
Hardness Results for Structured Linear Systems

Rasmus Kyng

Department of Computer Science
Yale University

New Haven, CT, USA
Email: rasmus.kyng@yale.edu

Peng Zhang

School of Computer Science
Georgia Institute of Technology

Atlanta, GA, USA
Email: pzhang60@gatech.edu

Abstract—We show that if the nearly-linear time solvers for
Laplacian matrices and their generalizations can be extended to
solve just slightly larger families of linear systems, then they
can be used to quickly solve all systems of linear equations
over the reals. This result can be viewed either positively or
negatively: either we will develop nearly-linear time algorithms
for solving all systems of linear equations over the reals, or
progress on the families we can solve in nearly-linear time will
soon halt.

Keywords-Numerical Linear Algebra; Linear System Solvers;
Laplacian Solvers; Multi-commodity Flow Problems; Truss
Stiffness Matrices; Total Variation Matrices; Complexity The-
ory; Fine-grained Complexity;

I. INTRODUCTION

We establish a dichotomy result for the families of linear

equations that can be solved in nearly-linear time. If nearly-

linear time solvers exist for a slight generalization of the

families for which they are currently known, then nearly-

linear time solvers exist for all linear systems over the reals1.

This type of reduction is related to the successful research

program of fine-grained complexity, such as the result [1]

which showed that the existence of a “truly subcubic” time

algorithm for All-Pairs Shortest Paths Problem is equivalent

to the existence of “truly subcubic” time algorithm for a

wide range of other problems. For any constant a ≥ 1,

our result establishes for 2-commodity matrices, and several

other classes of graph structured linear systems, that we can

solve a linear system in a matrix of this type with s nonzeros

in time Õ(sa) if and only if we can solve linear systems in

all matrices with polynomially bounded integer entries in

time Õ(sa).
In the RealRAM model, given a matrix A ∈ R

n×n and a

vector c ∈ R
n, we can solve the linear system Ax = c in

O(nω) time, where ω is the matrix multiplication constant,

for which the best currently known bound is ω < 2.3727 [2],

[3]. Such a running time bound is cost prohibitive for the

large sparse matrices often encountered in practice. Iterative

methods [4], first order methods [5], and matrix sketches [6]

Rasmus Kyng was supported by ONR Award N00014-16-1-2374.
Peng Zhang was partially supported by the NSF under Grant No.

1637566.
1A full version of this paper is available at https://arxiv.org/abs/1705.

02944.

can all be viewed as ways of obtaining significantly better

performance in cases where the matrices have additional

structure.

In contrast, when A is an n × n Laplacian matrix

with m non-zeros, and polynomially bounded entries, the

linear system Ax = c can be solved approximately to

ε-accuracy in O((m + n) log1/2+o(1) n log(1/ε)) time [7],

[8]. This result spurred a series of major developments

in fast graph algorithms, sometimes referred to as “the

Laplacian Paradigm” of designing graph algorithms [9]. The

asymptotically fastest known algorithms for Maximum Flow

in directed unweighted graphs [10], [11], Negative Weight

Shortest Paths and Maximum Weight Matchings [12], Min-

imum Cost Flows and Lossy Generalized Flows [13], [14]

all rely on fast Laplacian linear system solvers.

The core idea of the Laplacian paradigm can be viewed as

showing that the linear systems that arise from interior point

algorithms, or second-order optimization methods, have

graph structure, and can be preconditioned and solved using

graph theoretic techniques. These techniques could poten-

tially be extended to a range of other problems, provided fast

solvers can be found for the corresponding linear systems.

Here a natural generalization is in terms of the number

of labels per vertex: graph Laplacians correspond to graph

labeling problems where each vertex has one label, and these

labels interact pairwise via edges. Multi-label variants of

these exist in Markov random fields [15], image process-

ing [16], Euclidean embedding of graphs [17], data pro-

cessing for cryo-electron microscopy [18], [19], [20], phase

retrieval [21], [22], and many image processing problems

(e.g. [23], [24]). Furthermore, linear systems with multiple

labels per vertex arise when solving multi-commodity flow

problems using primal-dual methods. Linear systems related

to multi-variate labelings of graphs have been formulated

as the quadratically-coupled flow problem [25] and Graph-

Structured Block Matrices [26]. They also occur naturally in

linear elasticity problems for simulating the effect of forces

on truss systems [27].

Due to these connections, a central question in the Lapla-

cian paradigm of designing graph algorithms is whether

all Graph-Structured Block Matrices can be solved in (ap-

proximately) nearly-linear time. Even obtaining subquadratic

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.69

684

running time would be constitute significant progress. There

has been some optimism in this direction due to the existence

of faster solvers for special cases: nearly-linear time solvers

for Connection Laplacians [28], 1-Laplacians of collapsible

3-D simplicial complexes [29], and algorithms with runtime

about n5/4 for 2D planar truss stiffness matrices [27].

Furthermore, there exists a variety of faster algorithms for

approximating multi-commodity flows to (1 + ε) accuracy

in time that scales as poly(ε−1) [30], [31], [32], [33], even

obtaining nearly-linear running times when the graph is

undirected [34], [35], [36].

The subquadratic variants of these routines also in-

teract naturally with tools that in turn utilize Laplacian

solvers [25], [33]. These existing tight algorithmic connec-

tions, as well as the solver for Connection Laplacians, and

the fact that combinatorial preconditioners partly originated

from speeding up interior point methods through precondi-

tiong Hessians [37], together provide ample reason to hope

that one could develop nearly-linear time solvers for linear

systems related to multicommodity flows. Any algorithm

that solves such systems to high accuracy in m1+α time

would in turn imply multicommodity flow algorithms that

run in about n1/2m1+α time [13], while the current best

running times are about n2.5 [38].

Unfortunately, we show that if linear systems in general

2D truss stiffness matrices or 2-commodity Laplacians can

be solved approximately in nearly-linear time, then all linear

systems in matrices with polynomially bounded integer

entries can be solved in nearly-linear time. In fact, we show

in a strong sense that any progress made in developing

solvers for these classes of matrices will translate directly

into similarly fast solvers for all matrices with polynomially

bounded integer entries. Thus developing faster algorithms

for these systems will be as difficult as solving all linear

systems faster.

Since linear system solvers used inside Interior Point

Methods play a central role in the Laplacian paradigm for

designing high-accuracy algorithms, this may suggest that

in the high-accuracy regime the paradigm will not extend to

most problems that require multiple labels/variables per edge

or vertex. Alternatively, an algorithmic optimist might view

our result as a road-map for solving all linear systems via

reductions to fast linear system solvers for Graph-Structured

Block Matrices.

A. Our Results

Fast linear system solvers for Laplacians, Connection

Laplacians, Directed Laplacians, and 2D Planar Truss Stiff-

ness matrices are all based on iterative methods and only

produce approximate solutions. The running time for these

solvers scales logarithmically with the error parameter ε, i.e.

as log(1/ε). Similarly, the running time for iterative methods

usually depends on the condition number of the matrix,

but for state-of-the-art solvers for Laplacians, Connection

Laplacians, and Directed Laplacians, the dependence is log-

arithmic. Consequently, a central open question is whether

fast approximate solvers exist for other structured linear

systems, with running times that depend logarithmically on

the condition number and the accuracy parameter.

