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Abstract—Several fundamental problems that arise in opti-
mization and computer science can be cast as follows: Given
vectors v1, . . . , vm ∈ R

d and a constraint family B ⊆ 2[m], find
a set S ∈ B that maximizes the squared volume of the simplex
spanned by the vectors in S. A motivating example is the ubiq-
uitous data-summarization problem in machine learning and
information retrieval where one is given a collection of feature
vectors that represent data such as documents or images. The
volume of a collection of vectors is used as a measure of their
diversity, and partition or matroid constraints over [m] are
imposed in order to ensure resource or fairness constraints.
Even with a simple cardinality constraint (B =

(
[m]
r

)
), the

problem becomes NP-hard and has received much attention
starting with a result by Khachiyan [1] who gave an rO(r)

approximation algorithm for this problem. Recently, Nikolov
and Singh [2] presented a convex program and showed how
it can be used to estimate the value of the most diverse set
when there are multiple cardinality constraints (i.e., when
B corresponds to a partition matroid). Their proof of the
integrality gap of the convex program relied on an inequality
by Gurvits [3], and was recently extended to regular matroids
[4], [5]. The question of whether these estimation algorithms
can be converted into the more useful approximation algorithms
– that also output a set – remained open.

The main contribution of this paper is to give the first
approximation algorithms for both partition and regular ma-
troids. We present novel formulations for the subdeterminant
maximization problem for these matroids; this reduces them
to the problem of finding a point that maximizes the absolute
value of a nonconvex function over a Cartesian product of
probability simplices. The technical core of our results is
a new anti-concentration inequality for dependent random
variables that arise from these functions which allows us
to relate the optimal value of these nonconvex functions to
their value at a random point. Unlike prior work on the
constrained subdeterminant maximization problem, our proofs
do not rely on real-stability or convexity and could be of
independent interest both in algorithms and complexity where
anti-concentration phenomena has recently been deployed.

Keywords-Anti-concentration, Subdeterminant Maximiza-
tion, Polynomials, Nonconvexity

I. INTRODUCTION

A variety of problems in computer science and optimiza-

tion can be formulated as the following constrained sub-

determinant maximization problem: Given a positive semi-

definite (PSD) matrix L ∈ R
m×m and a family B of subsets

of [m] := {1, 2, . . . ,m}, find a set S ∈ B that maximizes

det(LS,S) where LS,S is the principal sub-matrix of L
corresponding to rows and columns from S. Equivalently, if

L = V �V where V ∈ R
d×m is a Cholesky decomposition

of L, and V1, . . . , Vm correspond to the columns of V , then

the problem is to output a set S ∈ B that maximizes the

squared volume of the parallelepiped spanned by the vectors

{Vi : i ∈ S}. If the family B is specified explicitly as a list

of its members, this optimization problem, trivially, has an

efficient algorithm. The interesting case of the problem is

when |B| is large (possibly exponential in m) and an efficient

implicit representation or an appropriate separation oracle is

given.

This problem, in its various avatars, has received sig-

nificant attention in optimization, machine learning and

theoretical computer science due to its practical importance

and mathematical connections. In geometry and optimiza-

tion, the vector formulation of the subdeterminant max-

imization problem for the family B =
(
[m]
r

)
is related

to several volume maximization [6] and matrix low-rank

approximation [7] problems. In mathematics, the probability

distribution on 2[m] in which a set S ⊆ [m] has probability

Pr(S) ∝ det(LS,S) is referred to as a determinantal point

process (DPP); see [8]. DPPs are important objects of study

in combinatorics, probability, physics and, more recently,

in computer science as they provide excellent models for

diversity in machine learning [9]. Here, the constrained

subdeterminant maximization problem corresponds to a con-

strained MAP-inference problem – that of finding the most

probable set from the family B; see [10], [11] for related

problems on DPPs. Different constraint families can be

employed to ensure various priors, resource, or fairness

constraints on the probability distribution.

Algorithmically, even the simplest of constraints make the

constrained subdeterminant maximization problem NP-hard;

for instance, when B =
(
[m]
r

)
. As the set B becomes more

complicated, algorithms for the constrained subdeterminant

maximization problem roughly fall into two classes: 1)

approximation algorithms that output a set S ∈ B such that

det(LS,S) is within some factor of the optimal value and,

(2) estimation algorithms that just output a number that is

within some factor of the optimal value.

Approximation algorithms for the constrained subdetermi-
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nant maximization problem are rare; Khachiyan [1] proposed

the first polynomial time approximation algorithm for the

problem when B =
(
[m]
r

)
which achieved an approximation

factor of rO(r) and, importantly, did not depend on the

entries of the underlying matrix. This result was improved

by Nikolov [12] who presented an approximation algorithm

which achieved a factor of er. On the other hand, it was

shown [13], [14] that there exists a constant c > 1 such that

approximating the B =
(
[m]
r

)
case with approximation ratio

better than cr remains NP-hard.

Among estimation algorithms, recently, Nikolov and

Singh [2] generalized Nikolov’s result to the setting when

the family B corresponds to the bases of a partition matroid.

They presented an elegant convex program that allowed them

to efficiently estimate the value of the maximum determinant

set from B to within a factor of er where r is the size of

the largest set in the partition matroid B. One of the main

ingredients in their proof is an inequality due to Gurvits [3]

concerning real stable polynomials. Building on their work,

[4], [5] presented estimation algorithms for large classes of

families B, such as bases of a regular matroid. While the

results of [2], [4], [5] made interesting connections between

convex programming, real-stable polynomials and matroids

to design estimation algorithms for the constrained subdeter-

minant maximization problem, the question of whether these

estimation algorithms can be converted into approximation

algorithms remained open.

Making these approaches constructive is not only crucial

for them to be deployed in the practical problems that

motivated their study, mathematically, there seem to be

barriers in doing so. The main contribution of this paper

is to present a new methodology to address the constrained

subdeterminant maximization problem that results in approx-

imation algorithms for partition and regular matroids. We

obtain our results through a synthesis of novel nonconvex

formulations for these constraint families with a new anti-

concentration inequality. Together, they allow for a simple

polynomial time randomized algorithm that outputs a set

S ∈ B with high probability. Approximation guarantees of

our algorithms are close to prior non-constructive results in

several interesting parameter regimes. The simplicity and

generality of our results suggests that our techniques, in

particular the anti-concentration inequality and its use in

understanding nonconvex functions, are likely to find further

applications.

A. Overview of Our Contributions

Anti-concentration inequality. We start by describing the

common component to both our applications – an anti-

concentration inequality. We consider multi-variate functions

in which each variable is uniformly and independently

distributed over a probability simplex. Roughly, our anti-

concentration inequality says that if the restriction of such a

function along each variable has a certain anti-concentration

property then the function is anti-concentrated over the

entire domain. Formally, the anti-concentration result applies

whenever the multi-variate function satisfies the following

property.

Definition I.1 (Anti-concentrated functions). For γ ≥ 1, a
nonnegative measurable1 function f : Δd → R is called
γ-anti-concentrated if for every c ∈ (0, 1)

Pr [f(x) ≥ c ·OPT] ≥ 1− γdc,

where x is drawn from the uniform distribution over Δd and
OPT := maxz∈Δd

f(z) is the maximum value f takes on
Δd.2

Similarly, for any r ≥ 1 and any p1, p2, . . . , pr ≥ 0, a
nonnegative function f :

∏r
i=1 Δpi

→ R is said to be γ-
anti-concentrated if for every coordinate i ∈ {1, 2, . . . , r},
and for every choice of aj ∈ Δpj for j �= i, the function x �→
f(a1, . . . , ai−1, x, ai+1, . . . , ar) is γ-anti-concentrated.

