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Abstract—We examine the power of statistical zero knowl-
edge proofs (captured by the complexity class SZK) and
their variants. First, we give the strongest known relativized
evidence that SZK contains hard problems, by exhibiting an
oracle relative to which SZK (indeed, even NISZK) is not
contained in the class UPP, containing those problems solvable
by randomized algorithms with unbounded error. This answers
an open question of Watrous from 2002. Second, we “lift” this
oracle separation to the setting of communication complexity,
thereby answering a question of Göös et al. (ICALP 2016).
Third, we give relativized evidence that perfect zero knowledge
proofs (captured by the class PZK) are weaker than general
zero knowledge proofs. Specifically, we exhibit oracles which
separate SZK from PZK, NISZK from NIPZK and PZK from
coPZK. The first of these results answers a question raised
in 1991 by Aiello and Håstad (Information and Computation),
and the second answers a question of Lovett and Zhang (2016).
We also describe additional applications of these results outside
of structural complexity.

The technical core of our results is a stronger hardness
amplification theorem for approximate degree, which roughly
says that composing the gapped-majority function with any
function of high approximate degree yields a function with
high threshold degree.

Keywords-Oracle Separation, Statistical Zero Knowledge
proof, Perfect Zero Knowledge Proof, Hardness Amplification

I. INTRODUCTION

Zero knowledge proof systems, first introduced by Gold-

wasser, Micali and Rackoff [28], have proven central to the

study of complexity theory and cryptography. Abstractly, a

zero knowledge proof is a form of interactive proof in which

the verifier can efficiently simulate the honest prover on

“yes” instances. Therefore, the verifier learns nothing other

than whether its input is a “yes” or “no” instance.

In this work, we study statistical zero knowledge proofs

systems. Here, “efficiently simulate” means that the ver-

ifier can, by itself, sample from a distribution which is

statistically close to the distribution of the transcript of

its interaction with the honest prover1. The resulting class

of decision problems that have statistical zero knowledge

proofs is denoted SZK. One can similarly define variants of

this class, such as non-interactive statistical zero knowledge

1Computational zero-knowledge, in which the zero-knowledge condition
is that the verifier can sample from a distribution that is computationally
indistinguishable from the transcript, has also been the subject of intense
study. In this work we focus exclusively on statistical zero knowledge.

(where the proof system is non-interactive, denoted NISZK),

or perfect zero knowledge (where the verifier can exactly

simulate the honest prover, denoted PZK).

Many problems, some of which are not necessarily in NP,

have been shown to admit SZK protocols. These include

Graph Non-isomorphism, as well as problems believed to

be hard on average, such as Quadratic Residuosity (as

well as the closely related discrete logarithm problem),

and the Approximate Shortest Vector and Closest Vector

problems in lattices [23]–[25], [28], [39]. Although SZK
contains problems believed to be hard, it lies very low

in the polynomial hierarchy (below AM ∩ coAM), and

cannot contain NP-complete problems unless the polynomial

hierarchy collapses [8], [10], [22]. Owing in part to its

unusual property of containing problems believed to be hard

but not NP-complete, SZK has been the subject of intense

interest among complexity theorists and cryptographers.

Despite its importance, many basic questions about the

hardness of SZK and its variants remain open. Our results

in this work can be understood as grouped into three classes,

detailed in each of the next three subsections. However, we

prove these results via a unified set of techniques.

A. Group 1: Evidence for the Hardness of SZK

Motivation. Several cryptosystems have been based on

the believed hardness of problems in SZK, most notably

Quadratic Residuosity and the Approximate Shortest Vector

and Closest Vector problems mentioned above. If one could

solve SZK-hard problems efficiently, it would break these

cryptosystems. Hence, a natural task is to show lower bounds

demonstrating that problems in SZK cannot be solved easily.

For example, one might want to show that quantum comput-

ers or other, more powerful models of computation cannot

solve SZK-hard problems efficiently.

Of course, proving such results unconditionally is very

difficult, because SZK is contained in AM∩coAM [8], [22],

so even proving lower bounds against classical algorithms

solving SZK-hard problems would require separating P
from NP.2 Therefore, a more reasonable goal has been to

create oracles relative to which SZK is not contained in

other complexity classes; one can then unconditionally prove

2Since SZK ⊆ AM ∩ coAM ⊆ PH, if P �= SZK, then P �= PH, which
in particular implies P �= NP.
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that “black-box” algorithms from other complexity classes

cannot break SZK.

Additional Context. While much progress has been made

in this direction (see Section I-F for details), the problem

of giving an oracle separation between SZK and PP has

been open since it was posed by Watrous in 2002 [1] and

additionally mentioned as an open problem in [4]. Here, PP
is the set of decision problems decidable in polynomial time

by randomized algorithms with unbounded error. Since a PP
algorithm can flip polynomially many coins in its decision

process, the gap between the acceptance probabilities of

yes and no instances can be exponentially small. PP is a

very powerful complexity class – it contains NP and coNP
(since it is trivially closed under complement) as well as

BPPpath. Furthermore, by Toda’s theorem [45], PPP contains

the entire polynomial hierarchy. Additionally, Aaronson

showed PP = PostBQP, the set of problems decidable by

quantum algorithms equipped with postselection (the ability

to discard all runs of an experiment which do not achieve an

exponentially unlikely outcome). As a result, it is difficult

to prove lower bounds against PP.

Our Results. We answer Watrous’ question by giving an

oracle separating SZK from PP. In fact, we prove some-

thing significantly stronger: our oracle construction separates

NISZK from UPP.3

Theorem I.1. There exists an oracleO such that NISZKO �⊂
UPPO.

B. Group 2: Limitations on the Power of Perfect Zero
Knowledge

Motivation. Much progress has been made on understanding

the relationship between natural variants of SZK [21], [26],

[34]–[36]. For example, it is known that SZK = coSZK [36],

and if NISZK = coNISZK then SZK = NISZK = coNISZK
[26]. Additionally Lovett and Zhang [34] recently gave an

oracle separation between NISZK and coNISZK as well as

SZK and NISZK. However, many questions remain open,

especially regarding the power of perfect zero-knowledge

proof systems.

Many important SZK protocols, such as the ones for

Graph Non-Isomorphism and Quadratic Nonresiduosity, are

in fact PZK protocols. This illustrates the power of perfect

zero knowledge. In this work, we are primarily concerned

with studying the limitations of perfect zero knowledge. We

are particularly interested in four questions: Does SZK =
PZK? What about their non-interactive variants, NISZK and

NIPZK? Is PZK closed under complement, the way that SZK

3UPP is traditionally defined as an oracle complexity class, in which
machines must output the correct answer with probability strictly greater
than 1/2, and are charged for oracle queries but not for computation time.
In this model, the gap between 1/2 and the probability of outputting the
correct answer can be arbitrarily (in particular, superexponentially) small.

is? What about NIPZK? Answering any of these questions in

the negative would require showing P �= NP,4 so it is natural

to try to exhibit oracles relative to which SZK �= PZK,

NISZK �= NIPZK, PZK �= coPZK, and NIPZK �= coNIPZK.

