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Abstract—We show that the KLS constant for n-dimensional
isotropic logconcave measures is O(n1/4), improving on the
current best bound of O(n1/3√log n). As corollaries we obtain
the same improved bound on the thin-shell estimate, Poincaré
constant and Lipschitz concentration constant and an alterna-
tive proof of this bound for the isotropic constant; it also follows
that the ball walk for sampling from an isotropic logconcave
density in R

n converges in O∗(n2.5) steps from a warm start.
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I. INTRODUCTION

The isoperimetry of a subset is the ratio of the measure of

the boundary of the subset to the measure of the subset or

its complement, whichever is smaller. The minimum such

ratio over all subsets is the Cheeger constant, also called

expansion or isoperimetric coefficient. This fundamental

constant appears in many settings, e.g., graphs and convex

bodies and plays an essential role in many lines of study.

In the geometric setting, the KLS hyperplane conjecture

[1] asserts that for any distribution with a logconcave

density, the minimum expansion is approximated by that of

a halfspace, up to a universal constant factor. Thus, if the

conjecture is true, the Cheeger constant can be essentially

determined simply by examining hyperplane cuts. More

precisely, here is the statement. We use c, C for absolute

constants, and ‖A‖2 for the spectral/operator norm of a

matrix A.

Conjecture 1 ([1]). For any logconcave density p in R
n

with covariance matrix A,

1

ψp

def
= inf

S⊆Rn

∫
∂S
p(x)dx

min
{∫

S
p(s)dx,

∫
Rn\S p(x)dx

} ≥ c√‖A‖2 .
For an isotropic logconcave density (all eigenvalues of

its covariance matrix are equal to 1), the conjectured

isoperimetric ratio is an absolute constant. Note that the

isoperimetric constant or KLS constant ψp is the reciprocal

of the minimum expansion or Cheeger constant (this will

be more convenient for comparisons with other constants).

The conjecture was formulated by Kannan, Lovsz and Si-

monovits in the course of their study of the convergence of

a random process (the ball walk) in a convex body. They

proved the following weaker bound.

Theorem 2 ([1]). For any logconcave density p in R
n with

covariance matrix A, the KLS constant satisfies

ψp ≤ C
√
Tr(A).

For an isotropic distribution, the theorem gives a bound

of O (
√
n), while the conjecture says O (1). The conjecture

has several important consequences. For example, it implies

that the ball walk mixes in O∗
(
n2

)
steps from a warm

start in any isotropic convex body (or logconcave density)

in R
n; this is the best possible bound, and is tight e.g.,

for a hypercube. The KLS conjecture has become central to

modern asymptotic convex geometry. It is equivalent to a

bound on the spectral gap of isotropic logconcave functions

[2]. Although it was formulated due to an algorithmic

motivation, it implies several well-known conjectures in

asymptotic convex geometry. We describe these next.

The thin-shell conjecture (also known as the variance
hypothesis) [3], [4] says the following.

Conjecture 3 (Thin-shell). For a random point X from an
isotropic logconcave density p in R

n,

σ2
p

def
= E((‖X‖ − √n)2) = O(1).

It implies that a random point X from an isotropic

logconcave density lies in a constant-width annulus (a thin

shell) with constant probability. Noting that

σ2
p = E((‖X‖ − √n)2) ≤ 1

n
Var(‖X‖2) ≤ Cσ2

p,

the conjecture is equivalent to asserting that Var(‖X‖2) =
O(n) for an isotropic logconcave density. The following

connection is well-known: σp ≤ Cψp. The current best

bound is σp ≤ n
1
3 by Guedon and Milman [5], improving on

a line of work that started with Klartag [6], [7], [8]. Eldan [9]

has shown that the reverse inequality holds approximately, in
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a worst-case sense, namely the worst possible KLS constant

over all isotropic logconcave densities in R
n is bounded

by the thin-shell estimate to within roughly a logarithmic

factor in the dimension. This yields the current best bound

of ψp ≤ n
1
3

√
log n. A weaker inequality was shown earlier

by Bobkov [10] (see also [11]).

The slicing conjecture, also called the hyperplane conjec-
ture [12], [13] is the following.

Conjecture 4 (Slicing/Isotropic constant). Any convex body
of unit volume in R

n contains a hyperplane section of at
least constant volume. Equivalently, for any convex body K
of unit volume with covariance matrix L2

KI , the isotropic
constant LK = O(1).