Perhaps one of the simplest examples of an anti-concentrated

function is the univariate map t �→ |at+ b| over the domain

[0, 1]. It is not hard to see that it satisfies the condition of

Definition I.1 for γ = 2 (see Fact IV.3). It also follows that

for every multi-affine polynomial p ∈ R[x1, x2, . . . , xr] the

function x �→ |p(x)| is 2-anti-concentrated. Another class

of functions that satisfy such an anti-concentration property

arise by considering norms and volumes in Euclidean spaces;

for instance, functions of the form t �→ ‖ut+ (1− t)v‖2 for

vectors u, v.

Theorem I.1 (Anti-concentration inequality). Let γ ≥ 1 be
a constant. Let r ≥ γ and p1, . . . , pr be positive integers.
For every γ-anti-concentrated function f :

∏r
i=1 Δpi → R,

if x is sampled from the uniform distribution on
∏r

i=1 Δpi
,

then

Pr

[
f(x) ≥ (γe2)−r ·

r∏
i=1

1

pi
·OPT

]
≥ 1

eγ log r
,

where OPT := max{f(z) : z ∈∏r
i=1 Δpi

} is the maximum
value f takes on its domain.

Consequently, the value of a γ-anti-concentrated function

at a random point of its domain gives an estimate of its

maximum value. As an important special case of Theorem

I.1, consider the setting in which pi = 2 for i = 1, 2, . . . , r
(i.e., the domain is the hypercube [0, 1]r) and f(x) := |p(x)|
where p ∈ R[x1, . . . , xr] is a multi-affine polynomial.

Using the previous observation that such an f is 2-anti-

concentrated, we conclude from Theorem I.1 that for some

1We always assume that the functions we deal with are regular enough.
Formally, we require measurability with respect to the Lebesgue measure.

2Δd denotes the standard (d − 1)−simplex, i.e., Δd :={
x ∈ R

d :
∑d

i=1 xi = 1, x ≥ 0
}
.
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absolute constant c > 1 and a uniformly random choice of

x ∈ [0, 1]r it holds that

Pr
[
|p(x)| ≥ c−r · max

z∈[0,1]r
|p(z)|

]
≥ Ω

(
1

log r

)
. (1)

It is also not hard to see that the bound in Theorem I.1

is tight: for p(x) =
∏r

i=1 xi, the probability that |p(x)| ≥
(3/4)r over a random choice of x ∈ [0, 1]r is exponentially

small. The bound (1) gives us a way to estimate the maxi-

mum of |p(x)| over [0, 1]r by just evaluating it on a certain

number of random points and outputting the largest one.

However, this observation does not directly give us much

insight about the problem we typically would like to solve;

that of maximizing |p(b)| over binary vectors b ∈ {0, 1}r.

Towards this, note that for a multi-affine polynomial p,

max
z∈{0,1}r

|p(z)| = max
z∈[0,1]r

|p(z)|.

Moreover, the above has a simple algorithmic proof (see

Lemma IV.2) which follows from the convexity of x �→
|p(x)| restricted to coordinate-aligned lines. This allows us

to use the above algorithm to find a point b ∈ {0, 1}r whose

value is at most cr times worse than optimal given only an

evaluation oracle for p. In particular, no assumptions are

made on the analytic properties of p, such as concavity

or real stability. In fact, in most interesting cases, such

functions are highly nonconvex, hence standard convex

optimization tools do not apply.

Partition matroids. As a first application of Theorem I.1,

we provide an approximation algorithm for the problem

of subdeterminant maximization under partition constraints.

Let P := {M1,M2, . . . ,Mt} be a partition of [m] :=
{1, 2, . . . ,m} into non-empty, pairwise disjoint subsets and

let b = (b1, b2, . . . , bt) be a sequence of positive integers.

Then the set B := {S ⊆ [m] : |S ∩Mi| = bi for all i =
1, 2, . . . , t} is called a partition family induced by P and b.
We first show that the problem of finding the determinant-

maximizing set under partition constraints can be reformu-

lated as

max
x∈Δ

det
(
W (x)�W (x)

)1/2
where Δ is a certain product of simplices, and W (x) is

a matrix whose i-th column is a convex combination of

certain vectors derived from L = V �V and the variables

in x. Subsequently, we show that such functions are 2-anti-

concentrated, which allows us to apply Theorem I.1 to obtain

the following result.

Theorem I.2 (Subdeterminant maximization under partition

constraints). There exists a polynomial time randomized
algorithm such that given a PSD matrix L ∈ R

m×m, a
partition P = {M1,M2, . . . ,Mt} of [m] and a sequence
of numbers b = (b1, b2, . . . , bt) ∈ N

t with
∑t

i=1 bi = r,
outputs a set S in the induced partition family B such that

with high probability

det(LS,S) ≥ OPT · (2e)−2r ·
t∏

i=1

(
1

pi

)bi

,

where OPT := maxS∈B det(LS,S) and pi := |Mi| for i =
1, 2, . . . , t.

Prior work by Nikolov and Singh [2] outputs a random

set whose value is at most er times worse than OPT in

expectation and unlike the theorem above, does not yield a

polynomial time approximation algorithm, as the probability

of success can be exponentially small. Further, in the case

when pi = O(1) for all i and bi = 1 for all i (i.e., when

every part has constant size and exactly one vector from

every part has to be selected) the approximation ratio of our

algorithm is cr for some constant c > 1, which, up to the

constant in the base of the exponent, matches their result.

Regular matroids. Our second result for the constrained

subdeterminant maximization problem is for the case of

regular matroids (i.e., when the constraint family B arises

as a set of bases of a regular matroid; see Section II). To

apply Theorem I.1 we consider the polynomial

h(x) = det(V XB�),

where X is a diagonal matrix with Xi,i := xi, B ∈ R
d×m

is the linear representation of B and V ∈ R
d×m is such

that V �V = L. We remark that this polynomial has also

appeared in previous work on matroid intersection (see [15],

[16], [17]). We observe that |h(x)| is 2-anti-concentrated

and has a number of desirable properties, which allows us

to prove

Theorem I.3 (Subdeterminant maximization under regular

matroid constraints). There exists a polynomial time ran-
domized algorithm such that given a PSD matrix L ∈ R

m×m

of rank d, and a totally unimodular matrix B that is
a representation of a rank-d regular matroid with bases
B ⊆ 2[m], outputs a set S ∈ B such that with high
probability

det(LS,S) ≥ max(2−O(m), 2−O(d logm)) ·OPT,

where OPT := maxS∈B det(LS,S).

There are two recent results for this setting ([4] and [5])

that provide em- and ed-estimation algorithms respectively.

Similarly as for the case of partition matroids, these results

only give an estimate on the value of the optimal solution,

and are not constructive. Our algorithm matches the approx-

imation guarantee of the above mentioned results in certain

regimes and also outputs an approximately optimal set.

