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Abstract—
Strongly Rayleigh distributions are a class of negatively

dependent distributions of binary-valued random variables
[Borcea, Brändén, Liggett JAMS 09]. Recently, these distribu-
tions have played a crucial role in the analysis of algorithms for
fundamental graph problems, e.g. Traveling Salesman Problem
[Gharan, Saberi, Singh FOCS 11]. We prove a new matrix
Chernoff bound for Strongly Rayleigh distributions.

As an immediate application, we show that adding together
the Laplacians of ε−2 log2 n random spanning trees gives an
(1 ± ε) spectral sparsifiers of graph Laplacians with high
probability. Thus, we positively answer an open question posted
in [Baston, Spielman, Srivastava, Teng JACM 13]. Our number
of spanning trees for spectral sparsifier matches the number
of spanning trees required to obtain a cut sparsifier in [Fung,
Hariharan, Harvey, Panigraphi STOC 11]. The previous best
result was by naively applying a classical matrix Chernoff
bound which requires ε−2n log n spanning trees. For the tree
averaging procedure to agree with the original graph Laplacian
in expectation, each edge of the tree should be reweighted by
the inverse of the edge leverage score in the original graph.
We also show that when using this reweighting of the edges,
the Laplacian of single random tree is bounded above in the
PSD order by the original graph Laplacian times a factor log n
with high probability, i.e. LT � O(log n)LG.

We show a lower bound that almost matches our last result,
namely that in some graphs, with high probability, the random
spanning tree is not bounded above in the spectral order by

logn
log logn

times the original graph Laplacian.
We also show a lower bound that in ε−2 log n spanning trees

are necessary to get a (1± ε) spectral sparsifier.

Keywords-Matrix Chernoff bounds; random spanning trees;
Strongly Rayleigh; Spectral sparsifier;

I. INTRODUCTION

The idea of concentration of sums of random variables

dates back to Central Limit Theorems, and hence de Moivre

and Laplace [Tij], while modern concentration bounds for

sums of random variables were perhaps first established by

Bernstein [Ber24], and a popular variant now known as

Chernoff bounds was introduced by Rubin and published

by Chernoff [Che52].
Concentration of measure for matrix-valued random vari-

ables is the phenomenon that many matrix valued distribu-

tions are to close their mean with high probability, closeness

usually being measured by spectral norm. Modern quantita-

tive bounds of the form often used in theoretical computer

science were derived by for example by Rudelson [Rud99],

while Ahlswede and Winter [AW02] established a useful

matrix-version of the Laplace transform that plays a central

role in scalar concentration results such as those of Bern-

stein. [AW02] combined this with the Golden-Thompson

trace inequality to prove matrix concentration results. Tropp

refined this approach, and by replacing the use of Golden-

Thompson with deep a theorem on concavity of certain trace

functions due to Lieb, Tropp was able to recover strong

versions of a wide range of scalar concentration results,

including matrix Chernoff bounds, Azuma and Freedman’s

inequalities for matrix martingales [Tro12].

Matrix concentration results have had an enormous range

of applications in computer science, and are ubiquitous

throughout spectral graph theory [ST04], [SS11], [CKP+17],

sketching [Coh16], approximation algorithms [HSSS16],

and deep learning [ZSJ+17], [ZSD17]. Most applications are

based on results for independent random matrices, but more

flexible bounds, such as Tropp’s Matrix Freedman Inquality

[Tro11a], have been used to greatly simplify algorithms,

e.g. for solving Laplacian linear equations [KS16] and

for semi-streaming graph sparsification [AG09], [KPPS17].

Matrix concentration results are also closely related to other

popular tools sampling tools, such as Karger’s techniques

for generating sparse graphs that approximately preserve the

cuts of denser graphs [BK96].

Negative dependence of random variables is an appealing

property that intuition suggests should help with concen-

tration of measure. Notions of negative dependence can be

formalized in many ways. Roughly speaking, these notions

characterize distributions where where some event occurring

ensures that other events of interest become less likely. A

simple example is the distribution of a sequence of coin flips,

conditioned on the total number of heads in the outcome.

In this distribution, conditioning on some coin coming out

heads makes all other coins less likely to come out heads.

Unfortunately, negative dependence phenomena are not as

robust as positive association which can be established from
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local conditions using the powerful FKG theorem [FKG71].

Strongly Rayleigh distributions were introduced recently

by Borcea, Brändén, and Liggett [BBL09] as a class of

negatively dependent distributions of binary-valued random

variables with many useful properties. Strongly Rayleigh

distributions satisfy useful negative dependence properties,

and retain these properties under natural conditioning opera-

tions. Strongly Rayleigh distributions also satisfy a powerful

stability property under conditioning known as Stochastic
Covering [PP14], which is useful for analyzing them through

martingale techniques. A measure on {0, 1}n is said to be

Strongly Rayleigh if its generating polynomial is real stable

[BBL09]. There are many interesting examples of Strongly

Rayleigh distributions [PP14]: The example mentioned ear-

lier of heads of independent coin flips conditional on the

total number of heads in the outcome; symmetric exclusion

processes; determinental point processes and determinental

measures on a boolean lattice. An example of particular

interest to us is the edges of uniform or weighted random

spanning trees, which form a Strongly Rayleigh distribution.

We prove a Matrix Chernoff bound for the case of k-
homogeneous Strongly Rayleigh distributions. Our bound is

slightly weaker than the bound for independent variables, but

we can show that it is tight in some regimes. We use our

bound to show new concentration results related to random

spanning trees of graphs. An open question is to find other

interesting applications of our concentration result, e.g. by

analyzing concentration for matrices generated by exclusion

processes.

Random spanning trees are one among the most well-

studied probabilistic objects in graph theory, going back to

the work of Kirchoff [Kir47] in 1847, who gave formula

relating the number of spanning trees in a graph to the

determinant of the Laplacian of the graph.

Algorithms for sampling of random spanning trees have

been studied extensively, [Gue83], [Bro89], [Ald90],

[Kul90], [Wil96], [CMN96], [KM09], [MST15], [HX16],

[DKP+17], [DPPR17], [Sch18], and a random spanning tree

can now be sampled in almost linear time [Sch18].

