
Faster (and still pretty Simple) Unbiased Estimators
for Network (Un)reliability

David R. Karger

Abstract—Consider the problem of estimating the
(un)reliability of an n-vertex graph when edges fail with
probability p. We show that the Recursive Contraction
Algorithms for minimum cuts, essentially unchanged and
running in n2+o(1) time, yields an unbiased estimator of
constant relative variance (and thus an FPRAS with the
same time bound) whenever pc < n−2. For larger p,
we show that reliable graphs—where failures are rare so
seemingly harder to find—effectively act like small graphs
and can thus be analyzed quickly. Combining these ideas
gives us an unbiased estimator for unreliability running
in Õ(n2.78) time, an improvement on the previous Õ(n3)
time bound.

I. INTRODUCTION

In the network reliability problem we are given a graph

G and a failure probability p and seek to compute the

probability uG(p) that G becomes disconnected when

edges fail independently with probability p.

This problem is �P-complete [1], [2]. Karger [3]

gave the first fully polynomial randomized approximation
scheme (FPRAS) for uG(p), with a running time of

roughly Õ(n5).1 Harris and Srinivasan [4] improved

the runtime to n3+o(1) at the cost of a more complex

algorithm and analysis. Most recently, Karger [5] gave

a simple algorithm with running time O(mn2) which,

combined with standard sparsification methods, yielded

a runtime of Õ(n3). All of the previous work shared a

high level structure, applying simple naive Monte Carlo

estimation when the min-cut c satisfies pc ≥ n−2 and

more sophisticated methods when pc ≤ n−2.

In this work, we improve both approaches. We give

a fast and simple n2+o(1)-time algorithm for the case

pc ≤ n−2. Rather surprisingly, the algorithm for doing

MIT Computer Science and AI Laboratory, Cambridge, MA 02138.
email: karger@mit.edu.
URL: http://people.csail.mit.edu/karger

1Technically, we are estimating network unreliability. For exact
algorithms the two problems are identical, but an approximation
to one does not translate to the other. Estimating reliability—i.e.
the likelihood of staying connected—is most difficult on unreliable
graphs which are unimportant in practice. There is no known FPRAS
for this problem. But for reliable graphs an FPRAS for reliability is
trivial while estimating unreliability is the harder problem.

so is a familiar one: the Recursive Contraction Algorithm

for finding minimum cuts [6]. The algorithm runs almost

unchanged, copying and generating contracted graphs

recursively. But instead of returning a cut, each leaf node

now returns a reliability estimate (for a tiny graph); the

average of all the estimates forms an unbiased estimator
of constant relative variance which yields an FPRAS in

a straightforward fashion.

While the Recursive Contraction Algorithm was pre-

viously known, our primary contribution is the analytic

work needed to demonstrate that it can correctly estimate

network reliability. We develop techniques for both upper

and lower bounding the reliability of networks; these

techniques may yield additional applications in network

reliability or in the combinatorics of graph cuts more

generally.

With this progress for small p (hopefully a common

case in practice, where reliable graph are preferred),

we must address the time taken by the naive Monte

Carlo estimation algorithm when p is large. Here, our

main contribution is to demonstrate that Õ(n3) is not a

fundamental limit. We give an algorithm with runtime

Õ(n2.78) for this case. While only a small improve-

ment, this result also relies on interesting new analytic

methods. In particular, we define an effective size for

graphs that can be used to analyze random contraction

algorithms; reliable graphs have a smaller effective size

because they contract “faster.”

A. Related Work

Earlier reliability algorithms were based on cut enu-

meration. Karger [7] showed that for small p the value

uG(p) is approximately equal to the probability that a

small cut fails and that there are few such small cuts. One

can therefore enumerate them and apply a DNF-counting

algorithm [8] to approximate this approximation. Harris

and Srinivasan [4] dug much deeper into this analysis,

giving better, reliability-dependent bounds on the number

of small cuts, faster algorithms for enumerating them,

and data-structures for accelerating estimation over them.

Karger [9] showed that explicit cut enumeration is not

necessary, demonstrating instead that simply generating

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.75

755

a small random contraction of G and estimating its
reliability is sufficient to estimate uG(p). In a sense, the

random contraction selects a random sample of the cuts

whose failure probability, appropriately scaled, provides

sufficient information about all the original cuts. In

addition to skipping the complexity of cut enumeration

algorithms and data structures, this approach yields an

unbiased estimator—an output whose expectation is

exactly equally to uG(p). Since the relative variance of

this estimator is small, it can easily be transformed into

an FPRAS.

In this work, we take a deeper dive into the analysis

of the relative variance of the reliability of random

subgraphs. Several of our core lemmas are identical

to those of Harris and Srinivasan [4], although our

proofs are somewhat different, relying less on detailed

numerical arguments and more on combinatorial thought

experiments. And our use of these lemmas is quite

different: instead of applying them to cut enumeration,

we apply them to better relative variance bounds. This

lets us maintain the algorithmic simplicity of the previ-

ous estimator approach [9] while still achieving better

runtimes than were previously known.

B. Our Approach

Our approach is based on a technique and a conjec-

ture about it from previous work. We wish to estimate

the probability uG(p) that G becomes disconnected

when edges fail with probability p producing a ran-

dom graph G(p). If uG(p) is large we can do so by

direct experiment, deleting edges and testing with G is

connected. This naive Monte Carlo (NMC) algorithm

requires roughly 1/uG(p) trials for a good estimate.

When uG(p) is small NMC is too slow. In previous

work [5] we derived a natural unbiased estimator for this

problem. To construct G(p), consider marking each edge

for possible deletion with probability q, then deleting

each marked edge with probability p/q. This deletes

each edge with probability (p/q) · q = p as desired. But

unmarked edges are never deleted, so the only cuts that

can fail are those with all edges marked. Thus, we can

contract all unmarked edges before the second deletion

step, yielding a graph H distributed as a sample from

G(q). The probability uG(p) that G(p) is disconnected

is then the probability H(p/q) is disconnected, namely

uH(p/q), meaning uG(p) = EH [uH(p/q)]. In other

words, uH(p/q) is an unbiased estimator for uG(p).
This means that uG(p) can be estimated by repeatedly

generating samples H and averaging their reliabilities.

The key to this approach is bounding the relative
variance of this estimator. If the relative variance is r
then combining O(r) samples yields an FPRAS:

Definition I.1. The relative variance of random variable

X is the ratio of its variance to its squared mean, which

is
E[X2]
E[X]2 − 1.

The following lemma is a well-known application of

the Chebyshev bound.

