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Abstract—The gap-ETH assumption (Dinur 2016; Manu-
rangsi and Raghavendra 2016) asserts that it is exponentially-
hard to distinguish between a satisfiable 3-CNF formula and
a 3-CNF formula which is at most 0.99-satisfiable. We show
that this assumption follows from the exponential hardness
of finding a satisfying assignment for smooth 3-CNFs. Here
smoothness means that the number of satisfying assignments
is not much smaller than the number of “almost-satisfying”
assignments. We further show that the latter (“smooth-ETH”)
assumption follows from the exponential hardness of solving
constraint satisfaction problems over well-studied distributions,
and, more generally, from the existence of any exponentially-
hard locally-computable one-way function. This confirms a
conjecture of Dinur (ECCC 2016).

We also prove an analogous result in the cryptographic
setting. Namely, we show that the existence of exponentially-
hard locally-computable pseudorandom generator with linear
stretch (el-PRG) follows from the existence of an exponentially-
hard locally-computable “almost regular” one-way functions.

None of the above assumptions (gap-ETH and el-PRG) was
previously known to follow from the hardness of a search
problem. Our results are based on a new construction of gen-
eral (GL-type) hardcore functions that, for any exponentially-
hard one-way function, output linearly many hardcore bits,
can be locally computed, and consume only a linear amount
of random bits. We also show that such hardcore functions
have several other useful applications in cryptography and
complexity theory.
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I. INTRODUCTION

A constraint satisfaction problem (CSP) consists of a list

of m constraints over n formal variables x = (x1, . . . , xn)
where each constraint depends on a constant k number

of variables. The computational intractability of CSPs is

a basic, well studied phenomena in computer science. The

famous Cook-Levin theorem [17], [32] shows that, assuming

P �= NP, no polynomial-time algorithm can solve the

search problem (i.e., find a satisfying assignment) even when

each constraint depends on k = 3 variables. A seemingly

bolder conjecture asserts that the gap version of the problem

is hard, namely, that one cannot distinguish between k-CSPs

which are satisfiable to k-CSPs for which every assignment

fail to satisfy at least γ-fraction of the constraints for some

constant γ > 0. The celebrated PCP theorem [9], [8] shows

that the search variant reduces in polynomial-time to the

gap variant, and therefore the two assumptions are actually

equivalent. While we have a relatively clear understanding of

polynomial hardness, the picture is less clear when it comes

to exponential-time hardness.

It is widely believed that k-CSP (or specifically 3-SAT)

over n variables cannot be solved in less than exponential

time in n (i.e., 2βn for some constant β > 0). This

Exponential-Time Hypothesis (ETH) was introduced almost

two decades ago by Impagliazzo and Paturi [28], and has

gained a lot of attention lately due to its implications to

the exact complexity of problems inside P (“fine-grained

complexity”). Very recently, Dinur [19] and Manurangsi and

Raghavendra [37] independently made a similar exponential-

time conjecture regarding the hardness of Gap-CSPs.

Assumption I.1 (gapETH). For some constants β, γ > 0
and an integer k there is no 2βn-time probabilistic algorithm
that, given a k-CSP ϕ over n variables, distinguishes, with
probability better than 2/3, between the case in which the
CSP is satisfiable from the case in which every assignment
violates a γ-fraction of constraints.1

This new assumption have already found several exciting

consequences including a weak form of the so called sliding
scale conjecture of [11], tight results on the hardness of

dense CSPs, strong inapproximability results for the Densest

Subgraph problem, and parameterized inapproximability of

some fundamental combinatorial optimization problems like

Independent Set and Set Cover [19], [37], [36], [15]. Clearly,

gapETH implies ETH, however, the converse direction

is currently unknown to hold. Indeed, known PCP reduc-

tions from search-CSPs to Gap-CSPs blow-up the number

of variables by a super-constant factor (polylogarithmic at

best [12], [18]) and therefore fail to preserve exponential

hardness. This raises the following natural question:

Question 1. Can we base gapETH on ETH, or at least

1By the PCP theorem, one can focus, without loss of generality, on the
special case of 3-CNF problems (at the expense of decreasing the constant
γ). Moreover, it is shown in [19] that, without loss of generality, the number
of constraints can be assumed to be linear in the number of variables.
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on the exponential hardness of some search problem?

It is worth mentioning that ETH easily implies that gap

problems for which the constraints are non-local (e.g., circuit

satisfiability) are exponentially hard. It is the combination

of constant locality and exponential hardness that makes

the reduction challenging. Put differently, the essence of the

problem is to move from search problems to gap problems

without introducing too many auxiliary variables and while
preserving the locality of the constraints.

The cryptographic setting: A similar question also

arises in the cryptographic setting. Let us first rephrase

the (worst-case) intractability of CSPs in a functional form.

Given a CSP ϕ over n variables and m constraints of arity

k, we define a function f : {0, 1}n → {0, 1}m that takes

an n-bit assignment x as an input, and outputs an m-bit

string y whose i-th bit equals to 0 if and only if the i-th
constraint is satisfied. The function is k-local in the sense

that every output depends on at most k inputs. Using this

terminology, the intractability of the search problem asserts

that it is hard to find a preimage of the all-zero string y,

whereas the intractability of the gap problem says that it is

hard to distinguish between the case where y = 0m is in the

image of f to the case where y is γ-far (in relative Hamming

distance) from the image.

The cryptographic setting addresses similar inver-

sion/distinguishing problems but requires average-case hard-

ness with respect to a natural distribution over the strings

y. Specifically, we say that f is a one-way function if no

efficient algorithm can invert f on an image y = f(x)

of a uniformly chosen input x
R← {0, 1}n. We say that

f is a pseudorandom generator (PRG) if (1) m > n and

(2) no efficient algorithm can distinguish between an image

y = f(x) of a uniformly chosen x
R← {0, 1}n (a satisfiable

instance) to a randomly chosen m-bit string y
R← {0, 1}m.

When the PRG has a linear stretch m−n = Ω(n), a random

y
R← {0, 1}m is likely to be Ω(1)-far from the image of f ,

and so the resulting CSP instance is likely to be highly-

unsatisfiable.

In the polynomial hardness regime, we have a relatively

clear picture of locally-computable (aka NC0) cryptog-

raphy. Locally-computable OWFs can be based on NC1

OWFs [5], and there are generic local transformations from

OWFs to PRGs with low (sublinear) stretch [5], [25]. Local

PRGs with linear stretch can be based on a concrete can-

didate OWF of Goldreich [22] via a transformation of [1].2

However, all these reductions have a polynomial blow-up

in the input length, and so they fail to preserve exponential

hardness. As a result, although Goldreich’s function is be-

2This transformation also yields polynomial-stretch PRGs with either
slightly super-constant locality or inverse polynomial distingsuishing ad-
vantage. We mention that large stretch is crucial for several important appli-
cations of local PRGs including cryptography with constant computational
overhead [31] and general purpose program obfuscation [33], [34], [35].

lieved to be exponentially hard to invert [22], [16], [13], [10],

it is unknown how to (provably) turn it into an exponentially-

strong NC0 PRG with linear-stretch. On the other hand,

given known attacks, we have no reason to believe that

such PRGs do not exist, and the literature contains several

potential candidates (cf. [38], [6], [4], [39] and [2] for a

survey.) We therefore ask:

Question 2. Are there exponentially-strong PRGs with lin-
ear stretch in NC0? If so, can we base them on one-wayness
assumptions?

