
A Rounds vs. Communication Tradeoff for
Multi-Party Set Disjointness

Mark Braverman
Institute for Advanced Studies and

Computer Science Department, Princeton University

Princeton, NJ, JSA

Email: mbraverm@cs.princeton.edu

Rotem Oshman
Computer Science Department

Tel Aviv University

Tel Aviv, Israel

Email: roshman@tau.ac.il

Abstract—In the set disjointess problem, we have k players,
each with a private input Xi ⊆ [n], and the goal is for the players
to determine whether or not their sets have a global intersection.
The players communicate over a shared blackboard, and we
charge them for each bit that they write on the board.

We study the trade-off between the number of interaction
rounds we allow the players, and the total number of bits
they must send to solve set disjointness. We show that if R
rounds of interaction are allowed, the communication cost is
Ω̃(nk1/R/R4), which is nearly tight. We also leverage our proof
to show that wellfare maximization with unit demand bidders
cannot be solved efficiently in a small number of rounds: here,
we have k players bidding on n items, and the goal is to find
a matching between items and player that bid on them which
approximately maximizes the total number of items assigned. It
was previously shown by Alon et. al. that Ω(log log k) rounds
of interaction are required to find an assignment which achieves
a constant approximation to the maximum-wellfare assignment,
even if each player is allowed to write nε(R) bits on the board
in each round, where ε(R) = exp(−R). We improve this lower
bound to Ω(log k/ log log k), which is known to be tight up to a
log log k factor.

I. INTRODUCTION

Set disjointness is a classical problem in communication

complexity: we have two players, Alice and Bob, and they

receive sets X,Y ⊆ {1, . . . , n} (respectively). Their goal

is to determine whether or not their sets intersect, that is,

whether X ∩ Y = ∅. Kalyanasundaram and Schnitger [1] and

Razborov [2] showed that Ω(n) bits of communication are re-

quired, even for randomized protocols, and this lower bound is

one of the most widely-used lower bounds in communication

complexity.

The extension of set disjointness to the multi-party, number-

in-hand setting is as follows: we have k players, each with

a private input Xi ⊆ {1, . . . , n}, and the goal is to deter-

mine whether there is a global intersection, that is, whether⋂k
i=1X

i = ∅ or not. Communication between the players can

be over a shared blackboard, where players write messages

that are seen by all other players, or over point-to-point

channels, in which case players can only send each other

private messages. We focus here on the shared blackboard

model. The multi-party version of set disjointness reduces

to many natural problems; for example, most of the lower

bounds in [3], [4], which include pointwise problems like

computing the pointwise-and of the input vectors, and graphs

problems such as connectivity, triangle-freeness and others,

can be shown by reduction from disjointness. Promise versions

of set disjointness also have applications in streaming [5], [6],

[7], [8].

Much of the interest in multi-party (number-in-hand) com-

munication complexity comes from distributed computing

(e.g., [4], [9], [10], [11] and others). In this area we usually

care about round complexity rather than total communication
complexity: we typically assume that every processor in the

system has some limited number of bits it can send in each

round, and we ask how many rounds we need to solve a given

problem [12]. If the total communication complexity of the

problem is high compared to the total bandwidth per round,

then of course we get a lower bound on the number of rounds

required to solve it. However, some problems have low overall

communication complexity, but cannot be solved efficiently in

a small number of rounds. We show that set disjointness in the

shared blackboard model falls into this class: it is known that

the problem can be solved with a total of Θ(n log k) bits [9],

but we show that if we are restricted to R rounds of interaction,

then the communication complexity of set disjointness is

Ω̃(nk1/R/R4). Our lower bound is nearly tight, as there is an

easy Õ(nk1/R) upper bound. (When R = Θ(log k/ log log k)
we reach nearly-optimal communication complexity, Θ̃(n), so

it does not make sense to consider larger R. The factor 1/R4

is therefore at most polylogarithmic in k.)

We also show a similar result for wellfare maximization

with unit-demand bidders, studied in [13], [14]. In this prob-

lem we have k players bidding on n items, and our goal

is to find a matching between items and players that bid

on them, such that the total number of items assigned is at

least a constant fraction of the maximum possible. The input

for wellfare maximization is represented as an unweighted

bipartite graph, with players on one side and items on the

other, with edges between the players and the items they are

interested in. Our goal is to find and output a matching whose

size is at least some fixed constant fraction of the size of the

maximum matching.

It was shown in [13] that wellfare maximization requires

high communication for simultaneous protocols, and in [14]

that if each player is restricted to sending only nε(R) bits per

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.22

144

round (where ε(R) = exp(−R)), then Ω(log log k) rounds are

required to find a matching that is within a constant fraction

of the maximum matching. (The value of n used in [14] is

exponential in k.) It was previously known that the problem

can be solved in O(log k) rounds [13], but the true round

complexity remained open.

Here we show that for k bidders and n = Θ(k) items,

finding a constant approximation to the wellfare maximization

in R rounds requires Ω(k1+1/R/R2) bits of communication,

implying that Ω(log k/ log log k) rounds are required if each

player can only send kε bits per round. This is tight up to the

log log k factor [13].

A. A Round-Efficient Protocol for Disjointness

In [9] we showed that the communication complexity of

disjointness in the shared blackboard model is Θ(n log k),
where n is the size of the universe and k is the number of

players. The lower bound of Ω(n log k) allows one to get

logarithmic lower bounds for distributed systems where each

player has small bandwidth per round of communication, so

that the total bandwidth per round is linear. However, the

simple upper bound we gave in [9] requires as many as n
rounds of communication, raising the question: what is the

trade-off between rounds and communication for disjointness

in the shared blackboard model?

The following simple protocol achieves communication

complexity Õ(nk1/R) in R rounds. Let us represent the inputs

to the players by their characteristic vectors X1, . . . , Xk ∈
{0, 1}n, where Xi

j = 1 iff element j appears in player

i’s input. To solve set disjointness, we try to find, for each

coordinate j = 1, . . . , n, a “witness” to the fact that element j
is not in the intersection: a player i with Xi

j = 0. If for each

coordinate we can find such a witness then the intersection is

empty.

The most naı̈ve approach would be to have all the players

write on the board the indices of all coordinates in which

their input is zero, but this can incur communication as high

as O(nk). Instead, for each coordinate, we “guess” how many

players have input zero in this coordinate, and have players

write their zero on the board with probability corresponding

to this guess, so that with high probability we will find at least

one player with a zero, but not too many.

More precisely, for each i ∈ [n], let Zi be the number

of players that have Xi
j = 0 (that is, the number of players

missing element i from their inputs). In each round r =
0, . . . , R−1, we target coordinates i that have k(R−(r−1))/R ≤
Zi ≤ k(R−r)/R, going from coordinates where many players

have zero to coordinates where only a small number do. Each

player announces each zero coordinate in its input with prob-

ability Θ̃(k(r−1−R)/R), unless this coordinate already appears

on the board from some previous round. (We cannot afford

to re-write coordinates that we already caught in previous

rounds.) At the end of the protocol we conclude that there

is an intersection iff some coordinate does not appear on the

board.

In round r, if indeed k(R−(r−1))/R ≤ Zi ≤ k(R−r)/R,

then in expectation coordinate i will be written on the board

between Θ̃(1) and Θ̃(k1/R) times, requiring log n bits each

time it is written. On the other hand, if Zi > k(R−r)/R then

we probably already saw coordinate i in some previous round,

so it will not be announced in the current round at all (this is

important, otherwise too many players would announce it in

round r); and if 0 < Zi < k(R−(r−1))/R, it is also not likely

that coordinate i will be announced, but we will catch it in

some future round.

