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Abstract—We study an extension of active learning in
which the learning algorithm may ask the annotator to
compare the distances of two examples from the boundary
of their label-class. For example, in a recommendation
system application (say for restaurants), the annotator
may be asked whether she liked or disliked a specific
restaurant (a label query); or which one of two restaurants
did she like more (a comparison query).

We focus on the class of half spaces, and show that
under natural assumptions, such as large margin or
bounded bit-description of the input examples, it is
possible to reveal all the labels of a sample of size n
using approximately O(log n) queries. This implies an
exponential improvement over classical active learning,
where only label queries are allowed. We complement
these results by showing that if any of these assumptions
is removed then, in the worst case, Ω(n) queries are
required.

Our results follow from a new general framework of
active learning with additional queries. We identify a com-
binatorial dimension, called the inference dimension, that
captures the query complexity when each additional query
is determined by O(1) examples (such as comparison
queries, each of which is determined by the two compared
examples). Our results for half spaces follow by bounding
the inference dimension in the cases discussed above.

I. INTRODUCTION

A central goal of interactive learning is understand-

ing what type of interaction between a learner and a

domain expert enhances the learning process, compared

to the classical passive learning from labeled examples.

A basic model that was studied in this context is

pool-based active learning [1]. Here, the algorithm has

an access to a large pool of unlabeled examples from

which it can pick examples and query their labels.

The goal is to make as few queries as possible while

achieving generalization-guarantees which are compa-

rable with these of a passive algorithm with an access

to all of the labels.

A canonical example that demonstrates an advantage

of active learning is the class of threshold functions1

over the real line. Indeed, let c denote the learned

threshold function, and let x1 < x2 < . . . < xn in R

be the given pool of unlabeled examples. It is possible

to infer the labels of all n points by making at most

log n+2 queries: query the labels of the extreme points

c(x1), c(xn); if c(x1) = c(xn) then the remaining

points must be labeled the same; otherwise, continue in

a binary search fashion, by labeling the middle point of

the interval whose extreme points have opposite labels.

After at most log n such queries, the labels of all n
points are revealed.

Unfortunately, this exponential improvement in the

query complexity breaks for more general concept

classes. In fact, even for the class of 2 dimensional

threshold functions2, namely the class of half-planes,

the (worst-case) query complexity of active learning

equals that of passive learning (see e.g. [2]). Con-

sequently, much of the literature was dedicated to

developing theory that takes into consideration further

properties of the unknown underlying distribution or the

target concept [3]–[18].

We consider another approach by allowing the learn-

ing algorithm to further interact with the domain expert

by asking additional queries. This poses a question:

Which additional queries can the algorithm use?

Allowing arbitrary queries will result in a very strong

1 These are “R → {±1}” functions of the form c(x) = sign(a ·
x− b), where a, b ∈ R.

2 These are “R2 → {±1}” functions of the form c(x) =
sign

(〈a, x〉 − b
)
, where a ∈ R

2, b ∈ R.
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learner (indeed, by halving the set of potential hypoth-

esis in every query, the number of queries can be made

logarithmic). However, arbitrary queries are useless in

practice: as experimental work by [19] shows, algo-

rithms that use set of queries that are too rich may result

in a poor practical performance. This is not surprising

if we keep in mind that the human annotator who

answers the queries is restricted (computationally and

in other ways). Thus, a crucial factor in choosing the

additional queries is compatibility with the annotator

who answers them. A popular type of queries, which

is used in applications involving human annotators, is

relative queries. These queries poll relative information

between two or more data points.

This work focuses on a basic kind of relative queries

— comparison queries. Using such queries is sensible

in settings in which there is some natural ordering of

the instances with respect to the learned concept. As

a toy example, consider the goal of classifying films

according to whether a certain individual is likely to

enjoy them or not (e.g. for recommending new films for

this person). In this context, the input sample consists

of films watched by the individual, a label query asks

whether the person liked a film, and a comparison query

asks which of two given films did the individual prefer.

As we will see, comparison queries may significantly

help.

Another aspect implied by the restricted nature of

the human annotator is that the learned concept resides

in the class of concepts that can be computed by the

annotator, which presumably has low capacity. Thus,

realizability assumptions about the generating data dis-

tributions are plausible in this context.

A. Active learning with additional comparison queries

Consider a learned concept of the form c(x) =
sign

(
f(x)

)
, where f is a real valued function (e.g.

half spaces, neural nets), and consider two instances

x1, x2 such that, say f(x1) = 10, and f(x2) =
1000. Both c(x1) and c(x2) equal +1, however that

f(x2) >> f(x1) suggests that x2 is a “more positive

instance” than x1. In the setting of film classification

this is naturally interpreted as that the person likes

the film x2 more than the film x1. We call the query

“f(x2) ≥ f(x1)?” a comparison query.

1) Example: learning half-planes with comparison
and label queries: To be concrete, consider the class

of half-planes in R
2. Here, a comparison query is equiv-

alent to asking which of two sample points x1, x2 lies

closer to the boundary line. Do such queries improve

the query complexity over standard active learning? It

is known that without such queries, in the worst-case,

the learner essentially has to query all labels [2].

The following algorithm demonstrates an exponential

improvement when comparison queries are allowed.

Later, we will present more general results showing

that this can be generalized to higher dimensions under

some natural restrictions, and that such restrictions are

indeed necessary.

Interactive learning algorithm with
comparison queries for half planes in R

2

(see Figure 1 for a graphical illustration)

Setting: an unlabeled input sample of n points

x1, . . . , xn ∈ R
2 with hidden labels according to a

half-plane c(x) = sign
(
f(x)

)
, where f : R2 → R

is affine.