Integral linear systems are reducible to Graph-
Structured Block Matrices. Our reductions show that if fast

approximate linear system solvers exist for multi-commodity

Laplacians, 2D Truss Stiffness, or Total Variation (TV)

Matrices, then fast approximate linear system solvers exist

for any matrix, in the very general sense of minimizing

minx ‖Ax − c‖22. Thus our result also applies to singular

matrices, where we solve the pseudo-inverse problem to high

accuracy. Theorem I.1 gives an informal statement of our

main result. The result is stated formally in Section III as

Theorem III.2.

Theorem I.1 (Hardness for Graph-Structured Linear Sys-

tems (Informal)). We consider three types of Graph-
Structured Block Matrices: Multi-commodity Laplacians,
Truss Stiffness Matrices, and Total Variation Matrices. Sup-
pose that for one or more of these classes, the linear system
Ax = c in a matrix A with s non-zeros can be solved
in time Õ(sa), for some constant a ≥ 1, with the running
time having logarithmic dependence on condition number
and accuracy2. Then linear systems in all matrices with
polynomially bounded integer entries and condition number
can be solved to high accuracy in time Õ(sa), where again
s is the number of non-zero entries of the matrix.

Our results can easily be adapted to show that if fast exact

linear system solvers exist for multi-commodity Laplacians,

then exact solvers exist for all non-singular integer matrices.

However, this is of less interest since there is less evidence

that would suggest we should expect fast exact solvers to

exist.

The notion of approximation used throughout this paper is

the same as that used in the Laplacian solver literature (see

Section II-A). To further justify the notion of approximate

solutions to linear systems, we show that it lets us solve a

natural decision problem for linear systems:

We show that deciding if a vector is approximately in
the image of a matrix can be reduced to approximately
solving linear systems. We show this in Section 10 of the

full version of this paper. We also show that the exact image

decision problem requires working with exponentially small

numbers, even when the input has polynomially bounded

integral entries and condition number. This means that in

fixed-point arithmetic, we can only hope to solve an approx-

imate version of the problem. The problem of approximately

solving general linear systems can be reduced the problem

of approximately solving Graph-Structured Block Matrix

2This is the kind of running time guarantee established for Laplacians,
Directed Laplacians, Connection Laplacians, and bounded-weight planar
2D Truss Stiffness matrices.

685

linear systems. Together, these statements imply that we

can also reduce the problem of deciding whether a vector

is approximately in the image of a general matrix to the

problem of approximately solving Graph-Structured Block

Matrix linear systems.

We establish surprising separations between many
problems known to have fast solutions and problems that
are as hard solving general linear systems. Our results

trace out several interesting dichotomies: restricted cases of

2D truss stiffness matrices have fast solvers, but fast solvers

for all 2D truss stiffness matrices would imply equally fast

solvers for all linear systems. TV matrices can be solved

quickly in the anisotropic case, but in the isotropic case

imply solvers for all linear systems. Fast algorithms exist

for multi-commodity problems in the low accuracy regime,

but existing approaches for the high accuracy regime seem

to require fast solvers for multi-commodity linear systems,

which again would imply fast solvers for all linear systems.

Our reductions only require the simplest cases of the

classes we consider: 2-Commodity Laplacians are sufficient,

as are (non-planar) 2D Truss Stiffness matrices, and Total

Variation Matrices with 2-by-2 interactions. Linear systems

of these three classes have many applications, and faster

solvers for these would be useful in all applications. Trusses

have been studied as the canonical multi-variate problem,

involving definitions such as Fretsaw extensions [39] and

factor widths [40], and fast linear system solvers exist

for the planar 2D case with bounded weights [27]. Total

Variation Matrices are widely used in image denoising [41].

The anisotropic version can be solved using nearly-linear

time linear system solvers [42], while the isotropic version

has often been studied using linear systems for which fast

solvers are not known [43], [44], [45]. Multi-commodity

flow problems have been the subject of extensive study, with

significant progress on algorithms with low accuracy [30],

[31], [32], [33], [34], [35], [36], while high accuracy ap-

proaches use slow general linear system solvers.

B. Approximately Solving Linear Systems and Normal
Equations

The simplest notion of solving a linear system Ax = c,

is to seek an x s.t. the equations are exactly satisfied. More

generally, if the system is not guaranteed to have a solution,

we can ask for an x which minimizes ‖Ax − c‖22. An

x which minimizes this always exists. In general, it may

not be unique. Finding an x which minimizes ‖Ax − c‖22
is equivalent to solving the linear system A�Ax = A�c,

which is referred to as the normal equation for the linear

system Ax = c (see [46]). The problem of solving the

normal equations (or equivalently, minimizing ‖Ax − c‖22),

is a generalization of the problem of linear system solving,

since the approach works when A is non-singular, while

also giving meaningful results when A is singular. The

normal equation problem can also be understood in terms

of the Moore-Penrose pseudo-inverse of a matrix M , which

is denoted M † as x = (A�A)†A�c is a solution to the

normal equations. Taking the view of linear system solving

as minimizing ‖Ax − c‖22 also gives sensible ways to define

an approximate solution to a linear system: It is an x
that ensures ‖Ax − c‖22 is close to minx ‖Ax − c‖22. In

Section II, we formally define several notions of approximate

solutions to linear systems that we will use throughout the

paper.

An important special case of linear systems is when the

matrix of coefficients of the system is positive semi-definite.

Since A�A is always positive semi-definite, solving the

normal equations for a linear system falls into this case.

Linear systems over positive semi-definite matrices can be

solved (approximately) by approaches known as iterative

methods, which often lead to much faster algoritms than

the approaches used for general linear systems. Iterative

methods inherently produce approximate solutions3.

C. Graph-Structured Block Matrices

Graph-Structured Block Matrices are a type of linear

system that arise in many applications. Laplacian matrices

and Connection Laplacians both fall in this category.

Suppose we have a collection of n disjoint sets of

variables X1, . . . , Xn, with each set having the same size,

|Xi| = d. Let x i denote the vector4 of variables in Xi, and

consider an equation of the form Sx i − Tx j = 0, where

S and T are both r × d matrices. Now we form a linear

system Bx = 0 by stacking m equations of the form given

above as the rows of the system. Note that, very importantly,

we allow a different choice of S and T for every pair of i
and j. This matrix B ∈ R

mr×nd we refer to as a Incidence-

Structured Block Matrix (ISBM), while we refer to B�B as

a Graph-Structured Block Matrix (GSBM). Note that B is

not usually PSD, but B�B is. The number of non-zeros in

B�B is O(md2). GSBMs come up in many applications,

where we typically want to solve a linear system in the

normal equations of B .

Laplacian matrices are GSBMs where d = 1 and S =
T = w, where w is a real number, and we allow different

w for each pair of i and j. The corresponding ISBM

for Laplacians is called an edge-vertex incidence matrix.

Connection Laplacians are GSBMs where d = O(1) and

S = T� = wQ , for some rotation matrix Q and a real

number w. Again, we allow a different rotation matrix and

scaling for every edge. For both Laplacians and Connection

Laplacians, there exist linear system solvers that run in time

3A seeming counterexample to this is Conjugate Gradient which is an
iterative method that produces exact solutions in the RealRAM model. But
it requires extremely high precision calculations to exhibit this behaviour
in finite precision arithmetic, and so Conjugate Gradient is also best
understood as an approximate method.

