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Abstract—We describe a general technique that yields the
first Statistical Query lower bounds for a range of funda-
mental high-dimensional learning problems involving Gaussian
distributions. Our main results are for the problems of (1)
learning Gaussian mixture models (GMMs), and (2) robust
(agnostic) learning of a single unknown Gaussian distribution.
For each of these problems, we show a super-polynomial gap
between the (information-theoretic) sample complexity and the
computational complexity of any Statistical Query algorithm
for the problem. Statistical Query (SQ) algorithms are a class
of algorithms that are only allowed to query expectations
of functions of the distribution rather than directly access
samples. This class of algorithms is quite broad: a wide range of
known algorithmic techniques in machine learning are known
to be implementable using SQs. Moreover, for the unsupervised
learning problems studied in this paper, all known algorithms
with non-trivial performance guarantees are SQ or are easily
implementable using SQs.

Our SQ lower bound for Problem (1) is qualitatively
matched by known learning algorithms for GMMs. At a
conceptual level, this result implies that – as far as SQ
algorithms are concerned – the computational complexity of
learning GMMs is inherently exponential in the dimension of
the latent space – even though there is no such information-
theoretic barrier. Our lower bound for Problem (2) implies
that the accuracy of the robust learning algorithm in [29]
is essentially best possible among all polynomial-time SQ
algorithms. On the positive side, we also give a new (SQ)
learning algorithm for Problem (2) achieving the information-
theoretically optimal accuracy, up to a constant factor, whose
running time essentially matches our lower bound. Our al-
gorithm relies on a filtering technique generalizing [29] that
removes outliers based on higher-order tensors.

Our SQ lower bounds are attained via a unified moment-
matching technique that is useful in other contexts and
may be of broader interest. Our technique yields nearly-
tight lower bounds for a number of related unsupervised
estimation problems. Specifically, for the problems of (3)
robust covariance estimation in spectral norm, and (4) robust
sparse mean estimation, we establish a quadratic statistical–
computational tradeoff for SQ algorithms, matching known
upper bounds. Finally, our technique can be used to obtain
tight sample complexity lower bounds for high-dimensional
testing problems. Specifically, for the classical problem of ro-
bustly testing an unknown mean (known covariance) Gaussian,
our technique implies an information-theoretic sample lower

bound that scales linearly in the dimension. Our sample lower
bound matches the sample complexity of the corresponding
robust learning problem and separates the sample complexity
of robust testing from standard (non-robust) testing. This
separation is surprising because such a gap does not exist for
the corresponding learning problem.

Keywords-unsupervised learning; statistical learning, statis-
tical queries; robust algorithm

I. INTRODUCTION

A. Background and Overview

For the unsupervised estimation problems considered

here, the input is a probability distribution which is accessed

via a sampling oracle, i.e., an oracle that provides i.i.d.

samples from the underlying distribution. Statistical Query

(SQ) algorithms are a restricted class of algorithms that

are only allowed to query expectations of functions of

the distribution rather than directly access samples. This

class of algorithms is quite broad: a wide range of known

algorithmic techniques in machine learning are known to be

implementable using SQs. These include spectral techniques,

moment and tensor methods, local search (e.g., Expectation

Maximization), and many others (see, e.g., [18], [41] for a

detailed discussion). Moreover, for the unsupervised learning

problems studied in this paper, all known algorithms with

non-trivial performance guarantees are SQ or are easily

implementable using SQs.

A number of techniques have been developed in infor-

mation theory and statistics to characterize the sample com-

plexity of inference tasks. These involve both techniques for

proving sample complexity upper bounds (e.g., VC dimen-

sion, metric/bracketing entropy) and information-theoretic

lower bounds (e.g., Fano and Le Cam methods). On the other

hand, computational lower bounds have been much more

scarce in the unsupervised setting. Perhaps surprisingly, it

is possible to prove unconditional lower bounds on the

computational complexity of any SQ algorithm that solves a

given learning problem. Given the ubiquity and generality of
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SQ algorithms, an SQ lower bound provides strong evidence

of the problem’s computational intractability.

In this paper, we describe a general technique that yields

the first Statistical Query lower bounds for a range of

fundamental high-dimensional learning problems involving

Gaussian distributions. Such problems are ubiquitous in

applications across the data sciences and have been intensely

investigated by different communities of researchers for

several decades. Our main results are for the problems of

(1) learning Gaussian mixture models (GMMs), and (2)

robust (agnostic) learning of a single unknown Gaussian

distribution. In particular, we show a super-polynomial gap
between the (information-theoretic) sample complexity and

the computational complexity of any Statistical Query algo-

rithm for these problems. In more detail, our SQ lower bound

for Problem (1) is qualitatively matched by known learning

algorithms for GMMs (all of which can be implemented

as SQ algorithms). For Problem (2), we give a new (SQ)

algorithm in this paper whose running time nearly matches

our SQ lower bound.

Our SQ lower bounds are attained via a unified moment-

matching technique that is useful in other contexts and

may be of broader interest. Our technique yields nearly-

tight lower bounds for a number of related unsupervised

estimation problems. Specifically, for the problems of (3)

robust covariance estimation in spectral norm, and (4) robust

sparse mean estimation, we establish a quadratic statistical–
computational tradeoff for SQ algorithms, matching known

upper bounds.

Finally, we use our technique to obtain tight sample com-

plexity lower bounds for high-dimensional testing problems.

Specifically, for the classical problem of robustly testing an

unknown mean (known covariance) Gaussian, our technique

implies an information-theoretic lower bound that scales

linearly in the dimension. This lower bound matches the

sample complexity of the corresponding robust learning

problem and separates the sample complexity of robust

testing from standard (non-robust) testing. This separation

is surprising because such a gap does not exist for the

corresponding learning problem.

Before we discuss our contributions in detail, we provide

the necessary background for the Statistical Query model

and the unsupervised estimation problems that we study.

Statistical Query Algorithms: A Statistical Query (SQ)

algorithm relies on an oracle that given any bounded func-

tion on a single domain element provides an estimate of the

expectation of the function on a random sample from the

input distribution. This computational model was introduced

by Kearns [56] in the context of supervised learning as a

natural restriction of the PAC model [71]. Subsequently,

the SQ model has been extensively studied in a plethora

of contexts (see, e.g., [39] and references therein).

A recent line of work [41], [43], [42], [38] developed

a framework of SQ algorithms for search problems over

distributions – encompassing the distribution estimation

problems we study in this work. It turns out that one can

prove unconditional lower bounds on the computational

complexity of SQ algorithms via the notion of Statistical
Query dimension. This complexity measure was introduced

in [10] for PAC learning of Boolean functions and was

recently generalized to the unsupervised setting [41], [38].