Exponentially-strong local PRGs provide an asymptot-

ically optimal level of security together with an asymp-

totically optimal level of efficiency (since each output bit

can be computed via a constant number of operations).

Moreover, it is shown in [6] that, under these efficiency

and security requirements, one cannot hope for more than

linear-stretch, i.e., m − n = O(n). The existence of

exponentially-strong locally-computable PRGs with linear
stretch (hereafter referred to as the elPRG assumption) can

be therefore viewed as a fundamental question regarding the

best possible tradeoff between efficiency and security for a

basic cryptographic object.

We further mention that if locality is not required then

exponentially-strong PRGs with arbitrary stretch can be

based on any exponentially-hard regular OWF [26], [24].3

A. Our results

We partially answer Questions 1 and 2 by showing that

both, gapETH and elPRG, follow from the exponential

hardness of search problems that satisfy some “smoothness”

or “regularity” condition. We move on to a formal statement

of our results starting with the worst-case setting.

1) Sufficient conditions for gapETH: A CSP ϕ over n
variables is (γ, α)-smooth if the number of assignments that

satisfy at least 1− γ of the constraints is at most 2αn-times

larger than the number of satisfying assignments. That is,

the relaxation from full satisfiability to “almost satisfiability”

does not increase the number of solutions by much. We in-

troduce the smooth exponential-time hypothesis (smETH)

which asserts that for some integer k and constants a, γ, β
and α < β/5, there is no 2βn-time algorithm for solving k-

CSPs over n variables and an constraints which are (γ, α)-
smooth. (Here and throughout the paper, we say that an

algorithm A solves a promise search problem if given a Yes

instance A outputs a solution with probability 1
2 .)

Theorem I.2. gapETH follows from smETH.

We observe that typical candidates for hard (satisfiable)

CSPs turn to be smooth. This is true for random k-CNFs

3Currently, even in the non-local setting, it is unknown how to get an
exponentially-strong PRG based on a general exponentially-hard OWF. The
best known construction, due to [42], blows up the number of variables by
a polylogarithmic factor.
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whose clause-to-variable density m/n is just below the

satisfiability threshold, and for CSPs arising from Gol-

dreich’s one-way function. More generally, we show that

the existence of a locally-computable exponentially-strong

OWF yields a distribution over CSPs which is concentrated

over exponentially-hard smooth instances (Theorem IV.9).

Combining with Theorem I.2, we conclude the following

theorem.

Theorem I.3. gapETH follows from the existence of
any exponentially-strong locally-computable OWF f :
{0, 1}n → {0, 1}O(n).

The theorem holds even if the function is only one-way on

a tiny (e.g., sub-exponential fraction of the inputs) and even

if constant locality holds only after some, possibly non-local,

public preprocessing. In addition to Goldreich’s original

assumption [22], we show that such OWFs follow from the

exponential hardness of random CNFs, and from a coding-

related intractability assumption of Druk and Ishai [20]. We

view these results as providing strong evidence towards the

validity of gapETH. Getting rid of the smoothness condi-

tion and basing gapETH on ETH remains an interesting

open problem.

2) Sufficient conditions for elPRG: A function f :
{0, 1}n → {0, 1}m is α-almost regular if the number of

preimages of y ∈ Im(f) can vary by a factor of at most

2αn, i.e., |f−1(y)| ∈ [s, s · 2αn], for some s = s(n).

Theorem I.4. Suppose that there exists an NC0 function
f : {0, 1}n → {0, 1}an which is 2βn-hard one-way function
and is α-almost regular for constants α < β/6 and a. Then
elPRG holds. In particular, there exists an exponentially-
strong linear-stretch PRG with locality 4.

As special cases, elPRG follows from any exponentially-

hard local OWF which is either regular, (i.e., α = 0)

or is “at most 2αn-to-1” in the sense that no output has

more than 2αn preimages. (In fact, in the latter case, the

relation between α and β can be slightly improved.) Baron

et al. [10] presented, under similar conditions, a linear-time

computable transformation from OWF to linear-stretch PRG.

Our construction (which heavily relies on their result) has

the additional advantage of being local.

Since (a variant of) Goldreich’s OWF satisfy the almost-

regularity condition [10], we can plug it into the theorem

and get the first exponentially-strong locally-computable

PRG with linear-stretch whose security can be reduced to

a one-wayness assumption. The resulting locality (4) is

almost optimal since 2-local functions can be inverted in

polynomial time [22]. In fact, using the aforementioned

coding-based assumption of [20], we get an optimal locality

of 3. Finally, let us mention that Theorem I.4 crucially relies

on exponential hardness and so it is incomparable to the

reductions of [1] which apply to the polynomial-hardness

regime (and are tailored to Goldreich’s concrete one-way

function). On the other hand, Theorem I.4 bypasses some

of the limitations of [1]; Specifically, it can be based on

a length preserving function f : {0, 1}n → {0, 1}n (as

opposed to random local functions with large output length

in [1]) and it yields a PRG G which can be computed locally

with no preprocessing (as opposed to a collection of local

PRGs in [1]).

3) Other results: Our tools have several other applica-

tions both in cryptography and complexity theory. First we

derive a new isolation lemma that reduces the satisfiability

of general k-CSPs to the satisfiability of k-CSPs that are

guaranteed to have at most a single satisfying assignment.

Theorem I.5 (Local Isolation Lemma). There exists a
randomized polynomial-time reduction that takes a k-CSP
ϕ over n variables and m constraints and map it into
a new max(k, 3)-CSP ϕ′ over n′ = n + O(n) variables
and m′ = m + O(n) constraints such that: (1) If ϕ is
unsatisfiable so is ϕ′; and (2) If ϕ is satisfiable then, with
probability Ω(1/n), the CSP ϕ′ is uniquely satisfiable.

In a classical work Valiant and Vazirani [43] presented a

polynomial-time isolation lemma which reduces k-SAT to

a Unique Circuit-SAT instance ϕ′. One can further reduce

ϕ′ to a k-CSP instance (via the standard transformation),

however this introduces a polynomial blow-up in the number

of variables. The resulting transformation therefore pre-

serves polynomial hardness but fails to preserve super-

polynomial hardness. This problem was observed by Calabro

et al. [14], who described, for every ε > 0, an exp(εn)-
time isolation lemma that maps k-CSP ϕ into kε-CSP ϕ′

while preserving the number of variables. In contrast, our

reduction runs in polynomial-time (in fact, almost linear)

but introduces a linear blow-up in the number of variables.

As an immediate corollary we conclude that a T (n)-time

algorithm for Unique-k-CSP over n variables implies a

poly(n) · T (O(n))-time algorithm for k-CSP. In particular,

for any f(n) = ω(log n) if k-CSP cannot be solved by

2f(n)-time algorithms then Unique-k-CSP cannot be solved

in 2f(Ω(n)) time.

