58th Annual IEEE Symposium on Foundations of Computer Science

On the Quantitative Hardness of CVP!

Huck Bennett and Noah Stephens-Davidowitz
Courant Institute
New York University
New York, USA

Email: huckbennett@gmail.com, noahsd@gmail.com

Abstract—For odd integers p > 1 (and p = o0),
we show that the Closest Vector Problem in the
¢, norm (CVP,) over rank n lattices cannot be
solved in 20'=9" time for any constant ¢ > 0
unless the Strong Exponential Time Hypothe-
sis (SETH) fails. We then extend this result to
“almost all” values of p > 1, not including the
even integers. This comes tantalizingly close to
settling the quantitative time complexity of the
important special case of CVP; (i.e., CVP in the
Euclidean norm), for which a 2"*°(™_time algo-
rithm is known. In particular, our result applies
for any p = p(n) # 2 that approaches 2 as n — oo.

We also show a similar SETH-hardness result
for SVP.; hardness of approximating CVP, to
within some constant factor under the so-called
Gap-ETH assumption; and other hardness results
for CVP, and CVPP, for any 1 < p < oo under
different assumptions.

Keywords-Lattices; CVP; SETH; Closest Vec-
tor Problem; Fine-grained complexity

I. INTRODUCTION

A lattice L is the set of all integer combinations of
linearly independent basis vectors by, ..., b, € R%,

L=L(bi,....by) ::{zn:zibi : zieZ}.
i=1

We call n the rank of the lattice £ and d the
dimension or the ambient dimension.

The two most important computational problems
on lattices are the Shortest Vector Problem (SVP)
and the Closest Vector Problem (CVP). Given a
basis for a lattice £ C R?, SVP asks us to compute
the minimal length of a non-zero vector in £, and
CVP asks us to compute the distance from some
target point ¢ € R? to the lattice. Typically, we
define shortness and closeness in terms of the £,

TIn this extended abstract, we summarize our results. The
full version of this paper is available at http://arxiv.org/abs/
1704.03928.

0272-5428/17 $31.00 © 2017 IEEE
DOI 10.1109/FOCS.2017.11

Alexander Golovnev
Yahoo Research
New York, USA

Email: alexgolovnev@gmail.com

norm for some 1 < p < oo, given by
2]y = (21? + Jz2l? + - + [zql?)/?

for finite p and

= max |z .

o = max,

In particular, the ¢ norm is the familiar Euclidean
norm, and it is by far the best studied in this
context. We write SVP,, and CVP,, for the respective
problems in the ¢, norm.

Starting with the breakthrough work of Lenstra,
Lenstra, and Lovéasz in 1982 [1], algorithms for solv-
ing these problems in both their exact and approxi-
mate forms have found innumerable applications, in-
cluding factoring polynomials over the rationals [1],
integer programming [2], [3], [4], cryptanalysis [5],
[6], [7], etc. More recently, many cryptographic prim-
itives have been constructed whose security is based
on the worst-case hardness of these or closely related
lattice problems [8], [9], [10], [11], [12]. Given the
obvious importance of these problems, their com-
plexity is quite well-studied. Below, we survey some
of these results. We focus on algorithms for the
exact and near-exact problems since these are most
relevant to our work and because the best known
algorithms for the approximate variants of these
problems use algorithms for the exact problems as
subroutines [13], [14], [15]. (Many of the results
described below are also summarized in Table I-D.)

A. Algorithms for SVP and CVP

The AKS algorithm and its descendants: The
current fastest known algorithms for solving SVP,
all use the celebrated randomized sieving technique
due to Ajtai, Kumar, and Sivakumar [16]. The
original algorithm from [16] was the first 20(™)-time
algorithm for SVP, and it worked for both p = 2
and p = oo.

In the p 2 case, a sequence of works im-
proved upon the constant in the exponent [17], [18],

IEEE
computer
pSOC|ety

[19], [20], and the current fastest running time of
an algorithm that provably solves SVP, exactly
is 2nte(m) [21].) While progress has slowed, this
seems unlikely to be the end of the story. Indeed,
there are heuristic sieving algorithms that run in
time (3/2)"/2t°() [17], [22], [23], [24], and there
is some reason to believe that the provably cor-
rect [21] algorithm can be improved. In particular,
there is a provably correct 2/2+°(")_time algorithm
that approximates SVP, up to a small constant
approximation factor [21].

A different line of work extended the random-
ized sieving approach of [16] to obtain 2°()-time
algorithms for SVP in additional norms. In par-
ticular, Blomer and Naewe extended it to all ¢,
norms [25]. Subsequent work extended this further,
first to arbitrary symmetric norms [26] and then to
the “near-symmetric norms” that arise in integer
programming [27].

Finally, a third line of work extended the [16]
approach to approximate CVP. Ajtai, Kumar, and
Sivakumar themselves showed a 2°("-time algo-
rithm for approximating CVPs to within any con-
stant approximation factor strictly greater than
one [28]. Blomer and Naewe obtained the same
result for all ¢, norms [25], and Dadush extended
it further to arbitrary symmetric norms and again
to “near-symmetric norms” [27]. We stress, however,
that none of these results apply to exact CVP, and
indeed, there are fundamental barriers to extending
these algorithms to exact CVP. (See, e.g., [29].)

Ezact algorithms for CVP: CVP is known to
be at least as hard as SVP (in any norm, under an
efficient reduction that preserves the rank and ap-
proximation factor) [30], and ezxact CVP appears to
be a much more subtle problem than exact SVP.? In-
deed, progress on exact CVP has been much slower
than the progress on exact SVP. Over a decade
after [16], Micciancio and Voulgaris presented the
first 20(")-time algorithm for exact CVP; [31], using
elegant new techniques built upon the approach of
Sommer, Feder, and Shalvi [32]. Specifically, they
achieved a running time of 4nto(n) " and subsequent

I The algorithm in [21] is quite a bit different than the other
algorithms in this class, but it can still be thought of as a
sieving algorithm.

2In particular, there can be arbitrarily many lattice points
that are approximate closest vectors, which makes sieving
techniques seemingly useless for solving exact CVP. (See,
e.g., [29] for a discussion of this issue.) We note, however,
that hardness results (including ours) tend to produce CVP
instances with a bounded number of approximate closest
vectors (e.g., 20(™),

work even showed a running time of 27t°(") for
CVP, with Preprocessing (in which the algorithm is
allowed access to arbitrary advice that depends on
the lattice but not the target vector) [33]. Later, [29]
showed a 27*°(")_time algorithm for CVP5, so that
the current best proven asymptotic running time is
actually the same for SVP, and CVPs.

