
Average-case reconstruction for the deletion channel:
subpolynomially many traces suffice

Yuval Peres

Microsoft Research
Redmond, WA, USA

Email: peres@microsoft.com

Alex Zhai

Department of Mathematics
Stanford University
Stanford, CA, USA

Email: azhai@stanford.edu

Abstract—The deletion channel takes as input a bit string x ∈
{0, 1}n, and deletes each bit independently with probability q,
yielding a shorter string. The trace reconstruction problem is to
recover an unknown string x from many independent outputs
(called “traces”) of the deletion channel applied to x.

We show that if x is drawn uniformly at random and
q < 1/2, then eO(log1/2 n) traces suffice to reconstruct x with
high probability. The previous best bound, established in 2008
by Holenstein, Mitzenmacher, Panigrahy, and Wieder [1], uses
nO(1) traces and only applies for q less than a smaller threshold
(it seems that q < 0.07 is needed).

Our algorithm combines several ideas: 1) an alignment
scheme for “greedily” fitting the output of the deletion channel
as a subsequence of the input; 2) a version of the idea of
“anchoring” used in [1]; and 3) complex analysis techniques
from recent work of Nazarov and Peres [2] and De, O’Donnell,
and Servedio [3].

Keywords-deletion channel; trace reconstruction; sequence
alignment

I. INTRODUCTION

The deletion channel takes as input a bit string x ∈
{0, 1}n. Each bit of x is (independently of other bits)

retained with probability p and deleted with probability

q := 1−p. The channel then outputs the concatenation of the

retained bits; such an output is called a trace. Suppose that

the input x is unknown. The trace reconstruction problem
asks the following: how many i.i.d. traces from the deletion

channel do we need to observe in order to determine x with

high probability?
There are two basic variants of this problem, which we

will call the “worst case” and “average case”. In the worst

case variant, the problem is to provide bounds that hold

uniformly over all possible input strings x. The average

case variant supposes that the input is chosen uniformly at

random. In particular, we are allowed to ignore some “hard-

to-reconstruct” inputs, as long as they comprise a small

fraction of all 2n possible inputs. In this paper, we study

the average case. Our main result is the following.

Theorem 1. Suppose q < 1
2 , and let X ∈ {0, 1}n be an

unknown bit string of length n chosen uniformly at random.
There is a constant Cq depending only on q such that it is
possible to reconstruct X with probability at least 1 − Cq

n

using at most exp
(
Cq

√
log n

)
independent samples from the

deletion channel with deletion probability q applied to X.

A. Related work

The study of trace reconstruction for the deletion channel

seems to have been initiated by Batu, Kannan, Khanna and

McGregor [4], who were motivated by multiple sequence

alignment problems in computational biology. We focus on

the regime where the deletion probability q is held constant

as n grows.

Previously, the best bound in the average case was due to

Holenstein, Mitzenmacher, Panigrahy and Wieder [1], who

gave an algorithm for reconstructing random inputs using

polynomially many traces when q is less than some small

threshold c.1 Theorem 1 improves on this result in two ways:

the number of traces is subpolynomial, and we extend the

range of allowed q to the interval (0, 1/2).

In [1] it is also shown that eO(n1/2 logn) traces suffice for

reconstruction with high probability with worst case input.

This was recently improved by Nazarov-Peres [2] and De-

O’Donnell-Servedio [3] (simultaneously and independently)

to eO(n1/3). Their techniques, which we use in Section IV,

play an important role in our proofs.

The question of whether the above bounds are optimal

remains open. The best lower bounds known are of order

log2 n (McGregor, Price and Vorotnikova [5]) in the average

case and order n in the worst case ([4]).

Other settings for trace reconstruction include the case

when q → 0 ([4]), when insertions and substitutions are

allowed as well as deletions ([6], [7]), or when the strings

are taken over an alphabet whose size grows with n ([5]).

For a more comprehensive review of the literature, see the

introduction of [3] or the survey of Mitzenmacher [8].

B. Outline of approach

Let us give a high-level description of the algorithm

used to prove Theorem 1. Suppose that we have already

reconstructed the first k bits of X, and we consider a new

trace X̃. Roughly speaking, our goal is to do the following:

1The threshold c is not given explicitly in [1]. It seems that by optimizing
their methods we cannot achieve c > 0.07.

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.29

228

X
m k n

w

X̃

�0

w

�

Figure I.1: Illustration of the alignment strategy. Dotted lines indicate

correspondences between positions in ˜X and positions in X.

Alignment: Find some suitable index m slightly less

than k, and try to (approximately) identify the position

� in X̃ that corresponds to the m-th position of X. This

occurs in two stages (see Figure I.1):

Initial alignment: Find a position �0 in X̃ whose

corresponding position in X is known to be about

O(log n) places ahead of m.

Refined alignment: Consider a specific sub-

string w of X located at m and having length

O(log1/2 n). Look for w to occur in X̃ within

O(log n) characters following position �0, and take

� to be the last position of this occurrence of w.

Reconstruction: Use the bits of X̃ after � as a trace

of the bits of X after m. From these “traces”, we

reconstruct at least k + 1−m bits of X starting from

position m, which in particular includes the (k+1)-th
bit of X.

We can repeat the above procedure for each k. In each

iteration, the number of traces needed will be eO(
√
logn).

Moreover, these traces may be reused for each iteration,

because we will ultimately bound the probability of failure

by a union bound.
1) Initial alignment step: The initial alignment step is

based on fitting X̃ as a subsequence of X following a

“greedy algorithm”. Let Xi and X̃i denote the i-th bits of

X and X̃, respectively. We associate X̃1 to the first bit in

X that matches X̃1, then associate X̃2 to the next bit in

X that matches X̃2, and so on (see Figure I.2). This gives

the “first possible” occurrence of X̃ as a subsequence of X,

but does not necessarily reflect the true alignment of X̃ to

X. However, when q < 1/2 and X is random, it turns out

that this greedy alignment actually matches the true one to

within O(log n) (stated precisely in Lemma 1).

Let us briefly describe why this is so. Suppose the position

assigned by our greedy algorithm lags behind the true

position. Looking at the next bit in the trace, the true position

should advance by 1
1−q < 2 places in expectation. However,

since the bits of X are uniformly random, the position for the

greedy algorithm should advance like a geometric random

variable with mean 2, thereby “catching up”.

The same greedy matching idea was also considered

by Mitzenmacher (see Section 3 of [8]) in the context of

decoding for the deletion channel. Lemma 1 is a variant of

Theorem 3.2 in [8]. However, many details are omitted in

[8], so we provide a self-contained proof in Section II.

X:

X̃:

Figure I.2: Illustration of the greedy algorithm used in the initial alignment

step. Here, X = 11000110 and ˜X = 1010. Gray arrows point from the

positions in X that were retained to their corresponding positions in ˜X.

Red arrows indicate the associations produced by our algorithm (i.e. ˜X1

goes to X1, ˜X2 goes to X3, ˜X3 goes to X6, ˜X4 goes to X8).

2) Refined alignment step: For the refined alignment, we

take an approach similar to the use of “anchors” in [1].

We again rely on the randomness of X and the assumption

q < 1/2. Consider a substring w of length a ≈ log1/2 n
which contains the m-th bit of X. (In the language of [1],

w is our “anchor”.)

With probability pa, the string w appears in our trace

because none of its bits were deleted. There is also a chance

that this exact sequence just happens to appear after deletions

to another part of the input. However, because X is random,

the latter scenario only happens with probability 2−a � pa.