Lemma I.2. If X has relative variance r, then the
median of O(log 1/δ) averages of O(r/ε2) independent
samples of X , totaling O(rε−2 log 1/δ) samples, yields
an ε approximation to E[X] (i.e., a value in the range
(1± ε)E[X]) with probability 1− δ.

For NMC, the unbiased estimator is the indicator vari-

able for whether G(p) is disconnected in an experiment;

it has relative variance 1/uG(p). For our faster algorithm,

we generate H and use uH(p/q) as our estimator X . In

our previous work [5], we showed that if qc = 1/n2 then

the relative variance of uH(p/q) is O(n2), meaning that

O(n2) samples suffice to estimate uG(p). Furthermore,

each graph H generated this was is tiny, so computing

uH(p/q) is easy.

That analysis was tight, in that two cliques connected

by c edges do have relative variance n2 for the given

q. However, that example more generally has relative

variance q−c for every value of q. Considering this

example suggested it is the worst case and motivated

a conjecture that a q−c bound on relative variance holds

for every G and q. This would suggest using a larger

value of q to generate samples, so that fewer samples

would be needed.

In this work, we prove a good part of the conjecture.

We show that when pc ≤ n−2, the relative variance of

G(q) is O(q−c − 1). This is sufficient to yield a fast

algorithm for this range of p values. Like the previous

work, we generate several instances H and average their

reliability uH(p/q) to estimate uG(p). But leveraging

our conjecture, we set qc = O(1) and generate only a

constant number of samples to speed up our algorithm.

The samples are large, but we can apply our algorithm

recursively to estimate their reliabilities. The resulting

algorithm is essentially the Recursive Contraction Algo-

rithm [10], modified to return reliability estimates instead

of cuts.

The bulk of this paper is devoted to proving the con-

jecture. Along the way, we develop analytic machinery

and new reliability bounds. We give a lower bound for

network reliability, showing that when pc ≤ n−2 that

uG(p) is close to the sum of cut failure probabilities (i.e.,

the union bound is tight). To do so, we give new results

on cut failures conditioned on the failure of other cuts.

And to do this, we give a useful generalization of the

analysis of the stochastic cut-selection process defined by

756

the Contraction Algorithm. Much of this work parallels

but simplifies that of Harris and Srinivasan [4].

Because our algorithm is so fast for small p, we face

a different bottleneck from earlier algorithms: large p
where we must revert to NMC. Here we make less

progress, but we give a new analysis based on the idea of

effective size of a graph that lets us improve the runtime

to Õ(n2.78). Essentially, in Monte Carlo simulation it

is the rare events that are slowest to measure—in this

case, that is highly reliable graphs that rarely disconnect.

We develop a new analytic method to show that these

highly reliable graphs act like smaller graphs from the

perspective of contraction algorithms, which permits us

to apply our “small p” algorithm even when p exceeds

n−2.

II. THE RECURSIVE ESTIMATOR

Our estimator relies on two lemmas:

Lemma II.1 ([5]). The number of vertices in G(q) is
stochastically dominated by a binomial distribution with
parameters n and qc/2, so has expectation at most qc/2n
and is O(qc/2n) with high probability.

Lemma II.2. When pc ≤ n−2 and qc ≥ n−2, the
estimator uH(p/q) has relative variance O(q−c − 1).

This first lemma was proven previously [5] by giving

a coupling argument that showed the cycle ends up with

more components than any other graph given n, c, and p,

then exactly analyzing the cycle. Corollary VI.3 below

gives an alternative proof of the first lemma. We prove

the second lemma in Section V.

The idea of our construction is to recurse this basic

estimator: we generate the above estimator with relative

variance O(q−c), then recursively estimate the value of

the estimator.

A. Composing Unbiased Estimators

Because we’re generating unbiased estimators recur-

sively, we need to understand how they compose.

Lemma II.3. Let X be some quantity and suppose we
sample an unbiased estimator Y for X with relative
variance r, then sample an unbiased estimator Z for Y
with relative variance s. Then Z is an unbiased estimator
for X with relative variance (s+ 1)(r + 1)− 1.

Proof: Note that E[Z | X] = EY [E[Z | Y] | X] =
EY [Y | X] = X , meaning Z is also an unbiased estima-

tor for X . For the relative variance, recall that a relative

variance of s means that E[Z2 | Y] ≤ (s+1)E[Z | Y]2.

Thus

E[Z2 | X] = EY [E[Z2 | Y] | X]

≤ EY [(s+ 1)E[Z | Y]2 | X]

by the relative variance of Z for Y

= (s+ 1)E[Y 2 | X]

≤ (s+ 1)(r + 1)E[X]2

by the relative variance of Y for X .

In other words, composing unbiased estimators multi-

plies their relative variances. We combine this idea with

the fact that repeating unbiased estimators divides their

variance:

Lemma II.4. If X has relative variance r then the
average of k samples of X has relative variance r/k.

B. The Algorithm

For simplicity, we first design and analyze our algo-

rithm under the assumption that the relative variance

of the estimator uH(p/q) is exactly q−c − 1 for all p.

Afterward, we’ll show how to tweak both to handle the

range limitations and extra constant factor that our proofs

produce. Our recursive algorithm is as follows. First,

if G has less than some constant number of vertices

that will follow from our analysis, we compute uG(p)
exactly. And if pc > 1/2, we simply perform one naive

Monte Carlo trial, failing each edge with probability

p, and return 0 or 1 as the estimate if the graph is

connected or disconnected respectively. Otherwise, we

solve the problem recursively. Choose q = 2−1/c such

that qc = 1/2 so the relative variance of uH(p/q) is

q−c−1 = 1 (note q > p so uH(p/q) is defined). Generate

two independent subgraphs H1, H2 ∼ G(q), recursively

compute the estimators uH1
(p/q) and uH2

(p/q), then

average the two results as an estimator for uG(p).
We now analyze our algorithm inductively. In the base

cases of constant n or pc > 1/2 we perform only linear

work. If we compute uG(p) exactly then of course our

relative variance is 0; if on the other hand pc > 1/2 we

run a naive Monte Carlo step whose relative variance is

1/uG(p)− 1 ≤ 1/pc − 1 ≤ 1.

Lemma II.1 indicates that the two graphs Hi will

have at most qc/2n = n/
√
2 vertices in expectation.

For an intuitive analysis of our algorithm, let’s assume

this is a deterministic bound instead of a probabilistic

one. This yields a runtime recurrence T (n) = O(n2) +

757

2T (n/
√
2)) = Õ(n2), which is exactly the same recur-

rence as for the Recursive Contraction Algorithm.