4We use superscripts to index a sequence of vectors or matrices, and we
use subscripts to denote entries of a vector or matrix, see Section II.

686

O(m polylog(n, ε−1)) and produce ε approximate solutions

to the corresponding normal equations.

We now introduce several classes of ISBMs and their

associated GSBMs. Our Theorem III.2 shows that fast linear

system solvers for any of these classes would imply fast

linear system solvers for all matrices with polynomially

bounded entries and condition number.

Definition I.2 (2-commodity incidence matrix). A 2-
commodity incidence matrix is an ISBM where d = 2 and

r = 1, and S = T , and we allow three types of S :

S = w
(
1 0

)
, S = w

(
0 1

)
and S = w

(
1 −1

)
, where

in each case w is a real number which may depend on the

pair i and j. We denote the set of all 2-commodity incidence

matrices by MC2. The corresponding GSBM is called a 2-

commodity Laplacian. The ISBM definition is equivalent to

requiring the GSBM to have the form

L1⊗
(

1 0
0 0

)
+L2⊗

(
0 0
0 1

)
+L1+2⊗

(
1 −1
−1 1

)

where ⊗ is the tensor product and L1, L2, and L1+2 are all

Laplacian matrices.

We adopt a convention that the first variable in a set Xi

is labelled u i and the second is labelled v i. Using this

convention, given a 2-commodity incidence matrix B , the

equation Bx = 0 must consist of scalings of the following

three types of equations: u i − uj = 0, v i − v j = 0, and

u i − v i − (uj − v j) = 0.

Definition I.3 (Strict 2-commodity incidence matrix). A

strict 2-commodity incidence matrix is a 2-commodity inci-

dence matrix where the corresponding 2-commodity Lapla-

cian has the property that L1, L2, and L1+2 all have the

same non-zero pattern. We denote the set of all strict 2-

commodity incidence matrices by MC>0
2 . We denote the

set of all strict 2-commodity incidence matrices with integer
entries by MC>0

2,Z.

Linear systems in MC>0
2 are exactly the systems that

one has to solve to when solving 2-commodity problems

using Interior Point Methods (IPMs). For readers unfamiliar

with 2-commodity problems or IPMs, we provide a brief

explanation of why this is the case in Section 9 of the

full version of this paper. The MC>0
2 is more restrictive

than MC2, and MC>0
2,Z in turn is even more restrictive. One

could hope that fast linear system solvers exist for MC>0
2

or MC>0
2,Z, even if they do not exist for MC2. However,

our reductions show that even getting a fast approximate

solver for MC>0
2,Z with polynomially bounded entries and

condition number will lead to a fast solver for all matrices

with polynomially bounded entries and condition number.

The next class we consider is 2D Truss Stiffness Ma-

trices. They have been studied extensively in the numer-

ical linear algebra community [39], [40]. For Planar 2D

Trusses with some bounds on ranges of edges, Daitch and

Spielman obtained linear system solvers that run in time

Õ(n5/4 log(1/ε)).

Definition I.4 (2D Truss Incidence Matrices). Let G =
(V,E) be a graph whose vertices are n points in 2-

dimension: s1, . . . , sn ∈ R
2. Consider X1, . . . , Xn where

d = 2. A 2D Truss Incidence Matrix is an ISBM where

d = 2 and r = 1, and for each i and j, we have S = T and

S = w(si− sj)�, and w is a real number that may depend

on the pair i and j, but si depends only on i and vice

versa for sj . We denote the class of all 2D Truss Incidence

Matrices by T2.

Another important class of matrices is Total Variation Ma-

trices (TV matrices). TV matrices come from Interior Point

Methods for solving total variation minimization problem in

image, see for example [47] and [48]. Not all TV matrices

are GSBMs, but many GSBMs can be expressed as TV

matrices.

Definition I.5 (TV matrix and 2-TV Incidence Matrices).
Let E1 ∪ . . . ∪Es be a partition of the edge set of a graph.

For each 1 ≤ i ≤ s, let B i be the edge-vertex incidence

matrix of Ei, W i be a diagonal matrix of edge weights,

and r i be a vector satisfying W i � r i(r i)�. Given these

objects, the associated total variation matrix (TV matrix) is

a matrix M defined as

M =
∑

1≤i≤s

(B i)�
(
W i − r i(r i)�

)
B i.

A 2-TV Incidence Matrix is defined as any ISBM whose

corresponding GSBM is a TV matrix with W i ∈ R
2×2 and

r i ∈ R
2. We denote the class of all 2-TV incidence matrices

by V2.

D. Our Reduction: Discussion and an Example

In this section we give a brief sketch of the ideas behind

our reduction from general linear systems, over matrices

in G, to multi-commodity linear systems, over matrices in

MC2, and we demonstrate the most important transforma-

tion through an example.

The starting point for our approach is the folklore idea

that any linear system can be written as a factor-width 3

system by introducing a small number of extra variables.

Using a set of multi-commodity constraints, we are able

to express one particular factor-width 3 equation, namely

2x′′ = x+ x′. After a sequence of preprocessing steps, we

are then able to efficiently express arbitrary linear systems

over integer matrices using constraints of this form. A

number of further issues arise when the initial matrix does

not have full column rank, requiring careful weighting of

the constraints we introduce.

Given a matrix A with polynomially bounded integer

entries and condition number, we reduce the linear system

Ax = c to a linear system By = d , where B is a

strict multi-commodity edge-vertex incidence matrix with

687

integer entries (i.e. in MC>0
2,Z), with polynomially bounded

entries and condition number. More precisely, we reduce

A�Ax = A�c to B�By = B�d . These systems always

have a solution. We show that we can find an ε-approximate

solution to the linear system A�Ax = A�c by a simple

mapping on any y that ε′-approximately solves the linear

system B�By = B�d , where ε′ is only polynomially

smaller than ε. If A has s non-zero entries and the maximum

absolute value of an entry in A is U , then B will have

O(s log(sU)) non-zero entries and our algorithm computes

the reduction in time O(s log(sU)). Note that B�B has

r = O(s log(sU)) non-zeros, because every row of B has

O(1) entries. All together, this means that getting a solver

for B�Bx = B�d with running time Õ(ra log(1/ε)) will

give a solver for A with Õ(sa log(1/ε)) running time.

We achieve this through a chain of reductions. Each

reduction produces a new matrix and vector, as well as a

new error parameter giving the accuracy required in the

new system to achieve the accuracy desired in the original

system.

1) We get a new linear system AZ,2xZ,2 = cZ,2 where

AZ,2 has integer entries, and the entries of each row of

AZ,2 sum to zero, i.e. AZ,21 = 0, and finally in every

row the sum of the positive coefficients is a power of

two.

2) AZ,2xZ,2 = cZ,2 is then transformed to By = d ,

where B is a 2-commodity edge-vertex incidence

matrix.

3) By = d is then transformed to B>0y = d>0, where

B>0 is a strict 2-commodity edge-vertex incidence

matrix.

4) B>0y = d>0 is then transformed to B>0,Zy =
d>0,Z, where B>0,Z is a 2-commodity edge-vertex

incidence matrix with integer entries.

We will demonstrate step 2, the main transformation, by

example. When the context is clear, we drop the superscripts

of matrices for simplicity. The reduction handles each row

(i.e. equation) of the linear system independently, so we

focus on the reduction for a single row.

