
Matrix Scaling and Balancing via Box Constrained Newton’s Method
and Interior Point Methods

Michael B. Cohen

MIT
Cambridge, USA

micohen@mit.edu

Aleksander Mądry

MIT
Cambridge, USA
madry@mit.edu

Dimitris Tsipras

MIT
Cambridge, USA

tsipras@mit.edu

Adrian Vladu

MIT
Cambridge, USA

avladu@mit.edu

Abstract—In this paper1, we study matrix scaling and
balancing, which are fundamental problems in scientific com-
puting, with a long line of work on them that dates back
to the 1960s. We provide algorithms for both these problems
that, ignoring logarithmic factors involving the dimension of
the input matrix and the size of its entries, both run in time
Õ

(
m log κ log2(1/ε)

)
where ε is the amount of error we are

willing to tolerate. Here, κ represents the ratio between the
largest and the smallest entries of the optimal scalings. This
implies that our algorithms run in nearly-linear time whenever
κ is quasi-polynomial, which includes, in particular, the case
of strictly positive matrices. We complement our results by
providing a separate algorithm that uses an interior-point
method and runs in time Õ(m3/2 log(1/ε)).

In order to establish these results, we develop a new second-
order optimization framework that enables us to treat both
problems in a unified and principled manner. This framework
identifies a certain generalization of linear system solving that
we can use to efficiently minimize a broad class of functions,
which we call second-order robust. We then show that in
the context of the specific functions capturing matrix scaling
and balancing, we can leverage and generalize the work on
Laplacian system solving to make the algorithms obtained via
this framework very efficient.

Keywords-matrix scaling; matrix balancing; Newton’s
method; interior point methods; SDD solver

I. INTRODUCTION

Matrix balancing and scaling are problems of fundamental

importance in scientific computing, as well as in statistics,

operations research, image reconstruction, and engineering.

The literature on these problems [2], [3], [4], [5], [6], [7],

[8], [9], [10], [11], [12], [13], [14], [15] is truly extensive

and dates back to 1960s. They both are key primitives in

most mainstream numerical software packages (MATLAB,

R, LAPACK, EISPACK) [16], [17], [18], [19], [20]. Also,

both these problems can be seen as task in which we are

aiming to find diagonal scalings of a given matrix so that

the rescaled matrix gains some favorable structure.

More specifically, in the matrix scaling problem, we are

given a nonnegative matrix A, and our goal is to find diago-

nal matrices X,Y such that the matrix XAY has prescribed

row and column sums. The most common instance of this

problem is the one where we want to scale the matrix so

1The full version of this paper is available as [1].

to make it doubly stochastic – in other words, we want

to make all row and column sums be equal to one. This

procedure has been repeatedly used since as early as 1937 in

a number of diverse areas, such as telecommunication [21],

engineering [13], statistics [22], [10], machine learning [23],

and even computational complexity [24], [25]. A standard

application for scaling is preconditioning linear system solv-

ing. Given a linear system Ax = b, one can produce a

solution by computing Y(XAY)−1Xb, since applying the

inverse of XAY is more numerically stable procedure than

directly applying the inverse of A [11]. Another example

application, which commonly occurs in statistics, is iter-

ative proportional fitting. This primitive is often used for

standardizing cross-tabulations and has been studied since

1912 [26]. Even more interestingly, matrix scaling turned

out to have surprising connections to fundamental problems

in the theory of computation. Notably, in [24], it is observed

that scaling can be used to approximate the permanent of

any nonnegative matrix within a multiplicative factor of en.

Furthermore, deciding whether the permanent of a bipartite

graph’s adjacency matrix is 0 or at least 1 is equivalent to

deciding whether that graph contains a perfect matching.

Such scaling–based method can, as a matter of fact, be

used to compute maximum matchings in bipartite graphs,

which is a classic and intensely studied problem in graph

algorithms [27], [28], [29]. For more history and information

on this problem, we refer the reader to Idel’s extensive

survey [15], or [30] for a list of applications.

Now, in the matrix balancing problem, we are, again,

given a nonnegative matrix A, and our goal here is to

find a diagonal matrix D such that the matrix DAD−1 is

balanced, that is the sum of each row is equal to the sum

of the corresponding column. This procedure has been intro-

duced first by Osborne [2], who was using it to precondition

matrices in order to increase the accuracy of the eigenvalue

computation. (Note that the balancing operation does not

change the eigenvalues of the matrix.) The initially proposed

algorithm for it was based on a simple iterative approach,

and was then followed by a long series of improvements

and extensions. The initial work on this problem focused

on a variant in which one aims to balance �2-norms of

rows and columns. It turns out, however, that the �1-norm–

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.88

902

based version we study here is equivalent. In fact, balancing

problems with respect to �p norms, with constant p ≥ 1, are

all reducible to each other.

A. Previous Work

The early methods used for solving these problems –

Osborne’s iteration for balancing, and the RAS method for

scaling – are simple iterative algorithms. However, merely

the task of analyzing their convergence turned out to be a

major challenge. Significant effort has gone into understand-

ing their convergence [31], [32], [33], [24], and providing

better analyses or better iterative methods resulted in a long

line of work in this context.

The major shortcoming of the methods obtained so far

for exactly solving the problem (depending only logarith-

mically on 1/ε) is their very large running time. In the

following discussion we ommit runtime factors that de-

pend (logarithmically) on the size of the input entries. For

matrix scaling, Kalantari and Kachiyan [34] obtained an

algorithm that finds an ε-approximate solution and runs in

time Õ(n4 log(1/ε)), where n denotes the dimension of

the matrix (we can assume the matrix is square w.l.o.g.)

and ε is the desired accuracy parameter. This algorithm

was based on the ellipsoid method. These authors also

proposed – but not formally analyzed – an algorithm based

on interior point method, which they expected to run in

time Õ(m3.5 log(1/ε)), where m denotes the number of

non-zero entries of the input matrix. Then, Nemirovsky

and Rothblum [35] analyzed an interior point method–based

algorithm which run in time Õ(m4 log(1/ε)). Finally, Linial,

Samorodnitsky, and Wigderson [24] gave an Õ(n7 log(1/ε))
time algorithm that is also strongly polynomial, in the sense

that it does not depend at all on the size of input entries.

For the case of matrix balancing, Parlett and Reinsch [3]

provided an iterative method based on Osborne’s iteration,

without proving convergence. Then, Grad [4] proved that

Osborne’s iteration converges in the limit. The first polyno-

mial time bound was obtained by Kalantari, Khachiyan, and

Shokoufandeh [7], who gave an algorithm with running time

Õ(n4 log(1/ε)).
Alternatively, if one is interested in the regime where the

running time is allowed to depend polynomially – instead

of logarithmically – on the (inverse of the) desired accuracy

of the solution, there are algorithms that have an even

better dependence on the other parameters. Specifically, the

current state-of-the-art is given by Linial, Samorodnitsky,

and Wigderson [24], who obtain O(n3ε−2) running time for

the scaling problem. In the case of the balancing problem,

recently, Ostrovsky, Rabani, and Yousefi [33] made a signif-

icant progress by obtaining running times of Õ(m+ nε−2)
and Õ(n3.5ε−1).

Finally, another important line of work in this domain was

focused on the related �∞ variant of the balancing problem,

where the maximum entry of each row is required to be

equal to the maximum entry of the corresponding column.

Schneider and Schneider [8] gave a non-iterative algorithm

running in time O(n4), improved to Õ(mn+n2) by Young,

Tarjan, and Orlin [36]. More recently, Schulman and Sin-

clair [32] provided an analysis of the classical Osborne-

Parlett-Reinsch obtaining a running time of Õ(n2m), and

gave a version of it with running time Õ(n3 log(1/ε)).