Moving back to the cryptographic domain, our tools allow

us to transform intractable coding-related problems (such

as decoding noisy codewords) defined over highly-efficient

codes (i.e., computable by a linear-size circuit) into locally-

computable cryptographic primitives (like OWFs and PRGs)

while preserving exponential hardness. Examples for such

intractable linear-time computable codes were presented by

Druk and Ishai [20] who proved a “win-win” result: If the

decoding problems turn out to be tractable this would lead

to interesting progress in coding theory (i.e., linear-time

encodable and efficiently decodable codes that meet the

Gilbert-Varshamov bound.) Previously, exponentially-hard

locally-computable primitives were mainly based on direct

local assumptions (such as Goldreich’s candidate). Our tools

provide a new alternative approach for such constructions.
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B. Techniques

We sketch the basic ideas underlying the proof of The-

orem I.2 (smETH ⇒ gapETH). As a warm-up, we

begin with an exponential-time Turing reduction from search

k-CSP problem to gap Circuit-SAT problem where the

constraints are non-local. Later, we will show that a variant

of this reduction yields local CSPs.4 Our reduction strongly

relies on list-decodable codes (or equivalently general hard-

core functions).

1) From search to approximate-decision via list-
decoding: Our goal is find a satisfying assignment for a

satisfiable k-CSP ϕ over n variables x = (x1, . . . , xn) and

m = O(n) constraints in time 2βn based on a 2β
′n-time

algorithm A that distinguishes between satisfiable instances

and instances whose value is at most 1 − γ. Let x∗ be a

satisfying assignment for ϕ. The basic strategy is to use A
in order to get a noisy version of a codeword of x∗, and

then use a decoding procedure to recover x∗. For now, our

code will be based on the Goldreich-Levin multi-output

hardcore function [23], [21] (which can be viewed as a

list-decodable code [41]).

Let GLw : Fn
2 → F

s
2 denote the Goldreich-Levin hardcore

function that takes a vector x ∈ F
n
2 and a random s × n

binary matrix w, and outputs the matrix-vector product

w · x. We think of x as an information word and of

(GLw(x))w∈Fs×n
2

as a huge codeword of length 2sn over a

2s-size alphabet. Given a matrix w, we would like to guess

GLw(x
∗) with advantage of at least 2−s + ε. For this, we

define for each possible z ∈ F
s
2 a new (non-local) CSP

ϕz,w := ϕ ∧ (GLw(x) = z),

and reject z if the algorithm A claims that ϕz,w is “highly

un-satisfiable”. Our guess for the value GLw(x
∗) is chosen

uniformly among all strings z that pass the test. Assuming

that the above procedure B succeeds with probability 2−s+
ε, we can use it as a sub-routine inside the Goldreich-Levin

decoding algorithm and recover x∗ by making poly(1/ε)2s

calls to A. Since we started with 2βn-time hardness assump-

tion, we can take ε = 2−Θ(n) and s = Θ(n) where the

constants in Theta notation are properly chosen.

To analyze the success probability first observe that

z∗ = GLw(x
∗) always passes the test since ϕz∗,w is

satisfiable (by the assignments x∗). We should further argue

that not too many fake solutions pass the test. Since we

added a linear number of constraints, ϕz∗,w passes the test

only if there exists an assignment x′ that violates only

γ′-fraction of the constraints in ϕ and γ′-fraction of the

constraints in GLw(x) = z, for some constant γ′. This

means that z is γ′-close to GLw(x
′) for some assignment

x′ which almost-satisfy ϕ. It follows that when ϕ has “few

4There are alternative simpler (polynomial-time Karp) reductions from
k-CSP to gap Circuit-SAT, e.g., based on error-correcting codes. However,
we do not know how to “localize” them.

almost-satisfying assignments” (here few stands for 2β
′′n for

some sufficiently small constant β′′), the number of “fake

solutions” is exponentially sparse in F
s
2 and the reduction

succeeds (for a properly chosen γ).
We complete the reduction by showing that smooth

CSPs can be efficiently reduced to CSPs with few almost-

satisfying assignments using standard hashing techniques.

Indeed, suppose that there are T = 2t satisfying assignments

and at most T · 2β′′n almost-satisfying assignments. Then,

we can add t (non-local) constraints of the form gv(x) = 0t

where gv is sampled from a family {gv} of pairwise indepen-

dent hash functions. As a result, the set of almost satisfying

assignments and the set of satisfying assignments are likely

to decrease by a factor of about T , and so we are likely to get

a satisfiable CSP with few almost-satisfying assignments.
2) A local reduction via randomized encoding: To make

the reduction local we need locally-computable list-decoding

codes and locally-computable hash functions. Unfortunately,

locally-computable functions cannot compute such objects,

and we are forced to compromise and use weaker tools.

In particular, consider the randomized code ĥw(x; r) whose

input consists of a random string r ∈ {0, 1}ρ, in addition

to w and x. For a random choice of r, the distribution

ĥw(x; r) encodes the value z = GLw(x) in the sense that

ĥw(x; r) is distributed uniformly over a set of 2ρ distinct

strings Dz ⊂ {0, 1}ŝ. Each set Dz is associated with a

single z ∈ {0, 1}s, and together the sets {Dz}z∈{0,1}s form

a partition of {0, 1}ŝ. The function ĥw(x; r) can be therefore

viewed as a perfect randomized encoding (RE) [30], [5] of

the function GLw(x).
Although the function ĥw(x; r) is not a list-decodable

code it can be used (with some quantitative loss) in the

above reduction. Unlike the “index” w, the randomness

r = (r1, . . . , rρ) cannot be fixed and is therefore treated

as a sequence of new formal variables. That is, the instance

ϕz,w is defined over the variables x and r. Consequently, the

reduction preserves exponential hardness as long as the num-

ber of auxiliary variables, ρ, is at most linear in n. Similarly,

we can replace the pairwise independent hash functions with

their RE at the expense of introducing additional auxiliary

variables. Overall the task of “localizing” the reduction boils

down to constructing local REs with linear complexity.
3) Local REs with linear complexity: The literature [30],

[5] contains several constructions of local REs for any NC1

or even log-space computable function f : {0, 1}n →
{0, 1}s (cf. [29] for a survey). However, the complexity

of all known constructions grows at least linearly with ns,
the product of the input length and the output length of

the encoded function. (Typically, the complexity is also

polynomial in the description length of f with respect to

some computational model). As a result, even for simple

functions, like GL, when the output length is linear in the

input length, we do not have local REs with sub-quadratic

complexity (let alone linear). We bypass this limitation by
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presenting a new construction of local REs for (slightly

generalized) parity circuits whose gates compute only parity

operations. The REs that we get are 3-local and their

complexity equals to the size of the circuit. Hence we can

efficiently handle any function that can be computed by a

linear-size parity circuit.

Somewhat surprisingly, it turns out that this class of

functions is more powerful than it seems. In a sequence

of works it was shown that linear-size parity-circuits can

compute asymptotically-good error correcting codes [40],

pairwise independent hash functions [31], and, most relevant

to us, GL-type list decodable codes [10]. By plugging-

in our construction we get the following theorem. (See

Theorem III.2 for a formal and slightly stronger statement.)

Theorem I.6. For any s = O(n), there exists t = O(n) and
a function h : {0, 1}n×{0, 1}t → {0, 1}s with the following
properties:

1) The collection {h(·, w)}w∈{0,1}t forms a pairwise-
independent hash function.

2) The code x 	→ (h(x,w))w∈{0,1}t satisfies a Goldreich-
Levin type list decoding properties: For any ε > 0, the
code is list-decodable for radius 1− 2−s− ε with list
of size L = O(n/ε2) and decoding time of poly(n)L.

3) For any w ∈ {0, 1}t the function hw(·) := h(·, w) has
a perfect randomized encoding ĥw with locality 3 and
complexity of O(n).