Repeat until all points are labeled:

1) Sample uniformly a subsample S of 30
points.

2) Query the labels of the points in S, and

denote by:

P — points in S labeled by +1,

N — points in S labeled by −1.

3) Use comparison queries to find:

(i) q – the closest point in P to the boundary

line,

(ii) v – the closest point inN to the boundary

line.

4) Denote by:

[p, q], [q, r] — the two edges of the convex

hull of P that are incident to q,

[u, v], [v, w] — the two edges of the convex

hull of N that are incident to v.

5) Infer that:

all points inside the cone ∠pqr are labeled

+1,

all points inside the cone ∠uvw are labeled

−1.

6) Repeat on the remaining unlabeled points.

The algorithm proceeds by iterations: it repeats steps

1-5 until all points are labeled. At each iteration at most

60 queries are performed: 30 label queries in step 2 and

at most 30 comparison queries in step 3, for finding the

points q, v of minimal distance. In each iteration, the

algorithm infers the labels of all points in the union of

the angles ∠pqr,∠uvw. We will refer to this region as

“the confident region”.

We claim that after an expected number of O(log n)
iterations (and therefore using only O(log n) queries)

the algorithm infers the labels of all input points.

Establishing this statement boils down, via a boosting
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Figure 1. An illustration of a single iteration.

argument (Theorem III.2) to the following two impor-

tant properties, which are easy to verify:

• Confidence: every point which is labeled by the

algorithm is labeled correctly.

• Inference from a small subsample: the confident

region is determined by a subsample of 6 labeled

points of S (i.e. p, q, r and u, v, w).

These properties imply that at each iteration, with

probability at least 1/2, half of the remaining unlabeled

points are labeled correctly (see Lemma III.3). Thus, the

expected number of queries is O(log n).

Paper organization: In Section I-B we present

and discuss our results, later, in Section I-C we survey

previous related works. Sections II, III, and IV contain

the definitions and results. This extended abstract does

not include many of the proofs, due to lack of space.

The full version of this paper is available on arXiv [20].

B. Results

We next present and discuss our main results.

1) Subsection I-B1 is dedicated to our results con-

cerning half spaces,

2) Subsection I-B2 is dedicated to the inference di-

mension, and how it captures the query complex-

ity of active learning with additional comparison

queries, and

3) Subsection I-B3 focuses on the general frame-

work of active learning with additional queries.

1) Interactive learning of half spaces with compar-
ison queries: We start by discussing our results for

interactive learning of half spaces in R
d when both

label queries and comparison queries are allowed. We

show that a general algorithm, as the one we described

for R
2, cannot exist for d ≥ 3. However, we identify

two useful properties that allow for such a learning

algorithm: bounded bit complexity and margin.

Exact recovery of labels: We first describe our

results in the context of exact recovery. Here, the labels

of all n sample points need to be revealed, using as few

queries as possible.

We first show that in the worst case, in R
d this

requires Ω(n) queries for any d ≥ 3 (recall that

O(log n) queries suffice in R
2).

Theorem I.1 (Theorem IV.6, informal version). There
are n points in R

3 that require Ω(n) label and com-
parison queries for revealing all labels.

Our first positive result shows that efficient exact

recovery of labels is possible if the points have low

bit complexity.

Theorem I.2 (Theorem IV.1, informal version). Con-
sider an arbitrary realizable sample of n points in R

d

whose individual bit complexity is B. The labels of all
sample points can be learned using Õ(B log n) label
and comparison queries.

As an example, consider the sample consisting of

the 2N point in the boolean hypercube {0, 1}N . The

bit complexity of every point is N . The above thoerem

implies that given an unknown threshold function on

{0, 1}N , it is possible to reveal all 2N labels using

Õ(N2) comparison and label queries. This should be

compared to the situation where only label queries are

allowed, where all 2N queries are necessary.

Our second positive result shows that a similar algo-

rithm exists if the margin is large.

Theorem I.3 (Theorem IV.4, informal version). Assume
a sample of n points in R

d with maximal �2 norm ρ
and margin at least γ with respect to the learned half-
space. The labels of all points can be recovered using
Õ
(
d log(ρ/γ) log n

)
label and comparison queries.

Our bound is in fact stronger: it is

Õ
(
d log(1/η) log n

)
,

where η is the minimal-ratio of the input sample,

defined by
|mini f(xi)|
|maxi f(xi)| , where x1, . . . , xn are the sam-

ple points and sign
(
f(x)

)
is the learned concept. In

Section IV-A2 we show that the minimal ratio is lower

bounded by the margin (and therefore yields a stronger

statement).

Note that the above bound depends on ρ/γ logarith-

mically, and therefore applies even in settings when the

margin is exponentially small. Similar dependence of on
ρ/γ is obtained by the Ellipsoid method [21] and Vaidya

Cutting Plane method [22], that use O(d2 log(ρ/γ)) and

O(d log(dρ/γ)) iterations respectively, when used to find

a linear classifier that is consistent with a realizable

sample with margin ρ/γ in R
d.
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The upper bound in the above theorem depends on

the dimension, which is often avoided in bounds that

depend on the margin. It is therefore natural to ask

whether there is a bound that depends only on the

margin. We show that it is impossible:

Theorem I.4 (Theorem IV.11, informal version). There
is a sample of n unit vectors in R

n+1 with Ω(1) margin
that require Ω(n) label and comparison queries to
recover all the labels.

