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Abstract—We give a simple, multiplicative-weight update
algorithm for learning undirected graphical models or Markov
random fields (MRFs). The approach is new, and for the well-
studied case of Ising models or Boltzmann machines, we obtain
an algorithm that uses a nearly optimal number of samples and
has running time Õ(n2) (where n is the dimension), subsuming
and improving on all prior work. Additionally, we give the first
efficient algorithm for learning Ising models over non-binary
alphabets.

Our main application is an algorithm for learning the struc-
ture of t-wise MRFs with nearly-optimal sample complexity
(up to polynomial losses in necessary terms that depend on
the weights) and running time that is nO(t). In addition, given
nO(t) samples, we can also learn the parameters of the model
and generate a hypothesis that is close in statistical distance to
the true MRF. All prior work runs in time nΩ(d) for graphs of
bounded degree d and does not generate a hypothesis close in
statistical distance even for t = 3. We observe that our runtime
has the correct dependence on n and t assuming the hardness
of learning sparse parities with noise.

Our algorithm– the Sparsitron– is easy to implement (has
only one parameter) and holds in the on-line setting. Its analysis
applies a regret bound from Freund and Schapire’s classic
Hedge algorithm. It also gives the first solution to the problem
of learning sparse Generalized Linear Models (GLMs).

I. INTRODUCTION

Undirected graphical models or Markov random fields
(MRFs) are one of the most well-studied and influential

probabilsitic models with applications to a wide range

of scientific disciplines [1]–[8]. Here we focus on bi-

nary undirected graphical models which are distributions

(Z1, . . . , Zn) on {1,−1}n with an associated undirected

graph G - known as the dependency graph - on n ver-

tices where each Zi conditioned on the values of (Zj :
j adjacent to i in G) is independent of the remaining vari-

ables.

Developing efficient algorithms for inferring the structure

of the underlying graph G from random samples from D is a

central problem in machine learning, statistics, physics, and

computer science and has attracted considerable attention

from researchers in these fields. Most works have placed a

strong assumption on the structure of the graphical model

(e.g., restricted strong convexity [9], [10] or correlation

decay [11], [12]).

The current frontier of MRF learning has focused on

the Ising model (also known as Boltzmann machines) on

bounded-degree graphs, a special class of graphical models

with only pairwise interactions and each vertex having

degree at most d in the underlying dependency graph. We

refer to [13] for an extensive historical overview of the

problem. Two important works of note are due to Bresler

[13] and [14] who learn Ising models on bounded degree

graphs.

Bresler’s algorithm is a combinatorial (greedy) approach

that runs in time Õ(n2) but requires doubly exponential in d
many samples from the distribution (only singly exponential

is necessary). [14] use machinery from convex programming

to achieve nearly optimal sample complexity for learning

Ising models with zero external field and with running time

Õ(n4). Neither of these results are proved to hold over non-

binary alphabets or for general MRFs.

A. Our Results

The main contribution of this paper is a simple,

multiplicative-weight update algorithm for learning MRFs.

Using our algorithm we obtain the following new results:
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• An efficient online algorithm for learning Ising models

on arbitrary graphs with nearly optimal sample com-

plexity and running time Õ(n2) per example (precise

statements can be found in Section V). In particular, for

bounded degree graphs we achieve a run-time of Õ(n2)
with nearly optimal sample complexity. This subsumes

and improves all prior work including the above men-

tioned results of Bresler [13] and [14]. Our algorithm is

the first that works even for unbounded-degree graphs

as long as the �1 norm of the weight vector of each

neighborhood is bounded, a condition necessary for

efficiency (see discussion following Corollary V.4).

• An algorithm for learning the dependency graph of

binary t-wise Markov random fields with nearly op-

timal sample complexity and run-time nO(t) (precise

statements can be found in Section VII). Moreover,

given access to roughly nO(t) samples (suppressing

necessary terms depending on the weights), we can also

reconstruct the parameters of the model and output a

t-wise MRF that gives a point-wise approximation to

the original distribution.

As far as we are aware, these are the first efficient algorithms
for learning higher-order MRFs. All previous work on

learning general t-wise MRFs runs in time nΩ(d) (where

d is the underlying degree of the graph) and does not output

a function f that can generate an approximation to the

distribution in statistical distance, even for the special case
of t = 3. We give evidence that the nO(t) dependence in

our running time is nearly optimal by applying a simple

reduction from the problem of learning sparse parities with

noise on t variables to learning t-wise MRFs due to Bresler,

Gamarnik, and Shah [15] (learning sparse parities with noise

is a notoriously difficult challenge in theoretical computer

science). Bresler [13] observed that even for the simplest

possible Ising model where the graph has a single edge,

beating O(n2) run-time corresponds to fast algorithms for

the well-studied light bulb problem [16], for which the best

known algorithm runs in time O(n1.62) [17].

Moreover, our algorithm is easy to implement, has only

one tunable parameter, and works in an on-line fashion. The

algorithm– the Sparsitron– solves the problem of learning a

sparse Generalized Linear Model. That is, given examples

(X,Y ) ∈ [−1, 1]n × [0, 1] drawn from a distribution D
with the property that E[Y |X = x] = σ(w · x) for some

monotonic, Lipschitz σ and unknown w with ‖w‖1 ≤ λ,

the Sparsitron efficiently outputs a w′ such that σ(w′ · x) is

close to σ(w ·x) in squared-loss and has sample complexity

O(λ2 log n).

In an independent and concurrent work, Hamilton,

Koehler, and Moitra [18] generalized Bresler’s approach to

hold for both higher-order MRFs as well as MRFs over

general (non-binary) alphabets. For learning binary MRFs

on bounded-degree—degree at most d—graphs, under the

same non-degeneracy assumption taken by Hamilton et al.,1

we obtain sample complexity that is singly exponential in

dt, whereas theirs is doubly exponential in dt (both of

our papers obtain sample complexity that depends only

logarithmically on n, the number of vertices).

B. Our Approach

For a graph G = (V,E) on n vertices, let Ct(G) denote

all cliques of size at most t in G. We use the Hammersley-

Clifford characterization of Markov random fields and define

a binary t-wise Markov random field on G to be a distribu-

tion D on {1,−1}n where

Pr
Z∼D

[Z = z] ∝ exp

⎛⎝ ∑
I∈Ct(G)

ψI(z)

⎞⎠ ,

and each ψI : Rn → R is a function that depends only on

the variables in I .

For ease of exposition, we will continue with the case

of t = 2, the Ising model, and subsequently describe the

extension to larger values of t. Let σ(z) denote the sigmoid
function. That is σ(z) = 1/1 + e−z . Since t = 2, we have

Pr [Z = z] ∝ exp

⎛⎝ ∑
i�=j∈[n]

Aijzizj +
∑
i

θizi

⎞⎠
for a weight matrix A ∈ R

n×n and θ ∈ R
n; here, a

weight Aij �= 0 if and only if {i, j} is an edge in the

underlying dependency graph. For a node Zi, it is easy to

see that the probability Zi = −1 conditioned on any setting

of the remaining nodes to some value x ∈ {−1, 1}[n]\{i} is

equal to σ(w · x + θ) where w ∈ R
[n]\{i}, wj = −2Aij ,

θ = −θi.
As such, if we set X ≡ (Zj : j �= i) and Y = (1−Zi)/2,

then the conditional expectation of Y given X is equal to

a sigmoid with an unknown weight vector w and threshold

θi. We can now rephrase our original unsupervised learning

task as the following supervised learning problem: Given

random examples (X,Y ) with conditional mean function

E[Y |X = x] = σ(w · x+ θ), recover w and θ.