The theorem provides an unusual example for an RE

which collectively encodes all the outputs of a multi-output

function (without encoding each output separately). As a

complementary result we prove that the bilinear function

h(x,w) defined above (in which the value of w is not

fixed and does not appear as part of the output) cannot be

locally encoded with complexity smaller than Ω(ns) which

is quadratic in the circuit size when s = Θ(n). To the best

of knowledge, this is the first super-linear lower-bound for

the complexity of RE.

4) Putting everything together: Theorem I.6 allows us to

prove Theorem I.2 via the above list-decoding framework.

To prove Theorem I.4 we start with the well-known HILL

transformation [26] from OWF to PRG. For the case of

almost-regular exponentially-hard OWFs f : {0, 1}n →
{0, 1}O(n), one can use a simplified version of the trans-

formation which essentially: (1) extracts (via hashing) ran-

domness from the distribution of x
R← {0, 1}n conditioned

on f(x); (2) generates Ω(n) pseudorandom bits via the use

of hardcore functions; and (3) applies a final hash function

to get a pseudorandom distribution.5 We can instantiate

the reduction with (several copies of) the function h from

Theorem I.6, and then encode the reduction locally with the

5Observe that the first two steps resemble the reduction from search-CSP
to gap CSP. Indeed, our worst-case reduction was inspired by the analog
cryptographic reduction.

RE. Using the fact that an RE of a PRG is a PRG [5], we

get a new local PRG whose seed is only linearly larger than

the original PRG (since the RE has linear complexity). As

a result, exponential hardness is preserved.

C. Conclusion

We showed that, for CSPs with some regularity proper-

ties, one can locally reduce searching to gap-distinguishing

both in the worst-case and in the average-case. Our results

are based on three main insights: (1) Hardcore-functions

can be used for establishing worst-case Gap-hardness in

the exponential regime; (2) Parity circuits can be encoded

locally and with an overhead proportional to their circuit

size; and (3) Linear-size parity circuits can compute non-

trivial combinatorial objects.

Our work leaves several interesting open problems. First,

can we base gapETH and elPRG on minimal assump-

tions (i.e., ETH and the existence of an exponentially-hard

OWF in NC0)? One natural way to address this question

is to reduce general CSPs to smooth-CSPs. More generally,

for a CSP ϕ let us denote by wi the number of assignments

that violate exactly i the constraints. How do restrictions

on the weight profile w = (w0, w1, . . . , wm) affect the

computational hardness of ϕ? Note that different promise

problems (e.g., unique-CSP, gap-CSP, and smooth-CSP) can

be all presented as putting some simple restrictions on w.

Moving to the domain of REs, it will be interesting to

understand which functions can be encoded locally with

linear complexity. Additionaly, we believe that REs of list-

decodable codes (or hash functions) should be further ex-

plored. Currently, we do not have a clean abstraction of such

objects and it is not fully clear under which circumstances

list-decodable codes (or hash functions) can be replaced

by their REs. Concretely, our proof of Theorem I.2 adopts

the outline sketched in Section I-B to work with REs in a

somewhat ad-hoc way. This is very different from the cryp-

tographic setting where one can prove that REs preserves

the security of the encoded functions (e.g., “RE of PRG

is a PRG”). Formulating similar “transference theorems”

for other (worst-case) uses of REs remains an interesting

challenge.

Organization: The rest of the paper is organized as

follows. Following some preliminaries (Section II), we de-

scribe the new RE construction and prove Theorem I.6.

We continue with sufficient conditions for gapETH and a

proof of the new isolation lemma (Section IV). Due to space

limitations, the cryptographic results (including the proof of

Theorem I.4) have been omitted from this version. These

results together with few other extensions can be found in

the full version of this paper [3].

ACKNOWLEDGMENT

I am grateful to Irit Dinur for suggesting the question of

basing gapETH on Goldreich’s OWF. I also thank Oded

840



Goldreich and Uri Feige for helpful discussions. Thanks

are also due to Pasin Manurangsi for sharing the results

of [15], and to Udi Peled for pointing out a flaw in an

earlier proof of Claim IV.10. Research supported by the

European Union’s Horizon 2020 Programme (ERC-StG-

2014-2020) under grant agreement no. 639813 ERC-CLC,

by an ICRC grant and by the Check Point Institute for

Information Security.

II. PRELIMINARIES

The Hamming distance (resp., relative Hamming distance)

between a pair of equal-length strings x, x′ is the number

(resp., fraction) of coordinates in which x and x′ differ.

We say that x is α-close (resp., α-far) from x′ if their

relative Hamming distance is at most α (resp., at least α).

By default, logarithms are always taken to base 2. We let

H2(α) := −α logα−(1−α) log(1−α) denote the binary en-

tropy function, and often use the inequality
(

n
αn

) ≤ 2H2(α)n

to upper-bound the volume of an n-dimensional Hamming

ball of radius αn. We use the following standard CSP

terminology. The value of an assignment x ∈ {0, 1}n for

a CSP ϕ is defined to be the fraction of constraints that x
satisfies. The value of the instance ϕ is the maximum, over

all assignments x, of the fraction of satisfied constraints. We

say that ϕ is γ-unsatisfiable if its value is at most 1− γ.

A. Circuits

Let F be a finite field (by default the binary field). An

F-arithmetic circuit C over a set of input variables X , and

a set of output variables Y is a directed acyclic graph as

follows: Every vertex v in C is either of in-degree 0 (input

gate) or of in-degree 2 (computation gate). Every vertex v
of in-degree 0 is labelled by either a variable in X or a

field element in F. Every vertex v of in-degree 2 is labelled

by either × (product gate) or + (sum gate). A subset of the

computation nodes are also labeled by output variables (each

output variable appears in exactly one output node). Gates

which are neither input gates nor output gates are called

internal gates. For two gates u and v, if (u, v) is an edge

in C, then u is called a child of v. The size of C, denoted

|C|, is the number of gates in C. A circuit C is skew with

respect to a subset X ′ ⊂ X of the input variables, if every

product gate in C have at least one child which is labeled

by a constant or by a variable in X ′. (This, in particular,

implies that the computed function is affine in the variables

X \ X ′.) An arithmetic circuit over n input variables and

m output variables defines a function f : Fn → F
m in the

natural way.

B. Randomized Encoding of Functions

Roughly speaking, a randomized encoding [30], [5] of a

function f(x) is a randomized mapping f̂(x; r) such that

for every input x the output distribution f̂(x; r) (induced

by a random choice of r) depends only on the output of

f(x). Throughout the paper we employ perfect randomized
encoding as defined below.

Definition II.1 (Perfect Randomized Encoding). Let f :
{0, 1}n → {0, 1}s be a function. We say that a function
f̂ : {0, 1}n × {0, 1}ρ → {0, 1}ŝ is a perfect randomized

encoding (PRE) of f if there exists a deterministic decoding
algorithm Dec and a randomized simulator Sim which
satisfy the following:
• (Perfect correctness) For every input x ∈ {0, 1}n and
r ∈ {0, 1}ρ, it holds that Dec(f̂(x; r)) = f(x).

• (Perfect privacy) For every x ∈ {0, 1}n, the distribution
f̂(x; r), induced by a uniform choice of r R← {0, 1}ρ,
is identical to the distribution Sim(f(x)).