We can outline a similar recurrence for the relative

variance. Suppose we prove that our estimator’s relative

variance on the smaller graphs is R. That is, for each

Hi we get an unbiased estimator Xi for uH(p/q) with

relative variance R. We also know that uH(p/q) is

itself an unbiased estimator for uG(p) with relative

variance q−c − 1 = 1. Thus, by Lemma II.3, Xi is

an unbiased estimator for uG(p) with relative variance

(R+1)(1+1)−1 = 2R+1. But our algorithm performs

2 independent experiments and takes the average, which

by Lemma II.4 halves the relative variance to R+1/2. In

other words, our recursive step adds 1/2 to the relative

variance of our subproblem’s estimator.

This yields a recurrence for Rn, the worst-case relative

variance of our estimator on any graph of n or fewer

vertices. Assuming the Hi have n/
√
2 vertices, we

deduce that Rn ≤ Rn/
√
2 + 1/2, which implies that

Rn = O(log n).

We’ve given intuitive arguments for both the runtime

and the relative variance of our estimator, but they both

relied on assuming the subproblems have size n/
√
2

deterministically. In fact this is only true with high

probability. The randomness involved makes a formal

analysis more complicated.

C. Formalizing The Runtime

We formalize the runtime analysis of our recursive

algorithm. Note that at depth d of the recursion, the

accumulation of sampling steps has produced a graph

sampled as G(qd). Thus, by Lemma II.1, the number

of vertices in each graph at this level is stochastically

dominated by B(n, 2−d/2).
For d ≤ 2 logn, we conclude that the expected number

of vertices in each such graph is 2−d/2n while the

expected number of edges is the expected square of this

quantity. But this expected square is just the variance

plus the expectation squared. Since the variance of the

binomial distribution is also O(2−d/2n), we conclude

that the expected number of edges is O(2−dn2). The

work spent at each recursion node is linear in this number

of edges. Since there are 2d recursion nodes at level d,

the expected total work at level d is O(n2). Thus over

all O(log n) levels the work is O(n2 log n).

We analyze deeper levels slightly differently. In par-

ticular, note that the work done at a leaf of the recursion

tree is dominated by the work done at its parent, so

we can bound the overall work by bounding the work

at non-leaf nodes. At level d + log n2, the number of

vertices in a subproblem is distributed as B(n, 2−d/2/n).

Thus, the probability there are more than k vertices is

at most
(
n
k

)
(2−d/2n)k ≤ (e · 2−d/2/k)k. The number of

potential recursion nodes at depth d+log n2 is 2d+logn2

.

Thus, taking k to be the size at which we terminate the

recursion, the expected number of non-leaf nodes at level

d+log n2 is at most 2d+logn2

(e2−d/2/k)k = n22−Ω(kd);

in other words, it is geometrically decreasing in d.

Summing over all d ≥ 1 yields a bound of O(n2)
additional work, which leaves our overall O(n2 log n)
bound unchanged.

This expected time bound can be shown to hold with

high probability using standard methods.

D. Formalizing the Relative Variance

We now formalize the inductive analysis of the relative

variance of our estimator. Let Rn denote its worst-case

relative variance on any graph of n or fewer vertices;

note that by definition Rn is increasing in n.

Lemma II.1 asserts that the number of vertices in

G(q) is bounded by B(qc/2, n). Thus, if qc = 1/2,

the expected size is n/
√
2. It follows by a Chernoff

bound that Pr[B(qc/2, n) ≥ 4n/5] = e−δn for some

constant δ. We halt our recursion and solve the problem

exactly whenever n ≤ (ln 2)/δ, which ensures that the

probability of the “rare” event is at most 1/2.

We can use this to bound our subproblems’ relative

variances. We’ve just argued that Hi has at most 4n/5
vertices with probability at least 1/2, in which case the

recursive estimator’s relative variance is at most R4n/5.

In the “rare” event that Hi is larger, it has size at most n
and thus the estimator’s relative variance is at most Rn.

Since relative variance is an expectation, we can com-

bine these two cases using conditional expectation and

conclude that relative variance for each sub-problem’s

estimator is at most (1/2)R4n/5 + (1/2)Rn.

We argued in the previous subsection that (under

our current assumption that the relative variance of

uH(p/q) = q−c−1) the relative variance of the estimator

for G is at most 1/2 greater than that of the estimator

on the subproblems Hi. This yields the following recur-

rence:

Rn ≤ (1/2)R4n/5 + (1/2)Rn + 1/2

(1/2)Rn ≤ (1/2)R4n/5 + 1/2

Rn ≤ R4n/5 + 1

= O(log n)

Note how we took advantage of the fact that the

relative variance is itself an expectation. We don’t qualify

our bound on the relative variance as “high probability.”

Rather, we have derived a bound on the expectation

758

that is universally true, although of course there can be

cases where the returned value deviates greatly from this

expectation.

E. Handling the Restriction on p

Our algorithm relies on a variance bound that we can

only prove (below) when pc = O(n−2). While we take

this as given in the initial call to the algorithm, we must

also consider the recursive calls which arrive with their

own p and n. In the event that pc > n2 in a recursive in-

vocation, we fall back on Naive Monte Carlo, performing

n2 trials of failing edges and testing whether the graph

disconnects, and reporting the fraction of failures. One

such trial has relative variance 1/pc ≤ n2, meaning that

n2 such trials have relative variance O(1) as assumed in

the induction. Thus, our analysis of the relative variance

of our algorithm remains valid. A single trial takes time

m, meaning this algorithm has runtime O(mn2), which

seems problematic for our target runtime. However, we

will now argue that with high probability, we will not

use this escape hatch on any recursive call whose input

size exceeds O(log n). Thus, the contribution of these

Naive Monte Carlo steps is negligible.

The reason is that, as we saw in the runtime analysis,

graphs at depth d of the recursion have a number of

vertices stochastically dominated by B(n, qdc). Thus,

they have n′ = O(qdc/2n) vertices with high probability

until this quantity is O(log n). At the same time, the

probability parameter at this level is p′ = p/qd. Thus,

with high probability (n′)2 · (p′)c = O((qdc/2n)2 ·
(pc/qdc) = O(n2pc). It follows that if initially pc ≤ P
for some P = Ω(n−2), then with high probability we

will have pc ≤ n−2 in all subproblems as well. This

implies that with high probability the Naive Monte Carlo

escape hatch will not be used on any problem of size

exceeding O(log n). This in turn implies that with high

probability we suffer only a polylogarithmic slowdown

in our running time compared to the analysis above.