Thus, when we see w in our trace, it most likely came from

near position m of X (we discard traces if we do not see

w), thereby aligning to within O(log1/2 n).
We remark here that the above discussion sweeps under

the rug a few considerations about how to avoid accumu-

lation of many small probabilities of error. In particular,

note that the error probabilities involved during the refined

alignment step are like e−O(log1/2 n), which is not small

enough to union bound over the whole string.

For example, a problem may arise if we have another

copy of w appearing in X that is only O(log n) positions

away from m. In that case, appearances of w in X̃ might

come from either copy of w in X, and it would be hard to

distinguish the two scenarios.

Recall, however, that we have allowed ourselves some

flexibility in the choice of m. Note that the initial alignment

step means that we only need to worry about what X looks

like within distance O(log n) from the location m. We look

at O(log1/2 n) possible locations of m which are spaced

O(log n) apart, and we argue that with high probability, at

least one of these locations (and the corresponding choice

of w) behaves in the desired way.

3) Reconstruction step: For the reconstruction step, we

analyze bit statistics using methods based on those of [2]

and [3]. However, two adaptations are needed. First, our

reconstruction step only needs to recover a small number of

bits, not the full string. The statement we need is roughly

that eO(r1/3) traces are enough to recover the first r bits of

an unknown string, which we apply with r = O(log3/2 n).
Second, since our alignment is not perfect, we must allow

some random shifts of the input string. The amount of

229

shifting we can tolerate is relatively small, which explains

the need for accurate alignment. The issue of calculating bit

statistics with random shifts also appears in [1], although our

techniques for handling this are rather different from theirs.

These two adaptations can be carried out by small modi-

fications to proofs in [2] and [3], which are based on bounds

for Littlewood polynomials on arcs of the unit circle.

C. Notation

We will use boldface to denote bit strings, while the values

of their bits are non-bolded and subscripted by indices; for

example, x = (x1, x2 . . . , xn) ∈ {0, 1}n. Let |x| = n
denote the length of x, and let xa:b denote the substring

(xa, xa+1, . . . , xb). For brevity, we also write xa: = xa:|x|

for the suffix of x starting at xa.

Next, we introduce notation for describing the deletion

channel. For a given parameter p ∈ (0, 1), let D∗p(x) denote

the distribution over pairs (t, x̃) of sequences defined as

follows: t = (t1, t2, . . . , tm) is the random sequence of

indices of x which are retained by the deletion channel

applied to x with deletion probability q = 1 − p, and

x̃ = (x̃1, x̃2, . . . , x̃m) is given by x̃i = xti . Note that the

length m = |t| is random.

In some cases, we are only interested in the final output x̃
and not in t. Thus, we also introduce the notation Dp(x) for

the marginal distribution of D∗p(x) over the strings x̃. We

will sometimes use the notation Px(·) to emphasize that the

string going through the deletion channel is x.

At some point, we will want to use t to associate several

indices at once in x̃ to their counterparts in x, or vice versa.

Consider sets S ⊆ {1, 2, . . . , |x|} and S̃ ⊆ {1, 2, . . . , |x̃|}.
Then, we use the notation

t(S̃) := {ts : s ∈ S̃} and t−1(S) := {s : ts ∈ S},
which matches the usual notation for images/preimages if t
is regarded as a map from indices in x̃ to indices in x.

Finally, in addition to the standard notation O(·) and

Ω(·), we also use Op(·) and Ωp(·) in cases where the

implied constant may depend on p but nothing else.

D. Organization of the paper

The rest of the paper is organized as follows. In Sections

II and III, we prove the lemmas needed for the initial

and refined alignment steps, respectively. In Section IV, we

prove lemmas for the reconstruction step. Finally, in Section

V, we pull together all the ingredients to prove Theorem 1. A

few proofs of technical lemmas are omitted in this condensed

version of the paper; see [9] for full details.

II. ALIGNMENT BY GREEDY MATCHING

Suppose we have a string x ∈ {0, 1}n and a sample

(t, x̃) ∼ D∗p(x). Given only x and x̃, it is not in general

possible to infer uniquely what t is. However, we may obtain

an approximation using a “greedy algorithm” as described

in Section I-B. To state things precisely, consider any two

bit strings x and y. We define a sequence (gk(y,x))
|y|
k=1 as

follows:

• Take g1(y,x) to be the least index such that xg1(y,x) =
y1. If no bits in x are equal to y1, we set g1(y,x) =∞.

• For k < |y|, define inductively gk+1(y,x) to be the

least index greater than gk(y,x) for which xgk+1(y,x) =
yk+1. If no bits in x after the gk(y,x)-th position are

equal to yk+1, we set gk+1(y,x) = ∞. (Note that in

particular if gk(y,x) =∞, then gk+1(y,x) =∞).

We are primarily interested in the case where y = x̃,

where x̃ is a trace drawn from Dp(x). In this situation,

gk(x̃,x) represents the “earliest possible” place in x that

the k-th bit of x̃ could have come from. For an illustration,

we refer back to Figure I.2. In that picture, we have

g1(x̃,x) = 1, g2(x̃,x) = 3, g3(x̃,x) = 6, and g4(x̃,x) = 8.

One may check by a straightforward induction that

gk(x̃,x) ≤ tk for all 1 ≤ k ≤ |x̃|. (This means that gk(x̃,x)
is never ∞; the possibility of having gk(y,x) =∞ doesn’t

come into play until the proof of Lemma 11.) We will show

that for retention probability p > 1
2 and x drawn uniformly

at random, gk(x̃,x) is usually not much less than tk. The

following definition makes this precise.

Definition 1. Consider a sequence x ∈ {0, 1}n, and take
(t, x̃) ∼ D∗p(x). We say that x is (α, β)-trackable if

Px

(
max

1≤k≤|t|
(tk − gk(x̃,x)) ≥ λ

)
≤ e−

λ−α
β .

The main result of this section is the following lemma.

Lemma 1. Suppose p > 1
2 , and let X ∈ {0, 1}n be a

uniformly random string of n bits. There exists Cp > 0
depending only on p such that

P (X is (Cp log n,Cp)-trackable) ≥ 1−Op

(
1

n

)
Lemma 1 is implied by Theorem 3.2 of [8]. However,

many details are omitted there, so we devote this section

to proving Lemma 1 formally. We use the same general

approach, except that it is more natural for us to focus on

the quantity tk − gk(X̃,X) rather than a slightly different

quantity considered in [8]. We start with a conditional

independence property similar to Lemma 3.3 of [8].

Lemma 2. Let X ∈ {0, 1}n be drawn uniformly at random,
and suppose (t, X̃) ∼ D∗p(X). Then, for any integer k ≥ 1,
conditioned on the event |t| ≥ k and the values of

t1, t2, . . . , tk and g1(X̃,X), g2(X̃,X), . . . , gk(X̃,X),

the bits Xgk(X̃,X)+1, Xgk(X̃,X)+2, . . . , Xn are i.i.d. uni-
formly distributed.

Remark 1. The above lemma also applies when X is an
infinite sequence of i.i.d. uniform bits. In this case, the
conclusion is that all of (Xi)

∞
i=gk(X̃,X)+1

are i.i.d. uniform.

230

Proof: We first condition on t; this conditioning will

stay in effect for the remainder of the proof. Note that all

of the Xi are still i.i.d. uniform, since the ti depend only

on which bits are deleted and not on the values of the bits

themselves. Since we have conditioned on t, we may regard

gi(X̃,X) as a deterministic function of X. Therefore, for

brevity we will write gi(X) = gi(X̃,X).
Next, fix any sequence S of integers s1, s2, . . . , sk where

s1 < s2 < · · · < sk and si ≤ ti for each i. We say a bit

string z is S-compatible if gi(z) = si for each i, and let ES

be the event that X is S-compatible.