However, for p # 2, progress for exact CVP,, has
been minimal. Indeed, the fastest known algorithms
for exact CVP, with p # 2 are still the n©(™-time
enumeration algorithms first developed by Kannan
in 1987 [3], [4], [34]. Both algorithms for exact CVP5
mentioned in the previous paragraph use many spe-
cial properties of the ¢, norm, and it seems that
substantial new ideas would be required to extend
them to arbitrary ¢, norms.

B. Hardness of SVP and CVP

Van Emde Boas showed the NP-hardness of CVP,,
for any p and SVP, in 1981 [35]. Extending this
to SVP, for finite p was a major open problem
until it was proven (via a randomized reduction)
for all 1 < p < oo by Ajtai in 1998 [36]. There
has since been much follow-up work, showing the
hardness of these problems for progressively larger
approximation factors, culminating in NP-hardness
of approximating CVP,, up to a factor of pe/ loglogn
for some constant ¢ > 0 [37], [38] and hardness
of SVP, with the same approximation factor un-
der plausible complexity-theoretic assumptions [39],
[40], [41], [42]. These results are nearly the best
possible under plausible assumptions, since approxi-
mating either problem up to a factor of \/n is known
to be in NP N coNP [43], [44], [11].

However, such results only rule out the possibil-
ity of polynomial-time algorithms (under reasonable
complexity-theoretic assumptions). They say very
little about the quantitative hardness of these prob-
lems for a fixed lattice rank n.?

This state of affairs is quite frustrating for two
reasons. First, in the specific case of CVP,, algo-
rithmic progress has reached an apparent barrier. In
particular, both known techniques for solving exact
CVPs in singly exponential time are fundamentally
unable to produce algorithms whose running time

3 One can derive certain quantitative hardness results from
known hardness proofs, but in most cases the resulting lower
bounds are quite weak. The one true quantitative hardness
result known prior to this work was an unpublished result
due to Samuel Yeom, showing that CVP cannot be solved
in time 210~ *n under plausible complexity-theoretic assump-
tions [45].

is asymptotically better than the current best of
27 to(n) [31], [29].* Second, some lattice-based cryp-
tographic constructions are close to deployment [46],
[47], [48]. In order to be practically secure, these
constructions require the quantitative hardness of
certain lattice problems, and so their designers rely
on quantitative hardness assumptions [49]. If, for
example, there existed a 27/20-time algorithm for
SVP, or CVP,, then these cryptographic schemes
would be insecure in practice.

We therefore move in a different direction. Rather
than trying to extend non-quantitative hardness
results to larger approximation factors, we show
quantitative hardness results for exact (or nearly
exact) problems. To do this, we use the tools of fine-
grained complexity.

C. Fine-grained complexity

Impagliazzo and Paturi [50] introduced the Ex-
ponential Time Hypothesis (ETH) and the Strong
Ezxponential Time Hypothesis (SETH) to help un-
derstand the precise hardness of k-SAT. Informally,
ETH asserts that 3-SAT takes 2°2(")-time to solve in
the worst case, and SETH asserts that k-SAT takes
essentially 2"-time to solve for unbounded k. l.e.,
SETH asserts that brute-force search is essentially
optimal for solving k-SAT for large k.

Recently, the study of fine-grained complexity has
leveraged ETH, SETH, and several other assump-
tions to prove quantitative hardness results about a
wide range of problems. These include both prob-
lems in P (see, e.g., [51], [52], [63] and the survey by
Vassilevska Williams [54]), and NP-hard problems
(see, e.g., [55], [56], [57]). Although these results are
all conditional, they help to explain why making
further algorithmic progress on these problems is
difficult—and suggest that it might be impossible.
Namely, any non-trivial algorithmic improvement
would disprove a very well-studied hypothesis.

One proves quantitative hardness results using
fine-grained reductions (see [54] for a formal defini-
tion). For example, there is a mapping from k-SAT
formulas on n variables to Hitting Set instances with
universes of n elements [56]. This reduction is fine-
grained in the sense that for any constant € > 0,
a 20-9)"_time algorithm for Hitting Set implies a
2(1=€)7_time algorithm for k-SAT, breaking SETH.

Despite extensive effort, no faster-than-2"-time
algorithm for k-SAT with unbounded k has been

4 Both techniques require short vectors in each of the 2"
cosets of £ mod 2L (though for apparently different reasons).

Problem | Upper Bound Lower Bounds
SETH | Max-2-SAT | ETH | Gap-ETH
CVPP nO('n,) (20(n,)) on qwn/3 2Q(n) QQ(H)*
CVP, on o 2wn/3 2ﬂ(n) 29(71)*
SVPoc 20(71,) onk o zfl(n,) 2!2(71)*
CVPP, nOm) (20(n)) _ 29(v/n) 29(v/n) -
Figure 1. Summary of known quantitative upper and lower

bounds, with new results in blue. The first lower bound
holds for “almost all p > 1, as in Theorem I.2. Upper
bounds in parentheses hold for any constant approximation
factor strictly greater than one, and lower bounds with a *
apply for some constant approximation factor strictly greater
than one. w is the matrix multiplication exponent, satisfying
2 < w < 2.373. We have suppressed smaller factors.

found. Nevertheless, there is no consensus on
whether SETH is true or not, and recently,
Williams [58] refuted a very strong variant of SETH.
This makes it desirable to base quantitative hard-
ness results on weaker assumptions when possible,
and indeed our main result holds even assuming
a weaker variant of SETH based on the hardness
of Weighted Max-k-SAT (except for the case of
p = 00).

D. Our contribution

We now enumerate our results. See also Table I-D.

SETH-hardness of CVP,: Our main result is

the SETH-hardness of CVP,, for any odd integer p >

1 and p = oo (and SVP,). Formally, we prove the
following.

Theorem 1.1. For any constant integer k > 2 and
any odd integer p > 1 or p = oo, there is an efficient
reduction from k-SAT with n variables and m clauses
to CVP, (or SVP) on a lattice of rank n (with
ambient dimension n + O(m)).

In particular, there is no 209" time algorithm
for CVP,, for any odd integer p > 1 or p = oo (or
SVP,) and any constant e > 0 unless SETH is false.

Unfortunately, we are unable to extend this result
to even integers p, and in particular, to the impor-
tant special case of p = 2. In fact, this is inherent, as
we show that our approach necessarily fails for even
integers p < k—1. In spite of this, we actually prove
the following result that generalizes Theorem 1.1 to
“almost all” p > 1 (including non-integer p).