B. Our Contributions

We provide algorithms for both matrix scaling and bal-

ancing problems.

For the matrix scaling problem, we establish an algorithm

that runs in time

Õ
(
m log(κ(U∗) + κ(V∗)) log2

sA
ε

)
,

where U∗ and V∗ are the optimal scaling matrices, κ(·)
is the maximum ratio between the diagonal entries of its

argument, sA is the sum of the entries in the input matrix,

and ε is the measure of the target error of the scaling,

formally defined in Definition 5.

For the matrix balancing problem, we establish a running

time of

Õ
(
m log κ(D∗) log2

wA

ε

)
,

where wA is the ratio of the sum of the entries to the

minimum nonzero entry, D∗ is the optimal balancing matrix,

κ(·) has the same meaning as above, and ε is the measure

of the balancing error, as formally defined in Definition 19.

Notably, our running times depend logarithmically on

both the target accuracy and the magnitude of the entries

in the optimal balancing or scaling. This implies that if the

optimal solution has quasi-polynomially bounded entries,

our algorithms run in nearly linear time Õ(m log(1/ε))
(ignoring logarithmic factors involving the entries of the

input matrix). This includes, for instance, the case when

input matrix has all its entries positive or, in case of matrix

balancing, if there just exists a single row/column pair with

all positive entries.

However, there are matrices for which κ can be ex-

ponentially large (in n). For the case of such matrices

we develop algorithms with negligible dependence on κ.

These algorithms are based on interior point methods, with

appropriately chosen barriers, commonly used in exponential

programming [37]. We show that the linear system solves

required by the interior point method every iteration can be

reduced via Schur complementing to approximately solving

a Laplacian system, which can be done in nearly linear time

using any standard Laplacian solver [38], [39], [40], [41],

[42], [43], [44]. This yields a running time of

Õ
(
m3/2 log

wA

ε

)
,

where wA is the ratio between the largest and smallest

nonzero entry of A.

903

C. Our Approach

We approach the scaling and balancing problems by

developing a continuous optimization based perspective on

them. More precisely, we solve both matrix scaling and

balancing problems by casting them as tasks of minimizing

certain corresponding convex functions. In fact, in the case

of the balancing problem, that function is directly inspired

by the one used in [7]; for the scaling problem, it is function

derived from the one used in [34].

Since our goal is to obtain logarithmic – instead of

polynomial – dependence on the (inverse of the) desired

accuracy ε, it would be tempting to use well-known tools

for convex programing, such as ellipsoid method or interior

point method. However, these methods are, a priori, compu-

tationally expensive. This motivates us to look for different,

more direct approaches.

To this end, we develop a technique for minimizing a

broader class of functions that we call second-order robust
(with respect to �∞). Intuitively, this class corresponds to

functions whose Hessians do not change too much within

any unit �∞-ball. And the consequence of that property that

will be crucial for us is that local quadratic approximation

of such functions at any given point is relatively accurate

within the unit �∞ neighborhood of that point. As a result,

iteratively optimizing the local approximation around the

current point, while staying within that �∞ neighborhood,

will be guaranteed to make progress towards minimizing

the function. This iterative procedure can be viewed as a

“box-constrained” variant of the Newton’s method.

A priori, performing a single step of such a box-

constrained Newton’s method, i.e., minimizing a quadratic

function subject to box constraints might be a computa-

tionally costly task. We show, however, that it suffices to

implement a weaker primitive, which we call a k-oracle.

That primitive corresponds to (approximately) minimizing

a quadratic function within a region that is within a factor

of k larger than the target �∞-ball. Once such a k-oracle is

implemented efficiently, we can compute the global optimum

of our second-order robust function using a small number of

calls to it. More precisely, we show that one can minimize

a convex function f that is second-order robust with respect

to �∞ to within ε additive error from optimum in

O

(
(kR∞ + 1) log

(
f(x0)− f(x∗)

ε

))
(1)

iterations, where each iteration consists of one call to the

k-oracle, x0 is the starting point, x∗ is the minimizer of f ,

and R∞ is the �∞ radius of the level set of x0.

In the light of the above, the main technical difficulty

remaining is obtaining an efficient implementation of a k-

oracle. We show that for functions whose Hessian is sym-

metrically diagonally dominant, with nonzero off-diagonal

entries, or SDD for short2, we can implement a k-oracle,

with k = O(log n), in time that is nearly linear in the

sparsity of the Hessian. We build here on the strategy under-

lying the Laplacian solver of Lee, Peng and Spielman [45].

Specifically, we carefully lift the solutions corresponding

to coarser (and smaller) approximations of the underlying

matrix to the desired solutions corresponding to the initial

matrix in a way that does not allow these lifted solutions to

exceed the boundaries of a O(log n)-radius �∞-ball.

Once the above optimization framework is developed,

applying it to the scaling and balancing problems is fairly

straightforward. It boils down to verifying that the functions

that capture the respective problems are indeed second-order

robust and have an SDD Hessian, and then bounding all the

relevant quantities that (1) involves.

Independent Work: Finally, we note that Allen-Zhu, Li,

Oliveira, and Wigderson [46] obtained independently very

similar results for the exact version of the problem. The

running time of the algorithms they develop have a bit worse

dependence on m, but they were able to establish better

absolute bounds on κ (in terms of the problem parameters

and the magnitude of the input entries) for the general, non-

doubly stochastic variant of the matrix scaling problem.

D. Roadmap

The rest of the paper is organized as follows. First, we

introduce relevant notation and concepts in Section II. Then,

in Section III we formally introduce the class of convex

functions we call second-order robust with respect to �∞.

For these, we develop a specific optimization primitive called

box-constrained Newton method.

We describe how we can apply the primitive from Sec-

tion III to matrix balancing and scaling in Section IV, by

reducing these problem to a convex function minimization

with favorable structure. In order to complete our algorithm,

in Section V, we show how to efficiently implement an

iteration of the box-constrained Newton in the special case

where the Hessian of the function is SDD. In Section VI we

provide a different approach for balancing and scaling based

on interior point methods. Complete proofs and technical

details are presented in the full version of the paper.

II. PRELIMINARIES

A. Notations

Vectors: We let �0,�1 ∈ R
n denote the all zeros and all

ones vectors, respectively. When it is clear from the context,

we apply scalar operations to vectors with the interpretation

that they are applied coordinate-wise.

2Such matrices can essentially be viewed as a Laplacian matrix plus a
nonnegative diagonal.

904

Matrices: We write matrices in bold. We use I to

denote the identity matrix, and 0 to denote the zero matrix.

Given a matrix A, we denote its number of nonzero entries

by nnz(A). When it is clear from the context, we use m to

denote the the number of nonzeros; similarly, we use n to

denote the dimension of the ambient space.

We denote by sA the sum of entries of A, by �A the

minimum nonzero entry of A, and by wA the ratio between

these quantities. We use supp(A) to denote the set of pairs

of indices (i, j) corresponding to the nonzero entries of A.

Given a matrix A, we define rA = A�1 to be the vector

consisting of row sums, and cA = A��1 to be the vector

consisting of column sums. For a positive diagonal matrix A
we denote the maximum ratio between its diagonal elements

by κ(A).
Positive Semidefinite Ordering and Approximation: For

symmetric matrices A,B ∈ R
n×n we use A � B to

represent the fact that that x�Ax ≤ x�Bx, for all x. A

symmetric matrix A ∈ R
n×n is positive semidefinite (PSD)

if A � 0. We use �,�,≺ in a similar fashion. For vectors

x, we define the norm ‖x‖A =
√
x�Ax. Given two PSD

matrices A and B, and a parameter α > 0, we use A ≈α B
to denote the fact that e−α ·B � A � eα ·B.