B. Discussion and Future Work

To summarize, motivated by applications in machine

learning, we propose and analyze two algorithms for subde-

terminant maximization under matroid constraints. Both are
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based on random sampling and the bounds on their approxi-

mation guarantees follow from our anti-concentration result.

These algorithms provide both an estimate to the value of the

optimal solution as well as a set with the claimed guarantee.

The anti-concentration inequality allows us to relate the

value of a multi-variate nonconvex function at a random

point to its value at the optimal point, and multi-affinity

allows us to round this random solution. Furthermore, the

anti-concentration result can be applied to any multi-affine

polynomial and more general functions involving norms and

volumes. In particular, it neither relies on real stability nor

any other convexity-like property of the polynomial; this

should be of independent interest.

An interesting question that arises is whether our algo-

rithms for subdeterminant maximization, or more generally,

our anti-concentration results, can be derandomized. In other

words, given an anti-concentrated function on the hyper-

cube, can one efficiently and deterministically find a point

matching the guarantee of Theorem I.1? Another question

is whether Theorem I.1 can be extended to more general

convex bodies – other than products of simplices. Of interest

are, for instance, sets that arise as an intersection of the

hypercube [0, 1]m with an affine subspace of dimension

(m − 1). An anti-concentration inequality for such sets,

together with an improved rounding scheme, would imply

approximation ratios which depend on the rank of the

underlying matroid only – not on the number of elements.

C. Other Related Work

A very general anti-concentration result for polynomial

functions over convex domains was obtained by Carbery and

Wright [18], however there seem to be two issues in apply-

ing their result to our setting: A) it implies a weaker bound

of r−O(r) in Equation (1) to obtain a significant probability

of success and, B) it does not seem to directly apply to the

product of simplices as we need. A more detailed discussion

is presented in Section IV. The result by Carbery and Wright

and, more generally, the anti-concentration phenomena has

found several applications in theoretical computer science,

especially for Gaussian measures; see for instance [19], [20],

[21], [22]. Finally, our use of rounding using multi-affinity

resembles a similar phenomena in algorithms to optimize

concave or sub-modular functions; see for instance a survey

by Vondrák [23].

D. Technical Overview

We start by describing the approach of Nikolov and

Singh for the case of partition matroids. Consider the

following simple variant of the constrained subdeterminant

maximization problem for partition matroids: Given vectors

v1, . . . , vr, u1, . . . , ur ∈ R
r the goal is to pick a vector

wi ∈ {vi, ui} for each i so as to maximize |det(W )|, where

W ∈ R
r×r is a matrix that has the wis as its columns.

Denote by OPT the maximum value of the determinant in

the above problem.

They start by reformulating the problem as polynomial

maximization problem as follows. First, define matrices

Ai(xi) := xiviv
�
i +(1− xi)uiu

�
i for i = 1, 2, . . . , r. Then,

consider the polynomial p(x, y) := det (
∑r

i=1 yiAi(xi))
and let g(x) be the polynomial that appears as the coef-

ficient of
∏r

i=1 yi in p(x, y).3 Multi-affinity of g can be

used to reduce the task of finding OPT to that of finding

maxx∈[0,1]r g(x). Then, the difficulty that arises is that g(x)
is hard to evaluate. To bypass this, a general idea by Gurvits

[3] allows them to approximate g(x) by infy>0
p(x,y)∏r
i=1 yi

,

giving rise to the following optimization problem involving

two sets of variables

max
x∈[0,1]r

inf
y>0

p(x, y)∏r
i=1 yi

. (2)

Real stability of p(x, y) for any fixed x implies that this pro-

gram can be efficiently solved using convex programming.

Their main result is that the value of this program is within

a factor of er of OPT. The key component in the proof of

this bound is the above-mentioned result by Gurvits that, in

this context where p(x, y) is real-stable with respect to y,

implies that, for all x ∈ [0, 1]r

g(x) ≤ inf
y>0

p(x, y)∏r
i=1 yi

≤ er · g(x). (3)

While this immediately implies that one can obtain a number

that is within an er factor of OPT, when trying to obtain

an integral solution x ∈ {0, 1}r from the fractional optimal

solution x� ∈ [0, 1]r to (2), the intractability of g(x) be-

comes a bottleneck.4 Nikolov and Singh present a rounding

algorithm which, unfortunately, can require an exponential

number of trials to find an er-approximate solution; we refer

to the full version of the paper for an example.

Overview of the proof of Theorem I.2. Our approach is

based on a different formulation of the problem as polyno-

mial maximization, which has the advantage over g(x) that

it is easy to evaluate and does not rely on real-stability. For

every i = 1, 2, . . . , r and t ∈ [0, 1] define a vector wi(t) :=
(1− t)vi+ tui. Furthermore, for x ∈ [0, 1]r, let W (x) ∈ R

r

be a matrix with columns w1(x1), w2(x2), . . . , wr(xr). The

polynomial that we consider is

det(W (x))

which is easy to evaluate for any x. As before, the multi-

affinity of det(W (x)) implies the following:

max
x∈[0,1]r

| det(W (x))| = max
x∈{0,1}r

| det(W (x))| = OPT.

(4)

3g(x) is also called the mixed-discriminant of the matrices Ai(xi).
4One can use Equation (3) r times to give an approximation algorithm

with factor er
2

; we omit the details.
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Indeed, if we let f(x) := | det(W (x)|, then the multi-affinity

of det(W (x)) implies that whenever we fix all but one of

the arguments of f , i.e., s(t) := f(t, y2, y3, . . . , yr) for some

y2, y3, . . . , yr ∈ [0, 1], then s attains its maximum at either

0 or 1. This means, in particular, that given any point x ∈
[0, 1]r, one can efficiently find a point x̃ ∈ {0, 1}r such that

f(x̃) ≥ f(x).
However, the nonconvexity of this formulation is a serious

obstacle to solving the optimization problem in Equation (4).

This is where a key insight comes in: f shows a remarkable

anti-concentration property which, in turn, allows us to get

an estimate of OPT by evaluating f at a random point.

Formally, the anti-concentration inequality (Theorem I.1)

applies to f and allows us to deduce that

Pr [f(x) ≥ c−r ·OPT] ≥ 1
e2 log r

for some constant c > 1. This also results in a simple

approximation algorithm to maximize f : Sample a point

x ∈ [0, 1]r uniformly at random, round x to a vertex

x̃ ∈ {0, 1}r such that f(x̃) ≥ f(x) as above, and output

x̃ as a solution.

We should mention that at this point we could also at-

tempt to invoke the following anti-concentration result (here

translated to our setting) proved by Carbery and Wright.

Theorem I.4 (Theorem 2 in [18]). Let p ∈ R[x1, x2, . . . , xr]
be a polynomial of degree r. If a point x is sampled
uniformly at random from the hypercube [0, 1]r, then for
every β ∈ (0, 1)

Pr [|p(x)| ≤ βr ·OPT] ≤ C · β · r,
where C > 0 is an absolute constant.

When applied to our setting, observe that det(W (x)) is

indeed a degree-r polynomial in r variables. We have to

pick β so as to make C · β · r < 1, i.e., for β = O(1/Cr),
we obtain

Pr
[
f(x) ≥ r−O(r) ·OPT

] ≥ 1
2 .