• (Balanced simulation) The distribution Sim(y) induced
by choosing y

R← {0, 1}s is identical to the uniform
distribution over {0, 1}ŝ.

• (Length preserving) The difference between the output
length and the total input length of the encoding, ŝ −
(n+ ρ), is equal to the difference, s− n, between the
output length and the input length of f . Equivalently,
the randomness complexity ρ equals to the difference
between the output complexity ŝ of f̂ to the output
length s of f .

We refer to the second input of f̂ as its random input

and define the complexity of the RE to be its randomness
complexity ρ. (In the case of local perfect REs, this also
measures the computational overhead of computing the RE
compared to computing f .)

Encoding collections: The definition naturally

extends to the case where F is a collection of

functions
{
fz : {0, 1}n(z) → {0, 1}s(z)}

z∈{0,1}∗ . In

particular, we say that the collection F̂ , defined by{
f̂z : {0, 1}n(z) × {0, 1}ρ(z) → {0, 1}ŝ(z)

}
z∈{0,1}∗

,

perfectly encodes F if for every z, f̂z perfectly encodes

fz . Furthermore, we always assume that the encoding is

uniform in the sense that there exists a polynomial-time

algorithm which given z outputs a description (say as a

boolean circuit) of the encoding f̂z , its decoder Decz and

its simulator Simz .
Combinatorial view: It is not hard to show (see [5, Sec-

tion 4]) that perfect REs satisfy the combinatorial structure

defined in the introduction: The space of encodings {0, 1}ŝ
can be partitioned to 2ρ size sets {Dy}y∈{0,1}s such that for

every x the mapping g(r) = f̂(x; r) forms a bijection from

the randomness space {0, 1}ρ to the set Dy . (The injectivity

part is sometimes referred to as the unique randomness

property). As a result, we get the following simple but useful

claim.

Claim II.2. Let h : {0, 1}n → {0, 1}s be a function and
let ĥ(x, r) : {0, 1}n × {0, 1}ρ → {0, 1}ŝ be a perfect
randomized encoding of h with decoder Dec. Then for any
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ŷ ∈ {0, 1}ŝ and any subset X ⊂ {0, 1}n the size of the set{
(x, r) : (x ∈ X) ∧ (x, r) ∈ ĥ−1(ŷ)

}

equals to the size of the set

X ∩ h−1(y),
where y = Dec(ŷ).

C. Hashing and List-Decodable Codes

Let h : X × W → Z be a two argument function. In

the following we think of the first input (denoted by x) as

the main input and on the second input (denoted by w) as

a “key” or an “index”. Correspondingly, we write hw(x) :=
h(x,w), and sometimes view h as a collection of functions

{hw : X → Z}w∈W . We say that h is pairwise independent
hash function if for any x �= x′ ∈ X , for a random choice

of w
R← W , the joint distribution of the random variables

(hw(x), hw(x
′)) is uniform over Z2.

We can also think of h as a code which maps an informa-

tion word x into a codeword of length |W | over the alphabet

Z defined by (hw(x))w∈W . That is, h provides a direct

access to every coordinate of the codeword. We say that a

(possibly randomized) codeword oracle O :W → Z ∪ {⊥}
is (δ, ε)-correlated with a codeword of x ∈ X (or, in short,

correlated with x) if for every w ∈ W Pr[O(w) �= ⊥] ≥ δ
and Pr

w
R←W

[O(w) = h(x,w)|O(w) �= ⊥] ≥ 1
|Z| + ε. We

say that h is (δ, ε)-list-decodable with κ oracle calls and list

size λ if there exists an oracle algorithm A with running

time λ · poly(log(|X|)) which, after at most κ oracle calls

to an oracle O which is (δ, ε)-correlated with some x ∈ X ,

generates a set Λ of size at most λ, such that Pr[x ∈ Λ] ≥ 1
2 .

Linear-time constructions: Ishai, Kushilevitz, Ostro-

vsky and Sahai [31] proved that there exists a pairwise hash

function h : {0, 1}n × {0, 1}t → {0, 1}s which can be

computed by a linear-size circuit which is skew with respect

to the index argument. Baron, Ishai and Ostrovsky [10]

(building on Holenstein, Maurer, Sjödin [27]) showed that a

variant of the IKOS construction yields a locally-decodable

code. In particular, the following theorem holds.

Theorem II.3 ([31], [10]). For any s = O(n), there exists
t = O(n) and a function h : {0, 1}n × {0, 1}t → {0, 1}s
with the following properties:

1) h is pairwise-independent hash function.
2) For any ε, δ > 0 the code induced by h is (δ, ε)-list-

decodable with complexity and list size of O(n/δε2).
3) The function h can be computed by a linear-size circuit

which is skew with respect to the second argument.

III. EFFICIENT RANDOMIZED ENCODING FOR

LIST-DECODABLE CODES

The following lemma (whose proof is deferred to Sec-

tion III-A) shows that linear circuits (or more generally skew

circuits whose skew variables are public) can be encoded by

a linear size circuits. For simplicity, the lemma is stated

with respect to the binary field though the proof readily

generalizes to arithmetic circuits over arbitrary finite fields.

Lemma III.1. Let h : {0, 1}n × {0, 1}t → {0, 1}s be a
function which can be computed by a circuit of size S which
is skew with respect to the second argument of h. Then, for
every w ∈ {0, 1}k the function hw(·) = h(x,w) admits
a 3-local PRE of complexity Θ(S). Moreover, the function
H : {0, 1}n+t → {0, 1}s+t also admits such an encoding.

Combining the above with Theorem II.3, we derive The-

orem I.6 (re-stated below in a a more detailed form).

Theorem III.2 (Theorem I.6 restated). For any s = O(n),
there exists t = O(n) and a function h : {0, 1}n×{0, 1}t →
{0, 1}s with the following properties:

1) h forms a collection of pairwise-independent hash
function.

2) For any ε, δ > 0 the code induced by h is (δ, ε)-list-
decodable with complexity and list size of O(n/δε2).

3) For any w ∈ {0, 1}t the function hw(·) := h(·, w) has
a perfect randomized encoding ĥw with locality 3 and
complexity of O(n). Moreover, this also holds for the
function H(x,w) = (h(x,w), w).6

Remark III.3. We will sometimes employ Theorem III.2
with varying output lengths s (e.g., s is chosen at random
from {1, . . . , n}). Note that as long as we have some linear
upper-bound on the largest possible value of s (e.g., n), we
get an upper-bound of cn, for some absolute constant c > 0,
on the maximal complexity of the RE.

It is natural to ask whether more general linear-size

circuits admit local encodings with linear complexity. By

adopting an argument from [7], we show that there is a

degree-2 function computable by a linear-size circuit that

cannot be encoded locally with less than Ω(n2) complexity.

In fact, this holds for the IKOS pair-wise independent hash

function h(x,w) (for the case where the index w is not

outputted and remains hidden). See the full version for

details.

A. Proof of Lemma III.1

We prove the second (Moreover) part of the theorem

by constructing a 3-local PRE Ĥ(x,w; r) of the form

(ĥ(x,w; r), w) whose randomness complexity equals to the

number of internal gates in the skew circuit that computes

H . The first part then follows by considering the encoding

ĥw(x; r) = ĥ(x,w; r).
The encoding: For every internal gate (which is not an

input or an output gate) we allocate a random input ri. For

ease of notation, we also define “dummy” variables for input

6The “Moreover part” will be useful for our cryptographic applications
and will allow us to get a single local PRG (as opposed to collection of
local PRGs).
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and output gates. Specifically, for an input gate i, we set ri
to the value of the corresponding label (an x variable, a w
variable or a constant), and for an output gate i we let ri = 0.