Theorem 1.2. For any constant integer k > 2, there
is an efficient reduction from k-SAT with n variables
and m clauses to CVP,, on a lattice of rank n (with
ambient dimension n + O(m)) for any p > 1 such
that

1) p is an odd integer or p = oo;

2) p ¢ Sk, where Sy is some finite set (containing
all even integers p < k —1); or
3) p=po+d(n) for anypo > 1 and any 6(n) # 0
that converges to zero as n — Q.
In particular, if SETH holds then for any constant
e > 0, there is no 207" time algorithm for CVP,
for any p > 1 such that
1) p is an odd integer or p = co;
2) p & Sy for some sufficiently large k (depending
one); or
3) p=po+d(n).

Notice that this lower bound (Theorem 1.2) comes
tantalizingly close to resolving the quantitative com-
plexity of CVPs5. In particular, we obtain a 2"-
time lower bound on CVPyys for any d(n) = o(1),
and the fastest algorithm for CVPs run in time
2nto(n) But, formally, Theorems I.1 and 1.2 say
nothing about CVP5. (Indeed, there is at least some
reason to believe that CVP; is easier than CVP,, for
p# 2 [59].)

We note that our reductions actually work for
Weighted Max-k-SAT for all finite p # oo, so
that our hardness results holds under a weaker
assumption than SETH, namely, the corresponding
hypothesis for Weighted Max-k-SAT.

Finally, we note that in the special case of p = oo,
our reduction works even for approximate CVP .,
or even approximate SVP ., with an approximation
factor of v := 1+ 2/(k — 1). In particular, ~ is
constant for fixed k. This implies that for every
constant € > 0, there is a 7. > 1 such that
no 21=9)"_time algorithm approximates SVP., or
CVP, to within a factor of «. unless SETH fails.

Quantitative hardness of approzimate CVP:

As we discussed above, many 2°(™)-time algorithms
for CVP,, only work for ~y-approximate CVP, for
constant approximation factors v > 1. However,
the reduction described above only works for exact
CVP, (except when p o0), or at best for -
approximate CVP), with some approximation factor
v =1+ o(1). (Standard techniques for “boosting”
the approximation factor are useless for us because
they increase the rank quite a bit.)

So, it would be preferable to show hardness for
some constant approximation factor v > 1. One way
to show such a hardness result is via a fine-grained
reduction from the problem of approximating Max-
k-SAT to within a constant factor. Indeed, in the
k = 2 case, we show that such a reduction exists, so
that there is no 2°(")-time algorithm for approximat-
ing CVP,, to within some constant factor unless a

20(n)_time algorithm exists for approximating Max-
2-SAT. We also note that a 2°(")-time algorithm
for approximating Max-2-SAT to within a constant
factor would imply one for Max-3-SAT as well.”

We present this result informally here (without
worrying about specific parameters and the exact
definition of approximate Max-2-SAT). See the full
version [60] for the formal statement.

Theorem 1.3. There is an efficient reduction from
approximating a Max-2-SAT on n variables and m
clauses to within a constant factor to approximating
CVP,, to within a constant factor on a lattice of rank
n (with ambient dimension n+0O(m)) for anyp > 1.

Quantitative hardness of CVP with Preprocess-
ing. : CVP with Preprocessing (CVPP) is the
variant of CVP in which we are allowed arbitrary
advice that depends on the lattice, but not the
target vector. CVPP and its variants have poten-
tial applications in both cryptography (e.g., [10])
and cryptanalysis. And, an algorithm for CVPP; is
used as a subroutine in the celebrated Micciancio-
Voulgaris algorithm for CVPy [31], [33]. The com-
plexity of CVPP,, is well studied, with both hardness
of approximation results [61], [62], [63], [64], [65],
and efficient approximation algorithms [44], [66].

We prove the following quantitative hardness re-

sult for CVPP,,.

Theorem 1.4. For any 1 < p < oo, there is no
200V _time algorithm for CVPP unless there is a
(non-uniform) 2°") -time algorithm for Maz-2-SAT.
In particular, no such algorithm exists unless (non-
uniform) ETH fails.

Additional quantitative hardness results for
CVP,: We also observe the following weaker hard-
ness result for CVP,, for any 1 < p < oo based on
different assumptions. The ETH-hardness of CVP,
was already known in folklore, and even written
down by Samuel Yeom in unpublished work [45]. We
present a slightly stronger theorem than what was
previously known, showing a reduction from Max-2-
SAT on n variables to CVP,, on a lattice of rank n.
(Prior to this work, we were only aware of reductions
from 3-SAT on n variables to CVP, on a lattice of
rank Cn for some very large positive constant C'.)

Theorem I.5. For any 1 < p < oo, there is an
efficient reduction from Max-2-SAT with n variables

5Recall that, while there is a polynomial-time algorithm for
2-SAT, Max-2-SAT is hard.

to CVP,, on a lattice of rank n (and dimension n+m,
where m is the number of clauses).

In particular, for any constant ¢ > 0, there is no
(poly(n) -2°™)-time algorithm for CVP,, unless there
is a similar algorithm for Max-2-SAT, and there is
no 2°0") _time algorithm for CVP,, unless ETH fails.

The fastest known algorithm for the Max-2-SAT
problem is the poly(n) - 2"/3-time algorithm due to
Williams [67], where 2 < w < 2.373 is the matrix
multiplication exponent [68], [69]. This implies that
a faster than 2¢"/3_time algorithm for CVP, (and
CVPs in particular) would yield a faster algorithm
for Max-2-SAT.® (See, e.g., [70] Open Problem 4.7
and the preceding discussion.)

E. Techniques

Maz-2-SAT: We first show a straightforward
reduction from Max-2-SAT to CVP, forany 1 < p <
o0. L.e., we prove Theorem 1.5. This simple reduction
will introduce some of the high-level ideas needed for
our more difficult reductions.

Given a Max-2-SAT instance ® with n variables
and m clauses, we construct the lattice basis

)
B = <2oz[n> ’

where a > 0 is some very large number and & €
R™*™ where

(1)

2 if x; is in the ¢th clause,
—2 if —z; is in the ith clause,
0 otherwise .

)

ij = (2)
Le., the rows of ® correspond to clauses and the
columns correspond to variables. Each entry encodes
whether the relevant variable is included in the
relevant clause unnegated, negated, or not at all,
using 2, —2, and 0 respectively. (We assume without
loss of generality that no clause contains repeated
literals or a literal and its negation simultaneously.)
The target t € R™'" is given by

t:= (tl,tg,.)T) (3)

cytm,a,a, . L

where

ti =3 — 277Z y (4)

where 7; is the number of negated variables in the
1th clause.