Statistical learning: Using standard arguments,

we translate the results above to the statistical setting

and get bounds on the sample and query complexity:

the algorithmic results above directly give a learning

algorithm for realizable distributions with sample com-

plexity n(ε, δ) = O
(

d+log(1/δ)
ε

)
and query complexity

approximately logarithmic in n(ε, δ), where ε is the

error and 1− δ is the confidence of the algorithm. (See

Section IV-A1 for the bit complexity and Section IV-A2

for the margin.) Our lower bounds translate analogously

to realizable distributions that require Ω(1/ε) queries

for achieving error ε and constant confidence (say

1− δ = 5/6). See Section IV-B for details.

2) Inference dimension: Our results for learning half

spaces rely on a common combinatorial property that

we describe next. Let X be a set and H a concept

class where each concept is of the form sign(f(x)) for

f : X → R. For example, X may be a finite set X =
{x1, . . . , xn} ⊆ R

d and H the class of all half spaces

with margin at least 1/100 with respect to X; or X =
{0, 1}d and H is all half spaces; or X = R

d and H a

class of (signs of) low degree polynomials; etcetera.

Let S ⊆ X be an unlabeled sample. An S−query
is either a label query regarding some x ∈ S, or

a comparison query regarding x1, x2 ∈ S. Namely,

the allowed queries are “f(x) ≥ 0?” (label query) or

“f(x1) ≥ f(x2)” (comparison query). For x ∈ X and

c ∈ H , let

S =⇒
f

x

denote the statement that the comparison and label

queries on S determine the label of x, when the learned

concept is c = sign
(
f(x)

)
.

The inference-dimension of (X,H) is the smallest

number k such that for every c = sign(f(x)) ∈ H , and

every S ⊂ X of size at least k, there exists x ∈ S such

that

S \ {x} =⇒
f

x.

In other words, if the inference dimension is k then in

every sample of size k or more, there is a point whose

label can be inferred from the label and comparison

queries on the remaining points.

For example the inference dimension of (X,H),
where X = R, and H is the class of threshold functions

is 3: indeed, to see it is at most 3, note that if all 3 points

have the same label, then the label of the midpoint can

be inferred from the other two labels, and if not all

points have the same label then the midpoint and, say

the right point have the same label, and so the label of

the right point can be inferred from the other 2 labels.

In this example comparison queries are not required.

Another example, which requires comparison queries,

is where X = R
2 and H is the class of half-planes.

Here the inference dimension3 is at most 7: indeed, in

any sample of at least 7 points there are 4 points with

the same label, and the label of one of these points

can be inferred from the other 3 (see Figure 1 and

Section I-A1).

The next Theorem shows that inference dimension

captures the query-complexity in active learning with

comparison queries. It is worth noting that in the

classical setting of active learning, when only label

queries are allowed, the inference dimension specializes

to the the star dimension [23], which similarly captures

the (worst-case) query complexity in this setting.

Theorem I.5. Let k denote the inference dimension of
(X,H). Then:

1) There is an algorithm that reveals the labels of
any realizable sample of size n using at most
O(k log k log n) queries.

2) Any algorithm that reveals the labels of any
realizable sample of size k must use Ω(k) queries
in the worst-case.

The upper bound (the first item) is a corollary of

Theorem III.2, and the lower bound is a corollary of

Theorem III.5. Both Theorems are discussed in the next

subsection. While the lower bound is relatively straight

forward, our derivation of the upper bound requires

several steps, which we summarize next.

(i) Low inference dimension =⇒ weak confi-
dent learner: we first show that if the inference

dimension is at most k then there is a weak con-
fident learner for (X,H) with query complexity

O(k log k) (see Lemma III.3). A confident learner

is a learning algorithm that may abstain from

predicting on some points x ∈ X , but must be

correct on every point where it does not abstain.

A weak confident learner is a confident learner

that with constant probability does not abstain on

a constant fraction of X (see Section III-A for a

formal definition).

(ii) Boosting the weak confident learner: once a

weak confident learner is derived, we transform it

3One can show the inference dimension here is 5.
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into the desired learning algorithm using a simple

boosting argument.

While the boosting part is rather standard, showing

that low inference dimension implies a weak confi-

dent learner relies on a symmetrization argument. This

symmetrization argument can be replaced by a more

standard sample compression argument, however this

would result in a suboptimal query complexity bound.

We get the following corollary of Theorem I.5 in the

statistical setting:

Corollary I.6. Let k denote the inference dimension of
(X,H).

1) Let n(ε, δ) denote the passive sample complexity
of learning (X,H) with error ε and confidence
1 − δ. There is an algorithm that learns (X,H)
with sample complexity n(ε, δ) and query com-
plexity O

(
k log k log(n(ε, δ))

)
.

2) Any algorithm that learns (X,H) with error at
most ε = 1/k and confidence at least 5/6 must
use at least Ω

(
1/ε

)
queries for some realizable

distribution.

This Corollary follows from Corollaries I.8 and III.6.

A dichotomy: The passive sample complexity of

(X,H) is n(ε, δ) = Θ(d+log(1/δ)
ε ), where d is the VC-

dimension of H [24]. Thus the above corollary implies

a dichotomy: if the inference dimension is finite then

the query complexity is logarithmic in 1/ε, and if it is

infinite then the query complexity is Ω(1/ε).

The results presented in the previous section re-

garding learning half spaces with comparison and la-

bel queries are derived by analyzing the inference-

dimension of the relevant classes, which we sketch next.

Sketch of upper bounding the inference dimension
of half spaces: Our upper bounds in terms of margin

and bit-complexity follow a similar outline. We next

give a rough sketch of the arguments in order to convey

their flavor.