Additional Context. In 1991, Aiello and Håstad [7] gave

evidence that PZK contains hard problems by creating an

oracle relative to which PZK is not contained in BPP. On

the other hand, they also gave an oracle that they conjectured
separates SZK from PZK (but were unable to prove this).

Exhibiting such an oracle requires a technique that can tell

the difference between zero simulation error (PZK) and

simulation to inverse exponential error (SZK), and prior to

our work, no such technique was known. The question of

whether SZK = PZK has been asked by Goldwasser [27] as

well. The analogous question for the non-interactive classes

NISZK and NIPZK is also well motivated, and was explicitly

asked in recent work of Lovett and Zhang [34].

Determining whether variants of SZK satisfy the same

closure properties as SZK is natural as well: indeed, a main

result of Lovett and Zhang [34] is an oracle relative to which

NISZK �= coNISZK.

Our Results. We give oracles separating SZK from PZK,

NISZK from NIPZK, PZK from coPZK, and NIPZK from

coNIPZK. The first two results answer the aforementioned

questions raised by Aiello and Håstad [7] (though our oracle

is different from the candidate proposed by Aiello and

Håstad), and Lovett and Zhang [34]. Along the way, we

show that PZK is contained in PP in a relativizing manner

– this is in sharp contrast to SZK (see Theorem I.1).

Theorem I.2. For any oracle O, PZKO ⊆ PPO. In
addition, there exist oracles O1 and O2 such that SZKO1 �⊆
PZKO1 , NISZKO1 �⊆ NIPZKO1 , PZKO2 �⊆ coPZKO2 , and
NIPZKO2 �⊆ coNIPZKO2 .

A summary of known relationships between complexity

classes in the vicinity of SZK, including the new results

established in this work, is provided in Figure 1.

C. Group 3: Communication Complexity

Motivation and Context. Paturi and Simon [38] introduced

the model of unbounded error communication complexity,

captured by the communication complexity class UPPcc.5

In this model, two parties with inputs (x, y) execute a

randomized communication protocol, and are only required

to output f(x, y) with probability strictly better than random

guessing. Unbounded error communication protocols are

extremely powerful, owing to this weak success criterion.

4P = NP implies P = PH, and therefore SZK = P.
5As is standard, given a query model Cdt (or a communication model

Ccc), we define a corresponding complexity class, also denoted Cdt (or
Ccc), consisting of all problems that have polylogarithmic cost protocols in
the model.
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AM ∩ coAM
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PostBQP
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Figure 1. C1 → C2 indicates C1 is contained in C2 with respect to every
oracle, and C1 ��� C2 denotes that there is an oracle O such that CO

1 �⊂
CO
2 . Red indicates new results. Certain non-inclusions that are depicted are

subsumed by other non-inclusions (e.g., NISZK not in UPP subsumes SZK
not in PP). We include some redundant arrows to facilitate comparison of
our results to prior work.

In fact, UPPcc represents the frontier of our understand-

ing of communication complexity: it is the most powerful

communication model against which we know how to prove

lower bounds. We direct the interested reader to [30] for

a thorough overview of communication complexity classes

and their known relationships.

What Lies Beyond the Frontier? In an Arthur-Merlin game,

a computationally-unbounded prover (Merlin) attempts to

convince a computationally-bounded verifier (Arthur) of

the value of a given Boolean function on a given input.

The communication analogue of Arthur-Merlin games is

captured by the communication complexity class AMcc.

Many works have pointed to AMcc as one of the simplest

communication models against which we do not know how

to prove superlogarithmic lower bounds. Works attempting

to address this goal include [16], [29]–[33], [37]. In fact,

there are even simpler communication models against which

we do not know how to prove lower bounds: it is known

that NISZKcc ⊆ SZKcc ⊆ AMcc ∩ coAMcc ⊆ Σcc
2 , and we

currently cannot prove lower bounds even against NISZKcc.

Despite our inability to prove lower bounds against these

classes, prior to our work it was possible that AMcc is

actually contained in UPPcc (which, as described above,

is a class against which we can prove lower bounds). The

prior works that had come closest to ruling this out were as

follows.

• AMcc ∩ coAMcc �⊆ PPcc. This was established (using

a partial function) by Klauck [31], who proved it by

combining Vereshchagin’s analogous query complexity

separation with Sherstov’s pattern matrix method [42].

• Σcc
2 �⊆ UPPcc. This result was proved (using a total

function) by Razborov and Sherstov [40].

Based on this state of affairs, Göös et al. [30] explicitly

posed the problem of showing that AMcc∩coAMcc �⊆ UPPcc.

Our Results. In this work, we do even better than showing

that AMcc �⊆ UPPcc. By “lifting” our oracle separation of

NISZK and UPP to the communication setting, we show

(using a partial function) that NISZKcc �⊆ UPPcc. Hence,

if UPPcc is taken to represent the frontier of our under-

standing of communication complexity, our result implies

that NISZKcc (and hence AMcc) is truly beyond the frontier.

This also answers the question of Göös et al. [30].

Theorem I.3. There is a (promise) problem in NISZKcc that
is not in UPPcc.

D. Other Consequences of Our Results

In addition to the above oracle and communication separa-

tions, our results have a number of applications in other areas

of theoretical computer science. For example, our results

have implications regarding the power of complexity classes

capturing the power of quantum computing with “more

powerful” modified versions of quantum mechanics [3], [5],

imply limitations on the Polarization Lemma of Sahai and

Vadhan [41], yield novel lower bounds for certain forms

of property testing algorithms, and imply upper bounds for

streaming interactive proofs [16], [20]. These results are

described in detail in the full version of the paper.

E. Overview of Our Techniques

1) Oracle Separation of NISZK and UPP (Proof
Overview for Theorem I.1): To describe our methods, it is

helpful to introduce the notions of approximate degree and

threshold degree, both of which are measures of Boolean

function complexity that capture the difficulty of point-

wise approximation by low-degree polynomials. The ε-
approximate degree of a function f : {0, 1}n → {0, 1},
denoted d̃egε(f), is the least degree of a real polynomial

that point-wise approximates f to error ε. The threshold

degree of f , denoted deg±(f), is the least degree of a real

polynomial that agrees in sign6 with f at all points. It is easy

to see that threshold degree is equivalent to the limit of the

6By a polynomial p “agreeing in sign” with f , we mean that p(x) > 0
whenever f(x) = 1, and p(x) < 0 when f(x) = 0.
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approximate degree as the error parameter ε approaches 1/2

from below.