Notice the structure of the protocol: first we dispense

with coordinates where many players have zero, by having

each player that has zero send a weak signal about it —

i.e., announce it with probability only 1/k(R−1)/R. Then we

gradually move to coordinates where fewer and fewer players

have zero, by having players that have zero send stronger and

stronger signals, increasing the probability that they announce

the coordinate. Our lower bound shows that this structure is in

some sense inherent: one has to first target coordinates where

many players have zero, and gradually focus on “less popular”

coordinates.

B. Related Work

a) Brief overview of work on multi-party communication
and information complexity: There are two main models

studied in multi-party communication complexity, the shared
blackboard model studied here, and the point-to-point model
(also called “message-passing”). Information complexity tech-

niques have found application in both.1

Information complexity was first applied to multi-party

computation in [6], which studies set disjointness with a

promise: the players are promised that either the sets intersect

at exactly one element, or the sets are pairwise disjoint.

The communication complexity of promise set disjointness

is Θ(n/k) [7]. In the current paper we use the notion of

conditional information cost developed in [6], and also follow

the technique by which they decompose the problem into many

smaller problems (direct sum). In [6] the authors were able

to prove a lower bound proved of Ω(n/k2) on promise set

disjointness, and this was gradually improved until [7] gave

the tight lower bound of Ω(n/k). The problem is notable for

its connections to streaming algorithms [5].

In the point-to-point model, information-theoretic ideas

were first applied in [15] to provide lower bounds on problems

of frequency moment estimation, and later in [4], [16], [11] to

other graph, estimation and linear algebra problems. In [17] a

tight lower bound was shown for the set disjointness problem

in the point-to-point model, by defining an appropriate notion

of information cost for this model, and proving a lower bound

on it. We later proved a tight lower bound for disjointness

1An entirely different line of work on multi-party communication com-
plexity is number-on-forehead communication, where each player can see
the inputs to all the other players, but not its own input. This model is very
different in nature from the ones we consider, which feature private (“number-
in-hand”) inputs.

145

in the shared blackboard model [9], again using information

complexity.

The lower bounds mentioned above, as well as information-

complexity lower bounds for two-party communication, tend

follow the same structure: first, one proves that the overall

problem can be decomposed into many copies of some smaller

problem, whose costs add up to the cost of the large problem;

this is called direct sum. Then one gives a lower bound for the

smaller problem, using properties of communication protocols

in the model under consideration. This approach, pioneered

in [18], [6], is the one we follow in this paper.

b) Round vs. communication tradeoffs: There are by now

many bounded-round communication lower bounds (although

in some cases they are obtained “along the way” to an

unrestricted-round lower bound). For example, in [19] it is

shown that set disjointness with a specific sparsity promise

requires Θ(n log(R)n) bits of communication for two players,

where log(i)n is the log iterated i times. The upper bound

of [19] was extended to the multi-player problem of finding

an intersection in [10].

A useful technique for proving round-restricted lower

bounds is round elimination: given an r-round protocol that

uses “too little communication” (i.e., would contradict the

lower bound we wish to prove), we construct an (r−1)-round

protocol on instances that are smaller or simpler by some

other measure, by cleverly embedding the smaller instance

in a larger one, sampling the first message of the r-round

protocol without looking at the input, and then running the

remaining rounds as usual. If this is done carefully, one can

show that the resulting (r−1)-round protocol simulates the r-

round protocol well, and therefore has small error. Eventually

we eliminate all rounds, but still have a non-trivial problem

which cannot be solved without communication, leading to

a contradiction. This is the approach used in [13] to obtain a

lower bound of Ω(log log k) on the number of rounds required

to find a constant approximation to the maximum matching in

a bipartite graph.

To our knowledge, we are the first to use the direct sum

approach in order to show a round/communication tradeoff.

C. Organization

The remainder of the paper is organized as follows. In

Section II we introduce basic notations and definitions. In Sec-

tion III we describe the rounds/communication trade-off for set

disjointness, omitting some proofs for lack of space. Finally,

in Section IV we outline how the proof for set disjointness is

modified to obtain a lower bound on approximate maximum

matching.

II. PRELIMINARIES

a) The shared blackboard model: We have k players,

with private inputs X1, . . . , Xk. The goal of the players is

to compute some function f(X1, . . . , Xk) of their inputs.

The players communicate over a shared blackboard: in each

round of communication, each player may write a message

on the board, and then all players observe all the messages

written. After R rounds, the protocol halts, and the output is

a function of the contents of the board. (In the problems we

study here, the size of the output is small compared to the

overall communication complexity, so it does not matter if

we require the answer to be written on the board or not; we

choose to require it here for simplicity.)

A slightly delicate point is whether players are required
to write at least one bit in each round, or whether they can

stay silent and not be charged. The latter allows player to

convey one bit of information “for free” by their choice of

whether to stay silent or not; we therefore adopt here the

convention that each player must write at least one bit on

the board in each round. This means that an R-round protocol

has communication at least R · k, but for our purposes, since

we work with a R = O(log k) and show a lower bound of

Ω(nk1/R/R3), this is not significant when n is large. We

impose no upper bound on the number of bits a player can

write in one round.

The protocols we consider are randomized, but we restrict

the players to use only private random coins. Since our

lower bound is information-theoretic, we can generate “public

randomness” for free, by having some player write its private

randomness on the board. This reveals no information about

its input, but it may cost one additional round.

b) Notation: We use boldface letters to denote random

variables. Subscripts indicate the coordinates of disjointness,

and superscripts indicate the players; for example, Xi
j is the

j-th coordinate of player i.

The messages sent in round r are denoted by Πr, a random

variable which is a tuple of k messages, and player i’s message

in round r is denoted Πi
r. The transcript up to round r,

inclusive, is denoted Π≤r.

Because the notation can become cumbersome quickly, we

adopt some short-hand notation. If A is a random variable,

we will denote a concrete value to A by a, and we will also

use a as short-hand notation for the event A = a where this

is not confusing. In particular, an r-round partial transcript of

the protocol will be denoted by π≤r, and we also use π≤r as

short-hand notation for the event that the transcript generated

in the first r rounds was π≤r.

If μ is a distribution on inputs, then μ(π≤r) denotes the

probability that the partial transcript π≤r will be generated

when inputs are drawn from μ. (The protocol is fixed through-

out.) We will also let μ|π≤r denote the distribution on the

remainder of the transcript conditioned on the transcript so

far being π≤r, and μ(πr+1|π≤r), μ(π
i
r+1|π≤r) denote the

probability that the next-round messages after round r will

be πr+1 or that player i’s message in round r + 1 will be

πi
r+1, respectively.

c) Problem statements: In this paper we study the fol-

lowing problems.

• Disjointness: for X1, . . . , Xk ∈ {0, 1}n,

DISJn,k(X
1, . . . , Xk) = ¬

n∨
j=1

(
k∧

i=1

Xi
j

)
.

146

• Boolean AND: for x1, . . . , xk ∈ {0, 1},

ANDk(x
1, . . . , xk) =

k∧
i=1

xi.

A lower bound on AND is the main component in our

lower bound for disjointness. We omit the subscript k
when clear from the context.

• Approximate maximum matching / wellfare maximiza-

tion with unit demands: the input is a bipartite graph on

k×n nodes, with each player i ∈ [k] receiving the edges

adjacent to node i on the left side of the graph. The goal

is to output a matching shose size is within (1− ε) of the

size of the maximum matching in the graph. Note that

the output is the matching, not the size of the matching.

d) Background on information theory: Our lower bound

is based on information complexity [18] and follows the

framework introduced in [6]. We require the following basic

notions from information theory.

Definition 1 (Entropy and conditional entropy). The entropy

of a random variable X ∼ μ with support X is given by

H(X) =
∑
x∈X

Pr
μ
[X = x] log

1

Prμ [X = x]
.