A lower bound on the SQ dimension of a learning problem

provides an unconditional lower bound on the computational

complexity of any SQ algorithm for the problem.
Learning Gaussian Mixture Models: A mixture model

is a convex combination of distributions of known type.

The most commonly studied case is a Gaussian mixture

model (GMM). An n-dimensional k-GMM is a distribution

in R
n that is composed of k unknown Gaussian components,

i.e., F =
∑k

i=1 wiN(μi,Σi), where the weights wi, mean

vectors μi, and covariance matrices Σi are unknown. The

problem of learning a GMM from samples has received

tremendous attention in statistics and, more recently, in

TCS. A long line of work initiated by Dasgupta [21],

[4], [72], [2], [54], [11] provides computationally efficient

algorithms for recovering the parameters of a GMM under

separability assumptions. Subsequently, efficient parameter

learning algorithms have been obtained [65], [6], [46] under

minimal information-theoretic separation assumptions. The

related problems of density estimation and proper learning

have also been extensively studied [36], [69], [26], [65],

[46], [63]. In density estimation (resp. proper learning), the

goal is to output some hypothesis (resp. GMM) that is close

to the unknown mixture in total variation distance.
The sample complexity of density estimation (and proper

learning) for n-dimensional k-GMMs, up to variation dis-

tance ε, is easily seen to be poly(n, k, 1/ε) – without any

assumptions. (In the full version, we describe a simple SQ

algorithm for this learning problem with sample complexity

poly(n, k, 1/ε), albeit exponential running time). Given that

there is no information-theoretic barrier for learnability

in this setting, the following question arises: Is there a
poly(n, k, 1/ε) time algorithm for density estimation (or
proper learning) of n-dimensional k-GMMs? This question

has been raised as an open problem in a number of settings

(see, e.g., [64], [28] and references therein).
For parameter learning, the situation is somewhat subtle:

In full generality, the sample complexity is of the form

poly(n) · (1/γ)Ω(k), where the parameter γ > 0 quantifies

the “separation” between the components. Even in one-

dimension, a sample complexity lower bound of (1/γ)Ω(k) is

known [65], [46]1. The corresponding “hard” instances [65],

[46] consist of GMMs whose components have large over-

lap, so many samples are required to distinguish between

them. Is this the only obstacle towards a poly(n, k) time

1To circumvent the information-theoretic bottleneck of parameter learn-
ing, a related line of work has studied parameter learning in a smoothed
setting [48], [9], [3], [44].
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parameter learning algorithm? Specifically, suppose that we

are given an instance of the problem with the additional

promise that the components are “nearly non-overlapping” –

so that poly(n, k) samples suffice for the parameter learning

problem as well. (In the full version, we show that when the

total variation distance between any pair of components in

the given mixture is close to 1, parameter learning reduces to

proper learning; hence, there is a poly(n, k)-sample param-

eter learning (SQ) algorithm that runs in exponential time.)

Is there a poly(n, k) time parameter learning algorithm for

such instances?

In summary, the sample complexity of both versions of

the learning problem is poly(n)f(k). On the other hand,

the running time of all known algorithms for either version

scales as ng(k), where g(k) ≥ k. This runtime is super-

polynomial in the sample complexity of the problem for

super-constant values of k and is tight for these algorithms,

even for GMMs with almost non-overlapping components.

The preceding discussion is summarized in the following:

Question I.1. Is there a poly(n, k)-time density estima-
tion algorithm for n-dimensional k-GMMs? Is there a
poly(n, k)-time parameter learning algorithm for nearly
non-overlapping n-dimensional k-GMMs?

Robust Learning of a Gaussian: In the preceding

paragraphs, we were working under the assumption that

the unknown distribution generating the samples is exactly
a mixture of Gaussians. The more general and realistic

setting of robust (or agnostic) learning – when our as-

sumption about the model is approximately true – turns

out to be significantly more challenging. Specifically, until

recently, even the most basic setting of robustly learning

an unknown mean Gaussian with identity covariance matrix

was poorly understood. Without corruptions, this problem is

straightforward: The empirical mean gives a sample-optimal

efficient estimator. Unfortunately, the empirical estimate is

very brittle and fails in the presence of corruptions.

The standard definition of agnostically learning a Gaus-

sian (see, e.g., Definition 2.1 in [29] and references therein)

is the following: Instead of drawing samples from a perfect

Gaussian, we have access to a distribution D that is promised

to be close to an unknown Gaussian G – specifically ε-
close in total variation distance. This is the only assumption

about the distribution D, which may otherwise be arbitrary:

the ε-fraction of “errors” can be adversarially selected.

The goal of an agnostic learning algorithm is to output

a hypothesis distribution H that is as close as possible

to G (or, equivalently, D) in variation distance. Note that

the minimum variation distance, dTV (H,G), information-

theoretically achievable under these assumptions is Θ(ε),
and we would like to obtain a polynomial-time algorithm

with this guarantee.

Agnostically learning a single high-dimensional Gaussian

is arguably the prototypical problem in robust statistics

[50], [45], [49]. Early work in this field [70], [34] studied

the sample complexity of robust estimation. Specifically,

for the case of an unknown mean and known covariance

Gaussian, the Tukey median [70] achieves O(ε)-error with

O(n/ε2) samples. Since Ω(n/ε2) samples are information-

theoretically necessary – even without noise – the robustness

requirement does not change the sample complexity of the

problem.

The computational complexity of agnostically learning

a Gaussian is less understood. Until recently, all known

polynomial time estimators could only guarantee error of

Θ(ε
√
n). Two recent works [29], [60] made a first step in de-

signing robust polynomial-time estimators for this problem.

The results of [29] apply in the standard agnostic model; [60]

works in a weaker model – known as Huber’s contamination

model [50] – where the noisy distribution D is of the form

(1 − ε)G + εN , where N is an unknown “noise” distribu-

tion. For the problem of robustly estimating an unknown

mean Gaussian N(μ, I), [60] obtains an error guarantee

of O(ε
√
log n), while [29] obtains error O(ε

√
log(1/ε)),

independent of the dimension2.

A natural and important open problem, put forth by these

works [29], [60], is the following:

Question I.2. Is there a poly(n/ε)- time agnostic learning
algorithm, with error O(ε), for an n-dimensional Gaussian?

Statistical–Computational Tradeoffs: A statistical–

computational tradeoff refers to the phenomenon that there

is an inherent gap between the information-theoretic sample

complexity of a learning problem and its computational

sample complexity, i.e, the minimum sample complexity

attainable by any polynomial time algorithm for the problem.