Learning a conditional mean function of the form u(w ·x)
with a fixed, known transfer function u : R→ R is precisely
the problem of learning a Generalized Linear Model or

GLM and has been studied extensively in machine learning.

The first provably efficient algorithm for learning GLMs

where u is both monotone and Lipschitz was given by Kalai

and Sastry [19], who called their algorithm the “Isotron”.

Their result was simplified, improved, and extended by

Kakade, Kalai, Kanade, and Shamir [20] who introduced

the “GLMtron” algorithm.

1A previous version of this paper needed a slightly stronger non-
degeneracy assumption.
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Notice that σ(z) is both monotone and 1-Lipschitz. There-

fore, directly applying the GLMtron in our setting will result

in a w′ and θ′ such that

E[(σ(w′ · x+ θ′)− σ(w · x+ θ))2] ≤ ε. (I.1)

Unfortunately, the sample complexity of the GLMtron

depends on ‖w‖2, which results in sub-optimal bounds

on sample complexity for our setting2. We desire sample

complexity dependent on ‖w‖1, essentially the sparsity of

w. In addition, we need an exact recovery algorithm. That

is, we need to ensure that w′ itself is close to w and not

just that the �2-error as in Equation I.1 is small. We address

these two challenges next.

Our algorithm, the Sparsitron, uses a multiplicative-

weight update rule for learning w, as opposed to the

GLMtron or Isotron, both of which use additive update rules.

This enables us to achieve essentially optimal sample com-

plexity. The Sparsitron is simple to describe (see Algorithm

2) and depends on only one parameter λ, the upper bound on

the �1-norm. Its analysis only uses a regret bound from the

classic Hedge algorithm due to Freund and Schapire [21].

Although the Sparsitron algorithm finds a vector w′ ∈ R
n

such that EX [(σ(w′ · X + θ′) − σ(w · X + θ))2] is small,

we still must prove that w′ is actually close to w. Achieving

such strong recovery guarantees for arbitrary distributions is

typically a much harder problem (and can be provably hard

in some cases for related problems [22], [23]). In our case,

we exploit the nature of MRFs by a clean property of such

distributions: Call a distribution D on {1,−1}n δ-unbiased
if each variable Zi is 1 or −1 with probability at least δ con-

ditioned on any setting of the other variables. It turns out that

under conditions that are necessary for reconstruction, the

distributions of MRFs are δ-unbiased for a non-negligible

δ. We show that for such δ-unbiased distributions achieving

reasonably small �2-error as in Equation I.1 implies that the

recovered coefficient w′ is in fact close to w.

To obtain our results for learning t-wise Markov random

fields, we generalize the above approach to handle functions

of the form σ(p(x)) where p is a degree t multilinear

polynomial. Sparsitron can be straightforwardly extended to

handle low-degree polynomials by linearizing such poly-

nomials (i.e., working in the (nt)-dimensional space of

coefficients). We then have to show that achieving small �2-

error - EX [(σ(p(X)) − σ(q(X)))2] 	 1 - implies that the

polynomials p, q are close. This presents several additional

technical challenges; still, in a self-contained proof, we show

this holds whenever the underlying distribution is δ-unbiased

as is the case for MRFs.

2GLMtron in our setting would require Ω(n) samples; we are aiming
for an information-theoretically optimal logarithmic dependence in the
dimension n.

C. Best-Experts Interpretation of Our Algorithm

Our algorithm can be viewed as a surprisingly sim-

ple weighted voting scheme (a.k.a. “Best-Experts” strat-

egy) to uncover the underlying graph structure G =
({v1, . . . , vn}, E) of a Markov random field. Consider an

Ising model where for a fixed vertex vi, we want to

determine vi’s neighborhood and edge weights. Let Z =
(Z1, . . . , Zn) denote random draws from the Ising model.

• Initially, all vertices vj(j �= i) could be neighbors. We

create a vector of “candidate” neighbors of length 2n−2
with entries (j,+) and (j,−) for all j �= i. Intuitively,

since we do not know if node vj will be negatively or

positively correlated with vi, we include two candidate

neighbors, (j,+), (j,−) to cover the two cases.

• At the outset, every candidate is equally likely to be

a neighbor of vi and so receives an initial weight of

1/(2n−2). Now consider a random draw from the Ising

model Z = (Z1, . . . , Zn). For each j �= i we view each

Zj (and its negation -Zj) as the vote of (j,+) for the

value Zi (respectively of (j,−)). The overall prediction
p of our candidates is equal to a weighted sum of their

votes (we always assume the weights are non-negative

and normalized appropriately).

• For a candidate neighbor vj , let the penalty of the

prediction p (as motivated by the conditional mean

function) be equal to �j = (σ(−2p) − (1 − Zi)/2)Zj .

Each candidate vj’s weight is simply multiplied by β�j

(for some suitably chosen learning rate β3). It is easy

to see that candidates who predict Zi correctly will

be penalized less than neighbors whose predictions are

incorrect.

Remarkably, the weights of this algorithm will converge

to the weights of the underlying Ising model, and the rate

of this convergence is optimal. Weights of vertices that are

not neighbors of vi will rapidly decay to zero.

For clarity, we present the updates for a single iteration of

our Sparsitron algorithm applied to Ising model in Algorithm

1. The iterative nature of the algorithm is reminiscent of

algorithms such as belief propagation and stochastic gradient

descent that are commonly used in practice. Exploring

connections with these algorithms (if any) is an intriguing

question.

D. Organization

We begin by describing the Sparsitron algorithm for

learning sparse generalized models and prove its correctness.

We then show, given a hypothesis output by the Sparsitron,

how to recover the underlying weight vector exactly under

δ-unbiased distributions. For ease of exposition, we begin

by assuming that we are learning an Ising model.

3For our analysis, the learning rate can be set using standard techniques,
e.g., β = 1−√

logn/T when processing T examples.
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Algorithm 1 Updates for SPARSITRON applied to learning

Ising models

Initialize W+
ij =W−

ij = 1/2(n− 1) and Âij = 0 for i �= j.
PARAMETERS: Sparsity bound λ.

1: for each new example (Z1, . . . , Zn) do:

2: Compute the current predictions: pi =
∑

j �=i ÂijZj

for all i.
3: for each i �= j do
4: Compute the penalties: Set �ij = (σ(−2pi) −

(1− Zi)/2) · Zj .

5: Update the weights: Set W+
ij = W+

ij · β�ij ;

W−
ij =W−

ij · β−�ij .

6: for each i �= j do
7: Compute edge weights: Âij = λ∑

��=i(W
+
i�+W−

i� )
·(

W+
ij −W−

ij

)
.

We then describe how to handle the more general case

of learning t-wise MRFs. This requires working with multi-

linear polynomials, and studying their behavior (especially,

how small they can be) under δ-unbiased distributions.

II. PRELIMINARIES

We will use the following notations and conventions.

• For a vector x ∈ R
n, x−i ∈ R

[n]\{i} denotes (xj : j �=
i).