For two random variables X,Y with joint distribution μ, the
conditional entropy of X given Y is

H(X |Y) =
E

y∼μ(Y)

∑
x∈X

Pr
μ(X |Y=y)

[X = x] log
1

Prμ(X |Y=y) [X = x]
.

Definition 2 (KL divergence). Given two distributions μ1, μ2
with support X , the KL divergence of μ1 from μ2 is

D

(
μ1

μ2

)
=
∑
x∈X

μ1(x) log
μ1(x)

μ2(x)
.

Definition 3 (Mutual information and conditional mutual

information). The mutual information between two random
variables X,Y is

I(X;Y) = H(X)−H(X |Y) = H(Y)−H(Y |X).
The conditional mutual information between X and Y given

Z is

I(X;Y | Z) = H(X | Z)−H(X |Y,Z)

= H(Y | Z)−H(Y |X,Z).

Mutual information and KL divergence are related as fol-

lows:

I(X;Y) = D

(
μ(X,Y)

μ(X)μ(Y)

)

= E
y∼μ(Y)

D

(
μ(X |Y = y)

μ(X)

)

= E
x∼μ(X)

D

(
μ(Y |X = x)

μ(Y)

)
,

and similarly for conditional mutual information.

For convenience, if μ ∼ Bernoulli(p) and η ∼
Bernoulli(q), we denote D

(
μ

η

)
by D

(
p

q

)
. We require

the following three technical lemmas:

Lemma 1. Let q ∈ (0, 1/3) and γ ∈ (−1, 1/2). Then

D

(
(1 + γ)q

q

)
≥ 1

4 ln 2
· qγ2.

Lemma 2. Let q ∈ (0, 1/2) and γ ≥ 1.5 such that γq ≤ 1.
Then

D

(
γq

q

)
≥ qγ/10.

And finally,

Lemma 3. Let p ≥ 2q and let α > 1/2, such that αq + (1−
αp) ∈ (0, 1). Then

D

(
p

αq + (1− α)p

)
≥ p/(32 ln 2).

III. LOWER BOUND FOR SET DISJOINTNESS

We describe first the disjointness lower bound, and then

outline how it is adapted to obtain a lower bound on wellfare

maximization.

For set disjointness we show the following lower bound:

Theorem 4. Let R · k ≤ n ≤ 2k
1/R

/8. Then any protocol
that solves DISJn,k in R rounds with worst-case error at most
1/100 requires Ω(nk1/R/(R4 log n)) bits of communication
in the worst case.

The reason we require n ≥ R·k is that in our model, at least

R · k bits are sent per round. We also require n ≤ 2k
1/R

/8,

but if n is larger than this, then n · k1/R = O(n log n), so the

two-player lower bound of Ω(n) [1] is already within log n of

optimal.

A. Information Complexity and Direct Sum

In order to bound the number of bits that players must

communicate, we bound the information they must reveal

about their inputs. We introduce a distribution on inputs —

in our case, the distribution is of the form μn, where μ is a

distribution on a single coordinate (that is, μ is on {0, 1}k),

and μn is the product distribution where the coordinates are

drawn iid from μ.

To quantify the information the players reveal about their

inputs when they execute a protocol Π, we use conditional
information cost, introduced in [6]:

CIC
μ
(Π) = I

μ
(Π;X |D) ,

where Π is a random variable denoting the transcript of the

protocol, X is the input to the players, and D is an auxiliary

147

variable also governed by the distribution μ, and used to break

dependencies between the players.

Because I(A;B|C) ≤ H(A) for any three random variables

A,B,C, if we can bound the conditional information cost of

the protocol from below, we obtain a bound on the entropy, and

therefore the length, of its transcripts. Unlike communication,

information cost is additive, which makes it useful in proving

lower bounds.

For a problem P , we define the information complexity of

P under μ with worst-case error δ:

CIC
μ,δ

(P) = inf
Π

{
CIC
μ
(Π)

}
,

where the infimum is taken over all protocols that solve P
with worst-case error at most δ on any input.

a) Direct sum: Following [6], the first step in our lower

bound is to use a direct sum reduction to reduce the set

disjointness lower bound to a lower bound on Boolean AND.

The direct sum theorem of [6] asserts the following:

Theorem 5 (Direct sum [6]). Let μ be an input distribution
with an auxiliary variable D, such that

(1) The inputs X1, . . . ,Xk are independent conditioned on
any value D = d, and,

(2) Prμ
[∧k

i=1X
i = 1

]
= 0.

Then:

CIC
μn,δ

(DISJn,k) ≥ n · CIC
μ,δ

(ANDk).

Condition (2) may appear odd, because it seems to make

the problem easy (the answer is always 0). However, recall

that we required small worst-case error, even on the input 1k,

which is not in the support. Thus, the protocol cannot “use”

the fact that the answer is 0 under our distribution.

Importantly, the proof of the direct sum theorem is a

reduction which preserves the number of rounds: given an R-

round protocol for DISJn,k, [6] constructs from it an R-round

protocol for ANDn with 1/n the information cost. This allows

us to use the reduction when showing a round/communication

trade-off.

In our case we use a slight modification: our input distribu-

tion μ has Prμ

[∧k
i=1X

i = 1
]
≤ 1/n2, but the probability of

1k is not zero. Nevertheless, when inputs to disjointness are

drawn from μn, the probability that any coordinate will have

an AND value of 1 is bounded by 1/n, and therefore we can

get:

CIC
μn,δ

(DISJn,k) ≥ n · CIC
μ,δ+1/n

(ANDk).

Since we assume that the error is a sufficiently small constant,

the increase of 1/n is not significant.

We prove a lower bound of Ω̃(k1/R/R4) on

CICμ,δ+1/n(ANDk) with R rounds, and thereby obtain

a lower bound of Ω̃(nk1/R/R4) on the communication

complexity of DISJn,k with R rounds.

B. The Hard Distribution
We now describe the distribution μ we use to show the

R-round lower bound on ANDk.
The distribution μ is composed of R+1 “slices” μ0, . . . , μR.

In each slice μs, the inputs to the players are iid Bernoulli

random variables, with probability ps of being zero. We choose

ps such that in slice s, typically Θ(k1−s/R) players get zero

inputs: in the first slice, s = 0, we set ps = 1/2, and for the

other slices, s = 1, . . . , R, we set

ps = 2k−s/R log n.

specifically, in slices s > 1, the inputs to all the players are

iid Bernoulli variables with probability 2ks/R log n of being

zero, and in slice 0 the inputs are iid Bernoulli 1/2.
The overall input distribution μ is generated by choosing a

slice S uniformly at random, and drawing the input X from

μS.
Notice that the inputs are independent given the slice S; we

use S as the dependence-breaking variable D we require for

the direct sum theorem.
a) Intuition for the choice of the distribution μ: Intu-

itively, the goal of the protocol is to expose some player

whose input is zero, in order to become convinced that the

answer to AND is zero. To see why our input distribution

is hard, consider a simple protocol where in each round r
we have some fixed probability qr, and each player that got

zero announces this fact with probability qr (and otherwise

stays silent). We would like to set qr as high as possible,

in order to find a zero quickly. How high can we afford to

set qr while respecting an overall communication budget of

O(k1/R/ poly(R))?
In the first round, we do not know which slice the input

was drawn from; with probability 1/R it was drawn from

μ0, where Θ(k) players get zero. Therefore, if we are aiming

for total communication (or information) O(k1/R/ poly(R)),
we cannot set q1 greater than Θ(k1/R−1/ poly(R)). However,

this means that if we are not in slice μ0, but rather in some

higher slice, then with good probability no zeroes will be

announced: the total number of zeroes in this case is probably

O(k1−1/R/ poly(R)) (ignoring the log n factor for the time

being).
After the first round, if the input was not drawn from slice

μ0, we have now learned this fact, because no zeroes were

announced. But we made very little progress on the remaining

slices, and in particular, it is unlikely that a zero was found,

and we still do not know which slice the input is drawn from.
In the second round and onwards the picture is similar.