This implies that the algorithm described above achieves

an approximation ratio of (roughly) rr. Our Theorem I.1 is

a certain strengthening of Theorem I.4 which asserts that

under the same assumptions

Pr
[|p(x)| ≥ c−r ·OPT

] ≥ 1

e2 log r
,

for some absolute constant c > 1. In fact, Theorem I.1 is

a generalization of the above for a larger class of functions

(not only polynomials) and for more general domains – this

is useful in the case of general partition matroids.

We now show how to extend our algorithm to a general

instance of the constrained subdeterminant maximization

problem under partition constraints and sketch a proof of

Theorem I.2. Recall that in this problem we are given

a PSD matrix L ∈ R
m×m of rank d and a partition

family B induced by a partition of [m] into disjoint sets

M1,M2, . . . ,Mt and numbers b1, b2, . . . , bt ∈ N with∑t
i=1 bi = r. The goal is to find a subset S ∈ B(M) such

that det(LS,S) is maximized. If we consider a decomposi-

tion of L into L = V �V for V ∈ R
d×m then the objective

can be rewritten as det(LS,S) = det(V �S VS). For simplicity,

we assume that b1 = b2 = · · · = bt = 1, which can be

achieved by a simple reduction. To define the relaxation

for the general case, for every part Mi for i = 1, 2, . . . , t,
introduce a vector xi ∈ Δpi where pi := |Mi| and define a

vector wi(xi) to be

wi(xi) :=

pi∑
j=1

xi
jv

i
j

where vi1, v
i
2, . . . , v

i
pi

are the columns of V correspond-

ing to indices in Mi. We denote by x the vector

(x1, x2, . . . , xr) and by W (x) ∈ R
d×r the matrix with

columns w1(x1), w2(x2), . . . , wr(xr). Finally we let

f(x1, x2, . . . , xr) := det(W (x)�W (x))1/2.

Note that f(x) is no longer a multi-affine polynomial, but

as we show in Lemma IV.1 it is 2-anti-concentrated. Having

established this property, Theorem I.2 follows. Indeed, as

in the illustrative example in the beginning, we can prove

that given any fractional point x, we can efficiently find its

integral rounding (i.e., round every component xi to a vertex

of the corresponding simplex Δpi
, for i = 1, 2, . . . , t) which

then provides us with a suitable approximate solution.

Overview of the proof of Theorem I.3. In the setting of

Theorem I.3 we are given a PSD matrix L ∈ R
m×m of

rank d and a family of bases B ⊆ 2[m] of a regular matroid

of rank d. The goal is to find a set that attains OPT :=
maxS∈B det(LS,S). The approach of [4] (and similarly [5])

to obtain an estimate on OPT was inspired by that of [2]

for the partition matroid case and is as follows: Given the

matrix L = V �V , first, define the following polynomial

g(x) :=
∑

S∈B x
S det(V �S VS).

This polynomial again turns out to be hard to evaluate.

As before, an optimization problem involving two sets of

variables, x and y is set up in [4]. The purpose of y variables

is to give estimates of values of g(x) and the x variables are

constrained to be in the matroid base polytope corresponding

to B. On the one hand, real stability along with the fact

that B is a matroid allows them to compute the optimal

solution to this bivariate problem, on the other hand, with

some additional effort, they are able to push Gurvits’ result

to obtain roughly an em estimate of OPT. However, the

main bottleneck is that an iterative rounding approach for

finding an approximate integral point does not seem possible

as the matroid polytope corresponding to B may not have a

product structure as in the partition matroid case.

1024



We present a new formulation to capture OPT that does

not suffer from the intractability of the objective function

and allows for rounding via a relaxation that maximizes a

certain function h over the hypercube [0, 1]m. Start by noting

that the objective becomes det(LS,S) = det(V �S VS) =
det(VS)

2, which we can simply think of as maximizing

|det(VS)| over S ∈ B. Let B ∈ Z
m×d be the linear

representation of the matroid B; i.e., for every set S ⊆ [m]
of size d, if S ∈ B then | det(BS)| = 1, and det(BS) = 0
otherwise. Next, consider h : [0, 1]m → R given by

h(x) := det(V XB�),

where X ∈ R
m×m is a diagonal matrix with Xi,i := xi

for all i = 1, 2, . . . ,m. It is not hard to see that h(x) is a

polynomial in x and (using the Cauchy-Binet formula) can

be written as

h(x) =
∑

S⊆[m],|S|=d

xS det(VS) det(BS),

where xS denotes
∏

i∈S xi. Such a function was studied

before in the context of matroid intersection problems [15],

[16], [17]. Importantly, the restriction of h(x) to indicator

vectors of sets of size d is particularly easy to understand.

Indeed, let 1S be the indicator vector of some set S ⊆ [m]
with |S| = d. We have

h(1S) = det(VS) det(BS) =

{
± det(VS) if S ∈ B,
0 if S /∈ B.

Hence, we are interested in the largest magnitude coefficient

of a multi-affine polynomial h(x). The maximum of |h(x)|
over [0, 1]m is an upper bound for this quantity. The algo-

rithm then simply selects a point x ∈ [0, 1]m at random,

which by Theorem I.1 can be related to the maximum value

of |h(x)|, and then performs a rounding.

First, given x ∈ [0, 1]m it constructs a binary vector

x̃ ∈ {0, 1}m such that |h(x̃)| ≥ |h(x)|; this is possible

because the function |h(x)| is convex along any coordinate

direction. The vector x̃ is then treated as a set S0 ⊆ [m],
but its cardinality is typically larger than d. We then run

another procedure which repeatedly removes elements from

S0 while not loosing too much in terms of the objective.

It is based on using h(1S0) as a certain proxy for the sum∑
S⊆S0

| det(VS) det(BS)|. This allows us to finally arrive

at a set S ⊆ S0 of cardinality d, such that |h(1S)| ≥(
m
d

)−1 |h(1S0
)|. The set S is then the final output.

By applying Theorem I.1 one can conclude that h(1S0
) is

within a factor of cm of the maximal value of |h(x)|, which

results in a 2O(m)-approximation guarantee. Alternatively,

by utilizing the fact that h is a polynomial of degree d, one

can apply the result by Carbery-Wright (see Theorem I.4) to

obtain a bound of roughly mO(d), which is better whenever

m is large compared to d.

Overview of the proof of Theorem I.1. For the sake

of clarity, we present only the hypercube case of the

anti-concentration inequality, which corresponds to taking

p1 = p2 = · · · = pr = 2 in the statement of The-

orem I.1. Recall the setting: We are given a function

f : [0, 1]r → R≥0 that satisfies a one-dimensional anti-

concentration inequality. I.e., for every function of the form

g(t) := f(x1, x2, . . . , xi−1, t, xi+1, . . . , xr) where xj ∈
[0, 1] for j �= i are fixed and t ∈ [0, 1], it holds that

Pr
[
g(t) < c · max

s∈[0,1]
g(s)

]
≤ 2c, (5)

where the probability is over a random choice of t ∈ [0, 1].
The goal is to prove a similar statement for f(x), i.e.,

Pr [f(x) < α ·OPT] is small, where OPT is the maximum

value f takes on the hypercube and α is a parameter which

we want to be as large as possible.

As an initial approach, one can define (for a

fixed constant c > 0) events of the form Ai :=
{x ∈ [0, 1]r : f(x1, . . . , xi, x

�
i+1, . . . , x

�
r) ≥ c ·

f(x1, . . . , xi−1, x
�
i , . . . , x

�
r)}, where x� := argmaxx f(x).