Consider any two strings w,w′ ∈ {0, 1}n−sk which

differ in a single bit. We will give a bijection between S-

compatible realizations of X that end in w and those that

end in w′. This is enough to establish the lemma, since

by repeated application, it shows that any two strings for

X(sk+1): are equally likely conditioned on ES , and this

holds for arbitrary S.

To carry out the bijection, for any index j with 1 ≤ j ≤ k,

we define its influencing set to be the set

Ij = {t : sj−1 < t ≤ sj},
with the convention s0 = 0. Informally, it is the set of all

indices t where the value of Xt had some effect on the value

of gj(X) (which is equal to sj if X is S-compatible).

For any two indices i and j with 1 ≤ i, j ≤ k, we say i
directly influences j if ti ∈ Ij . Note that because sj ≤ tj ,

we see that if i influences j, then i ≤ j with equality if and

only if si = ti. We say that i influences j if there is a chain

of direct influences from i to j (i.e. there exist c1, c2, . . . , cN
such that c1 = i, cN = j, and cα directly influences cα+1

for α = 1, 2, . . . , N − 1).

Suppose now that we have a S-compatible sequence z
that ends in w. We will describe a way to modify z so that

it remains S-compatible but ends in w′. Let � be the index

at which w� �= w′�. First, suppose that sk + � �= ti for any

i ≤ k. Then, we may simply flip the (sk + �)-th bit of z to

obtain a S-compatible sequence ending in w′.
Otherwise, sk + � = tm for some m ≤ k. Define the sets

U = {m} ∪ {j : j influences m}
V = {tm} ∪

(⋃
j∈U

Ij

)
.

We claim that by flipping all the bits of z at positions in V ,

the resulting sequence z′ ends in w′ and is S-compatible.

The first claim follows from the fact that Ij ⊆ {1, 2, . . . , sk}
for all j ≤ k, so the only bit flipped after position sk is the

bit at position tm = sk + �.
To show S-compatibility, we show by induction on j

that gj(z
′) = sj for each j, where the base case j = 0

is established by the convention g0(z
′) = s0 = 0. For the

inductive step, suppose that gi(z
′) = si for each i < j. We

consider two cases.

Case j ∈ U . By the definition of U , either j = m
or there exists j′ ∈ U for which tj ∈ Ij′ . In either case, we

see that tj ∈ V . We also have by definition that Ij ⊆ V .

By S-compatibility of z, the condition gj(z) = sj says

that sj is the first position after gj−1(z) = sj−1 having the

same value as position tj . In other words, sj is the unique

position in Ij with the same value as position tj .

The bits at positions tj and elements of Ij are all

flipped for z′, so the same property holds in z′. Since

gj−1(z
′) = sj−1 by the inductive hypothesis, we have

gj(z
′) = sj as well.

Case j �∈ U . Note that tm > sk, so tm �∈ Ij . Since

j �∈ U , it follows that Ij is disjoint from V . Note that if

tj ∈ Ij′ for some j′ ∈ U , then j directly influences j′

and hence influences m, but this contradicts j �∈ U . Also,

clearly tj �= tm since j �= m. Thus, tj �∈ V .

We see that none of the bits at positions tj or elements

of Ij are flipped for z′, so by the same argument as in the

previous case, we conclude that gj(z
′) = sj .

This completes the induction, showing that z′ indeed

ends in w′ and is S-compatible. Furthermore, observe that

the set V depends only on S, and so we may symmetrically

recover z from z′ by the same transformation. Thus, this

gives a bijection from S-compatible sequences ending in w
to those ending in w′, completing the proof.

The next two lemmas describe how closely gk tracks tk.

To avoid boundary issues, we state them for infinite bit

sequences.

Lemma 3. Let X be an infinite sequence of i.i.d. uniform
bits, and let (t, X̃) ∼ D∗p(X). Define dk = tk − gk(X̃,X).
Then, dk+1 − dk is independent of d1, . . . , dk and has
the same law as max(Gp − G1/2,−dk), where Gp and
G1/2 are independent geometrics with parameters p and 1

2 ,
respectively.

Proof: For brevity, write gk = gk(X̃,X). We condition

on ti and gi for 1 ≤ i ≤ k. By Lemma 2, the bits (Xi)
∞
i=gk+1

are i.i.d. uniform even after this conditioning. Next, we

sample tk+1, which we may write as tk+1 = tk +Gp since

each bit is retained independently with probability p. We

then examine the bits

Xgk+1, Xgk+2, . . . , Xtk+1
,

which are still i.i.d. uniformly distributed. Recall that gk+1

is defined to be the earliest position of these bits where

the value matches X̃k+1 = Xtk+1
. Each of the above bits

has a 1
2 chance of being a match except for the last one,

which is guaranteed to match. Thus, gk+1 may be written

231

as min(gk +G1/2, tk+1), so that

dk+1 − dk = (tk+1 − tk)− (gk+1 − gk)

= Gp −min(G1/2, tk+1 − gk)

= max(Gp −G1/2, Gp + gk − tk+1)

= max(Gp −G1/2,−dk),
as desired.

Lemma 4. Suppose p > 1
2 . Let X be an infinite sequence of

i.i.d. uniform bits, and let (t, X̃) ∼ D∗p(x). Define dk = tk−
gk(X̃,X). Then, there exist constants cp, Cp > 0 depending
only on p such that for each k, we have

P (dk ≥ λ) ≤ Cpe
−cpλ.

Proof: By Lemma 3, we see that (dk)
∞
k=1 behaves like

a random walk on non-negative integers with a bias towards

zero when p > 1
2 . Thus, we can show by standard arguments

that the dk have exponential tails; see [9] for details.
Proof of Lemma 1: For a given string z of n bits and

(tz, z̃) ∼ D∗p(z), write

d(z) = max
1≤k≤|tz|

(tz,k − gk(z̃, z))

rλ(z) = Pz (d(z) ≥ λ) .

We apply Lemma 4 to the sequence X, where we may think

of X as the first n bits of an infinite sequence of i.i.d.

uniform bits. Union bounding over all indices 1 ≤ k ≤ n,

we have

E[rλ(X)] ≤ n · C1,p · e−c1,pλ,

where C1,p and c1,p are constants depending only on p.

Consequently,

P

(
rλ(X) ≥ e−c1,pλ/2

)
≤ n · C1,p · e−c1,pλ/2. (1)

Define the event

E =

∞⋂
λ=2�logn	

{
r2λ/c1,p(X) ≤ e−λ

}
.

Then, a union bound using (1) gives

P(E) ≥ 1− n · C1,p

∞∑
λ=2�logn	

e−λ ≥ 1− C2,p

n
, (2)

where C2,p is another constant depending only on p.
On the event E, consider any t > 2

c1,p
(2 �log n�+1). Let

t′ =
⌊
c1,pt
2

⌋
. Since t′ ≥ 2 �log n�, we have

P (d(X) ≥ t) ≤ P

(
d(X) ≥ 2t′

c1,p

)
= r2t′/c1,p(X)

≤ e−t′ ≤ e−
c1,pt

2 +1. (3)

Combining (2) and (3), we conclude that

P (X is (Cp log n,Cp)-trackable) ≥ 1− Cp

n
for a sufficiently large constant Cp.

III. ALIGNMENT BY SEEING A PARTICULAR SEQUENCE

In this section, we develop the tools for our second align-

ment strategy based on looking for a particular sequence of

consecutive bits. The strategy follows the same main idea as

the use of “anchors” in [1]. However, our analysis is more

precise. We first establish some terminology and notation.