The prototypical example is the estimation of a covariance

matrix under sparsity constraints (sparse PCA) [51], [13],

[12], where a nearly-quadratic gap between information-

theoretic and computational sample complexity has been

established (see [8], [74]) – assuming the computational

hardness of the planted clique problem.

For a number of high-dimensional learning problems

(including the problem of robustly learning a Gaussian

under the total variation distance), it is known that the

robustness requirement does not change the information-

theoretic sample complexity of the problem. On the other

hand, it is an intriguing possibility that injecting noise

into a high-dimensional learning problem may change its

computational sample complexity.

Question I.3. Does robustness create inherent statistical–
computational tradeoffs for natural high-dimensional esti-
mation problems?

In this work, we consider two natural instantiations of the

2The algorithm of [60] can be extended to work in the stan-
dard agnostic model at the expense of an increased error guarantee of
O(ε

√
logn log(1/ε)).
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above general question: (i) robust estimation of the covari-

ance matrix in spectral norm, and (ii) robust sparse mean

estimation. We give basic background for these problems in

the following paragraphs.
For (i), suppose we have sample access to a (zero-

mean) n-dimensional unknown-covariance Gaussian, and

we want to estimate the covariance matrix with respect
to the spectral norm. It is known (see, e.g., [73]) that

O(n/ε2) samples suffice so that the empirical covariance is

within spectral error at most ε from the true covariance; and

this bound is information-theoretically optimal, to constant

factors, for any estimator. For simplicity, let us assume

that the desired accuracy is a small positive constant, e.g.,

ε = 1/10. Now suppose that we observe samples from a

corrupted Gaussian in Huber’s contamination model (the

weaker adversarial model) where the noise rate δ � 1/10.

First, it is not hard to see that the injection of noise does

not change the information-theoretic sample complexity of

the problem: there exist (computationally inefficient) robust

estimators (see, e.g., [17]) that use O(n) samples. (There

is a straightforward SQ algorithm for this problem as well

that uses O(n) samples, but again runs in exponential

time.) On the other hand, if we are willing to use Õ(n2)
samples, a polynomial-time robust estimator with constant

spectral error guarantee is known [29], [30]3. The immediate

question that follows is this:

Is there a computationally efficient robust co-
variance estimator in spectral error that uses a
strongly sub-quadratic sample size, i.e., O(n2−c)
for a constant 0 < c < 1?

For (ii), suppose we want to estimate the mean μ ∈ R
n of

an identity covariance Gaussian up to �2-distance ε, under

the additional promise that μ is k-sparse, and suppose that

k � n1/2. It is well-known that the information-theoretic

sample complexity of this problem is O(k log n/ε2), and

the truncated empirical mean achieves the optimal bound.

For simplicity, let us assume that ε = 1/10. Now suppose

that we observe samples from a corrupted sparse mean

Gaussian (in Huber’s contamination model), where the noise

rate δ � 1/10. As in the setting of the previous paragraph,

the injection of noise does not change the information-

theoretic sample complexity of the problem: there exist a

(computationally inefficient) robust SQ algorithm for this

problem (see [62]) that use O(k log n) samples. Two recent

works [62], [35] gave polynomial time robust algorithms

for robust sparse mean estimation with sample complexity

Õ(k2 log n). In summary, in the absence of robustness, the

information-theoretically optimal sample bound is known to

be achievable by a computationally efficient algorithm. In

contrast, in the presence of robustness, there is a quadratic

3We note that the robust covariance estimators of [29], [30] provide
error guarantees under the Mahalanobis distance, which is stronger than the
spectral norm. Under the stronger metric, Ω(n2) samples are information-
theoretically required even without noise.

gap between the information-theoretic optimum and the

sample complexity of known polynomial-time algorithms.

The immediate question is whether this gap is inherent:

Is there a computationally efficient robust k-sparse
mean estimator that uses a strongly sub-quadratic
sample size , i.e., O(k2−c) for a constant 0 < c <
1?

It is conjectured in [62] that a quadratic gap is in fact

inherent for efficient algorithms.

High-Dimensional Hypothesis Testing: So far, we have

discussed the problem of learning an unknown distribution

that is promised to belong (exactly or approximately) in a

given family (Gaussians, mixtures of Gaussians). A related

inference problem is that of hypothesis testing [61]: Given

samples from a distribution in a given family, we want

to distinguish between a null hypothesis and an alternative

hypothesis. Starting with [5], this broad question has been

extensively investigated in TCS with a focus on discrete

probability distributions. A natural way to solve a distribu-

tion testing problem is to learn the distribution in question

to good accuracy and then check if the corresponding

hypothesis is close to one satisfying the null hypothesis. This

testing-via-learning approach is typically suboptimal and the

main goal in this area has been to obtain testers with sub-

learning sample complexity.

In this paper, we study natural hypothesis testing ana-

logues of the high-dimensional learning problems discussed

in the previous paragraphs. Specifically, we study the sample

complexity of (i) robustly testing an unknown mean Gaus-

sian, and (ii) testing a GMM.

To motivate (i), we consider arguably the most basic

high-dimensional testing task: Given samples from a Gaus-

sian N(μ, I), where μ ∈ R
n is unknown, distinguish

between the case that μ = 0 versus ‖μ‖2 ≥ ε. (The

latter condition is equivalent, up to constant factors, to

dTV (N(μ, I), N(0, I)) ≥ ε.) The classical test for this task

is Hotelling’s T-squared statistic [47], which is unfortunately

not defined when the sample size is smaller than the dimen-

sion [77]. More recently, testers that succeed in the sub-

linear regime have been developed [68]. In the full version,

we give a simple and natural tester for this problem that

uses O(
√
n/ε2) samples, and show that this sample bound

is information-theoretically optimal, up to constant factors.

Now suppose that our Gaussianity assumption about the

unknown distribution is only approximately satisfied. For-

mally, we are given samples from a distribution D on R
n

which is promised to be either (a) a standard Gaussian

N(0, I), or (b) a δ-noisy version of N(μ, I), where μ ∈ R
n

satisfies ‖μ‖2 ≥ ε, and the noise rate δ satisfies δ � ε.
The robust hypothesis testing problem is to distinguish, with

high constant probability, between these two cases. Note that

condition (b) implies that dTV (D,N(0, I)) = Ω(ε), and

therefore the two cases are distinguishable.
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Robust hypothesis testing is of fundamental importance

and has been extensively studied in robust statistics [49],

[45], [76]. Perhaps surprisingly, it is poorly understood

in the most basic settings, even information-theoretically.

