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Abstract—We study streaming principal component
analysis (PCA), that is to find, in O(dk) space, the top
k eigenvectors of a d × d hidden matrix Σ with online
vectors drawn from covariance matrix Σ.

We provide global convergence for Oja’s algorithm
which is popularly used in practice but lacks theoretical
understanding for k > 1. We also provide a modified
variant Oja++ that runs even faster than Oja’s. Our
results match the information theoretic lower bound in
terms of dependency on error, on eigengap, on rank k,
and on dimension d, up to poly-log factors. In addition,
our convergence rate can be made gap-free, that is
proportional to the approximation error and independent
of the eigengap.

In contrast, for general rank k, before our work (1) it
was open to design any algorithm with efficient global
convergence rate; and (2) it was open to design any
algorithm with (even local) gap-free convergence rate in
O(dk) space.

Keywords-principal component analysis, streaming al-
gorithm, online algorithm, global convergence, stochastic
optimization, convergence, optimal algorithm, nonconvex
optimization

I. INTRODUCTION

Principle component analysis (PCA) is the problem

of finding the subspace of largest variance in a dataset

consisting of vectors, and is a fundamental tool used to

analyze and visualize data in machine learning, com-

puter vision, statistics, and operations research. In the

big-data scenario, since it can be unrealistic to store the

entire dataset, it is interesting and more challenging to

study the streaming model (a.k.a. the stochastic online

model) of PCA.

Suppose the data vectors x ∈ R
d are drawn i.i.d.

from an unknown distribution with covariance matrix

Σ = E[xx�] ∈ R
d×d, and the vectors are presented to

the algorithm in an online fashion. Following (1; 2), we

assume the Euclidean norm ‖x‖2 ≤ 1 with probability
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1 (therefore Tr(Σ) ≤ 1) and we are interested in

approximately computing the top k eigenvectors of Σ.

We are interested in algorithms with memory storage

O(dk), the same as the memory needed to store any

k vectors in d dimensions. We call this the streaming
k-PCA problem.

For streaming k-PCA, the popular and natural exten-

sion of Oja’s algorithm originally designed for the k = 1
case works as follows. Beginning with a random Gaus-

sian matrix Q0 ∈ R
d×k (each entry i.i.d ∼ N (0, 1)), it

repeatedly applies

rank-k Oja’s algorithm: Qt ← (I+ ηtxtx
�
t )Qt−1,

Qt = QR(Qt) (I.1)

where ηt > 0 is some learning rate that may depend

on t, vector xt is the random vector in iteration t,
and QR(Qt) is the Gram-Schmidt decomposition that

orthonormalizes the columns of Qt.

Although Oja’s algorithm works reasonably well in

practice, very limited theoretical results are known for

its convergence in the k > 1 case. Even worse, little is

known for any algorithm that solves streaming PCA in

the k > 1. Specifically, there are three major challenges

for this problem:

1) Provide an efficient convergence rate that only loga-

rithmically depends on the dimension d.

2) Provide a gap-free convergence rate that is indepen-

dent of the eigengap.

3) Provide a global convergence rate so the algorithm

can start from a random initial point.

In the case of k > 1, to the best of our knowledge,

only Shamir (7) successfully analyzed the original Oja’s

algorithm. His convergence result is only local and not

gap-free.1

Other groups of researchers (2; 6; 8) studied a block
variant of Oja’s, that is to sample multiple vectors x in

each round t, and then use their empirical covariance

to replace the use of xtx
�
t . This algorithm is more

1A local convergence rate means that the algorithm needs a warm
start that is sufficiently close to the solution. However, the complexity
to reach such a warm start is not clear.
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Paper Global Convergence Is It “Efficient”? Local Convergence

k = 1
gap-

dependent

Shamir (3) Õ
(

d
gap2

· 1
ε

)
� no Õ

(
1

gap2
· 1
ε

)
�

Sa et al. (4) Õ
(

d
gap2

· 1
ε

)
� no Õ

(
d

gap2
· 1
ε

)
�

Li et al. (5) a Õ
( dλ1
gap2

· 1
ε

)
� no Õ

( dλ1
gap2

· 1
ε

)
�

Jain et al. (1) Õ
( λ1
gap2

· 1
ε

)
yes Õ

( λ1
gap2

· 1
ε

)