Note crucially that the events A1, A2, . . . , Ar are not inde-

pendent. However, we can still write

Pr [f(x) ≥ cn ·OPT] ≥ Pr [A1 ∩A2 ∩A3 · · · ∩Ar]

=
r∏

i=1

Pr[Ai|A1, A2, . . . , Ai−1].

From assumption (5) we know that

Pr[Ai|A1, A2, . . . , Ai−1] ≥ 1− 2c

for all i = 1, 2, . . . , r and hence

Pr [f(x) ≥ cr ·OPT] ≥ (1− 2c)r.

To get a probability that is not exponentially small, one has

to take c roughly O(1/r), in which case we recover the result

of Carbery and Wright [18] in our setting. To go beyond this,

a tighter analysis is required.

In what follows, let k ≈ log r and δ ≈ 1
k . First, using

a recursive procedure, we construct a family of kr sets

S(i1, i2, . . . , ir) for i1, i2, . . . , ir ∈ {1, 2, . . . , k} that are

pairwise disjoint and each of them has the same volume

(roughly δr). In particular, the total volume of all of the sets

(which we call cells) is kr · δr = Ω(1), and hence, form

a significant part of the probability space. Additionally, the

construction guarantees that for all points x in a given cell

S(i1, i2, . . . , ir),

f(x) ≥ OPT ·
( r

m

)r ∏
j∈[r],ij �=k

k − ij
k

∏
j∈[r],ij=k

1

r
. (6)

Notice that in the above bound, if ij = k for all j ∈ [r],

then we obtain a very weak bound f(x) ≥ OPT · ( 1
m

)−r

for the corresponding cell.
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In the proof we identify a set of cells G (which we call

good) such that (6) guarantees that f(x) ≥ c−r · ( r
m

)r
for

a constant c > 0. Subsequently, we prove that at least 1
k -

fraction of all cells are good. This is achieved by defining

an action of the cyclic group of order k on the set of cells,

and observing that at least one cell in each orbit is good.

The reason is as follows: If we repeatedly apply (entrywise)

a cyclic shift (i �→ (i+1) mod k) to a tuple (i1, . . . , ir), we

obtain k different tuples each of which defines a cell. We

prove that at least one of them is good. To this ends let us

take the product of all upper bounds following from (6) for

k cells in one such orbit. We obtain

OPTk·
( r

m

)rk
·
(
1

r

)r

·
k−1∏
i=1

(
i

k

)r

≈ OPTk·
( r

m

)rk
·e−kr·r−r

Hence by taking the k-th root of the above, we can con-

clude that for at least one of the cells S(i′1, i′2, . . . , i′r)
in the considered orbit the following bound holds for all

x ∈ S(i′1, i′2, . . . , i′r)
f(x) ≥ OPT ·

( r

m

)r
· e−r · r−r/k ≥ OPT ·

( r

m

)r
· c−r

for some constant c > 0, since k ≈ log r. As all the cells are

disjoint, have the same volume and the volume of their union

is Ω(1), the inequality f(x) ≥ OPT · ( r
m

)r
c−r holds for at

least a Ω
(

1
log(r)

)
fraction of the space. This completes the

sketch of the proof of Theorem I.1.

E. Organization of the Rest of the Paper

We introduce notation and give some background on

matroids in Section II. In Section III we present the proof of

our anti-concentration result, Theorem I.1. In Section IV we

give a proof of Theorem I.2 for partition matroids. The proof

of Theorem I.3 (for regular matroids) appears in Section

V. Due to space limitations, some proofs are omitted; they

appear in the full version of the paper.

II. PRELIMINARIES

Notation. Let [m], 2[m] and
(
[m]
d

)
denote the sets

{1, 2, . . . ,m}, the set of all subsets of [m] and the set of all

subsets of [m] of size d, respectively. For any subset S of

[m], we denote the indicator vector of S by 1S ∈ R
d. The

standard basis vectors for Rd are denoted by e1, e2, . . . , ed,

i.e., ei stands for the vector having 1 in the i-th coordinate

and zeros everywhere else. For a matrix V ∈ R
d×m, the

columns of V are denoted by V1, V2, . . . , Vm ∈ R
d. The d-

dimensional Lebesgue measure (volume) on R
d is denoted

by λd. When the dimension is clear from the context, we

use λ to denote the volume. Throughout this paper, the

probability distributions we consider, are typically uniform

over an appropriate domain.

The standard (d − 1)-simplex, denoted by Δd is defined

as the convex hull of e1, e2, . . . , ed ∈ R
d. Notice that Δd

is a (d − 1)-dimensional polytope which is embedded in

R
d, and it inherits a (d− 1)-dimensional Lebesgue measure

from the hyperplane it lies on. We use μd to denote the

induced measure λd on the simplex Δd, normalized so that

μd(Δd) = 1. We often deal with Cartesian products of

simplices, which we denote by Δ =
∏r

i=1 Δpi
, for some

sequence p1, p2, . . . , pr ∈ N. For a point x ∈ Δ, by xi we

denote i-th component of x belonging to Δpi
and xi

j for

j ∈ [pi] are the components of xi within Δpi . By V (Δ),
we denote the set of points of Δ with integer coordinates.

We call V (Δ) the set of vertices of Δ.

For any vector x ∈ R
m by X ∈ R

m×m we denote the

diagonal matrix, such that Xi,i = xi for all i ∈ [m]. For any

two closed subsets S1, S2 ⊆ R
d, we denote by dist(S1, S2)

the distance between these two sets, formally defined as

dist(S1, S2) := min
s1∈S1,s2∈S2

‖s1 − s2‖2

where ‖·‖2 is the standard �2-norm.

Multi-affine functions. A function f : R
m → R is

called affine when f is a polynomial whose total degree

is at most one. A function f : Rm → R is called multi-

affine if f is a polynomial function where the degree of

each variable is at most 1. Suppose that x1, . . . , xm are m
variables. We denote the monomial

∏
i∈S xi by xS for every

S ⊆ [m]. Every multi-affine function can be written in the

form f(x) =
∑

S⊆[m] fSx
S where fS’s are real numbers,

called the coefficients of f .

Matroids. For a comprehensive treatment of matroid theory

we refer the reader to [24]. Below we state the most

important definitions and examples of matroids, which are

most relevant to our results. A matroid is a pair M = (U, I)
such that U is a finite set and I ⊆ 2U satisfies the following

three axioms: (1) ∅ ∈ I, (2) if S ∈ I and S′ ⊆ S then

S′ ∈ I, (3) if A,B ∈ I and |A| > |B|, then there exists an

element a ∈ A \ B such that B ∪ {a} ∈ I. The collection

B ⊆ I of all inclusion-wise maximal elements of M is

called the set of bases of the matroid. It is known that all

the sets in B have the same cardinality, which is called the

rank of the matroid. In this paper we often work with sets

of bases B of matroids instead of independent sets I, for

this reason we will also refer to a pair (U,B) as a matroid.