Specifically, the sample complexity of our aforementioned

robust mean testing problem has remained open. It is easy to

see that natural testers fail in the robust setting. On the other

hand, the testing-via-learning approach implies a sample

upper bound of O(n/ε2) for our robust testing problem –

by using, e.g., the Tukey median. The following question

arises:

Question I.4. Is there an information-theoretic gap be-
tween robust testing and non-robust testing? What is the
sample complexity of robustly testing the mean of a high-
dimensional Gaussian?

We conclude with our hypothesis testing problem regarding

GMMs: Given samples from a distribution D on R
n, we

want to distinguish between the case that D = N(0, I), or

D is a 2-mixture of identity covariance Gaussians. This is

a natural high-dimensional testing problem that we believe

merits investigation in its own right. The obvious open

question here is whether there exists a tester for this problem

with sub-learning sample complexity.

B. Our Results

The main contribution of this paper is a general technique

to prove lower bounds for a range of high-dimensional

estimation problems involving Gaussian distributions. We

use analytic and probabilistic ideas to construct explicit

families of hard instances for the estimation problems

described in Section I-A. Using our technique, we prove

super-polynomial Statistical Query (SQ) lower bounds that

answer Questions I.1 and I.2 in the negative for the class

of SQ algorithms. We also show that the observed quadratic

statistical–computational gap for robust sparse mean esti-

mation and robust spectral covariance estimation is inherent

for SQ algorithms. As an additional important application

of our technique, we obtain information-theoretic lower

bounds on the sample complexity of the corresponding

testing problems. (We note that our testing lower bounds

apply to all algorithms.) Specifically, we answer Question I.4

in the affirmative, by showing that the robustness require-

ment makes the Gaussian testing problem information-

theoretically harder. In the body of this section, we state

our results and elaborate on their implications and the

connections between them.

SQ Lower Bound for Learning GMMs: Our first main

result is a lower bound of nΩ(k) on the complexity of any

SQ algorithm that learns an arbitrary n-dimensional k-GMM

to constant accuracy:

Theorem I.1 (SQ Lower Bound for Learning GMMs). Any
SQ algorithm that learns an arbitrary n-dimensional k-

GMM to constant accuracy, for all n ≥ poly(k), requires
2n

Ω(1) ≥ nΩ(k) queries to an SQ oracle of precision n−O(k).

Theorem I.1 establishes a super-polynomial gap between

the information-theoretic sample complexity of learning

GMMs and the complexity of any SQ learning algorithm

for this problem. It is worth noting that our hard instance

is a family of high-dimensional GMMs whose components

are almost non-overlapping. Specifically, for each GMM

F =
∑k

i=1 wiN(μi,Σi) in the family, the total variation

distance between any pair of Gaussian components can be

made as large as 1 − 1/poly(n, k). More specifically, for

our family of hard instances, the sample complexity of both

density and parameter learning is Θ(k · log n) (the standard

cover-based algorithm that achieves this sample upper bound

is SQ). In contrast, any SQ learning algorithm for this family

of instances requires runtime at least nΩ(k).

At a conceptual level, Theorem I.1 implies that – as

far as SQ algorithms are concerned – the computational

complexity of learning high-dimensional GMMs is inher-

ently exponential in the dimension of the latent space –

even though there is no such information-theoretic barrier in

general. Our SQ lower bound identifies a common barrier of

the strongest known algorithmic approaches for this learning

problem, and provides a rigorous explanation why a long

line of algorithmic research on this front either relied on

strong separation assumptions or resulted in runtimes of the

form nΩ(k).

SQ Lower Bound for Robustly Learning a Gaussian:
Our second main result concerns the agnostic learning of

a single n-dimensional Gaussian. We prove two SQ lower

bounds with qualitatively similar guarantees for different

versions of this problem. Our first lower bound is for the

problem of agnostically learning a Gaussian with unknown

mean and identity covariance. Roughly speaking, we show

that any SQ algorithm that solves this learning problem to

accuracy O(ε) requires complexity nΩ(log1/4(1/ε)). We show:

Theorem I.2 (SQ Lower Bound for Robust Learning of Un-

known Mean Gaussian). Let ε > 0, 0 < c ≤ 1/2, and n ≥
poly(log(1/ε)). Any SQ algorithm that robustly learns an
n-dimensional Gaussian N(μ, I), within total variation dis-
tance O(ε log(1/ε)1/2−c), requires 2n

Ω(1) ≥ nΩ(log(1/ε)c/2)

queries to an SQ oracle of precision n−Ω(log(1/ε)c/2).

Some comments are in order. First, Theorem I.2 shows

a super-polynomial gap between the sample complexity

of agnostically learning an unknown mean Gaussian and

the complexity of SQ learning algorithms for this prob-

lem. As mentioned in the introduction, O(n/ε2) samples

information-theoretically suffice to agnostically learn an

unknown mean Gaussian to within error O(ε). Second,

the robust learning algorithm of [29] runs in poly(n, 1/ε)
time, can be implemented in the SQ model, and achieves

error O(ε
√
log(1/ε)). As a corollary of Theorem I.2, we
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obtain that the O(ε
√

log(1/ε)) error guarantee of the [29]

algorithm is best possible among all polynomial-time SQ

algorithms.
Roughly speaking, Theorem I.2 shows that any SQ al-

gorithm that solves the (unknown mean Gaussian) robust

learning problem to accuracy O(ε) needs to have running

time at least nΩ(log1/4(1/ε)), i.e., quasi-polynomial in 1/ε. It

is natural to ask whether this quasi-polynomial lower bound

can be improved to, say, exponential, e.g., nΩ(1/ε). We show

that the lower bound of Theorem I.2 is qualitatively tight.

We design an (SQ) algorithm that uses Oε(n
√

log(1/ε)) SQ

queries of inverse quasi-polynomial precision. Moreover, we

can turn this SQ algorithm into an algorithm in the sampling

oracle model with similar complexity. Specifically, we show:

Theorem I.3 (SQ Algorithm for Robust Learning of Un-

known Mean Gaussian). Let D be a distribution on R
n

such that dTV (D,N(μ, I)) ≤ ε for some μ ∈ R
n. There

is an SQ algorithm that uses Oε(n
O(
√

log(1/ε))) SQ’s to D

of precision ε/nO(
√

log(1/ε)), and outputs μ̃ ∈ R
n such that

dTV (N(μ̃, I), N(μ, I)) ≤ O(ε). The SQ algorithm can be
turned into an algorithm (in the sample model) with the same
error guarantee that has sample complexity and running
time Oε(n

O(
√

log(1/ε))).