6This also implies that a polynomial-space algorithm with
running time 2(1=¢)'" for CVP,, would beat the current fastest
such algorithm for Max-2-SAT, a long-standing open problem.
All known algorithms for CVP or SVP that run in 29(™) time
require exponential space, and it is a major open problem to
find a polynomial-space, singly exponential-time algorithm.

Notice that the copy of 2al, at the bottom of
B together with the sequence of «’s in the last
coordinates of £ guarantee that any lattice vector Bz
with z € Z" is at distance at least an'/? away from
t. Furthermore, if z ¢ {0,1}", then this distance
increases to at least a(n — 1 + 37)Y/P. This is a
standard gadget, which will allow us to ignore the
case z ¢ {0,1}™ (as long as « is large enough). Le.,
we can view z as an assignment to the n variables
of ®.

Now, suppose z does not satisfy the ith clause.
Then, notice that the ith coordinate of Bz will be
exactly —2n;, so that (Bz —t); =0—3 = —3.If, on
the other hand, exactly one literal in the ¢th clause
is satisfied, then the ith coordinate of Bz will be
2—2n;, so that (Bz—t); = 2—3 = —1. Finally, if both
literals are satisfied, then the 7th coordinate will be
4 —2n;, so that (Bz —t); = 4—3 = 1. In particular,
if the clause is not satisfied, then |(Bz); — t;| = 3.
Otherwise, |(Bz); — t;| = 1.

It follows that the distance to the target is exactly
dist, (¢, £)? = aPn+S+3P(m—>S5) = a’n—(37—1)S+
3Pm, where S is the maximal number of satisfied
clauses on the input. So, the distance dist,(t, L)
tells us exactly the maximum number of satisfiable
clauses, which is what we needed.

Difficulties extending this to k-SAT: The above
reduction relied on one very important fact: that
[4 — 3] =]2 — 3] < |0 — 3|. In particular, a 2-SAT
clause can be satisfied in two different ways; either
one variable is satisfied or two variables are satisfied.
We designed our CVP instance above so that the
ith coordinate of Bz — t is 4 — 3 if two literals in
the ith clause are satisfied by z € {0,1}", 2 — 3
if one literal is satisfied, and 0 — 3 if the clause is
unsatisfied. Since |4 —3| = |2—3|, the “contribution”
of this 7th coordinate to the distance || Bz—t|[} is the
same for any satisfied clause. Since |0 — 3| > |4 — 3|,
the contribution to the ith coordinate is larger for
unsatisfied clauses than satisfied clauses.

Suppose we tried the same construction for a k-
SAT instance. Ie., suppose we take ® € R™*" to
encode the literals in each clause as in Eq. (2) and
construct our lattice basis B as in Eq. (1) and target
t as in Eq. (3), perhaps with the number 3 in the
definition of ¢ replaced by an arbitrary t* € R. Then,
the ¢th coordinate of Bz —t would be 25; —t*, where
S; is the number of literals satisfied in the ith clause.

No matter how cleverly we choose t* € R, some
satisfied clauses will contribute more to the distance
than others as long as k > 3. L.e., there will always
be some “imbalance” in this contribution. As a

result, we will not be able to distinguish between,
e.g., an assignment that satisfies all clauses but has
S; far from t*/2 for all ¢ and an assignment that
satisfies fewer clauses but has S; ~ t*/2 whenever i
corresponds to a satisfying clause.

In short, for k¥ > 3, we run into trouble be-
cause satisfying assignments to a clause may satisfy
anywhere between 1 and k literals, but k& distinct
numbers obviously cannot all be equidistant from
some number t*. (See the full version [60] for a
simple way to get around this issue by adding to the
rank of the lattice. Below, we show a more technical
way to do this without adding to the rank of the
lattice, which allows us to prove SETH-hardness.)

A solution via isolating parallelepipeds: To get
around the issue described above for k > 3, we first
observe that, while many distinct numbers cannot
all be equidistant from some number t*, it is trivial
to find many distinct vectors in R% that are equidis-
tant from some vector t* € R% .

We therefore consider modifying the reduction
from above by replacing the scalar +1 values in our
matrix ® with vectors in R for some d*. In partic-
ular, for some vectors V = (vq,...,v;) € RY *F we
define ® € RY X" a5

B v, x; is sth literal in 7th clause,
®; ;= —vs —x; is sth literal in ith clause,
0; otherwise ,

(5)
where we have abused notation and taken ®; ; to
be a column vector in d* dimensions. By defining
t € R¥™tn appropriately,” we will get that the
“contribution of the ith clause to the distance”
| Bz — t||E is exactly ||Vy — ¢*|[% for some t* € RT",
where y € {0,1}* such that y, = 1 if and only
if z satisfies the sth literal of the relevant clause.
(See Table 4 for a diagram showing the output
of the reduction and Theorem II.2 for the formal
statement.) We stress that, while we have increased
the ambient dimension by nearly a factor of d*, the
rank of the lattice is still n.

This motivates the introduction of our primary
technical tool, which we call isolating parallelepipeds.
For 1 < p < o0, a (p, k)-isolating parallelepiped
is represented by a matrix V € R% ** and a shift
vector t* € RY with the special property that

"In particular, we replace the scalars t; in Eq. (4) with
vectors
t, =t — E vs € RY

where the sum is over s such that the sth literal in the ith
clause is negated.

one vertex of the parallelepiped V{0,1}* — t* is
“isolated.” (Here, V{0,1}¥ — ¢* is an affine trans-
formation of the hypercube, i.e., a parallelepiped.)
In particular, every vertex of the parallelepiped,
Vy—t* for y € {0,1}* has unit length |[|[Vy—¢t*||, =
1 except for the vertexr —t*, which is longer, i.e.,
lt*[|, > 1. (See Figure 2.)

In terms of the reduction above, an isolating
parallelepiped is exactly what we need. In particular,
if we plug V and t* into the above reduction, then
all satisfied clauses (which correspond to non-zero y
in the above description) will “contribute” 1 to the
distance || Bz —¢t||}, while unsatisfied clauses (which
correspond to y = 0) will contribute 1+ ¢ for some
6 > 0. Therefore, the total distance will be exactly
Bz —t]|p = aPn+m™(z) + (m —m*(z))(1+6) =
aPn—dm™(z)+(1+8)m, where m™ (z) is the number
of clauses satisfied by z. So, the distance dist, (¢, L)
exactly corresponds to the maximal number of sat-
isfied clauses, as needed.