Consider the case where every instance x ∈ X
has bounded bit-complexity, say X ⊂ [N ]d for some

bounded N ∈ N. We wish to show that for a sufficiently

large Y ⊆ X , and every half space c = sign(f) there

is some x ∈ Y such that

Y \ {x} =⇒
f

x.

By removing at most half of the elements of Y , we

may assume that c is constant on Y , without loss of

generality assume that c(x) = +1, for every x ∈ Y .

Let x1, x2, . . . be an ordering of the elements of Y
such that

f(x1) ≤ f(x2) ≤ . . .

The first observation is that it suffices to show that

there exists i0 such that xi0−x1 is a nonnegative linear

combination of the xi − xj , where i > j.
The existence of such an i0 is achieved by a pigeon

hole argument showing that if Y is sufficiently large

then there are two distinct linear combinations of the

xi+1 − xi’s with coefficients from {0, 1} that yield the

same vector:
k/2∑
i=1

βi(xi+1 − xi) =

k/2∑
i=1

γi(xi+1 − xi),

Then a short calculation yields that the maximal j such

that βj 	= γj serves as the desired i0.
The upper bound in terms of margin is technically

more involved. Instead of nonnegative linear combina-

tions, one can consider linear combinations such that

every coefficient is at least −γ, where γ is the margin,

and the pigeon hole argument is replaced by a volume

argument.
Sketch of lower bounding the inference dimension

of half spaces: Our lower bounds are based on embed-

ding the class
{∅, {i} : 1 ≤ i ≤ n

}
as half spaces in a

way that the n+1 half spaces induce the same ordering

on the n points in terms of distance from the boundary.

Comparison queries are useless for such an embedding,

which implies that the inference dimension is at least

n, Indeed, consider the half space c∅ that corresponds

to the empty-set; then for any subset Y of at most n−1
points c∅ is indistinguishable from c{i}, the half space

corresponding to {i}, where i /∈ Y .
3) General framework: We next describe how the

notion of inference-dimension, as well as Theorem I.5

extend to settings where the additional queries are not

necessarily comparison queries.
Consider an interactive model, where the learning

algorithm is allowed to use additional queries from a

prescribed set of queries Q. More formally, let S be the

unlabeled input sample. In pool-based active learning,

the algorithm may query the label of any point in S.

Here, the algorithm is allowed to use additional queries

from a set Q = Q(S) (we stress that the allowable

queries depend on the input sample). For example, in

the setting discussed in the previous section, Q(S)
contains all comparison queries among points in S.

Another example, which is used by crowd-sourcing

algorithms [25] involve 3-wise queries of the form “Is

x2 more similar to x1 than to x3?”.
Upper bound: The next “boosting result” gener-

alizes the upper bound from Theorem I.5 and shows

that if there are not too many queries in Q(S), or

alternatively if there is an algorithm that infers the

answers to the queries in Q(S) using a few queries,

then it is possible to reveal all labels using a logarithmic

number of queries:
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Theorem I.7 (Restatement of Theorem III.2). Let k
denote the inference dimension of (X,H). Assume that
there is an algorithm that, given a realizable sample S
of size n as input, uses at most q(n) queries and infers
the answers to all queries in Q(S) and all labels in S.
Then there is a randomized algorithm that infers all the
labels in S using at most

2q(4k) log n

queries in expectation.

For example, in the setting of comparison queries,

q(n) = n+ n log n queries suffice to infer all compar-

ison queries and label queries in Q(S), and thus, the

upper bound in Theorem I.5 follows from the above

theorem.

An interactive algorithm that infers all labels using a

few queries can be combined with any passive learner

by first using the interactive learner to reveal all labels

of the input sample, and then apply the passive learner

on the labeled sample. Thus, we get:

Corollary I.8. Let (X,H) be as in Theorem III.2,
and let n(ε, δ) denote the (passive) sample complex-
ity of learning (X,H) with error ε and confidence
1 − δ. Then there exists an algorithm that learns H
with sample complexity n(ε, δ), and query complexity
O(q(4k) log n(ε, δ)).

Lower bound: The next lower bound on the query

complexity generalizes the one from Theorem I.5.

It demonstrates a property of comparison and label

queries which suffices for the lower bound in Theo-

rem I.5 to hold. Call an additional query t-local, if

its answer is determined by f(x1), . . . , f(xt) for some

x1, . . . , xt ∈ X . For example, every label-query is

1-local and every comparison query is 2-local. The

following Theorem extends Theorem I.5 to this setting:

Theorem I.9 (Restatement of Theorem III.5). Assume
that the inference dimension of (X,H) is > k. Assume
that every additional query is t-local, and that for every
sample S the set of allowable queries Q(S) is the set
of all queries that are determined by subsets (of size at
most t) of S. Then any algorithm that reveals the labels
of any realizable sample of size k must use Ω(k/t)
queries in the worst-case.

In the statistical setting, we get the following Corol-

lary:

Corollary I.10 (Restatement of Corollary III.6). Set
ε = 1

k , δ = 1
6 . Then any algorithm that learns (X,H)

with error ε and confidence 1 − δ must use Ω(1/tε)
queries.

C. Related work

Studying statistical learning where the learner has

access to additional queries was considered by various

works. A partial list includes: [19], [26]–[36]. Many of

these focus on the case where the additional queries are

membership queries.

In the context of active learning, which is considered

in this paper, [10] considered additional queries of two

types: Class conditional queries and Mistake queries, in

the first type the learner provides the annotator with a

list of examples, and a label and asks her to point out an

example in this list with the given label. In the second

type, the learner gives the oracle a list of examples with

proposed labels and she replies whether it is correct or

points out a mistake. Note that these queries may have

more than two answers, which is different than binary

queries, which are considered in this paper.