In round r, slices μr−1, . . . , μR all remain possible, and we

cannot afford to set qr greater than Θ(kr/R−1/ poly(R)),
otherwise we would use more than O(k1/R/ poly(R)) com-

munication / information if the input is drawn from μr−1. We

therefore expect that on slices higher than μr−1 no zeroes will

be announced, and we will have learned very little about the

input.
Finally, after R rounds, we are still “in the game” only if

the input is drawn from μR; if the input was drawn from some

148

lower slice, we probably have found a zero already. However,

if the input is drawn from μR, we know almost nothing about

it. In particular the protocol cannot distinguish μR from the

input 1k, and this is a problem, because the answer on those

two cases is almost certainly different: on 1k the correct output

is 1, but on slice μR the correct output is almost certainly 0.

b) The “all-one” distribution, ν: In order to compare

the behavior of the protocol on μ, where the correct answer is

almost certainly zero, to its behavior on the all-one input, let

us denote by ν the “input distribution” where all players get

one. We also think of μ, the slices μs, and ν as distributions on

transcripts of the protocol, obtained by drawing an input from

the respective distribution and then generating a transcript of

the protocol on that input.

In our proof we measure the probability of “good events”

under ν, the all-one input. When we say, e.g., “we are likely

to reach a transcript satisfying. . . ”, we are referring to the

transcript distribution under ν.

We show that with high probability (under ν), after s ≤ R
rounds, the transcript π≤s generated so far has μr(π≤s) ≈
ν(π≤s) for any slice r ≥ s. In other words, the transcript is

roughly as likely to be generated when the input is drawn from

any slice μr for r ≥ s as it is when all players get 1. This

formalizes our intuition that for “surviving slices” r ≥ s, we

have learned very little about the input. In particular, under

ν, after R rounds we are very likely to reach a transcript on

which the output is 1; therefore, on μR, which “survives” all

R rounds, we are also likely to reach a transcript on which

the output is 1, so the protocol errs with high probability.

To show this, we charge the difference between μr(π≤s) and

ν(π≤s) to the information cost of the protocol. Because we are

working with product distributions, the information revealed

by the protocol is the sum of the information each player

reveals about its own input; we show that when a player’s

message distribution “deviates significantly” under μs and ν,

the player’s contribution to the information cost is large, and

therefore most players’ messages have similar probabilities

under μs and ν.

Let us now make this intuition more precise.

C. Measuring the Protocol’s Progress

Suppose that after s rounds s the protocol’s transcript is

π≤s. We measure the “information” that player i has revealed

about its input in π≤s by comparing the likelihood of the

transcript π≤s is when player i has zero, to its likelihood when

player i has one. As long as the two are close to each other,

we “know only a little” about the input of player i.
More formally, for a player i, a partial transcript π≤s =

π1, . . . , πs, and a round r ≤ s, let

λi
r(π≤s) :=

Pr
[
πi
r | π<r,X

i = 0
]

Pr [πi
r | π<r,Xi = 1]

,

and let

Λi
s(π≤s) :=

s∑
r=1

log λi
r(π≤s)

=
s∑

r=1

log
Pr
[
πi
r | π<r,X

i = 0
]

Pr [πi
r | π<r,Xi = 1]

.

We often omit the transcript π≤s and simply write λi
t,Λ

i
s when

the partial transcript is clear from the context.

Here, Pr
[
πr | π<r,X

i = b
]

denotes the probability under

the protocol Π that player i sends its round-r message πi
r

in π≤s, given that the transcript up to round r is π<r and

its input is b. (This probability does not depend on the input

distribution, only the protocol.) For any slice μr (and indeed,

for any product distribution on inputs) we have:

Property 1.

μr(X
i = 0|π≤s)

μr(Xi = 1|π≤s)
=

μr(π≤s|Xi = 0)

μr(π≤s|Xi = 1)
= 2Λ

i
s .

Thus, if we can show that Λi
s(π≤s) is small in absolute

value, we know that on all slices, player i’s input is close to

its prior, even conditioned on the transcript π≤s. Equivalently,

we know that the probability of transcript π≤s being generated

under slice r (or under ν) is not sensitive to player i’s input.

D. Good Players and Transcripts

Even though the average player cannot afford to “say a lot”

about its input, a small number of players might do so. We

call such players bad players, and we discard them from our

argument (by essentially fixing their inputs to 1). Players that

have not revealed a lot of information about their input are

called good.

Definition 4 (Good players). We say that player i is good in

π≤s if for each prefix π≤t, t ≤ s, we have∣∣log λi
t(π≤s)

∣∣ ≤ 1

2R
.

Let G(π≤s) ⊆ [k] denote the set of players that are good

in π≤s.

In our induction, we control the number of bad players, and

show that with high probability it remains O(ks/R/ poly(R))
after s rounds, by “charging” each good player that becomes

bad to the information cost of the protocol.

Unfortunately, it is not enough to control the number of bad

players: even though each good player only revealed a little

information, together it can add up to too much. We need to

show that the total progress made by the protocol is roughly

ks/R, that is, all good players together have revealed roughly

that much information.

We refer to
∣∣∣∑i∈G(π≤s)

Λi
s

∣∣∣ as the total badness of the

transcript. A transcript that satisfies both conditions — a small

number of bad players, and low total badness — is called good.

Definition 5 (Good transcripts). We say that a partial tran-
script π≤s is good if:
(1) At most ks/R/(8 log n) players are bad in π≤s, that is,

|[k] \G(π≤s)| ≤ ks/R

8 logn
,

and

149

(2) The sum of the Λi
s for the good players is bounded in

absolute value: ∣∣∣∣∣∣
∑

i∈G(π≤s)

Λi
s

∣∣∣∣∣∣ ≤
ks/R

2 logn
.

We denote by G≤s the set of good s-round transcripts. Our

goal will be to show that G≤R has large probability under

ν. Also, let G(1)≤s ⊇ G≤s and G(2)≤s ⊇ G≤s denote the set of

transcripts that satisfy conditions (1) and (2), respectively, in

the definition of a good transcript.

E. Properties of Good Transcripts

Condition (2) in the definition of a good transcript, which

controls
∣∣∣∑i∈G(π≤s)

Λi
s

∣∣∣, allows us to relate the probability of

good transcripts under ν and under μs, as follows:

Lemma 6. If π≤s is good, then ν(π≤s) ≤ 4μs(π≤s).

For good players we also get a relationship in the other

direction on their next message:

Lemma 7. If π≤s is good, and i is a good player in π≤s,
then μs(π

i
s+1|π≤s) ≥ ν(πi

s+1|π≤s)/2.

We use this connection to relate the expected divergence for

good players under ν|π≤s to that under μs|π≤s, as follows:

Corollary 8. If π≤s is good, then

E
Πs+1∼ν|π≤s

⎡
⎣ ∑
i∈G(π≤s)

D

(
μs(X

i|π≤s,Π
i
s+1

μs(X
i|π≤s

)⎤⎦

≤ 2 E
Πs+1∼μs|π≤s

⎡
⎣ ∑
i∈G(π≤s)

D

(
μs(X

i|π≤s,Π
i
s+1

μs(X
i|π≤s

)⎤⎦ .

Corollary 8 will be useful to us because as we said, we

analyze the behavior of the protocol under ν; in particular we

want to bound from below the probability that the transcript

remains good after s rounds, ν(G≤s). However, the informa-

tion cost of the protocol is computed under the distribution μ,

which is a convex combination of the slices μs, not under ν.