In theoretical computer science, random spanning trees

have found a number of applications, most notably in

breakthrough results on approximating the traveling sales-

person problem with symmetric [GSS11] and asymmetric

costs [AGM+10]. Goyal et al. [GRV09] demonstrated that

adding just two random spanning trees sampled from a

bounded degree graph gives a O(log n) cut sparsifier with

probability 1 − o(1). Later, it was shown by Fung, Har-

iharan, Harvey, Panigraphi [FHHP11], that if we sample

O(ε−2 log2 n) random spanning trees from a graph, reweight

the tree edges by the inverse of their leverage scores in the

original graph, and average them together, then whp. we get

a graph where every the weight of edges crossing every cut

is approximately the same in as in the original graph, up

to a factor (1 ± ε). We refer to this as an ε-cut sparsifier.

The techniques of Fung et al. unfortunately do not extend

to proving spectral sparsifiers.

Spectral graph sparsifiers were introduced by Spielman

and Teng [ST04], who for any graph G showed how to

construct a another graph H with ε−2n poly log n edges s.t.

(1 − ε)LG � LH � (1 + ε)LG, which we refer to as an ε-
spectral sparsifier. The construction was refined by Spielman

and Srivastava [SS11], who suggested sampling edges inde-

pendently1 with probability proportional to their leverage
scores, and brought the number of required samples down

to ε−2n log n. This analysis is tight in the sense that if fewer

than o(ε−2n log n) samples are used, there will be at least a

1/ poly(n) probability of failure. Meanwhile, ε−2n logn
log logn

independent samples in a union of cliques can be shown

whp. to fail to give a cut sparsifier. This can be observed

directly from the degree distribution of a single vertex in

the complete graph. For a variant of [SS11] sampling based

on flipping a single coin for each edge to decide whether to

keep it or not, it can also be shown that when the expected

number of edges is ε−2n logn
log logn , whp. the procedure fails

to give a cut sparsifier. For arbitrary sparsification schemes,

bounds in [BSS12] show that Θ(ε−2n) edges are necessary

and sufficient to give an ε-spectral sparsifier.
The marginal probability of an edge being present in a

random spanning tree is exactly the leverage score of the

edge. This seems to suggest that combining ε−2 poly log n
spanning trees might give a spectral sparsifier, but the lack of

independence between the sampled edges means the process

cannot be analyzed using existing techniques. Observing

this, Baston, Spielman, Srivastava, Teng [BSST13] in their

excellent 2013 survey on sparsification noted that “it re-
mains to be seen if the union of a small number of random
spanning trees can produce a spectral sparsifier.” We answer

this question in the affirmative. In particular, we show that

adding together O(ε−2 log2 n) spanning trees with edges

scaled proportional to inverse leverage scores in the original

graph leads to a ε-spectral sparsifier. This matches the bound

obtained for cut sparsifiers in [FHHP11]. Our result also im-

plies their earlier bound since a spectral sparsifier is always

a cut sparsifier with the same approximation quality. Before

our result, only a trivial bound on the number of spanning

trees required to build a spectral sparsifier was known.

In particular standard matrix concentration arguments like

those in [SS11] prove that O(ε−2n log n) spanning trees

suffice. Lower bounds in [FHHP11] show that whp. Ω(logn)
random spanning trees are required to give a constant factor

spectral sparsifier.

We show that whp. ε−2 logn
log logn random spanning trees

do not give an ε-spectral sparsifier. We also show that the

Laplacian of a single random tree with edges weighted as

1[SS11] analyzed sampling with replacement, but based on [Tro12],
a folklore result shows the same behavior can be obtained by doing
independent coin flips for every edge with low leverage score, again with
inclusion probabilities proportional to leverage scores.
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above satisfies LT � O(log n)LG whp., and we give an

almost matching lower bound, showing that in some graphs

whp. LT �� O( logn
log logn )LG. Before our work, the main

result known about approximating graphs using O(1) ran-

dom spanning trees is due to Goyal, Rademacher, Vempala

[GRV09], who showed that surprisingly, when the original

graph has bounded degree, adding two random spanning

trees gives a graph whose cuts approximate the cuts in the

original graph up to a factor O(log n) with good probability.

Our result for a single tree establishes only a one-sided

bound an interesting open question remains: Does sampling

O(1) random spanning trees give a log n-factor spectral

sparsifier with, say, constant probability?

A. Previous work

Chernoff-type bound for matrices.: Chernoff-like

bounds for matrices appear in Rudelson [Rud99] and

Ahlswede and Winter [AW02]. The latter introduced a useful

matrix-variant of the Laplace transform that is central in con-

centration bounds for scalar-valued matrices. Their bounds

restricted to iid random matrices, an artifact of their use

of the Golden-Thompson inequality for bounding traces. In

contrast, Tropp obtained more flexible concentration bounds

for random matrices by using a result of Lieb to bound

the expected trace of various operators [Tro12], including

bounds for matrix martingales [Tro11b].

In a recent work by Garg, Lee, Song and Srivastava

[GLSS18], they show a Chernoff bound for sums of matrix-

valued random variables sampled via a random walk on

an expander graph. This work confirms a conjecture due

Wigderson and Xiao. The proof of Garg et al. is also

concerned with matrices that are not fully independent. In

this case the matrices are generated from random walks on

an expander graph. The main idea to deal with dependence

issue is using a new multi-matrix extension of the Golden-

Thompson inequality and an adaptation of Healy’s proof of

the expander Chernoff bound in the scalar’s case [Hea08]

to matrix case. Their techniques deal with fairly generic

types of dependence, and cannot leverage the very strong

stability properties that arise from the negative dependence

and stochastic covering properties of Strongly Rayleigh

distributions. Harvey and Olver [HO14] proved a matrix

concentration result for randomized pipage rounding, which

can be used to show concentration results for random

spanning trees obtain from pipage rounding, but not for

(weighted) uniformly random spaning trees. The central

technical element of their proof is a new variant of a theorem

of Lieb on concavity of certain matrix trace functions.