[37] give an active learning algorithm for clustering

using pairwise similarity queries, and [38] gives a

clustering algorithm that uses queries that ask whether

two elements belong to the same cluster. [39] consider

clustering in an interactive setting where the algorithm

may present the annotator a clustering of a O(1)
size subset of the domain, and the annotator replies

whether the target-clustering agrees with this partition,

and points out a difference in case it does not.

[40] give an active ranking algorithm from pair-

wise comparisons. They consider a setting that bears

resemblance with ours: their goal is to find the ranking

among a sample of points in R
d, where the ranking is

determined according to the euclidean distance from

a fixed, unknown reference point. They present an

algorithm that use an expected number of O(d log n)
comparisons when the ranking is chosen uniformly at

random.

Recently, [41] considered a similar setting to ours.

They also study active classification with additional

comparison queries, but they focus on minimizing the

total number of label queries, while the number of

comparison queries can be large (more than 1/ε, where

ε is the error). In contrast, we study when it is possible

to achieve total number of queries which is logarithmic

in 1/ε.

II. PRELIMINARIES

Basic definitions.: A hypothesis class is a pair

(X,H), where X is a set, and H is a class of functions

h : X → {±1}. Each function h : X → {±1} is

called a hypothesis, or a concept. In this paper we study

classes H = HF of the form

H = {sign(f) : f ∈ F},
where F = {f : X → R} is a class of real-valued

functions, and sign(f)(x) = sign
(
f(x)

) ∈ {±1} is
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equal +1 if and only if f(x) ≥ 0. For example, when

F is the class of R
d → R affine functions then HF is

the class of d-dimensional half spaces. Other examples

include neural-nets, low degree polynomials, and more.

The reason we “remember” the underlying class F is

because we will use it to define comparison queries.

An example is a pair (x, y) ∈ X × {±1}. A labeled
sample S̄ is a finite sequence of examples. We denote

by S the unlabeled sample underlying S̄ that is obtained

by removing the labels from the examples in S̄. We will

sometimes abuse notation and treat S as a subset of X
(formally it is a sequence). Given a distribution D on

X × {±1}, the (expected) loss of a hypothesis h is

defined by:

LD(h) � E
(x,y)∼D

[
1h(x) �=y

]
.

Given a labeled sample S̄, the empirical loss of h is

defined by:

LS̄(h) �
1∣∣S̄∣∣

∑
(x,y)∈S̄

1h(x) �=y.

A distribution D on X ×{±1} is realizable by H if

there exists c ∈ H with LD(c) = 0. We will sometimes

refer to such a c as the “learned concept”. A labeled

sample S̄ is realizable by H if there exists c ∈ H with

LS̄(c) = 0.

Passive learning (PAC learning).: A learning algo-

rithm is an (efficiently computable) mapping that gets

a sample as an input and outputs a hypothesis. An al-

gorithm A learns H if there exists a sample complexity

bound n(ε, δ), such that for every realizable distribution

D, given a labeled sample S̄ of size n ≥ n(ε, δ), A
outputs h = A

(
S̄
)

such that:

Pr
S̄∼Dn

[
LD(h) > ε

] ≤ δ.

The parameter ε is called the error of the algorithm,

and 1− δ is called the confidence of the algorithm We

will assume throughout that a learning algorithm for H
also receives ε, δ as part of the input and can compute

n(ε, δ).

A. Active learning

It is helpful to recall the framework of active learning

before extending it by allowing additional queries. A

(pool-based) active learning algorithm has an access to

the unlabeled sample S underlying the input labeled

sample S̄. It queries the labels of a subsample of it, and

outputs a hypothesis. The choice of which subsample A
queries may be adaptive. Each active learning algorithm

is associated with two complexity measures: (i) the

sample-complexity n(ε, δ), is the number of examples

required to achieve error at most ε with confidence at

least 1−δ (like in the passive setting), and (ii) the query-

complexity (also called label-complexity) q(ε, δ), is the

number of queries it makes.

In the process of active learning, it is natural to

distinguish between points whose label can be inferred

and points for which there is uncertainty concerning

their label. It is therefore convenient to consider partial

hypotheses. A partial hypothesis is a partially labeled

hypothesis h : X → (Y ∪ {?}), where if h(x) = ”?” it

means that h abstains from labeling x. We extend the

0/1 loss function to ”?”, such that abstaining is always

treated as a mistake. The coverage of h with respect to

a distribution D is defined as

CD(h) � Pr
x∼D

[
h(x) 	=?

]
,

and the empirical-coverage of h with respect to a

sample S is defined as

CS(h) �
∣∣{x ∈ SX : h(x) 	=?}∣∣

|S| .

Since abstaining counts as error it follows that

CD(h) ≤ 1 − LD(h) for every partial hypothesis h,

and every distribution D.

Confident algorithms.: A learning algorithm is

confident if it outputs a partial hypothesis that is correct

on all points where it does not abstain:

Definition II.1 (Confident learning algorithm). A learn-
ing algorithm A is confident with respect to a class
(X,H) if it satisfies the following additional require-
ment. For every realizable labeled sample S̄ that is
consistent with a learned concept c ∈ H , the output
hypothesis h � A

(
S̄
)

satisfies that whenever h(x) 	=?
then h(x) = c(x).

Thus, if A is confident then CD(h) = 1−LD(h) for

every distribution D, where h = A
(
S̄
)
. Therefore, in

the context of confident learners we will only discuss

their coverage, and omit explicit reference to their error.