• We write multilinear polynomials p : R
n → R as

p(x) =
∑

I p̂(I)
∏

i∈I xi; in particular, p̂(I) denotes

the coefficient of the monomial
∏

i∈I xi in the polyno-

mial. Let ‖p‖1 =
∑

I |p̂(I)|.
• For a multilinear polynomial p : R

n → R, we let

∂ip(x) =
∑

J:J ��i p̂(J∪{i})
∏

j∈J xj denote the partial

derivative of p with respect to xi. Similarly, for I ⊆ [n],
let ∂Ip(x) =

∑
J:J∩I=∅ p̂(J ∪ I)

∏
j∈J xj denote the

partial derivative of p with respect to the variables

(xi : i ∈ I).
• For a multilinear polynomial p : R

n → R, we say

I ⊆ [n] is a maximal monomial of p if p̂(J) = 0 for all

J ⊃ I (i.e., there is no non-zero monomial that strictly

contains I).

III. LEARNING SPARSE GENERALIZED LINEAR MODELS

We first describe our Sparsitron algorithm for learning

sparse GLMs. In the next section we show how to learn

MRFs using this algorithm. The main theorem of this section

is the following:

Theorem III.1. Let D be a distribution on [−1, 1]n×{0, 1}
where for (X,Y ) ∼ D, E[Y |X = x] = u(w · x) for
a non-decreasing 1-Lipschitz function u : R → [0, 1].
Suppose that ‖w‖1 ≤ λ for a known λ ≥ 0. Then,
there exists an algorithm that for all ε, δ ∈ [0, 1] given
T = O(λ2(ln(n/δε))/ε2) independent examples from D,

produces a vector v ∈ R
n such that with probability at

least 1− δ,

E
(X,Y )←D

[(u(v ·X)− u(w ·X))2] ≤ ε. (III.1)

The run-time of the algorithm is O(nT ). Moreover, the
algorithm can be run in an online manner.

Proof: We assume without loss of generality that wi ≥
0 for all i and that ‖w‖1 = λ; if not, we can map examples

(x, y) to ((x,−x, 0), y) and work in the new space. For any

vector v ∈ R
n, define the risk of v ε(v) = E(X,Y )∼D[(u(v ·

X)− u(w ·X))2]. Let 1 denote the all 1’s vector.
Our approach is to use the regret bound for the Hedge

algorithm of Freund and Schapire [21]. Let T ≥ 1, β ∈ [0, 1]
be parameters to be chosen later and M = C ′′′T ln(1/δ)/ε2

for a constant C ′′′ to be chosen later. The algorithm is

shown in Algorithm 2. The inputs to the algorithm are

T +M independent examples (x1, y1, ), . . . , (xT , yT ) and

(a1, b1), . . . , (aM , bM ) drawn from D.

Algorithm 2 SPARSITRON

1: Initialize w0 = 1/n.

2: for t = 1, . . . , T do
3: Let pt = wt−1/‖wt−1‖1.

4: Define �t ∈ R
n by �t = (1/2)(1 + (u(λpt · xt) −

yt)xt).
5: Update the weight vectors wt: for each i ∈ [n], set

wt
i = wt−1

i · β�ti .

6: for t = 1, . . . , T do
7: Compute the empirical risk

ε̂(λpt) = (1/M)
M∑
j=1

(
u(λpt · aj)− bj)2 .

8: RETURN v = λpj for j = argmint∈[T ] ε̂(λp
t).

We add the 1 in Step 4 of Algorithm 2 to be consistent

with [21] who work with loss vectors in [0, 1]n.
We next analyze our algorithm and show that for suit-

able parameters β, T,M , it achieves the guarantees of

the theorem. We first show that the sum of the risks

ε(λp1), . . . , ε(λpT ) is small with high probability over the

examples; the claim then follows by a simple Chernoff

bound to argue that for M sufficiently big, the empirical

estimates of the risk, ε̂(λp1), . . . , ε̂(λpT ) are close to the

true risks.
Observe that �t ∈ [0, 1]n and associate each i = 1, . . . , n

with an expert and then apply the analysis of Freund and

Schapire (c.f. [21], Theorem 5). In particular, setting β =
1/(1 +

√
(lnn)/T ), we get that

T∑
t=1

pt·�t ≤ min
i∈[n]

T∑
t=1

�ti +O(
√
T lnn+ (lnn)). (III.2)
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Let random variable Qt = pt·�t − (w/λ)·�t. Note that

Qt ∈ [−1, 1]. Let

Zt = Qt − E
(xt,yt)

[Qt | (x1, y1), . . . , (xt−1, yt−1)].

Then, Z1, . . . , ZT form a martingale difference sequence

with respect to the sequence (x1, y1), . . . , (xT , yT ) and are

bounded between [−2, 2]. Therefore, by Azuma-Hoeffding

inequality for bounded martingale difference sequences,

with probability at least 1 − δ, we have
∣∣∣∑T

t=1 Z
t
∣∣∣ ≤

O(
√
T ln(1/δ)). Thus, with probability at least 1− δ,

T∑
t=1

E
(xt,yt)

[Qt | (x1, y1), . . . , (xt−1, yt−1)]

≤
T∑

t=1

Qt +O(
√
T ln(1/δ)). (III.3)

Now, for a fixed (x1, y1), . . . , (xt−1, yt−1), taking expec-

tation with respect to (xt, yt), we have

E
(xt,yt)

[Qt | (x1, y1), . . . , (xt−1, yt−1)] =

E
(xt,yt)

[
(pt − (1/λ)w)·�t]

= (1/2) E
(xt,yt)

[
(pt − (1/λ)w)·(u(λpt·xt)− yt)xt]

= (1/2λ) E
xt

[
(λpt·xt − w·xt)(u(λpt·xt)− u(w·xt))]

≥ (1/2λ) E
xt

[
(u(λpt·xt)− u(w·xt))2]

(for all a, b ∈ R, (a− b)(u(a)− u(b)) ≥ (u(a)− u(b))2).

= (1/2λ) · ε(λpt). (III.4)

Therefore, for a fixed (x1, y1), . . . , (xt−1, yt−1), we have

(1/2λ)ε(λpt) ≤ E
(xt,yt)

[Qt | (x1, y1), . . . , (xt−1, yt−1)].

Combining the above with Equations III.2, III.3, we get

that with probability at least 1− δ,

(1/2λ)

T∑
t=1

ε(λpt) ≤
T∑

t=1

Qt +O(
√
T ln(1/δ))

≤ min
i∈[n]

T∑
t=1

�ti −
T∑

t=1

(w/λ)·�t +O(
√
T lnn+ (lnn))+

O(
√
T ln(1/δ)). (III.5)

Now, let L =
∑T

t=1 �
t. Then,

min
i∈[n]

T∑
t=1

�ti −
T∑

t=1

(1/λ)w · �t = min
i∈[n]

Li − (w/λ) · L ≤ 0,

where the last inequality follows as ‖w‖1 = λ. Therefore,

with probability at least 1− δ,

(1/2λ)

T∑
t=1

ε(λpt) = O(
√
T ln(1/δ))+O(

√
T lnn+(lnn)).

In particular, for T > C ′′λ2(ln(n/δ))/ε2 for a sufficiently

big constant C ′′, with probability at least 1− δ,

min
t∈[T ]

ε(λpt) ≤ O(λ) ·
√
T ln(1/δ) +

√
T lnn+ lnn

T
≤ ε/2.