F. Correcting for a Constant Factor

Our analysis above assumed that when qc = 1/2
the relative variance is 1. However, our proof of this

conjecture below adds a constant factor, bounding the

relative variance by O(q−c − 1).g
To handle this concern, note that the O(q−1 − 1)

relative variance is at most k(q−c−1) for some constant

k so long as n exceeds some absolute constant. If n is

smaller than this constant we can compute the reliability

exactly in constant time for relative variance 0. Other-

wise, instead of choosing qc = 1/2, we set qc = 1/
√
r

for some larger constant r, then generate kr distinct

subproblems instead of 2. This changes our intuitive run-

time recurrence to T (n) = kr(T (n/
√
r)+O(n2)) which

evaluates to T (n) = (kr)log
√

r n = nlog√r kr = n2+2 logr k

and can be formalized the same way. Thus, if we set r
to be some slowly growing function of n, we get the

n2+o(1) time bound claimed for our algorithm.

We’ve now filled in all the details of our recursive

algorithm. It remains to prove the key result that the

relative variance is O(q−c).

III. REVISITING THE CONTRACTION ALGORITHM

We’re going to find several uses of the Contraction
Algorithm [11] as a tool for analyzing graph structure.

Recall that this algorithm repeatedly chooses a random

non-loop edge of G and contracts it until some stopping

point is reached. We say a cut survives the contractions
if no edge of that cut is contracted; in this case the cut

corresponds to one of the cuts of the contracted graph.

A key application of the Contraction Algorithm has

been to bound the partition function zG(p) =
∑

pci over

all cut values ci in G. This is the expected number of

failed cuts in G(p) and thus upper bound uG(p). We’re

going to generalize this original analysis in two ways,

and a natural way to do this is to present the original

analysis and then, later, explain how we change it.

As we contract G from its original size n, let mr

denote the number of non-loop edges present in the

contracted graph at size r. Note that mr is a random

variable, but we will lower bound it. If a cut under

consideration has αc edges then the probability that an

edge of the cut is selected in the next contraction is

αc/mr; it follows that the probability the cut survives

all the contractions is
∏
(1 − αc/mr). It is convenient

to approximate this product by a sum as follows.

Lemma III.1 (Product Approximation). Consider a
product P =

∏
r≥2γ(1−xr) such that xr ≤ γ/r and let

S =
∑

r≥2γ xr. Then

2−γ exp(−S) ≤ P ≤ exp(−S)

This Lemma was proven with calculus by Harris and

Srinivasan [4, Lemma 5.4], but we give a different proof.

Proof: The upper bound follows immediately from

the bound 1 − x ≤ exp(−x). For the lower bound we

note that ex ≥ 1 + x which implies that (1 − x)ex ≥
1− x2. Introducing an ultimately irrelevant upper index

759

n, it follows that

P · exp(S)

≥
n∏

r=2γ

(1− x2r)

≥
∏

(1− (γ/r)2)

=
∏

(1− γ/r)(1 + γ/r)

=

n∏
r=2γ

(
r − γ

r

)(
r + γ

r

)

=

n−γ∏
r=γ

(
r

r + γ

) n∏
r=2γ

(
r + γ

r

)
re-indexing

=

2γ−1∏
r=γ

(
r

r + γ

) n∏
r=n−γ+1

(
r + γ

r

)
canceling

≥
2γ−1∏
r=γ

(
r

r + γ

)

as the second term exceeds 1

≥
(

γ

2γ

)γ

as γ ≤ r < 2γ in the product

= 2−γ

Lemma III.2 (Contraction). Suppose that in a contrac-
tion process that edge count mr at size r is guaranteed to
satisfy the lower bound mr ≥ rc/2. Then the probability
that a particular set of αc edges survives contraction to
size 4α is at least

2−2α exp

(
− c

2

n∑
r=2α

1

mr

)

Proof: The probability the cut survives to size r is

simply the product of the probabilities that it survives

each contraction, namely
∏
(1 − αc/mr). Write xr =

αc/mr; from mr ≥ nc/2 it follows that xr ≤ 2α/r.

Thus, we can take γ = 2α in Lemma III.1 and conclude

the claimed result.

We can use this approximation to bound the basic

Contraction Algorithm:

Corollary III.3 (Cut Survival). A particular cut C of
value αc survives contraction of G to size 4α with
probability at least (α/n)2α.

Proof: When G is contracted to r vertices, having

min-cut c means it will have minimum degree c and thus

at least rc/2 edges. The probability pr that we choose

an edge of C at this step is thus at most αc/(rc/2) =
2α/r. Setting γ = 2α in the above lemma we satisfy its

conditions, meaning that

n∏
r=4α

(1− pr) ≥ 2−4α exp(−
n∑

r=4α

2α/r)

= 16−α exp(2α(Hn −H4α))

≥ 16−α exp(−2α ln(n/4α))

≥ (α/n)2α

This in turn gives us a bound on the partition function

zG(p) =
∑

pαic:

Corollary III.4 (Partition Function). If n2pc ≤ α then∑
αi≥α p

αic ≤ (npc/2/2α)2α. In particular, if n2pc ≤ 1

then zG(p) ≤ n2pc.

Proof: Taking the cut values of G as αic, consider

the following algorithm for selecting one cut from G.

First, choose a target size r ≥ 2 with probability 21−r.

Then, contract G randomly to size r. Finally, choose a

random cut uniformly from the resulting graph.

The probability that we choose a particular cut of

value αc is at least the probability that we choose r =
�2α�, which is 21−�2α� ≥ 2−2α, times the probability

the cut survives contraction to size 2α, which is at least

(α/n)2α by the preceding corollary, times the probability

that we choose this cut from the resulting graph. Since

the resulting graph has size 2α, there are 22α−1 cuts, so

this last probability is at least 21−2α. Multiplying, we

select the cut with probability

2−2α · (α/n)2α · 21−2α = 2(2α/n)2α

Finally, observe that since our algorithm chooses ex-

actly one cut, these cut selection probability must sum

to 1. It follows that

∑
2(2α/n)2α ≤ 1

x

This lets us bound the partition function:

∑
αi≥α

pαiC =
∑

(2αi/n)
2αi · pαic · (n/2αi)

2αi

=
∑

(2αi/n)
2αi · (npc/2/2αi)

2αi

760

But by assumption, npc/2 ≤ α. It follows that the second

term is always less than 1 and is maximized at minimum

αi = α, meaning our sum is

≤
∑

(2αi/n)
2αi · (n2pc/2α)2α

≤ (n2pc/2α)α
∑

(2αi/n)
2αi

≤ (n2pc/2α)2α

where the last step follows from the previous lemma. For

zG(p) we note that all αi ≥ α.