For example a class (X,H) is learned by a confident

learner A if there exists a sample complexity n(ε, δ)
such that for every realizable distribution D, given a

labeled sample S̄ of size n ≥ n(ε, δ), A outputs h =
A
(
S̄
)

such that

Pr
S̄∼Dn

[
CD(h) < 1− ε

] ≤ δ.

B. Interactive learning with additional queries

Consider an extension of the active learning setting,

by allowing the learning algorithm to use additional

queries from a prescribed set of queries Q. An addi-

tional query is modeled as a boolean function q : F →
{True, False}. We stress that the query may depend

on the function f that underlies the learned concept

c = sign(f) (e.g. comparison queries, see below). In
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this setting, given an input sample S̄, the algorithm is

given access to S, the unlabeled sample underlying S̄,

and is allowed to:

• query the label of any of point in S,

• query an additional query q from a prescribed set

of queries Q(S).
We stress that the set of allowable queries Q(S) depend

on the input sample S̄. For example, a comparison

query on x1, x2 is the query “f(x1) ≤ f(x2)?”, where

c = sign(f) is the learned concept. An answered query
in a pair (q, b), where q is a query, and b is a possible an-

swer to q. For example,
(
“f(x1) ≤ f(x2)?”, T rue

)
is

an answered comparison query, and
(
“c(x1) = ?”,−1)

is an answered label query. The standard notions of

version space and agreement set are naturally extended

to this context: let

Q̄ =
(
(q1, b1), (q2, b2), . . . (qm, bm)

)

be a sequence of answered queries. Define the version
space, denoted by V (Q̄), as the set of hypotheses in H
that are consistent with Q̄:

V (Q̄) �
{
h ∈ H : qi(h) = bi, i = 1, . . . ,m

}
,

and the confidence region, Conf(Q̄), as the agreement

set of V (Q̄):

Conf(Q̄) �
{
x ∈ X : hypotheses in V (Q̄) agree on x

}
.

III. INFERENCE DIMENSION

Let (X,H) be a hypothesis class, where H = HF
for some class of real functions F , and let Q be a set

of additional queries. For S ⊆ X , x ∈ X , f ∈ F and

c = sign(f) ∈ H , let

S =⇒
f

x

denote the statement that there exists a sequence Q̄ of

answered label queries of S and/or additional queries

from Q(S) that determine the label of x, when the

learned concept is c. Namely, that x ∈ Conf(Q̄).

Definition III.1 (Inference dimension). The inference
dimension of (X,H) is the minimal number k such that
for every S ⊆ X of size k, and every c ∈ H there exists
x ∈ S such that

S \ {x} =⇒
f

x.

If no such k exists then the inference dimension of
(X,H) is defined as ∞.

A. Upper bound

Theorem III.2 (Boosting). Let k denote the inference
dimension of (X,H). Assume that there is an algorithm
that, given a realizable sample S̄ of size n as input,
uses at most q(n) queries and infers the answers to
all queries in Q(S) and all labels in S̄. Then there is
a randomized algorithm that infers all the labels in S̄
using at most

2q(4k) log n

queries in expectation.

We prove Theorem III.2 in two steps: (i) First,

Lemma III.3 shows that (X,H) has a weak confident

learner A that, given a realizable input sample of size

4k, uses at most q(4k) queries, and outputs a partial

hypothesis h with coverage 1/2. (ii) Then, we show that

the labels of a given sample S̄ of size n are revealed

after applying A on roughly log n random subsamples

of S̄.

Lemma III.3 (Weak confident-learning). Let k denote
the inference dimension of (X,H). Then there exists
a confident learner for (X,H) that is defined on input
samples of length 4k, makes at most q(4k) queries, and
has coverage ≥ 1/2 with probability ≥ 1/2. That is,
for any distribution D over X ,

Pr
S∼D4k

[
CD(h) ≥ 1/2

] ≥ 1/2,

where h is the output hypothesis of the algorithm.

Proof: The learner is defined as follows. Given

a realizable input sample S =
((
xi, c(xi)

))4k
i=1

, from

D4k, the algorithm infers the answers to all queries

in Q(S) and all labels in S̄ (by assumption, this can

be done with q(4k) queries). It outputs the partial

hypothesis h, which labels any x whose label can be

inferred from the queries. Namely:

h(x) �

⎧⎨
⎩
c(x) S =⇒

f
x

? otherwise

We next claim that the expected coverage of h, CD(h),
is at least 3/4. This implies that PrS [CD(h) ≥ 1/2] ≥
1/2, which shows that the learning algorithm is a weak

confident learner.

To this end we use the following observation.

Observation III.4. For any set Y of size 4k+1, there
are xi1 , . . . , xi3k+1

∈ Y such that for all 1 ≤ j ≤ 3k+1
it holds that

Y \ {xij} =⇒
f

xij .

Proof: This follows since the inference dimen-

sion of (X,H) is k. Assume we already constructed

xi1 , . . . , xij−1
for j ≤ 3k + 1. Let Y ′ = Y \
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{xi1 , . . . , xij−1
}. As |Y ′| ≥ k, there exists xij ∈

Y ′ such that Y ′ \ {xij} =⇒
f

xij . But then also

Y \ {xij} =⇒
f

xij .

Next, we show that this observation implies that

ES [CD(h)] ≥ 3/4. Clearly, we have that

E
S

[
CD(h)

]
=Pr(x1,x2,...,x4k+1)∼D4k+1

[{x1, . . . , x4k} =⇒
f

x4k+1

]
.