Corollary 8 allows us to translate between the behavior of the

protocol under μs and its behavior under ν.

Finally, since we will be interested in showing that most

good players remain good, let us define:

Definition 6 (Breaking bad). We say that player i breaks bad

in round r if i ∈ G(π<r) but i �∈ G(π≤r), that is, i was
good up to round r but became bad afterwards. Let Bi

r be an
indicator for this event.

F. Analyzing the Behavior of Good Players

Recall that our high-level intuition is that in round s + 1,

not too many players can afford to announce that their input

is zero, otherwise the information cost of the protocol would

be too high on slice s. We would like to translate this

intuition into a bound on the number of good players that

go bad in round s + 1: “announcing a zero” corresponds to

becoming bad by revealing too much information. If player

i was good in π≤s but becomes bad in π≤s+1, we would

like to “charge” this to the information revealed by the

protocol in round s + 1 under slice s, by showing that the

ratio between Pr
[
πi
s+1 | π≤s,X

i = 0
]

and μs

(
πi
s+1|π≤s

)
is

poly(1/R). (That is, there is a noticeable difference between

the probability that player i sends πi
s+1 when its input is 0,

compared to the prior probability under μs that player i sends

πi
s+1 in round s+ 1, given that the transcript so far is π≤s.)

A small technical obstacle stands in our way: the definition

of good players says nothing about slice s, and instead

measures the ratio between the probability when the player’s

input is 0 and when it is 1 (because ultimately, we want to

compare against the all-one input assignment). We overcome

this as follows.

Similar to the definition of λi
r and Λi

s, we define a “tran-

script probability quotient” under μs, as follows:

γi
s,r(π≤s) :=

Pr
[
πi
r | π<r,X

i = 0
]

μs (πi
r|π<r)

,

and

Γi
s :=

s∑
r=1

log γi
s,r.

Note that s has two meanings here: it is both the number

of rounds in the transcript π≤s with respect to which Γi
s is

defined, and the number of the slice μs with respect to which

we measure the difference in the probability of π≤s. This is no

coincidence, as each slice μs is used to argue good behavior in

round s+1 of the protocol, and to do this we need to control

the behavior up to and including round s. After round s+ 1,

we no longer use slice s in the argument, because the players

may very well have discovered whether or not the input was

drawn from this slice.

By analogy to Property 1 for Λi
s, the quantity Γi

s also

measures sensitivity to player i’s input, this time in the

following sense:

Property 2. We can think of Γi
s as measuring the effect

that player i’s input has on the probability that π≤s will be

generated:

μs

(
π≤s|Xi = 0

)
μs (π≤s)

=

∏s
t=1

∏k
j=1 Pr

[
πi
t | π<t,X

i = 0
]

∏s
t=1

∏k
j=1 μs

(
πj
t |π<t

)
=

s∏
t=1

Pr
[
πi
t | π<t,X

i = 0
]

μs

(
πi
t|π<t

) = 2Γ
i
s .

This is because the inputs to the players are independent

under μs, and hence the other players’ messages are indepen-

dent of player i’s input given the transcript so far. Also, by

Bayes,

Prμs|π≤s

[
Xi = 0

]
Prμs [X

i = 0]
=

μs

(
π≤s|Xi = 0

)
μs (π≤s)

= 2Γ
i
s .

150

By keeping track of | log λi
1|, . . . , | log λi

s| and of Λi
s in the

definition of good players and transcripts, we also implicitly

control | log γi
1|, . . . , | log γi

s| and Γi
s:

Lemma 9. For any s, r ≤ R, we have sgn
(
log γi

s,r

)
=

sgn
(
log λi

r

)
and

∣∣log γi
s,r

∣∣ ≤ ∣∣log λi
r

∣∣.
We also get that for good transcripts, the posterior probabil-

ity of a good player’s input being zero is not much different

than the prior:

Corollary 10. If i ∈ G(π≤s), then

1

2
≤ Prμs|π≤s

[
Xi = 0

]
Prμs

[Xi = 0]
≤ 2.

In particular, for a good player, the posterior probability that

the player’s input is zero never exceeds 1/2:

Corollary 11. If i ∈ G(π≤s), then Prμs|π≤s

[
Xi = 0

] ≤ 1/2.

In the induction step we will need to argue that for a good

player i, if
∣∣log γi

s,s+1

∣∣ is small, then so is
∣∣log λi

s+1

∣∣. And

indeed, when either of the two quantities is not too large, they

are close to each other:

Lemma 12. If player i is good in π≤s, and in addition we have
either

∣∣log γi
s,s+1

∣∣ ≤ 1 or
∣∣log λi

s+1

∣∣ ≤ 1, then
∣∣log λi

s+1

∣∣ ≤
4
∣∣log γi

s,s+1

∣∣.
G. The Information Cost of Players that Break Bad

As we explained informally above, in order to establish

that condition (1) in the definition of a good transcript holds

w.h.p., we show that each player that breaks bad in round s+1
contributes noticeably to the information cost of round s+ 1
on slice μs.

First, we show that good players that incur large γi
s,s+1

contribute significantly to the divergence; since γi
s,s+1 and

λi
s+1 are related as we saw above, this will allow us to bound

the number of players that break bad. (We made no attempt

to optimize the constants in the proof.)

Lemma 13. If i ∈ G(π≤s) and | log γi
s,s+1| ≥ 1/(8R) then

D

(
μs(X

i|π≤s+1)

μs(X
i|π≤s)

)
≥ k−s/R/(800R2).

Proof sketch. Let p = Prμs|π≤s

[
Xi = 0

]
and let us abbrevi-

ate γ = γi
s,s+1. By Bayes,

Pr
μs|π≤s+1

[
Xi = 0

]
=

=
μs

(
πs+1|π≤s,X

i = 0
)
Prμs|π≤s

[
Xi = 0

]
μs (πs+1 | π≤s)

= p · γ = p(1 + (γ − 1)).

If γ ≥ 1.5, then by Lemma 2

D

(
p(1 + (γ − 1))

p

)
≥ pγ/10.

Recall that under each slice, the prior probability of getting 0

is at least k−s/R/2, and thus by Corollary 10 we have p ≥
k−s/R/4. Since R ≥ 1,

D

(
p(1 + (γ − 1))

p

)
≥ k−s/R

4
· 1.5
10

>
k−s/R

40R2
.

On the other hand, if γ < 1.5, then by Lemma 1,

D

(
p(1 + (γ − 1))

p

)
≥ 1

4 ln 2
p · (γ − 1)2

≥ 1

6

k−s/R

4
(γ − 1)2.

Using the fact that | log γ| ≥ 1/(8R) (i.e., γ is not too close

to 1), we can bound this from below by

D

(
p(1 + (γ − 1))

p

)
≥ k−s/R

800R2
.

For good players that have small
∣∣log λi

s+1

∣∣ we can get a

bound directly in terms of log2 λi
s+1 and of (λi

s+1 − 1)2:

Lemma 14. If i ∈ G(π≤s+1), then

D

(
μs(X

i|π≤s+1)

μs(X
i|π≤s)

)
≥ (k−s/R/800) log2 λi

s+1

≥ (k−s/R ln2 2/800)
(
λi
s+1 − 1

)2
.

Recall that the information cost incurred by round s + 1
of the protocol is the expectation of the divergence from

Lemma 13. Thus, as a corollary of Lemma 13, and using

Corollary 8, we get:

Lemma 15. Let π≤s be a good transcript. Then

E
Πs+1∼ν|π≤s

[∑
i

Bi
s+1

]
≤ 1600R2ks/R I

μs|π≤s

(Πs+1;X).