Theorems I.2 and I.3 give a qualitatively tight character-

ization of the complexity of robustly learning an unknown

mean Gaussian in the standard agnostic model, where the

noisy distribution D is such that dTV (D,N(μ, I)) ≤ ε.
Equivalently, D satisfies (1 − ε1)D + ε1N1 = (1 −
ε2)N(μ, I)+ε2N2, where N1, N2 are unknown distributions

and ε1 + ε2 ≤ ε. A weaker error model, known as Huber’s
contamination model in the statistics literature [50], [45],

[49], prescribes that the noisy distribution D is of the form

D = (1 − ε)N(μ, I) + εN , where N is an unknown

distribution. Intuitively, the difference is that in the former

model the adversary is allowed to subtract good samples

and add corrupted ones, while in the latter the adversary

is only allowed to add corrupted points. We note that the

lower bound of Theorem I.2 does not apply in Huber’s

contamination model. This holds for a reason: Concurrent

work [31] gives a poly(n/ε) time algorithm with O(ε) error

for robustly learning N(μ, I) in Huber’s model. Hence, as a

corollary, we establish a computational separation between

these two models of corruptions. We provide an intuitive

justification in Section I-C.
Our second super-polynomial SQ lower bound is for

the problem of robustly learning a zero-mean unknown

covariance Gaussian with respect to the spectral norm.

Specifically, we show:

Theorem I.4 (SQ Lower Bound for Robust Learning of

Unknown Covariance Gaussian). Let ε > 0, 0 < c ≤ 1,
and n ≥ poly(log(1/ε)). Any SQ algorithm that, given
access to an ε-corrupted n-dimensional Gaussian N(0,Σ),

with I/2 � Σ � 2I , returns Σ̃ with ‖Σ̃ − Σ‖2 ≤
O(ε log(1/ε)1−c), requires at least 2n

Ω(1) ≥ nΩ(log(1/ε)c/4)

queries to an SQ oracle of precision n−Ω(log(1/ε)c/4).

Similarly, Theorem I.4 shows a super-polynomial gap be-

tween the information-theoretic sample complexity and the

complexity of any SQ algorithm for this problem. As men-

tioned in the introduction, O(n/ε2) samples information-

theoretically suffice to agnostically learn the covariance

to within spectral error O(ε). Second, the robust learning

algorithm of [29] runs in poly(n, 1/ε) time, can be imple-

mented in the SQ model, and achieves error O(ε log(1/ε))
in Mahalanobis distance (hence, also in spectral norm).

Again, the immediate corollary is that the O(ε log(1/ε))
error guarantee of the [29] algorithm is best possible among

all polynomial-time SQ algorithms. The lower bound of

Theorem I.4 does not apply in Huber’s contamination model.

This holds for a reason: [31] gives a poly(n) · 2poly log(1/ε)

time algorithm with O(ε) error in Huber’s model.

Statistical–Computational Tradeoffs for SQ algorithms:
Our next SQ lower bounds establish nearly quadratic

statistical–computational tradeoffs for robust spectral co-

variance estimation and robust sparse mean estimation. We

note that both these lower bounds also hold in Huber’s

contamination model. For the former problem, we show:

Theorem I.5. Let 0 < c < 1/6, and n sufficiently large. Any
SQ algorithm that, given access to an ε-corrupted N(0,Σ),
where ε ≤ c/ ln(n) for ‖Σ‖2 ≤ poly(n/ε), and returns Σ̃

with Σ̃/2 � Σ � 2Σ̃, requires at least 2Ω(nc/3) queries to
an SQ oracle of precision γ = O(n)−(1−5c/2).

We note that, in order to simulate a single query of the

above precision, we need to draw Ω(1/γ2) = Ω(n2−5c)
samples from our distribution. Roughly speaking, Theo-

rem I.5 shows that if an SQ algorithm uses less than this

many samples, then it needs to run in 2Ω(nc/3) time. This

suggests a nearly-quadratic statistical-computational tradeoff

for this problem.

For robust sparse mean estimation we show:

Theorem I.6. Fix any 0 < c < 1 and let n ≥ 8k2. Any
SQ algorithm that, given access to an ε-corrupted N(μ, I),
where ε = k−c/4, and μ ∈ R

n is promised to be k-sparse
with ‖μ‖2 = 1, and outputs a hypothesis vector μ̂ satisfying
‖μ̂− μ‖2 ≤ 1/2, requires at least nΩ(ckc) queries to an SQ
oracle of precision γ = O(k)3c/2−1.

Similarly, to simulate a single query of the above pre-

cision, we need to draw Ω(1/γ2) = Ω(k2−3c) samples

from our distribution. Hence, any SQ algorithm that uses

this many samples requires runtime at least nΩ(ckc). This

suggests a nearly-quadratic statistical-computational tradeoff

for this problem.

Sample Complexity Lower Bounds for High-
Dimensional Testing: We now turn to our information-
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theoretic lower bounds on the sample complexity of the

corresponding high-dimensional testing problems. For

the robust Gaussian mean testing problem in Huber’s

contamination model, we show:

Theorem I.7 (Sample Complexity Lower Bound for Robust

Testing of Unknown Mean Gaussian). Fix ε > 0. Any
algorithm with sample access to a distribution D on R

n

which satisfies either (a) D = N(0, I) or (b) D is a δ-
noisy N(μ, I), and ‖μ‖2 ≥ ε, and distinguishes between the
two cases with probability 2/3 requires (i) Ω(n) samples if
δ = ε/100, (ii) Ω(n1−c) samples if δ = ε/nc/4, for any
constant 0 < c < 1.

As stated in the Introduction, without the robustness re-

quirement, for any constant ε > 0, the Gaussian mean testing

problem can be solved with Oε(
√
n) samples. Hence, the

conceptual message of Theorem I.7 is that robustness makes

the Gaussian mean testing problem information-theoretically
harder. In particular, the sample complexity of robust testing

is essentially the same as that of the corresponding learning

problem. Theorem I.7 can be viewed as a surprising fact

because it implies that the effect of robustness can be very
different for testing versus learning of the same distribution

family. Indeed, recall that the sample complexity of robustly

learning an ε-corrupted unknown mean Gaussian, up to error

O(ε), is O(n/ε2) – i.e., the same as in the noiseless case.

As a final application of our techniques, we show a sample

complexity lower bound for the problem of testing whether

a spherical GMM is close to a Gaussian:

Theorem I.8 (Sample Complexity Lower Bound for Testing

a GMM). Any algorithm with sample access to a distri-
bution D on R

n which satisfies either (a) D = N(0, I),
or (b) D = (1/2)N(μ1, I) + (1/2)N(μ2, I) such that
dTV (D,N(0, I)) ≥ ε, and distinguishes between the two
cases with probability at least 2/3 requires Ω(n/ε2) sam-
ples.

