . . . , hcb(xk)). The work [35] shows
that such a one-way function is useful in the con-
struction of a one message non-malleable commitment
scheme.

b) Extremely Lossy Functions: [23] introduces the
notion of an extremely lossy function (ELF). In [23], ELFs
are used as a central building block to construct several
hash families with strong security properties. In particular,
they can be used to construct hash functions satisfying a
notion of output intractability that is incomparable to we
achieve. Informally, [23] considers the more general setting
of k + 1-ary relations R(y1, . . . , yk, w) with the property
that for random (y1, . . . , yk), it is computationally hard
to find a witness w for which R(y1, . . . , yk, w) = 1 (where
our notion would correspond to the case that for random
(y1, . . . , yk), no such witness exists), and constructs hash
functions that are correlation intractable for such relations
R that are efficiently decidable.
The only current construction of ELFs relies on an ex-

ponentially strong DDH assumption. An interesting open
question is whether OWPFs imply the existence of ELFs,
or even ordinary (i.e. moderately) lossy one-way functions.

c) CRHFs from Extremely Strong LPN: Two recent
works [36], [37] give constructions of CRHFs from the
Learning Parity with Noise (LPN) problem in parameter
settings that resemble an exponential hardness assump-
tion. We note that one of the same works [37] proves
that these particular LPN assumptions imply hardness in
the complexity class BPPSZK, placing this construction on
similar complexity-theoretic ground as prior constructions
from discrete logarithm and SIS. The LPN-based CRHFs
are also provably broken in quasi-polynomial time, while
our CRHF is plausibly as collision-resistant as a random
oracle.

d) Single-Input Correlation Intractability: Correla-
tion intractability [18] is a clean but powerful property
of random oracles that has drawn considerable interest,
particularly for its relevance to the Fiat-Shamir transform
[3], [5]. Circumventing the negative results of [18], [19],
[38], there has been a recent line of work [20]–[22] on
constructing (single input) correlation intractable hash
functions and instantiating the Fiat-Shamir heuristic in
the standard model, under strong assumptions. We build
on this line of work, particularly the work of [21], to
achieve results for special cases of multi-input correlation
intractability under weaker or incomparable assumptions
than are required in these previous works.

e) CRHFs from IO and SZK-hardness: [39] con-
structs CRHFs from indistinguishability obfuscation and
any average-case hard problem in the complexity class
SZK0,1. We consider SZK-hardness to be a “structured
assumption” which makes it different from (even very
strong) assumptions on injective one-way functions; in-
deed, the same work proves an Asharov-Segev-like im-
possibility result for constructing (even worst-case) hard
SZK instances from IO and OWPs. A fascinating open
question is whether OWPFs (with or without IO) imply
SZK-hardness of any form.
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C. Technical Overview
We now outline some of our constructions in more detail.

In order to clearly demonstrate the power of OWPFs
and our techniques, we focus on the following two special
cases: constructing CRHFs from symmetric 2-OWPFs, and
constructing CRHFs from IO and (asymmetric) injective
2-OWPFs.

1) Construction of CHRFs: For simplicity, we first
assume that we have an ensemble of one-way permutations
{fn : {0, 1}n → {0, 1}n}, where for every constant c > 0,
double inversion is 2−n · n−c hard for size-nc adversaries.
In this case, we construct a particularly simple CRHF:
to sample a collision-resistant H : {0, 1}n → {0, 1}n−1,
first sample P : {0, 1}n → {0, 1}n−1 from a pairwise
independent hash family P4. H = P ◦fn. This and similar
constructions have proved very useful in prior works [2],
[23], [40].
We now sketch the proof of security. Assume for con-

tradiction that some poly-size algorithm A finds collisions
in H with probability ε = ε(n). We show how to use A
to simultaneously find X∗

1 = f−1
n (Y ∗

1 ) and X∗
2 = f−1

n (Y ∗
2 )

with probability roughly ε · 2−n, given uniformly random
Y ∗

1 , Y ∗
2

i.i.d.← {0, 1}n. Specifically, we will invoke A not on
a uniformly sampled H = P ◦ fn, but on a differently
defined H = Pplant ◦ fn, where Pplant is sampled from P
conditioned on Pplant(Y ∗

1 ) = Pplant(Y ∗
2 ).