Consider a linear system Ax = c, and let us pick a single

row (i.e. equation) Aix = ci
5. We will repeatedly pick

pairs of existing variables of x , say x and x′, based on their

current coefficients in Aix = ci, and modify the row by

adding C(2x′′−(x+x′)) to the left hand side where x′′ is a

new variable and C is a real number we pick. As we will see

in a moment, we can use this pair-and-replace operation to

simplify the row until it eventually becomes a 2-commodity

equation. At the same time as we modify Ai, we also store

an auxiliary equation C(x+x′−2x′′) = 0. Suppose initially

that Aix = ci is satisfied. After this modification of Aix =
ci, if the auxiliary equation is satisfied, Aix = ci is still

5We use Ai to denote the ith row of A, and ci to denote the ith entry
of c, see Section II.

satisfied by the same values of x and x′. Crucially, we can

express the auxiliary equation C(x + x′ − 2x′′) = 0 by

a set of ten 2-commodity equations, i.e. a “2-commodity

gadget” for this equation. Our final output matrix will not
contain the equation C(x+x′−2x′′) = 0 as a row, but will

instead contain 10 rows of 2-commodity equations from our

gadget construction. Eventually, our pair-and-replace scheme

will also transform the row Aix = ci into a 2-commodity

equation on just two variables.
Next, we need to understand how the pair-and-replace

scheme makes progress. The pairing handles the positive and

the negative coefficients of Ai separately, and eventually

ensures that Aix = ci has only a single positive and a

single negative coefficient in the modified row Aix = ci,

in particular it is of the form ax−ax′ = ci for two variables

x and x′ that appear in the modified vector of variables x ,

i.e. it is a 2-commodity equation.
To understand the pairing scheme, it is helpful to think

about the entries of A written using binary (ignoring the sign

of the entry). The pairing scheme proceeds in a sequence

of rounds: In the first round we pair variables whose 1st

(smallest) bit is 1. There must be an even number of

variables with smallest bit 1, as the sum of the positive (and

respectively negative) coefficients is a power of 2. We then

replace the terms corresponding to the 1st bit of the pair

with a new single variable with a coefficient of 2. After the

first round, every coefficient has zero in the 1st bit. In the

next round, we pair variables whose 2nd bit is 1, and replace

the terms corresponding to the the 2nd bit of the pair with

a new single variable with a coefficient of 4, and so on.

Because the positive coefficients sum to a power of two, we

are able to guarantee that pairing is always possible. It is

not too hard to show that we do not create a large number

of new variables or equations using this scheme.
For example, let us consider an equation

3x 1 + 5x 2 + 4x 3 + 4x 4 − 16x 5 = 1.

Replace x 1+x 2 by 2x 6. Add auxiliary equation x 1+x 2−
2x 6 = 0. The equation above becomes

2(x 1 + 2x 2 + x 6 + 2x 3 + 2x 4)− 16x 5 = 1.

Replace 2(x 1+x 6) by 4x 7. Add auxiliary equation 2(x 1+
x 6 − 2x 7) = 0. We now have

4(x 2 + x 7 + x 3 + x 4)− 16x 5 = 1.

Replace 4(x 2 + x 7) by 8x 8, and 4(x 3 + x 4) by 8x 9. Add

auxiliary equations 4(x 2+x 7−2x 8) = 0, and 4(x 3+x 4−
2x 9) = 0. Our equation above becomes

8(x 8 + x 9)− 16x 5 = 1.

Replace 8(x 8 + x 9) by 16x 10. Add auxiliary equation

8(x 8 + x 9 − 2x 10) = 0. Finally, the equation above has

become a 2-commodity equation:

16x 10 − 16x 5 = 1.

688

Now, let us build some intuition for how to replace the

equation C(x + x′ − 2x′′) = 0 by ten 2-commodity

equations, i.e. a 2-commodity gadget. Recall that each index

i corresponds to a u-variable u i and a v -variable v i. We

think of x, x′, x′′ all as u-variables. Roughly speaking,

the 2-commodity equations of the form u i − uj = 0
and v i − v j = 0 allow us to set two variables equal,

although the effect is more complicated when considering

an overconstrained system. The 2-commodity equations of

the form u i− v i− (uj − v j) = 0 are even more important

to us: The constraint x + x′ − 2x′′ = 0 can be obtained

by adding two equations: x − v i − (x′′ − v j) = 0 and

x′ − v j − (x′′ − v i) = 0. The appearance of the v j − v i

term in both equations, though with opposite sign, gives

a degree of freedom that ensures that we do not impose

additional constraints on x, x′, and x′′. We get the desired

constraints listed above by starting with two 2-commodity

equations using fresh variables with new indices a, b, c, d:

ua − va − (ub − v b) = 0 and uc − v c − (ud − vd) = 0.

We then link together these variables using constraints on

pairs of variables of the same type (i.e. u or v). First, we

link the u and x variables: ua − x = 0,uc − x′ = 0,

ub − x′′ = 0, ud − x′′ = 0. Secondly, we constrain the v
variables to give only the single degree of freedom we need:

For technical reasons, we introduce two more new indices f
and g and set va−vf = 0, vf −vd = 0, and v b−vg = 0,

vg − v c = 0. Now we are left with a system essentially

equivalent to the two equations x−va− (x′′−v b) = 0 and

x′ − v b − (x′′ − va) = 0. These equations impose exactly

the constaint x+ x′ − 2x′′ = 0 that we want.

In this way, we process Ax = c to produce a new set

of equations By = d where B is a 2-commodity matrix.

If Ax = c has an exact solution, this solution can be

obtained directly from an exact solution to By = d . We

also show that an approximate solution to By = d leads to

an approximate solution for Ax = c, and we show that B
does not have much larger entries or condition number than

A.

The situation is more difficult when Ax = c does not

have a solution and we want to obtain an approximate

minimizer argminx∈Rn ‖Ax − c‖22 from an approximate

solution to argminy∈Rn′ ‖By − d‖22. This corresponds to

approximately applying the Moore-Penrose pseudo-inverse

of A to c. We deal with the issues that arise here using

a carefully chosen scaling of each auxiliary constraint to

ensure a strong relationship between different solutions.

In order to switch from a linear system in a general 2-

commodity matrix to a linear system in a strict 2-commodity

matrix, we need to reason very carefully about the changes

to the null space that this transformation inherently produces.

By choosing sufficiently small weights, we are nonetheless

able to establish a strong relationship between the normal

equation solutions despite the change to the null space.

II. PRELIMINARIES

We use subscripts to denote entries of a matrix or a

vector: let Ai denote the ith row of matrix A and Aij

denote the (i, j)th entry of A; let x i denote the ith entry

of vector x and x i:j (i < j) denote the vector of entries

x i,x i+1, . . . ,x j . We use superscripts to index a sequence

of matrices or vectors, e.g., A1,A2, . . . , and x 1,x 2, . . .,
except when some other meaning is clearly stated.