A recent and growing line of work has addressed a variety

of open problems in complexity theory by establishing vari-

ous forms of hardness amplification for approximate degree.

Roughly speaking, these results show how to take a function

f which is hard to approximate by degree d polynomials to

error ε = 1/3, and turn f into a related function F that is

hard to approximate by degree d polynomials even when ε
is very close to 1/2. In most of these works, F is obtained

from f by block-composing f with a “hardness-amplifying

function” g. We denote such a block-composition by g(f).
The technical core of our result lies in establish-

ing a new form of hardness amplification for approxi-

mate degree. Specifically, let g be the partial function

GapMajn : {0, 1}n → {0, 1} (throughout this introduction,

whenever necessary, we use subscripts after function names

to clarify the number of variables on which the function

is defined). Here GapMaj is the gapped majority function,

defined, for some 1 ≥ δ > 0.5, to be 1 if ≥ δ fraction of its

inputs are 1, to be 0 if ≥ δ fraction of its inputs are 0, and to

be undefined otherwise (in this introduction, we will ignore

the precise choice of δ that we use in our formal results).7

Theorem I.4. (Informal) Let f : {0, 1}M → {0, 1}. Suppose
that d̃eg1/3(f) ≥ d. Define F : {0, 1}n·M → {0, 1} via F =
GapMajn(f). Then deg±(F ) = Ω(min(d, n)).

In our main application of Theorem I.4, we apply the

theorem to a well-known (partial) function f = ColM
called the Collision problem. This function is known to have

approximate degree Ω̃(M1/3), so Theorem I.4 implies that

F := GapMajM1/3(ColM ) has threshold degree Ω̃(M1/3).
Standard results then imply that the UPP query complexity
of F is Ω̃(M1/3) as well. That is, F �∈ UPPdt.

Corollary I.5 (Informal). Let m = M4/3, and define
F : {0, 1}m → {0, 1} via F := GapMajM1/3(ColM ). Then
UPPdt(F ) = Ω̃(m1/4).

We then show that GapMajM1/3(ColM ) is in NISZKdt.

Hence, we obtain a separation between NISZKdt and UPPdt.

The desired oracle separating NISZK from UPP follows via

standard methods.

Comparison of Theorem I.4 to Prior Work. The hardness

amplification result from prior work that is most closely

related to Theorem I.4 is due to Sherstov [43]. Sherstov’s

result makes use of a notion known as (positive) one-sided

approximate degree [12], [43]. Positive one-sided approx-

imate degree is a measure that is intermediate between

7We clarify that if f is a partial function then GapMajn(f) is technically
not a composition of functions, since for some inputs x = (x1, . . . , xn)
on which GapMajn(f) is defined, there may be values of i for which xi

is outside of the domain of f . See Section II-C for further discussion of
this point.

approximate degree and threshold degree—the positive one-

sided approximate degree of f , denoted deg+ε (f), is always

at most as large as the approximate degree of f but can

be much smaller, and it is always at least as large as

the threshold degree of f but can be much larger (see

Section II-A for a formal definition of positive one-sided

approximate degree).

Theorem I.6 (Sherstov). Let f : {0, 1}M → {0, 1}. Suppose
that deg+1/3(f) ≥ d. Define F : {0, 1}n·M → {0, 1} via F =

ANDn(f). Then deg±(F ) = Ω(min(d, n)).8

There are two differences between Theorems I.4 and

I.6. The first is that the hardness-amplifier in Theorem I.4

is GapMaj, while in Theorem I.6 it is AND. GapMaj is

a “simpler” function than AND in the following sense:

block-composing f with GapMaj preserves membership in

complexity classes such as NISZKdt and SZKdt; this is not

the case for AND, as AND itself is not in SZKdt. This

property is essential for us to obtain threshold degree lower

bounds even for functions that are in NISZKdt.

The second difference is that Theorem I.4 holds under

the assumption that d̃eg1/3(f) ≥ d, while Theorem I.6

makes the stronger assumption that deg+1/3(f) ≥ d. While

we do not exploit this second difference in our applications,

ours is the first form of hardness amplification that works

for approximate degree rather than one-sided approximate

degree. This has been exploited in subsequent work [15].

Proof Sketch for Theorem I.4. A dual polynomial is a

dual solution to an appropriate linear program capturing

the threshold degree of any function. Specifically, for a

(partial) function f defined on a subset of {0, 1}n, a dual

polynomial witnessing the fact that d̃egε(f) ≥ d is a

function ψ : {0, 1}n → R that satisfies the following three

properties.

(a) ψ is uncorrelated with all polynomials p of total degree

at most d. That is, for any p : {0, 1}n → R such that

deg(p) ≤ d, it holds that
∑

x∈{0,1}n
ψ(x) · p(x) = 0. We

refer to this property by saying that ψ has pure high
degree d.

(b) ψ has �1 norm equal to 1, i.e.,
∑

x∈{0,1}n
|ψ(x)| = 1.

(c) ψ has correlation at least ε with f . That is, if D denotes

the domain on which f is defined, then
∑
x∈D

ψ(x) ·

f(x)−
∑

x∈{0,1}n\D
|ψ(x)| > ε.

It is not hard to see that a dual witness for the fact that

deg±(f) ≥ d is a function ψ satisfying Properties (a) and

8Sherstov stated his result for ORn(f) under the assumption that f has
large negative one-sided approximate degree. Our statement of Theorem
I.6 is the equivalent result under the assumption that f has large positive
one-sided approximate degree.
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(b) above, that additionally is perfectly correlated with f .

That is, ψ additionally satisfies∑
x∈D

ψ(x) · f(x)−
∑

x∈{0,1}n\D
|ψ(x)| = 1. (1)

In this case, ψ · f is non-negative, and is referred to as an

orthogonalizing distribution for f .

We prove Theorem I.4 by constructing an explicit or-

thogonalizing distribution for GapMajn(f). Specifically, we

show how to take a dual polynomial witnessing the fact that

d̃eg1/3(f) ≥ d, and turn it into an orthogonalizing distribu-

tion witnessing the fact that deg±(F ) = Ω(min(d, n)).
Our construction of an orthogonalizing distribution for

GapMajn(f) is inspired by and reminiscent of Sherstov’s

construction of an orthogonalizing distribution for ANDn(f)
[43], which in turn builds on a dual polynomial for ANDn(f)
constructed by Bun and Thaler [12]. In more detail, Bun

and Thaler constructed a dual polynomial ψBT of pure

high degree d that had correlation 1− 2−n with ANDn(f).
Sherstov’s dual witness was defined as ψBT +ψcorr, where

ψcorr is an error-correction term that also has pure high

degree Ω(d). The purpose of ψcorr is to “zero-out” ψBT

at all points where ψBT differs in sign from f , without

affecting the sign of ψBT on any other inputs.