Laplacian and SDD matrices: A family of matrices

that will play an important role in this paper are symmetric

diagonally dominant (SDD) matrices. These are matrices A,

that symmetric and, moreover, have each diagonal entry be

larger than the sum of absolute values of the corresponding

row entries. That is, for every i

Aii ≥
∑
j �=i

|Aij |.

A special case of SDD matrices are Laplacian matrices,

which have negative off-diagonal entries and the sum of

each row is required to be zero. The crucial fact about these

matrices is that one can exploit their structure to solve linear

systems in them in time that is only nearly linear [38], [39],

[40], [41], [42], [43], [44].

Diagonal Matrices: For x ∈ R
n we denote by D(x) ∈

R
n×n the diagonal matrix where D(x)ii = xi. Given a

nonnegative diagonal matrix D, we use κ(D) to denote

the ratio between its largest and smallest entry. We will

overload notation and, for any matrix A ∈ R
n×n, use D(A)

to denote the main diagonal of A, that is (D(A))ii = Aii

and (D(A))ij = 0 for i �= j.

Gradients and Hessians: Given a function f we denote

by ∇f(x) its gradient at x, and by ∇2f(x) its Hessian at

x. When the function is clear from the context, we also use

Hx to denote its Hessian at x.

Block Matrices: As part of our algorithms, we will

consider partitioning the coordinates of vectors into sets of

indices F and C. When we compute the quadratic form of

a matrix with these vectors, we need to be able to reason

about how values in each component interact with the rest

of the vector. For that reason it is convenient to denote the

block form notation for a matrix A as:

A =

[
A[F,F] A[F,C]

A[C,F] A[C,C]

]
.

Schur Complements: For a matrix A ∈ R
n×n and a

partition of its indices (F,C), the Schur complement of F

in A is defined as

Sc(A, F)
def
= A[C,C] −A[C,F]A

−1
[F,F]A[F,C] .

The exact use of Schur complements will become clear in

Sections V,VI. These are objects that naturally arise during

Gaussian elimination for the solution of linear systems. By

pivoting out variables F the remaining system to solve for

variables of C is exactly the Schur complement of F in A.

III. BOX-CONSTRAINED NEWTON METHOD FOR

SECOND-ORDER ROBUST FUNCTIONS

The central element of our approach is developing an ef-

ficient second-order method based minimization framework

for a broad class of functions that we will call second-

order robust with respect to �∞. To motivate the choice

of this class, recall that second-order methods for function

minimization are iterative in nature, and they boil down

to repeated minimizing the local quadratic approximation

of the function around the current point. Consequently, in

order to obtain meaningful guarantees about the progress

made by such methods, one needs to ensure that this local

quadratic approximation constitutes a good approximation

of the function not only at the current point but also in

a reasonably large neighborhood of that point. The most

natural way to obtain such a guarantee is to ensure that

the Hessian of the function (which is the basis of our local

quadratic approximations) does not change by more than

a constant factor in that neighborhood. As a result, the

functions we are interested in optimizing in this paper are

the ones that satisfy that property in an �∞-ball around the

current point. This is formalized in the following definition.

Definition 1 (Second-Order Robust w.r.t. �∞). We say that a

convex function f : Rn → R is second-order robust (SOR)
with respect to �∞ if, for any x, y ∈ R

n such that ‖x −
y‖∞ ≤ 1,

∇2f(x) ≈2 ∇2f(y), that is,

1

e2
∇2f(x) � ∇2f(y) � e2∇2f(x) .

Note that the size of the �∞-ball, as well as the exact

factor by which the Hessian is allowed to change, are chosen

somewhat arbitrarily – all choices of the constants can be

made equivalent via an appropriate rescaling. Moreover,

even if these quantities are not constant, they would only

appear in the running time as a small polynomial factor.

Now, the above definition suggests a natural framework

for optimizing such functions. Namely, in every iteration,

905

we optimize a local quadratic approximation of the function

within a unit �∞-ball around the current point. As we

will see shortly, this approach can be rigorously analyzed.

In particular, our key technical result is that if we apply

this approach to an SOR function whose Hessians has

additionally a special structure, i.e., those for which the

Hessian is, essentially, a symmetric diagonally dominant

(SDD) matrix, we can implement every iteration in time

nearly linear in the number of nonzero entries of the Hessian.

This leads to running time bounds captured by the following

theorem.

Theorem 2 (Minimizing Second-Order Robust Functions

w.r.t �∞). Let f : R
n → R be a second-order robust

(SOR) function with respect to �∞, such that its Hessian
is symmetric diagonally dominant (SDD) with nonpositive
off-diagonals, and has m nonzero entries. Given a starting
point x0 ∈ R

n we can compute a point x, such that
f(x)− f(x∗) ≤ ε, in time

Õ

(
(m+ T)R∞ log

(
f(x0)− f(x∗)

ε

))
,

where x∗ is a minimizer of f , R∞ = supx:f(x)≤f(x0) ‖x −
x∗‖∞ is the �∞ diameter of the corresponding level set of
f , and T is the time required to compute the Hessian.

Note that the bounds provided by the above theorem are,

in a sense, the best possible for any kind of approach that

relies on repeated minimization of a local approximation of

a function in an �∞-ball neighborhood. In particular, as each

step can make a progress of at most 1 in �∞-norm towards

the optimal solution, one would expect the total number of

steps to be Ω(R∞).
It turns out that the above theorem is all we need to

establish our results for scaling and balancing problems

(except the ones relying on the interior point method). That

is, these results can be obtained by direct application of the

above theorem to an appropriate SOR function. We provide

the details in Section IV.

Now, the first step to proving the above Theorem 2 is to

view each iteration of our iterative minimization procedure

as a call to a certain oracle problem.

Definition 3. We say that a procedure O is a k-oracle for a

class of matrices M, if on input (A, b), where A ∈ M ⊆
R

n×n, and b ∈ R
n, returns a vector z̃ satisfying

1) ‖z̃‖∞ ≤ k, and

2) 1
2 z̃
�Az̃ + b�z̃ ≤ 1

2 ·min‖z‖∞≤1

(
1
2z
�Az + b�z

)
.

Note that the minimum of the left-hand side of Condition

(2) above is always non-positive. This is desired, since this

expression is supposed to measure our function minimization

progress.

Observe that minimizing the function 1
2z
�Az + b�z

without any constraints on z corresponds to solving a

linear system Az = −b. So, one can view the k-oracle

problem as a certain generalization of linear system solving.

Specifically, it is a task in which we aim to find a point in

the �∞-ball of diameter k around the origin that is closest

(in a certain sense) to the solution to that linear system.

One can view the parameter k as the measure of the

“quality" of our k-oracle. The smaller it is, the faster

convergence the overall procedure will have. Importantly,

however, the value of k impacts only the convergence and

not the quality of the final solution. The following theorem

makes this relationship precise.

Theorem 4. Let f : R
n → R be a function that is

second-order robust with respect to �∞. Let O be a k-
oracle for {∇2f(x) : x ∈ R

n}, along with an ini-
tial point x0 ∈ R

n and an accuracy parameter ε. Let
R∞ = supx:f(x)≤f(x0) ‖x − x∗‖∞, where x∗ is a mini-
mizer of f . Then one can produce a solution xT satisfying
f(xT)− f(x∗) ≤ ε using

O

(
(kR∞ + 1) log

(
f(x0)− f(x∗)

ε

))
calls to O.