We use A† to denote the Moore-Penrose pseudo-inverse

of a matrix A. We use im(A) to denote the image of a matrix

A. We use ‖·‖2 to denote the Euclidean norm on vectors and

the spectral norm on matrices. When M is an n×n positive

semidefinite matrix, we define a norm on vectors x ∈ R
n

by ‖x‖M
def
=
√
x�Mx . We let nnz(A) denote the number

of non-zero entries in a matrix A. We define ‖A‖max =
maxi,j |Aij |, ‖A‖1 = maxj

∑
i |Aij | and ‖A‖∞ =

maxi
∑

j |Aij |. We let min+(A) = mini,j s.t. Aij �=0 |Aij |.
Given a matrix A ∈ R

m×n and a vector c ∈ R
m for

some m,n, we call the tuple (A, c) a linear system. Given

matrix A ∈ R
m×n, let ΠA

def
= A(AA�)†A�, i.e. the

orthogonal projection onto im(A). Note that ΠA = Π�
A

and ΠA = Π 2
A.

A. Approximately Solving A Linear System

In this section we formally define the notions of ap-

proximate solutions to linear systems that we work with

throughout this paper.

Definition II.1 (Linear System Approximation Problem,

LSA). Given linear system (A, c), where A ∈ R
m×n, and

c ∈ R
m, and given a scalar 0 ≤ ε ≤ 1, we refer to the LSA

problem for the triple (A, c, ε) as the problem of finding

x ∈ R
n s.t.

‖Ax −ΠAc‖2 ≤ ε ‖ΠAc‖2 ,

and we say that such an x is a solution to the LSA instance

(A, c, ε).

This definition of a LSA instance and solution has several

advantages: when im(A) = R
m, we get ΠA = I , and

it reduces to the natural condition ‖Ax − c‖2 ≤ ε ‖c‖2,

which because im(A) = R
m, can be satisfied for any ε,

and for ε = 0 tells us that Ax = c.

When im(A) does not include all of Rm, the vector ΠAc
is exactly the projection of c onto im(A), and so a solution

can still be obtained for any ε. Further, as (I − ΠA)c is

orthogonal to ΠAc and Ax , it follows that

‖Ax − c‖22 = ‖(I −ΠA)c‖22 + ‖Ax −ΠAc‖22 .

Thus, when x is a solution to the LSA instance (A, c, ε),
then x also gives an ε2 ‖ΠAc‖22 additive approximation to

min
x∈Rn

‖Ax − c‖22 = ‖(I −ΠA)c‖22 . (1)

689

Similarly, an x which gives an additive ε2 ‖ΠAc‖22 approx-

imation to Problem (1) is always a solution to the LSA

instance (A, c, ε). These observations prove the following

(well-known) fact:

Fact II.2. Let x ∗ ∈ argminx∈Rm ‖Ax − c‖22, then for
every x ,

‖Ax − c‖22 ≤ ‖Ax ∗ − c‖22 + ε2 ‖ΠAc‖22
if and only if x is a solution to the LSA instance (A, c, ε).

When the linear system Ax = c does not have a solution,

a natural notion of solution is any minimizer of Problem (1).

A simple calculation shows that this is equivalent to requir-

ing that x is a solution to the linear system A�Ax = A�c,

which always has a solution even when Ax = c does not.

The system A�Ax = A�c is referred to as the normal
equation associated with Ax = c (see [46]).

Fact II.3. x ∗ ∈ argminx∈Rn ‖Ax − c‖22, if and only if
A�Ax ∗ = A�c, and this linear system always has a
solution.

This leads to a natural question: Suppose we want to

approximately solve the linear system A�Ax = A�c. Can

we choose our notion of approximation to be equivalent to

that of a solution to the LSA instance (A, c, ε)?
A second natural question is whether we can choose a

notion of distance between a proposed solution x and an

optimal solution x ∗ ∈ argminx∈Rn ‖Ax − c‖22 s.t. this

distance being small is equivalent to x being a solution to

the LSA instance (A, c, ε)? The answer to both questions is

yes, as demonstrated by the following facts:

Fact II.4. Suppose x ∗ ∈ argminx∈Rn ‖Ax − c‖22 then

1)
∥∥∥A�Ax −A�c

∥∥∥
(A�A)†

= ‖Ax −ΠAc‖2 =

‖x − x ∗‖A�A.
2) The following statements are each equivalent to x

being a solution to the LSA instance (A, c, ε):

a)
∥∥∥A�Ax −A�c

∥∥∥
(A�A)†

≤ ε
∥∥∥A�c∥∥∥

(A�A)†
if

and only if x is a solution to the LSA instance
(A, c, ε).

b) ‖x − x ∗‖A�A ≤ ε ‖x ∗‖A�A if and only if x is
a solution to the LSA instance (A, c, ε).

For completeness, we prove Fact II.4 in Appendix A of

the full version of this paper. Fact II.4 explains connection

between our Definition II.1, and the usual convention for

measuring error in the Laplacian solver literature [7]. In

this setting, we consider a Laplacian matrix L, which can be

written as L = A�A ∈ R
n×n, and a vector b s.t. ΠA�Ab =

b . This condition on b is easy to verify in the case of

Laplacians, since for the Laplacian of a connected graph,

ΠA�A = I− 1
n11

�. Additionally, it is also equivalent to the

condition that there exists c s.t. b = A�c. For Laplacians

it is possible to compute both A and a vector c s.t.

b = A�c in time linear in nnz(L). For Laplacian solvers,

the approximation error of an approximate solution x is

measured by the ε s.t.
∥∥∥A�Ax − b

∥∥∥
(A�A)†

≤ ε ‖b‖(A�A)† .

By Fact II.4, we see that this is exactly equivalent to x being

a solution to the LSA instance (A, c, ε).

B. Measuring the Difficulty of Solving a Linear System

Running times for iterative linear system solvers generally

depend on the number of non-zeros in the input matrix, the

condition number of the input matrix, the accuracy, and the

bit complexity.

In this section, we formally define several measures of

complexity of the linear systems we use. This is crucial,

because we want to make sure that our reductions do not

rely on mapping into extremely ill-conditioned matrices, and

so we use these measures to show that this is in fact not the

case.

Definition II.5.
1) Given a matrix A ∈ R

m×n, we define the maxi-

mum singular value σmax(A) in the usual way as

σmax(A) = maxx∈Rn,x �=0

√
x�A�Ax

x�x
.

2) Given a matrix A ∈ R
m×n which is not all zeros, we

define the minimum non-zero singular value σmin(A)

as σmin(A) = minx∈Rn,x⊥ null(A)

√
x�A�Ax

x�x
.

3) Given a matrix A ∈ R
m×n which is not all zeros, we

define the non-zero condition number of A as κ(A) =
σmax(A)
σmin(A) .

Definition II.6. The sparse parameter complexity of an

LSA instance (A, c, ε) where A ∈ Z
m×n and nnz(A) ≥

max(m,n), and ε > 0, is

S(A, c, ε)
def
=

(
nnz(A), U(A), κ(A), ε−1

)
,

where U(A) = max
(
‖A‖max , ‖c‖max ,

1
min+(A) ,

1
min+(c)

)
.

Note in the definition above that when A 	= 0 and c 	= 0
have only integer entries, we trivially have min+(A) ≥
1 and min+(c) ≥ 1. However, including 1

min+(A) , and
1

min+(c) in the definition stated above is useful when working

with intermediate matrices whose entries are not integer

valued.

C. Matrix Classes and Reductions Between Them

We use the term matrix class to refer to an infinite set of

matrices M. In this section, we formally define a notion of

efficient reduction between linear systems in different classes

of matrices.