Naively, one might hope that ψBT + ψcorr is also a

dual witness to the fact that deg±(GapMajn(f)) is large.

Unfortunately, this is not the case, as it does not satisfy

Equation (1) with respect to GapMajn(f). It is helpful to

think of this failure as stemming from two issues. First,

ψBT + ψcorr places non-zero weight on many inputs on

which GapMajn(f) is undefined (i.e., on inputs for which

fewer than δn copies of f evaluate to 1 and fewer than δn
copies of f evaluate to 0). Second, there are inputs on which

GapMajn(f) is defined, yet ANDd(f) does not agree with

GapMajn(f).
To address both of these issues, we add a different error-

correction term ψ′corr of pure high degree Ω̃(min(n, d)) to

ψBT . Our correction term does not just zero out the value of

ψBT on inputs on which it disagrees in sign with ANDn(f),
but also zeros it out on inputs for which GapMajn(f) is

undefined, and on inputs on which ANDn(f) does not agree

with GapMajn(f).
Moreover, we show that adding ψ′corr does not affect

the sign of ψBT on other inputs – achieving this requires

some new ideas in both the definition ψ′corr and its analysis.

Putting everything together, we obtain a dual witness ψBT +
ψ′corr showing that deg±(GapMajn(f)) = Ω(min(n, d)).

2) Limitations on the Power of Perfect Zero Knowledge
(Proof Overview For Theorem I.2): We begin the proof of

Theorem I.2 by showing that HVPZK (honest verifier perfect

zero knowledge) is contained in PP in a relativizing manner.

Since the inclusions PP ⊆ UPP, NIPZK ⊆ HVPZK,

PZK ⊆ HVPZK, and NISZK ⊆ SZK hold with respect

to any oracle, this means that our oracle separating NISZK
from UPP (Theorem I.1) also separates SZK from PZK and

NISZK from NIPZK.

We then turn to showing that PZK and NIPZK are not

closed under complement with respect to some oracle. Since

the proofs are similar, we focus on the case of PZK in this

overview.

Since both PZK and coPZK are contained in PP with

respect to any oracle, our oracle separation of NISZK from

PP (Theorem I.1) does not imply an oracle relative to which

PZK �= coPZK. Instead, to obtain this result we prove a new

amplification theorem for one-sided approximate degree.

Using similar techniques as Theorem I.4, we show that

if f has high positive one-sided approximate degree, then

block-composing f with the gapped AND function yields

a function with high threshold degree. Here GapAND is

partial function that outputs 1 if all inputs are 1, outputs

0 if at least a δ fraction of inputs are 0, and is undefined

otherwise.

Theorem I.7. (Informal) Let f : {0, 1}M → {0, 1}. Suppose
that deg+1/3(f) ≥ d. Then deg±(GapANDn(f))
= Ω(min(d, n)).

We then show that (a) PZKdt is closed under composition

with GapAND and (b) there is a function f in PZKdt whose

complement f̄ has high positive one-sided approximate

degree. If PZKdt were closed under complement, then f̄
would be in PZKdt. By amplifying the hardness of f̄ using

Theorem I.7, we obtain a problem that is still in PZKdt (this

holds by property (a)) yet outside of PPdt (this holds by

property (b), together with Theorem I.7). This is easily seen

to contradict the fact PZK is in PP relative to all oracles.

Hence, f̄ is a function in coPZKdt that is not in PZKdt,

and standard techniques translate this fact into an oracle

separating coPZK from PZK. We provide details of these

results in the full version of the paper.

3) Lifting to Communication Complexity: Proof Overview
For Theorem I.3: To extend our separation between NISZK
and UPP to the world of communication complexity, we

build on recently developed methods of Bun and Thaler

[14], who themselves used and generalized the breakthrough

work of Razborov and Sherstov [40]. Razborov and Sherstov

showed that if F has high threshold degree and this is

witnessed by an orthogonalizing distribution that satisfies an

additional smoothness condition, then F can be transformed

into a related function F ′ that has high UPPcc complexity

(specifically, F ′ is obtained from F via the pattern matrix
method introduced in [42]). So in order to turn GapMaj(Col)
into a function with high UPPcc complexity, it is enough to

give a smooth orthogonalizing distribution for F .

Bun and Thaler [14] showed how to take the dual witness

Sherstov constructed for OR(f) in the proof of Theorem I.6

and smooth it out, assuming the inner function f satisfies
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some modest additional conditions. Fortunately, a variant of

Col called the Permutation Testing Problem (PTP for short)

satisfies these additional conditions, and since our construc-

tion of an orthogonalizing distribution for GapMaj(PTP)
is reminiscent of Sherstov’s orthogonalizing distribution for

OR(f), we are able to modify the methods of Bun and

Thaler to smooth out our dual witness for GapMaj(PTP).
Although there are many technical details to work through,

adopting the methodology of Bun and Thaler to our setting

does not require substantially new ideas, and we do not

consider it to be a major technical contribution of this

work. Nonetheless, it does require the careful management

of various subtleties arising from our use of promise prob-

lems as opposed to total Boolean functions, and our final

communication lower bound inherits many of the advantages

of our Theorem I.4 relative to prior work (such as applying

to functions with high approximate degree rather than high

one-sided approximate degree).

F. Other Works Giving Evidence for the Hardness of SZK

As mentioned in Section I-B, Aiello and Håstad showed

that PZK (and also SZK) is not contained in BPP relative to

some oracle [7]. Agrawal et al. later used similar techniques

to show that SZK is not contained in the class SRE (which

can be viewed as a natural generalization of BPP) relative

to some oracle [6]. Aaronson [2] gave an oracle relative to

which SZK is not contained in BQP – and therefore quantum

computers cannot break SZK-hard cryptosystems in a black-

box manner. Building on that work, Aaronson [4] later

gave oracle separations against the class QMA (a quantum

analogue of NP) and the class A0PP (a class intermediate

between QMA and PP). Therefore even quantum proofs

cannot certify SZK in a black-box manner.9

Until recently, the lower bound most closely related to

our oracle separation of NISZK and UPP (cf. Theorem I.1)

was Vereshchagin’s result from 1995, which gave an oracle

relative to which AM ∩ coAM is not contained in PP [46].

Our result is an improvement on Vereshchagin’s because

the inclusions NISZK ⊆ SZK ⊆ AM∩ coAM can be proved

in a relativizing manner (cf. Figure 1). It also generalizes

Aaronson’s oracle separation between SZK and A0PP [4].