Linear and regular matroids. Let U =
{w1, w2, . . . , wm} ⊆ R

n be a set of vectors. Let B
consist of all subsets of U which form a basis for the linear

space generated by all the vectors in U . M = (U,B) is

called a linear matroid. A matrix A ∈ R
r×m is called a

representation of a matroid M = ([m],B), if for every

set S ⊆ [m], S is independent in M if and only if the

corresponding set of columns {Ai : i ∈ S} is linearly

independent. A matroid M = (M,B) is called a regular

matroid if it is representable by a totally unimodular

real matrix. A matrix is called totally unimodular if the

determinant of any of its square submatrices belongs to the

1026



set {−1, 0, 1}.
Partition matroids. A matroid M = (M,B) is said to

be a partition matroid if there exists a partition P =
{M1,M2, . . . ,Mt} of the ground set M and a sequence

of non-negative integers b = (b1, b2, . . . , bt) such that

|B ∩Mi| = bi for all B ∈ B and i = 1, 2, . . . , t.

III. ANTI-CONCENTRATION INEQUALITY: PROOF OF

THEOREM I.1

Our proof consists of two phases. In the first phase, we

divide the space into exponentially many disjoint subsets of

equal volume, which we call cells, such that, within any cell,

the value of f is uniformly lower bounded by a factor that

only depends on the cell.

In the second phase, we show that the cells can be

partitioned into small size groups in such a way that each

group has the same number of cells and within every group,

there exists at least one cell where the function f takes

relatively large values.

Let us denote k := �log(r)� and take x� =
(x�1, . . . , x�r) ∈ ∏r

i=1 Δpi
to be any point at which f

attains its optimal value, i.e., OPT = f(x�). For q =
(q1, . . . , qt) ∈∏i∈[t] Δpi define

f̃(q) := f(q1, . . . , qt, x�t+1, . . . , x�r).

Notice that for t = r, i.e., when q ∈ ∏i∈[r] Δpi , we have

f̃(q) = f(q).

Phase 1: Cell Construction

In the first phase of the proof, we show that there

exists a collection of disjoint sets S(i1, i2, . . . , ir) ⊆
Δ :=

∏
i∈[r] Δpi

, called cells, such that the following

hold for every (i1, . . . , ir) ∈ [k]r and for every point

q ∈ S(i1, i2, . . . , ir)

μ (S(i1, i2, . . . , ir)) =
(
1

k
− γ

rk

)r

,

f(q) ≥ OPT
∏
j∈[r]

1

γpj

(
k − ij
k

+
γij
rk

)
. (7)

This fact is a direct consequence of the following, more

general lemma, when t = r.

Lemma III.1 (Cell construction). Let f :
∏

i∈[r] Δpi
→ R

be a γ-anti-concentrated function which attains its maximum
value at x�. If r ≥ γ, then for every t ≤ r there exists a
family of subsets of

∏
i∈[t] Δpi

,{S(i1, . . . , it) : (i1, . . . , it) ∈ [k]t
}
,

such that the following conditions are satisfied
1) (Equal volume) μ (S(i1, i2, . . . , it)) =

(
1
k − γ

rk

)t
.

2) (Uniform lower bound) for all q ∈ S(i1, i2, . . . , it),
f̃(q) ≥ OPT ·∏j∈[t]

1
γpj

(
k−ij
k +

γij
rk

)
.

3) (Disjointness) The sets S(i1, . . . , it) for (i1, . . . , it) ∈
[k]t are pairwise disjoint.

The proof of Lemma III.1 appears in the full version of the

paper. For the case when t = r, Lemma III.1 says that every

cell has volume
(
1
k − γ

rk

)t
and since there are kr disjoint

cells, the volume of the union of these cells is equal to

kr
(
1

k
− γ

rk

)r

=
(
1− γ

r

)r
≈ 1

eγ
.

Let us denote ζi :=
k−i
k for i = 1, 2, . . . , k−1 and ζk := γ

r .

Then it is easy to see that k−i
k + γi

rk ≥ ζi for all i ∈ [k] and

hence from the uniform lower bound property it follows that

for every q ∈ S(i1, . . . , ir)

f(q) ≥ OPT ·
∏
j∈[r]

1

γpj
·
∏
j∈[r]

ζij . (8)

Phase 2: Counting Good Cells

We construct a subset of Δ where f is “large”, by

taking a union of appropriate cells. Equation (8) gives us

a convenient lower-bound on the value of f on each cell

S(i1, . . . , ir). By the equal volume condition in Lemma

III.1, all sets S(i1, . . . , ir) have the same volume. What

remains, is to count cells with a large enough lower bound on

f(q) following from (8). Let us define a cell (i1, i2, . . . , ir)
to be good if

f(q) ≥ (γe2)−r
∏
i∈[r]

1

pi
·OPT for all q ∈ S(i1, . . . , ir)

and denote by G the set of all good cells. We show that at

least 1
k fraction of cells are good, i.e., that |G| ≥ kr−1.

To this end, let σ be the cyclic permutation on the set [k],
i.e., σ(i) = i + 1, for i ∈ [k − 1] and σ(k) = 1. Consider

the action of σ on r-tuples (i1, . . . , ir) ∈ [k]r defined by

σ(i1, . . . , ir) := (σ(i1), . . . , σ(ir)).

Let σl be the permutation σ composed l times with itself.

Now, define the following equivalence relation on cells. Two

cells S(i1, . . . , ir),S (i′1, . . . , i
′
r) are said to be in relation if

∃l ∈ [k] σl (i1, . . . , ir) = (i′1, . . . , i
′
r) .

Observe that every equivalence class (which we call an orbit)

contains exactly k elements.

We show that for any cell S(i1, . . . , ir), there exists

at least one good cell in its orbit, i.e., of the form

S (σl(i1 . . . , ir)
)
, for some l ∈ [k]. To this end it is enough

(because of (8)) to show that there exists an l ∈ [k] such

that ∏
j∈[r]

1

γpj
·
∏
j∈[r]

ζσl(ij) ≥ (γe2)−r
∏
i∈[r]

1

pi
. (9)
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Consider the product of left hand sides of (9) over all l ∈ [k]:∏
j∈[r]

1

(γpj)
k
·
∏
j∈[r]

∏
l∈[k]

ζσl(ij) =

=
∏
j∈[r]

1

(γpj)
k
·
∏
l∈[k]

∏
j∈[r]

ζσl(ij)

=
∏
j∈[r]

1

(γpj)
k

(γ
r

)r ∏
t∈[k−1]

(
k − t

k

)r

=
∏
j∈[r]

1

(γpj)
k

(γ
r

)r ( (k − 1)!

kk−1

)r

≥
∏
j∈[r]

1

(γpj)
k

(γ
r

)r 1

ekr
.

By taking the k-th root of the right hand side above we

obtain a lower bound of∏
j∈[r]

1

(γpj)
·
(γ
r

)r/k 1

er
≥ γ−r · 1

e2r
·
∏
j∈[r]

1

pj

The last inequality is due to the fact that k = �log(r)�.
Hence, concluding, there exists l ∈ [k] such that for all

points q ∈ S(σl(i1, i2, . . . , ir)) we have

f(q) ≥ (γe2)−r ·
∏
j∈[r]

1

pj
·OPT.

Thus indeed at least 1
k -fraction of all cells is good. On

the other hand, we proved that the total volume of cells

is approximately 1
eγ . Hence, the volume of the union of

good cells is at least 1
keγ , which concludes the proof of

Theorem I.1.