Definition 2. For any two bit strings w and y, we say that
w occurs in y if there is some index j such that yj+i−1 =
wi for i = 1, 2, . . . , |w|. We use the following notation to
describe occurrences:
• Indw(y) denotes the first index at which w occurs in

y (i.e. the smallest possible j as above), or ∞ if w
does not occur in y.

• Whenever Indw(y) <∞,

IndSetw(y) := {j : Indw(y) ≤ j < Indw(w) + |w|}
denotes the set of all the indices in y corresponding to
the occurrence of w in y.

In later sections, we will be interested in occurrences of w
within a particular substring yi:j of y. However, we still
want to work with indices based on position in y rather
than in yi:j . In these cases, we use the notation
• Indi:jw (y) := Indw(yi:j) + i− 1.
• IndSeti:jw (y) := {k : Indi:jw(y) ≤ k < Indi:jw(w)+|w|}.
Suppose that x is a string of length 2n, and w =

x(n−a+1):(n+a) is a substring in the middle of x. Now,

suppose we observe a trace x̃ ∼ Dp(x), and we see that

w occurs in x̃. We would like to say that in this case the

bits in x̃ corresponding to the occurrence of w likely came

from the occurrence of w in x (or at least, some of them

did). Not all strings x have this property, but as we will see

shortly, it turns out that typical ones do. We formalize the

property in the following definition.

Definition 3. Suppose p > 1
2 , let x ∈ {0, 1}2n, and take

(t, x̃) ∼ D∗p(x). Consider a positive integer a ≤ n and
positive real γ < 1, and write w = x(n−a+1):(n+a). We say
that x is (a, γ)-distinguishable if

Px

(
Indw(x̃) <∞ and

t(IndSetw(x̃)) ∩ [n− a, n+ a] = ∅
)
≤ γa · p2a.

Remark 2. It is always possible for w to occur in x̃ if
each of the positions n − a + 1 through n + a in x are
retained. This happens with probability p2a. The bound on
the probability in the above definition is given in the form
γa · p2a to highlight that it should be smaller than p2a by a
factor that is exponential in a.

The main result of this section is that random sequences

are likely to be distinguishable.

Lemma 5. Suppose p > 1
2 , and suppose X ∈ {0, 1}2n is

chosen uniformly at random. Then, there exist γp < 1 and

232

cp > 0 depending only on p such that

P

(
X is (

⌈
n1/2
⌉
, γp)-distinguishable

)
≥ 1− e−cpn

1/2

.

Proof: Let a =
⌈
n1/2
⌉
, let w = X(n−a+1):(n+a), and

take (t, X̃) ∼ D∗p(X). Let

J = t−1
(
[1, 2n] \ [n− a, n+ a]

)
=
{
j : 1 ≤ j ≤ |X̃|, tj �∈ [n− a, n+ a]

}
denote the set of indices of X̃ which did not come from the

middle 2a positions of X. Define the event

E =
{
Indw(X̃) <∞ and t(IndSetw(X̃)) ⊆ J

}
,

which is the relevant event for (a, γ)-distinguishability.

Let us condition on the middle 2a bits of X (i.e. the bits

that form w) as well as on t. The key observation is that

(X̃j)j∈J are still i.i.d. uniform after our conditioning. Now,

if w occurs in X̃, but t(IndSetw(X̃)) ⊆ J , then it means

that w occurs in the sequence (X̃j)j ∈ J . However, since

the (X̃j)j∈J are i.i.d., in each possible position this only

happens with probability 2−|w| = 2−2a. Union bounding

over at most 2n positions yields

P(E) ≤ 2n · 2−2a,

where we have also taken the expectation over our initial

conditioning on the middle 2a bits and t.

The above probability is with respect to simultaneously

two sources of randomness: the random choice of X and

the random choice of the deletions. To highlight this, recall

the notation Px for the probability over the randomness of

the deletion channel for a given input string x.

Take γp = (2p)−1/2 < 1. By Markov’s inequality,

P(PX(E) ≥ γa
p · p2a) ≤ γ−a

p · p−2a · E(PX(E))

= γ−a
p · p−2a · P(E) ≤ 2n · γ3a

p = e−Ωp(n
1/2),

which yields (a, γp)-distinguishability with the desired prob-

ability.

We conclude the section by establishing a consequence

of (
⌈
n1/2
⌉
, γp)-distinguishability that is more convenient to

work with than Definition 3.

Lemma 6. Suppose p > 1
2 , let a =

⌈
n1/2
⌉
, and suppose

x ∈ {0, 1}2n is (a, γp)-distinguishable for some constant
γp < 1 depending only on p. Consider (t, x̃) ∼ D∗p(x).
Then,

Px

(
Indw(x̃) <∞ and

t(IndSetw(x̃)) �⊆ [n− 10a, n+10a]

)
≤ e−Ωp(a) ·p2a.

Proof: The main idea is that if the set t(IndSetw(x̃))
intersects the interval [n − a, n + a], then it is unlikely to

stretch out very far from that interval.

Let

E1 =

{
Indw(x̃) <∞ and

t(IndSetw(x̃)) ∩ [n− a, n+ a] = ∅
}
,

so that Px(E1) ≤ γa
pp

2a by (a, γp)-distinguishability. Let

E2 =

{
more than 7a deletions occurred among

some 9a consecutive positions in x

}
.

By a standard Chernoff bound (see, e.g., [10]) and union

bounding over all blocks of 9a bits in x, we have

Px(E2) ≤ 2n · P (Binom(9a, 1/2) > 7a) ≤ 2n · e− 25a2

18a

≤ 2n · 4−a ≤ e−Ωp(a) · p2a.
Finally, let

E3 =

{
Indw(x̃) <∞ and

t(IndSetw(x̃)) �⊆ [n− 10a, n+ 10a]

}
,

which is the event of interest for the lemma. Suppose that

E1 holds but not E3, i.e. t(IndSetw(x̃)) is not disjoint from

[n− a, n+ a] but is also not contained within [n− 10a, n+
10a]. Then t(IndSetw(x̃)) must have two elements which

are at least 9a apart, so that E2 holds. Thus, we find that

Px(E3) ≤ Px(E1) + Px(E2) ≤ e−Ωp(a) · p2a.

IV. RECONSTRUCTION FROM APPROXIMATE ALIGNMENT

In this section, we adapt the trace reconstruction methods

of [2] and [3] to a setting where the input string also

undergoes a random shift. The main result of this section

is the following lemma.

Lemma 7. Let k, n, and N be positive integers with k <
n < N . Let x,x′ ∈ {0, 1}N be two strings whose first k
digits are identical but whose first n digits are not. Let S
be a random variable taking integer values between 0 and
k − 1.

Suppose the following conditions are satisfied:

E[|S − ES|] ≤ n1/3, k ≤ n2/3.

Then, for some constant Cp depending only p, there exists
an index j ≤ Cpn such that if x̃ ∼ Dp(x

(S+1):) and x̃′ ∼
Dp((x

′)(S+1):), then∣∣Px(x̃j = 1)− Px′(x̃
′
j = 1)

∣∣ ≥ exp
(
−Cpn

1/3
)
.

The first ingredient in the proof of this lemma is a

polynomial identity, which is analogous to Lemma 2.1 in

[2] or Section 4 in [3], but accounts for possible shifts to

the input sequence.

Lemma 8. Let n and k be positive integers with k ≤ n. Let
a = (a1, a2, . . . , an) be a sequence of real numbers whose
first k elements are zero. Let S be a random variable taking
integer values between 0 and k − 1, with P(S = i) = βi.

233

Let ã ∼ Dp(a
(S+1):), and pad ã with zeroes to the right.