Matrix martingales have played a central role in a num-

ber of algorithmic results in theoretical computer science

[KS16], [CMP16], [KPPS17], but beyond a reliance on

Tropp’s Matrix Freedman Inequality, these works have little

in common with our approach. However, our bound does

share a technical similarity with [KS16], namely that a

sequence of increasingly restricted random choices in a

martingale process lead to a log n factor in a variance bound.

Strongly Rayleigh Distributions in Theoretical Com-
puter Science.: Perhaps the most prominent result on

Strongly Rayleigh distributions in theoretical computer sci-

ence is the generalization of [MSS13] to Strongly Rayleigh

distributions.

The central technical result of [MSS13] essentially

shows that given a collection of independent ran-

dom vectors v1, . . . , vm with finite support in C
n s.t.∑m

i=1 E[viv
∗
i ] = I and for all i, ‖vi‖2 ≤ ε, then

Pr[‖∑m
i=1 viv

∗
i ‖ ≤ (1 +

√
ε)2] > 0. [AG15] establishes a

related result for k-homogeneous Strongly Rayleigh dis-

tributions, though they require an additional constraint on

the marginal probability that any given random variable

is non-zero being bounded above by δ, and then estab-

lish Pr[‖∑m
i=1 viv

∗
i ‖ ≤ 4(ε+ δ) + 2(ε+ δ)2] > 0. Based

on this, [AG15] shows2 that given an unweighted k-edge
connected graph G where every edge has leverage score

at most ε, there exists an unweighted spanning tree s.t.

LT � O( 1k + ε) · LG. This is referred to as a spectrally

thin tree with parameter O( 1k + ε).
[AGR16] showed how to algorithmically sample from

k-homogeneous Determinental Point Process in time

poly(k)n log(n/ε), where n is the dimension of matrix

giving rise to the determinental point process and ε is the

allowed total variation distance. Their techniques are based

on generalization proofs of expansion in the base graph

associated with a balanced matroid, a result first established

by [FM92].

Random spanning trees.: Algorithms for sampling ran-

dom spanning trees have a long history, but only recently

have they explicitly used matrix concentration [DKP+17],

[DPPR17], [Sch18]. The matrix concentration arguments in

these papers, however, deal mostly with how modifying

a graph results in changes to the distribution of random

spanning trees in the graph. We instead study how closely

random spanning trees resemble the graph they were initially

sampled from. Whether our result in turn has applications for

improving sampling algorithms for random spanning trees is

unclear.

The fact that spanning tree edges exhibit negative depen-

dence has been used strikingly in concentration arguments

by Goyal et al. [GRV09] to show that two random spanning

trees gives O(log n)-factor approximate cut sparsifier in

bounded degree graphs, with good probability. This is

clearly false when sampling the same number of edges

independently, because this graph has large probability of

having isolated vertices. Goyal et al. improve over indepen-

dent sampling by leveraging the fact that for a fixed tree, in

some sense, very few cuts of a given size exist. This is a

variant of Karger’s famous cut-counting techniques [Kar93],

2Their full statement is more general, see [AG15] Corollary 1.9.
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[KS96] specialized to unweighted trees.

Uses of negatively dependent Chernoff bounds applied

to tree edges also appeared in works on approximation

algorithms for TSP problems [GSS11], [AGM+10], where

additionally the connectivity properties of the tree play an

important role

In contrast, the techniques of Fung et al. [FHHP11] show

that O(ε−2 log2 n) spanning trees suffice to give a (1± ε)-
cut sparsifier, but they do not show that tree-based sparsifiers

improve over independent sampling, The focus of their paper

is to establish that wide range of different techniques for

choosing sampling probabilities all give cut sparsifiers, by

establishing a more flexible framework than the original cut-

sparsifier results of Benczur-Karger [BK96], using related

cut-counting techniques (see [Kar93], [KS96]). To extend

their results to spanning trees, they simply observe that the

(scalar-valued) Chernoff bounds use immediately apply to

negatively dependent variables, and hence edges in spanning

trees.

Fung et at. [FHHP11] also establish a lower bound,

showing that for any constant c, there exists a graph for

which obtaining a factor c-cut sparsifier by averaging trees

requires using at least Ω(logn) trees to succeed with con-

stant probability.

B. Our results and techniques

Theorem I.1. (First main result, a Matrix Chernoff Bound

k-homogeneous Strongly Rayleigh Distributions). Suppose
(ξ1, . . . , ξm) ∈ {0, 1}m is a random vector of {0, 1}
variables whose distribution is k-homogeneous and Strongly
Rayleigh.

Given a collection of PSD matrices A1, . . . Am ∈ R
n×n

s.t. for all e ∈ [m] we have ‖Ae‖ ≤ R and ‖E[∑e ξeAe]‖ ≤
μ.

Then for any ε > 0,

Pr

[∥∥∥∥∥∑
e

ξeAe − E

[∑
e

ξeAe

]∥∥∥∥∥ ≥ εμ

]

≤ n exp

(
− ε2μ

R(log k + ε)
Θ(1)

)
This Matrix Chernoff bound matches the bounds due

to Tropp [Tro12], up to the log k factor in the exponent.

We know that the bound is essentially tight in some cases

when ε ≈ log k
log log k , since if we could replace the log k

factor in Theorem I.1 with a factor log k
log log k , then applying

this strengthened version to improve the concentration in

Theorem I.5 would lead to a contradiction of the lower

bound in Theorem I.6. We do not know if the theorem is

tight in other regimes, and it seems plausible that it should be

possible to improve Theorem I.3 to show that O(ε−2 log n)
suffice to get an ε-spectral sparsifier. This perhaps suggests

there are regimes where our Theorem I.1 is not tight.

Remark I.2. When the Strongly Rayleigh distribution is
in fact a product distribution on a collection of l Strongly
Rayleigh distributions that are each t-homogeneous, then
the joint distribution is lt-homogeneous Strongly Rayleigh,
but in Theorem I.1, the factor log(lt) can be replaced by a
factor log t. This applies to the case of independent random
spanning trees, but only gives a constant factor improvement
in the number of trees required.