Constructing isolating parallelepipeds: — Of
course, in order for the above to be useful, we
must show how to construct these (p,k)-isolating
parallelepipeds. In this extended abstract, we only
show the reduction that assumes the existence of
such objects (see Section IT). In the full version,
we show how to construct these objects. Indeed,
it is not hard to find constructions for all p > 1
when k = 2, and even for all k& in the special case
when p = 1 (see Figure 2). Some other fairly nice
examples can also be found for small k, as shown
in Figure 3. For p > 1 and large k, these objects
seem to be much harder to find. (In fact, in the
full version we show that there is no (p, k)-isolating
parallelepiped for any even integer p < k — 1.) Our
solution is therefore a bit technical.

At a high level, we consider a natural class of
parallelepipeds V € R2"*k ¢* ¢ R2" parametrized
by some weights «ag,a1,...,a; > 0 and a scalar
shift ¢* € R. These parallelepipeds are constructed
so that the length of the vertex |[Vy — t*[|) for
y € {0,1}* depends only on the Hamming weight
of y and is linear in the «; for fixed t*. In other
words, there is a matrix My (p,t*) € REFDx(k+1)
such that My (p,t*)(ap,...,as)T encodes the value
of |Vy —t*[|) for each possible Hamming weight of
y € {0,1}*.

We show that, in order to find weights
ag,...,ar > 0 such that V and t* define a
(p, k)-isolating parallelepiped, it suffices to find a
t* such that My(p,t*) is invertible. For each odd

m .
[]
t>.<
S
Vi

=

k)

Figure 2. (p, k)-isolating parallelepipeds for p = 2,k = 2
(left) and p = 1,k > 1 (right). On the left, the vectors
vy, v2, and v; + vg are all at the same distance from t*,
while O is strictly farther away. On the right is the degenerate
parallelepiped generated by k copies of the vector (1,1).
The vectors (i,7) are all at the same ¢; distance from t*
for 1 < ¢ < m, while (0,0) is strictly farther away. The
(scaled) unit balls centered at t* are shown in red, while the
parallelepipeds are shown in black.

121/3 121/3 121/3
1 1 -1
1 1 -1 1
V.= m . 1 -1 -1 5
. -1 1 1
-1 1 -1
-1 -1 1
2-121/3
2
L1 :
- . 1/3
2-12Y/ 9
2
2
Figure 3. A (3, 3)-isolating parallelepiped in seven dimen-

sions. One can verify that ||[Vy — ¢*||3 = 1 for all non-zero
y € {0, 1}35 and Ht*”g =3/2.

integer p > 1 and each & > 2, we show how to
explicitly find such a t*.

To extend this result to other p > 1, we consider
the determinant of My(p,t*) for fixed & and t*,
viewed as a function of p. We observe that this
function has a rather nice form—it is a Dirichlet
polynomial. Le., for fixed t* and k, the determinant
can be written as Y exp(a;p) for some a; € R. Such
a function has finitely many roots unless it is iden-
tically zero. So, we take the value of t* from above
such that, say, M (1, ¢*) is invertible. Since My (1,t*)
does not have zero determinant, the Dirichlet poly-
nomial corresponding to det(My(p,t*)) cannot be
identically zero and therefore has finitely many
roots. This is how we prove Theorem 1.2.

Extension to constant-factor approximation: In
order to extend our hardness results to approximate
CVP,, we can try simply using the same reduction
with k-SAT replaced by Gap-k-SAT. Unfortunately,
this does not quite work. Indeed, it is easy to
see that the “identity matrix gadget” that we use
to restrict our attention to lattice vectors whose
coordinates are in {0,1} (Eq. (1)) cannot tolerate
an approximation factor larger than 14+ O(1/n) (for
finite p).

However, we observe that when k£ = 2, this
identity matrix gadget is actually unnecessary. In
particular, even without this gadget, it “never helps”
to consider a lattice vector whose coordinates are
not all in {0,1}. It then follows immediately from
the analysis above that Gap-2-SAT reduces to ap-
proximate CVP, with a constant approximation
factor strictly greater than one. We note in passing
that we do not know how to extend this result
to larger k > 2 (except when p = 1). We show
that the case k = 2 is sufficient for proving Gap-
ETH-hardness, but we suspect that one can just
“remove the identity matrix gadget” from all of
our reductions for finite p. If this were true, it
would show Gap-ETH-hardness of approximation
for slightly larger constant approximation factors
and imply even stronger hardness results under less
common assumptions.

F. Open questions

The most important question that we leave open
is the extension of our SETH-hardness result to ar-
bitrary p > 1. In particular, while our result applies
to p = p(n) # 2 that approaches 2 asymptotically,
it does not apply to the specific case p = 2. An
extension to p = 2 would settle the time complexity
of CVP, up to a factor of 2°(") (assuming SETH).

However, we know that our technique does not work
in this case (in that (2, k)-parallelepipeds do not
exist for k > 3), so substantial new ideas might be
needed to resolve this issue.

In a different direction, one might try to prove
quantitative hardness results for SVP,. While our
SETH-hardness result does apply to SVP,, we do
not even have ETH-hardness of SVP,, for finite p.
Any such result would be a major breakthrough in
understanding the complexity of lattice problems,
with relevance to cryptography as well as theoretical
computer science.

Finally, we note that our main reduction con-
structs lattices of rank n, but the ambient dimension
d can be significantly larger. (Specifically, d = n +
O(m), where m is the number of clauses in the
relevant SAT instance, and where the hidden con-
stant depends on k& and can be very large.) Lattice
problems are typically parameterized in terms of the
rank of the lattice (and for the ¢ norm, one can
assume without loss of generality that d = n), but
it is still interesting to ask whether we can reduce
the ambient dimension d.

Acknowledgments

We would like to thank Oded Regev for many
fruitful discussions and for helpful comments on an
earlier draft of this work. We also thank Vinod
Vaikuntanathan for recommending that we consider
Gap-ETH.

II. SETH-HARDNESS FROM ISOLATING
PARALLELEPIPEDS

Here, we show a reduction from instances of
weighted Max-k-SAT on formulas with n variables
to instances of CVP,, with rank n for all p that uses a
certain geometric object, which we define next. Let
1, and 0, denote the all 1s and all Os vectors of
length n respectively, and let I,, denote the n x n
identity matrix.

Definition I1.1. For any 1 < p < oo and integer
k> 2, we say that V € R ** and t* € RY define a
(p, k)-isolating parallelepiped if ||t||, > 1 and [|[Vz —
t*||, =1 for all z € {0,1}*\ {04}.