Letting T = {x1, x2, . . . , x4k+1}, this is the probability

that T\{x4k+1} =⇒
f

x4k+1. However, by symmetry,

this is the same as the probability that T\{xi} =⇒
f

xi

for any 1 ≤ i ≤ 4k + 1. Taking the average over i, we

have

E
S

[
CD(h)

]
=E

T

[
1

4k + 1

∣∣{i : T\{xi} =⇒
f

xi}
∣∣]

≥3k + 1

4k + 1
≥ 3

4
.

Proof of Theorem III.2:
Let A denote the weak confident learner from

Lemma III.3. Let S̄ be a realizable sample, correspond-

ing to an unknown concept c ∈ H . Our goal is to fully

recover the labels of S̄.

The algorithm proceed in iterations t = 1, 2, . . ., At

each iteration it applies A on a subsample of size 4k of

S̄. Let ht denote the output hypothesis of A on iteration

t, and let

DISt = {x : hs(x) =? for all s ≤ t}.
Since A is confident it follows for any point x /∈ DISt,

the label c(x) is equal to hs(x) for any hs(x) such that

hs(x) 	=?. As long as DISt ∩ S 	= ∅, perform the

following update step.

Update step at time t:

(1) Let Dt be the uniform distribution over

DISt ∩ S. Sample R̄t ∼ (Dt)
4k.

(2) Apply A to Rt, the unlabeled sample under-

lying R̄t.

(3) Let ht = A
(
R̄t

)
be the confident partial

hypothesis that A outputs on R̄t.

(4) Compute et = CDt [ht] = Prx∼Dt [ht(x) 	=
?].

(5) If et < 1/2 then go back to step (1).

Otherwise set t← t+ 1 and continue.

Since A is confident, it follows that once DISt∩S =
∅ then all the labels of S̄ are revealed.

Query-complexity.: In order to analyze the query-

complexity of the algorithm, first observe that since

Pr[et ≥ 1/2] ≥ 1/2 then in expectation, we proceed

to the next iteration after at most two samples of R̄t.

Next, if et ≥ 1/2 then by definition |DISt+1 ∩ SX | ≤
|DISt ∩ SX |/2. Thus, we only apply the update step

at most tmax ≤ 2 logn many times. It follows that the

expected query-complexity is at most 2q(4k) log n.

Computational complexity.: The algorithm de-

rived in Theorem III.2 has expected running time of

O(Tupdate log n), where Tupdate is the running time of the

update step. In every update step the algorithm makes

q(4k) queries and determines et, by checking for each

unlabeled point, whether its label can be inferred by the

queries performed in this step. Assume that testing this

for each point takes take Tinfer. So,

Tupdate = O (q(4k) + n · Tinfer)

and the total running time is

Ttotal = O ((q(4k) + n · Tinfer) log n) .

For example, when the hypothesis class is half spaces in

R
d, and the the set of additional queries is comparisons,

the total running time is polynomial in n. This is since

q(4k) = O(k log k) (by sorting), and since checking if

the label of a point is inferred by a set of label and

comparison queries can be phrased as a linear program

and solved in polynomial time.

B. Lower bound

Next, we show that if the inference dimension is

large then many queries are needed to infer all the

labels. We further assume that every query is t-local, in

the sense that it depends on f(x1), . . . , f(xt) for some

x1, . . . , xt ∈ X . We set of allowable queries Q(S) to

be all queries that are associated with subsets of S of

size t.
Let (X,H) be a hypothesis class with inference

dimension > k, for some k ≥ 3. This means that there

exists Z ⊆ X of size k and a concept c ∈ H such that

for every z ∈ Z there is cz ∈ C with cz(z) 	= c(z),
but cz(x) = c(x) for all x ∈ Z \ {z}, and moreover,

q(c) = q(cz) for every query q ∈ Q(
Z \ {z}).

Theorem III.5. Any algorithm that reveals the labels
of any realizable sample of size k must use at least k/t
queries in the worst-case.

We omit the proof of this theorem here, the proof is

available on full version [20].

Corollary III.6. Let ε = 1
k , δ = 1

6 , and let D be
the uniform distribution over Z. Then any learning
algorithm that makes less than 1

tε queries suffers a loss
of ε, with probability at least δ.

363



IV. INTERACTIVE LEARNING OF HALF SPACES WITH

COMPARISON-QUERIES

In this section we restrict our attention to the class

Hd = {sign(f) : f : Rd → R} of half spaces in R
d,

where for simplicity of exposition we consider linear

functions f (these correspond to homogeneous half

spaces). Our results extend to the non-homogeneous

case, as non-homogeneous half spaces in dimension

d can be embedded as homogeneous half spaces in

dimension d + 1. The additional queries allowed are

comparison queries. That is, a label query returns the

answer to sign(f(x)) and a comparison query returns

the answer to f(x1) ≥ f(x2).

In Subsection IV-A we present our upper bounds

on the query complexity, under two natural condi-

tions: small bit complexity, or large margin. In Subsec-

tion IV-B we present lower bounds showing that these

conditions are indeed necessary for obtaining query

complexity sub-linear in the sample complexity.

A. Upper bounds

1) Bit-complexity: Here we show that if the ex-

amples can be represented using a bounded number

of bits then comparison-queries can reduce the query-

complexity. We formalize bounded bit-complexity by

assuming that X = [N ]d, where [N ] = {0, . . . , N}.
Note that each example can be represented by B =
d logN bits. We provide a bound on the query-

complexity that depends efficiently ond and logN .

Variants of the arguments we use apply to other stan-

dard ways of quantifying bounded bit-complexity.