Now set M = C ′′′ ln(T/δ)/ε2 so that by a Chernoff-

Hoeffding bound as in Fact III.2, with probability at least

1−δ, for every t ∈ [T ], |ε(λpt)− ε̂(λpt)| ≤ ε/4. Therefore,

with probability at least 1 − 2δ, ε(v) ≤ ε/4 + ε̂(v) ≤ ε.
Note that the number of samples needed is T + M =
O(λ2 ln(n/εδ)/ε2). The theorem follows.

Fact III.2. There exists a constant C > 0 such that the
following holds. Let v ∈ R

n and let (a1, b1), . . . , (aM , bM )
be independent examples from D. Then, for all ρ, γ ≥ 0,
and M ≥ C ln(1/ρ)/γ2,

Pr

⎡⎣∣∣∣∣∣∣(1/M)

⎛⎝ M∑
j=1

(u(v · aj)− bj)2
⎞⎠− ε(v)

∣∣∣∣∣∣ ≥ γ

⎤⎦ ≤ ρ.

IV. RECOVERING AFFINE FUNCTIONS FROM �2
MINIMIZATION

In this section we show that running the Sparsitron algo-

rithm with sufficiently low error parameter ε will result in

an �∞ approximation to the unknown weight vector. We will

use this strong approximation to reconstruct the dependency

graphs of Ising models as well as the edge weights.

Our analysis relies on the following important definition:

Definition IV.1. A distribution D on {1,−1}n is δ-unbiased
if for X ∼ D, i ∈ [n], and any partial assignment x to
(Xj : j �= i),

min(Pr[Xi = 1|X−i = x],Pr[Xi = −1|X−i = x]) ≥ δ.

We will use the following elementary property of sigmoid.

Claim IV.2. For a, b ∈ R,

|σ(a)− σ(b)| ≥ e−|a|−3 ·min (1, |a− b|) .
Proof: Fix a ∈ R and let γ = min(1, |a − b|). Then,

since σ is monotonic

|σ(a)− σ(b)| ≥ min(σ(a+ γ)− σ(a), σ(a)− σ(a− γ)).
Now, it is easy to check by a case-analysis that for all a, a′ ∈
R,

|σ(a)− σ(a′)| ≥ min(σ′(a), σ′(a′)) · |a− a′|.
Further, for any t, σ′(t) = 1/(2 + et + e−t) ≥ e−|t|/4.

Combining the above two, we get that

σ(a+γ)−σ(a) ≥ (1/4)min(e−|a+γ|, e−|a|)·γ ≥ (1/4)e(−|a|−γ)γ.

Similarly, we get

σ(a)−σ(a−γ) ≥ 4min(e−|a−γ|, e−|a|)·γ ≥ (1/4)e(−|a|−γ)γ.
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The claim now follows by substituting γ = min(1, |a− b|)
(and noting that 1/4 ≥ e−2).

Lemma IV.3. Let D be a δ-unbiased distribution on
{1,−1}n. Suppose that for two vectors v, w ∈ R

n and
α, β ∈ R, EX∼D[(σ(w · X + α) − σ(v · X + β))2] ≤ ε
where ε < δ · exp(−2‖w‖1 − 2|α| − 6). Then,

‖v − w‖∞ ≤ O(1) · e‖w‖1+|α| ·
√
ε/δ.

Proof: For brevity, let p(x) = w · x + α, and q(x) =
v · x+ β. Fix an index i ∈ [n] and let X ∼ D.

Now, for any x ∈ {1,−1}n, by Claim IV.2,

|σ(p(x))− σ(q(x))| ≥ e−‖w‖1−|α|−3·min (1, |p(x)− q(x)|) .
Let xi,+ ∈ {1,−1}n (respectively xi,−) denote the vector

obtained from x by setting xi = 1 (respectively xi = −1).
Note that p(xi,+)− p(xi,−) = 2wi and q(xi,+)− q(xi,−) =
2vi. Therefore,

p(xi,+)− q(xi,+)− (p(xi,−)− q(xi,−)) = 2(wi − vi).
Thus,

max
(∣∣p(xi,+)− q(xi,+)∣∣ , ∣∣p(xi,−)− q(xi,−)∣∣) ≥ |wi − vi| .

Therefore, for any fixing of X−i, as X is δ-unbiased,

Pr
Xi|X−i

[|p(X)− q(X)| ≥ |wi − vi|] ≥ δ.

Hence, combining the above inequalities, ε ≥
EX

[
(σ(p(X))− σ(q(X)))2

] ≥ e−2‖w‖1−2|α|−6 · δ ·
min

(
1, |wi − vi|2

)
. As ε < e−2‖w‖1−2|α|−6δ, the

above inequality can only hold if |wi − vi| < 1 so that

|wi − vi| < e‖w‖1+|α|+3 ·√ε/δ. The claim now follows.

V. LEARNING ISING MODELS

Definition V.1. Let A ∈ R
n×n be a weight matrix and

θ ∈ R
n be a mean-field vector. The associated n-variable

Ising model is a distribution D(A, θ) on {1,−1}n given by
the condition

Pr
Z←D(A,θ)

[Z = z] ∝ exp

⎛⎝ ∑
i �=j∈[n]

Aijzizj +
∑
i

θizi

⎞⎠ .

The dependency graph of D(A, θ) is the graph G formed
by all pairs {i, j} with |Aij | �= 0. We define λ(A, θ) =
maxi(

∑
j |Aij |+ |θi|) to be the width of the model.

We give a simple, sample-efficient, and online algorithm

for recovering the parameters of an Ising model.

Theorem V.2. Let D(A, θ) be an n-variable Ising model
with width λ(A, θ) ≤ λ. There exists an algorithm that given
λ, ε, ρ ∈ (0, 1), and N = O(λ2 exp(O(λ))/ε4)·(log(n/ρε))
independent samples Z1, . . . , ZN ← D(A, θ) produces Â
such that with probability at least 1− ρ,

‖A− Â‖∞ ≤ ε.

The run-time of the algorithm is O(n2N). Moreover, the
algorithm can be run in an online manner.

Proof: The starting point for our algorithm is the

following observation. Let Z ← D(A, θ). Then, for any

i ∈ [n] and any x ∈ {1,−1}[n]\{i},

Pr[Zi = −1|Z−i = x] =

1

1 + exp(2
∑

j �=iAijxj + θi)
= σ(w(i) · x+ θi), (V.1)

where we define w(i) ∈ R[n]\{i} with w(i)j = −2Aij

for j �= i. This allows us to use our Sparsitron algorithm for

learning GLMs.

For simplicity, we describe our algorithm to infer the

coefficients Anj for j �= n; it extends straightforwardly to re-

cover the weights {Aij : j �= i} for each i. Let Z ← D(A, θ)
and let X ≡ (Z1, . . . , Zn−1, 1), and Y = (1−Zn)/2. Then,

from the above we have that

E[Y |X] = σ(w(n) ·X),

where w(n) ∈ R
n with w(n)j = −2Anj for j < n,

and w(n)n = θi. Note that ‖w(n)‖1 ≤ 2λ. Further, σ
is a monotone 1-Lipschitz function. Let γ ∈ (0, 1) be a

parameter to be chosen later. We now apply the Sparsitron

algorithm to compute a vector v(n) ∈ R
n so that with

probability at least 1− ρ/n2,

E[(σ(w(n) ·X)− σ(v(n) ·X))2] ≤ γ. (V.2)

We set Ânj = −(v(n)j)/2 for j < n. We next argue that

Equation V.2 in fact implies ‖w(n)− v(n)‖∞ 	 1. To this

end, we will use the following easy fact (see e.g. Bresler

[13]):

Fact V.3. For Z ← D(A, θ), i ∈ [n],
and any partial assignment x to Z−i,
min (Pr[Zi = −1|Z−i = x],Pr[Zi = 1|Z−i = x]) ≥
(1/2)e−2λ(A,θ) ≥ (1/2)e−2λ.