Similarly, the sample lower bound of Theorem I.8 is

optimal, up to constant factors, and coincides with the

sample complexity of learning the underlying distribution.

C. Our Approach and Techniques

In this section, we provide a detailed outline of our

approach and techniques. The structure of this section is

as follows: We start by describing our Generic Lower

Bound Construction, followed by our main applications to

the problems of Learning GMMs and Robustly Learning

an Unknown Gaussian. We continue with our applications

to statistical–computational tradeoffs. We then explain how

our generic technique can be used to obtain our Sample

Complexity Testing Lower Bounds, which rely on essentially

the same hard instances as our SQ lower bounds. We

conclude with a sketch of our new (SQ) Algorithm for

Robustly Learning an Unknown Mean Gaussian to optimal

accuracy.

Generic Lower Bound Construction: The main idea of

our lower bound construction is quite simple: We construct

a family of distributions D that are standard Gaussians in

all but one direction, but are somewhat different in the re-

maining direction. Effectively, we are hiding the interesting
information about our distributions in this unknown choice
of direction. By exploiting the simple fact that it is possible

to find exponentially many nearly-orthogonal directions, we

are able to show that any SQ algorithm with insufficient

precision needs many queries in order to learn an unknown

distribution from D.

To prove our generic SQ lower bound, we need to

bound from below the SQ-dimension of our hard family

of distributions D. Roughly speaking, the SQ-dimension of

a distribution family corresponds to the number of nearly
uncorrelated distributions (with respect to some fixed distri-

bution) in the family. It is known that a lower bound on the

SQ-dimension implies a corresponding lower bound on the

number and precision of queries of any SQ algorithm.

More concretely, our hard families of distributions are

constructed as follows: Given a distribution A on the real-

line, we define a family of high-dimensional distributions

Pv(x), for v ∈ Sn a unit n-dimensional vector. The distribu-

tion Pv gives a copy of A in the v-direction, while being an

independent standard Gaussian in the orthogonal directions.

Our hard family will be the set D = {Pv | v ∈ Sn}.
For the sake of the intuition, we make two observations:

(1) If A and N(0, 1) have substantially different moments of

degree at most m, for some m, then Pv and N(0, I) can be

easily distinguished by comparing their mth-order moment

tensors. Since these tensors can be approximated in roughly

nm queries (and time), the aforementioned lower bound

construction would necessarily fail unless the low-order mo-

ments of A match the corresponding low-order moments of

G. We show that, aside from a few mild technical conditions,

this moment-matching condition is essentially sufficient for

our purposes. If the degree at most m tensors agree, we

need to approximate tensors of degree m+1. Intuitively, to

extract useful information from these higher degree tensors,

one needs to approximate essentially all of the nm+1 many

such tensor entries. (2) A natural approach to distinguish

between Pv and N(0, I) would be via random projections.

As a critical component of our proof, we show that a random

projection of Pv will be exponentially close to N(0, 1) with

high probability. Therefore, a random projection-based algo-

rithm would require exponentially many random directions

until it found a good one.

We now proceed with a somewhat more technical descrip-

tion of our proof. To bound from below the SQ-dimension

of our hard family of distributions, we proceed as follows:

The definition of the pairwise correlation implies we need

to show that
∫
PvPv′/G ≈ 1, where G ∼ N(0, I) is the
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Gaussian measure, for any pair of unit vectors v, v′ that are

nearly orthogonal. To prove this fact, we make essential use

of the Gaussian (Ornstein–Uhlenbeck) noise operator and its

properties (see, e.g., [66]). We explain this connection in the

following paragraph.

By construction of the distributions Pv,Pv′ , it follows

that in the directions perpendicular to both v and v′, the

relevant factors integrate to 1. Letting y = v ·x and z = v′ ·x
and letting y′, z′ be the orthogonal directions to y and z, we

need to consider the integral∫
A(y)A(z)G(y′)G(z′)/G(x) .

Fixing y and integrating over the orthogonal direction, we

get ∫
A(y)/G(y)

∫
A(z)G(z′)dy′ .

Now, if v and v′ are (exactly) orthogonal, z = y′ and the

inner integral equals G(y). When this is not the case, the

A(z) term is not quite vertical and the G(z′) term not quite

horizontal, so instead what we get is only nearly Gaussian.

In general, the inner integral is equal to

Uv·v′A(y) ,

where Ut is the member of the Ornstein–Uhlenbeck semi-

group, Utf(z) = E[f(tz +
√
1− t2G)]. We show that this

quantity is close to a Gaussian, when v · v′ is close to 0.

The core idea of the analysis relies on the fact that UtA is

a smeared out version of A. As such, it only retains the most

prominent features of A, namely its low-order moments. In

fact, we are able to show that if A and G agree in their

first m moments, then UtA is Om(tm)-close to a Gaussian,

and thus the integral in question is Om((|v · v′|)m)-close

to 1. This intuition is borne out in a particularly clean way

by writing A/G in the basis of Hermite polynomials. The

moment-matching condition implies that the decomposition

involves none of the Hermite polynomials of degrees 1
through m. However, the Ornstein–Uhlenbeck operator, Ut,

is diagonalized by the basis HiG with eigenvalue ti. Thus,

if A−G can be written in this basis with no terms of degree

less than m, applying Ut decreases the size of the function

by a multiple of approximately tm.

So far, we have provided a proof sketch of the following

statement: When two unit vectors v, v′ are nearly orthogonal,

then the distributions Pv,Pv′ are nearly uncorrelated. Since,

for 0 < c < 1/2, we can pack 2Ω(nc) unit vectors v onto

the sphere so that their pairwise inner products are at most

nc−1/2, we obtain an SQ-dimension lower bound of our

hard family. In particular, to learn the distribution Pv , for

unknown v, any SQ algorithm requires either 2Ω(nc) queries

or queries of accuracy better than O(n)(m+1)(c−1/2). This

completes the proof sketch of our generic construction.

In our main applications, we construct one-dimensional

distributions A satisfying the necessary moment-matching

conditions for m taken to be super-constant, thus obtain-

ing super-polynomial SQ lower bounds. For our quadratic

statistical–computational tradeoffs, we match a constant

number of moments. In the following paragraphs, we explain

how we apply our framework to bound the SQ dimension

for: (i) learning k-GMMs to constant accuracy, (ii) robustly

learning an ε-corrupted Gaussian to accuracy O(ε), and (iii)

robustly estimating a Gaussian covariance within constant

spectral error and robustly estimating a sparse Gaussian

mean to constant �2-error. In all cases, we construct a

distribution A on the real-line that satisfies the necessary

moment-matching conditions such that the family D =
{Pv | v ∈ Sn} belongs in the appropriate class, e.g., is

a k-GMM for (i), an ε-corrupted Gaussian for (ii), etc.