Theorem IV.1. Consider the class
(
[N ]d, Hd

)
. There

exists an algorithm that reveals the labels of any
realizable input sample of size n using at most
O(k log k log n) label/comparison-queries in expecta-
tion, where k = O

(
d log(Nd)

)
.

As a consequence it follows that the hypothesis class(
[N ]d, Hd

)
is learnable with

sample complexity Õ
(
d/ε

)
and query-complexity

Õ
(
d log(N) log(1/ε)

)
,

where the Õ notation suppresses lower order terms and

the usual log(1/δ) dependence.

In order to prove the above theorem, we use The-

orem I.5 that reduces it to the following lemma. We

sketch a proof outline here, a complete proof is availabe

on full version [20].

Lemma IV.2. Let k such that 2k/2 > 2(kN+1)d. Then
the inference dimension of the class

(
[N ]d, Hd

)
is at

most k. In particular, it is at most 16d log(4Nd).

2) Minimal-ratio and margin: Let X ⊆ R
d and let

c = sign(f) ∈ Hd. The minimal-ratio of X with respect

to c is defined by

η = η(c,X) � minx∈X |f(x)|
maxx∈X |f(x)| .

Here we show that it is possible to reveal all labels

using at most Õ
(
d log(1/η) log n

)
, where the minimal-

ratio is η. Note that the minimal-ratio is invariant under

scaling and that it is upper bounded by the margin:

Claim IV.3. Let η be the minimal-ratio of X with
respect to c, let ρ = maxx∈X ||x||2, and let γ be the
margin of X with respect to c. Then

γ

ρ
≤ η.

Thus, the upper bound in Theorem IV.4 below applies

when the minimal-ratio is replaced by the standard

margin parameter γ/ρ.

Note that there are cases where η >> γ/ρ. For

example, assume X = {e1, . . . , ed} is the standard

basis and cw ∈ Hd is determined by the normal

w = 1√
d
(+1,−1,+1,−1, . . .). In this case, γ/ρ =

1/
√
d << 1 = η.

We next state and prove the upper bound. Let X ⊆
R

d, and let Hd,η ⊆ Hd be the set of all half spaces

with minimal-ratio at least η with respect to X .

Theorem IV.4. Consider the class (X,Hd,η). There
exists an algorithm that reveals the labels of any
realizable input sample of size n using at most
O
(
k log k log n

)
label/comparison-queries in expecta-

tion, where k = O
(
d log(d) log(1/η)

)
.

As a consequence it follows that the hypothesis class

(X,Hd,η) is learnable with

sample complexity Õ
(
d/ε

)
and query-complexity

Õ
(
d log(1/η) log(1/ε)

)
,

As before, the Õ notation suppresses lower order terms

and the usual log(1/δ) dependence.

The above theorem is a corollary of Theorem I.5 via

the following lemma, which upper bounds the inference

dimension of the class (X,Hd,η).

Lemma IV.5. Let k such that (k/2+1)d < 2k/2(η/6)d.
Then the inference dimension of the class

(
X,Hd,η

)
is at most k. In particular, it is at most 10d log(d +
1) log(2/η).

B. Lower bounds

In this Section we show that (in the worst-case)

comparison-queries yield no advantage when the bit

complexity is large in dimension d ≥ 3, or when the

dimension is large even if the margin is large.

364



1) Dimension d ≥ 3: We show that (in the worst-

case) comparison-queries do not yield a significant

saving in query complexity for learning half spaces,

already in R
3. This is tight since, as discussed in

the introduction, in R
2 comparison-queries yield an

exponential saving.

Theorem IV.6. Consider the class (R3, H3) of half
spaces in R

3, Any algorithm that reveals the labels
of any realizable sample of size n must use Ω(n)
comparison/label queries in the worst-case.

In the statistical setting, we get that

Corollary IV.7. Let ε > 0. Then any algorithm that
learns (R3, H3) with error ε and confidence at least
5/6 must use Ω(1/ε) comparison/label queries on some
realizable distributions.

We derive these statements by showing that the

inference dimension of (R3, H3) is ∞. Then, Theo-

rem IV.6 and Corollary IV.7 follow by plugging t = 2
in Theorem III.5 and Corollary III.6 respectively. (Note

that comparison queries are 2-local, and thus t = 2).

We skip the proof here, it appears in full version [20].

Theorem IV.8. The inference dimension of (R3, H3) is
∞.

2) Margin: We show here that, in the worst-case,

comparison-queries do not yield a significant saving in

query complexity for learning half spaces, even if it is

guaranteed that the margin is large, say at least 1/8.

Theorem IV.9. For every n there is a class (X,H),
where X ⊆ R

n+1, and H ⊆ Hn+1 contains all the
half spaces with margin at least 1/8 such that the
following holds: any algorithm that reveals the labels
of any realizable sample of size n must use Ω(n)
comparison/label queries in the worst-case.

In the statistical setting, we get that

Corollary IV.10. For every ε > 0, there is n and a
class (X,H), where X ⊆ R

n+1, and H ⊆ Hn+1

contains all the half spaces with margin at least 1/8
such that the following holds: any algorithm that learns
(X,H) with error ε and confidence at least 5/6 must
use Ω(1/ε) comparison/label queries on some realizable
distributions.

We derive these statements by establishing the exis-

tence of classes with large margin and large infrence

dimension. Then, Theorem IV.9 and Corollary IV.10

follow by plugging t = 2 in Theorem III.5 and

Corollary III.6 respectively.

Theorem IV.11. For every n, there is a set of n unit
vectors X = {x1, x2, . . . , xn} ⊂ R

n+1 such that the

class (X,H) has inference dimension at least n, where
H contains all half spaces with margin at least 1/6 with
respect to X .
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