That is, the distribution Z is δ-unbiased for δ =
(1/2)e−2λ. Note that w(n) ·X =

∑
j<n w(n)jZj + w(n)n

and v(n) · X =
∑

j<n v(n)jZj + v(n)n. Therefore, as

(Z1, . . . , Zn−1) is δ-unbiased, by Lemma IV.3 and Equa-

tion V.2, we get

max
j<n

|v(n)j − w(n)j | ≤ O(1) exp(2λ) ·
√
γ/δ,

if γ ≤ cδ · exp(−4λ) ≤ c exp(−5λ) for a sufficiently small

c. Thus, if we set γ = c′ exp(−5λ)ε2 for a sufficiently small

constant c′, then we get

max
j<n

|Anj − Ânj | = (1/2)‖v(n)− w(n)‖∞ ≤ ε.

By a similar argument for i = 1, . . . , n− 1 and taking a

union bound, we get estimates Âij for all i �= j so that with
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probability at least 1− ρ,

max
i�=j

|Aij − Âij | ≤ ε.

Note that by Theorem III.1, the number of samples needed

to satisfy Equation V.2 is

O((λ/γ)2·(log(n/ργ))) = O(λ2 exp(10λ)/ε4)·(log(n/ρε)).
This proves the theorem.

The above theorem immediately implies an algorithm for

recovering the dependency graph of an Ising model with

nearly optimal sample complexity.

Corollary V.4. Let D(A, θ) be an n-variable Ising model
with width λ(A, θ) ≤ λ and each non-zero entry of A at least
η > 0 in absolute value. There exists an algorithm that given
λ, η, ρ ∈ (0, 1), and N = O(exp(O(λ))/η4) · (log(n/ρη))
independent samples Z1, . . . , ZN ← D(A, θ) recovers the
underlying dependency graph of D(A, θ) with probability
at least 1 − ρ. The run-time of the algorithm is O(n2N).
Moreover, the algorithm can be run in an online manner.

Proof: The claim follows immediately from Theo-

rem V.2 by setting ε = η/2 to compute Â and taking the

edges E to be {{i, j} : |Âij | ≥ η/2}.
It is instructive to compare the upper bounds from Corol-

lary V.4 with known unconditional lower bounds on the

sample complexity of learning Ising models with n vertices

due to Santhanam and Wainwright [24]. They prove that,

even if the weights of the underlying graph are known,

any algorithm for learning the graph structure must use

Ω( 2
λ/4·logn
η·23η ) samples. Hence, the sample complexity of our

algorithm is near the best-known information-theoretic lower

bound.

VI. RECOVERING POLYNOMIALS FROM �2 MINIMIZATION

In order to obtain results for learning general Markov

Random Fields, we need to extend our learning results

from previous sections to the case of sigmoids of low-

degree polynomials. In this section, we prove that for any

polynomial p : Rn → R, minimizing the �2-loss with respect

to a sigmoid under a δ-unbiased distribution D also implies

closeness as a polynomial. That is, for two polynomials

p, q : R
n → R if EX∼D[(σ(p(X)) − σ(q(X)))2] is

sufficiently small, then ‖p−q‖1 	 1 (Lemma VI.4) and that

the coefficients of maximal monomials of p can be inferred

from q (Lemma VI.2). These results will allow us to recover

the structure and parameters of MRFs when combined with

Sparsitron.

The exact statements and arguments here are similar in

spirit to Lemma IV.3 and its proof but are more sub-

tle. To start with, we need the following property of δ-

unbiased distributions which says that low-degree polynomi-

als are not too small with non-trivial probability (aka anti-
concentration) under δ-unbiased distributions.

Lemma VI.1. There is a constant c > 0 such that the
following holds. Let D be a δ-unbiased distribution on
{1,−1}n. Then, for any multilinear polynomial s : Rn → R,
and any maximal monomial I �= ∅ ⊆ [n] in s,

Pr
X∼D

[|s(X)| ≥ |ŝ(I)|] ≥ δ|I|.

Proof: We prove the claim by induction on |I|. For

an i ∈ [n], let xi,+ ∈ {1,−1}n (respectively xi,−) denote

the vector obtained from x by setting xi = 1 (respectively

xi = −1). Note that xi,+, xi,− only depend on x−i. Let

X ∼ D.

Suppose I = {i} so that s(x) = ŝ({i})xi + s′(x−i)
for some polynomial s′ that only depends on x−i. Note

that max(|s(xi,+)|, |s(xi,−)|) ≥ |ŝ({i})|. Therefore, for any

fixing of X−i, as X is δ-unbiased,

Pr
Xi|X−i

[|s(X)| ≥ |ŝ({i})|] ≥ δ.

Now, suppose |I| = � ≥ 2 and that the claim is true

for all polynomials and all monomials of size at most

� − 1. Let i ∈ I . Then, s(x) = xi · ∂i(s(x−i)) + s′(x−i)
for some polynomial s′ that only depends on x−i. Thus,

max(|s(xi,+)|, |s(xi,−)|) ≥ |∂is(x−i)|. Therefore, for any

fixing of X−i, as X is δ-unbiased,

Pr
Xi|X−i

[|s(X)| ≥ |∂is(X−i)|] ≥ δ.

Now, let J = I \{i} and observe that J is a maximal mono-

mial in r(x−i) ≡ ∂is(x−i) with r̂(J) = ŝ(I). Therefore, by

the induction hypothesis,

Pr
X−i

[|∂is(X−i)| ≥ |ŝ(I)|] ≥ δ�−1.

Combining the last two inequalities, we get that Pr[|s(X)| ≥
ŝ(I)] ≥ δ�. The claim now follows by induction.

The next lemma shows that for unbiased distributions

D, and two low-degree polynomials p, q : R
n → R, if

EX∼D[(σ(p(x)) − σ(q(x))2] is small, then one can infer

the coefficients of the maximal monomials of p from q4.

Lemma VI.2. Let D be a δ-unbiased distribution on
{1,−1}n. Let p, q be two multilinear polynomials p, q :
R

n → R such that EX∼D[(σ(p(x))− σ(q(x))2] ≤ ε. Then,
for every maximal monomial I ⊆ [n] of p, and any ρ > 0,

Pr
X∼D

[|p̂(I)− ∂Iq(X)| > ρ] ≤ e2‖p‖1+6ε

ρ2δ|I|
.

Proof: Let X ∼ D and fix a maximal monomial I ⊆ [n]
in p. Now, for any x ∈ {1,−1}n, by Claim IV.2,

|σ(p(x))− σ(q(x))| ≥ e−‖p‖1−3 ·min (1, |p(x)− q(x)|) .
Therefore,

E

[
min

(
1, |p(X)− q(X)|2

)]
≤ e2‖p‖1+6ε.

4Note that under the hypothesis of the lemma, the coefficients of p and
q can nevertheless be far.
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Hence, for every ρ ∈ (0, 1),

Pr
X

[|p(X)− q(X)| > ρ] ≤ e2‖p‖1+6ε/ρ2.