Our work is related to the concentration inequality of

Peres and Pemantle [PP14], who showed a concentration

result for scalar-valued Lipschitz functions of Strongly

Rayleigh distributions. They used Doob martingales (mar-

tingales constructed from sequences of conditional expec-

tations) to prove their result. We use a similar approach

for matrices, constructing Doob matrix martingales from

our Strongly Rayleigh distributions. In addition, we use the

stochastic covering property of Strongly Rayleigh distribu-

tions observed by Peres and Pemantle, but implicitly derived

in [BBL09]. This property leads to bounded differences in

Doob martingale sequences for scalars. As in the scalar set-

ting, it is possible to show concentration results for matrix-

valued martingales. We use the Matrix Freedman inequality3

of Tropp. This inequality allows makes it possible to estab-

lish strong concentration bounds based on control of sample

norms and control of the predictable quadratic variation
process of the martingale, a matrix-valued object that is used

to measure variance (see [Tro11b]). We show that as in the

scalar setting, the stochastic covering property of Strongly

Rayleigh distributions leads to bounded differences for Doob

matrix martingales. But, we also combine the stochastic

covering property with deceptively simple matrix martingale

properties and a negative dependence condition to derive

additional bounds on the predictable quadratic variation

process of the martingale. The key negative dependence

property we use is a simple observation that generalizes,

to k-homogeneous Strongly Rayleigh distributions, the fact

that in a random spanning tree, conditioning on the presence

of a set of edges lowers the marginal probability of every

other graph edge being in the tree (see Lemma I.10).

While we frame it differently, it is essentially an immediate

consequence of statements in [BBL09]. The surprise here is

how useful this simple observation is for removing issues

with characterizing conditional k-homogeneous Strongly

Rayleigh distributions. As a corollary we get our second

main result.

Theorem I.3. (Second main result, concentration bound of a

batch of independent random spanning trees). Given as input

3Note, however, that we are able to prove deterministic bounds on the
predictable quadratic variation process, which means the bound we use
is more analogous to a matrix version Bernstein’s inequality, adapted to
martingales. We resort to the more complicated Freedman’s inequality
only because it gives a directly applicable statement that is known in the
literature.
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a weighted graph G with n vertices and a parameter ε >
0, let T1, T2, · · · , Tt denote t independent inverse leverage
score weighted random spanning trees, if we choose t =
O(ε−2 log2 n) then with probability 1− 1/ poly(n),

(1− ε)LG �
1

t

t∑
i=1

LTi � (1 + ε)LG.

Prior to our work, only a trivial bound on the number

of spanning trees required to build a spectral sparsifier was

known, namely that standard matrix concentration arguments

like those in [SS11] prove that O(ε−2n log n) spanning trees

suffice. Note that, the number of spanning trees required

to build spectral sparsifier in our Theorem I.3 matches the

number of spanning trees required to construct cut sparsifier

in previous best result [FHHP11]. The total edge count we

require is Θ(ε−2n log2 n), worse by a factor log n than the

bound for independent edge sampling obtained in [SS11]. It
is not clear whether this factor in necessary.

Remark I.4. Suppose we apply our Theorem I.5 to show
that any single random spanning tree satisfies LT �
O(log n) · LG whp. This is tight up a log logn factor.
Then, one can from use this to derive Theorem I.3 based
on a standard (and tight) Matrix Chernoff bound, and a
(laborious) combination of Doob martingales and stopping
time arguments similar to those found in [Tro12], [KS16].
This line of reasoning will lead to the same bounds as
Theorem I.5. Thus, unless one proves more than just a norm
bound for each individual tree, it is not possible improve
over our result, except for log logn factors.

Like the work of Fung et al. our results for spanning

trees do not improve over the independent case. Fung et al.

achieved their result by combining cut counting techniques

with Chernoff bounds for scalar-valued negatively dependent

variables. In our random matrix setting, there are no clear

candidates for a Chernoff bound for negatively dependent

random matrices that we can adopt, and this type of bound

is exactly what we develop in the Strongly Rayleigh case.

We establish a one-sided concentration result for a single

tree, namely that whp. LT � O(log n) · LG. Again, this is

a direct application of Theorem I.1.

Theorem I.5. (Third main result, upper bound for the

concentration of one random spanning tree). Given a graph
G, let T be a random spanning tree, then with probability
at least 1− 1/ poly(n)

LT � O(log n) · LG.

This upper bound is tight up to a factor log logn as shown

by our almost matching lower bound stated below.

Theorem I.6 (Lower bound for the concentration of one

random spanning tree). There is an unweighted graph G,

s.t. if we sample an inverse leverage score weighted random
spanning tree T , then with probability at least 1− e−n.99

,

LT �� O(log n/ log log n) · LG.

Trivially, the presence of degree one nodes in LT means

that in a complete graph, LG �� cLT for any c < 1. So

choosing any other scaling of the tree will make at least one

of the inequalities LT �� O(log n/ log logn) ·LG and LG ��
0.99LT true with a larger gap. Note that in the complete

unweighted graph the trees we consider have weight Θ(n)
on each edge. A random spanning tree in the complete graph

has diameter about
√
n [RS67]. This can be shown to imply

that for an unweighted random tree T̂ , LG ��
√
nL

̂T . But

once we scale up every edge of the tree by a factor Θ(n),
the diameter bound no longer directly implies a spectral gap

of the form LG �� αLT for some α. In a ring graph, we get

LG �� (n− 2)LT and LT �� LG.
We can also show in general that LT �� O(log n) · LG,

but with a much smaller probability.

Theorem I.7 (Lower bound for the concentration of one

random spanning tree). There is an unweighted graph
G, s.t. if we sample an inverse leverage score weighted
random spanning tree T , then with probability at least
2− logn log logn,

LT �� Ω(logn) · LG.

And we show a lower bound for ε-spectral sparsifiers for

random spanning trees.

Theorem I.8 (Lower bound for the concentration of multiple

random spanning trees). There is an unweighted graph
G, s.t. for any accuracy parameter ε, if we sample t =
O(ε−2 log n) independent random spanning trees with edges
weighted by inverse leverage score, then with probability at
least 1− e−n.99

,

(1− ε)LG ��
1

t

t∑
i=1

LTi and
1

t

t∑
i=1

LTi �� (1 + ε)LG.