IV. PARTITION MATROIDS: PROOF OF THEOREM I.2

We begin by introducing some useful notation. Let d, r be

two positive integers such that d ≥ r. Let pi for i ∈ [r] be r
positive integers. Denote Δ :=

∏r
i=1 Δpi . Fix an arbitrary

tuple V =
(
v(i,j) : i ∈ [r], j ∈ [pi]

)
of vectors in R

d. For

every i ∈ [r] and for every vector y ∈ Δpi
, define

ϑi(y) :=
∑
j∈[pi]

yjv
(i,j). (10)

For any vectors u1, . . . , ur ∈ R
d define

g(u1, . . . , ur) := det(U�U)
1
2 ,

where U is the d × r matrix whose i-th column is ui.

Equivalently, g evaluates the r-dimensional volume of the

parallelepiped formed by the vectors ui, i ∈ [r]. Define

fV(x) := g
(
ϑ1(x

1), . . . , ϑr(x
r)
)

(11)

For any tuple y =
(
yj ∈ Δpj

: j ∈ {2, 3, . . . , r}) of (r− 1)
vectors, define the function fy : Δp1

→ R by

fy(z) := g
(
ϑ1(z), ϑ2(y

2), . . . , ϑr(y
r)
)
.

For an alternative definition of fy(z) define by Py the

(r − 1)-dimensional parallelepiped spanned by ϑi(y
i) for

i ∈ {2, 3, . . . , r}. Then

fy(z) = dist (ϑ1(z), span(Py)) · λr−1(Py). (12)

Where λr−1(Py) denotes the (r − 1)-dimensional measure

of Py and span(Py) is the (r − 1)-dimensional subspace

spanned by Py .

A. Proof of Theorem I.2

We start by observing that it suffices to prove the Theorem

for the case when b1 = b2 = · · · = bt = 1. Indeed,

when bi’s are not all equal to 1, we can perform a simple

reduction to the all-ones case. Namely, we construct a new

instance of the problem, where every part Mi is repeated bi
times. After doing so, we obtain a new instance with r parts

M ′
1,M

′
2, . . . ,M

′
r and b′1 = b′2 = . . . = b′r = 1.

Every feasible solution to the original instance corre-

sponds to a feasible solution to the new instance (with the

same value). Conversely, every feasible solution with non-
zero value corresponds to a feasible solution in the original

instance.

Finally, the bound on the approximation ratio follows

easily by translating the bound in the simple case b1 = b2 =
. . . = br = 1 to the instance after reduction.

Hence, from now on we assume that b1 = b2 = · · · =
bt = 1; in this case t = r. Let

L = V �V

be the Cholesky decomposition of the PSD matrix L with

V ∈ R
d×m. One can easily see that

LS,S = V �S VS , for all S ⊆ [m].

The quantity det
(
V �S VS

)
is equal to the squared volume

of the parallelepiped formed by vectors {Vi : i ∈ S}.
Therefore, maximizing det(LS,S) subject to S ∈ B(M) is

equivalent to finding a basis S of the matroid such that the

volume of the parallelepiped formed by {Vi : i ∈ S} is max-

imized. For convenience, identify Mi with {(i, j) : j ∈ [pi]}
and also index the corresponding columns of V by v(i,j) for

j ∈ [pi]. Further, to each pair (i, j) (for i ∈ [t] and j ∈ [pi])
assign a variable xi

j . Let

xi :=
(
xi
j , j ∈Mi

)
, and x := (xi, i ∈ [r]).

Let fV be the function defined in (11). When each xi is a

vertex of Δpi
, precisely one xi

j is equal to 1 and the others

are equal to 0. Thus, there exists a natural bijection between

the elements of B (bases of the partition matroid) and the

vertices of Δ =
∏t

i=1 Δpi . Therefore, the optimization

problem can be stated as the problem of maximizing fV
over the vertices of Δ. That is

max {fV(x) : x ∈ V (Δ)}. (13)
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The next lemma states that fV is 2-anti-concentrated. The

proof appears in the next subsection.

Lemma IV.1 (2-Anti-concentration of the volume func-

tion). Let d, r, with d ≥ r be two positive integers. Let
p1, p2, . . . , pr be positive integers. For any tuple V =(
v(i,j) ∈ R

d : i ∈ [r], j ∈ [pi]
)
, fV is 2-anti-concentrated.

From the above lemma, and Theorem I.1 we deduce

Pr

[
fV(x) > (2e2)−r

r∏
i=1

1

pi
·OPT

]
≥ 1

e2 log r
.

By drawing polynomially many independent samples we can

ensure that with probability approaching 1, at least one of

the samples y satisfies the condition

fV(y) > (2e2)−r
r∏

i=1

1

pi
·OPT.

The next lemma guarantees that in polynomial time, we can

round such a y to an integral solution.

Lemma IV.2 (Rounding for the volume function). Let
d, r, with d ≥ r be two positive integers. Let
p1, p2, . . . , pr be positive integers. For any tuple V =(
v(i,j) ∈ R

d : i ∈ [r], j ∈ [pi]
)
, fV has a polynomial time

rounding algorithm, i.e., there exists an algorithm which
given a point x ∈ Δ =

∏r
i=1 Δpi outputs (in polynomial

time) a vertex x̃ ∈ V (Δ) such that fV(x) ≤ fV(x̃).

The proof of the Lemma IV.2 is presented in Section IV-B.

As demonstrated above, Theorem I.2 then follows from

Lemmas IV.2 and IV.1.

B. Proofs of Lemmas

The proof of Lemma IV.1 relies on the following more

general Fact.

Fact IV.3 (2-Anti-concentration of the distance function).
Let t, d be two positive integers. Suppose that w1, . . . , wt

are vectors in R
d. The function f : Δt → R defined by

f(x) := ‖∑i∈[t] xiw
i‖2 is 2-anti-concentrated.

The proof of Fact IV.3 appears in the full version of the

paper. Here we show how to deduce Lemma IV.1 from it.

Proof of Lemma IV.1: We show that fixing the values

of any (r − 1) variables results in a 2-anti-concentrated

function of the remaining variables. Because of symmetry,

we only need to verify this claim for the last (r − 1)
block-coordinates. Fix an arbitrary tuple y = (y2, . . . , yr) ∈∏r

i=2 Δpi
. We show that fy is 2-anti-concentrated, i.e.,

∀c ∈ (0, 1), Pr
z
[fy(z) < c ·OPT] < 2cp1, (14)

where OPT is the maximum value of fy over the simplex

Δp1
. Recall from (12) that

fy(z) = dist (ϑ1(z), span(P )) · λr−1(P ),

where P = Py , as defined in the previous subsection. In

particular

OPT = max
z∈Δp1

dist (ϑ1(z), span(P )) · λr−1(P ).

Therefore, the event (over a random choice of z ∈ Δp1
)

fy(z) < c ·OPT

coincides with

dist(ϑ1(z), span(P )) < c · max
x1∈Δp1

dist
(
ϑ1(x

1), span(P )
)
.

(15)

Define the function f : Δp1
→ R by

f(z) := ‖dist(ϑ1(z), span(P ))‖2 = ‖
∑

j∈[p1]

zjw
j‖2,

where wj is the projection of v(1,j) on the space orthogonal

to span(P ). Fact IV.3 together with (15) imply then that

f is 2-anti-concentrated. Thus, by definition, fy is 2-anti-

concentrated. Consequently, fV is 2-anti-concentrated.