Remark. In the analysis above, we implicitly took the

“size” of G to be the number n of vertices. But es-

sentially all our above lemma actually relied on was

that the size decrements with each contraction and that

mr ≥ rc/2. We’ll leverage this flexibility to generalize

these results by redefining both “size” and n below.

IV. A BETTER UNRELIABILITY LOWER BOUND

We turn towards our first key analytic result, that

uH(p/q) has relative variance O(qc − 1). This requires

upper bounding E[uH(p/q)2]/uG(p)
2. Because uG(p) is

a messy function, past work used more tractable upper

and lower bounds. A natural upper bound is the partition
function we used in Section III:

Definition IV.1. The partition function zG(p) =
∑

pci

where ci indexes over the values of all cuts in G.

That is, zG(p) is the expected number of failed cuts
in G(p), and thus serves as an upper bound (the union

bound) on the probability uG(p) that at least one cut

fails. For a lower bound, past work simply observed that

uG(p) is at least pc, the probability that a min-cut fails.

And in Section III we rederived the result that uG(p) ≤
zG(p) ≤ n2pc when pc ≤ n−2 (and of course uG(p) ≤
1 ≤ n2pc if pc ≥ n2). Unfortunately, there is a significant

gap between these bounds which prevents any analysis

using them from being tight.

In this section, we will prove that zG(p) also serves as

an asymptotic lower bound for uG(p) when pc � n−2:

Theorem IV.2. There is a constant ζ such that if pc ≤
ζn−2 then zG(p) ≥ uG(p) ≥ (1/4)zG(p).

Karger [7] showed this bound for pc = O(n−4); Harris

showed it for pc = n2+ε for any constant ε. Here we

improve it to the entire range pc = O(n−2) where naive

Monte Carlo sampling is difficult. Note that this result

is tight, as on the n vertex cycle with c/2 parallel edges

between neighbors setting pc = 4/n2 gives zG(p) > 4 >
4uG(p).

We devote this section to proving the theorem. For a

set (of cut edges) C, let pC be shorthand for p|C|. Since

uG(p) is the probability of the union of individual cut

failure events, the inclusion-exclusion bound shows

uG(p) ≥
∑

pCi −
∑

pCi∪Cj ,

where we sum over all cuts Ci and Cj . Our approach is

to prove that under the hypothesis of the theorem,∑
pCi∪Cj ≤ (3/4)

∑
pCi .

The theorem follows immediately.

A. Conditional Cut Failures
Observe that the combined failure of Ci and Cj will

break G into more than 3 or 4 pieces, so we essentially

need to bound the expected number of 3- and 4-way cuts
that arise from edge failures. To do so, we expand∑

i,j

pCi∪Cj =
∑
i,j

pCipCj−Ci

=
∑
i

pCi

∑
j

pCj−Ci

In other words, we separately consider the edges of

Ci ∪ Cj that are in Ci, and those that are in Cj but not

in Ci. Essentially, this analysis is conditioning on cut

Ci failing (probability pCi) then bounding the expected

number of other cuts that fail under this condition (proba-

bility pCj−Ci). We do so by generalizing the Contraction

Algorithm analysis of Section III.

Lemma IV.3. Given some α-minimum cut A, index the
cuts and let βic be the number of edges of cut i not in
A. Then if n2pc ≤ β,∑

βi≥β
pβic ≤ 4α(npc/2/β)2β

Proof: We generalize the Contraction Algorithm

analysis. Consider a particular cut B with βc edges not

in A. Consider running the Contraction Algorithm on

the graph G with the edges of A removed and halting

at 4β + 2α vertices instead of 4α. We now (re)define

the size of G when it has r vertices to be be r − 2α.

When r+2α vertices remain, G has at least (r+2α)c/2
edges; thus G−A has at least (r+2α)c/2−αc = rc/2
edges. It follows that G−A satisfies mr ≥ rc/2 for this

definition of size, meeting the condition of Contraction

Lemma III.2 and Cut Survival Corollary III.3.
This means G − A also satisfies the analysis of Par-

tition Function Corollary III.4 with two small changes.

The first is syntactic: the target cut size α used there is

now the quantity β we use here. The second is numeric:

since the contractions stop at size r, which now means

r + 2α vertices, the final selection step of choosing a

random cut chooses from 2r+2α instead of 2r cuts; thus

the sum of Partition Function Corollary III.4 is increased

by a 22α factor. This yields the result of this lemma.

761

B. Cut Triples

Next, we identify some useful structure in the pairs

of cuts we need to analyze. We show how each pair is

associated in a “three-way duality” relationship with a

third cut that will be useful in our analysis. We need

to define these triples because one of the three cuts in

it is obviously the smallest—a fact we need in the next

section.

Consider any two cuts Ci and Cj . Label each vertex

with two bits according to which side of each cut it is

on. There will be at most 4 distinct combined labels, and

there must be at least 3 since otherwise Ci and Cj are

the same cut. Thus, Ci and Cj together naturally define

a 3 or 4 way cut.

For intuition, consider first the case where Ci and Cj

together define a 3-way cut T ; for example just consider

a triangle on three vertices. Each of Ci and Cj is created

by merging two of the 3 components of T . But note that

there is a third way to merge 2 components of T to

produce a complementary cut Ck that we will call the

xor cut of Ci and Cj . Note further that each cut edge

crosses between exactly 2 of the 3 components of T . This

determines 3 distinct groups of edges that we will call

semicuts because each 2-way cut is the union of exactly

two of the edge groups. Conversely, each semicut is the

intersection of exactly two of the three 2-way cuts.

Although the triangle picture doesn’t quite carry over,

everything we’ve just described applies unchanged if Ci

and Cj together form a 4-way cut. Label each vertex by

two bits xi and xj describing which side of each of the

two cuts it is on. We now define a third xor-cut Ck for

Ci and Cj by giving each vertex label xk = xi ⊕ xj
where ⊕ denotes xor. Note that the xk must take both

values since otherwise Ci and Cj would be the same cut.

Thus, the xk define a third xor cut of Ci and Cj . Note

that Ci is the xor-cut for Cj and Ck and so forth since

(xi ⊕ xj)⊕ xj = xi. The three cuts exhibit a three-way

duality.