Definition II.7 (Efficient f -reducibility). Suppose we

have two matrix classes M1 and M2, and there ex-

ist two algorithms A1→2 and A1←2 s.t. given an LSA

instance (M 1, c1, ε), where M 1 ∈ M1, the call

690

A1→2(M
1, c1, ε1) returns an LSA instance (M 2, c2, ε2)

s.t. if x 2 is a solution to LSA instance (M 2, c2, ε2) then

x 1 = A1←2(M
1,M 2,x 2) is a solution to LSA instance

(M 1, c1, ε1).
Consider a function of f : R4

+ → R
4
+ s.t. every output co-

ordinate is an increasing function of every input coordinate.

Suppose that we always have

S(M 2, c2, ε2) ≤ f(S(M 1, c1, ε1)),

and the running times of A1→2(M
1, c1, ε1) and

A1←2(M
1,M 2,x 2) are both bounded by O(nnz(M 1)).

Then we say that M1 is efficiently f -reducible to M2,

which we also write as

M1 ≤f M2.

Lemma II.8. Suppose M1 ≤f M2 and M2 ≤g M3. Then
M1 ≤g◦f M3.

Proof: The proof is simply by the trivial composition

of the two reductions.

Definition II.9. We let G denote the class of all matrices

with integer valued entries s.t. there is at least one non-zero

entry in every row and column6.

III. MAIN RESULTS

In this section, we use the notions of sparse parameter

complexity and matrix class reductions to prove our main

technical result, Theorem III.1, which shows that linear

systems in general matrices with integer entries can be

efficiently reduced to linear systems in several different

classes of Incidence Structured Block Matrices. From this

result, we derive as corollary our main result, Theorem III.2,

which states that fast high accuracy solvers for several types

of ISBMs imply fast high accuracy solvers for all linear

systems in general matrices with integer entries.

Theorem III.1. Let f(s, U,K, ε) = (O(s log(sU)),
poly(UKε−1s), poly(UKε−1s), poly(UKε−1s)

)
, then

1) G ≤f MC>0
2,Z.

2) G ≤f T2.
3) G ≤f V2.

Theorem III.2. Suppose we have an algorithm which solves
every Linear System Approximation Problem (A, c, ε) with
sparse parameter complexity S(A, c, ε) ≤ (s, U,K, ε−1) in
time O(sa polylog(s, U,K, ε−1)) for some a ≥ 1, whenever
A ∈ R for at least one of R ∈

{
MC>0

2,Z, T2,V2
}

. I.e.
we have a “fast” solver7 for one of the matrix classes
MC>0

2,Z, T2, or V2. Then every Linear System Approximation

6If there is a row or column with only zeros, then it can always be
handled trivially in the context of solving linear systems

7The reduction requires only a single linear system solve, and uses the
solution in a black-box way. So the reduction also applies if the solver for
the class R only works with high probability or only has running time
guarantees in expectation.

Problem (A, c, ε) where A ∈ G with sparse parameter
complexity S(A, c, ε) ≤ (s, U,K, ε−1) can be solved in time
O(sa polylog(s, U,K, ε−1)).

Proof: The theorem is a immediate corollary of Theo-

rem III.1.

Definition III.3. We let Gz,2 denote the class of all matrices

with integer valued entries s.t. there is at least one non-zero

entry in every row and column, and every row has zero row

sum, and for each row, the sum of the positive coefficients

is a power of 2.

Lemma III.4. Let f(s, U,K, ε) =
(
O(s), O

(
ε−1s9/2U3

)
,

O
(
ε−1s8U3K

)
, O

(
s5/2U2ε−1

))
, then

G ≤f Gz,2.

Lemma III.5. Let f(s, U,K, ε) = (O(s log(sU)),
O(s3/2U log1/2(sU)), O(Ks4U2 log2(sU)), O(sU2ε−1)),
then

Gz,2 ≤f MC2.
Lemma III.6. Let f(s, U,K, ε) =

(
O(s), O

(
ε−1U2K

)
,

O
(
ε−1s2U2K

)
, O(ε−1)

)
, then

MC2 ≤f MC>0
2 .

Lemma III.7. Let f(s, U,K, ε) = (s, ε−1sU, 2K,O(ε−1)),
then

MC>0
2 ≤f MC>0

2,Z.

Lemma III.8. Let f(s, U,K, ε) be as defined in Lemma III.5
then

Gz,2 ≤f T2.
Lemma III.9. Let f(s, U,K, ε) = (s, U,K, ε−1), then

MC2 ≤f V2.
Proof of Theorem III.1: Follows by appropriate com-

position (Lemma II.8) applied to the the Lemmas above, i.e.

III.4, III.5, III.6, III.7, III.8 and III.9.

The full version of this paper, available at https://arxiv.org/

abs/1705.02944, presents proofs of all the lemmas stated in

this section. We also give proofs of Lemmas III.8 and III.9

in the following sections.

IV. 2D TRUSSES

In this section, we prove Lemma III.8. We show that

the reduction algorithm used in proving Gz,2 ≤f MC2
constructs a 2D Truss Incidence Matrix as per Definition I.4.

It follows that for any function f , G ≤f MC2 implies

G ≤f T2. The key is to show that a 2-commodity gadget

in the reduction corresponds to a 2D truss subgraph, which

we call the 2D-truss gadget.

Without loss of generality, we let u-variables correspond

to the horizonal axis and v -variables to the vertical axis of

the 2D plane. According to Definition I.2 and I.4:

691

1) an equation u i − uj = 0 in a 2-commodity linear

system corresponds to a horizontal edge in the 2D

plane;

2) an equation v i − v j = 0 in a 2-commodity linear

system corresponds to a vertical edge in the 2D plane;

3) an equation u i−v i−(uj−v j) = 0 in a 2-commodity

linear system corresponds to a diagonal edge in the 2D

plane.

Note that our reduction here heavily relies on the ability to

choose arbitrary weights. In particular, the weights on the

elements are not related at all with the distances between

the corresponding vertices.

Our strategy to pick the coordinates of the vertices of

the constructed 2D truss is the following: we first pick the

coordinates of the original n vertices randomly, and then

determine the coordinates of the new vertices constructed in

the reduction to satisfy all the truss equations.

For the n original vertices, we pick their u-coordinates

arbitrarily and pick their v -coordinates randomly. Specifi-

cally, we pick an n-dimensional random vector y uniformly

distributed on the n-dimensional sphere centered at the

origin and with radius R = n10; we then round each entry

of y to have precision δ = 10−10, so that each entry has

constant bits. Let ỹ be the vector after rounding. We assign

the v -coordinate of the ith vertex to be the ith entry of ỹ .

We then pick the coordinates of the new vertices in the

order they are created. Note that each time we replace

two vertices in the current equations, say sj1 , sj2 , whose

coordinates have already been determined, we create a 2D

truss gadget with 7 new vertices, say st, st+1, . . . , st+6 8.

According to the construction of this gadget, the new vertices

st+1, . . . , st+6 only appear in this single gadget, whose

coordinates do not affect other vertices. Figure 1 is the cor-

responding subgraph which satisfies all the equations in the

2D truss gadget. Note the two triangles (st+3, st+5, st+6)
and (st+3, st+4, st+5) need to be isosceles right triangles,

which implies v t = (v j1 + v j2)/2. We can always place

st, st+1, . . . , st+6 to get the desired equations, provided

v j1 	= v j2 , which is guaranteed with high probability by

Lemma IV.1.