Finally, if “most” partial transcript up to round s are good,

then conditioning on G≤s, being good up to round s, does not

increase the information cost of round s+ 1 by much. Using

this fact, and using Lemma 6 to relate expectations under ν
and under μs, we get:

Corollary 16. If ν(G≤s) ≥ 1/2 (where G≤s is the set of good
s-round transcripts), then

E
ν|G≤s

[∑
i

Bi
s+1

]
≤ O(R2ks/R CIC

μ
(Π)) ≤ O

(
k(s+1)/R

R log n

)
.

Thus, by Markov, if the transcript up to round s is good,

then the first condition of being a good transcript (Definition 5)

continues to hold in round s + 1 with high probability. Next

we turn our attention to condition (2).

151

H. Bounding the Total Badness

a) High-level overview: Recall that the total badness

of a transcript π≤s is defined as
∣∣∣∑i∈G(π≤s)

Λi
s

∣∣∣, where

Λi
s(π≤s) =

∑s
r=1 log λ

i
r(π≤s).

In order to bound the total badness and maintain the

second condition of Definition 5, we need a more fine-grained

connection between the information revealed by player i in

message Πi
s+1, and its contribution to the increment in the total

badness, Δi
s+1 − Δi

s = log λi
s+1. In Lemma 13, we showed

(roughly) that if the increment is at least Ω(1/R) then the

information revealed is at least Ω(1/R2), but now we need to

charge log λi
s+1 directly to the divergence, with no minimum

threshold. We can only do this when log λi
s+1 is small to start

with, which is why we throw out bad players.

Even then, for a specific message πi
s+1, the true relationship

between log λi
s+1 and the divergence can be, in the worst case,

quadratic, matching the bound we showed in Lemma 13. If we

proceed carelessly here, we could incur a quadratic blow-up

throughout, yielding a lower bound of Ω(k1/(2R)/ poly(R))
instead of Ω(k1/R/ poly(R)) (which is significant when R is

constant).

Instead of considering an individual, specific message πi
s+1

and relating the “damage” it causes (the increment in
∣∣Λi
∣∣) to

the divergence of μs(X
i|π≤s+1) from μs(X

i|π≤s), we con-

sider the expectation over the next-round messages. The idea

is that the increment caused by the next-round message Πi
s+1

is positive for some messages πi
s+1 and negative for others,

and we can show that the first-order term cancels out. Indeed,

since log x ≈ x− 1− (x− 1)2/2 and log2 x ≈ (x− 1)2/2 for

x close to 1 (with a ln 2 factor which we are going to ignore

here), for good players we would ideally get:

∣∣∣∣∣ E
πi
s+1∼ν|π≤s

[
log

Pr
[
πi
s+1 | π≤s,X

i = 0
]

Pr
[
πi
s+i | π≤s,Xi = 1

]
]∣∣∣∣∣

≈
∣∣∣∣∣ E
πi
s+1∼ν|π≤s

[
Pr
[
πi
s+1 | π≤s,X

i = 0
]

Pr
[
πi
s+i | π≤s,Xi = 1

]−
−1− 1

2

(
Pr
[
πi
s+1 | π≤s,X

i = 0
]

Pr
[
πi
s+i | π≤s,Xi = 1

] − 1

)2⎤⎦
∣∣∣∣∣∣

≈
∣∣∣∣∣∣
∑
πi
s+1

(
Pr
[
πi
s+i | π≤s,X

i = 1
] · Pr

[
πi
s+1 | π≤s,X

i = 0
]

Pr
[
πi
s+i | π≤s,Xi = 1

]
)

−
∑
πi
s+1

Pr
[
πi
s+i | π≤s,X

i = 1
]

−1
2

E
πi
s+1∼ν|π≤s

[
log2

Pr
[
πi
s+1 | π≤s,X

i = 0
]

Pr
[
πi
s+i | π≤s,Xi = 1

]
]∣∣∣∣∣

=

∣∣∣∣∣1− 1− 1

2
E

πi
s+1∼ν|π≤s

[
log2

Pr
[
πi
s+1 | π≤s,X

i = 0
]

Pr
[
πi
s+i | π≤s,Xi = 1

]
]∣∣∣∣∣

=
1

4

∣∣∣∣∣ E
πi
s+1∼ν|π≤s

[
log2 λi

s+1

]∣∣∣∣∣ . (1)

Now that we have cancelled out the first-order terms, we can

use Lemma 14 to relate log2 λi
s+1 to the divergence player i

contributes, and thereby relate the expected increment in Λi
s

to player i’s contribution to the information cost.

We say that this computation is what we would “ideally” do,

because it is not quite true: a player that is good in π≤s can

have a non-zero probability of turning bad in round s + 1,

in which case we can no longer apply the approximation

of the log we used in (1), as the log is not close to 1.

Nevertheless, using the fact that under ν good players have

only a small probability of turning bad, we are able to bound

the expectation in terms of the divergence, and also show

concentration for the sum over all good players. That is, for

good players we show that with high probability,∣∣∣∣∣∣
∑

good players

(
Λi
s+1 − Λi

s

)∣∣∣∣∣∣ ≤ ks+1/ poly(R),

so that condition (2) in the definition of a good transcript is

maintained.

b) A more detailed proof sketch: In order not to charge

for bad players when we bound the total badness, let us define:

Li(πi
s+1) :=

{
log λi

s+1 if player i is good in π≤s+1,

0 otherwise.

As always, we omit the message πi
s+1 from our notation when

clear from the context.

With this notation, if π≤s is good, then in order to show

that π≤s+1 satisfies condition (2) of Definition 5, it suffices

to show that ∣∣∣∣∣
k∑

i=1

Li

∣∣∣∣∣ ≤ k(s+1)/R

4 logn
.

We then have:∣∣∣∣∣∣
∑

i∈G(π≤s+1)

Λi
s+1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

i∈G(π≤s)

Λi
s

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
i∈G(π≤s+1)

log λi
s+1

∣∣∣∣∣∣
≤ ks/R

2 logn
+

∣∣∣∣∣
k∑

i=1

Li

∣∣∣∣∣
≤ ks/R

2 logn
+

k(s+1)/R

4 logn
≤ k(s+1)/R

2 logn
,

as required.

Let us relate the expected value of Li to the information

revealed by player i in round s+ 1.

As we explained above, our calculations are complicated by

the fact that players break bad with non-zero probability, and

when they do we cannot control their contribution, λi
s+1, by

charging it against the information cost. To handle this, define

P i
0(π≤s) = Pr

[
i �∈ G(Π≤s+1) | π≤s,X

i = 0
]
,

and

P i
1(π≤s) = Pr

[
i �∈ G(Π≤s+1) | π≤s,X

i = 1
]
.

152

As usual we omit the transcript and write simply P i
0, P

i
1 where

reasonable.

Now we can bound a player’s expected contribution Li as

follows:

Lemma 17. If π≤s is good and i ∈ G(π≤s), then∣∣∣∣∣ E
Πi

s+1∼ν|π≤s

[
Li
]∣∣∣∣∣

≤ 2

(
(6400ks/R log n) I

μs|π≤s

(
Πi

s+1;X
i
)
+ P i

0 + P i
1

)
.

The lemma is proven by repeating the “idealized” calcula-

tion we did in (1), but this time taking into consideration the

event that player i breaks bad.

Summing across all players, we obtain:

Corollary 18. We have∣∣∣∣∣ E
ν|π≤s

[
k∑

i=1

Li

]∣∣∣∣∣
≤ 2

⎛
⎝6400 I

μs|π≤s

(Πs+1;X) +
∑

i∈G(π≤s)

(
P i
0 + P i

1

)⎞⎠ .

We see that in order to control the increment to
∑

i Λ
i, we

must bound the sum of the probabilities that the good players

go bad when their inputs are 0, and the same sum when their

inputs are 1.