SQ Lower Bound for Learning k-GMMs: We construct

a distribution A on the real line that is a k-mixture of

one-dimensional “skinny” Gaussians, Ai, that agrees with

N(0, 1) on the first m = 2k − 1 moments. For technical

reasons, we require that the chi-squared divergence of A to

N(0, 1) is bounded from above by an appropriate quantity.

The Gaussian components, Ai, have the same variance and

appropriately bounded means. We can also guarantee that

the components Ai are almost non-overlapping. This im-

plies that the corresponding high-dimensional distributions

Pv,P
′
v will be at total variation distance close to 1 from

each other when the directions v, v′ are nearly orthogonal,

and moreover their means will be sufficiently separated.

To establish the existence of a distribution A with the

above properties, we proceed in two steps: First, we con-

struct a discrete one-dimensional distribution B supported

on k points, lying in an O(
√
k) length interval, that agrees

with N(0, 1) on the first k moments. The existence of

such a distribution B essentially follows from standard tools

on Gauss-Hermite quadrature. The distribution A is then

obtained by adding a zero-mean skinny Gaussian to an

appropriately rescaled version of B. Additional technical

work gives the other conditions.

Our family of hard high-dimensional instances will consist

of GMMs that look like almost non-overlapping “parallel

pancakes” and is reminiscent of the family of instances

considered in Brubaker and Vempala [11]. For the case

of k = 2, consider a 2-GMM where both components

have the same covariance that is far from spherical, the

vector between the means is parallel to the eigenvector with

smallest eigenvalue, and the distance between the means is

a large multiple of the standard deviation in this direction

(but a small multiple of that in the orthogonal direction).

This family of instances was considered in [11], who gave

an efficient spectral algorithm to learn them.

Our lower bound construction can be thought of as k “par-

allel pancakes” in which the means lie in a one-dimensional

subspace, corresponding to the smallest eigenvalue of the

identical covariance matrices of the components. All n− 1
orthogonal directions will have an eigenvalue of 1, which is
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much larger than the smallest eigenvalue. In other words, for

each unit vector v, the k-GMM Pv will consist of k “skinny”

Gaussians whose mean vectors all lie in the direction of v.

Moreover, each pair of components will have total variation

distance very close to 1 and their mean vectors are separated

by Ω(1/
√
k). We emphasize once more that our hard family

of instances is learnable with O(k log n) samples – both for

density estimation and parameter estimation. On the other

hand, any SQ learning algorithm for the family requires

nΩ(k) time.

SQ Lower Bounds for Robustly Learning Unknown
Gaussian: In the agnostic model, there are two types of ad-

versarial noise to handle: subtractive noise – corresponding

to the good samples removed by the adversary – and additive
noise – corresponding to the corrupted points added by the

adversary. The approach of [29] does not do anything to

address subtractive noise, but shows that this type of noise

can incur “small” error, e.g., at most O(ε
√
log(1/ε)) for

the case of unknown mean. For additive noise, [29] uses an

iterative spectral algorithm to filter out outliers.

For concreteness, let us consider the case of robustly

learning N(μ, I). Intuitively, achieving error O(ε) in the

agnostic model is hard for the following reason: the two

types of noise can collude so that the first few moments of

the corrupted distribution are indistinguishable from those of

a Gaussian whose mean vector has distance Ω(ε
√

log(1/ε))
from the true mean.

To formalize this intuition, for our robust SQ learning

lower bound, we construct a distribution A on the real line

that agrees with N(0, 1) on the first m = Ω(log1/4(1/ε))
moments and is ε/100-close in total variation distance to

G′ = N(ε, 1). We achieve this by taking A to be the

Gaussian N(ε, 1) outside its effective support, while in the

effective support we add an appropriate degree-m univariate

polynomial p satisfying the appropriate moment conditions.

By expressing this polynomial as a linear combination of

appropriately scaled Legendre polynomials, we can prove

that its L1 and L∞ norms within the effective support of G′

are much smaller than ε. This result is then used to bound

from above the distance of A from G′, which gives our SQ

lower bound.

We use a similar technique to prove our SQ lower bound

for robust covariance estimation in spectral norm. Specifi-

cally, we construct a distribution A that agrees with N(0, 1)
on the first m = Ω(log(1/ε)) moments and is ε/100-close

in total variation distance to G′ = N(0, (1− δ)2), for some

δ = O(ε). We similarly take A to be the Gaussian G′ outside

its effective support, while in the effective support we add

an appropriate degree-m univariate polynomial p satisfying

the appropriate moment conditions. The analysis proceeds

similarly as above.

Statistical–Computational Tradeoffs for SQ algorithms:
For robust covariance estimation in spectral norm, our

one-dimensional distribution is selected to be A = (1 −

ε)N(0, σ) + εN1, where N1 is a mixture of 2 unit-variance

Gaussians with opposite means. By selecting σ appro-

priately, we can have A match the first 3 moments of

N(0, 1). For robust sparse mean estimation, it suffices to

take A = (1−δ)N(ε, 1)+δN1, where N1 is a unit-variance

Gaussian selected so that E[A] = 0. An important aspect

of both these constructions is that the chi-squared distance

χ2(A,N(0, 1)) needs to be as small as possible. Indeed,

since we only match a small number of moments, our bound

on χ2(A,N(0, 1)) crucially affects the accuracy of our SQ

queries.
Sample Complexity Testing Lower Bounds: Our sample

complexity lower bounds follow from standard information-

theoretic arguments, and rely on the same lower bound in-

stances and correlation bounds (i.e., bounds on
∫
PvPv′/G)

established in our SQ lower bounds. In particular, we con-

sider the problem of distinguishing between the distribution

G ∼ N(0, I) and the distribution Pv for a randomly chosen

unit vector v ∈ Sn using N independent samples. Let

G⊗N denote the distribution on N independent samples

from G, and P⊗N
v the distribution obtained by picking a

random v and then taking N independent samples from

Pv . If it is possible to reliably distinguish between these

cases, it must be the case that the chi-squared diver-

gence χ(P⊗N
v , G⊗N ) is substantially larger than 1. This

is
∫
v,v′,xi

∏N
i=1 Pv(xi)Pv′(xi)/G(xi)dvdv

′dxi. Note that

after fixing v and v′ the above integral separates as a product,

giving ∫
v,v′

(∫
Pv(x)Pv′(x)/G(x)dx

)N

dvdv′ . (1)

Note that the inner integral was bounded from above by

roughly (1+(v ·v′)m). A careful analysis of the distribution

of the angle between two random unit vectors allows us to

show that, unless N = Ω(n), the chi-squared divergence is

close to 1, and thus that this testing problem is impossible.
Algorithm for Robustly Learning Unknown Mean Gaus-

sian: We give an SQ algorithm with O(ε)-error for robustly

learning an unknown mean Gaussian, showing that our

corresponding SQ lower bound is qualitatively tight. Our

algorithm builds on the filter technique of [29], generalizing

it to the more involved setting of higher-order tensors.