Now consider a fixing of all variables not in I to

z ∈ {1,−1}[n]\I and let rz(xI) be the polynomial obtained

by the resulting fixing. Now, PrX [|p(X)− q(X)| > ρ] =∑
z∈{1,−1}[n]\I Pr[X[n]\I = z] · Pr[|rz(XI)| > ρ | X[n]\I =

z]. Further, r̂(I) = p̂(I)− ∂Iq(z) as I is maximal in p.

Conditioned on the event that |r̂(I)| > ρ, for a ran-

dom choice of X[n]\I , we have from Lemma VI.1 that

PrXI
[|rz(XI)| > ρ] ≥ δ|I|. Thus we have

Pr
X

[|p(X)− q(X)| > ρ] ≥ δ|I|· Pr
X[n]\I

[∣∣p̂(I)− ∂Iq(X[n]\I)
∣∣ > ρ

]
.

Combining the above equations we get that

Pr
X

[|p̂(I)− ∂Iq(X)| > ρ] ≤ e2‖p‖1+6ε

ρ2δ|I|
.

The next claim shows that under the assumptions of

Lemma VI.2, the highest degree monomials of p, q are close

to each other.

Lemma VI.3. Let D be a δ-unbiased distribution on
{1,−1}n. Let p, q be two multilinear polynomials p, q :
R

n → R such that EX∼D[(σ(p(x))− σ(q(x))2] ≤ ε where
ε < e−2‖p‖1−6δ|I|. Then, for every maximal monomial
I ⊆ [n] of (p− q),

|p̂(I)− q̂(I)| ≤ e‖p‖1+3 ·
√
ε/δ|I|.

Proof: Fix a maximal monomial I ⊆ [n] in (p − q).
Now, for any X , by Claim IV.2,

|σ(p(X))− σ(q(X))| ≥ e−‖p‖1−3·min (1, |p(X)− q(X)|) .
On the other hand, as X is δ-unbiased, by Lemma VI.1, with

probability at least δ|I|, |p(X)− q(X)| ≥ |p̂(I)− q̂(I)|.
Therefore, ε ≥ EX

[
(σ(p(X))− σ(q(X)))

2
]
≥ e−2‖p‖1−6 ·

δ|I| ·min
(
1, |p̂(I)− q̂(I)|2

)
.

As ε < e−2‖p‖1−6δ|I|, the above inequality can only hold

if |p̂(I)− q̂(I)| < 1 so that

|p̂(I)− q̂(I)| < e‖p‖1+3
√
ε/δ|I|.

The claim follows.

We next show that if EX∼D[(σ(p(x))−σ(q(x))2]	 n−t

is sufficiently small, then ‖p− q‖1 	 1.

Lemma VI.4. Let D be a δ-unbiased distribution on
{1,−1}n. Let p, q be two multilinear polynomials p, q :
R

n → R of degree t such that EX∼D[(σ(p(x)) −
σ(q(x))2] ≤ ε where ε < e−2‖p‖1−6δt. Then,

‖p− q‖1 = O(1) · (2t)te‖p‖1 ·
√
ε/δt ·

(
n

t

)
.

Proof: For a polynomial s : Rn → R of degree at most

t, and � ≤ t, let s≤� denote the polynomial obtained from

s by only taking monomials of degree at most � and let

s=� denote the polynomial obtained from s by only taking

monomials of degree exactly �.
For brevity, let r = p−q, and for � ≤ t, let ρ� = ‖r=�‖1 =

‖p=� − q=�‖1. We will inductively bound ρt, ρt−1, . . . , ρ1.

From Lemma VI.3 applied to the polynomials p, q, we

immediately get that

ρt = ‖r=t‖1 ≤ e‖p‖1+3 ·
√
ε/δt ·

(
n

t

)
≡ ε0. (VI.1)

Now consider I ⊆ [n] with |I| = �. Then, by an averaging

argument, there is some fixing of the variables not in XI so

that for the polynomials pI , qI obtained by this fixing, and

for the resulting distribution DI on {1,−1}I ,

E
Y∼DI

[(σ(pI(Y ))− σ(qI(Y )))2] ≤ ε.

Note that DI is also δ-unbiased. Therefore, by

Lemma VI.3 applied to the polynomials p, q, letting rI =
pI − qI , we get that

|r̂I(I)| = |p̂I(I)− q̂I(I)| ≤ e‖p‖1+3 ·
√
ε/δ|I|.

We next relate the coefficients of rI to that of r. As the

polynomial rI is obtained from r by fixing the variables not

in I to some values in {1,−1},
|r̂I(I)| ≥ |r̂(I)| −

∑
J:J⊃I

|r̂(J)| .

Combining the above two inequalities, we get that

|r̂(I)| ≤ e‖p‖1+3 ·
√
ε/δ� +

∑
J⊃I

|r̂(J)| .

Summing the above equation over all I of size exactly �,
we get

‖r=�‖1 =
∑

I:|I|=�

|r̂(I)| ≤ e‖p‖1+3 ·
√
ε/δ� ·

(
n

�

)
+

∑
I:|I|=�

(∑
J⊃I

|r̂(J)|
)

≤ ε0 +
∑

I:|I|=�

(∑
J⊃I

|r̂(J)|
)

= ε0+
t∑

j=�+1

(
j

�

)
·
⎛⎝ ∑

J:|J|=j

|r̂(J)|
⎞⎠ = ε0+

t∑
j=�+1

(
j

�

)
‖r=j‖1.

(VI.2)

Therefore, we get the recurrence,

ρ� ≤ ε0 +
t∑

j=�+1

(
j

�

)
ρj . (VI.3)

350



We can solve the above recurrence by induction on �. Specif-

ically, we claim that the above implies ρj ≤ (2t)t−j ·ε0. For

j = t, the claim follows from Equation VI.1. Now, suppose

the inequality holds for all j > �. Then, by Equation VI.3,

as
(
j
�

) ≤ jj−�,

ρ� ≤ ε0 +
t∑

j=�+1

jj−�(2t)t−jε0 ≤ ε0 +
t∑

j=�+1

tj−�(2t)t−jε0

≤ tt−� · ε0 ·
⎛⎝1 +

t∑
j=�+1

2t−j

⎞⎠ = tt−� · ε0 · 2t−�.

Therefore,

‖r‖1 =
t∑

�=0

‖r=�‖1 ≤
t∑

�=0

(2t)t−�ε0 ≤ ε0 · 2t+1tt.

The lemma now follows by plugging in the value of ε0.

VII. LEARNING MARKOV RANDOM FIELDS

We now describe how to apply the Sparsitron algorithm to

recover the structure as well as parameters of binary t-wise

MRFs.

We will use the characterization of MRFs via the

Hammersley-Clifford theorem. Given a graph G = (V,E)
on n vertices, let Ct(G) denote all cliques of size at most

t in G. A binary t-wise MRF with dependency graph G is

a distribution D on {1,−1}n where the probability density

function of D can be written as

Pr
Z∼D

[Z = x] ∝ exp

(∑
I∈S

ψI(x)

)
,

where S ⊆ Ct(G) and each ψI : Rn → R is a function

that depends only on the variables in I . Note that if t = 2,

this corresponds exactly to the Ising model. We call ψ(x) =∑
I∈S ψI(x) the factorization polynomial of the MRF and

G the dependency graph of the MRF.