Vereshchagin [46] also reports that Beigel claimed a sim-

ple proof of the existence of a function f that is in the query

complexity class AMdt, but is not in the query complexity

class UPPdt. Our result improves on Beigel’s in two regards.

First, since NISZKdt ⊆ AMdt, separating NISZKdt from

UPPdt is more difficult than separating AMdt from UPPdt.

Second, Beigel only claimed a superpolylogarithmic lower

bound on the UPPdt query complexity of f , while we give

a polynomial lower bound.

9Note, however, that oracle separations do not necessarily imply the
analogous separations in the “real world” – see [9] and [17] for instances
in which the situation in the presence of oracles is far from the situation
in the real world.

Theorem I.1 also improves on very recent work of Chen

[18], [19], which gave a query separation between the classes

PSZK and PP.
Outline for the Rest of the Paper: In the interest of

space, we shall only formally state and prove our hardness

amplification results for approximate degree (Theorems I.4

and I.7), as we consider this to be our primary technical

contribution. Formal statements and proofs of the other

results mentioned in this section may be found in the full

version of this paper [11].

In Section II, we define various objects we shall be using

in our discussion and state a few relevant facts about them.

In Section III, we state and prove our hardness amplification

results.

II. TECHNICAL PRELIMINARIES

A. Approximate Degree, Threshold Degree, and Their Dual
Characterizations

We first recall the definitions of approximate degree,

positive one-sided approximate degree, and threshold degree

for partial functions.

Definition II.1. Let D ⊆ {0, 1}M , and let f be a function

mapping D to {0, 1}.
• The approximate degree of f with approximation con-

stant 0 ≤ ε < 1/2, denoted d̃egε(f), is the least

degree of a real polynomial p : {0, 1}M → R such that

|p(x)−f(x)| ≤ ε when x ∈ D, and −ε ≤ p(x) ≤ 1+ε
for all x �∈ D. We refer to such a p as an approximating
polynomial for f . We use d̃eg(f) to denote d̃eg1/3(f).

• The threshold degree of f , denoted deg±(f), is the

least degree of a real polynomial p such that p(x) > 0
when f(x) = 1, and p(x) < 0 when f(x) = 0.

• The postive one-sided approximate degree of f with ap-

proximation constant 0 ≤ ε < 1/2, denoted deg+ε (f),
is the least degree of a real polynomial p such that

|p(x)− 1| ≤ ε for all x ∈ f−1(1), and p(x) ≤ ε when

x ∈ f−1(0). We refer to such a p as a positive one-
sided approximating polynomial for f . We use deg+(f)
to denote deg+1/3(f).

There are clean dual characterizations for each of the

three quantities defined in Definition II.1. We state these

characterizations without proof, and direct the interested

reader to [13], [43], [44] for details.

For a function ψ : {0, 1}M → R, define the �1 norm of

ψ by ‖ψ‖1 =
∑

x∈{0,1}M
|ψ(x)|. If the support of a function

ψ : {0, 1}M → R is (a subset of) a set D ⊆ {0, 1}M , we

will write ψ : D → R. For functions f, ψ : D → R, denote

their inner product by 〈f, ψ〉 :=
∑
x∈D

f(x)ψ(x). We say that

a function ψ : {0, 1}M → R has pure high degree d if ψ is

uncorrelated with any polynomial p : {0, 1}M → R of total

degree at most d, i.e., if 〈ψ, p〉 = 0.
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Theorem II.2. Let f : D → {0, 1} with D ⊆ {0, 1}M
be a partial function and ε be a real number in [0, 1/2).
d̃egε(f) > d if and only if there is a real function ψ :
{0, 1}M → R such that:

1) (Pure high degree): ψ has pure high degree of d.
2) (Unit �1-norm): ‖ψ‖1 = 1.
3) (Correlation):

∑
x∈D

ψ(x)f(x)−
∑
x �∈D

|ψ(x)| > ε.

Theorem II.3. Let f : D → {0, 1} with D ⊆ {0, 1}M be a
partial function. deg±(f) > d if and only if there is a real
function ψ : D → R such that:

1) (Pure high degree): ψ has pure high degree of d.
2) (Sign Agreement): ψ(x) ≥ 0 when f(x) = 1, and

ψ(x) ≤ 0 when f(x) = 0.
3) (Non-triviality): ‖ψ‖1 > 0.

Theorem II.4. Let f : D → {0, 1} with D ⊆ {0, 1}M be a
partial function and ε be a constant in [0, 1/2). deg+ε (f) >
d if and only if there is a real function ψ : D → R such
that:

1) (Pure high degree): ψ has pure high degree of d.
2) (Unit �1-norm): ‖ψ‖1 = 1.
3) (Correlation): 〈ψ, f〉 > ε.
4) (Negative Sign Agreement): ψ(x) ≤ 0 whenever

f(x) = 0.

B. PPdt and UPPdt

Now we define the two natural analogues of PP complex-

ity in the query model.

Definition II.5. Let f : D → {0, 1} with D ⊆ {0, 1}M
be a partial function. Let T be a randomized decision tree

which computes f with a probability better than 1/2. Let α
be the maximum real number such that

min
x∈D

Pr[T outputs f(x) on input x] ≥ 1

2
+ α.

Then we define the PP query cost of T for f to be

PPdt(T ; f) = C(T ; f)+log2(1/α), where C(T ; f) denotes

the maximum number of queries T incurs on an input in

the worst case. We define UPPdt(T ; f) = C(T ; f). We

define PPdt(f) (respectively, UPPdt(f)) as the minimum

of PPdt(T ; f) (respectively, UPPdt(T ; f)) over all T that

computes f with a probability better than 1/2.

PPdt is closely related to approximate degree with error

very close to 1/2. We have the following well-known

relationship between them.

Lemma II.6. Let f : D → {0, 1} with D ⊆ {0, 1}M be
a partial function. Suppose d̃eg1/2−2−d(f) > d for some
positive integer d. Then PPdt(f) > d/2.

Meanwhile, UPPdt is exactly characterized by threshold

degree.

Lemma II.7. Let f : D → {0, 1} with D ⊆ {0, 1}M be a
partial function. Then UPPdt(f) = deg±(f).

C. Gap Majority and Gap AND

In this subsection we introduce transformations of partial

functions which will be used in this paper.

Definition II.8. Let f : D → {0, 1} with D ⊆ {0, 1}M be

a partial function and n be a positive integer, 0.5 < ε ≤ 1
be a real number. We define the gap majority version of f ,

denoted by GapMajn,ε(f), as follows:

Given an input x = (x1, x2, . . . , xn) ∈ {0, 1}M ·n, we

define nYes(x) :=
n∑

i=1

1xi∈D∧f(xi)=1 and

nNo(x) :=
n∑

i=1

1xi∈D∧f(xi)=0.10 Then

GapMajn,ε(f)(x) =

⎧⎪⎨
⎪⎩
1 when nYes(x) ≥ ε · n
0 when nNo(x) ≥ ε · n
undefined otherwise

For brevity, we will occasionally write GapMaj(f) when

n and ε are clear from context.