In order to give the reduction, we first introduce
some notation related to SAT. Let ® be a k-SAT
formula on n variables z1,...,x, and m clauses
C1,...,Ch. Let ind(¢) denote the index of the vari-
able underlying a literal ¢. L.e., ind(¢) = j if £ = x;
or £ = —x;. Call a literal £ positive if / = x; and neg-
ative if £ = —x; for some variable x;. Given a clause

20

T X9 Tp—1 Tn
Cl{ U1 Vo Od* —U3 t* — V3
Cm,{ 04 —v1 vy v3 t*" — v
it 2a1/P 0 0 0 allP
Zo 0 201/P 0 0 al/r
To_1 0 0 ... 20.1/P 0 al/p
T 0 0 .. 0 201/ all/p
B t

Figure 4. A basis B and target vector t output by the
reduction from Theorem II.2 with some (p, 3)-isolating par-
allelepiped given by V = (v1,v2,v3) € R4" X3 and t* € R4".
In this example, the first clause is C1 = =1 V 2 V —~xy, and
the mth clause is Cy, = —x2 V pn—1 V . By the definition
of an isolating parallelepiped (Definition II.1), the contribu-
tion of the first d coordinates to the distance ||Bz — t||}
will be 1 for any assignment z € {0,1}" satisfying Ci,
while non-satisfying assignments contribute (1 + ¢) for some

6 > 0. For example, if z; = 1,220 = 0,2z, = 1, the clause
C is satisfied, and the first d coordinates will contribute
lvr — vs — (#* — v3)||5 = |lv1 — t*||[5 = 1. On the other

hand, if 271 = 0,29 = 0,2, = 1, then C; is not satisfied, and
[—wvs— (" —wv3)llp = It*[lp =1+86.

C; = \/521&-75, let P, := {s € [k] : {;, is positive}
and let N; = {s € [k] : ¢, is negative} denote
the indices of positive and negative literals in C;
respectively. Given an assignment a € {0,1}" to
the variables of @, let S;(a) denote the indices of
literals in C; satisfied by a. Le., S;(a) := {s € P; :
Gind(l;) = 1}U{s €N, : Gind(l;) = 0}. Finally, let
m*(a) denote the number of clauses of ® satisfied
by the assignment a, i.e., the number of clauses ¢ for
which |S;(a)| > 1.

Theorem I1.2. If there exists a computable (p,k)-
isolating parallelepiped for some p = p(n) € [1,00)
and integer k > 2, then there exists a polynomial-
time reduction from any (weighted-)Maz-k-SAT in-
stance with n variables to a CVP, instance of rank
n.

Proof: For simplicity, we give a reduction from
unweighted Max-k-SAT, and afterwards sketch how
to modify our reduction to handle the weighted
case as well. Namely, we give a reduction from any
Max-k-SAT instance (®, W) to an instance (B, t*,r)
of CVP,. Here, the formula ® is on n variables
Z1,...,2, and m clauses Cq,...,Cp,. (P, W) is a
‘YES’ instance if there exists an assignment a such
that m™(a) > W.

By assumption, there exist computable d* =
d*(p,k) € Z*, V = [v1,...,vx] € R¥*F and
t* € RY such that ||t*]|, = (1+6)'/? for some § > 0
and [|[Vz —t*|, = 1 for all z € {0,1}*\ {04}.

We define the output CVP, instance as follows.
Let d := md* + n. The basis B € R*" and target
vector t € R? in the output instance have the form

Bl tl
B= . , t= : ,
Bm tm
22?7 . T, al/r .1,

with blocks B; € RY X" and t; € RY for 1 <i<m
and a := m+(m—W)J. Note that « is the maximum
possible contribution of the clauses Cq,...,C,, to
| By—t||5 when (@, W) is a ‘YES’ instance. For every
1 <t <mand 1l < j < n, set the jth column
(Bj); of block B; (corresponding to the clause C; =
VE_ 1l s) as

v, if x; is the sth literal of clause i,
—v, if -z, is the sth literal of clause 7,
04+ otherwise,

(Bi)j ==

and set t; :=t" — 3"y vs. Set 7= (a(n+ 1)/P,

Clearly, the reduction runs in polynomial time.
We next analyze for which y € Z™ it holds that
|By —t|, <r. Given y ¢ {0,1}",

|By—t]2 > [2a"P Ly —a'/P1, [> a(n+2) > 17,

so we only need to analyze the case when y €
{0,1}". Consider an assignment y € {0,1}" to the
variables of ®. Then,

| Biy — tillp
= ‘ Z Yind(¢;,,) ~ Vs + Z (1 - yind(zi,s)) cv — 7
seP; seEN; P
= H Z v, —t| .
s€S;(a) p

By assumption, the last quantity is equal to 1 if
1S;(y)] > 1, and is equal to (1 4 &)'/P otherwise.
Because [S;(y)| > 1 if and only if C; is satisfied, it
follows that

1By —tlls = (3 1By — till3) + an
=1

=m+(m-mT(y))d+an.

Therefore, | By —t||, < r if and only if m*(y) > W,
and therefore there exists y such that ||By—t||, <r
if and only if (®,W) is a ‘YES’ instance of Max-k-
SAT, as needed.

To extend this to a reduction from weighted Max-
k-SAT to CVP,, simply multiply each block B;
and the corresponding target vector t; by w(C;)'/?,
where w(C;) denotes the weight of the clause Cj.
Then, by adjusting o to depend on the weights
w(C;) we obtain the desire reduction.]

Because the rank n of the output CVP,, instance
matches the number of variables in the input SAT
formula, we immediately get the following corollary.

Corollary I1.3. For any efficiently computable p =
p(n) € [1,00) if there exists a computable (p,k)-
isolating parallelepiped for infinitely many k € ZT,
then, for every constant € > 0 there is no 2(175)".
time algorithm for CVP, assuming W-Maz-SAT-
SETH. In particular there is no 29" _time algo-
rithm for CVP, assuming SETH.

It is easy to construct a (degenerate) family of
isolating parallelepipeds for p = 1, and therefore
we get hardness of CVP; as a simple corollary. (See
Figure 2.)

Corollary I1.4. For every constant e > 0 there is no
2= _time algorithm for CVPy assuming W-Maz-
SAT-SETH, and in particular there is no 21—
time algorithm for CVPy assuming SETH.

Proof: Let k € ZT, let V = [vy,...,v;] with
vy = = v = 75(1,1)7 € R?, and let t* :=
=5 (1,k)T € R2 Then, |[Va — t*|; = 1 for every
x € {0,1}*\ {0}, and [[t*|; = (E+1)/(k—1) > 1.