Theorem 1 (Oja) Õ
( λ1
gap2

· 1
ε

)
yes Õ

( λ1
gap2

· 1
ε

)

k = 1
gap-free

Shamir (3) (Remark I.3) Õ
(

d
ρ2
· 1
ε2

)
� no Õ

(
1
ρ2
· 1
ε2

)
�

Theorem 2 (Oja) Õ
(λ1∼(1+m)

ρ2
· 1
ε

)
yes Õ

(λ1∼(1+m)

ρ2
· 1
ε

)

k ≥ 1
gap-

dependent

Hardt-Price (6) b Õ
( dλk
gap3

· 1
ε

)
� no Õ

( dλk
gap3

· 1
ε

)
�

Li et al. (2) b Õ
( kλk
gap3

· (kd+ 1
ε

))
� no Õ

( kλk
gap3

· 1
ε

)
�

Shamir (7) unknown � no O
(

1
gap2

· 1
ε

)
�

Balcan et al. (8) b Õ
( d(λ1∼k)

2λk
gap3

· 1
ε

)
�

(when λ1∼k ≥ k/d) c no
Õ
( d(λ1∼k)

2λk
gap3

· 1
ε

)
�

(when λ1∼k ≥ k/d)

Theorem 1 (Oja) Õ
(λ1∼k

gap2
· ( 1

ε
+ k

))
yes Õ

(λ1∼k
gap2

· 1
ε

)

Theorem 4 (Oja++) Õ
(λ1∼k

gap2
· 1
ε

)
yes Õ

(λ1∼k
gap2

· 1
ε

)

Theorem 6 (LB) Ω
( kλk
gap2

· 1
ε

)
(lower bound)

k ≥ 1
gap-free

Theorem 2 (Oja)
Õ
(min{1, (λ1∼k+k·λ(k+1)∼(k+m))}

ρ2
·k)

+Õ
(λ1∼k+m

ρ2
· 1
ε

) yes Õ
(λ1∼k+m

ρ2
· 1
ε

)

Theorem 5 (Oja++) Õ
(λ1∼k+m

ρ2
· 1
ε

)
yes Õ

(λ1∼k+m

ρ2
· 1
ε

)

Theorem 6 (LB) Ω
( kλk

ρ2
· 1
ε

)
(lower bound)

Table I: Comparison of known results. For gap
def
= λk − λk+1, every ε ∈ (0, 1) and ρ ∈ (0, 1):

• “gap-dependent convergence” means ‖Q�
T Z‖2F ≤ ε where Z consists of the last d− k eigenvectors.

• “gap-free convergence” means ‖Q�
T W‖2F ≤ ε where W consists of all eigenvectors with eigenvalues ≤ λk − ρ.

• a global convergence is “efficient” if it only (poly-)logarithmically depend on the dimension d.
• k is the target rank; in gap-free settings m be the largest index so that λk+m > λk − ρ.

• we denote by λa∼b
def
=

∑b
i=a λi in this table. Since ‖x‖2 ≤ 1 for each sample vector, we have

gap ∈ [0, 1/k], λi ∈ [0, 1/i], kgap ≤ kλk ≤ λ1∼k ≤ λ1∼k+m ≤ 1 .

• we use � to indicate the result is outperformed.
• some results in this table (both ours and prior work) depend on λ1∼k . In principle, this requires the algorithm to know a constant approximation

of λ1∼k upfront. In practice, however, since one always tunes the learning rate η (for any algorithm in the table), we do not need additional
knowledge on λ1∼k .

aThe result of (5) is in fact Õ(
dλ2

1
gap2

· 1
ε
) by under a stronger 4-th moment assumption. It slows down at least by a factor 1/λ1 if the 4-th

moment assumption is removed.
bThese results give guarantees on spectral norm ‖Q�

T W‖22, so we increased them by a factor k for a fair comparison.

cIf ‖xt‖2 is always 1 then λ1∼k ≥ k/d always holds. Otherwise, even in the rare case of λ1∼k < k/d, their complexity becomes Õ
( k2λk
d·gap3

)
and is still worse than ours.

stable and easier to analyze, but only leads to suboptimal

convergence.

We discuss them more formally below (and see

Table I):

• Shamir (7) implicitly provided a local but efficient

convergence result for Oja’s algorithm,2 which re-

2The original method of Shamir (7) is an offline one. One can
translate his result into a streaming setting and this requires a lot of
extra work including the martingale techniques we introduce in this
paper.

quires a very accurate starting matrix Q0: his the-

orem relies on Q0 being correlated with the top k
eigenvectors by a correlation value at least k − 1/2.