In Section V we design an efficient k-oracle, with k =
O(log n), for the family of SDD matrices. Combining The-

orem 38 with Theorem 4 immediately gives the proof of

Theorem 2. We remark that while Theorems 2, 4 are stated

and proved for functions defined over R
n, they can be

extended in a straightforward way to hold when f is defined

over an arbitrary closed, convex set.

IV. MATRIX SCALING AND BALANCING

Having developed our main optimization primitives, we

can develop efficient algorithms for matrix scaling and

matrix balancing. Our approach is essentially the same for

both problems, and differs only in technical details.

At the high level, we will construct convex functions

with optima corresponding to exact scaling/balancing of the

matrix. Moreover, the gradient of these functions at a specific

scaling/balancing of the matrix will be directly related to the

quality of this particular scaling/balancing. This will allow

us to prove that approximately optimal points correspond to

ε-balancing/ε-scaling. The fact that that these functions are

second-order robust with respect to �∞ makes it sufficient to

apply the optimization method from Section III. To complete

the algorithm and its running time analysis, we need then to

address two issues.

Firstly, proving running time bounds for this method

requires an upper bound on the �∞ radius of the level

set of the initial point, i.e. the R∞ parameter defined in

Theorem 4. Depending on the structure of the matrix, there

are several different bounds that one can prove, depending

only on parameters of the original problem. However, the

most interesting case is when we are promised that the exact

scaling/balancing of the matrix is “small” (in the sense that

906

the ratio between factors is, say, polynomial). In that case,

we can regularize the function to turn this promise into a

guarantee for the size of the level set without sacrificing

too much accuracy. Moreover, by using a simple doubling

approach, we can make the algorithm not require explicit

knowledge of such a parameter, and it will only appear as

a factor in the final runnning time of the algorithm.

Secondly we need to ensure that we can efficiently imple-

ment k-oracles for the Hessians of these functions. In our

case, this boils down to proving that the Hessians are SDD

matrices with sparsity equal to that of the input matrix, and

then build on the existing Laplacian solving work. For the

remainder of this section, we define the convex functions

that we need optimize, show how to regularize them, and

prove bounds on the corresponding R∞ parameters. We

describe and sketch the analysis for the implementation of

a O(log n)-oracle in Section V.

A. Matrix Scaling

We now formally define the scaling problem, along with

the notion of ε-scaling.

Definition 5 (Matrix Scaling). Let A ∈ R
n×n be a

nonnegative matrix and r, c ∈ R
n be vectors such that∑n

i=1 ri =
∑n

j=1 ci, and ‖r‖∞, ‖c‖∞ ≤ 13. We say that

two nonnegative diagonal matrices X and Y (r, c)-scale A
if the matrix M = XAY satisfies M�1 = r and M��1 = c,
i.e. row i sums to ri and column j sums to cj for every i, j.

Definition 6 (ε-(r, c) scaling). Given nonnegative A and

positive diagonal matrices X,Y, we say that (X,Y) is an

ε-(r, c) scaling (or ε-scaling, when r and c are clear from

the context) for matrix A if the matrix M = XAY satisfies

‖rM − r‖22 + ‖cM − c‖22 ≤ ε .

Definition 7 (Scalable and Almost-Scalable Matrices). A

nonnegative matrix A, is called (r, c)-scalable, if there exist

X and Y that (r, c)-scale A. It is called almost (r, c)-
scalable if for every ε > 0, there exist Xε and Yε that

ε-(r, c) scale A.

We will cast matrix scaling as a convex optimization

problem and show that applying the method from section III

yields a good approximate scaling.

Theorem 8. Let A be a matrix, that has an (r, c) scaling
(U∗,V∗). Then, we can compute an ε-(r, c) scaling of A
in time

Õ
(
m log(κ(U∗) + κ(V∗)) log2(sA/ε)

)
.

3In literature we also encounter this problem for non-square matrices;
however solving squares is sufficient, since given A ∈ R

n×c, we can

reduce to this instance by scaling the square matrix

[
0c,c A�
A 0r,r

]
. The

upper bound on r and c is harmless, since for larger values we can always
shrink all of A, r, c and ε by the same factor in order to enforce this
constraint.

This implies that if U∗ and V∗ are, say, quasi-

polynomially bounded, we can find an approximate scaling

in nearly linear time. If fact, we can generalize this statement

to obtain a similar result for the case of approximate

scalings. This is made precise in Theorem 9.
1) Matrix Scaling via Convex Optimization: Recall that

we want to encode the matrix scaling problem as a an

instance of minimizing of a certain convex function. Given

the input matrix A, the function we want to consider is:

f(x, y) =
∑

1≤i,j≤n

Aije
xi−yj−

⎛
⎝ ∑

1≤i≤n

rixi −
∑

1≤j≤n

cjyj

⎞
⎠ .

(2)

We want to argue now that computing an (approximate)

scaling of the matrix A can indeed be recovered from an

(approximate) minimum of the above function. Specifically,

we want to establish the following theorem.

Theorem 9. Suppose that there exist a point z∗ε = (x∗ε, y
∗
ε)

for which f(z∗ε)− f∗ ≤ ε2/(3n) and ‖z∗ε‖∞ ≤ B. Then we
can compute an ε-(r, c) scaling of A in time

Õ
(
mB log2(sA/ε)

)
.

The proof is straightforward given the lemmas below

and is presented in the full version of the paper. First,

we will prove that approximate optimality of f implies an

approximate scaling of the matrix.

Lemma 10. Let A be an ε-scalable matrix. Let f∗ =
inf(x,y) f(x, y). Then, a pair of vectors (x, y) satisfying
f(x, y) − f∗ ≤ ε2/3n, for 0 < ε ≤ 1, yields an ε-(r, c)
scaling of A:

M = D(exp(x)) ·A · D(exp(y)) .
Note that we compare the value of f(x, y) to its infimum,

as for the case of almost scalable matrices it is possible that

this value is attained only to the limit.
To prove this lemma, we first look at the first and second

order derivatives of f .

Lemma 11. Let M be the matrix obtained by scaling A
with vectors (x, y), i.e. M = D(exp(x)) · A · D(exp(y)).
The gradient and Hessian of f satisfy the identities:

∇f(x, y) =

[
rM
−cM

]
−

[
r
−c

]
,

∇2f(x, y) =

[
D(rM) −M
−M�

D(cM)

]
.

We can observe that any (x, y) for which ∇f(x, y) is

equal to 0 yields diagonal matrices that exactly scale A.

Moreover, this statement also holds in an approximate sense.

One can prove that a large gradient in �2 norm implies

that the current point is far from optimal in function value.

Making this statement precise, allows us to prove Lemma 10.

The technical details can be found in the full version of the

paper.

907

2) Regularization for Solving via Box-Constrained New-
ton Method: It is straightforwards to verify that the function

we are minimizing (defined in Equation 2), satisfies the

requirements necessary for us to be able to apply the tools

from Section III.

Lemma 12. The function f defined in (2) is convex, second-
order robust with respect to �∞, and its Hessian is SDD.

One should observe, however, that Theorem 4 requires

bounding the radius of the entire level set containing our

initial point and not merely the distance to some (approx-

imate) minimizer of our function f . This means that the

existence of an (approximate) minimizer that is close to

our initial point is not sufficient to apply Theorem 4. To

circumvent that problem, we regularize the function f by

adding to it a term that, on one hand, has a relatively small

impact on the additive error we can achieve, but, on the other

hand, ensures that the entire relevant level set is contained

in some sufficiently small �∞-ball around our initial point.