Intuitively, we now argue (by a purely statistical ar-
gument) that (X∗

1 , X∗
2 ) looks sufficiently like a uniformly

random collision of H that A must output that exact
collision with probability roughly ε · 2−n. To make this
intuition rigorous, suppose first that we ignore Y ∗

1 and Y ∗
2 ,

and simply invoke A on a randomly sampled H = P ◦ fn.
Then with probability ε, A will find a collision (X1, X2)
in H. Conditioned on this event, (X1, X2) will be equal to
(X∗

1 , X∗
2 ) with probability 2−2n, for a total probability of

ε ·2−2n that both events occur. But (X∗
1 , X∗

2 ) is a collision
in H with probability only 2−(n−1). Thus, conditioning
on this event (i.e., sampling H = Pplant ◦ fn instead
of H = P ◦ fn) boosts the probability that A outputs
(X∗

1 , X∗
2 ) to ε · 2−2n · 2n−1 = ε · 2−n−1.

Therefore, the CRHF we constructed satisfies the stan-
dard notion of security: every polynomial-size adversary
finds collisions with probability that is negligible in n.
From stronger hardness assumptions on {fn}, i.e. that
double-inversion is δ(n)-hard for size-s(n) adversaries, one
obtains a correspondingly more secure CRHF.
The above argument actually does not rely in any way

on fn being a permutation. It is, however, important that
fn is injective, so that all collisions in P ◦ fn are due to
P , and thus in some sense are randomly distributed.
We also show that the injectivity requirement can be

traded off against a stronger hardness assumption. In fact,

4We also require that the hash family is programmable at any two
points, meaning that it is possible to sample a uniformly random
p ← P subject to the condition that p(y1) = z1 and p(y2) = z2.

if {fn} is extremely secure to begin with, we can construct
a family of functions which is statistically injective, and
still nearly as secure.
For simplicity, we illustrate this transformation for one-

way functions. Suppose that {fn} is δ(n)-hard to invert for
polynomial-time adversaries (think of δ(n) = 2−(1−o(1))n,
although such extreme parameters are not necessary).
We first observe that {fn} cannot be “extremely” non-
injective; if one independently samples X1 ← {0, 1}n and
X2 ← {0, 1}n, then the probability that fn(X1) = fn(X2)
must be at most δ (otherwise one could break the security
of fn by random guessing). This can be leveraged to
obtain a fully injective function (with some small error
probability), as follows.
Set n to be any function of n′ (think of n(n′) = 3n′).

Then define the ensemble of function families F = {Fn′}
as follows. To sample a function f ← Fn′ , sample P :
{0, 1}n′ → {0, 1}n from a pairwise independent hash
family, and define f̃n′ = fn ◦P . A simple pairwise indepen-
dence argument shows that F is statistically injective, with
failure probability at most 22n′ · δ(n) (with the suggested
parameters in mind, this is 2−(1−o(1))n′).
Security of F follows from observing that if an adversary

cannot invert fn(X) with probability better than δ when
sampling X ← {0, 1}n, then for any subset X ⊆ {0, 1}n,
the adversary cannot invert fn(X ′) with probability better
than δ· 2n

|X | when sampling X ′ ← X . With good probability
(1 − 22n′−n, or with our suggested parameters 1 − 2−n′),
it holds that P : {0, 1}n′ → {0, 1}n is actually injective,
so that inverting fn ◦ P corresponds to inverting fn when
inputs are drawn from the uniform distribution on Img(P ).
The above discussion shows that this is δ · 2n−n′ -hard (or
with our suggested parameters 2−(1−o(1))n′ -hard) even for
adversaries that are given arbitrary advice about P .
While the above description refers to the case of one-

way functions (i.e. 1-OWPFs), similar arguments can be
made for arbitrary OWPFs (with different quantitative
tradeoffs).

2) Constructions Using Obfuscation: We now outline
our general proof strategy – which we informally refer
to as the planting technique – for all of our constructions
based on IO, using collision resistance as an example. The
planting technique is inspired by the recent work of Kalai,
Rothblum, and Rothblum [21] on instantiating the Fiat-
Shamir heuristic using obfuscation.
For simplicity, we focus on hash functions that shrink by

a single bit. Our construction is then simply an obfuscation
H

def= O(FS) of a puncturable pseudorandom function FS :
{0, 1}n → {0, 1}n−1, where O is an indistinguishability
obfuscator. Recall that we also assume the existence of
an injective but not necessarily symmetric 2-OWPF that
cannot be inverted in polynomial time with probability
better than 2−n−ω(log n).
The proof of security then proceeds as follows. Assume

for contradiction that some ppt algorithm A finds a colli-
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sion (X1, X2) of H with non-negligible5 probability ε. We
then consider the behavior of A on an obfuscation of a
different program Hplant which overrides the functionality
of FS with a hard-coded planted collision Hplant(X∗

1 ) =
Hplant(X∗

2 ) = Y ∗, for independent and uniformly random
X∗

1 , X∗
2 , and Y ∗. That is, the functionality of Hplant is

Hplant(x)
def=

{
Y ∗ if x = X∗

1 or x = X∗
2

FS(x) otherwise.