If using random initialization, this event happens with

probability at most 2−Ω(d).

• Hardt and Price (6) analyzed the block variant of

Oja’s,3 and obtained a global convergence that lin-

early scales with the dimension d. Their result also

3They are in fact only able to output 2k vectors, guaranteed to
approximately include the top k eigenvectors.
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has a cubic dependency on the gap between the k-th

and (k+1)-th eigenvalue which is not optimal. They

raised an open question regarding how to provide any

convergence result that is gap-free.

• Balcan et al. (8) analyzed the block variant of Oja’s.

Their results are also not efficient and cubically

scale with the eigengap. In the gap-free setting, their

algorithm runs in space more than O(kd), and also

outputs more than k vectors.4 For such reason, we

do not include their gap-free result in Table I, and

shall discuss it more in the full version.

• Li et al. (2) also analyzed the block variant of Oja’s.

Their result also cubically scales with the eigengap,

and their global convergence is not efficient.

• In practice, researchers observed that it is advanta-

geous to choose the learning rate ηt to be high at the

beginning, and then gradually decreasing (c.f. (9)).

To the best of our knowledge, there is no theoretical

support behind this learning rate scheme for general

k.

In sum, it remains open before our work to obtain

(1) any gap-free convergence rate in space O(kd), (2)

any global convergence rate that is efficient, or (3) any

global convergence rate that has the optimal quadratic

dependence on eigengap.

Over Sampling. Let us emphasize that it is often

desirable to directly output a d×k matrix QT . Some of

the previous results, such as Hardt and Price (6), or the

gap-free case of Balcan et al. (8), are only capable of

finding an over-sampled matrix d×k′ for some k′ > k,

with the guarantee that these k′ columns approximately

contain the top k eigenvectors of Σ. However, it is not

clear how to find “the best k vectors” out of this k′-
dimensional subspace.

Special Case of k = 1. Jain (1) obtained the first

convergence result that is both efficient and global for

streaming 1-PCA. Shamir (3) obtained the first gap-free

result for streaming 1-PCA, but his result is not efficient.

Both these results are based on Oja’s algorithm, and it

remains open before our work to obtain a gap-free result

that is also efficient even when k = 1.

Other Related Results. Mitliagkas et al. (10) obtained

a streaming PCA result but in the restricted spiked

covariance model. Balsubramani et al. (11) analyzed a

modified variant of Oja’s algorithm and needed an extra

O(d5) factor in the complexity.
The offline problem of PCA (and SVD) can be solved

via iterative algorithms that are based on variance-

4They require space O((k + m)d) where k + m is the number
of eigenvalues in the interval [λk − ρ, 1] for some “virtual gap”
parameter ρ. See our Theorem 2 for a definition. This may be as
large as O(d2). Also, they output k + m vectors which are only
guaranteed to approximately “contain” the top k eigenvectors.

reduction techniques on top of stochastic gradient meth-

ods (7; 12) (see also (13; 14) for the k = 1 case);

these methods do multiple passes on the input data

so are not relevant to the streaming model. Offline

PCA can also be solved via power method or block

Krylov method (15), but since each iteration of these

methods relies on one full pass on the dataset, they

are not suitable for streaming setting either. Other of-

fline problems and efficient algorithms relevant to PCA

include canonical correlation analysis and generalized

eigenvector decomposition (16–18).

Offline PCA is significantly easier to solve because

one can (although non-trivially) reduce a general k-

PCA problem to k times of 1-PCA using the techniques

of (12). However, this is not the case in streaming PCA

because one can lose a large polynomial factor in the

sampling complexity.

A. Results on Oja’s Algorithm

We denote by λ1 ≥ · · · ≥ λd ≥ 0 the eigenvalues

of Σ, and it satisfies λ1 + · · ·+ λd = Tr(Σ) ≤ 1. We

present convergence results on Oja’s algorithm that are

global, efficient and gap-free.

Our first theorem works when there is a eigengap

between λk and λk+1:

Theorem 1 (Oja, gap-dependent). Letting gap
def
= λk −

λk+1 ∈
(
0, 1

k

]
and Λ

def
=
∑k

i=1 λi ∈
(
0, 1
]
, for every

ε, p ∈ (0, 1) define learning rates

T0 = Θ̃

(
kΛ

gap2p2

)
, T1 = Θ̃

(
Λ

gap2

)
,

ηt =

⎧⎪⎨⎪⎩
Θ̃
(

1
gap·T0

)
1 ≤ t ≤ T0;

Θ̃
(

1
gap·T1

)
T0 < t ≤ T0 + T1; 5

Θ̃
(

1
gap·(t−T0)

)
t > T0 + T1.