The result follows by Corollary I1.3. |
REFERENCES

[1] A. K. Lenstra, H. W. Lenstra, Jr., and

L. Lovasz, “Factoring polynomials with ra-

tional coefficients,” Math. Ann., vol. 261,

no. 4, pp. 515-534, 1982. [Online]. Available:

http://dx.doi.org/10.1007/BF01457454

[2] H. W. Lenstra, Jr., “Integer Programming with
a fixed number of variables,” Math. Oper. Res.,
vol. 8, no. 4, pp. 538-548, 1983. [Online]. Available:
http://dx.doi.org/10.1287 /moor.8.4.538

[3] R.Kannan, “Minkowski’s convex body theorem and
Integer Programming,” Math. Oper. Res., vol. 12,
no. 3, pp. 415-440, 1987. [Online]. Available:
http://dx.doi.org/10.1287 /moor.12.3.415

[4] D. Dadush, C. Peikert, and S. Vempala, “Enumer-
ative lattice algorithms in any norm via M-ellipsoid
coverings,” in FOCS, 2011.

[5] A. M. Odlyzko, “The rise and fall of knapsack cryp-
tosystems,” Cryptology and Computational Number
Theory, vol. 42, pp. 75-88, 1990.

(6]

(12]

(13]

(15]

(16]

A. Joux and J. Stern, “Lattice reduction: A toolbox
for the cryptanalyst,” Journal of Cryptology, vol. 11,
no. 3, pp. 161-185, 1998.

P. Q. Nguyen and J. Stern, “The two faces of lat-
tices in cryptology,” in Cryptography and Lattices.
Springer, 2001, pp. 146-180.

M. Ajtai, “Generating hard instances of lattice
problems,” in Complezity of computations and
proofs, ser. Quad. Mat. Dept. Math., Seconda
Univ. Napoli, Caserta, 2004, vol. 13, pp. 1-32,
preliminary version in STOC’96.

O. Regev, “On lattices, learning with errors,
random linear codes, and cryptography,” Journal
of the ACM, vol. 56, no. 6, pp. Art. 34,
40, 2009. [Online]. Available: http://dx.doi.org/10.
1145/1568318.1568324

C. Gentry, C. Peikert, and V. Vaikuntanathan,
“Trapdoors for hard lattices and new cryptographic
constructions,” in STOC, 2008, pp. 197-206.

C. Peikert, “Limits on the hardness of lattice
problems in ¢, norms,” Computational Complexity,
vol. 17, no. 2, pp. 300-351, May 2008, preliminary
version in CCC 2007.

——, “A decade of lattice cryptography,” Founda-
tions and Trends in Theoretical Computer Science,
vol. 10, no. 4, pp. 283-424, 2016.

C. P. Schnorr, “A hierarchy of polynomial time
lattice basis reduction algorithms,” Theoretical
Computer Science, vol. 53, pp. 201 — 224, 1987.
[Online]. Available: http://www.sciencedirect.com/
science/article /pii/0304397587900648

N. Gama and P. Q. Nguyen, “Finding short lat-
tice vectors within Mordell’s inequality,” in STOC,
2008.

D. Micciancio and M. Walter, “Practical, pre-
dictable lattice basis reduction,” in Furocrypt, 2016.

M. Ajtai, R. Kumar, and D. Sivakumar, “A
sieve algorithm for the Shortest Lattice Vector
Problem,” in STOC, 2001. [Online]. Available:
http://doi.acm.org/10.1145/380752.380857

P. Q. Nguyen and T. Vidick, “Sieve algorithms
for the shortest vector problem are practical,”
J. Math. Cryptol., vol. 2, mno. 2, pp. 181-
207, 2008. [Online]. Available: http://dx.doi.org/
10.1515/JMC.2008.009

X. Pujol and D. Stehlé, “Solving the Shortest Lat-
tice Vector Problem in time 2%%%5" » TACR Cryp-
tology ePrint Archive, vol. 2009, p. 605, 2009.

D. Micciancio and P. Voulgaris, “Faster exponential
time algorithms for the Shortest Vector Problem,”
in SODA, 2010, pp. 1468—-1480.

22

[20]

(21]

24]

[25]

(30]

31]

M. Liu, X. Wang, G. Xu, and X. Zheng, “Short-
est lattice vectors in the presence of gaps,” TACR
Cryptology ePrint Archive, vol. 2011, p. 139, 2011.

D. Aggarwal, D. Dadush, O. Regev, and
N. Stephens-Davidowitz, “Solving the Shortest
Vector Problem in 2" time via discrete Gaussian
sampling,” in STOC, 2015.

X. Wang, M. Liu, C. Tian, and J. Bi, “Improved
Nguyen-Vidick heuristic sieve algorithm for shortest
vector problem,” in ASIACCS, 2011.

T. Laarhoven, “Sieving for shortest vectors in lat-
tices using angular locality-sensitive hashing,” in
CRYPTO, 2015.

A. Becker, L. Ducas, N. Gama, and T. Laarhoven,
“New directions in nearest neighbor searching with
applications to lattice sieving,” in SODA, 2016.

J. Blémer and S. Naewe, “Sampling methods for
shortest vectors, closest vectors and successive
minima,” Theoret. Comput. Sci., vol. 410, no. 18,
pp. 1648-1665, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.tcs.2008.12.045

V. Arvind and P. S. Joglekar, “Some sieving al-
gorithms for lattice problems,” in TARCS Annual
Conference on Foundations of Software Technology
and Theoretical Computer Science, 2008.

D. Dadush, “A O(1/e*)"-time sieving algorithm
for approximate Integer Programming,” in LATIN,
2012.

M. Ajtai, R. Kumar, and D. Sivakumar, “Sampling
short lattice vectors and the Closest Lattice Vector
Problem,” in CCC, 2002.

D. Aggarwal, D. Dadush, and N. Stephens-
Davidowitz, “Solving the Closest Vector Problem in

2" time— The discrete Gaussian strikes again!” in
FOCS, 2015.

O. Goldreich, D. Micciancio, S. Safra, and J.-P.
Seifert, “Approximating shortest lattice vectors is
not harder than approximating closest lattice vec-
tors,” Information Processing Letters, vol. 71, no. 2,
pp. 55 — 61, 1999.

D. Micciancio and P. Voulgaris, “A deterministic
single exponential time algorithm for most lattice
problems based on Voronoi cell computations,”
SIAM Journal on Computing, vol. 42, no. 3, pp.
1364-1391, 2013.

N. Sommer, M. Feder, and O. Shalvi, “Finding
the closest lattice point by iterative slicing,”
SIAM J. Discrete Math., vol. 23, no. 2, pp.
715-731, 2009. [Online]. Available: http://dx.doi.
org/10.1137/060676362

33]

[36]

[43]

[45]
[46]

N. Bonifas and D. Dadush, “Short paths on the
Voronoi graph and the Closest Vector Problem with
Preprocessing,” in SODA, 2015.