We also define the GapAND function. This is a partial

function that agrees with the total function AND wherever

it is defined.

Definition II.9. Let n be a positive integer, 0 < ε <
1 be a constant. We define the Gapped AND function,

GapANDn,ε : D → {0, 1} with D ⊆ {0, 1}n, as the function

that outputs 1 if all inputs are 1; outputs 0 if at least ε · n
inputs are 0; and is undefined otherwise.

For a partial function f : D → {0, 1} with D ⊆ {0, 1}M ,

we define GapANDn,ε(f) to be a true block-composition

of partial functions, i.e., GapANDn,ε(f)(x1, . . . , xn) =
GapANDn,ε(f(x1), . . . , f(xn)) whenever the right hand

side of the equality is defined, and GapANDn,ε(f) is un-

defined otherwise.

Remark II.10. Note that GapMajn,ε(f) is not tech-
nically a block-composition of partial functions, since
GapMajn,ε(f)(x1, . . . , xn) is defined even on some inputs
for which some f(xi) is not defined.

III. HARDNESS AMPLIFICATION FOR APPROXIMATE

DEGREE

In this section we prove a novel hardness amplification

theorem. Specifically, we show that for any function f
with high approximate degree, composing f with GapMaj
yields a function with high threshold degree, and hence the

resulting function is hard for any UPP algorithm in the query

10Here, 1 is the indicator function which takes 1 when the boolean
expression is true and 0 otherwise.
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model. Similarly, we show that if f has high positive one-

sided approximate degree, then composing f with GapAND
yields a function with high threshold degree.

Note that this hardness amplification theorem is tight,

in the sense that if f has low approximate degree, then

composing f with GapMaj yields a function that has low

UPP query complexity, and the same holds for composing

f with GapAND if f has low positive one-sided approximate

degree. See the full version for details.

A. Notation

For a partial function f , an integer n and a real ε ∈
(1/2, 1], we denote GapMajn,ε(f) by F for convenience,

where n and ε will always be clear in the context. We also

use x = (x1, x2, . . . , xn) to denote an input to F , where xi
represents the input to the ith copy of f .

The following simple lemma establishes some basic prop-

erties of dual witnesses exhibiting the fact that d̃egε(f) > d
or deg+ε (f) > d.

Lemma III.1. Let f : D → {0, 1} with D ⊆ {0, 1}M be a
partial function, ε be a real in [0, 1/2), and d be an integer
such that d̃egε(f) > d.

Let μ : {0, 1}M → R be a dual witness to the fact
d̃egε(f) > d as per Theorem II.2. If f satisfies the stronger
condition that deg+ε (f) > d, let μ to be a dual witness to
the fact that deg+ε (f) > d as per Theorem II.4.

We further define μ+(x) := max{0, μ(x)} and μ−(x) :=
−min{0, μ(x)} to be two non-negative real functions on
{0, 1}M , and μi

− and μi
+ be the restrictions of μ− and μ+

on f−1(i) respectively for i ∈ {0, 1}. Then the following
holds:

• μ+ and μ− have disjoint supports. (2)

• 〈μ+, p〉 = 〈μ−, p〉 for any polynomial p of degree

at most d. Hence, ‖μ+‖1 = ‖μ−‖1 =
1

2
. (3)

• ‖μ1
+‖1 > ε and ‖μ0

−‖1 > ε.

If deg+ε (f) > d, then ‖μ1
+‖1 = 1/2. (4)

The lemma follows directly from Theorem II.2. We pro-

vide a proof in the full version of the paper for completeness.

B. Warm Up : A PP Lower Bound

As a warmup, we establish a simpler hardness amplifica-

tion theorem for PPdt.

Theorem III.2. Let f : D → {0, 1} with D ⊆ {0, 1}M be
a partial function, n, d be two positive integers, and 1/2 <
ε < 1 and 0 < ε2 < 1/2 be two constants such that 2ε2 > ε.
Suppose d̃egε2(f) > d. Then

PPdt(GapMajn,ε(f)) > Ω
{
min

(
d, (2ε2 − ε)2 · n

)}
.

Proof: For i ∈ {0, 1} let μ+, μ−, μi
+, μ

i
− be functions

whose existence is guaranteed by Lemma III.1, combined

with the assumption that d̃egε2(f) > d.

In light of Lemma II.6, it suffices to show that

d̃eg1/2−2−T (GapMajn,ε(f)) > T , for

T = Ω
{
min

(
d, (2ε2 − ε)2 · n

)}
. We prove this by con-

structing a dual witness to this fact, as per Theorem II.2.

We first define the following two non-negative functions

on {0, 1}n·M :

ψ+(x) :=
n∏

i=1

μ+(xi) and ψ−(x) :=
n∏

i=1

μ−(xi).

Our dual witness ψ is simply their linear combination:

ψ := 2n−1 · (ψ+ − ψ−). We remark that ψ is precisely the

function denoted by ψBT alluded to in Section I-E1. Now

we verify that ψ is the dual witness we want.

Proving the ψ has unit �1-norm. Since μ+ and μ− have

disjoint supports by Condition (2) of Lemma III.1, so does

ψ+ and ψ−. Therefore ‖ψ‖1 = 2n−1 · (2−n + 2−n) = 1.

Proving the ψ has pure high degree d. Let p : {0, 1}n·M →
R be any monomial of degree at most d, and let

pi : {0, 1}M → R be such that p(x1, . . . , xn) =
n∏

i=1

pi(xi).

Then it holds that 〈ψ+, p〉 =
n∏

i=1

〈μ+, pi〉 =
n∏

i=1

〈μ−, pi〉 =

〈ψ−, p〉, where the second equality holds by Condition (3)

of Lemma III.1.

As a polynomial is a sum of monomials, by linearity,

it follows that 〈ψ, p〉 = 〈ψ+, p〉 − 〈ψ−, p〉 = 0 for any

polynomial p with degree at most d.

Proving that ψ has high correlation with F . Define D0 :=
2 · μ− and D1 := 2 · μ+. Note μ+ and μ− are non-negative

functions with norm 1/2, so D0 and D1 can be thought as

distributions on {0, 1}M . We further define distributions Ui
on {0, 1}n·M for i ∈ {0, 1} as Ui := D⊗n

i . Observe that

U0 = 2n · ψ− and U1 = 2n · ψ+ as functions.