The isotropic constant of a general isotropic logconcave

density p with covariance a multiple of the identity is defined

as Lp = p(0)1/n. The best current bound is Lp = O(n1/4),
due to Klartag [14], improving on Bourgain’s bound of

Lp = O(n1/4 log n) [15]. The study of this conjecture has

played an influential role in the development of convex

geometry over the past several decades. It was shown by

Ball that the KLS conjecture implies the slicing conjec-

ture. More recently, Eldan and Klartag [16] showed that

the thin shell conjecture implies slicing, and therefore an

alternative (and stronger) proof that KLS implies slicing:

Lp ≤ Cσp ≤ C ′ψp.

Finally, we state a few applications of the KLS bound.

Theorem 5 (Poincar constant [17], [18]). For any isotropic
logconcave density p in R

n, we have

sup
g smooth

Varp (g(x))

Ep

(
‖∇g(x)‖22

) = O(ψ2
p).

Theorem 6 (Lipschitz concentration [19]). For any L-
Lipschitz function g in R

n, and isotropic logconcave density
p,

Px∼p (|g(x)− Eg| > ψpLt) ≤ e−Ω(t).

Theorem 7 (Central Limit Theorem [3]). Let K be an
isotropic symmetric convex set. Let gθ(s) = vol(K∩{xT θ =
s}) and g(s) = 1√

2π
exp(− s2

2 ). There are universal con-
stants c1, c2 > 0 such that for any δ > 0, the measure of
the set of unit vectors θ for which, for every t ∈ R,∣∣∣∣

∫ t

−t

gθ(s)ds−
∫ t

−t

g(s)ds

∣∣∣∣ ≤ c1(δ +
ψK√
n
)

is at least 1− ne−c2δ
2n.

For more background on these conjectures, we refer the

reader to [20], [21], [22].

A. Results

We prove the following bound, conjectured in this form

in [23].

Theorem 8. For any logconcave density p in R
n, with

covariance matrix A,

ψp ≤ C
(
Tr

(
A2

))1/4
.

For isotropic p, this gives a bound of ψp ≤ Cn
1
4 , im-

proving on the current best bound. The following corollary

is immediate. We note that it also gives an alternative proof

of the central limit theorem for logconcave distributions, via

Bobkov’s theorem [10].

Corollary 9. For any logconcave density p in R
n, the

isotropic (slicing) constant Lp and the thin-shell constant
σp are bounded by O

(
n1/4

)
.

We mention an algorithmic consequence. The ball walk

in a convex body K ⊆ R
n starts at some point x0 in its

interior and at each step picks a uniform random point in

the ball of fixed radius δ centered at the current point, and

goes to the point if it lies in K. The process converges to the

uniform distribution over K in the limit. Understanding the

precise rate of convergence is a major open problem with a

long line of work and directly motivated the KLS conjecture

[24], [25], [26], [1], [27], [28], [29]. Our improvement for

the KLS constant gives the following bound on the rate of

convergence.

Corollary 10. The mixing time of the ball walk to sample
from an isotropic logconcave density from a warm start is
O∗

(
n2.5

)
.

B. Approach

The KLS conjecture is true for Gaussian distributions.

More generally, for any distribution whose density function

is the product of the Gaussian density for N(0, σ2I) and

any logconcave function, it is known that the expansion

is Ω(1/σ) [30]. This fact is used crucially in the Gaussian

cooling algorithm of [31] for computing the volume of a

convex body by starting with a standard Gaussian restricted

to a convex body and gradually making the variance of the

Gaussian large enough that it is effectively uniform over

the convex body of interest. Our overall strategy is similar

in spirit — we start with an arbitrary isotropic logconcave

density and gradually introduce a Gaussian term in the

density of smaller and smaller variance. The isoperimetry

of the resulting distribution after sufficient time will be very

good since it has a large Gaussian factor. And crucially, it

can be related to the isoperimetry of the initial distribution.

To achieve the latter, we would like to maintain the measure

of a fixed subset close to its initial value as the distribution

changes. For this, our proof uses the localization approach

to proving high-dimensional inequalities [26], [1], and in

particular, the elegant stochastic version introduced by Eldan

[9] and used in subsequent papers [32], [33].