Then,

E

∑
j≥1

ãjw
j−1 = p

k−1∑
s=0

βs(pw+q)−s
n∑

j=1

aj(pw+q)
j−1

. (4)

Proof: This identity can be verified by a straightforward

calculation; see [9] for details.

As in [2] and [3], we also use the following Littlewood-

type estimate of Borwein and Erdélyi.

Lemma 9 (Borwein and Erdélyi, special case of Corollary

3.2 in [11]). There exists a finite constant C such that
the following holds. Let A(z) be a polynomial with coef-
ficients in [−1, 1] and A(0) = 1. Denote by γL the arc{
eiθ : −1/L ≤ θ ≤ 1/L

}
. Then maxz∈γL

|A(z)| ≥ e−CL.

Proof of Lemma 7: For a fixed value of p, clearly it is

enough to prove the statement for sufficiently large n. We

will assume implicitly throughout that n is sufficiently large.

Write βj = P(S = j), let aj = xj − x′j , and let a =
(aj)

n
j=1. Define the polynomials

P (z) =

k−1∑
j=0

βjz
j , Q(z) =

n−1∑
j=0

aj+1z
j ,

A(z) = p · P (z−1)Q(z).

Let � be the smallest index for which a�+1 �= 0; note that

by our hypotheses, � ≤ n. Define Q̃(z) = 1
z�Q(z), so that

|Q̃(0)| = 1.

For convenience, let L = n1/3, and define ρ = 1− 1/L2.

Applying Lemma 9 to the function Q̃(ρz), there exists z0 =
eiθ with − p

10L ≤ θ ≤ p
10L and |Q̃(ρz0)| ≥ e−CL/p.

We next lower bound |P (1/ρz0)|. Let P̃ (z) = z−ESP (z),
which is analytic on the right half-plane. For z in the right

half-plane satisfying 1 ≤ |z| ≤ ρ−1, differentiating P̃ gives

|P̃ ′(z)| ≤
k−1∑
j=0

|j − ES| · βj · |z|j−ES−1

≤ ρ−k · E[|S − ES|] ≤ ρ−kL ≤ e
1.1k
L2 L ≤ 4L,

where we have used E[|S − ES|] ≤ L and k ≤ L2. Also,

|1/ρz0 − 1| = ρ−1|1− ρz0| ≤ |z0 − 1|+ ρ−1(1− ρ)

≤ p

10L
+

2

L2
≤ p

8L
.

Consequently,

|P (1/ρz0)| = ρ−ES |P̃ (1/ρz0)| ≥ 1− |P̃ (1/ρz0)− 1|

= 1−
∣∣∣∣∣
∫ 1/ρz0

1

P̃ ′(z) dz

∣∣∣∣∣ ≥ 1−
∣∣∣∣ 1

ρz0
− 1

∣∣∣∣ · 4L ≥ 1

2
.

Thus,

|A(ρz0)| = p · |P (1/ρz0)| · ρ� · |Q̃(ρz0)|
≥ p

2
· e− 1.1n

L2 −CL
p ≥ e−

(C+2)L
p .

Next, define w = 1+ ρz0−1
p , so that ρz0 = pw+ q. We have

that

|w|2 = 1 +
2

p
(ρ · Re(z0)− 1) +

1

p2
|ρz0 − 1|2

≤ 1 +
2

p
(ρ− 1) +

ρ2

p2
|ρ−1z−1

0 − 1|2

≤ 1− 2

L2
+

1

64L2
≤ ρ.

Let ã ∼ Dp(a
(S+1):). By Lemma 8,∣∣∣∣∣∣E

⎡⎣∑
j≥1

ãjw
j−1

⎤⎦∣∣∣∣∣∣ = |A(ρz0)| ≥ e−
(C+2)L

p .

Now, take Cp to be an integer larger than C+4
p . Note that∣∣∣∣∣∣

∞∑
j=Cpn

E[ãj]w
j−1

∣∣∣∣∣∣ ≤
∞∑

j=Cpn

ρj ≤ L2ρCpn ≤ 1

2
· e− (C+2)L

p .

Hence,∣∣∣∣∣∣E
⎡⎣Cpn−1∑

j=1

ãjw
j

⎤⎦∣∣∣∣∣∣ ≥ 1

2
· e− (C+2)L

p ≥ e−(Cp−1)L,

and therefore, we must have for some j with 1 ≤ j ≤
Cpn− 1 that∣∣P(x̃j = 1)− P(x̃′j = 1)

∣∣ = |Eãj | ≥ |Eãjwj |

≥ 1

Cpn
e−(Cp−1)L ≥ e−CpL,

as desired.

V. PROOF OF THEOREM 1

Throughout this section, we fix a deletion probability q <
1
2 (and hence a retention probability p > 1

2). In addition,

all of our inequalities are meant to apply for n sufficiently

large (i.e. larger than a constant depending only on p).

Let Cp be the larger of the two constants in Lemmas 1

and 7, and let cp be the constant in Lemma 5. We define

the following integers:

M = �Cp log n� , K1 = 40M,

K0 =
⌈
K

1/2
1

⌉
, K2 =

⌈
10

cp
K

1/2
1 log n

⌉
.

It is helpful to keep in mind that K0 = Θp(log
1/2 n), K1 =

Θp(log n), and K2 = Θp(log
3/2 n).

Recall the high-level strategy of the proof from Section

I-B: we align traces against what we have reconstructed so

234

far, and then we use bit statistics to reconstruct additional

bits. The alignment step in particular relies on the input

X having certain special properties which don’t hold for

all strings but do hold for “most”. We encapsulate these

properties in the following definition.

Definition 4. Let γp < 1 be the constant from Lemma 5.
We say that a string x ∈ {0, 1}n is good if the following
conditions are satisfied:

(i). x is (M,Cp)-trackable,
(ii). there is no run of M consecutive identical bits in x,

(iii). among any K2 consecutive bits of x, there is a block
of 2K1 of them that is (K0, γp)-distinguishable.

Lemma 10. Let X ∈ {0, 1}n be drawn uniformly at
random. Then,

P(X is good) ≥ 1−Op

(
1

n

)
.

Proof: It suffices to show that each condition in 4 holds

with probability at least 1−Op

(
1
n

)
. For condition (i), this

is immediate by Lemma 1.

To establish condition (ii), note that the probability for M
i.i.d. uniform bits to be identical is 21−M . Union bounding

over all blocks of M consecutive bits in X, we find that (ii)

holds with probability at least 1− n · 21−M ≥ 1−O
(
1
n

)
.

Finally, for condition (iii), note that any K2 consecutive

bits contain at least �K2/2K1� ≥ 2 logn
cp
√
K1

disjoint blocks of

size 2K1. By Lemma 5, the probability that a single block

fails to be (K0, γp)-distinguishable is at most e−cp
√
K1 .

Thus, the probability that none of these blocks is (K0, γp)-
distinguishable is at most

exp

(
− 2 logn

cp
√
K1

· cp
√
K1

)
=

1

n2
.

Union bounding over at most n possible blocks of K2

consecutive bits shows that condition (iii) also holds with

probability at least 1−O
(
1
n

)
.

A. Alignment

Suppose x is a bit string that we know, and let m ≤ |x|
be some position in x. Suppose that we also have a sample

x̃ from the deletion channel applied to x (or some longer

string having x as a prefix). As described in Section I-B,

we would like to identify (with high probability) a bit of x̃
that was originally positioned near the m-th bit of x. This

motivates the following definition.

Definition 5. An alignment rule is a function L which takes
as input a bit string x, an index m ≤ |x|, and another bit
string y. It outputs a value L(x,m,y) ∈ {1, 2, . . . , |y| −
1, |y|,∞}.