Note that the factorization polynomial is a polynomial of

degree at most t. However, different graphs and factoriza-

tions (i.e., functions {ψI}) could potentially lead to the same

polynomial. To get around this we enforce the following

non-degeneracy condition:

Definition VII.1. For a t-wise MRF D on {1,−1}n we say
an associated dependency graph G and factorization

Pr
Z∼D

[Z = x] ∝ exp

(∑
I∈S

ψI(x)

)
,

for S ⊆ Ct(G) is η-identifiable if for every maximal

monomial J in ψ(x) =
∑

I∈S ψI(x),
∣∣∣ψ̂(J)∣∣∣ ≥ η and every

edge in G is covered by a non-zero monomial of ψ.

We now state our main theorems for learning MRFs. Our

first result is about structure learning, i.e., recovering the

underlying dependency graph of a MRF. Roughly speaking,

using N = 2O(λt) log(n/η)/η4 samples we can recover

the underlying dependency graph of a η-identifiable MRF

where λ is the maximum �1-norm of the derivatives of

the factorization polynomial. The run-time of the algorithm

is O(M · nt). Note that maxi ‖∂iψ‖1 is analogous to the

notion of width for Ising models (as in Corollary V.4). Thus,

exponential dependence on it is necessary as in the Ising

model and our sample complexity is in fact nearly optimal

in all parameters.

Theorem VII.2. Let D be a t-wise MRF on {1,−1}n
with underlying dependency graph G and factorization
polynomial p(x) =

∑
I∈Ct(G) pI(x) with maxi ‖∂ip‖1 ≤ λ.

Suppose that D is η-identifiable. Then, there exists an
algorithm that given λ, η, ρ ∈ (0, 1/2), and

N =
eO(t)eO(λt)

η4
· (log(n/ρη))

independent samples from D, recovers the underlying depen-
dency graph G with probability at least 1−ρ. The run-time
of the algorithm is O(N · nt). Moreover, the algorithm can
be run in an online manner.

Along with learning the dependency graph, given more

samples, we can also approximately learn the parameters of

the MRF: i.e., compute a t-wise MRF whose distribution is

close as a pointwise-approximation to the original probabil-

ity density function.

Theorem VII.3. Let D be a t-wise MRF on {1,−1}n with
underlying dependency graph G and factorization polyno-
mial ψ(x) =

∑
I∈Ct(G) ψI(x) with maxi ‖∂iψ‖1 ≤ λ.

There exists an algorithm that given λ, and ε, ρ ∈ (0, 1/2),
and

N =
(2t)O(t)eO(λt)

ε4
· n4t · (log(n/ρε))

independent samples Z1, . . . , ZN ← D produces a t-wise
MRF D′ with dependency graph H and a factorization poly-
nomial ϕ(x) =

∑
I∈Ct(H) ϕI(x) such that with probability

at least 1− ρ:

∀x, Pr
Z∼D

[Z = x] = (1± ε) Pr
Z∼D′

[Z = x].

The algorithm runs in time O(Nnt) and can be run in
an online manner.

We in fact show how to recover the parameters of a log-
polynomial density defined as follows:

Definition VII.4. A distribution D on {1,−1}n is said to
be a log-polynomial distribution of degree t if for some
multilinear polynomial p : Rn → R of degree t,

Pr
X∼D

[X = x] ∝ exp(p(x)).

Theorem VII.5. Let D be a log-polynomial distribution of
degree at most t on {1,−1}n with the associated polynomial
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p : Rn → R such that maxi ‖∂ip‖1 ≤ λ. There exists an
algorithm that given λ, and ε, ρ ∈ (0, 1) and

N =
(2t)O(t) · eO(λt)

ε4
· (log(n/ρε)),

independent samples Z1, . . . , ZN ← D, finds a multilinear
polynomial q : Rn → R such that with probability at least
1− ρ

‖p− q‖1 ≤ ε ·
(
n

t

)
.

Moreover, we can also find coefficients (ŝ(I) : I ⊆
[n], |I| ≤ t) such that with probability at least 1 − ρ, for
every maximal monomial I of p, we have |p̂(I)− ŝ(I)| < ε.
The run-time of the algorithm is O(N ·nt) and the algorithm
can be run in an online manner.

A. Learning the structure of MRFs

The following elementary properties of MRFs play a

critical role in our analysis.

Lemma VII.6. Let D be a t-wise MRF on {1,−1}n with
underlying dependency graph G and factorization polyno-
mial p(x) =

∑
I∈Ct(G) pI(x) with maxi ‖∂ip‖1 ≤ λ. Then,

the following hold for Z ← D:
• For any i, and a partial assignment x ∈ {1,−1}[n]\{i},

Pr[Zi = −1|Z−i = x] = σ(−2∂ip(x)).
• D is (e−2λ/2)-unbiased.

Proof: For any x ∈ {1,−1}[n]\{i},
Pr[Zi = 1|Z−i = x]

Pr[Zi = −1|Z−i = x]
= exp(2∂ip(x)).

Thus,

Pr[Zi = −1|Z−i = x] = σ(−2∂ip(x)).
Next, for each i, and any partial assignment x to Z−i,

min (Pr[Zi = −1|Z−i = x],Pr[Zi = 1|Z−i = x]) =

min (σ(−2∂ip(x)), 1− σ(−2∂ip(x)))
≥ (1/2)e−2‖∂ip‖1 ≥ (1/2)e−2λ.

We also need the following elementary fact about median:

Claim VII.7. Let X be a real-valued random variable such
that for some α, γ ∈ R, Pr[|X − α| > γ] < 1/4. Then, for
K independent copies of X , X1, X2, . . . , XK ,

Pr[|MEDIAN(X1, . . . , XK)− α| > γ] ≤ 2 exp(−Ω(K)).

Proof of Theorem VII.2: We will show how to recover

neighbors of the vertex n (for ease of notation). By repeating

the argument for all i ∈ [n], we will get the graph G.

The starting point for our algorithm is Lemma VII.6 that

allow us to use Sparsitron algorithm via feature expansion

and the properties of δ-unbiased distributions developed in

Section VI.

Concretely, let p′ = −2∂np and p′ = (p̂′(I) : I ⊆ [n −
1], |I| ≤ t − 1). Similarly, for x ∈ {1,−1}n−1, let v(x) =
(
∏

i∈I xi : I ⊆ [n− 1], |I| ≤ t− 1). Let Z ∼ D and X be

the distribution of v(Z−n) and let Y = (1 − Zn)/2. Then,

by Lemma VII.6, we have

E[Y |X] = σ(p′ ·X).

Let δ = e−2λ/2, and let ε ∈ (0, 1), K ≥ 1 be parameters

to be chosen later. Our algorithm is shown in Figure 3. The

intuition is as follows: We first apply Sparsitron to recover

a polynomial q that approximates ∂np in the sense that

E
Z
[(σ(−2∂np(Z))− σ(−2q(Z)))2] < ε.

However, the above does not guarantee that the coeffi-

cients of q are close to those of ∂np. To overcome this, we

exploit Lemma VI.2 that guarantees that for any maximal

monomial I in ∂np, ∂Iq(Z) is close to ∂̂np(I) with high

probability for Z ∼ D; concretely, in steps (4), (5), (6), we

draw fresh samples from D and use the median evaluation

of ∂Iq( ) as our estimate for ∂̂np(I).