Let Z be the column orthonormal matrix consisting
of all eigenvectors of Σ with values no more than
λk+1. Then, the output QT ∈ R

d×k of Oja’s algorithm
satisfies with probability at least 1− p:

for every6 T = T0 + T1 + Θ̃
(
T1

ε

)
it satisfies

‖Z�QT ‖2F ≤ ε .

Above, Θ̃ hides poly-log factors in 1
p ,

1
gap and d.

In other words, after a warm up phase of length T0,

we obtain a λ1+···+λk

gap2 · 1
T convergence rate for the

quantity ‖Z�QT ‖2F . We make several observations (see

also Table I):

5The intermediate stage [T0, T0 + T1] is in fact unnecessary, but
we add this phase to simplify proofs.

6Theorem also applies to every T ≥ T0 + T1 + Ω̃
(
T1/ε

)
by

making ηt poly-logarithmically dependent on T .
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• In the k = 1 case, Theorem 1 matches the best

known result of Jain et al. (1).

• In the k > 1 case, Theorem 1 gives the first efficient

global convergence rate.

• In the k > 1 case, even in terms of local convergence

rate, Theorem 1 is faster than the best known result

of Shamir (7) by a factor λ1 + · · ·+ λk ∈ (0, 1).

Remark I.1. The quantity ‖Z�QT ‖2F captures the cor-

relation between the resulting matrix QT ∈ R
d×k

and the smallest d − k eigenvectors of Σ. It is a

natural generalization of the sin-square quantity widely

used in the k = 1 case, because if k = 1 then

‖Z�QT ‖2F = sin2(q, ν1) where q is the only column

of Q and ν1 is the leading eigenvector of Σ.

Some literatures instead adopt the spectral-norm guar-

antee (i.e., bounds on ‖Z�QT ‖22) as opposed to the

Frobenius-norm one. The two guarantees are only up to

a factor k away. We choose to prove Frobenius-norm

results because: (1) it makes the analysis significantly

simpler, and (2) k is usually small comparing to d, so

if one can design an efficient (i.e., dimension free) con-

vergence rate for the Frobenius norm that also implies

an efficient convergence rate for the spectral norm.

Remark I.2. Our lower bound later (i.e. Theorem 6)

implies, at least when λ1 and λk are within a constant

factor of each other, the local convergence rate in

Theorem 1 is optimal up to log factors.

Gap-Free Streaming k-PCA. When the eigengap is

small which is usually true in practice, it is desirable

to obtain gap-free convergence (3; 15). We have the

following theorem which answers the open question of

Hardt and Price (6) regarding gap-free convergence rate

for streaming k-PCA.

Theorem 2 (Oja, gap-free). For every ρ, ε, p ∈
(0, 1), let λ1, . . . , λm be all eigenvalues of Σ that
are > λk − ρ, let Λ1

def
=

∑k
i=1 λi ∈

(
0, 1
]
,

Λ2
def
=

∑k+m
j=k+1 λj ∈

(
0, 1
]
, define learning rates

T0 = Θ̃

(
k ·min{1, Λ1 +

kΛ2

p2 }
ρ2 · p2

)

T1 = Θ̃

(
Λ1 + Λ2

ρ2

)
,

ηt =

⎧⎪⎨⎪⎩
Θ̃
(

1
ρ·T0

)
t ≤ T0;

Θ̃
(

1
ρ·T1

)
t ∈ (T0, T0 + T1];

Θ̃
(

1
ρ·(t−T0)

)
t > T0 + T1.

Let W be the column orthonormal matrix consisting
of all eigenvectors of Σ with values no more than
λk−ρ. Then, the output QT ∈ R

d×k of Oja’s algorithm
satisfies with prob. at least 1− p:

for every7 T = T0 + T1 + Θ̃
(
T1

ε

)

it satisfies ‖W�QT ‖2F ≤ ε .

Above, Θ̃ hides poly-log factors in 1
p ,

1
ρ and d.

Note that the above theorem is a double approxima-
tion. The number of iterations depend both on ρ and ε,

where ε is an upper bound on the correlation between

QT and all eigenvectors in W (which depends on ρ).

This is the first known gap-free result for the k > 1
case using O(kd) space.