Our lower bound is incomparable with that of Fung

et al.[FHHP11], who showed that for any constant c, there
exists a graph for obtaining a factor c-cut sparsifier by

averaging trees requires using at least Ω(logn) trees to suc-

ceed with constant probability. Where Fung et. al [FHHP11]

used triangles in their lower bound construction, our bad

examples are based on collections of small cliques, which

lets us ensure cut differences in even a single tree, by giving

longer-tailed degree distributions. All of our lower bounds

are based on simple constructions from collections of edge

disjoint cliques, and use the fact that the exact distribution

of degrees in a random spanning tree of the complete graph

is known. Note that a lower bound for cut approximation

implies a lower-bound for spectral approximation, because

the contrapositive statement is true: spectral approximation

implies cut approximation.
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Remark I.9. In fact, all our lower bounds also directly
apply for cut approximation, which is a strictly stronger
result. For example, there is an unweighted graph G, s.t.
if we sample an inverse leverage score weighted random
spanning tree T , then with probability at least 1 − e−n.99

,
T has a cut which is larger than the corresponding cut in
G by a factor Ω(logn/ log log n).

Connection to Spectrally Thin Trees: Using their MSS-

type existence proof for “small norm outcomes” of homoge-

neous Strongly Rayleigh distributions, [AG15] showed that

in an unweighted k-edge connected graph G where every

edge has leverage score at most ε, there exists an unweighted

spanning tree T̂ s.t. L
̂T � O( 1k + ε) · LG. This is referred

to a spectrally thin tree with parameter O( 1k + ε).
In contrast, applying our k-homogeneous Strongly

Rayleigh Matrix Chernoff bound to an unweighted graph

G where every edge has leverage score at most ε, we can

show that an unweighted random spanning tree satisfies

LT � O(ε log n)LG with high probability. This follows

immediately from our Theorem I.5, because if we let T
denote the unweighted spanning tree and T̂ corresponding

spanning tree with edges weighted by inverse leverage

scores, then

L
̂T =

∑
e∈T

w(e)beb
ᵀ
e

� ε
∑
e∈T

1

l(e)
w(e)beb

ᵀ
e

= εL
̂T

� O(ε log n)LG

whp.

The proof in [AG15] is based on an adaptation of the

[MSS13] proof, and does not have clear parallels with our

approach. Whereas the key properties of Strongly Rayleigh

distributions that we use are stochastic covering (a property

that limits change in a distribution under conditioning) and

conditional negative dependence, the central element of

their approach is a proof that certain mixed characteristic

polynomials associated with k-homogeneous distributions

are real stable when the original distribution is Strongly

Rayleigh.

The following Lemma captures a simple but crucial prop-

erty of Strongly Rayleigh distributions.

Lemma I.10 (Shrinking Marginals). Suppose
(ξ1, . . . , ξm) ∈ {0, 1}m is a random vector of {0, 1}
variables whose distribution is k-homogeneous and
Strongly Rayleigh, then any set S ⊆ [m] with |S| ≤ k for
all j ∈ [m] \ S

Pr[ξj = 1|ξS = 1S ] ≤ Pr[ξj = 1].

We provide the proof of this lemma in the full version. In

the remaining sections, we prove Theorems I.1, I.3 and I.5.

We defer the proofs of our other results to the full version.

II. NOTATION

We use [n] to denote set {1, 2, · · · , n}. Given a vector x,
we use ‖x‖0 to denote the number of non-zero entries in

the vector.

Matrix and Norms.: For matrix A, we use A� to denote

the transpose of A. We say matrix A is positive-semidefinite

(psd) if A = A� and x�Ax ≥ 0 for all x ∈ R. We use �,�
to denote the semidefinite ordering, e.g. A � 0 means that

A is psd.

For matrix A ∈ R
n×n, we define ‖A‖ to be the spectral

norm of A, i.e.,

‖A‖ = max
‖x‖2=1,x∈Rn

x�Ax.

Let tr(A) denote the trace of a square matrix A. We use

λmax(A) to denote the largest eigenvalue of matrix A. For

symmetric matrix A ∈ R
n×n, λmax(A) = ‖A‖ and tr(A) ≤

n‖A‖.
The Laplacian matrix related definitions.: Let G =

(V,E,w) be a connected weighted undirected graph with

n vertices and m edges and edge weights we > 0. If we

orient the edges of G arbitrarily, we can write its Laplacian

as L = B�WB, where B ∈ R
m×n is the signed edge-vertex

incidence matrix and defined as follows

B(e, v) =

⎧⎪⎨⎪⎩
1, if v is e’s head;

−1, if v is e’s tail;

0, otherwise.

and W ∈ R
m×m is the diagonal matrix with W (e, e) = we.

III. PRELIMINARIES

A. Useful facts and tools

This section, we provide some useful tools. For complete-

ness, we prove the following statement in the full version.

Fact III.1. For any two symmetric matrices

(A−B)2 � 2A2 + 2B2.

B. Strongly Rayleigh distributions

This section provides the definition of Strongly Rayleigh

distributions. For more details, we refer the readers to

[BBL09], [PP14].

Let μ : 2[n] → R≥0 denote a probability distribution over

2[n], and
∑

S⊆[n] μ(S) = 1.
Let x1, x2, · · · , xn denote n variables, we use x to denote

(x1, x2, · · · , xn). For each set S ⊆ [n], we define xS =∏
i∈S xi. We define the generating polynomial for μ as

follows

fμ(x) =
∑
S⊆[n]

μ(S) · xS .

378



We say distribution μ is k-homogeneous if the polynomial

fμ is a homogeneous polynomial of degree k. In other

words, for each S ∈ supp(μ), |S| = k.
We say a polynomial p(x1, x2, · · · , xn) is stable, if

Im(xi) > 0, ∀i ∈ [n], then p(x1, · · · , xn) �= 0. We say

polynomial p is real stable, it is stable and all of its

coefficients are real. We say μ is a Strongly Rayleigh
distribution if fμ is a real stable polynomial.