For every non-input gate i whose children are the gates j
and �, we output the three local function ŷi = rj � r� − ri
where � stands for addition if i is an addition gate and for

multiplication if i is a multiplication gate. We also output

the values w = (w1, . . . , wt) of the “key” variables. Observe

that the number of random inputs, ρ, is exactly the number of

internal gates, and the number of outputs is exactly ρ+s+t,
as required.

Correctness: Fix some input (x,w) and randomness r
and let (ŷ, w) denote the output of the encoding. Let vi =
vi(x,w) be the value induced on the i-th gate of H by the

input (x,w). Our goal is to decode the value vi of the i-
th output wire of H given the encoding w and ŷ. For this

it suffices to show that we can compute the value gi =
vi(x,w) − ri for each gate i (since ri is taken to be zero

for output variables). We compute these values one-by-one

by traversing the circuit in topological order as follows.

• If i is an input/constant gate then we observe that gi =
0.

• If i is an addition gate whose children are the gates j
and �, we compute gi by

gj+g�+ŷi = vj−rj+v�−r�+rj+r�−ri = vj+v�−ri = vi−ri ,

where ŷi is the output of the encoding which is asso-

ciated with the i-th gate of H .

• If i is a multiplication gate whose children are the gates

j and �, then � must be an input gate whose value v� is

known as part of the encoding (i.e., it is one of the w
variables or just a field constant). We therefore output

the value v� · gj + ŷi. Recalling that v� = r�, the output

simplifies to v�(vj−rj)+rj ·v�−ri = v�vj−ri = vi−ri.
Privacy: Let M denote the set of internal gates in H

(which are neither input nor output gates) and let O denote

the set of output gates. Given (y, w) the simulator samples

an encoding as follows: (1) Sample (ŷi)i∈M uniformly at

random; (2) Apply the decoder to w, (ŷi)i∈M and compute,

for each internal gate i the value gi, and for each output

gate o set ŷo = gi + gj − yo where i and j are the children

of the o-th output. (3) Output (ŷ, w).
First observe that the simulator maps the uniform dis-

tribution over {0, 1}s+t to the uniform distribution over

{0, 1}ρ+s+t, and therefore it is balanced. Next, we prove

that the simulator perfectly simulates the encoding. Fix some

x and w. Consider the distribution Ĥ(x,w; r) = (ŷ, w)
induced by a random choice of r. Observe that the joint

distribution of (ŷi)i∈M is uniform since each ŷi can be

written as fi(w, x, r) − ri, where fi does not depend

on ri. Hence, the simulator perfectly samples the prefix

(ŷi)i∈M . Moreover, both in the simulation and in the actual

encoding the suffix ((ŷo)o∈O, w) is uniquely determined by

the prefix of the encoding (ŷi)i∈M and by the output value

(y, w) = H(x,w), and therefore the two distributions are

identical.

IV. SUFFICIENT CONDITIONS FOR GAPETH

A. fasETH implies gapETH

In this section we base Gap-ETH on the assumption that

it is exponentially hard to solve ϕ even under the promise

that ϕ has only “few almost-satisfying” assignments.

Assumption IV.1 (fasETH). The fasETH(k, a, β, γ, α)
assumption asserts that there is no 2βn-time algorithm that
solves k-CSPs over n variables and m ≤ an constraints
with at most 2αn assignments of value larger than 1−γ. The
fasETH assumption asserts that fasETH(k, a, β, γ, β/5)
holds for some integer k and some constants a, β, γ.

Lemma IV.2. fasETH implies gapETH. In particular,
if fasETH(k, a, β, γ, β/5) holds then, for some γ′ > 0,
there is no 2βn/5-time algorithm that distinguishes between
satisfiable k-CSPs and γ′-unsatisfiable k-CSPs.

Proof: Let b = β/5 and let h : {0, 1}n × {0, 1}t →
{0, 1}bn be the list decodable code promised by Theo-

rem III.2. For any given w ∈ {0, 1}t, let hw(x) := h(x,w)
and let ĥw(x; r) be a perfect randomized encoding of hw
with randomness complexity of cn and output complexity of

(b+ c)n for a constant c = c(b). (In fact, by Remark III.3,

c can be treated as a universal constant independent of b.)
Assume, towards a contradiction, that there exists a 2βn/5-

time algorithm A which distinguishes between satisfiable k-

CSPs and γ′-unsatisfiable k-CSPs for some constant γ′ <
γ

a+b+c (additional restrictions on γ′ will be added later).

We use A to find a satisfying assignment for a k-CNF ϕ
over n variables and m ≤ an constraints which has no

more than 2βn/5 assignments of value larger than 1 − γ.

Specifically, we show how to convert A to an oracle O
which is (δ ≥ 2−bn, ε ≥ 2−βn/4)-correlated with the

h-codeword of a satisfying assignment x ∈ {0, 1}n of

ϕ. Each query to O will be emulated in time poly(n)
and a single call to the algorithm A on a k-CSP over

n′ = (1 + b)n variables. Therefore, we can then recover x

in time poly(n) ·2 βn′
5 · 1

δε2 = poly(n)2(0.9β+β2/25)n < 2βn,

in contradiction to our hypothesis.

The oracle O:
• Given w ∈ {0, 1}t, sample ẑ

R← {0, 1}(b+c)n and

define a k-CSP ψw,ẑ over n′ = (1 + b)n variables

x = (x1, . . . , xn), r = (r1, . . . , rcn) and m′ = m +
(b + c)n ≤ (a + b + c)n constraints by ψw,ẑ :=
ϕ ∧ (ĥw(x; r) = ẑ).

• If A claims that the value of ψw,ẑ is smaller than 1−γ′
output ⊥; Otherwise, output z = Decw(ẑ) where Decw
is the decoder of the encoding ĥw.

Analysis. The running time of O is evident from its de-

scription. Fix some assignment x ∈ {0, 1}n that satisfies
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ϕ. We claim that the oracle is (δ, ε)-correlated with x. Fix

w and let z = hw(x). First, observe that if ẑ hits the set

G =
{
ĥw(x; r) : r ∈ {0, 1}cn

}
then, by perfect correctness,

the algorithm outputs the correct answer. Also, recall that,

since the encoding is perfect, the size of the set G is exactly

2cn. We conclude that δ ≥ |G|/2(b+c)n ≥ 2−bn, as required.

We move on to analyze ε. Let Ẑ ⊂ {0, 1}(b+c)n be the

set of strings ẑ for which ψw,ẑ is (1 − γ′)m′ satisfiable.