As is suggested by our SQ lower bounds, the obstacle

to learning the mean robustly, is that there are ε-noisy

Gaussians that are Ω(ε)-far in variation distance from a

target Gaussian G, and yet match G in all of their first

O(log1/4(1/ε)) moments. For our algorithm to circumvent

this difficulty, it will need to approximate all of the tth-order

moment tensors for t ≤ k = Ω(log1/4(1/ε)). Note that this

already requires nk SQ queries.

The first thing we will need to show is that k moments

suffice, for an appropriate parameter k. Because of our

lower bound construction, we know that k needs to be at

least Ω(log1/4(1/ε)). We show that k = O(log1/2(1/ε))
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suffices. Specifically, we prove a one-dimensional moment-

matching lemma establishing the following: If an ε-noisy

one-dimensional Gaussian approximately matches a refer-

ence Gaussian G in all of its first k moments, where

k = Θ(log1/2(1/ε)) (i.e., quadratically larger than our

lower bound), then it must be O(ε)-close to G in variation

distance. We note that it suffices to prove this statement in

the one-dimensional case, as we can just project onto the

line between the means.

We now proceed to describe our algorithm: Using the

basic filter algorithm from [29], we start by learning the

true mean to error O(ε
√
log(1/ε)). By translating, we can

assume that the mean is this close to 0. We need to robustly

approximate the low-order moments of our target Gaussian

G′. This is complicated by the fact that even a small fraction

of errors can have a huge impact on the moments of the

distribution. However, any large errors are easily detectable.

In particular, if any tth moment tensor differs substantially

from that of the standard Gaussian, it will necessarily imply

the presence of errors. In particular, it will allow us to

construct a polynomial p so that E[p(X)]−E[p(G′)] (where

X is a noisy version of G′) is much larger than ε‖p(G′)‖2.

If this is the case, then many of our errors, x, must have

p(x) very far from the mean. By standard concentration

inequalities, this will allow us to identify these points as

almost certainly being errors. This in turn lets us build a

filter to clean-up our distribution X , making it closer to G′.
Repeatedly applying filters as necessary, we can reduce

to the case where the higher-order moments of X are close

to the higher-order moments of G. This will tell us that,

in almost all directions, the first k moments of X match

the corresponding moments of G. By our moment-matching

lemma, this will imply that the mean of G′ is close to 0
in these directions. We will then only need to approximate

the mean of the projection of G′ onto the low-dimensional

subspace V in which these moments fail to match. This

approximation can be done in a brute-force manner (in

time exponential in dim(V ), which is still relatively small),

completing the description of the algorithm.

D. Related Work

This work studies learning and testing high-dimensional

structured distributions. Distribution learning and testing are

two of the most fundamental inference tasks in statistics

with a rich history (see, e.g., [67], [61]) that date back

to Karl Pearson. The main criteria to evaluate the perfor-

mance of an estimator are its sample complexity and its

computational complexity. Despite intensive investigation

for several decades by different communities, the (sample

and/or computational) complexity of many learning and

testing problems is still not well-understood, even for some

surprisingly simple high-dimensional settings. In the past

few decades, a long line of work within TCS [57], [21],

[4], [72], [11], [53], [65], [6], [24], [25], [14], [23], [15],

[16], [1], [27], [22], [33], [32] has focused on designing

efficient estimators in a variety of settings. We have already

mentioned the most relevant references for the specific

questions we consider in Section I-A.

With respect to computational lower bounds for unsuper-

vised estimation problems, the most relevant references are

the works [41], [43], [55] that show SQ lower bounds for the

planted clique and related planted-like problems. It should

be noted that, beyond the fact that we also use the concept

of SQ dimension, our techniques are entirely different than

theirs. Prior work by Feldman, O’Donnell, and Servedio [37]

implicitly showed an SQ lower bound of nΩ(log k) for the

problem of learning k-mixtures of product distributions over

{0, 1}n. This was obtained by a straightforward reduction

from the problem of learning k-leaf decision trees over

n Boolean variables. Our lower bound construction for

learning GMMs is entirely different from [37] that relied on

the obvious combinatorial structure of the discrete setting.

A related line of work gives statistical-computational

tradeoffs for sparse PCA [7], [8], [75], based on various

computational hardness assumptions. These results are of

similar flavor as our statistical–computational tradeoffs for

SQ algorithms (Theorems I.5 and I.6). An important differ-

ence between these tradeoffs and the super-polynomial SQ

lower bounds we prove in this paper (Theorems I.1, I.2,

and I.4) is that the aforementioned sparse problems are

known to be tractable if we increase the sample size by

a quadratic factor beyond the information-theoretic limit. In

contrast, our main SQ lower bound results establish a super-
polynomial gap between the information-theoretic limit and

the computational complexity of any SQ algorithm.

Finally, we remark that in the supervised setting of PAC

learning Boolean functions, a number of hardness results are

known based on various complexity assumptions, see, e.g.,

[52], [58], [40], [59], [20], [19] for the problems of learning

halfspaces and learning intersections thereof.

E. Discussion and Future Directions

The main contribution of this paper is a technique that

gives essentially tight SQ lower bounds for a number of

fundamental high-dimensional learning problems, including

learning GMMs and robustly learning a single Gaussian. To

the best of our knowledge, these are the first such lower

bounds for high-dimensional distribution learning problems

in the continuous setting. As a corollary, we provide a

rigorous explanation of the observed (super-polynomial) gap

between the sample complexity of these problems and the

runtime of the best known algorithms.

Our work naturally raises a number of interesting future

directions. A natural open problem is to extend our lower

bound technique to broader families of high-dimensional

distributions. More concretely, is there a kω(1)poly(n) SQ

lower bound for learning k-mixtures of n-dimensional spher-
ical Gaussians? Note that our nΩ(k) lower bound does not
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apply for the spherical case, as it crucially exploits the

structure of the covariance matrices. In fact, faster learning

algorithms for the spherical case are known [69], albeit with

exponential dependence on the number k of components.

More broadly, can we extend our techniques to other families

of structured high-dimensional distributions (e.g., mixtures

of other distribution families)?
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