The following lemma makes these statements precise.

Lemma 13. Let z∗ε = (x∗ε, y
∗
ε) be a point for which f(z∗ε)−

f∗ ≤ ε2/(3n) and ‖z∗ε‖∞ ≤ B. Then, the regularization of
f defined as

f̃(x, y) = f(x, y)

+
ε2

36n2eB

⎛
⎝∑

i

(exi + e−xi) +
∑
j

(eyj − e−yj)

⎞
⎠ (3)

satisfies the following properties
1) f̃ is second-order robust with respect to �∞ and its

Hessian is SDD,
2) f(z) ≤ f̃(z), and there is a point z̃∗ such that f̃(z̃∗) ≤

f∗ + ε2

9n ,
3) for all z′ such that f̃(z′) ≤ f̃(0), ‖z′‖∞ =

O(B log(nsA/ε)).

Theorems 8 and 9 follow from applying Theorem 2 to

the regularized function defined in Equation 3, and then

combining it with the guarantees of Lemmas 10 and 13. We

note that we don’t need an explicit knowledge of an a priori

bound on B. We can simply run our algorithm repeatedly,

doubling our guess at the value of B each time. This will

not increasing the overall running time by more than a factor

of two.

3) Bounding the Magnitude of the Optimal and Approxi-
mately Optimal Scalings for Doubly Stochastic Scaling: In

order to provide bounds for the magnitude of the scaling

factors that only depend on the parameters of the initial

problem, we refer to the following lemmas from [34] for

the case of double stochastic (i.e. (1,1)) scaling.

Lemma 14 (Lemma 1 of [34]). If A is strictly positive, then
it can be scaled to doubly stochastic by diagonal matrices
U, V with log(κ(U) + κ(V)) ≤ O(log(wA)).

Lemma 15 (Corollary 1 of [34]). If A is scalable, then it
can be scaled to doubly stochastic by diagonal matrices U,
V with log(κ(U) + κ(V)) ≤ O(n log(wA)).

For almost scalable matrices, there can be arbitrarily good

solutions, using arbitrarily large scaling factors. To prove

bounds on the runtime of finding an approximate doubly-

stochastic matrix, we will have to explicitly demonstrate

an vector that approximately minimizes function f while

having small �∞ norm.

Lemma 16. If A is almost-doubly-stochastic scalable, then
there exist points (x, y) such that f(x, y) − f∗ ≤ ε2/3n,
such that ‖(x, y)‖∞ ≤ O(n log(nwA/ε)).

For the general case of (r, c)-scaling we refer to the recent

lemmas from the parallel work of [46]. The assumption

that the scaling targets are integral is mild, since one can

approximate real numbers by rational ones which can then

by scaled to be integral (the dependence on this scaling is

logarithmic).

Lemma 17 (Lemma 3.3 of [46]). If A is almost (r, c)-
scalable with r, c being integral, then it can be ε-scaled
by diagonal matrices U, V with log(κ(U) + κ(V)) ≤
O(n log(nwA‖r‖1/ε)).
B. Matrix Balancing

Our approach for the balancing problem is completely

analogous to the one we used for the scaling problem. There

are only minor technical differences. To state them, we first

formally define the problem and the notion of approximation

we are considering for it.

Definition 18 (Matrix Balancing). Let A be a square

nonnegative matrix. We say that A is balanced if the sum of

each row is equal to the sum of the corresponding column,

i.e. rA = cA. We say that a nonnegative diagonal matrix D
balances A if the matrix M = DAD−1 is balanced.

Definition 19 (ε-Balanced Matrix [7]). We say that a

nonnegative matrix M ∈ R
n×n is ε-balanced if

‖rM − cM‖2∑
1≤i,j≤n Mij

=

√∑n
i=1((rM)i − (cM)i)2∑

1≤i,j≤n Mij
≤ ε.

Observe that this definition is invariant to a global scaling

of all the entries of the matrix by some factor. There is a

very simple condition that characterizes the set of matrices

that can be balanced

Lemma 20 ([7]). A nonnegative matrix A ∈ R
n×n can be

balanced if and only if the graph with adjacency matrix A
is strongly connected.

In the case when the graph is not strongly connected,

the matrix can have its rows and columns rearranged so

as to be written as a lower triangular block matrix with

strongly connected diagonal blocks. The reason no exact

908

balancing exists is that off diagonal block elements will

always create imbalances. This, however, is not an obstacle

for approximately balancing the matrix. Once we balance

the diagonal blocks, we can set all of the off-diagonal block

entries to a very small value, say ε/n, so that they don’t

cause significant imbalances. This corresponds to implicitly

scaling the block rows and collumns by a very large amount,

making the off-diagonal entries arbitrarily close to zero.

Therefore, since the case of matrices that cannot be exactly

balanced is easy to detect, and can be easily reduced to

the exactly balanceable case, from now on we consider

only matrices that can be balanced, and therefore represent

strongly connected graphs.
We can now state our main theorem for this section, which

follows our initial discussion.

Theorem 21. Let A be a matrix that can be balanced
by the diagonal matrix D∗. Then, we can compute an ε-
approximate balancing of A in time

Õ(m log κ(D∗) log2(wA/ε)) .

This immediately implies that if D∗ is, say, quasi-

polynomially conditioned, we can find an approximate bal-

ancing in nearly linear time.
Again, we can generalize this result to hold for ap-

proximate balancings. We make this statement precise in

Theorem 22.
1) Reducing Matrix Balancing to Convex Optimization:

Similarly to the case of the scaling problem, we encode this

problem as a minimization of an appropriately constructed

convex function. The function we consider here is

f(x) =
∑

1≤i,j≤n

Aije
xi−xj , (4)

and this function was already defined in [7]. Similarly to the

case of matrix scaling, we will show that (approximately)

minimizing this function corresponds to (approximately)

balancing the matrix A. For the rest of this section, we will

define f∗ to be the infimum value of f in its domain, that

is f∗ = infx f(x). The main theorem of this section is the

following.

Theorem 22. Suppose that there exists a point x such that
f(x) ≤ f∗ + ε2�A/24, and ‖x‖∞ ≤ B. Then, we can
compute an ε-approximate balancing of A in time

Õ(mB log2(wA/ε)) .

Similarly to the matrix scaling case, the proof of this

theorem follows directly from the key lemmas presented

below. First, we prove that small additive error in function

optimization implies an approximate balancing for A.

Lemma 23. Consider a matrix A and the corresponding
function f . Any vector x satisfying f(x) − f∗ ≤ ε2�A/8
yields an ε-approximate balancing of A:

M = D(exp(x)) ·A · D(exp(−x)) .

Proving the lemma requires computing the first and sec-

ond order derivatives of f .

Lemma 24. Let M be the matrix obtained by balancing A
with the vector x, which corresponds to M = D(exp(x)) ·
A ·D(exp(−x)). The gradient and Hessian of f satisfy the
identities:

∇f(x) = rM − cM ,

∇2f(x) = D(rM + cM)− (M+M�) .

Intuitively, since the gradient is 0 precisely when the

corresponding point produces an exact balancing, a small

gradient should imply a good approximate balancing. This

guides the proof of Lemma 23. We will prove that a large

gradient corresponds to being able to significantly decrease

the function value, thus contradicting the approximate opti-

mality of the point.
2) Regularization for Solving via Box-Constrained New-

ton Method: We observe that the function f defined in (4)

satisfies all the conditions required to efficiently minimize it

using the method we described in Section III.

Lemma 25. The function f is convex, second-order robust
with respect to �∞, and its Hessian is SDD.