We fix a subset E of the original space with measure

one half according to the original logconcave distribution (it
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suffices to consider such subsets to bound the isoperimetric

constant). In standard localization, we then repeatedly bisect

space using a hyperplane that preserves the volume fraction

of E. The limit of this process is a partition into 1-

dimensional logconcave measures (“needles”), for which

inequalities are much easier to prove. This approach runs

into major difficulties for proving the KLS conjecture. While

the original measure might be isotropic, the 1-dimensional

measures could, in principle, have variances roughly equal to

the trace of the original covariance (i.e., long thin needles),

for which only much weaker inequalities hold. Stochastic

localization can be viewed as the continuous time version of

this process, where at each step, we pick a random direction

and multiply the current density with a linear function along

the chosen direction. Over time, the density can be viewed as

a spherical Gaussian times a logconcave function, with the

Gaussian gradually reducing in variance. When the Gaussian

becomes sufficiently small in variance, then the overall

distribution has good isoperimetric coefficient, determined

by the inverse of the Gaussian standard deviation (such an

inequality can be shown using standard localization, as in

[30]). An important property of the infinitesimal change at

each step is balance – the density at time t is a martingale

and therefore the expected measure of any subset is the same

as the original measure. Over time, the measure of a set E is

a random quantity that deviates from its original value of 1
2

over time. The main question then is: what direction to use

at each step so that (a) the measure of E remains bounded

and (b) the Gaussian part of the density has small variance.

We show that the simplest choice, namely a pure random

direction chosen from the uniform distribution suffices. The

analysis needs a potential function that grows slowly but still

maintains good control over the spectral norm of the current

covariance matrix. The direct choice of ‖At‖2, where At is

the covariance matrix of the distribution at time t, is hard to

control. We use Tr(A2
t ). This gives us the improved bound

of O(n1/4).

II. PRELIMINARIES

In this section, we review some basic definitions and

theorems that we use.

A. Stochastic calculus

In this paper, we only consider stochastic processes

given by stochastic differential equations. Given real-valued

stochastic processes xt and yt, the quadratic variations [x]t
and [x, y]t are real-valued stochastic processes defined by

[x]t = lim
|P |→0

∞∑
n=1

(
xτn − xτn−1

)2

[x, y]t = lim
|P |→0

∞∑
n=1

(
xτn − xτn−1

) (
yτn − yτn−1

)
,

where P = {0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ↑ t} is

a stochastic partition of the non-negative real numbers,

|P | = maxn (τn − τn−1) is called the mesh of P and the

limit is defined using convergence in probability. Note that

[x]t is non-decreasing with t and [x, y]t can be defined via

polarization as

[x, y]t =
1

4
([x+ y]t − [x− y]t) .

For example, if the processes xt and yt satisfy the SDEs

dxt = μ(xt)dt+ σ(xt)dWt and dyt = ν(yt)dt+ η(yt)dWt

where Wt is a Wiener process, we have that [x]t =∫ t

0
σ2(xs)ds and [x, y]t =

∫ t

0
σ(xs)η(ys)ds and d[x, y]t =

σ(xt)η(yt)dt; for a vector-valued SDE dxt = μ(xt)dt +
Σ(xt)dWt and dyt = ν(yt)dt + M(yt)dWt, we have

that [xi, xj ]t =
∫ t

0
(Σ(xs)Σ

T (xs))ijds and d[xi, yj ]t =
(Σ(xt)M

T (yt))ijdt.

Lemma 11 (It’s formula). Let x be a semimartingale and
f be a twice continuously differentiable function, then

df(xt) =
∑
i

df(xt)

dxi
dxi +

1

2

∑
i,j

d2f(xt)

dxidxj
d[xi, xj ]t.

The next two lemmas are well-known facts about Wiener

processes; first the reflection principle.

Lemma 12 (Reflection principle). Given a Wiener process
W (t) and a, t ≥ 0, then we have that

P( sup
0≤s≤t

W (s) ≥ a) = 2P(W (t) ≥ a).

Second, a decomposition lemma for continuous martin-

gales.

Theorem 13 (Dambis, Dubins-Schwarz theorem). Every
continuous local martingale Mt is of the form

Mt =M0 +W[M ]t for all t ≥ 0

where Ws is a Wiener process.