Then by Condition (4) of Lemma III.1, we have

Pr
x∼D1

[f(x) = 1] = 2 · ‖μ1
+‖1 > 2ε2 > ε, and Pr

x∼D0

[f(x) =

0] = 2 · ‖μ0
−‖1 > 2ε2 > ε.

Let DF denote the domain of F . By the definition of

F = GapMajn,ε(f) and a simple Chernoff bound, we have

2n ·
∑

x∈DF

ψ+(x) · F (x) = Pr
x∼U1

[F (x) = 1] ≥ 1− 2−c1Δ
2·n,

(5)

where c1 is a universal constant and Δ := 2ε2 − ε. For

brevity, let k denote c1Δ
2 · n.

Since 2n · ‖ψ+‖1 = 1, inequality (5) further implies that

2n ·
∑

x/∈DF

ψ+(x) ≤ 2−k. Similarly, we have Pr
x∼U0

[F (x) =

0] ≥ 1− 2−k, which implies that 2n ·
∑

x/∈DF

ψ−(x) ≤ 2−k.

Putting everything together, we can calculate the correla-

tion between F and ψ as follows:
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∑
x∈DF

F (x)ψ(x)−
∑

x/∈DF

|ψ(x)|

≥2n−1 ·
∑

x∈DF

ψ+(x)F (x)−

2n−1 ·

⎛
⎝ ∑

x/∈DF

ψ−(x) +
∑

x/∈DF

ψ+(x)

⎞
⎠

≥1/2− 2−k−1 − 2−k

>1/2− 2−k+1.

Setting T = min(d, k − 1), then we can see that ψ is

a dual witness for d̃eg1−2−T (GapMajn,ε(f)) > T . Clearly

T = Ω
{
min

(
d, (2ε2 − ε)2 · n

)}
. Invoking Lemma II.6

completes the proof.

C. The UPP Lower Bound

The dual witness ψ ∼ ψ+ − ψ− constructed in the

previous subsection is not a dual witness for the high

threshold degree of F = GapMajn(f) for two reasons: it

puts weight on some points outside of the domain of F , and

it does not satisfy the sign-agreement condition of Theorem

II.3.

In order to obtain a valid dual witness for threshold

degree, we add two error correction terms ψ+
corr and ψ−corr

to ψ. The purpose of the error correction terms is to zero out

the erroneous values, while simultaneously maintaining the

high pure degree property and avoiding changing the sign

of ψ on inputs at which it does not agree in sign with F .

We achieve this through an error correction lemma that may

be of independent interest.

Lemma III.3 (Error Correction Lemma). Let A be a subset
of {0, 1}M , and ϕ be a function on {0, 1}M . Let ϕ◦ and ϕ×
be the restrictions of ϕ on A and {0, 1}M \A respectively.
That is, ϕ◦(xi) = ϕ(xi) if xi ∈ A and ϕ◦(xi) = 0
otherwise, and similarly ϕ×(xi) = ϕ(xi) if xi �∈ A and
ϕ×(xi) = 0 otherwise. Define ψ : {0, 1}n·M → {0, 1} as

ψ(x1, x2, . . . , xn) :=
n∏

i=1

ϕ(xi), and nA(x) :=
n∑

i=1

1xi∈A.

Suppose α = ‖ϕ×‖1/‖ϕ◦‖1 < 1/40, and let 0.5 < ε < 1
be a real number and n be a sufficient large integer. Then
there exists a function ψcorr : {0, 1}n·M → R such that:

• ψcorr(x) = ψ(x), when nA(x) ≤ ε · n. (6)

• |ψcorr(x)| ≤ ψ(x)/2, when nA(x) > ε · n. (7)

• ψcorr has pure high degree of at least

(1− (1 + 10α) · ε) · n− 4. (8)

The proof of Lemma III.3 is deferred to the full version of

the paper. Here, we show that it implies the desired hardness

amplification results.

Theorem III.4 (Formal version of Theorems I.4 and I.7).
Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function,
n be a sufficiently large integer, d be an integer, and 1/2 <
ε < 1 and 0.49 < ε2 < 1/2 be two constants. Let a =
2ε2

1− 2ε2
. Then the following holds.

If d̃egε2(f) > d, then deg±(GapMajn,ε(f)) >

min

(
d,

(
1−

(
1 +

10

a

)
· ε

)
· n− 4

)
.

If deg+ε2(f) > d, then deg±(GapANDn,ε(f)) >

min

(
d,

(
1−

(
1 +

10

a

)
· ε

)
· n− 4

)
.

Proof: We prove both claims in the theorem by exhibit-

ing a single dual solution that witnesses both.

As in the proof of Theorem III.2, for i ∈ {0, 1}, let

μ+, μ−, μi
+, μ

i
− denote the functions whose existence is

guaranteed by Lemma III.1, combined with the assumption

that either d̃egε(f) > d or deg+ε (f) > d. Also as in

the proof of Theorem III.2, define the following two non-

negative functions on {0, 1}n·M :

ψ+(x) :=
n∏

i=1

μ+(xi) and ψ−(x) :=
n∏

i=1

μ−(xi).

Given an input x = (x1, x2, . . . , xn), let nYes(x) :=
n∑

i=1

1f(xi)=1 and nNo(x) :=
n∑

i=1

1f(xi)=0 as in Defini-

tion II.8. Now apply Lemma III.3 with the following pa-

rameters.

• Set A = f−1(1), ϕ = μ+. Then for α as defined

in Lemma III.3, we have α =
‖μ+‖1 − ‖μ1

+‖1
‖μ1

+‖1
≤

1− 2ε2
2ε2

= a−1 by Conditions (3) and (4) of

Lemma III.1. Note that a−1 < 1/40 by the assumption

that 0.49 < ε2. Hence, by Lemma III.3, there exists a

function ψ+
corr : {0, 1}n·M → R such that:

• ψ+
corr(x) = ψ+(x), for all x such that

nYes(x) ≤ ε · n (9)

• |ψ+
corr(x)| ≤ ψ+(x)/2, for all x such that

nYes(x) > ε · n (10)

• ψ+
corr has pure high degree at least(
1−

(
1 +

10

a

)
· ε

)
· n− 4 (11)

• Similarly, set A = f−1(0), ϕ = μ−. Again

by Lemma III.3, there exists a function ψ−corr :
{0, 1}n·M → R such that:

• ψ−corr(x) = ψ−(x), for all x such that

nNo(x) ≤ ε · n (12)
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• |ψ−corr(x)| ≤ ψ−(x)/2, for all x

such that nNo(x) > ε · n (13)

• ψ−corr has pure high degree of at least(
1−

(
1 +

10

a

)
· ε

)
· n− 4 (14)

For convenience, let N =

(
1−

(
1 +

10

a

)
· ε

)
· n − 4.