Observe that ẑ ∈ Ẑ only if there exists an assignment

(x′, r′) such that (1) x′ satisfies at least m − γ′m′ of

the constraints of ϕ and (2) the string ẑ differs from the

string ĥw(x
′; r′) in at most γ′m′ coordinates. Recall that

γ′ < γ
a+b+c , and therefore, by assumption, (1) holds for

at most 2βn/5 strings x′. Denoting this set by X , it holds,

by the unique randomness property of the perfect RE, that

the set Ẑ0 =
{
ĥw(x; r) : x ∈ X, r ∈ {0, 1}cn

}
is of size at

most 2(c+β/5)n. Since Ẑ consists of all the strings of length

(b + c)n which differ in at most γ′m′ ≤ γ′(a + b + c)n
locations from some string in Ẑ0, it follows that

|Ẑ| ≤ |Ẑ0|·2H2(
γ′(a+b+c)

b+c )(b+c)n ≤ 2n(c+β/5+H2(
γ′(a+b+c)

b+c )(b+c)),

which is upper-bounded by 2βn/4+cn for sufficiently small

γ′. We conclude that ε = |G|/|Ẑ| ≥ 2−βn/4, as required.

B. Smooth-ETH implies Gap-ETH

In this section we base Gap-ETH on the assumption that

it is exponentially hard to solve ϕ under the promise that

the number of “almost-satisfying” assignments of ϕ is not

“much larger” than the number of satisfying assignments.

For a CSP ϕ and a real number ε ∈ [0, 1], we let satε(ϕ)
denote the number of assignments that satisfy at least ε-
fraction of the constraints of ϕ. In particular, sat1(ϕ) is

simply the number of satisfying assignments. We say that ϕ
is (γ, α)-smooth if

sat1−γ(ϕ)
sat1(ϕ)

≤ 2αn.

Assumption IV.3 (smETH). The smETH(k, a, β, γ, α)
asserts that there is no 2βn-time algorithm for solving k-
CSPs over n variables and an constraints which are (γ, α)-
smooth. The smETH asserts that smETH(k, a, β, γ, α)
holds for some integer k and constants a, γ, β and α < β/5.

Our goal is to show that smETH implies gapETH. By

Lemma IV.2, it suffices to derive fasETH from smETH.

We achieve this goal via the following procedure which

sparsifies the set of almost-satisfying assignments of a CSP

ϕ by a factor of roughly sat1(ϕ).

Construction IV.4 (The transformation A). Given a k-CSP
ϕ over n variables and m constraints output a max(k, 3)-
CSP ϕ′ over n+O(n) variables and m+O(n) constraints
defined as follows:

1) Sample s ∈ {2, . . . , n+ 1}, and let h : {0, 1}n ×
{0, 1}t → {0, 1}s be the pair-wise independent hash
function promised by Theorem III.2. Sample a string
y

R← {0, 1}s and a key w R← {0, 1}k for h.
2) Output

ϕ′ =
(
ϕ ∧ (ĥw(x; r) = ŷ)

)
,

where ĥw is the 3-local perfect RE of ĥw and ŷ is
sampled by applying the encoding’s simulator to y.

Since ϕ′ contains ϕ as a sub-formula, the transformation

preserves unsatisfiability.

Lemma IV.5. For every choice of randomness, if ϕ is
unsatisfiable so is ϕ′. Moreover, a satisfying assignment x′

for ϕ′ can be efficiently transformed (by projection) to a
satisfying assignment x for ϕ.

We also prove the following isolation property.

Lemma IV.6. If ϕ is satisfiable and s = �log(sat1(ϕ))� +
1 then, with probability of at least 1/8 over the choice of
(w, ŷ), the CSP ϕ′ has a unique satisfying assignment.

Proof: Let S be the set of assignments that satisfy ϕ.

Fix an arbitrary7 string y ∈ {0, 1}s. Valiant and Vazirani [43]

proved that if |S| ∈ [2s−2, 2s−1] then, with probability at

least 1/8 over the choice of w
R← {0, 1}t, it holds that

∃ unique x ∈ S such that hw(x) = y. (1)

By Claim II.2, for every w which satisfies (1), there exists a

unique x ∈ S and a unique r for which ĥw(x, r) = ŷ. The

lemma follows.

Theorem I.5 follows by noting that, for a satisfiable CSP

ϕ, a random s equals to �log(sat1(ϕ))�+1 with probability

Ω(1/n).
In the following lemma, we show that A sparsifies the set

of almost-satisfying assignments.

Lemma IV.7. For every constants a > 0, γ ∈ [0, 1] and
ε > 0 there exists a constant γ′ > 0 for which the following
holds. Suppose that ϕ has m = an constraints, and that
s = �log(sat1(ϕ))� + 1. Then, with probability 1 − o(1)
over the choice of w and ŷ,

sat1−γ′(ϕ′) ≤ 2εn
sat1−γ(ϕ)
sat1(ϕ)

.

Proof: Fix a, γ and ε. Let S be the set of satisfying

assignments of ϕ and let B be the set of assignments that

satisfy at least 1− γ fraction of the constraints in ϕ. Recall

that s = �log(|S|)� + 1. Let ŝ denote the output length of

the encoding ĥw and let ρ denote its randomness complexity.

Recall that ρ = Θ(n) and that ŝ = ρ+ s = Θ(n), and note

that ϕ′ is a CSP over n + ρ variables and over an + ŝ

7Indeed, for this claim, we could use a simpler variant of A which sets
y to be the fixed zero string and sets ŷ to be some fixed encoding of it.
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constraints. Let δ > 0 be a constant for which
(
ŝ
δŝ

) ≤ 2εn/2

and let γ′ > 0 be a constant smaller than both (γa)/(a +
ŝ/n) and (δŝ/n)/(a+ ŝ/n).

By the choice of γ′, it follows that if an assignment (x, r)
violates at most γ′-fraction of the constraints in ϕ′ then

x ∈ B and ĥw(x, r) is δ-close to ŷ. (2)

To prove the lemma, we show that, with high probability

over the choice of w and ŷ, the number of such assignments

is at most |B|2εn−s ≤ 2εn|B|/|S|. For z ∈ {0, 1}s let

Bz = {x ∈ {0, 1}n : x ∈ B ∧ hw(x) = z} .
Observe that, for each z, the expected size of Bz (over

the choice of w) is
|B|
2s . Call z heavy if the size of Bz

is larger than its expectation by a multiplicative factor of

2εn/2. By Markov’s inequality, each z is likely to be heavy

with probability of at most 2−εn/2, and so the expected

number of heavy z’s is at most 2s−εn/2. Call w good if

the total number of heavy z’s is at most 2s−εn. By another

application of Markov’s inequality, almost all w’s (except

for a negligible fraction) are good.

Fix some good w. Call ŷ good if it lands within a distance

of at least δŝ from any string ẑ which decodes to a heavy

string z. Recall that ŷ is sampled independently from w by

applying the simulator on a uniformly chosen y
R← {0, 1}s.

Since the encoding is perfect, this means that ŷ is uniformly

distributed over {0, 1}ŝ. Therefore, the probability that ŷ
lands δ-close to some string ẑ which decodes to a heavy

string z is at most

2s−εn · 2ρ · ( ŝ
δŝ

)
2ŝ

≤ 2s−εn+ρ+εn/2−ŝ = 2−εn/2.

It follows that that, except with negligible probability, ŷ is

good.

We can now complete the argument. Fix some good w
and ŷ. Let

N =
∑

ẑ∈{0,1}ŝ:Δ(ẑ,ŷ)≤δ

∣∣∣{(x, r) : x ∈ B ∧ ĥw(x, r) = ẑ
}∣∣∣

denote the number of assignments (x, r) that satisfy (2).

Then

N ≤
∑

ẑ∈{0,1}ŝ:Δ(ẑ,ŷ)≤δ
|BDec(ẑ)|

≤
(
ŝ

δŝ

)
|B|2(εn/2)−s

≤ |B|2εn−s,
where Dec denotes the decoder of the RE, the first inequality

follows from Claim II.2, the second inequality follows from

the goodness of ŷ and the last inequality follows from our

choice of δ.