We prove the following lemma in the full version of this

paper.

Lemma IV.1. Let aaa ∈ R
n be a fixed vector such that −2 ≤

aaai ≤ 2, ∀i ∈ [n] and aaa�1 = 0. Let ỹ be a vector picked as
above. Then,

Pr
(
aaa�ỹ = 0

)
≤ 2δn2

‖aaa‖2 R
.

By our construction of the truss, for each vertex, its v -

coordinate can be written as a fixed convex combination

8See Algorithm 2 MC2GADGET in the full version for a detailed
construction.

st+6

st+3

st+1 sj1

st+2sj2

st+5
st

st+4

Figure 1. Geometric realization of the 2D truss gadget

of ỹ , say c�ỹ in which c�1 = 1 and ci ≥ 0, ∀i ∈ [n].
Consider a pair of two arbitrary vertices, let c1 and c2

be their coefficient vectors corresponding to the convex

combinations. These two vertices have same v -coordinate

if and only if (c1 − c2)�ỹ = 0. Let aaa
def
= c1 − c2. Then,

−2 ≤ aaai ≤ 2, ∀i ∈ [n], aaa�1 = 0, and

‖aaa‖2 ≤
∥∥c1

∥∥
2
+

∥∥c2
∥∥
2
≤

∥∥c1
∥∥
1
+

∥∥c2
∥∥
1
= 2.

By Lemma IV.1,

Pr
(
c1�ỹ = c2�ỹ

)
≤ δn2

R
.

By Lemma III.5, the total number of the vertices in the truss

is at most O
(
n2 log n

)
. By a union bound, the probability

that there exist two different vertices with same v -coordinate

is at most

δn2

R
·O

(
n2 log n

)2
= O

(
log2 n

n4

)
.

Proof of Lemma III.8: Since the linear system for 2D

trusses is the same as the linear system for 2-commodity, all

complexity parameters of these two linear systems are the

same.

V. ISOTROPIC TOTAL VARIATION MINIMIZATION

In this section, we prove Lemma III.9. We show the reduc-

tion algorithm used in proving Gz,2 ≤f MC2 constructs an

2-TV Incidence Matrix defined in Definition I.5. It follows

that for any function f , G ≤f MC2 implies G ≤f V2.

Lemma III.9 follows from the claim below, which shows

that the type L1+2 ⊗
(

1 −1
−1 1

)
2-commodity matrices

that occur in GSBMs for 2-commodity ISBMs can be

constructed as Total Variation matrices. The same is true

for the other types of entries that occur in 2-commodity

GSBMs.

Claim V.1. For each edge (i, j) in the graph corresponding
to L1+2, there exists an edge-vertex incidence matrix N , a

692

diagonal matrix W and a vector r such that W � rr �
and

L1+2
ij ⊗

(
1 −1
−1 1

)
= N� (

W − rr�
)
N .

Claim V.1 is proven in the full version of this paper.

Proof of Lemma III.9: Since the linear system related

to the isotropic total variation minimization matrix is the

same as the linear system for 2-commodity, all complexity

parameters of these two linear systems are the same.

ACKNOWLEDGMENT

We thank Richard Peng and Daniel Spielman for help-

ful comments and discussions. We thank our anonymous

reviewers for pointing out several typos.

REFERENCES

[1] V. V. Williams and R. Williams, “Subcubic equivalences
between path, matrix and triangle problems,” in Proceedings
of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, ser. FOCS ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 645–654. [Online].
Available: http://dx.doi.org/10.1109/FOCS.2010.67

[2] V. Strassen, “Gaussian elimination is not optimal,” Numer.
Math., vol. 13, no. 4, pp. 354–356, Aug. 1969. [Online].
Available: http://dx.doi.org/10.1007/BF02165411

[3] V. V. Williams, “Multiplying matrices faster than
coppersmith-winograd,” in Proceedings of the Forty-fourth
Annual ACM Symposium on Theory of Computing, ser. STOC
’12. New York, NY, USA: ACM, 2012, pp. 887–898. [On-
line]. Available: http://doi.acm.org/10.1145/2213977.2214056

[4] Y. Saad, Iterative Methods for Sparse Linear Systems,
2nd ed. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2003, available at http://www-
users.cs.umn.edu/˜saad/toc.pdf.

[5] S. Boyd and L. Vandenberghe, Convex Optimization.
Camebridge University Press, 2004, available at
https://web.stanford.edu/˜boyd/cvxbook/bv cvxbook.pdf.

[6] D. P. Woodruff, “Sketching as a tool for numerical linear
algebra,” Theoretical Computer Science, vol. 10, no. 1-2, pp.
1–157, 2014, available at http://arxiv.org/abs/1411.4357.

[7] D. Spielman and S. Teng, “Nearly linear time algorithms for
preconditioning and solving symmetric, diagonally dominant
linear systems,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 35, no. 3, pp. 835–885, 2014, available at
http://arxiv.org/abs/cs/0607105.

[8] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng,
A. B. Rao, and S. C. Xu, “Solving sdd linear systems in nearly
mlog1/2n time,” in Proceedings of the Forty-sixth Annual
ACM Symposium on Theory of Computing, ser. STOC ’14.
New York, NY, USA: ACM, 2014, pp. 343–352. [Online].
Available: http://doi.acm.org/10.1145/2591796.2591833

[9] S.-H. Teng, “The Laplacian Paradigm: Emerging Algorithms
for Massive Graphs,” in Theory and Applications of Models
of Computation, 2010, pp. 2–14.

[10] A. Madry, “Navigating central path with electrical flows:
From flows to matchings, and back,” in Proceedings of
the 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, ser. FOCS ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 253–262. [Online].
Available: http://dx.doi.org/10.1109/FOCS.2013.35

[11] ——, “Computing maximum flow with augmenting electrical
flows,” in Proceedings of the 2016 IEEE 57th Annual Sym-
posium on Foundations of Computer Science, ser. FOCS ’16.
Washington, DC, USA: IEEE Computer Society, 2016.

[12] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu,
“Negative-weight shortest paths and unit capacity minimum
cost flow in Õ(m10/7 logw) time: (extended abstract),”
in Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’17.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2017, pp. 752–771. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3039686.3039734

[13] Y. T. Lee and A. Sidford, “Path finding methods
for linear programming: Solving linear programs in
Õ(

√
rank) iterations and faster algorithms for maxi-

mum flow,” in Foundations of Computer Science (FOCS),
2014 IEEE 55th Annual Symposium on. IEEE, 2014,
pp. 424–433, available at http://arxiv.org/abs/1312.6677 and
http://arxiv.org/abs/1312.6713.

[14] S. I. Daitch and D. A. Spielman, “Faster approximate lossy
generalized flow via interior point algorithms,” in Proceedings
of the 40th annual ACM symposium on Theory of computing,
ser. STOC ’08. New York, NY, USA: ACM, 2008, pp. 451–
460, available at http://arxiv.org/abs/0803.0988. [Online].
Available: http://doi.acm.org/10.1145/1374376.1374441

[15] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother, “A com-
parative study of energy minimization methods for markov
random fields with smoothness-based priors,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 30,
pp. 1068–1080, 2008.

[16] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating
minimization algorithm for total variation image reconstruc-
tion,” SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp.
248–272, 2008.