Note further that any edge must cross an even number
of these three cuts—i.e. 0 or 2. To see this, observe that

an edge crosses cut i if its endpoints’ labels xi and yi
satisfy xi⊕ yi = 1 and similarly for cuts j and k. Thus,

if we xor the three cut indicator variables we get (xi ⊕
yi)⊕ (xj ⊕ yj)⊕ (xk⊕ yk). Since the final term is (xi⊕
xj)⊕(yi⊕yj), the entire xor evaluates to 0 which means

either 0 or 2 of the terms are 1.

We can therefore group the edges crossing (any of)

the three cuts into three groups according to which pair

of cuts they cross. Each cut is the union of exactly two

of these groups, so we will call each group a semicut.
Conversely, each semicut is the intersection of two of

the cuts.

In summary, for any pair of cuts Ci and Cj , regardless

of whether their union defines a 3 or a 4 way cut, there

is a third xor-cut Ck such each cut edge is in exactly
one semicut (intersection of two of the three cuts). This

intersection is exactly the edges not in the third cut. And

finally, each cut is the union of two of the three semicuts.

C. The Lower Bound

We combine our two ideas to upper bound
∑

pCi∪Cj .

We have shown that for each Ci ∪Cj in the pairs term,

there is a xor cut Ck and two other pairs Ci ∪ Ck and

Cj ∪Ck in the sum that produce the same union. Group

the pairs into these trios of related pairs.

Of course, pCi∪Cj is the same for all three pairs in

a trio. The trio is characterized by its three semicuts as

discussed above. Without loss of generality, let Ci be the

smallest of the three cuts in the triple, meaning it is the

union of the two smallest semicuts. It follows that the

third semicut contains at least 1/3 of the edges of the

union while Ci contains at most 2/3; thus the semicut is

at least half the size of Ci. That is, if we let αi be the

size of Ci and let βij = βik be the number of edges in

the semicut Cj − Ci = Ck − Ci, then pCi∪Cj = pαi+βij

and the total contribution of the three cuts in this triple

to the sum is 3pαi+βij . To capture this we assign cut Cj

to Ci with the additional factor 3 to represent the entire

triple and ignore the other two pairs. Let Ai denote the

set of cuts assigned to Ci from some triple. Note that

each Cj may be assigned to many cuts i since it is in

many triples.

To compute the entire sum, we sum over each Ci and

within we sum over all cuts assigned to Ci. This is valid

because every triple is assigned to some Ci. Thus,∑
pCi∪Cj =

∑
i

∑
j∈Ai

3pCi∪Cj

=
∑
i

3pCi

∑
j∈Ai

pCj−Ci

=
∑
i

3pαic
∑
j∈Ai

pβijc

where αic denotes the number of edges in cut Ci and

βijc denotes the number of edges in Cj − Ci. By our

choice of cut assignments, βij ≥ αi/2.

We now invoke Lemma IV.3. Since all βij ≥ αi/2 ≥
1/2, we conclude that

∑
j∈Ai

pβijc ≤
(
pc/2n

αi/2

)αi

· 4αi ≤ (8pc/2n)αi

762

Since by assumption npc/2 < 1/8. It follows that

3
∑
i

pαic
∑
j

pβijc ≤ 3
∑
i

pαic · (8npc/2)αi

≤ (8npc/2)
∑

pαic

which is at most 3zG(p)/4 if npc/2 ≤ 3/32.

We summarize this result as follows:

Lemma IV.4. When npc/2 ≤ 1/64,

∑
pCi∪Cj ≤ 3

4

∑
pCi

Corollary IV.5. When npc/2 ≤ 1/64,

uG(p) ≥ 1

4
zG(p)

V. THE RELATIVE VARIANCE

We can now bound the relative variance. We focus on

bounding E[X2]/E[X]2, from which we then subtract

one. The numerator is E[uH(p/q)2] ≤ E[zH(p/q)2].
Note that zH(p/q) is a sum of (p/q)ci over all cuts that

survive. Thus, E[zH(p/q)2] expands as a sum over pairs

of cuts; cut pair Ci, Cj contributes (p/q)Ci+Cj (denoting

a sum of sizes, not a union) if both cuts survive, which

happens with probability qCi∪Cj (this denoting a union).

Thus,

E[zH(p/q)2] =
∑
ij

qCi∪Cj (p/q)Ci+Cj

=
∑

pCi+Cj/qCi∩Cj

The denominator uG(p)
2 can be lower bounded using the

two terms of the inclusion-exclusion expansion discussed

earlier. That is,

uG(p)
2 ≥ ((1−O(npc/2))zg(p))

2

= (1−O(npc/2))
∑

pCi+Cj

In other words, up to the 1−O() factor in the denomina-

tor, both numerator and denominator are a sum of terms

over all pairs i and j, where the difference is that each

term in the numerator has an extra factor of 1/qCi∩Cj .

Thus, to bound the relative variance, we will group

corresponding terms of both numerator and denominator

into three groups and show that each group has ratio

O(qc); combining will yield the desired result. We get

the three groups breaking the terms into three groups: the

terms where i = j, the terms where i �= j and |Ci∩Cj | <
c, and the terms where i �= j and |Ci ∩ Cj | ≥ c.

For the first group, terms where i = j, the terms in

the numerator have the form

X =
∑

p2Ci/qCi

=
∑

(p/q)cpCi since Ci ≥ c

≤ (p/q)c
∑

pCi

= (p/q)czG(p)

Conversely, the denominator is Ω(zG(p)
2). Since

zG(p) ≥ pc, the ratio of these two quantities is O(q−c)
as required. For the second group where Ci ∩ Cj < c,
we have

Y =
∑

Ci∩Cj<c

qCi∪Cj (p/q)Ci+Cj

=
∑

Ci∩Cj<c

pCi+Cj/qCi∩Cj

≤
∑

Ci∩Cj<c

pCi+Cj/qc

≤ q−c
∑

Ci∩Cj<c

pCi+Cj .

Each term in this sum has a corresponding Ω(pCi+Cj)
term in the denominator, so again the ratio is O(q−c).
Finally, for the third group,

Z =
∑

Ci∩Cj≥c
pCi+Cj/qCi∩Cj

=
∑

pCi∪Cj (p/q)Ci∩Cj

≤ (p/q)c
∑

Ci∩Cj≥c
pCi∪Cj since Ci ∩ Cj ≥ c

≤ (p/q)czG(p) (proven above)

≤ q−c(zG(p))2 since pc ≤ zG(p)

Thus, the third term also has ratio O(q−c).
We’ve shown that all three terms in the numerator

have ratio O(q−c), which means that their sum does as

well. This concludes our proof that the relative variance

is O(q−c)− 1.