Fact III.2 (Conditioning on subset of coordinates). Consider
a random vector (ξ1, . . . , ξm) ∈ {0, 1}m whose distribution
is k-homogeneous Strongly Rayleigh. Suppose we get a
binary vector b = (b1, . . . , bt) ∈ {0, 1}t with ‖b‖0 = l ≤ k,
and we get a set S ⊂ [m] with |S| = t. Then conditional on
ξS = b, the distribution of ξ[m]\S is (k − l)-homogeneous
Strongly Rayleigh.

This fact tells us that if we condition on the value of some

entries in the vector, the remaining coordinates still have a

Strongly Rayleigh distribution.

Fact III.3 (Stochastic Covering Property). Consider a ran-
dom vector (ξ1, . . . , ξm) ∈ {0, 1}m whose distribution is
k-homogeneous Strongly Rayleigh. Suppose we are given
an index i ∈ [m]. Let ξ′ = ξ[m]\{i} be the distribution on
entries of ξ except i. Let ξ′′ be the distribution of ξ[m]\{i}
conditional on ξi = 1. Then, there exists a coupling between
ξ′ and ξ′′ (i.e. a joint distribution the two vectors), s.t. in
every outcome of the coupling the value of ξ′ can be obtain
from the value of ξ′′ by either changing a single from 0 to
1 or by leaving all entries unchanged.

This fact is known as the Stochastic Covering Property
(see [PP14]). It gives us a convenient tool for relating the

conditional distribution of a subset of the coordinates of the

vector to the unconditional distribution.

Note that by Fact III.2, the distribution of ξ′′ used in

Fact III.3 is k − 1 homogeneous. In contrast, the outcomes

of ξ′ may have k or k−1 ones. Fact III.3 tells us that we can

pair up all the outcomes of the conditional distribution ξ′′

with outcome of the unconditional distribution ξ′ s.t. only
a small change is required to make them equal. This tells

us that the distribution is in some sense not changing too

quickly under conditioning.

C. Random spanning trees

We provide the formal definition of random spanning tree

in this section.

We use the same definitions about spanning trees as

[DKP+17]. Let TG denote the set of all spanning subtrees of

G. We now define a probability distribution on these trees.

Definition III.4 (w-uniform distribution on trees). Let DG

be a probability distribution on TG such that

Pr
X∼DG

[X = T ] ∝
∏
e∈T

we.

We refer to DG as the w-uniform distribution on TG.

When the graph G is unweighted, this corresponds to the

uniform distribution on TG. Crucially, random spanning tree

distributions are Strongly Rayleigh, as shown in [BBL09].

Fact III.5 (Spanning Trees are Strongly Rayleigh). In a
connected weighted graph G, the w-uniform distribution on
spanning trees is (n− 1)-homogeneous Strongly Rayleigh.

Definition III.6 (Effective Resistance). The effective resis-
tance of a pair of vertices u, v ∈ VG is defined as

Reff(u, v) = b�u,vL
†bu,v,

where bu,v is an all zero vector corresponding to VG, except
for entries of 1 at u and v.

The a reference for following standard fact about random

spanning trees can be found in [DKP+17].

Definition III.7 (Leverage Score). The statistical leverage
score, which we will abbreviate to leverage score, of an edge
e = (u, v) ∈ EG is defined as

le = weReff(u, v).

Fact III.8 (Spanning Tree Marginals). The probability Pr[e]
that an edge e ∈ EG appears in a tree sampled w-uniformly
randomly from TG is given by

Pr[e] = le,

where le is the leverage score of the edge e.

IV. A MATRIX CHERNOFF BOUND FOR STRONGLY

RAYLEIGH DISTRIBUTIONS

We first define a mapping which maps an element into a

psd matrix.

Definition IV.1 (Y -operator). We use Γ to denote [m], we
define a mapping Y : Γ → R

n×n such that Ye is a psd
matrix and ‖Ye‖ ≤ R.

Throughout this section, we will use ξ ∈ {0, 1}m to

denote a random length m boolean vector whose distribution

is k-homogeneous Strongly Rayleigh. For any set S ⊆ [m],
we use ξS to denote the length |S| vector that only chooses

the entry from indices in S.
We will frequently need to work with a different repre-

sentation of the random variable ξ. We use γ to denote this

second representation. The random variable γ is composed

of a sequence of k random indices γ1, γ2, · · · , γk, each of

which takes a value e1, e2, · · · , ek ∈ [m]. The indices give

the locations of the ones in ξ, i.e. in an outcome of the

two variables (ξ, γ), we always have ξ{γ1,γ2,··· ,γk} = 1 and

ξ[m]\{γ1,γ2,··· ,γk} = 0. Additionally, we want to ensure that

the distribution of γ is invariant under permutation: This

can clearly be achieved by starting with any distribution

for γ that satisfies the coupling with ξ and the applying
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a uniformly random permutation to reorder the k indices of

γ (see [PP14] for a further discussion).

For convenience, for each i ∈ [k], we define γ≤i and γ≥i

as abbreviated notation for

γ1, γ2, · · · , γi and γi, γi+1, · · · , γk
respectively. Let S = {e1, e2, · · · , ei} ⊂ [m] be one possible

assignment for indices of a subset of the ones in ξ, (we

require i ≤ k). Then the distribution of ξ[m]\S conditional

on ξS = 1 is the same as the the distribution of ξ[m]\S
conditional on (γ1, γ2, · · · , γi) = (e1, e2, · · · , ei). In other

words, in terms of the resulting distribution of ξ[m]\S , it is
equivalent to condition on either γ≤i or ξγ≤i

= 1. We define

matrix Z ∈ R
n×n as follows.

Definition IV.2 (Z). Let Z denote
∑

e∈Γ ξe · Ye where
‖ξ‖0 = k. Due to the relationship between ξ and γ, we
can also write Z as

Z =
k∑

i=1

Yγi .

For simplicity, for each i ∈ [k], we define Z≤i and Z≥i as
follows,

Z≤i =
i∑

j=1

Yγj
and Z≥i =

k∑
j=i

Yγj
.

We define a series of matrices Mi ∈ R
n×n as follows

Definition IV.3 (Mi, martingale). We define M0 = E[Z].
For each i ∈ {1, 2, · · · , k − 1}, we define Mi as follows

Mi = E
γ≥i+1

[Z | γ1, · · · , γi].