[17] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sid-
ford, “Geometric median in nearly linear time,” in Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 2016, pp. 9–21, available at:
https://arxiv.org/abs/1606.05225.

[18] A. Singer and Y. Shkolnisky, “Three-dimensional structure
determination from common lines in cryo-em by eigenvectors
and semidefinite programming,” SIAM journal on imaging
sciences, vol. 4, no. 2, pp. 543–572, 2011.

[19] Y. Shkolnisky and A. Singer, “Viewing direction estimation
in cryo-em using synchronization,” SIAM journal on imaging
sciences, vol. 5, no. 3, pp. 1088–1110, 2012.

[20] Z. Zhao and A. Singer, “Rotationally invariant image rep-
resentation for viewing direction classification in cryo-em,”
Journal of structural biology, vol. 186, no. 1, pp. 153–166,
2014.

693

[21] B. Alexeev, A. S. Bandeira, M. Fickus, and D. G. Mixon,
“Phase retrieval with polarization,” SIAM Journal on Imaging
Sciences, vol. 7, no. 1, pp. 35–66, 2014.

[22] S. Marchesini, Y.-C. Tu, and H.-t. Wu, “Alternating pro-
jection, ptychographic imaging and phase synchronization,”
arXiv preprint arXiv:1402.0550, 2014.

[23] O. Ozyesil, A. Singer, and R. Basri, “Stable camera motion
estimation using convex programming,” SIAM Journal on
Imaging Sciences, vol. 8, no. 2, pp. 1220–1262, 2015.

[24] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-
Shlizerman, A. Singer, and R. Basri, “Global motion esti-
mation from point matches,” in 3D Imaging, Modeling, Pro-
cessing, Visualization and Transmission (3DIMPVT), 2012
Second International Conference on. IEEE, 2012, pp. 81–88.

[25] J. A. Kelner, G. L. Miller, and R. Peng, “Faster approximate
multicommodity flow using quadratically coupled flows,” in
Proceedings of the 44th symposium on Theory of Computing,
ser. STOC ’12. New York, NY, USA: ACM, 2012, pp.
1–18, available at http://arxiv.org/abs/1202.3367. [Online].
Available: http://arxiv.org/abs/1202.3367

[26] D. A. Spielman, “Nsf award 1562041: Generalized algebraic
graph theory: Algorithms and analysis,” ALGORITHMIC
FOUNDATIONS, 2016.

[27] S. I. Daitch and D. A. Spielman, “Support-
graph preconditioners for 2-dimensional trusses,”
CoRR, vol. abs/cs/0703119, 2007. [Online]. Available:
http://arxiv.org/abs/cs/0703119

[28] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A.
Spielman, “Sparsified cholesky and multigrid solvers for
connection laplacians,” in Proceedings of the Forty-eighth
Annual ACM Symposium on Theory of Computing, ser.
STOC ’16. New York, NY, USA: ACM, 2016, pp.
842–850. [Online]. Available: http://doi.acm.org/10.1145/
2897518.2897640

[29] M. B. Cohen, B. T. Fasy, G. L. Miller, A. Nayyeri, R. Peng,
and N. Walkington, “Solving 1-laplacians in nearly linear
time: Collapsing and expanding a topological ball,” in Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, 2014, pp. 204–216.

[30] N. Garg and J. Könemann, “Faster and simpler algorithms
for multicommodity flow and other fractional packing prob-
lems,” in In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science, 1998, pp. 300–309.

[31] A. Madry, “Faster approximation schemes for fractional mul-
ticommodity flow problems via dynamic graph algorithms,”
in STOC ’10: Proceedings of the 42nd ACM symposium on
Theory of computing. New York, NY, USA: ACM, 2010,
pp. 121–130.

[32] L. K. Fleischer, “Approximating fractional multicommodity
flow independent of the number of commodities,” SIAM
Journal on Discrete Mathematics, vol. 13, pp. 505–520, 2000.

[33] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and
S. Tragoudas, “Fast approximation algorithms for multicom-
modity flow problems,” in JOURNAL OF COMPUTER AND
SYSTEM SCIENCES, 1991, pp. 487–496.

[34] J. Sherman, “Nearly maximum flows in nearly linear
time,” in Proceedings of the 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, ser.
FOCS ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 263–269. [Online]. Available: http:
//dx.doi.org/10.1109/FOCS.2013.36

[35] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An
almost-linear-time algorithm for approximate max flow in
undirected graphs, and its multicommodity generalizations,”
in Proceedings of the Twenty-fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’14.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2014, pp. 217–226. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2634074.2634090

[36] R. Peng, “Approximate undirected maximum flows in
o(mpoly log(n)) time,” in Proceedings of the Twenty-seventh
Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’16. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2016, pp. 1862–
1867. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2884435.2884565

[37] P. M. Vaidya, “Speeding-up linear programming using
fast matrix multiplication,” in Proceedings of the 30th
Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1989, pp.
332–337. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1398514.1398712

[38] Y. T. Lee and A. Sidford, “Efficient inverse maintenance
and faster algorithms for linear programming,” in Founda-
tions of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on. IEEE, 2015, pp. 230–249, available at:
https://arxiv.org/abs/1503.01752.

[39] G. Shklarski and S. Toledo, “Rigidity in finite-element
matrices: Sufficient conditions for the rigidity of structures
and substructures,” SIAM J. Matrix Analysis Applications,
vol. 30, no. 1, pp. 7–40, 2008. [Online]. Available:
http://dx.doi.org/10.1137/060650295

[40] E. G. Boman, D. Chen, O. Parekh, and S. Toledo, “On factor
width and symmetric h-matrices,” Linear algebra and its
applications, vol. 405, pp. 239–248, 2005.

[41] T. Chan and J. Shen, Image Processing and Analysis: Varia-
tional, PDE, Wavelet, and Stochastic Methods. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics,
2005.

[42] I. Koutis, G. L. Miller, and D. Tolliver, “Combinatorial pre-
conditioners and multilevel solvers for problems in computer
vision and image processing,” Computer Vision and Image
Understanding, vol. 115, no. 12, pp. 1638–1646, 2011.

[43] D. Goldfarb and W. Yin, “Second-order cone programming
methods for total variation-based image restoration,” SIAM J.
Sci. Comput, vol. 27, pp. 622–645, 2004.

694

[44] B. Wohlberg and P. Rodriguez, “An iteratively reweighted
norm algorithm for minimization of total variation function-
als,” Signal Processing Letters, IEEE, vol. 14, no. 12, pp. 948
–951, dec. 2007.

[45] H. H. Chin, A. Madry, G. L. Miller, and R. Peng, “Runtime
guarantees for regression problems,” in Proceedings of the 4th
conference on Innovations in Theoretical Computer Science,
ser. ITCS ’13. New York, NY, USA: ACM, 2013, pp. 269–
282.

[46] L. N. Trefethen and D. Bau III, Numerical linear algebra.
Siam, 1997, vol. 50.

[47] D. Goldfarb and W. Yin, “Second-order cone programming
methods for total variation-based image restoration,” SIAM
Journal on Scientific Computing, vol. 27, no. 2, pp. 622–645,
2005.

[48] H. H. Chin, A. Madry, G. L. Miller, and R. Peng, “Runtime
guarantees for regression problems,” in Proceedings of the 4th
conference on Innovations in Theoretical Computer Science.
ACM, 2013, pp. 269–282.

695