We are ready to construct the dual witness ψ that estab-

lishes the claimed threshold degree lower bounds. Define

ψ : {0, 1}n·M → R by

ψ := (ψ+ − ψ+
corr)− (ψ− − ψ−corr).

We first establish two properties of ψ.

• When nYes(x) ≥ ε · n,

ψ(x) = ψ+(x)− ψ+
corr(x) ≥ ψ+(x)/2 ≥ 0 (15)

• When nNo(x) ≥ ε · n,

ψ(x) = −(ψ−(x)− ψ−corr(x)) ≤ −ψ−(x)/2 ≤ 0
(16)

Verifying Condition (15) and (16). To establish that Con-

dition (15) holds, observe that since nYes(x) ≥ ε · n, and

ε > 1/2 by assumption, it follows that nNo(x) ≤ (1−ε)·n ≤
ε ·n. This implies that ψ−(x) = ψ−corr(x) by Condition (12)

and |ψ+
corr(x)| ≤ ψ+(x)/2 by Condition (10). Then ψ(x) =

ψ+(x)−ψ+
corr(x) ≥ ψ+(x)/2 ≥ 0, where the last inequality

follows from the fact that ψ+ is non-negative.

Similarly, for Condition (16), as nNo(x) ≥ ε ·n, it follows

that nYes(x) ≤ (1 − ε) · n ≤ ε · n. This implies that

ψ+(x) = ψ+
corr(x) by Condition (9) and |ψ−corr(x)| ≤

ψ−(x)/2 by Condition (13). Note ψ− is also non-negative.

Hence ψ(x) = −(ψ−(x)− ψ−corr(x)) ≤ −(ψ−(x)/2) ≤ 0.

We now verify that ψ is a dual witness for deg±(F ) >
min (d,N) (recall that F denotes GapMaj(f)).

Analyzing the pure high degree of ψ. Write ψ := ψ+ −
ψ− − ψ+

corr + ψ−corr. We already established that ψ+ − ψ−
has pure high degree d in the proof of Theorem III.2, and

both ψ+
corr and ψ+

corr have pure high degree at least N (cf.

Conditions (11) and (14)). By linearity, ψ itself has pure

high degree at least min (d,N).

Showing that the support of ψ is a subset of the inputs on
which F is defined. Let x be an input outside of the domain

of F . Then by the definition of GapMaj, it must be the case

that both nYes(x) and nNo(x) are strictly less than ε ·n. This

means that ψ+(x) = ψ+
corr(x) and ψ−(x) = ψ−corr(x) by

Conditions (9) and (12), and hence ψ(x) = 0. Therefore,

the support of ψ is a subset of the domain of F .

Showing that ψ agrees in sign with F . When F (x) = 1,

by the definition of GapMaj, we have nYes(x) ≥ ε ·n. Then

ψ(x) ≥ 0 follows directly from Condition (15). Similarly,

when F (x) = 0, we have nNo(x) ≥ ε · n and ψ(x) ≤ 0 by

Condition (16). Therefore, ψ agrees in sign with F .

Showing that ψ is non-trivial. Pick an input x0 to f such

that μ1
+(x0) > 0, and let x = (x0, x0, . . . , x0). Then we

have f(x0) = 1 and nYes(x) = n ≥ ε ·n. Therefore, ψ(x) =
ψ+(x) − ψ+

corr(x) ≥ ψ+(x)/2 = (μ1
+(x0))

n/2 > 0 by

Condition (15). So ψ is non-trivial.

Putting everything together and invoking Theorem II.3

proves the first claim of Theorem III.4.

Showing ψ is also a dual witness for GapANDn,ε(f).
Now we show that, when deg+ε2(f) > d, the same function

ψ is also a dual witness for deg±(GapANDn,ε(f)) >
min (d,N).

We already proved that the pure high degree of ψ is as

claimed, and that it is non-trivial. So it remains to verify ψ
only puts weight in the domain of GapANDn,ε(f), and that

ψ agrees in sign with GapANDn,ε(f).
By Condition (4) of Lemma III.1, we have |μ1

+| = |μ+| =
1

2
, which means μ+ only puts weight inputs in f−1(1). So

ψ+ only takes non-zero values when nYes(x) = n. Also,

note that when nNo(x) ≤ ε · n, we have ψ−(x) = ψ−corr(x)
by Condition (12). Therefore, ψ only puts weight on inputs

when nYes(x) = n or nNo(x) > ε · n. All such inputs are in

the domain of GapANDn,ε(f).
Finally, we verify that ψ agrees in sign with

GapANDn,ε(f). When GapANDn,ε(f)(x) = 1, we have

nYes(x) = n ≥ ε · n, hence ψ(x) ≥ 0 by Condition (15).

When GapANDn,ε(f)(x) = 0, we have nNo(x) ≥ ε · n,

so ψ(x) ≤ 0 follows immediately from Condition (16).

Applying Theorem II.3 again, this completes the proof for

the second claim of Theorem III.4.

IV. OPEN PROBLEMS

Our works leaves a number of open related problems. As

one example, we have shown that the function GapMaj(f)
is hard for UPPdt, for any function f of high approximate

degree, and that GapAND(f) is hard for UPPdt, for any

function of high positive one-sided approximate degree.

Can one extend this work to characterize when f ◦ g is

hard for UPPdt, based on some properties of f and g?

We conjecture that the UPPdt complexity of GapMaj(f)
(respectively, GapAND(f)) is characterized by the rational
approximate degree of f (respectively, positive one-sided

approximate degree of f ). Such a result would complement

the characterization of the threshold degree of AND(f)
in terms of positive one-sided rational approximate degree

given in [43].

However, the main open question highlighted by our work

is to break through the UPP frontier in communication

complexity. We formalize this question via the following

challenge: prove any superlogarithmic lower bound for an

explicit problem in a natural communication model that

cannot be efficiently simulated by UPPcc. Our work shows

that any communication model capable of efficiently com-

puting the pattern matrix of GapMaj(PTP) is a candidate
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for achieving this goal. Thomas Watson has suggested

the following as perhaps the simplest candidate: consider

the NISZKcc model, but restricted to be one-way, in the

sense that neither Merlin nor Bob can talk to Alice. This

model effectively combines the key features of the NISZKcc

and OIP[2]
+ (cf. [16]) communication models. There is a

logarithmic cost “one-way NISZK” protocol for the pattern

matrix of GapMaj(PTP), so this model cannot be efficiently

simulated by UPPcc. Curiously, despite the ability of this

model to compute functions outside of UPPcc, to the best

of our knowledge it is possible that even the INDEX function

requires polynomial cost in this model. Note that while

Chakrabarti et al. [16] gave an efficient OIP[2]
+ commu-

nication protocol for INDEX, their protocol is not zero-

knowledge.
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