One may also be interested in single-approximation

guarantees, such as the rayleigh-quotient guarantee.

Note that a single-approximation guarantee by definition

loses information about the ε-ρ tradeoff; furthermore,

(good) single-approximation guarantees are not easy to

obtain.8

We show in this paper the following theorem regard-

ing the rayleigh-quotient guarantee:

Theorem 3 (Oja, rayleigh quotient, informal). There
exist learning rate choices so that, for every T =
Θ̃
(

k
ρ2·p2

)
, letting qi be the i-th column of the output

matrix QT , then

Pr
[∀i ∈ [k], q�i Σqi ≥ λi − Θ̃(ρ)

] ≥ 1− p .

Again, Θ̃ hides poly-log factors in 1
p ,

1
ρ and d.

Remark I.3. Before our work, the only gap-free result

with space O(kd) is Shamir (3) — but it is not efficient

and only for k = 1. His result is in Rayleigh quotient

but not double-approximation. If the initialization phase

is ignored, Shamir’s local convergence rate matches our

global one in Theorem 3. However, if one translates his

result into double approximation, the running time loses

a factor ε. This is why in Table I Shamir’s result is in

terms of 1/ε2 as opposed to 1/ε.

B. Results on Our New Oja++ Algorithm

Oja’s algorithm has a slow initialization phase (which

is also observed in practice (9)). For example, in the

gap-dependent case, Oja’s running time Õ
(
λ1+···+λk

ρ2 ·(
k + 1

ε

))
is dominated by its initialization when ε >

1/k. We propose in this paper a modified variant of

Oja’s that initializes gradually.

Our Oja++ Algorithm. At iteration 0, instead putting

all the dk random Gaussians into Q0 like Oja’s, our

Oja++ only fills the first k/2 columns of Q0 with

random Gaussians, and sets the remaining columns be

zeros. It applies the same iterative rule as Oja’s to go

7Theorem also applies to every T ≥ T0+Ω̃
(
T0/ε

)
by making ηt

poly-logarithmically dependent on T .
8Pointed out by (1), a direct translation from double approximation

to a rayleigh-quotient type of convergence loses a factor on the
approximation error. They raised it as an open question regarding
how to design a direct proof without sacrificing this loss. Our next
theorem answers this open question (at least in the gap-free case).
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from Qt to Qt+1, but after every T0 iterations for some

T0 ∈ N
∗, it replaces the zeros in the next k/4, k/8, . . .

columns with random Gaussians and continues.9 This

gradual initialization ends when all the k columns

become nonzero, and the remaining algorithm of Oja++

works exactly the same as Oja’s.

We provide pseudocode of Oja++ in the full version,

and state below its main theorems:

Theorem 4 (Oja++, gap-dependent, informal). Letting
gap

def
= λk − λk+1 ∈

(
0, 1

k

]
, our Oja++ outputs a

column-orthonormal QT ∈ R
d×k with ‖Z�QT ‖2F ≤ ε

in T = Θ̃
(

λ1+···+λk

gap2ε

)
iterations.

Theorem 5 (Oja++, gap-free, informal). Given ρ ∈
(0, 1), our Oja++ outputs a column-orthonormal QT ∈
R

d×k with ‖W�QT ‖2F ≤ ε in T = Θ̃
(

λ1+···+λk+m

ρ2ε

)
iterations.

C. Result on Lower Bound

We have the following information-theoretical lower

bound for any (possibly offline) algorithm:

Theorem 6 (lower bound, informal). For every integer
k ≥ 1, integer m ≥ 0, every 0 < ρ < λ <
1/k, every (possibly randomized) algorithm A, we
can construct a distribution μ over unit vectors with
λk+m+1(Eμ[xx

�]) ≤ λ − ρ and λk(Eμ[xx
�]) ≥ λ.

The output QT of A with samples x1, ..., xT i.i.d. drawn
from μ satisfies

E
x1,...,xT ,A

[‖W�QT ‖2F
]
= Ω

(
kλ

ρ2 · T
)

.

(W consists of the last d − (k + m) eigenvectors of
Eμ[xx

�].)

Our Theorem 6 (with m = 0 and ρ = gap) implies

that, in the gap-dependent setting, the global conver-

gence rate of Oja++ is optimal up to log factors, at least

when λ1 = O(λk). Our gap-free result does not match

this lower bound. We explain in the full version that if

one increases the space from O(kd) to O((k+m)d) in

the gap-free case, our Oja++ can also match this lower

bound.
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