In addition, we require that L satisfy the following adapt-
edness property with respect to y: whenever L(x,m,y) <
∞, for any other string y′ identical to y in their first
L(x,m,y) bits, we have L(x,m,y′) = L(x,m,y).

Let us explain the conceptual meaning of this definition.

We emphasize that for our purposes, y will be a sample

from the deletion channel applied to a string whose prefix

is x. The idea is that bits near the m-th position of x
should end up near the L(x,m,y)-th position in y after

going through the deletion channel; in this way, the position

m in x is “aligned” with position L(x,m,y) in y. When

L(x,m,y) =∞, it means that the rule cannot reliably locate

which bits of y came from around the m-th position of x.

The adaptedness condition says that an alignment rule

must proceed by examining the bits of y in order one by

one, either outputting the current position, giving up and

outputting ∞, or moving on to the next bit. In particular,

we do not allow alignment rules to look ahead in the string

y before deciding whether a previous position should be the

output. The purpose of this requirement is to ensure that the

deletion pattern after our alignment position is independent

of the alignment itself.

The next lemma constructs a particular alignment rule that

has good quantitative bounds on the quality of the alignment.

Lemma 11. Let k be a given integer with K2 ≤ k ≤ n/2,
and let x0 ∈ {0, 1}k be a string of length k. Then, there
exists an index m with k −K2 +K1 ≤ m ≤ k −K1 and
an alignment rule L with the following property:

For any good sequence x ∈ {0, 1}n with x0 as a prefix,
taking (t, x̃) ∼ D∗p(x), we have

(i). Px(L(x0,m, x̃) <∞) ≥ 1
2p

2K0

(ii). Px(|tL(x0,m,x̃) − m| ≥ K1 | L(x0,m, x̃) < ∞) ≤
n−Ω(1)

(iii). Px(|tL(x0,m,x̃) −m| ≥ 10K0 | L(x0,m, x̃) < ∞) ≤
e−Ωp(K0).

Informally speaking, the properties in the above lemma

should be interpreted as saying that (i) the alignment suc-

ceeds with some not-too-small probability; (ii) it is ex-

tremely likely to align within K1 of the correct position;

and (iii) it usually aligns within 10K0. Before giving the

proof, we first establish an auxiliary lemma.

Lemma 12. Suppose x ∈ {0, 1}n is a good sequence, and
suppose (t, x̃) ∼ D∗p(x). Consider any k ≤ n/2, and let �
be the smallest index such that g�(x̃,x) ≥ k. Then,

Px

(
� exists and k ≤ t� ≤ k + 4M

)
≥ 1− 1

n

for all sufficiently large n.

Proof: Let n′ =
⌊
5
6 · pn

⌋
. If � does not exist, it means

that g|x̃|(x̃,x) < k (or x̃ is empty). This can be bounded by

Px(� doesn’t exist) ≤ Px(|x̃| < n′) + Px(gn′(x̃,x) < n/2)

≤ Px(|x̃| < n′) + Px(tn′ − gn′(x̃,x) ≥ n/6)

+ Px(tn′ < 2n/3). (5)

Note that |x̃| is distributed as Binom(n, p), so Px(|x̃| <
n′) = e−Ωp(n). The second term in (5) is at most e−Ω(n)

235

k −K2 k n

x0

w

mm−K1 m + K1

Figure V.1: Illustration of positions involved in the proof of Lemma 11.

because x was assumed to be (M,Cp)-trackable. Finally, if

tn′ < 2n/3, it means that at least 5pn/6 out of the first

2n/3 bits were retained, which also occurs with probability

at most e−Ωp(n). Thus, all three probabilities in (5) are

exponentially small in n, so

Px(� does not exist) ≤ 1

n2
(6)

for large enough n.

We now work under the assumption that � exists. We

always have

t� ≥ g�(x̃,x) ≥ k (7)

Since x does not have more than M consecutive identical

bits, by the minimality of �, we must have g�(x̃,x) ≤ k+M .

By (M,Cp)-trackability of x, we have

Px(t� > k + 4M) ≤ Px(t� − g�(x̃,x) > 3M) ≤ 1

n2
. (8)

Combining (6), (7), and (8) completes the proof.

Proof of Lemma 11: If x0 is not a prefix of any good

sequence, then there is nothing to prove. Otherwise, because

x0 is a prefix of a good sequence, there must exist m with

k −K2 +K1 ≤ m ≤ k −K1 such that x
(m−K1+1):(m+K1)
0

is (K0, γp)-distinguishable. We choose such an m and let

w = x
(m−K0+1):(m+K0)
0 (see Figure V.1).

Now, suppose x is any good sequence having x0 as a

prefix, and take (t, x̃) ∼ D∗p(x). Roughly speaking, our

alignment rule will be to first use Lemma 12 to identify an

index �0 in x̃ such that t�0 is slightly smaller than m. Then,

we look for an occurrence of w in x̃ shortly after position

�0. If such an occurrence exists, we output the position of

the last bit of the occurrence. If not, we output ∞.

To specify the alignment rule precisely, consider any

string y, and define the statement

P0(y) =
“there exists � such that

∞ > g�(y,x0) ≥ m− 8M”.2

Whenever P0(y) holds, take �0(y) to be the smallest such

�. Then, define

P1(y) = P0(y) ∧ “Ind�0(y):(�0(y)+16M)
w (y) <∞”.

We then define our alignment rule to be

L(x0,m,y) = Ind�0(y):(�0(y)+16M)
w (y) + 2K0 − 1

whenever P1(y) holds and L(x0,m,y) =∞ otherwise.

x0

m−K1 m + K1m

w
[m− 8M,m− 4M]

t�0 t�0+16M

x̃

�0 �0 + 16Mw

L(x̃,m,x0)

Figure V.2: A possible configuration for x0, m, and x̃. In the diagram
above, events F0, F1, and E1 all hold.

Note that this satisfies the adaptedness requirement for

alignment rules. We will specifically apply the above defi-

nition with y = x̃, so it is convenient to define the events

E0 = {P0(x̃) holds}, E1 = {P1(x̃) holds},
and we abbreviate �0 = �0(x̃).

Next, we establish properties (i), (ii), and (iii). In what

follows, the reader may find it helpful to refer to Figure

V.2. Define

F0 = E0 ∩ {m− 8M ≤ t�0 ≤ m− 4M}.
By Lemma 12, we have

Px(F0) ≥ 1− 1

n
(9)

We note a subtlety in our use of the lemma: the event E0

concerns existence of g�(x̃,x0), while Lemma 12 concerns

existence of g�(x̃,x). However, as long as t�0 ≤ m−4M , the

relevant indices are all less than k, so there is no difference

between using x0 and using x, and the lemma still applies.

We can now lower bound Px(L(x0,m, x̃) < ∞) =
Px(E1). Conditioned on F0, it is always possible for E1

to occur by retaining all the bits in positions m − K0 + 1
through m+K0 in x. Thus,

Px(L(x0,m, x̃) <∞) = Px(E1) ≥ Px(F0)·p2K0 ≥ 1

2
p2K0 ,

establishing property (i).

To show property (ii), consider the event

F1 = {t�0+16M ≤ m+K1}.
Note that if F0 and F c

1 both occur, then it means that

fewer than 16M bits were retained among the positions in x
between m−4M and m+K1. There are K1+4M = 44M
such positions, so

Px(F0 ∩ F c
1) ≤ Px(Binom(44M,p) < 16M)

≤ e−Ω(M) = n−Ω(1). (10)

If F0, F1, and E1 all occur, then we have

tL(x,m,x̃) ≥ t�0 ≥ m− 8M ≥ m−K1

tL(x,m,x̃) ≤ t�0+16M ≤ m+K1.