The method we described in Section III depends on a

promise concerning the point we initialize it with. Recall that

in order to apply Theorem 2 we require an upper bound on

the size of the �∞-ball containing the level set of the initial

point. In order to provide good bounds, we regularize f .

The description and effect of this regularization in captured

in the following lemma.

Lemma 26. Suppose that there exists a point x such
that f(x) ≤ f∗ + ε2�A/24, and ‖x‖∞ ≤ B. Then, the
regularization of f is defined as

f̃(x) = f(x) +
ε2�A
48neB

n∑
i=1

(exi + e−xi) (5)

and satisfies the following properties:
1) f̃ is second-order robust with respect to �∞ and has

a SDD Hessian,
2) f(x) ≤ f̃(x), and if x̃∗ is the minimizer of f̃ , then

f̃(x̃∗) ≤ f(x∗) + ε2�A/24,
3) for all y such that f̃(y) ≤ f̃(0), ‖y − x∗‖∞ =

O(B log(nwA/ε)).

In particular, this lemma implies that approximately opti-

mizing the regularized function will still produce an approx-

imately balanced matrix.

Theorem 21 then follows by applying Theorem 2 to the

regularized function defined in Lemma 26, and combining

it with the error guarantee of Lemma 23. Similarly to the

case of the scaling problem, we don’t need to know any a

priori bound on B. Just trying increasingly larger value of

B (i.e., doubling our guess at each iteration) is sufficient.

909

3) Bounding the Condition Number of the Optimal Bal-
ancing: As we saw above, the running time given by

Theorem 21 depends logarithmically on κ(D∗), where D∗

is the matrix that achieves the optimal balancing. This

parameter can be upper bound using certain input-dependent

quantities:

Lemma 27. Let A ∈ R
n×n be a nonnegative matrix.

Suppose that the graph with adjacency matrix A is strongly
connected, and every vertex can reach every other vertex
within at most k hops. Then the matrix D∗ that perfectly
balances A has log κ(D∗) = O(k logwA).

The lemma yields the following upper bound on the value

of κ(D∗).

Corollary 28. If A is a balanceable matrix, and D∗

perfectly balances it, then log κ(D∗) = O(n logwA). If A
is strictly positive, then log κ(D∗) = O(logwA).

V. IMPLEMENTING AN O(log n)-ORACLE IN NEARLY

LINEAR TIME

In Section IV we reduced the balancing and scaling

problems to the approximate minimization of second-order

robust functions with respect to the �∞ norm. All that is left

to have a complete algorithm, we need a fast procedure to

implement a k-oracle as in Definition 3. Namely, show how

to construct an O(log n)-oracle for the problem,

min
‖x‖∞≤1

x�Mx+ 〈b, x〉 , (6)

where M is an SDD matrix. For this section, whenever we

say that a matrix is SDD we will also imply that the off-

diagonal entries are nonpositive.

One possible approach, is to use standard convex op-

timization reductions to turn this problem into the min-

imization of the maximum of an �∞ norm and an �2
norm subject to linear constraints. This problem can be

solved in time Õ(mn1/3) using the multiplicative weights

framework as applied in [47], [48]. The resulting algorithm

for implementing the k-oracle would take time Õ(m+n4/3),
by taking advantage of spectral sparsification algorithms

[49], [50], [51]. Instead, we will come up with a faster

algorithm.

Our approach, based on the Lee-Peng-Spielman solver

[45], is to identify large sets of vertices where the problem

is “easy” to solve and then deal with the rest of the graph

(reduced in size) recursively. The particular notion of “easy”

we are going to use, is that of strong diagonal dominance.

Definition 29. A matrix M is α-strongly diagonally domi-
nant (α-SDD), if for all i

Mii ≥ (1 + α)
∑
j �=i

|Mij |.

The reason that such matrices enable us to solve the

corresponding problems fast is that they can be well-

approximated by a diagonal matrix.

Lemma 30. Every α-SDD matrix M, with diagonal D(M),
satisfies(

1− 1

1 + α

)
D(M) � M �

(
1 +

1

1 + α

)
D(M).

In our context, problems in the form of Equation 6, where

M is an α-SDD matrix for some α ≥ Ω(1), can be turned

into well conditioned quadratic minimization problems for

which we can apply standard linearly convergent algorithms.

For a more detailed description and analysis of such algo-

rithms can be found in [52].

Lemma 31. There is an algorithm FASTSOLVE, that given
an Ω(1)-SDD matrix M, and ε > 0, returns a point x̃, such
that ‖x̃‖∞ ≤ 2, and

x̃�Mx̃+ 〈x̃, b〉 ≤ (1− ε) min
‖x‖∞≤2

x�Mx+ 〈x, b〉

in time O(m log(1/ε)), where m is the number of nonzero
entries of M.

An even simpler case is when the matrix is of size 1, in

which case the problem can be exactly solved in constant

time:

Lemma 32. There is an algorithm TRIVIALSOLVE, that
given a 1 by 1 matrix M returns an x optimizing x�Mx+
〈b, x〉 over the interval [−1, 1].

A key insight of [45] is that one can find Ω(1)-SDD

submatrices of M of size Ω(n). We denote such a subset by

F and V \ F by C. To ensure that solving the problem

for xF will not interfere with our solution xC we map

a solution x̂C supported only on coordinates of C to a

solution xC through a linear mapping P. If P were the

energy minimizing extension of voltages on C to voltages

on V ,

(Px̂C)F = M−1
[F,F]M[F,C]x̂C ,

we would have that xF and xC are M-orthogonal, since

x�FMPx̂C = 0. Then, optimizing over x̂C involves the

quadratic P�MP which is exactly equal to M[C,C] −
M[C,F]M

−1
[F,F]M[F,C] = Sc(M, F). Applying this proccess

recursively leads to the notion of vertex sparsifier chains that

we will heavily rely on.

Definition 33 (Definition 5.7 of [45]). For any SDD matrix

M(0), a vertex sparsifier chain of M(0) with parameters

αi ≥ 4 and 1/2 ≥ εi > 0, is a sequence of matrices and

subsets (M(1), . . . ,M(d);F1, . . . , Fd−1) such that

1) M(1) ≈ε0 M(0),

2) M(i+1) ≈εi Sc(M
(i), Fi),

3) M
(i)
[Fi,Fi]

is αi-strongly diagonally dominant, and

910

4) M(d) has size 1.

To be able to reason about the approximation guarantees

of the chain as a whole we will use an error-quantifying

definition.

Definition 34 (Definition 5.9 of [45]). An ε-vertex sparsifier

chain of an SDD matrix M(0) of work W , is a vertex

sparsifier chain of M(0) with parameters αi ≥ 4 and

1/2 ≥ εi > 0 that satisfies

1) 2
∑d−1

i=0 εi ≤ ε,

2)
∑d−1

i=0 mi logαi
ε−1
i ≤W , where mi is the number of

nonzeros in L(i).

Finally, the construction of such chains, as well as their

error guarantees have been already analyzed in [45] and can

be used in a black-box manner.

Theorem 35 (Theorem 5.10 of [45]). Every SDD matrix
M of dimension n has a δ-vertex sparsifier chain of work
O(n) and d ≤ O(log n), for any constant 0 < δ ≤ 1. Such
a chain can be constructed in time, Õ(m).

Since we cannot exactly compute the energy minizing

mapping P, we will define an approximate mapping that

suffices for our purposes.