We can now prove that smETH implies fasETH.

Theorem IV.8. smETH implies fasETH.

Combined with Lemma IV.2, Theorem IV.8 implies Theo-

rem I.2.

Proof: Suppose that smETH(k, a, β, γ, α) holds for

some integer k and constants a, γ, β and α < β/5. Let

ε = 1
2 (β/5 − α) and let cn (resp., σn) be an upper-bound

on the number of variables (resp., constraints) added by

the transformation A (defined in Construction IV.4) when

applied to a CSP with n variables. We will prove that

fasETH(k, a′, β′, γ′, β′/5) holds for the constants a′ =
a+ σ, β′ = (β − ε)/(1 + c), some constant γ′ > 0.

Assume, towards a contradiction, that

fasETH(k, a′, β′, γ′, β′/5) does not hold. We show

that, in time 2βn, it is possible to find a satisfying

assignment for any (γ, α)-smooth satisfiable k-CSP ϕ over

n variables and m = an constraints. First apply A to ϕ
and get a k-CSP ϕ′ over n′ = (1 + c′)n variables and

m′ ≤ m + σn ≤ a′n′ constraints where 0 ≤ c′ ≤ c. We

condition on the event that the parameter s is chosen to be

�log(sat1(ϕ))� + 1, which happens with probability 1/n.

By Lemmas IV.6 and IV.7, with constant probability over

the choice of (w, ŷ), the resulting CSP ϕ′ is satisfiable and

has at most

2εn
sat1−γ(ϕ)
sat1(ϕ)

≤ 2εn+αn = 2n
′(α+ε)/(1+c′) ≤ 2n

′β′/5

assignments that satisfy more than 1 − γ′ of the

constraints for some γ′(ε, a) > 0. Assuming that

fasETH(k, a′, β′, γ′, β′/5) does not hold, we can find, with

probability 1
2 , a satisfiable assignment x′ for ϕ′ in time 2β

′n′

and, by Lemma IV.5, project it into a satisfying assignment

x to ϕ. Overall, the algorithm has a success probability

of Ω(1/n), and so by standard repetition, we can increase

the success probability to 1
2 . The total running time is

poly(n) · 2β′n′ ≤ poly(n) · 2(β−ε)n < 2βn, contradicting

smETH(k, a, β, γ, α).

C. Exponentially-hard Local One-way Functions imply
Gap-ETH

We prove that smETH follows from the existence of

locally-computable function which is weakly hard to invert

for 2Ω(n)-time algorithms. In fact, the theorem holds even

for the case of NC0 collections.

Theorem IV.9. If there exists a collection of NC0 functions
F =

{
fw : {0, 1}n → {0, 1}O(n)

}
which cannot be inverted

by 2Ω(n)-time algorithms with inversion probability better
than 1− 2−o(n), then smETH holds.

To prove the theorem we show that, for any function f ,

the CSP distribution induced by inverting f on a random

image y
R← f(Un), is almost surely smooth.

Claim IV.10. Let f : {0, 1}n → {0, 1}m be a function,
γ, α > 0 be positive reals and ε = α − 2(m/n)H2(γ).
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Then, with all but 2−εn probability over y R← f(Un), the
constraint satisfaction problem f(x) = y is (γ, α)-smooth.

Proof: Let w(y) = Pr[y = f(Un)] denote the weight

of y ∈ {0, 1}m under the distribution f(Un). We define a

directed graph over the image of f where y → y′ is an

edge if y is γ-close to y′ and w(y′) > w(y)2α
′n where

α′ = α− m
nH2(γ). Note that the latter condition makes the

graph acyclic. Also, by definition, if y is a sink then the

CSP f(x) = y must be (γ, α)-smooth. Indeed, the number

of assignments x for which f(x) is γ-close to y is at most

2H2(γ)m · 2nw(y)2α′n = (2nw(y)) · 2αn.
We would like to show that all but r = 2−εn fraction of

the weight is assigned to sinks. For this, it suffices to show

that for each sink y,∑
y′:∃ path from y′ to y

w(y′) ≤ w(y) · r

1− r .

Decomposing the sum according to the length i of the path

from y′ to y, and noting that the in-degree of each node is

upper-bounded by 2mH2(γ), we can upper-bound the LHS

by∑
i≥1

(2mH2(γ))iw(y)(2−α
′n)i = w(y)

∑
i≥1

(22mH2(γ)−αn)i,

using the standard formula for the sum of infinite geometric

series, we get an upper-bound of w(y) r
1−r , as required.

We can now prove the theorem.
Proof of Theorem IV.9: Let F =

{fw : {0, 1}n → {0, 1}an}w∈{0,1}t(n) be a collection

of k-local which cannot be inverted by 2βn-time algorithms

with inversion probability better than 1− 2−o(n). Fix some

β′ < β and some α < β′/5 and let γ > 0 be a constant

for which H2(γ) < α/(2a). Set ε = α − 2aH2(γ) > 0.

We will show that if smETH(k, a, β′, γ, α) does not hold

then, for every w ∈ {0, 1}t, the function fw can be inverted

in time 2βn with probability 1 − 2−Ω(n). Fix some w and

let f = fw. By Claim IV.10, with probability 1 − 2−εn

over y
R← f(Un), the k-CSP f(x) = y is (γ, α)-smooth.

Hence, an algorithm which violates smETH(k, a, β′, γ, α)
immediately yields a 2β

′n-time algorithm A that, with

probability 1 − 2−εn over y
R← f(Un), finds a preimage

x′ ∈ f−1(y) with probability 1/2 (over its internal coin

tosses). A standard repetition of poly(n) times yields an

algorithm that inverts the function with all but 2−Ω(n)

probability in time poly(n)2β
′n < 2βn. The theorem

follows.

REFERENCES

[1] B. Applebaum. Pseudorandom generators with long stretch
and low locality from random local one-way functions. SIAM
J. Comput., 42(5):2008–2037, 2013.

[2] B. Applebaum. Cryptographic hardness of random local
functions - survey. Computational Complexity, 25(3):667–
722, 2016.

[3] B. Applebaum. Exponentially-hard gap-csp and local PRG
via local hardcore functions. Electronic Colloquium on
Computational Complexity (ECCC), 24:63, 2017.

[4] B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy
for local small-bias generators. J. Cryptology, 29(3):577–596,
2016.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in

NC0. SIAM J. Comput., 36(4):845–888, 2006.

[6] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudoran-

dom generators with linear stretch in nc0. Computational
Complexity, 17(1):38–69, 2008.

[7] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography
with constant input locality. J. Cryptology, 22(4):429–469,
2009.

[8] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and the hardness of approximation prob-
lems. J. ACM, 45(3):501–555, 1998.

[9] S. Arora and S. Safra. Probabilistic checking of proofs: A
new characterization of NP. J. ACM, 45(1):70–122, 1998.

[10] J. Baron, Y. Ishai, and R. Ostrovsky. On linear-size pseudo-
random generators and hardcore functions. Theor. Comput.
Sci., 554:50–63, 2014.

[11] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient
probabilistic checkable proofs and applications to approx-
imation. In F. T. Leighton and M. T. Goodrich, editors,
Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec,
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