236

Thus,

Px

(
|tL(x,m,x̃) −m| ≤ K1

∣∣∣ E1

)
≥ Px(F0 ∩ F1 | E1)

≥ 1− Px(F
c
0) + Px(F0 ∩ F c

1)

Px(E1)
≥ 1− n−Ω(1),

establishing property (ii).

Finally, we show property (iii). Let

I = t−1 ({m−K1 + 1,m−K1 + 2, . . . ,m+K1})
be the set of indices in x̃ which “came from”

x
(m−K1+1):(m+K1)
0 . Note that we can regard (x̃i)i∈I as

being drawn from Dp

(
x
(m−K1+1):(m+K1)
0

)
. Consider the

event

F2 = E1 ∩
{

t
(
IndSet�0:(�0+16M)

w (x̃)
)

⊆ [m− 10K0,m+ 10K0]

}
.

Note that we have the implication

t
(
IndSet�0:(�0+16M)

w (x̃)
)
�⊆ [m− 10K0,m+ 10K0]

and [�0 : (�0 + 16M)] ⊆ I

=⇒ t
(
IndSetIw(x̃)

)
�⊆ [m− 10K0,m+ 10K0],

which means

Px (F
c
2 ∩ (F0 ∩ F1 ∩ E1))

≤ Px

(
t
(
IndSetIw(x̃)

)
�⊆ [m− 10K0,m+ 10K0]

)
≤ e−Ωp(K0) · p2K0 , (11)

where the last inequality follows from the fact that

x
(m−K1+1):(m+K1)
0 is (K0, γp)-distinguishable combined

with Lemma 6.

Recall from property (i) that Px(E1) ≥ 1
2p

2K0 . We

conclude that

Px

(
|tL(x̃) −m| ≤ 10K0

∣∣∣ E1

)
≥ Px(F0 ∩ F2 | E1)

≥ 1−Px(F
c
0)+Px(E1∩F0∩F c

1)+Px(E1∩F0∩F1∩F c
2)

Px(E1)

≥ 1− n−Ω(1) − n−Ω(1) − e−Ωp(K0) = 1− e−Ωp(K0),

where we have used (9), (10), and (11) to bound the

numerator appearing in the second line. This proves (iii).

B. Reconstruction

The following lemma provides a template for how we will

reconstruct bits.

Lemma 13. Consider integers k1 and k2 with k1 < k2, and
let S ⊆ {0, 1}k2 be a known set of length-k2 bit strings.
Suppose that we have a number ε > 0 and a family of
statistics bj : S → R for 1 ≤ j ≤ k2 which satisfies the
following property: for any two strings w,w′ ∈ S whose

first k1 bits are not identical, there exists an index jw,w′

such that |bjw,w′ (w)− bjw,w′ (w
′)| > ε.

Let z ∈ S be an unknown string, and suppose that we
observe estimates (b̂j)

k2
j=1 such that |b̂j − bj(z)| < ε/2 for

each j. Then, we can determine the first k1 bits of z.

Proof: For any two strings w,w′ ∈ S whose first k1
bits are not identical, we say that w beats w′ if b̂jw,w′
is closer to bjw,w′ (w) than to bjw,w′ (w

′). We say w is

dominant if it beats all other strings w′ ∈ S that do not

share its first k1 bits.

Our hypotheses imply that z is dominant. Moreover, any

two dominant strings must share their first k1 bits. Thus, we

may recover the first k1 bits of z as the first k1 bits of any

dominant string.

We now apply the template in two lemmas. The first

lemma reconstructs the initial K2 bits, and the second

lemma reconstructs additional bits once we have already

reconstructed a long enough prefix of x.

Lemma 14. Let x ∈ {0, 1}n be a good sequence. There
is a constant C ′p depending only on p such that N =⌈
exp
(
C ′p
√
log n

)⌉
independent samples from Dp(x) are

sufficient to recover the first K2 bits of x with probability
at least 1− 1

n for all sufficiently large n.

Proof: Let x̃1, . . . , x̃N be the sampled traces. For each

j ≤ n, let

x̃avg
j =

1

N

N∑
i=1

x̃i,j

be the average of the bits of the x̃i at position j, where x̃i

are padded to the right with zeroes.

We will apply Lemma 13 with k1 = K2 and k2 = n. We

consider statistics bj(z) equal to the expected value of the

j-th bit of a string drawn from Dp(z). By Lemma 7, we

may take ε = e
−Op

(
K

1/3
2

)
= e−Op(log1/2 n).

Choose C ′p sufficiently large so that ε2N ≥ e
√
logn.

Noting that E[x̃avg
j] = bj(x), by a Chernoff bound we have

Px(|x̃avg
j − bj(x)| > ε/2) ≤ e−

ε2N
2 ≤ 1

n2

for all large enough n. Thus, a union bound gives

Px

({|x̃avg
j − bj(x)| ≤ ε/2 for each j}) ≥ 1− 1

n
.

Using b̂j = x̃avg
j as our estimates, Lemma 13 asserts that

we can recover the first K2 bits of x when the above event

holds, which proves the desired statement.

Lemma 15. Let n be a positive integer, and let k be an
integer with K2 ≤ k ≤ n/2. There is a constant C ′p
depending only on p such that the following holds:

Consider a good sequence x ∈ {0, 1}n, and suppose
that N :=

⌈
exp
(
C ′p
√
log n

)⌉
i.i.d. samples x̃1, . . . , x̃N are

drawn from Dp(x). Then, whenever n is sufficiently large,

237

seeing only the first k bits of x and the traces x̃1, . . . , x̃N is
sufficient to recover the (k + 1)-th bit of x with probability
at least 1− 1

n2 .

Proof: Let m and L be the index and alignment rule

given by Lemma 11, where we take x0 = x1:k (which we

can see). Let us consider a single trace x̃ ∼ Dp(x). For

brevity, write � = �(x̃) = L(x0,m, x̃).
We say that x̃ is a usable trace if � < ∞. Let E denote

the event that x̃ is usable, and let

E′ = E ∩ {m−K1 ≤ t� ≤ m+K1}
E′′ = E ∩ {m− 10K0 ≤ t� ≤ m+ 10K0}.

Lemma 11 ensures that Px(E
′ | E) ≥ 1 − n−Ω(1) and

Px(E
′′ | E) ≥ 1− e−Ωp(K0), which together imply that

Px(E
′′ | E′) ≥ 1− e−Ωp(K0) = 1− e−Ωp(log

1/2 n). (12)

Let H = m−K1, and let Δ be a random variable having

the same distribution as t� − H conditioned on E′. The

reason for defining Δ in this particular way will be made

clearer shortly. First, let us note several properties of Δ:

• Δ is an integer between 0 and 2K1.

• The distribution of Δ can be calculated just by looking

at x0 (in particular, it does not depend on bits of x
after the k-th one).3

• By (12), it is straightforward to deduce that EΔ =
m+Op(K0) and E[|Δ− EΔ|] = Op(K0).

Define K3 =
⌈
C ′′p log3/2 n

⌉
, where C ′′p is a large enough

constant to ensure that

E[|Δ− EΔ|] ≤ K
1/3
3 , 2K1 ≤ K

2/3
3 , and K3 > K2.

Our goal will be to distinguish the true suffix x(H+1):

from other possible suffixes via Lemma 13, where we take

(k1, k2) = (K3, n −H). Here, the set S is taken to be all

strings of length n − H having x(H+1):k as a prefix. By

reconstructing the first K3 bits of x(H+1):, we will have in

particular reconstructed xk+1, since

H +K3 = m−K1 +K3 > k + 1.