It is easy to see that

E
γi+1

[Mi+1] =Mi,

which implies

E
γi+1

[Mi+1 −Mi | γ1, · · · , γi] = 0.

We can rewrite the Z in Mi+1 in the following sense,

Z =
k∑

j=i+2

Yγj + Yγi+1 +
i∑

j=1

Yγj

= Z≥i+2 + Yγi+1 + Z≤i. (1)

For the Z in Mi, we can write it as

Z =
k∑

j=i+1

Yγ̂j
+

i∑
j=1

Yγj

= Ẑ≥i+1 + Z≤i. (2)

Note that k-homogeneous Strongly Rayleigh implies the

stochastic covering property. By [BBL09], [PP14], stochastic

covering property implies that coupling is exists between

Z≥i+2 and Yγ̂i+1
, thus

Z≥i+2 + Yγ̂i+1
= Ẑ≥i+1. (3)

We define Xi+1 =Mi+1 −Mi and then

E
γi+1

[Xi+1|γ1, · · · , γi] = 0. (4)

Then we can rewrite Xi+1 in the following way,

Claim IV.4. Let Dγ≤i+1
denote the coupling distribution

between Z≥i+2 and Yγ̂i+1
such that Eq. (3) holds. Then

Xi+1 = Yγi+1
− E

(Z≥i+2,Yγ̂i+1
)∼Dγ≤i+1

[Yγ̂i+1
| γ≤i+1].

We provide the proof of the above Claim in the full

version.

Fact IV.5. We conditioning on γ≤i+1 are already fixed. Let
Dγ≤i+1

denote the coupling distribution such that Z≥i+2 +

Yγ̂i+1
= Ẑ≥i+1 holds. We define Uγi+1 as follows

Uγi+1
= E

(Z≥i+2,Yγ̂i+1
)∼Dγ≤i+1

[Yγ̂i+1
| γ≤i+1].

Then, we have the following four properties,

(I) E
γi+1

[Uγi+1
| γ≤i] = E

γi+1

[Yγi+1
| γ≤i],

(II) ‖Yγi+1
‖ ≤ R, ‖Uγi+1

‖ ≤ R,

(III) ‖Yγi+1
− Uγi+1

‖ ≤ R,

(IV) Y 2
γi+1

� R · Yγi+1
, U2

γi+1
� R · Uγi+1

.

We provide the proof of the above Fact in the full version.

We can show

Claim IV.6.

E
γi+1

[
(Yγi+1

− Uγi+1
)2 | γ≤i

]
� 4R · E

γi+1

[Yγi+1
|γ≤i]

Proof:

E
γi+1

[
(Yγi+1

− Uγi+1
)2 | γ≤i

]
� E

γi+1

[
2Y 2

γi+1
+ 2U2

γi+1
| γ≤i

]
� E

γi+1

[
2R · Yγi+1 + 2R · Uγi+1 | γ≤i

]
� E

γi+1

[
4R · Yγi+1

| γ≤i

]
,

where the first step follows by Fact III.1, and the second

step follows by U2
γi+1

� R · Uγi+1 and Y 2
γi+1

� R · Yγi+1 .

Lemma IV.7. Let E[
∑

e∈Γ ξeYe] � μI . For each i ∈
{1, 2, · · · , k}, we have

E
γi

[Yγi
| γ≤i−1] �

1

k + 1− i
μI.

Proof: We use 1 to a length i − 1 vector where each

entry is one. We can think of γ≤i−1 are already chosen to
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some e ∈ Γ, for example γ1 = e1, · · · , γi−1 = ei−1. Note

that, all of e1, · · · , ei−1 are different. Then we use Γ\γ≤i−1
to denote Γ\{e1, · · · , ei−1}.

E [Yγi
| γ≤i−1] =

∑
e∈Γ\γ≤i−1

Pr[γi = e | γ≤i−1] · Ye

=
∑

e∈Γ\γ≤i−1

Pr[ξe = 1 | γ≤i−1]
k − (i− 1)

· Ye

=
∑

e∈Γ\γ≤i−1

Pr[ξe = 1 | ξγ≤i−1
= 1]

k − (i− 1)
· Ye

�
∑

e∈Γ\γ≤i−1

Pr[ξe = 1]

k − (i− 1)
· Ye

�
∑
e∈Γ

Pr[ξe = 1]

k − (i− 1)
· Ye

=
1

k − (i− 1)
E

[∑
e

ξeYe

]
� 1

k + 1− i
μI

where the first step follows by definition of expectation, the

second step follows by Pr[γi = e | γ≤i−1] = Pr[ξe =
1 | γ≤i−1]/(k − (i − 1)), the third step follows [·|γ≤i−1]
is equivalent to [·|ξγ≤i−1 = 1], the fourth step follows by

(Pr[ξe = 1 | ξγ≥i−1 = 1] ≤ Pr[ξe = 1]) from Shrinking

Marginals Lemma I.10, the fifth step follows by relaxing

Γ\γ≤i−1, the sixth step follows by Pr[ξe = 1] = E[ξe]
and linearity of expectation, and the last step follows by

E[
∑

e∈Γ ξeYe] � μI .

Lemma IV.8. For each i ∈ {1, 2, · · · , k}

E
γi

[
X2

i | γ≤i−1
]
� 4μR

1

k + 1− i
I.

Proof: It follows by combining Claim IV.6 and

Lemma IV.7 directly.

The above lemma implies this corollary directly

Corollary IV.9.

k∑
i=1

E
γi

[
X2

i | γ≤i−1
]
� 10μR log k · I.

A. Main result

Before finally proving our main theorem I.1, we state a

useful tool: Freedman’s inequality for matrices

We state a version from [Tro11b], and there is also another

version can be found in [Oli09].

Theorem IV.10 (Matrix Freedman). Consider a matrix mar-
tingale {Yi : i = 0, 1, 2, · · · } whose values are self-adjoint
matrices with dimension n, and let {Xi : i = 1, 2, 3, · · · } be

the difference sequence. Assume that the difference sequence
is uniformly bounded in the sense that

λmax(Xi) ≤ R, almost surely for i = 1, 2, 3, · · · .
Define the predictable quadratic variation process of the
martingale :

Wi =
i∑

j=1

E
j−1

[X2
j ], for i = 1, 2, 3, · · · .