As this bound on the relative variance was the only

detail outstanding, we can now declare the analysis of

our n2+o(1)-time estimator to be complete.

Remark. The first and third terms in our expansion

actually contribute ratios of O(q−c(p/zG(p))). We used

the pessimistic bound zG(p) ≥ pc, bit if zG(p) is sig-

nificantly larger then these two terms become negligible

and the variance converges to q−c(1+O(n2pc))→ qc for

small p. In particular, if G has more than O(log n) min-

imum cuts, we no longer need to perform the constant

factor “correction” of Section II-F.

763

VI. ACCELERATING THE UNRELIABLE CASE

Our analysis of our recursive estimator works when

pc ≤ n−2. We suspect that in fact the relative variance is

bounded by q−c for all values of p, meaning the recursive

estimator can always be used. But without a proof of this

fact we need a different approach for large p.

We consider the 2-step estimator of our previous

work [5], which generates H ∼ G(q) for q = n−2/c

and estimates uG(p) as uH(p/q). While that paper fore-

grounded a relative variance of Õ(n2) for this estimator,

it actually proved something stronger. As discussed there

in Section II.C, the 2-step estimator is fast for any q such

that G(q) has O(log n) vertices with high probability,

and its relative variance is

O(
pc log

2 n

qcuG(p)
).

That work observed that G(n−2/c) has O(log n) vertices

with high probability, and that uG(p) ≥ pc, and the

Õ(n2) variance followed. But that paper also observed

that in certain graphs—such as two cliques connected

by c edges—G(q) has O(log n) edges even for a much

larger value of q, which yields a faster runtime. In this

section, we define an effective size that captures this

phenomenon. We then show that if uG(p) is particularly

small (the case which seems to make the above bound

large) then the graph has small effective size and can use

a larger q (which keeps the above bound small).

A. Effective Size

Definition VI.1. Consider a graph G which can have mr

vertices when contracting to size r. Define the effective
size of G to be

exp

(
max

c

2

n∑
r=2

1

mr

)
.

where the maximum is over all possible sequences of

mr. In particular, we can take mr to be the minimum

r-way cut in G, as this always lower bounds the number

of edges.

Note that if G has min-cut c then each component of

any r-way cut must have degree c, meaning mr ≥ rc/2 .

Thus, the effective size of G is exp(
∑

1/r) ≤ 2n.

Lemma VI.2. If G has effective size N and pc ≤ N−2

then zG(N
−2/c) ≤ 1.

Proof: This is simply a strengthened restatement of

Partition Function Corollary III.4. Note that Contraction

Lemma III.2 gives its bound in terms of the effective

size we have just defined, which means that Cut Survival

Corollary III.3 and thus Partition Function Corollary III.4

both inherit it.

Lemma VI.3. In a graph of effective size N , the sample
G(N−2/c) has O(log n) vertices with high probability.

Corollary VI.4. In a graph of effective size N , taking
q = N−2/c, sampling H ∼ G(q) and estimating
uG(p) = uH(p/q) yields an unbiased estimator of rela-
tive variance Õ(N2(pc/zG(p))) ≤ N2 for any p ≤ q.

Proof: zG(N
−2/c) is the expected number of cuts

in G(N−2/c) and is at most 1 by the previous lemma. It

follows by the Markov inequality that G(N−2/c) has at

most nO(1) cuts with high probability. But a graph with

r vertices has 2r−1 cuts, which proves the bound.

The corollary was proven in our previous work [5,

Section II.C].

Remark. This last proof is quite similar to the standard

proof of the Chernoff bound, applying the Markov

inequality to an exponential function of the random

variable we wish to bound.

B. The Effective Size of Reliable Graphs

So let us write z = zG(q) and suppose z ≤ n−λ.

Consider an r-way cut of G with mr edges and let di
denote the degrees of the components so that

∑
di =

2mr. It follows that z ≥ ∑
qdi . Convexity shows that

for fixed
∑

di, the quantity
∑

qdi is minimized when

all di are equal. Inverting this result, if we fix
∑

qdi

then
∑

di = 2mr is maximized when all di are equal

2mr/r. In other words, we have shown that z ≥∑ qdi ≥
rq2mr/r. Inverting, we find that

rq2mr/r ≤ z

(2mr/r) log q ≤ log(z/r)

mr ≥ r

2
logq(z/r) since q ≤ 1

We already have a bound of mr ≥ rc/2, but this new

bound is stronger one whenever

r

2
logq(z/r) ≥ rc/2

logq(z/r) ≥ c

z/r ≤ qc

r ≥ zq−c

In particular, this bound is never stronger than the naive

one if zq−c ≥ n since then no relevant r (in the range

1, . . . , n) satisfies it. On the other hand if zq−c ≤ n then

764

it applies for r near n and thus

∑ c

2mr
≤

zq−c∑
r=2

1

r
+

n∑
r=zq−c

c

r logq z/r

= Hzq−c + c(ln 1/q)

∫ n

zq−c

1

r ln r/z
dr

= ln zq−c + c(ln 1/q)

∫ n/z

q−c

1

s ln s
ds

= ln zq−c + (c ln 1/q) ln ln s|n/zq−c

= ln zq−c + (ln q−c) ln
lnn/z

ln q−c

In particular, if we take q = n−2/c and write zG(q) =
n−λ, we find that the effective size

N ≤ n2−λ+2 ln 1+λ

2 .

which is 1 for λ = 1 and shrinks to n.81 as λ→ 2. This

is the largest possible λ since we know zG(p) ≥ pc. A

pair of cliques connected by c edges would have λ ≈ 2.

Note also that the term zq−c can intuitively be seen

as estimating the number of minimum cuts in G, since

if there k minimum cuts they contribute kqc to the value

of z. This indicates that the effective says grows with

the number of small cuts.

C. Application

We’ve now shown that for q = n2/c a graph with

zG(q) close to n−2 has effective size significantly less

than n. We leverage this as follows. Recall that when

pc ≤ n−2 we apply the RCA while above we used NMC.

Recall also that at the transition q = n−2/c, we showed

that uG(q) = Θ(zG(q)). We’ll choose an appropriate

threshold λ < 2. If zG(q) ≥ n−λ then a fortiori for

any p ≥ q we have uG(p) ≥ uG(q) = Ω(n−λ), which

means that NMC estimation (on a sparsified G) takes

time Õ(n1+λ) whenever we use it.