The statistics we use are, for any z ∈ S ,

bj(z) :=
expected value of the j-th bit of

a string drawn from Dp(z
(Δ+1):),

and we take ε = e−CpK
1/3
3 . Note that we are able to compute

these quantities bj(z) since we are able to compute the

distribution of Δ.

We first verify the property required of the bj and ε in

Lemma 13. Consider any two strings w,w′ ∈ S that do

3It should be noted that the probability Px(E) of having a usable trace
does depend on later bits of x. However, the additional constraint m−K1 ≤
t� ≤ m+K1 combined with the adaptedness property of L removes this
dependence.

not agree in their first K3 bits. We apply Lemma 7 to

these strings with (k, n, S) = (2K1,K3,Δ). To check the

hypotheses of the lemma, note that by the definition of S
and the assumption m ≤ k −K1, w and w′ agree in their

first k−H = k+K1−m ≥ 2K1 bits, as required. We also

recall that by the way we defined K3, the conditions

E[|Δ− EΔ|] = Op(K0) ≤ K
1/3
3 , 2K1 ≤ K

2/3
3

are satisfied. Thus, Lemma 7 tells us that there exists an

index jw,w′ for which

|bj(w)− bj(w
′)| ≥ e−CpK

1/3
3 = ε,

establishing that bj and ε are suitable for use in Lemma 13.

Unfortunately, we cannot directly observe samples with

the law of Dp(x
(H+1+Δ):) in order to estimate bj(x

(H+1):).
However, a usable trace x̃ allows us to sample from this

distribution approximately. The fact that L is adapted to

x̃ (as required in Definition 5) means that if we condition

on t�(x̃) = h for some index h, the string x̃(�+1): has the

same distribution as Dp(x
(h+1):). Thus, the definition of Δ

ensures that, conditioned on the event E′, x̃(�+1): has exactly

the law of Dp(x
(H+1+Δ):).

As long as x̃ is usable, we define b̂j(x̃) := x̃�+j and

bj = E(b̂j(x̃) | E). The above discussion implies that∣∣∣bj − bj(x
(H+1):)

∣∣∣ ≤ Px(E
′c | E) ≤ n−Ω(1) ≤ ε/4, (13)

where the bound on Px(E
′c | E) comes from Lemma 11.

Averaging over our N traces x̃1, . . . , x̃N will then give

us a fairly good estimate on bj(x
(H+1):). Choose C ′p large

enough so that the following hold:

N ≥ 64p−6K0 =⇒ 1

2
p2K0N ≥ 2N2/3 (14)

N ≥ ε−3e
√
logn =⇒ N2/3ε2 = eΩ(

√
logn). (15)

Let M be the number of usable traces. Since our alignment

rule ensures that the probability of being usable is at least
1
2p

2K0 , it follows by a Chernoff bound and (14) that

Px(M < N2/3) ≤ e−2N4/3/N = e−2eΩ(
√

log n) ≤ 1

n3
.

Define

b̂avg
j =

1

M

∑
x̃i is usable

b̂j(x̃i).

By another Chernoff bound and (15),

Px

(
|b̂avg

j − bj | > ε/4
)
≤ Px(M < N2/3) + e−

−N2/3ε2

8

≤ 1

n3
+ e−eΩ(

√
log n) ≤ 1

n2
. (16)

Combining (13) and (16), we conclude that

Px

(
|b̂avg

j − bj(x
(H+1):)| < ε/2 for all j ≤ n

)
≥ 1− 1

n2
.

238

Thus, with probability at least 1 − 1
n2 , the conclusion of

Lemma 13 allows us to determine the first K3 bits of

x(H+1):. As noted earlier, this includes the (k + 1)-th bit

of x, as desired.

C. Completing the proof

We are finally ready to prove Theorem 1, which is mostly

a matter of combining Lemmas 14 and 15.

Proof of Theorem 1: We sample N =
⌈
eC

′
p

√
logn
⌉

traces, with C ′p large enough so that Lemmas 14 and 15

apply. We first condition on a realization X = x, and

suppose that x is good. We will construct a string x̂ =
(x̂1, x̂2, . . . , x̂n). Let Ek denote the event that x̂ matches x
in the first k bits. We construct the first K2 bits of x̂ using

Lemma 14, which yields

Px(EK2) ≥ 1− 1

n
. (17)

Next, consider any k with K2 ≤ k ≤ n/2, and suppose we

have constructed x̂1, . . . , x̂k already. We apply the algorithm

of Lemma 15 and set x̂k+1 to its output. Although we do

not have access to the first k bits of x, we use the first k
bits of x̂ instead. As long as Ek holds, this will give us the

correct value for x̂k+1 with probability at least 1− 1
n2 . Thus,

Px(Ek+1) ≥ Px(Ek)− 1

n2
. (18)

By (17) and repeated applications of (18), we have

Px(E�n/2) ≥ 1− 1

n
.

By symmetry, we can repeat the same procedure in reverse

to reconstruct the last �n/2� bits of x. Thus, the total

probability of failure is at most 2
n .

The final possible mode of failure is if x is not good.

However, by Lemma 10, this only happens with probability

at most 1
n . In total, we can reconstruct X with probability at

least 1− 3
n . Moreover, we have only used N = eOp(

√
logn)

traces. This completes the proof.

ACKNOWLEDGMENT

Most of this work was carried out while the second author

was visiting Microsoft Research in Redmond. He thanks

Microsoft for the hospitality.

REFERENCES

[1] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and
U. Wieder, “Trace reconstruction with constant deletion prob-
ability and related results,” in Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). Society for Industrial and Applied Mathematics,
2008, pp. 389–398.

[2] F. Nazarov and Y. Peres, “Trace reconstruction with
exp(O(n1/3)) samples,” in Proceedings of the Forty-ninth
Annual ACM Symposium on the Theory of Computing
(STOC). Association for Computing Machinery, 2017, pp.
1042–1046.

[3] A. De, R. O’Donnell, and R. Servedio, “Optimal mean-
based algorithms for trace reconstruction,” in Proceedings of
the Forty-ninth Annual ACM Symposium on the Theory of
Computing (STOC). Association for Computing Machinery,
2017, pp. 1047–1056.

[4] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Re-
constructing strings from random traces,” in Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). Society for Industrial and Applied
Mathematics, 2004, pp. 910–918.

[5] A. McGregor, E. Price, and S. Vorotnikova, “Trace recon-
struction revisited,” in Algorithms-ESA. Springer, 2014, pp.
689–700.

[6] S. Kannan and A. McGregor, “More on reconstructing strings
from random traces: insertions and deletions,” in Proceedings
of the International Symposium on Information Theory (ISIT).
IEEE, 2005, pp. 297–301.

[7] K. Viswanathan and R. Swaminathan, “Improved string re-
construction over insertion-deletion channels,” in Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). Society for Industrial and Applied
Mathematics, 2008, pp. 399–408.

[8] M. Mitzenmacher, “A survey of results for deletion channels
and related synchronization channels,” Probability Surveys,
vol. 6, pp. 1–33, 2009.

[9] Y. Peres and A. Zhai, “Average-case reconstruction for the
deletion channel: subpolynomially many traces suffice,” arXiv
preprint arXiv:1708.00854, 2017.

[10] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” J. Amer. Statist. Assoc., vol. 58, pp. 13–30,
1963.

[11] P. Borwein and T. Erdélyi, “Littlewood-type problems
on subarcs of the unit circle,” Indiana Univ. Math. J.,
vol. 46, no. 4, pp. 1323–1346, 1997. [Online]. Available:
http://dx.doi.org/10.1512/iumj.1997.46.1435

239