We then prove two contradictory claims.
1) The probability that A outputs (X∗

1 , X∗
2 ) is approx-

imately ε · 2−n−1, i.e. 2−n−O(log n).
This claim is argued as follows.
a) If A is given an obfuscation of a program Hpunc
that (in contrast to Hplant) overrides FS with
hard-coded mappings X∗

1 �→ Y ∗
1 and X∗

2 �→ Y ∗
2

for independent uniform Y ∗
1 , Y ∗

2 ← {0, 1}n−1,
then the probability that A successfully pro-
duces a collision and that collision is (X∗

1 , X∗
2 )

is very nearly ε · 2−2n by the security of O and
FS .

b) (X∗
1 , X∗

2 ) is only a valid collision of Hpunc when
Y ∗

1 = Y ∗
2 , so the probability that A outputs

(X∗
1 , X∗

2 ) conditioned on Y ∗
1 = Y ∗

2 is approx-
imately ε · 2−2n · 2n−1 = ε · 2−n−1. But the
distribution of Hpunc conditioned on Y ∗

1 = Y ∗
2

is exactly the distribution of Hplant.
2) The probability that A outputs (X∗

1 , X∗
2 ) is

2−n−ω(log n).
Since IO is the “best-possible” obfuscation [41],
it suffices for there to exist some obfuscation of
Hplant that hides (X∗

1 , X∗
2 ). This would follow from

a “special-purpose” obfuscator O′ for membership
testing in two-element sets (in our case {X∗

1 , X∗
2 }).

The security property we need is that every
ppt algorithm recovers (X∗

1 , X∗
2 ) from O′({X∗

1 , X∗
2 })

with probability bounded by 2−n−ω(log n).
This is a variant of “point function obfuscation”, a
notion which was studied by [42]–[44]. Our variant
(with uniformly random X∗

1 , X∗
2 ) admits a particu-

larly easy construction from injective 2-OWPFs – the
obfuscation is (W ∗

1 = f1(X∗
1 ), W ∗

2 = f2(X∗
2 )), and is

evaluated on an input x as{
1 if f1(x) =W ∗

1 or f2(x) =W ∗
2

0 otherwise.

There are conceivably other ways to obtain this
point function obfuscation, but for this particular
construction, security is equivalent to the hardness
of batch inverting (f1, f2).

5In fact, our approach readily generalizes to obtain exponentially-
secure CRHFs, at the cost of quantitatively stronger computational
assumptions.

D. Conclusions and Questions
In this work, we have introduced a new family of com-

putational assumptions – namely, the existence of various
flavors of one-way product functions (OWPFs). We find
these assumptions to be clean, plausible, and useful.
In terms of power, OWPFs allow the construction of

hash families that achieve several elusive random oracle-
like properties. In particular, our black-box construction of
CRHFs shows that OWPFs are more powerful than black
box usage of exponentially-secure one-way functions.
OWPFs are also extremely plausible. Depending on s,

δ, and k, we view (s, δ)-secure k-OWPFs as somewhere
between standard and exponentially-secure one-way func-
tions. The plausibility is supported by a concrete candi-
date instantiation – the discrete log problem, which is
provably a nearly optimal OWPF in the generic group
model.
Indeed, this particular combination of plausibility and

usefulness gives us some hope that CRHFs can be con-
structed solely based on exponentially strong one-way
functions. More generally, our results suggest a possible
blueprint for circumventing black-box impossibility results
from OWFs:
1) Build OWPFs from OWFs (using necessarily non-
black-box techniques).

2) Build primitives in a black-box way from OWPFs.
One bonus of this approach is that it could result in
constructions that are non-black-box only in the security
proof, and thus has the potential for practical efficiency.
Independently, OWPFs satisfy several desirable proper-

ties for a cryptographic assumption. For example, for any
family F , the assumption “F is a k-OWPF” is a search
complexity assumption [45]: for some efficiently sampleable
distribution D and efficiently checkable relation R, the
assumption is equivalent to requiring that on input x ∼ D,
every bounded-time algorithm has bounded probability of
finding y such that (x, y) ∈ R.
There remain many intriguing questions about the pre-

cise power of OWPFs. In particular:
• What are the complexity-theoretic implications of
OWPFs? For example, do they imply hardness in
SZK? We emphasize that all prior constructions
of CRHFs have been from assumptions that imply
(average-case) SZK hardness, but CRHFs themselves
are not known to imply any sort of SZK hardness.

• What implies OWPFs? Is it possible to construct
non-trivial k-OWPFs from previously studied cryp-
tographic assumptions? Above we outlined an ap-
proach to generically constructing OWPFs, but it is
also possible that OWPFs can be based on concrete,
structured assumptions.
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