D. Micciancio and M. Walter, “Fast lattice point
enumeration with minimal overhead,” in SODA,
2015.

P. van Emde Boas, “Another NP-complete problem
and the complexity of computing short vectors in a
lattice,” University of Amsterdam, Department of
Mathematics, Netherlands, Tech. Rep., 1981, tech-
nical Report 8104.

M. Ajtai, “The Shortest Vector Problem in L2
is NP-hard for randomized reductions,” in STOC,
1998. [Online]. Available: http://doi.acm.org/10.
1145/276698.276705

S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The
hardness of approximate optima in lattices, codes,
and systems of linear equations,” in FOCS, 1993.

I. Dinur, G. Kindler, R. Raz, and S. Safra, “ Approx-
imating CVP to within almost-polynomial factors is
NP-hard,” Combinatorica, vol. 23, no. 2, pp. 205—
243, 2003.

J.-Y. Cai and A. Nerurkar, “Approximating the
SVP to within a factor (1 + 1/dim®) is NP-hard
under randomized conditions,” in C'CC, 1998.

D. Micciancio, “The Shortest Vector Problem is
NP-hard to approximate to within some constant,”
SIAM Journal on Computing, vol. 30, no. 6, pp.
2008-2035, Mar. 2001, preliminary version in FOCS
1998.

S. Khot, “Hardness of approximating the Shortest
Vector Problem in lattices,” Journal of the ACM,
vol. 52, no. 5, pp. 789-808, Sep. 2005, preliminary
version in FOCS’04.

I. Haviv and O. Regev, “Tensor-based hardness
of the Shortest Vector Problem to within almost
polynomial factors,” Theory of Computing, vol. 8,
no. 23, pp. 513-531, 2012, preliminary version in
STOC’07.

O. Goldreich and S. Goldwasser, “On the limits of
nonapproximability of lattice problems,” J. Com-
put. Syst. Sci., vol. 60, no. 3, pp. 540-563, 2000,
preliminary version in STOC 1998.

D. Aharonov and O. Regev, “Lattice problems in
NP N coNP,” J. ACM, vol. 52, no. 5, pp. 749-765,
2005, preliminary version in FOCS 2004.

V. Vaikuntanathan, Private communication, 2015.

E. Alkim, L. Ducas, T. Poppelmann, and
P. Schwabe, “Post-quantum key exchange —
A new hope,” in USENIX Security Symposium,
2016.

23

(47]

(48]

[49]

[55]

[56]

[57]

J. W. Bos, C. Costello, L. Ducas, I. Mironov,
M. Naehrig, V. Nikolaenko, A. Raghunathan, and
D. Stebila, “Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE,” in CCS,
2016.

“NIST post-quantum standardization call for
proposals,” http://csre.nist.gov/groups/ST/
post-quantum-crypto/cfp-announce-dec2016.html,
2016, accessed: 2017-04-02.

M. R. Albrecht, R. Player, and S. Scott, “On
the concrete hardness of Learning with Errors,” J.
Mathematical Cryptology, vol. 9, no. 3, pp. 169-203,
2015.

R. Impagliazzo and R. Paturi, “On the complexity
of k-SAT,” in CCC, 1999, pp. 237-240.

S. Chechik, D. H. Larkin, L. Roditty,
G. Schoenebeck, R. E. Tarjan, and V. V. Williams,
“Better approximation algorithms for the graph
diameter,” in SODA, 2014.

A. Backurs and P. Indyk, “Edit Distance cannot
be computed in strongly subquadratic time (unless
SETH is false),” in STOC, 2015.

A. Abboud, A. Backurs, and V. V. Williams, “Tight
hardness results for LCS and other sequence simi-
larity measures,” in FOCS, 2015.

V. V. Williams, “Hardness of easy problems: Basing
hardness on popular conjectures such as the Strong
Exponential Time Hypothesis (invited talk),” in
IPEC, 2015, pp. 17-29.

M. Patragscu and R. Williams, “On the possibility
of faster SAT algorithms,” in SODA, 2010.

M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Ned-
erlof, Y. Okamoto, R. Paturi, S. Saurabh, and
M. Wahlstréom, “On problems as hard as CNF-
SAT,” in CCC, 2012.

M. Cygan, F. V. Fomin, L. Kowalik,
D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized
Algorithms. Springer, 2015. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-21275-3

R. Williams, “Strong ETH breaks with Merlin and
Arthur: Short non-interactive proofs of batch eval-
uation,” in CCC, 2016.

O. Regev and R. Rosen, “Lattice problems and
norm embeddings,” in STOC, 2006.

H. Bennett, A. Golovnev, and N. Stephens-
Davidowitz, “On the quantitative hardness of
CVP,” 2017, http://arxiv.org/abs/1704.03928.

[61]

D. Micciancio, “The hardness of the Closest Vector
Problem with Preprocessing,” IEEE Transactions
on Information Theory, vol. 47, no. 3, pp. 1212—
1215, 2001.

U. Feige and D. Micciancio, “The inapproximability
of lattice and coding problems with preprocessing,”
Journal of Computer and System Sciences, vol. 69,
no. 1, pp. 4567, 2004, preliminary version in CCC
2002.

O. Regev, “Improved inapproximability of lat-
tice and coding problems with preprocessing,”
IEEFE Transactions on Information Theory, vol. 50,
no. 9, pp. 2031-2037, 2004, preliminary version in
CCC’03.

M. Alekhnovich, S. Khot, G. Kindler, and N. K.
Vishnoi, “Hardness of approximating the Closest
Vector Problem with Pre-processing.” Computa-
tional Complezity, vol. 20, 2011.

S. Khot, P. Popat, and N. K. Vishnoi, wglog! = n
hardness for Closest Vector Problem with Prepro-
cessing,” SIAM Journal on Computing, vol. 43,
no. 3, pp. 1184-1205, 2014.

D. Dadush, O. Regev, and N. Stephens-Davidowitz,
“On the Closest Vector Problem with a distance
guarantee,” in CCC, 2014, pp. 98-109. [Online].
Available: http://dx.doi.org/10.1109/CCC.2014.18

R. Williams, “A new algorithm for optimal 2-
Constraint Satisfaction and its implications,” Theo-
retical Computer Science, vol. 348, no. 2-3, pp. 357—
365, 2005.

V. V. Williams, “Multiplying matrices faster than
Coppersmith-Winograd,” in STOC, 2012.

F. Le Gall, “Powers of tensors and fast matrix
multiplication,” in ISAAC, 2014.

G. J. Woeginger, “Open problems around exact al-
gorithms,” Discrete Applied Mathematics, vol. 156,
no. 3, pp. 397-405, 2008.

24