One of the two is easy: by definition,

P i
1 = Pr

ν|π≤s

[
Bi = 1

]
,

that is, P i
1 is the probability that i breaks bad under ν.

Corollary 16 gives us a bound on the sum of the P i
1 for good

players. However, we do not have a bound on the P i
0’s, and

indeed, since the probability that Xi = 0 is very low under

μs, we cannot bound the P i
0’s by making a similar argument

under the slice μs.

To bound
∑

i P
i
0, we show that whenever P i

0 is large

compared to P i
1, player i contributes to the information cost

in proportion to P i
0. Intuitively, if P i

1 is small, but P i
0 is large,

then somehow player i gives a lot of information about its

input: when the input is 0 player i is likely to break bad, but

when the input is 1 player i is not. An external observer knows
if a given player is bad or not, because this is only a function

of the transcript. Therefore, in this scenario, player i reveals

by the fact that it broke bad that its input was probably 0.

This intuition is made formal as follows.

Lemma 19. If π≤s is good, i ∈ G(π≤s), and P i
0 ≥ 2P i

1, then

I
μs|π≤s

(
Xi;Πi

s+1

) ≥ k−s/R

64 ln 2
· P i

0.

Proof. Recall that P i
0 = Pr

[
Bi = 1 | π≤s,X

i = 0
]
. By the

data-processing inequality, since Bi is a function of Πi
s+1

(given Π≤s = π≤s),

I
μs|π≤s

(
Xi;Πi

s+1

) ≥ I
μs|π≤s

(
Xi;Bi

)
≥ Pr

μs|π≤s

[
Xi = 0

]
D

(
Bi|Xi = 0

Bi

)

≥ k−s/R

2
D

(
Bi|Xi = 0

Bi

)
.

In the last step we used the fact that i is good, so by

Corollary 10, the probability under μs|π≤s that i gets zero

is at least half the prior under μs, which for s ≥ 1 is at least

k−s/R log n. For slice 0, μ0|π≤0 = μ0, and the probability

that player i gets 0 is 1/2, which satisfies 1/2 ≥ k−0/R/2.

Now let us relate the divergence to P i
0, using Lemma 3.

By definition, Bi|Xi = 0 is Bernoulli with probability P i
0 of

being 1, while Bi is Bernoulli with probability qP i
1+(1−q)P i

0,

where q = Prμs|π≤s

[
Xi = 1

] ≥ 1/2 (by Corollary 11). By

Lemma 3,

D

(
Bi|Xi = 0

Bi

)
≥ P i

0

32 ln 2
.

The claim follows.

Now we can use this bound, together with Corollary 18, to

get the bound we wanted, relating the sum of the Li to the

information cost.

Corollary 20. If π≤s is good,∣∣∣∣∣ E
ν|π≤s

[
k∑

i=1

Li

]∣∣∣∣∣ ≤ 20, 000 I
μs|π≤s

(Πs+1;X).

Proof. Let A ⊆ G(π≤s) be the set of good players who have

P i
0 < 2P i

1, and let B = G(π≤s) \ A be the good players

who have P i
0 ≥ 2P i

1. We bound the contribution of the terms

P i
0 + P i

1 to the absolute value of the expectation as follows:∑
i∈G(π≤s)

(
P i
0 + P i

1

)
=
∑
i∈A

(
P i
0 + P i

1

)
+
∑
i∈B

(
P i
0 + P i

1

)
≤ 3
∑
i∈A

P i
1 +
∑
i∈B

P i
1 + 45ks/R

∑
i∈B

I
μs|π≤s

(
Xi;Πi

s+1

)
≤ 3

∑
i∈G(π≤s)

P i
1 + 45ks/R I

μs|π≤s

(X;Πs+1)

= 3 E
ν|π≤s

[
k∑

i=1

Bi

]
+ 45ks/R I

μs|π≤s

(X;Πs+1)

≤ 5000R2ks/R I
μs|π≤s

(X;Πs+1) .

The last step used Lemma 15.

To establish concentration, we also bound the variance of

the sum
∑k

i=1 L
i:

Lemma 21. If π≤s is good and i ∈ G(π≤s),

Var
ν|π≤s

[
Li
] ≤ O(1) · ks/RR2 log n · I

μs|π≤s

(
Xi;Πi

s+1

)
.

153

Corollary 22. Whenever π≤s is a good transcript with
Iμs|π≤s

(Πs+1;X) ≤ k1/R/(CR2 log n), where C is a large
constant, we have

, Pr
Πs+1∼ν|π≤s

⎡
⎣
∣∣∣∣∣∣

∑
i∈G(Π≤s+1)

λi
s+1

∣∣∣∣∣∣
⎤
⎦ ≤ 1/(16R).

Ultimately, we obtain:

Corollary 23. If ν(G≤s) ≥ 1/2 (where G≤s is the set of good
s-round transcripts), then

Pr
ν|G≤s

[
Π≤s+1 �∈ G(2)≤s+1

]
≤ 5

16R
.

I. Putting Everything Together
We have seen that given that we have a good transcript after

s rounds, the probability under ν that the transcript will fail

to satisfy condition (1) of Definition 5 after the next round

is at most 1/(4R), and the probability that it fails to satisfy

condition (2) is at most 5/(16R). Together, the probability that

after s+ 1 rounds the transcript will no longer be good is at

most 9/(16R).
The empty (0-round) transcript is, of course, good. There-

fore:

ν (G≤R) =
R∏

s=1

ν (G≤s|G≤s−1)

≥
(
1− 9

16R

)R

≥ 1

4
.

Next we show that this implies that the protocol errs with

high probability on the last slice, μR.
Let T1 be the set of (complete, R-round) transcripts on

which the output is 1. Under ν, the all-one input, the correct

output is always 1, and therefore, if δ is the error of the

protocol,

1− δ ≤ ν(T1)

= ν(T1 ∩ G≤R) + ν(T1 \ G≤R)

≤ ν(T1 ∩ G≤R) + ν(G≤R) ≤ ν(T1 ∩ G≤R) + 3/4.

Now let us go back to the last slice, μR. The probability

that the protocol outputs 1 under μR is at least

Pr
μR

[output = 1] ≥
∑

π∈T1∩G≤R

μR(π)

≥ 1

4

∑
π∈T1∩G≤R

ν(π) (By Lemma 6)

≥ 1/4− δ

4
>

1

50
. (Since δ ≤ 1/100)

However, under μR, each player gets 0 with iid probability

2kR/R log n = 2 log n, so the probability that no player got

0 is smaller than 1/n2. This means that the correct answer is

1 with probability at most 1/n2, and therefore, under μR the

protocol errs with probability greater than 1/100, contradicting

our assumption.

IV. LOWER BOUND FOR APPROXIMATE MAXIMUM

MATCHING

For approximate maximum matching (referred to as wellfare

maximization with unit demands in [13], [14]), we show:

Theorem 24. Let ε be a sufficiently small constant. Then
there is a constant δ, such that any protocol that outputs a
(1− ε)-approximation to the maximum matching in R rounds
in bipartite graphs of size 2k with success probability 1 − δ
requires Ω(k1+1/R/R4)) bits of communication in the worst
case.

The idea behind this lower bound is to convert our lower

bound for disjointness into a lower bound for matching: we

construct a bipartite graph, where one side corresponds to the

players 1, . . . , k, and the other side corresponds to the element

of the set disjointness universe. We connect a player i to an

element j if element j is missing from player i’s input, that

is, if Xi
j = 0. Finding a large matching then corresponds to

finding a player that got zero for many coordinates, and this

task is at least as hard as disjointness.