If on the other hand zG(q) ≤ n−λ, then our anal-

ysis above shows that G has effective size O(nγ) for

γ = 2 − λ + 2 ln((1 + λ)/2) < 1. This means that

by Corollary VI.4 we can run the two-step estimator

with parameter q = n−2γ/c instead of n−2/c, which

improves its relative variance to Õ(n2γ) and its runtime

to Õ(n1+2γ).
In this case we only need to use NMC if pc ≥ n−2γ ,

which means it too will take time Õ(n1+2γ) on the

sparsified G.

To recap, we switch algorithms based on the value

zG(n
−2/c). If zG(n

−2/c) ≥ n−λ, then we apply our

original algorithm, using NMC for p ≥ n−2/c and

the RCA for smaller p. The dominant time bound is

NMC estimation, but this takes time Õ(n/uG(p)) =
Õ(n/uG(q)) = Õ(n/zG(q)) = Õ(n1+λ). On the other

hand, if zG(q) ≤ n−λ, then we can use our 2-step

estimator algorithm whenever pc ≤ n−2γ (and not bother

with the RCA). In this case we only run NMC when

pc ≥ n−2γ , so the bottleneck NMC takes at worst

Õ(n1+2γ) time.

We balance these two runtimes by setting λ = 2γ.

Recalling that γ = 2− λ+ 2 ln((1 + λ)/2), we solve

λ = 2(2− λ+ 2 ln((1 + λ)/2))

Which gives λ ≈ 1.78 and a runtime of Õ(n2.78).
Obviously this is only a small improvement over

O(n3). It’s importance is not the amount of improve-

ment, but rather the demonstration that it is possible

to improve at all, moving beyond the n3 barrier that

appeared to be limiting improvement in the previous

approximation algorithms.

Remark. We must be a bit careful if we want our algo-

rithm above to remain an unbiased estimator. Normally,

we might imagine running NMC for nλ steps and then

returning a value (if we have determined it is large) or

switching to the 2-step estimator if we have determined

we need to. But this introduces a bias in the estimator,

since it will only return larger values from the NMC step,

while an unconditioned NMC algorithm has a chance to

return a small value. So instead, we do a little bit of

extra work. First, we use NMC to decide which case

we are in. Based on what we find, we either run NMC

again to get an unbiased estimator, or else run the 2-step

algorithm if we need it.

Of course, there a small chance that our initial NMC

test returns an incorrect result. But we get the correct

outcome with high probability, and our estimator has

polynomial relative variance even if we are wrong, so

the small chance of error does not significantly affect

the relative variance of our combined estimator.

VII. CONCLUSION

We’ve given a new-old algorithm for network relia-

bility by showing that the Recursive Contraction Algo-

rithm can compute a low-variance unbiased estimator.

The key to our work are new analytic techniques that

prove that the relative variance of a natural estimator

uH(p/q) is O(q−c− 1). Along the way, we showed that

uG(p) = Θ(zG(p)), which may be useful for a variety

of other network reliability applications.

This approach works so long as pc ≤ n−2, which is

the threshold at which at least some graphs (in particular

765

the cycle) begin to become unreliable. For larger p,

we developed a concept of effective size and use it to

improve our use of naive Monte Carlo sampling; this

allows to provide a small improvement in the runtime

of the naive method which we use for larger p. Taken

together, our results break the cubic barrier for network

reliability and yield an Õ(n2.78) runtime.

We’ve only shown a limited application of the effec-

tive size concept; we can do more with it. For example,

it is possible to apply the relative variance ideas to the

recursive estimator, improving the range of p over which

it can work and further improving our running time.

Details will be given in the full paper.

Our work began with a conjecture, that the relative

variance of uH(p/q) is at worst q−c − 1. No better

bound is possible as this is the answer for two cliques

connected by c-edges. But it seems plausible that this is

the worst-case graph. For having a different graph with

more small cuts should only smooth the behavior of the

sampling experiment and reduce the relative variance.

For example, the relative variance of the cycle with its

many min-cuts is constant.

If our conjecture is true, then the Recursive Contrac-

tion Algorithm serves as an estimator for all values of p
with a running time of Õ(n2).

REFERENCES

[1] L. Valiant, “The complexity of enumeration and reliability
problems,” SIAM Journal on Computing, vol. 8, pp. 410–421,
1979.

[2] J. S. Provan and M. O. Ball, “The complexity of counting
cuts and of computing the probability that a network remains
connected,” SIAM Journal on Computing, vol. 12, no. 4, pp.
777–788, 1983.

[3] D. R. Karger, “A randomized fully polynomial approximation
scheme for the all terminal network reliability problem,” SIAM
Journal on Computing, vol. 29, no. 2, pp. 492–514, 1999, a
preliminary version appeared in Proceedings of the 27th ACM
Symposium on Theory of Computing. A corrected version was
published in SIAM Review 43(3).

[4] D. G. Harris and A. Srinivasan, “Improved bounds and algo-
rithms for graph cuts and network reliability,” in Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ACM-SIAM. ACM Press, Jan. 2014.

[5] D. R. Karger, “A fast and simple unbiased estimator for net-
work (un)reliability,” in Proceedings of the 48th annual IEEE
Symposium on Foundations of Computer Science, Oct. 2016.

[6] D. R. Karger and C. Stein, “A new approach to the minimum
cut problem,” Journal of the ACM, vol. 43, no. 4, pp. 601–640,
Jul. 1996, preliminary portions appeared in SODA 1992 and
STOC 1993.

[7] D. R. Karger, “A randomized fully polynomial approximation
scheme for the all terminal network reliability problem,” SIAM
Review, vol. 43, no. 3, pp. 499–522, 2001, a preliminary version
appeared in Proceedings of the 27th ACM Symposium on
Theory of Computing. This corrects a version published in
SICOMP.

[8] R. M. Karp, M. Luby, and N. Madras, “Monte Carlo ap-
proximation algorithms for enumeration problems,” Journal of
Algorithms, vol. 10, no. 3, pp. 429–448, Sep. 1989.

[9] D. R. Karger, “A fast and simple unbiased estimator for network
(un)reliability,” in 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), Oct 2016, pp. 635–
644.

[10] D. R. Karger and C. Stein, “An Õ(n2) algorithm for minimum
cuts,” in Proceedings of the 25th ACM Symposium on Theory
of Computing, A. Aggarwal, Ed., ACM. ACM Press, May
1993, pp. 757–765, journal version appears in Journal of the
ACM 43(4).

[11] D. R. Karger, “Global min-cuts in RNC and other ramifications
of a simple mincut algorithm,” in Proceedings of the 4th Annual
ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM,
Jan. 1993, pp. 21–30, this work was merged with later work
into Journal of the ACM43(4).

766