Algorithm 3 MRF RECOVERY

1: Initialize H = ∅ to be the empty graph.

2: Apply the Sparsitron algorithm as in Theorem III.1 to

compute a vector q such that with probability at least

1− ρ/2n2,

E[(σ(p′ ·X)− σ(q ·X))2] ≤ ε.

3: Define a polynomial q : Rn−1 → R by setting q̂(I) =
(−1/2)qI for all I ⊆ [n− 1].

4: Let Z1, . . . , ZK be additional independent samples from

D.

5: for each I ⊆ [n− 1], |I| ≤ t− 1 do
6: If

∣∣MEDIAN
(
∂Iq(Z

1), . . . , ∂Iq(Z
K)

)∣∣ > η/2, then

add the complete graph on {n} ∪ I to H .

We next argue that for a suitable choice of ε,K, with

probability at least 1− ρ/n, the graph H contains all edges

of G adjacent to vertex n.

Observe that by our definitions of p′, q, X
EZ

[
(σ(−2∂np(Z))− σ(−2q(Z))2

]
= E[(σ(p′ ·X)−σ(q ·

X))2] ≤ ε.
(Here, we abuse notation and write q(Z) =

q(Z1, . . . , Zn−1) as the latter does not depend on Zn.)

Further, as Z is δ-unbiased by Lemma VII.6, by

Lemma VI.2 for any maximal monomial I ⊆ [n − 1] of

∂np, we have

Pr
[∣∣∣∂̂np(I)− ∂Iq(Z)∣∣∣ > η/4

]
<

16e2‖p‖1+6ε

η2δ|I|
.

Let ε = e−2λ−6η2δt/64 so that
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Pr
[∣∣∣∂̂np(I)− ∂Iq(Z)∣∣∣ > η/4

]
< 1/4.

Therefore, by Claim VII.7,

Pr
[∣∣∣MEDIAN(∂Iq(Z

1), . . . , ∂Iq(Z
K))− ∂̂np(I)

∣∣∣ > η/4
]
<

2 exp(−Ω(K)).

Taking K = C log(nt/ρ) for a sufficiently big

constant C, we get that with probability at least

1 − ρ/n, for all maximal monomials I of ∂np,∣∣∣MEDIAN(∂Iq(Z
1), ∂Iq(Z

2), . . . , ∂Iq(Z
K))− ∂̂np(I)

∣∣∣ <

η/4.

Now, whenever the above happens, as the coefficients of

maximal monomials of p are at least η in magnitude (by

η-identifiability), our algorithm will add the complete graph

on the variables of all maximal monomials of p involving

vertex n to H .

Thus, the algorithm recognizes the neighbors of vertex

n exactly with probability at least 1 − ρ/n. Repeating the

argument for each vertex i ∈ [n] and taking a union bound

over all vertices gives us the recovery guarantee of the

theorem. It remains to bound the sample-complexity.

Note that ‖p′‖1 = 2‖∂np‖1 ≤ 2λ. Therefore, by The-

orem III.1, the number of samples needed for the call to

Sparsitron in Step (2) of Algorithm 3 is

O(λ2 · ln(nt/ρε)/ε2) = eO(t) · eO(λ·t) · ln(n/ρη) · (1/η4).

As K = Ct ln(n/ρ), the above bound dominates the

number of samples proving the theorem.

B. Learning log-polynomial densities and parameters of
MRFs

We first observe that Theorem VII.5 implies Theo-

rem VII.3

Proof of Theorem VII.3: We apply Theorem VII.5 with

error ε′ = εn−t to samples from D to obtain a polynomial

ϕ : Rn → R such that ‖ψ−ϕ‖1 ≤ ε. We build a new graph

H as follows: For each monomial I ⊆ [n] with ϕ̂(I) �= 0,

add all the edges in I to H . Let D′ denote the t-wise MRF

with dependency graph H and factorization polynomial ϕ.

Since, ‖ψ−ϕ‖1 ≤ ε, it follows that for all x, |ψ(x)−ϕ(x)| <
ε. Therefore, for all x,

exp(ψ(x)) = exp(ϕ(x)± ε) = (1± 2ε) exp(ϕ(x)).

The theorem now follows.

We next prove Theorem VII.5. The proof is similar to that

of Theorem V.2 and Theorem VII.2.

Proof of Theorem VII.5: For each i, we will show

how to recover a polynomial qi such that ‖∂ip − qi‖1 <
ε · ( n

t−1

)
. We can then combine these polynomials to obtain

a polynomial q. One way to do so is as follows: For each

I ⊆ [n], let i = argmin(I), and define q̂(I) = q̂i(I \ {i}).

Then,

‖p− q‖1 =
∑
I

|p̂(I)− q̂(I)| =
n∑

i=1

∑
I:argmin(I)=i

|p̂(I)− q̂(I)|

≤
n∑

i=1

‖∂ip− qi‖ ≤ ε · n ·
(

n

t− 1

)
.

Here we show how to find a polynomial qn such that with

probability at least 1− ρ/n,

‖∂np− qn‖1 < ε ·
(

n

t− 1

)
. (VII.1)

The other cases can be handled similarly and the theorem

then follows from the above argument.

As in Theorem VII.2, we exploit Lemma VII.6 to employ

our Sparsitron algorithm for learning GLMs via feature
expansion. Concretely, let p′ = −2∂np and p′ = (p̂′(I) :
I ⊆ [n− 1], |I| ≤ t− 1). Similarly, for x ∈ {1,−1}n−1, let

v(x) = (
∏

i∈I xi : I ⊆ [n − 1], |I| ≤ t − 1). Let Z ∼ D
and X be the distribution of v(x) and let Y = (1−Zn)/2.

Then, from the above arguments, we have

E[Y |X] = σ(p′ ·X).

Note that ‖p′‖1 = 2‖∂np‖1 ≤ 2λ. Let γ ∈ (0, 1) be a

parameter to be chosen later. We now apply the Sparsitron

algorithm as in Theorem III.1 to compute a vector q′ ∈ R
n

such that with probability at least 1− ρ/n,

E[(σ(p′ ·X)− σ(q′ ·X))2] ≤ γ.

We define polynomial qn by setting q̂n(I) = (−1/2) · q′
I

for all I ⊆ [n− 1]. Then, the above implies that

E
Z

[
(σ(−2∂np(Z))− σ(−2qn(Z))2

]
≤ γ. (VII.2)

Now, an argument similar to that of Lemma VII.6 shows

that Z is δ-unbiased for δ = e−2λ/2. Therefore, by Equa-

tion VII.2, and Lemma VI.4, for γ < c exp(−4λ) · δ−t for

a sufficiently small constant c, we get

‖∂np−qn‖1 ≤ O(1)(2t)t·e2λ·
√
γ/δt·

(
n

t− 1

)
≤ ε·

(
n

t− 1

)
,

where γ = ε2 · exp(−Cλt)/C(2t)2t for a sufficiently large

constant C > 0. Note that by Theorem III.1, the number of

samples needed to satisfy Equation VII.2 is

O((λ/γ)2 · (log(n/ργ)) = (2t)O(t) · eO(λt)

ε4
· (log(n/ρε)).

This proves Equation VII.1 and hence the main part of the

theorem. The moreover part of the statement follows from

an argument nearly identical to that of Theorem VII.2 and

is omitted here.

VIII. NONBINARY CASE

Due to space considerations we defer this to the full

version (or see the version on arxiv.org).
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