The one difference between the two problems is that when

we solve disjointness, it is perfectly acceptable for one player

to serves as “witness” that many elements are not in the

intersection, but when we want to output a matching, we

cannot assign one player to more than one zero coordinate

in its input. Still, our input distribution from Section III can

be modified so that with high probability, for most coordinates,

there is exactly one player that has a zero in this coordinate. On

such inputs, a protocol that solves disjointness must implicitly

find a large matching.

A. The Modified Input Distribution

We modify the distribution μ that we constructed in Sec-

tion III as follows. Call the resulting distribution η.

• We remove the log n factor everywhere, as we no longer

need to ensure that with very high probability the answer

to AND is zero. So, on slice s ≥ 1, which we denote

ηs, the inputs are iid Bernoulli variables with probability

k−s/R/2 of being 0.

• The last slice, ηR, where very few players get 0, will

now have constant weight α; that is, Pr [S = R] = α.

We choose α a sufficiently large constant compared to

the approximation factor ε. (This requires that ε not be

too large.)

• We add the all-one input, ν, into the distribution, as “slice

−1”. It also receives constant weight, β, which is small

compared to α.

• The remaining slices, ηs for s ∈ {0, . . . , R− 1}, each

get weight Pr [S = s] = (1 − α − β)/R for each s ∈
{−1, . . . , R− 1}.

Now consider the problem FINDZEROk, defined as follows:

each player i receives a bit Xi ∈ {0, 1}. The output of the

protocol is either the name of a player i ∈ [k], or ⊥. If the

protocol outputs some name i ∈ [k], then it must be that

Xi = 0, that is, the protocol must have found a zero. However,

154

the protocol is only required to output the name of a player

when exactly one player got zero, and otherwise it is allowed

to output ⊥.

If the error is sufficiently small, FINDZERO is “harder” than

AND on η: with constant probability (α), the input is drawn

from ηR, where again with constant probability (roughly

1/
√
e) exactly one player gets zero. Finding this player means

that the protocol must distinguish ηR from η−1 = ν with

(small) constant probability, because if the input is drawn

from ν (all one), the output must be ⊥. (Note that in the

FINDZERO problem we can amplify the success probability

of a protocol that has even an arbitrarily small (but constant)

success probability p < 1/2: we repeat the protocol in parallel,

and each time it outputs the name of a player, we check if this

player indeed got zero. The verification step costs at most one

bit of information. Repeating sufficiently many times raises

the success probability as high as desired.)

Our lower bound for AND is easily modified to work with

the distribution η by adapting the constants and thresholds

for “goodness” appropriately. After R rounds, we get that the

distribution of the output under ηR is similar to that under

η−1 = ν, and this contradicts the correctness of the protocol.

Now let FINDZERO
n be the bitwise composition of n

independent instances of FINDZEROk: the input to each player

is a vector Xi ∈ {0, 1}n, and the output should be a vector

where each coordinate j contains the answer to FINDZEROk

on coordinate j of the inputs to the players. We require that

the marginal success probability on the average coordinate be

at least 1− δ.

By a direct sum argument, the information cost of

FINDZERO
n
k is n times that of FINDZEROk. Note that this

time the direct sum is “pointwise”: a protocol for FINDZERO
n
k

must solve every coordinate with good (marginal) probability,

regardless of the values in the other coordinates. This is why

we can drop the requirement that Pr
[∧k

i=1X
i = 1

]
= o(1).

(In contrast, the direct sum argument for disjointness must

circumvent the fact that the output is the disjunction of the

answers on individual coordinates.)

Finally, we get a lower bound for approximate maximum

matching by the reduction we described above, for k = n.

Formally, given inputs (X1, . . . , Xk) to FINDZERO
n
k , we

construct a bipartite graph, with player nodes p1, . . . , pk and

element nodes v1, . . . , vk; each player node pi is connected to

those element nodes vj where Xi
j = 0. Because in slice ηR

each element node chooses to be a neighbor of each player

node with probability 1/(2k), with very high probability the

subgraph induced by slice-R element nodes and all player

nodes contains a matching of size Θ(αk) over element nodes

that each have a single player node connected to them (i.e.,

coordinates where a single player got zero). On the other hand,

all the other slices together have only roughly Θ((1 − α)k)
nodes, so they do not contribute much to the matching.

If α is large enough compared to ε, we get that for

some small constant δ, any protocol that outputs a (1 − ε)-
approximation to the maximum matching must match at least

a δ-fraction of element nodes that have a single neighbor (a

large, uniformly random subset). This means it must solve

FINDZERO
n
k with marginal success probability roughly δ on

the average coordinate, assuming it succeeds in finding a large

matching with high probability.

REFERENCES

[1] B. Kalyanasundaram and G. Schnitger, “The probabilistic commu-
nication complexity of set intersection,” SIAM Journal on Discrete
Mathematics, vol. 5, no. 4, pp. 545–557, Nov. 1992.

[2] Razborov, “On the distributed complexity of disjointness,” TCS: Theo-
retical Computer Science, vol. 106, 1992.

[3] J. M. Phillips, E. Verbin, and Q. Zhang, “Lower bounds for number-in-
hand multiparty communication complexity, made easy,” in Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ser. SODA ’12, 2012, pp. 486–501.

[4] D. P. Woodruff and Q. Zhang, “Distributed computation does not help,”
CoRR, vol. abs/1304.4636, 2013.

[5] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of ap-
proximating the frequency moments,” Journal of Computer and System
Sciences, vol. 58, no. 1, pp. 137 – 147, 1999.

[6] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, “An informa-
tion statistics approach to data stream and communication complexity,”
J. Comput. Syst. Sci., vol. 68, no. 4, pp. 702–732, 2004.

[7] A. Gronemeier, “Asymptotically optimal lower bounds on the nih-multi-
party information,” arXiv preprint arXiv:0902.1609, 2009.

[8] O. Weinstein and D. P. Woodruff, The Simultaneous Communication of
Disjointness with Applications to Data Streams, 2015, pp. 1082–1093.

[9] M. Braverman and R. Oshman, “On information complexity in the
broadcast model,” in Proceedings of the 2015 ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, 2015, pp. 355–364.

[10] J. Brody, A. Chakrabarti, R. Kondapally, D. P. Woodruff, and
G. Yaroslavtsev, “Beyond set disjointness: The communication com-
plexity of finding the intersection,” in Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, ser. PODC ’14,
2014, pp. 106–113.

[11] Y. Li, X. Sun, C. Wang, and D. P. Woodruff, “On the communication
complexity of linear algebraic problems in the message passing model,”
in Distributed Computing - 28th International Symposium, DISC 2014,
Austin, TX, USA, October 12-15, 2014. Proceedings, 2014, pp. 499–513.

[12] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, ser.
Monographs on Discrete Mathematics and Applications. Society for
Industrial and Applied Mathematics, 2000.

[13] S. Dobzinski, N. Nisan, and S. Oren, “Economic efficiency requires
interaction,” in Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, 2014, pp. 233–242.

[14] N. Alon, N. Nisan, R. Raz, and O. Weinstein, “Welfare maximization
with limited interaction,” in IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, 2015, pp. 1499–1512.

[15] D. P. Woodruff and Q. Zhang, “Tight bounds for distributed functional
monitoring,” in Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, 2012, pp. 941–960.

[16] ——, “An optimal lower bound for distinct elements in the message
passing model,” in Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, 2014, pp. 718–733.

[17] M. Braverman, F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan,
“A tight bound for set disjointness in the message-passing model,” in
54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, 2013, pp. 668–
677.

[18] A. Chakrabarti, Y. Shi, A. Wirth, and A. C.-C. Yao, “Informational
complexity and the direct sum problem for simultaneous message
complexity,” in 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, pp. 270–278.

[19] M. Saglam and G. Tardos, “On the communication complexity of
sparse set disjointness and exists-equal problems,” in 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, 2013, pp. 678–687.

155