Then, for all t ≥ 0 and σ2 > 0,

Pr
[
∃i ≥ 0 : λmax(Yi) ≥ t and ‖Wi‖ ≤ σ2

]
≤ n · exp

(
− t2/2

σ2 +Rt/3

)
.

Now, we are ready to prove our main theorem,

Theorem I.1. (First main result, a Matrix Chernoff Bound

k-homogeneous Strongly Rayleigh Distributions). Suppose
(ξ1, . . . , ξm) ∈ {0, 1}m is a random vector of {0, 1}
variables whose distribution is k-homogeneous and Strongly
Rayleigh.

Given a collection of PSD matrices A1, . . . Am ∈ R
n×n

s.t. for all e ∈ [m] we have ‖Ae‖ ≤ R and ‖E[∑e ξeAe]‖ ≤
μ.

Then for any ε > 0,

Pr

[∥∥∥∥∥∑
e

ξeAe − E

[∑
e

ξeAe

]∥∥∥∥∥ ≥ εμ

]

≤ n exp

(
− ε2μ

R(log k + ε)
Θ(1)

)
Proof: We use Y to denote A and Γ to denote [m].

In order to use Theorem IV.10, we first we define Wi as

follows

Wi =
i∑

j=1

E
γi

[
X2

i | γ≤i−1
]
.

According to definition of Mi, {M0,M1,M2 · · · } is a

matrix martingale and Mk−M0 =
∑

e ξeAe−E[
∑

e ξeAe].
We have proved the following facts,

The first one is, Eγi [Xi|γ≤i−1] = 0. It follows by Eq. (4)

The second one is

λmax(Xi) ≤ R

It follows by combining Property (III) of Fact IV.5 and

Claim IV.4.

The third one is

‖Wi‖ ≤ σ2, ∀i ∈ [k]
where σ2 = 10μR log k. It follows by Corollary IV.9.

Thus,

Pr [λmax(Mk −M0) ≥ εμ] ≤ n exp

(
− (εμ)2/2

σ2 +R(εμ)/3

)
.
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We have

t2/2

σ2 +Rt/3
=

ε2μ2/2

10μR log k +Rεμ/3
by choosing t = εμ

=
3ε2μ

(60 log k + 2ε)R
.

Thus we prove one side of the bound. Since

Eγi [−Xi|γ≤i−1] = 0 and Eγi [(−Xi)
2|γ≤i−1] =

Eγi [X
2
i |γ≤i−1], then following the similar procedure

as proving λmax, we have bound for λmin

Pr[λmin(Mk −M0) ≤ −εμ] ≤ n exp

(
− 3ε2μ

(60 log k + 2ε)R

)
.

Putting two sides of the bound together, we complete the

proof.

V. APPLICATIONS TO RANDOM SPANNING TREES

In this section, we show how to use Theorem I.1 to prove

the bound for one random spanning and also summation of

random spanning trees.

Theorem I.5. (Third main result, upper bound for the

concentration of one random spanning tree). Given a graph
G, let T be a random spanning tree, then with probability
at least 1− 1/ poly(n)

LT � O(log n) · LG.

Proof:
Let G = (V,E,w) be a undirected weighted graph, w :

E → R, which is connected. The Laplacian of G is LG =∑
e∈E w(e)beb

ᵀ
e .

Let T ⊆ E be a random spanning tree of G in the sense

of Definition III.4. Let the weights of the edges in T be

given by w′ : T → R where w′(e) = w(e)/le, where le
is the leverage score of e in G. Thus the Laplacian of the

tree is LT =
∑

e∈T w′(e)bebᵀe =
∑

e∈T
w(e)
le

beb
ᵀ
e . Then by

Fact III.8, Pr[e ∈ T ] = le, and hence E[LT ] = LG.

Note also that for all e ∈ E,

||(L†G)1/2w(e)bebᵀe (L
†
G)

1/2|| = le. Consider the random

matrix (L†G)
1/2LT (L

†
G)

1/2. The distribution of edge in the

spanning tree can be seen as an n− 1 homogeneous vector

in {0, 1}m where m = |E|. To apply Theorem I.1, let ξe
be the eth entry of this random vector, and

Ae = (L†G)
1/2w′(e)bebᵀe (L

†
G)

1/2

Note Ae � 0. Now ||Ae|| = 1 and E [
∑

e ξeAe] =

E[(L†G)
1/2LT (L

†
G)

1/2] = (L†G)
1/2LG(L

†
G)

1/2 = Π =
I − 1

n11
ᵀ, where we used in the last equality that the null

space of the Laplacian of a connected graph is the span of the

all ones vector. Thus, as each we get ||E [∑e ξeAe] || = 1
This means we can apply Theorem I.1 with R = 1, μ = 1
and ε = 100 logn to whp. ||(L†G)1/2LT (L

†
G)

1/2 − Π|| ≤
100 log n.

As LT is a Laplacian, it has 1 in the null space, so

can conclude that (L†G)
1/2LT (L

†
G)

1/2 � 100 lognΠ. Hence

LT � log nLG.

Theorem I.3. (Second main result, concentration bound of a

batch of independent random spanning trees). Given as input
a weighted graph G with n vertices and a parameter ε >
0, let T1, T2, · · · , Tt denote t independent inverse leverage
score weighted random spanning trees, if we choose t =
O(ε−2 log2 n) then with probability 1− 1/ poly(n),

(1− ε)LG �
1

t

t∑
i=1

LTi
� (1 + ε)LG.

Proof: The proof is similar to the proof of Theorem I.5.

Now we viewing edges of t = O(ε−2 log2 n) indepen-

dent random spanning trees as a t(n − 1)-homogeneous

Strongly Rayleigh Distribution a vector in {0, 1}t|E| .

Note that the product of independent Strongly Rayleigh

distributions is Strongly Rayleigh [BBL09]. Again we get

||E [∑e ξeAe] || = 1, but now we can take R = 1
t , and hence

we obtain the desired result by plugging into Theorem I.1.
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