Definition 36. A linear mapping P̃ is an ε-approximate
voltage extension from C to V according to L if for any

x̂C ∈ R
|C|,

1) ‖(P̃−P)x̂C‖M ≤ ε‖Px̂C‖M,

2) P̃ is the identity on coordinates in C
3) the coordinates of P̃x̂C are convex combination of the

coordinates of x̂C and 0.

where P is the energy-minimizing extension.

We will construct such a mapping through a simple

averaging scheme. First we set the voltage of every vertex

in F to be the weighted average of its neighbors in C. Then

at every step we replace its voltage by the weighted average

of all its neighbors. (Here, excess diagonal is treated as an

edge to a vertex with voltage 0.) We do so for O(log(1/ε))
iterations. We formally state the procedure and prove its

correctness in the full version of the paper.

It is easy to see that all steps of the algorithm are linear

maps, and we can therefore also implement its transpose.

Lemma 37. For any SDD matrix M, given an Ω(1)-SDD
subset F and some ε > 0 one can apply an ε-approximate
voltage extension mapping in time O(m log(1/ε)).

Having expressed all of the components of our approach,

stating the algorithm is simple. Given the decomposition of

the problem the vertex sparsifier chain provides, we will

solve the smallest problem and then iteratively combine it

with the solution of the submatrices along the chain. The

algorithm is formally described in Figure 1, and the main

claim in Theorem 38.

OPTIMIZECHAIN((M(1), . . . ,M(d);F1, . . . , Fd−1;
ε0, . . . , εd−1), b)

1) b(1) ← b/eε0

2) For i← 1, . . . , d− 1

a) P̃(i) ← APPROXMAPPING(M(i), Fi, εi)
b) b(i+1) ← (P̃(i))�b(i)/(eεi(1 + εi + ε2i))

3) x(d) ← TRIVIALSOLVE(M(d), b(d))
4) For i← d− 1, . . . , 1

a) x
(i)
C ← P̃(i)x(i+1)

b) x
(i)
F ← FASTSOLVE(M

(i)
[Fi,Fi]

, b
(i)
Fi
, εi)

c) x(i) ← x
(i)
C + x

(i)
F

5) return x(1)

Figure 1. Optimizing a vertex sparsifier chain

Theorem 38. Algorithm OPTIMIZECHAIN implements a
O(log n)-oracle, and runs in time Õ(m).

VI. MATRIX SCALING AND BALANCING WITH

EXPONENTIAL CONE PROGRAMMING

The algorithm developed in the previous sections is es-

sentially optimal in the regime where the ratio between the

scaling factors is relatively small (say polynomial in n).

Since there are matrices for which this ratio is exponential,

we develop a complementary algorithm with negligible

runtime dependence on this ratio, at the cost of a mild

increase in the dependence on m. The algorithm is based

on interior point methods.

Although interior point methods would seem like a natural

option for the problems of matrix scaling and balancing,

standard formulations require solving linear systems involv-

ing various rescalings of the input matrix. A priori, it is

not clear whether these can be solved faster than matrix

multiplication time. However, it turns out that a somewhat

nonstandard formulation requires solving linear systems for

more structured matrices. Particularly, we see that these

matrices admit a decomposition involving only matrices that

are easy to invert (triangular matrices, solvable by back

substitution, and SDD matrices which can be tackled via a

standard Laplacian solver). Notably, a similar observation

was made by Daitch and Spielman [53], in the case of

interior point methods applied to flow problems on graphs.

[34] also consider a formulation similar to ours for the

matrix scaling problem, however they do not prove exact

convergence bounds or state the algorithm rigorously. More-

over, since nearly-linear time SDD solvers where not known

at the time, their algorithm provided no benefit compared to

other approaches.

The main result of this section is the following.

Theorem 39. Given a nonnegative matrix A ∈ R
n×n, one

can:

911

1) compute an ε-balancing in time
Õ(m3/2 log(wAε−1)) ,

2) if the matrix is almost (r, c)-scalable, compute a ε-
(r, c)-scaling in time Õ(m3/2 log(sAε−1)) .

This is as a matter of fact a consequence of the fact that

a specific class of functions, which capture both balancing

and scaling, can be minimized efficiently. We capture this

result in the following Theorem.

Theorem 40. Let A ∈ R
n×n be a nonnegative matrix with

m nonzero entries, let f be the function

f(x) =
∑

(i,j)∈supp(A)

Aije
xi−xj − 〈d, x〉 , (7)

and let Bx be a positive real number. There exists an
algorithm which, for any ε > 0, finds a vector x such that
f(x) − f(x∗(Bx)) ≤ ε (where x∗(Bx) is the optimum of f
over the region ‖x‖∞ ≤ Bx) in time

Õ

(
m3/2 log

(
2 +Bx +

sA
ε

+
‖d‖1
ε

))
.

Using this result, one can then conclude the proof of

Theorem 39.

ACKNOWLEDGEMENTS

MC was supported by the National Science Foundation

under Grant No. 1111109 and Grant No. 1553428, and by

the National Defense Science and Engineering Graduate

Fellowship. AM and DT were supported by the National

Science Foundation under Grant No. 1553428. AV was

supported by the National Science Foundation under Grant

No. 1111109 and Grant No. 1553428.

REFERENCES

[1] M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu, “Matrix
scaling and balancing via box constrained newton’s method
and interior point methods,” arXiv preprint arXiv:1704.02310,
2017.

[2] E. E. Osborne, “On pre-conditioning of matrices,” Journal of
the ACM, vol. 7, no. 4, pp. 338–345, 1960.

[3] B. N. Parlett and C. Reinsch, “Balancing a matrix for calcula-
tion of eigenvalues and eigenvectors,” Numer. Math., vol. 13,
no. 4, pp. 293–304, 1969.

[4] J. Grad, “Matrix balancing,” The Computer Journal, vol. 14,
no. 3, pp. 280–284, 1971.

[5] D. J. Hartfiel, “Concerning diagonal similarity of irreducible
matrices,” Proceedings of the American Mathematical Soci-
ety, vol. 30, no. 3, pp. 419–425, 1971.

[6] B. C. Eaves, A. J. Hoffman, U. G. Rothblum, and H. Schnei-
der, “Line-sum-symmetric scalings of square nonnegative
matrices,” in Mathematical Programming Essays in Honor
of George B. Dantzig Part II. Springer, 1985, pp. 124–141.

[7] B. Kalantari, L. Khachiyan, and A. Shokoufandeh, “On the
complexity of matrix balancing,” SIAM Journal on Matrix
Analysis and Applications, vol. 18, no. 2, pp. 450–463, 1997.

[8] H. Schneider and M. H. Schneider, “Max-balancing weighted
directed graphs and matrix scaling,” Mathematics of Opera-
tions Research, vol. 16, no. 1, pp. 208–222, 1991.

[9] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices
and doubly stochastic matrices,” Pacific Journal of Mathemat-
ics, vol. 21, no. 2, pp. 343–348, 1967.

[10] R. Sinkhorn, “A relationship between arbitrary positive ma-
trices and doubly stochastic matrices,” The annals of mathe-
matical statistics, vol. 35, no. 2, pp. 876–879, 1964.

[11] J. H. Wilkinson, Rounding errors in algebraic processes.
Courier Corporation, 1994.

[12] T. Raghavan, “On pairs of multidimensional matrices,” Linear
Algebra and its Applications, vol. 62, pp. 263–268, 1984.

[13] D. T. Brown, “A note on approximations to discrete proba-
bility distributions,” Information and Control, vol. 2, no. 4,
pp. 386–392, 1959.

[14] S. Friedland, C.-K. Li, and H. Schneider, “Additive de-
composition of nonnegative matrices with applications to
permanents and scalingt,” Linear and Multilinear Algebra,
vol. 23, no. 1, pp. 63–78, 1988.