Proof of Lemma IV.2: We prove that for every setting

of r − 1 block-coordinates of fV , the induced function (of

the remaining coordinate) attains its maximum at one of the

vertices of the remaining coordinate. Clearly such a property

implies the Lemma, as we can round any point x by rounding

one coordinate at a time, without decreasing the value of

the function. For each coordinate i, only pi calls to the

evaluation oracle are required, one per each vertex.

Fix any y = (y2, . . . , yr) ∈ ∏r
i=2 Δpi

, we show that the

maximum of fy(z) is attained at a vertex of Δp1
. Recall

that fy(z) = g
(
ϑ1(z), ϑ2(y

2), . . . , ϑr(y
r)
)

is the restriction

of fV when the last r− 1 arguments are fixed. By (12), we

have

fy(z) = dist (ϑ1(z), span(P )) · λr−1(P ).

and further

dist (ϑ1(z), span(P )) = ‖
∑

j∈[p1]

zjw
j‖2 ≤ max

j∈[p1]
‖wj‖2,

where wj is the projection of v(1,j) on the space orthogonal

to span(P ). The last inequality follows from the triangle

inequality and from the fact that zj ∈ Δpj
. Thus, fy is

maximized at one of the vertices of Δp1 .

V. REGULAR MATROIDS: PROOF OF THEOREM I.3

We start by reducing the subdeterminant maximization

problem under a regular matroid constraint to a polynomial

optimization problem as follows. Let B1, B2, . . . , Bm ∈ R
d

be the columns of B. Since B is a representation of the

matroid M, a set S ⊆ M is a basis of M if and only the

set of the vectors {Bi : i ∈ S} is linearly independent. Let

L = V �V be a Cholesky decomposition of the PSD matrix

L, for V ∈ R
d×m.
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Let us now consider any set S ∈ ([m]
d

)
and define IS :=

Diag(1S). For any S ∈ ([m]
d

)
we have

det
(
V ISB

�) = det

(∑
i∈S

ViB
�
i

)
= det (VS) det

(
B�S
)
.

Since B is a totally unimodular matrix, | det(BS)| = 1 if

S ∈ B(M) and 0 otherwise. Thus for all S ∈ ([m]
d

)
∣∣det (V ISB

�)∣∣ = {| det(VS)| if S ∈ B,
0 otherwise.

Since for all S ∈ (
[m]
d

)
, det(LS,S) = det(V �S VS) =

det(VS)
2, maximizing det(LS,S) over S ∈ B is equivalent

to maximizing |f(x)| for f(x) := det(V XB�) over all the

0-1 vectors x ∈ {0, 1}m subject to
∑m

i=1 xi = d. We give

an approximation algorithm for this problem which proceeds

in two phases.

Phase 1: Finding a Fractional Solution.

In the first phase, we drop the
∑m

i=1 xi = d condition and

relax the 0 − 1 condition to x ∈ [0, 1]m. Our optimization

problem then becomes

max
x

|f(x)|,
s.t. x ∈ [0, 1]m.

(16)

Our algorithm to find an approximate solution to (16) is as

follows. We sample a polynomial number of points x from

[0, 1]m uniformly and independently at random. Then, we

output the point with the largest value of |f(x)|. We analyze

the performance of this algorithm in two different regimes.

Large d. It follows from the Cauchy-Binet formula that

f(x) =
∑
S∈B

xS det(VS) det(BS). (17)

Moreover, f(x) is multi-affine and easy to compute (because

it is just a determinant of an m×m matrix). We show that |f |
is 2-anti-concentrated. To this end, we show that for every

i ∈ [m] and every choice of yj ∈ [0, 1], j ∈ [m] \ {i}, the

univariate function

τ �→ |f (y1, . . . , yi−1, τ, yi+1, . . . , ym) |
is 2-anti-concentrated. Such a function is of the form τ �→
|aτ + b| for some a, b ∈ R. 2-anti-concentration of such

functions follows easily from Fact IV.3. Indeed, by setting

d = 1 and t = 2 in Fact IV.3 we obtain the 2-anti-

concentration of (τ1, τ2) �→ |τ1a1 + τ2a2|, which implies

our claim.

Theorem I.1 implies now that if we sample a uniform

point x from [0, 1]m then

Pr
[|f(x)| > 2−m(2e2)−m ·OPT

] ≥ 1

e2 logm
.

Where OPT := maxx∈[0,1]m |f(x)| is clearly an upper

bound on maxS∈B | det(VS)|. We can amplify the proba-

bility of success by repeating the experiment several times

and hence, with high probability obtain a point x̂ such that

|f(x̂)| > (2e)−2m ·OPT. (18)

Small d. From (17) it is clear that the function f is

a polynomial of degree d in m variables. According to

Theorem 2 in [18], if we sample x uniformly from the unit

hypercube [0, 1]m, then

Pr
[|f(x)| ≤ βd ·OPT

] ≤ C · β ·m,

for any β > 0 and some absolute constant C > 0. By picking

β = 1
2C·m , we conclude that with constant probability we

obtain a vector x̂ such that

|f(x̂)| >
(

1

2mC

)d

·OPT. (19)

Phase 2: Rounding the Fractional Solution.

We first round x̂ obtained in the previous phase to a 0−1
vector, and then finally to a set Ŝ ∈ ([m]

d

)
. Since f is multi-

affine, the restriction of f to the first coordinate is a 1-

dimensional affine function. Therefore, either

|f(0, x̂2, . . . , x̂d)| ≥ |f(x̂)| or |f(1, x̂2, . . . , x̂d)| ≥ |f(x̂)|.
Hence, we can round the first coordinate without decreasing

the value of |f(x̂)|, using one call to the evaluation oracle.

We proceed to the next coordinates and round them one at a

time. Let y ∈ {0, 1}m be the outcome of the above rounding

algorithm.

Let S0 ⊆ [m] such that 1S0
= y. It is likely that |S0| > d,

hence we will need to remove several elements from S0 to

obtain a set of cardinality d. Define a function g : 2[m] → R

to be

g(S) := f(1S) = det(VSB
�
S ).

Note in particular that g can be computed efficiently. Fur-

thermore, by the Cauchy-Binet formula, we have

g(S) =
∑

T∈([m]
d )

g(T ) =
∑

T∈([m]
d )

det(VT ) det(BT ) (20)

for every subset S ∈ 2[m]. We have |f(y)| = |f(1S0
)| =

|g(S0)|. Further, (20) implies that∑
i∈S0

g(S0\{i}) = (|S0|−d)
∑

T∈(S0
d )

g(T ) = (|S0|−d)g(S0).

Consequently, there exists an i ∈ S0 such that:

|g(S0 \ {i})| ≥ |S0| − d

|S0| |g(S0)|.

In our algorithm we find such an i and consider S1 :=
S0 \ {i}. This step of removing one element is repeated
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until we arrive at a set Ŝ ⊆ [m] of cardinality d. In this

process we can guarantee that

|g(Ŝ)| ≥ |g(S0)| ·
|S0|−d∏
j=1

j

j + d
≥ |g(S0)|(

m
d

) .

Finally, since |g(Ŝ)| = | det(VŜ)|, we conclude:

| det(VŜ)| ≥
|f(y)|(

m
d

) >
1(
m
d

) max
(
(2e)−2m, (2dC)−d

)·OPT

hence | det(VŜ)| > max
(
2−O(m), 2−O(d logm)

) ·OPT, and

Theorem I.3 follows.
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