[15] M. Idel, “A review of matrix scaling and sinkhorn’s nor-
mal form for matrices and positive maps,” arXiv preprint
arXiv:1609.06349, 2016.

[16] MathWorks, “eig – eigenvalues and eigenvectors,” https://
www.mathworks.com/help/matlab/ref/eig.html.

[17] ——, “balance – diagonal scaling to improve eigen-
value accuracy,” https://www.mathworks.com/help/matlab/
ref/balance.html.

[18] RDocumentation, “Balance a square matrix via lapack’s
dgebal,” https://www.rdocumentation.org/packages/expm/
versions/0.99-1.1/topics/balance.

[19] V. Goulet, C. Dutang, M. Maechler, D. Firth, M. Shapira, and
M. Stadelmann, “Package ’expm’,” https://cran.r-project.org/
web/packages/expm/expm.pdf.

[20] S. Blackford, “Balancing and conditioning,” http://www.
netlib.org/lapack/lug/node94.html.

[21] R. T. Kruithof, “De ingenieur 52,” E15-E25, 1937.

[22] S. E. Fienberg, The Analysis of Cross-Classified Categorical
Data. Springer, 1976.

[23] M. Cuturi, “Sinkhorn distances: Lightspeed computation of
optimal transport,” in Advances in Neural Information Pro-
cessing Systems, 2013, pp. 2292–2300.

[24] N. Linial, A. Samorodnitsky, and A. Wigderson, “A determin-
istic strongly polynomial algorithm for matrix scaling and
approximate permanents,” in STOC’98: Proceedings of the
30th Annual ACM Symposium on the Theory of Computing,
1998, pp. 644–652.

912

[25] L. Gurvits, “Classical deterministic complexity of edmonds’
problem and quantum entanglement,” in STOC’03: Proceed-
ings of the 35th Annual ACM Symposium on Theory of
Computing, 2003, pp. 10–19.

[26] G. U. Yule, “On the methods of measuring association be-
tween two attributes,” Journal of the Royal Statistical Society,
vol. 75, no. 6, pp. 579–652, 1912.

[27] J. Edmonds, “Maximum matching and a polyhedron with 0,
1-vertices,” Journal of Research of the National Bureau of
Standards B, vol. 69, no. 125-130, pp. 55–56, 1965.

[28] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for
network problems,” SIAM Journal on Computing, vol. 18,
no. 5, pp. 1013–1036, 1989.

[29] A. Madry, “Navigating central path with electrical flows:
From flows to matchings, and back,” in Foundations of Com-
puter Science (FOCS), 2013 IEEE 54th Annual Symposium
on. IEEE, 2013, pp. 253–262.

[30] M. H. Schneider and S. A. Zenios, “A comparative study
of algorithms for matrix balancing,” Operations research,
vol. 38, no. 3, pp. 439–455, 1990.

[31] T.-Y. Chen and J. W. Demmel, “Balancing sparse matrices for
computing eigenvalues,” Linear algebra and its applications,
vol. 309, no. 1-3, pp. 261–287, 2000.

[32] L. J. Schulman and A. Sinclair, “Analysis of a classical matrix
preconditioning algorithm,” in STOC’15: Proceedings of the
47th Annual ACM on Symposium on Theory of Computing,
2015, pp. 831–840.

[33] R. Ostrovsky, Y. Rabani, and A. Yousefi, “Matrix balancing
in Lp norms: Bounding the convergence rate of osborne’s
iteration,” in SODA’17: Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2017, pp. 154–169.

[34] B. Kalantari and L. Khachiyan, “On the complexity of
nonnegative-matrix scaling,” Linear Algebra and its appli-
cations, vol. 240, pp. 87–103, 1996.

[35] A. Nemirovski and U. Rothblum, “On complexity of matrix
scaling,” Linear Algebra and its Applications, vol. 302, pp.
435–460, 1999.

[36] N. E. Young, R. E. Tarjan, and J. B. Orlin, “Faster parametric
shortest path and minimum-balance algorithms,” Networks,
vol. 21, no. 2, pp. 205–221, 1991.

[37] A. Ben-Tal and A. Nemirovski, Lectures on modern convex
optimization: analysis, algorithms, and engineering applica-
tions. SIAM, 2001.

[38] D. A. Spielman and S.-H. Teng, “Nearly-linear time algo-
rithms for graph partitioning, graph sparsification, and solving
linear systems,” in STOC’04: Proceedings of the 36th Annual
ACM Symposium on the Theory of Computing, 2004, pp. 81–
90.

[39] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality
for solving SDD systems,” in FOCS’10: Proceedings of the
51st Annual IEEE Symposium on Foundations of Computer
Science, 2010, pp. 235–244.

[40] ——, “A nearly m log n-time solver for SDD linear systems,”
in FOCS’11: Proceedings of the 52nd Annual IEEE Sympo-
sium on Foundations of Computer Science, 2011, pp. 590–
598.

[41] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A
simple, combinatorial algorithm for solving SDD systems
in nearly-linear time,” in STOC’13: Proceedings of the 45th
Annual ACM Symposium on the Theory of Computing, 2013,
pp. 911–920.

[42] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng,
A. B. Rao, and S. C. Xu, “Solving sdd linear systems in
nearly m log1/2 n time,” in STOC’14: Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, 2014, pp.
343–352.

[43] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A.
Spielman, “Sparsified cholesky and multigrid solvers for
connection laplacians,” in STOC’16: Proceedings of the 48th
Annual ACM Symposium on Theory of Computing, 2016.

[44] R. Kyng and S. Sachdeva, “Approximate gaussian elimination
for laplacians: Fast, sparse, and simple,” in FOCS’16: Pro-
ceedings of the 57th Annual IEEE Symposium on Foundations
of Computer Science, 2016.

[45] Y. T. Lee, R. Peng, and D. A. Spielman, “Sparsified
cholesky solvers for sdd linear systems,” arXiv preprint
arXiv:1506.08204, 2015.

[46] Z. Allen-Zhu, Y. Li, R. Oliveira, and A. Wigderson,
“Much faster algorithms for matrix scaling,” arXiv preprint
arXiv:1704.02315, 2017.

[47] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and
S. Teng, “Electrical flows, Laplacian systems, and faster
approximation of maximum flow in undirected graphs,” in
STOC’11: Proceedings of the 43rd ACM Symposium on
Theory of Computing, 2011, pp. 273–282.

[48] H. H. Chin, A. Madry, G. L. Miller, and R. Peng, “Run-
time guarantees for regression problems,” in Innovations in
Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA,
January 9-12, 2013, 2013, pp. 269–282.

[49] D. A. Spielman and N. Srivastava, “Graph sparsification by
effective resistances,” SIAM Journal on Computing, vol. 40,
no. 6, pp. 1913–1926, 2011.

[50] Y. T. Lee and H. Sun, “Constructing linear-sized spectral
sparsification in almost-linear time,” in STOC’17: Proceed-
ings of the 56th Annual IEEE Symposium on Foundations of
Computer Science, 2017.

[51] ——, “An SDP-based algorithm for linear-sized spectral
sparsification,” in STOC’17: Proceedings of the 49th Annual
ACM Symposium on the Theory of Computing, 2015, pp. 250–
269.

[52] Y. Nesterov, “Introductory lectures on convex programming
volume i: Basic course,” 1998.

[53] S. I. Daitch and D. A. Spielman, “Faster approximate lossy
generalized flow via interior point algorithms,” in STOC
’08: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, 2008, pp. 451–460.

913