B. Logconcave functions

Lemma 14 (Dinghas; Prkopa; Leindler). The convolution of
two logconcave functions is also logconcave; in particular,
any linear transformation or any marginal of a logconcave
density is logconcave.

The next lemma about logconcave densities is folklore,

see e.g., [34].

Lemma 15 (Logconcave moments). Given a logconcave
density p in R

n, and any positive integer k,

Ex∼p ‖x‖k ≤ (2k)k
(
Ex∼p ‖x‖2

)k/2

.

The following elementary concentration lemma is also

well-known (this version is from [34]).
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Lemma 16 (Logconcave concentration). For any isotropic
logconcave density p in R

n, and any t > 0,

Px∼p

(‖x‖ > t
√
n
) ≤ e−t+1.

To prove a lower bound on the expansion, it suffices to

consider subsets of measure 1/2. This follows from the

concavity of the isoperimetric profile. We quote a theorem

from [11, Thm 1.8], which applies even more generally

to Riemannian manifolds under suitable convexity-type as-

sumptions.

Theorem 17. The Cheeger constant of any logconcave
density is achieved by a subset of measure 1/2.

III. ELDAN’S STOCHASTIC LOCALIZATION

In this section, we consider a variant of the stochastic lo-

calization scheme introduced in [9]. In discrete localization,

the idea would be to restrict the distribution with a random

halfspace and repeat this process. In stochastic localization,

this discrete step is replaced by infinitesimal steps, each

of which is a renormalization with a linear function in

a random direction. One might view this informally as

an averaging over infinitesimal needles. The discrete time

equivalent would be pt+1(x) = pt(x)(1 +
√
h(x − μt)

Tw)
for a sufficiently small h and random Gaussian vector w.

Using the approximation 1 + y ∼ ey−
1
2y

2

, we see that over

time this process introduces a negative quadratic factor in the

exponent, which will be the Gaussian factor. As time tends

to∞, the distribution tends to a more and more concentrated

Gaussian and eventually a delta function, at which point any

subset has measure either 0 or 1. The idea of the proof is to

stop at a time that is large enough to have a strong Gaussian

factor in the density, but small enough to ensure that the

measure of a set is not changed by more than a constant.

A. The process and its basic properties

Given a distribution with logconcave density p(x), we

start at time t = 0 with this distribution and at each time

t > 0, we apply an infinitesimal change to the density.

This is done by picking a random direction from a standard

Gaussian.

In order to construct the stochastic process, we assume

that the support of p is contained in a ball of radius R > n.

There is only exponentially small probability outside this

ball, at most e−cR by Lemma 16. Moreover, since by

Theorem 17, we only need to consider subsets of measure

1/2, this truncation does not affect the KLS constant of the

distribution.

Definition 18. Given a logconcave distribution p, we define

the following stochastic differential equation:

c0 = 0, dct = dWt + μtdt, (III.1)

where the probability distribution pt, the mean μt and the

covariance At are defined by

pt(x) =
ec

T
t x− t

2‖x‖22p(x)∫
Rn e

cTt y− t
2‖y‖22p(y)dy

μt = Ex∼pt
x

At = Ex∼pt(x− μt)(x− μt)
T .

Since μt is a bounded function that is Lipschitz with

respect to c and t, standard theorems (e.g. [35, Sec 5.2])

show the existence and uniqueness of the solution in time

[0, T ] for any T > 0. We defer all proofs for statements

in this section, considered standard in stochastic calculus,

to Section V. Now we proceed to analyzing the process

and how its parameters evolve. Roughly speaking, the first

lemma below says that the stochastic process is the same as

continuously multiplying pt(x) by a random infinitesimally

small linear function.

Lemma 19. We have that dpt(x) = (x−μt)
T dWtpt(x) for

any x ∈ R
n,

By considering the derivative d log pt(x), we see that

applying dpt(x) as in the lemma above results in the

distribution pt(x), with the Gaussian term in the density:

d log pt(x) =
dpt(x)

pt(x)
− 1

2

d[pt(x)]t
pt(x)2

= (x− μt)
T dWt − 1

2
(x− μt)

T (x− μt)dt

= xT dct − 1

2
‖x‖2 dt+ g(t)

where the last term is independent of x and the first two

terms explain the form of pt(x) and the appearance of the

Gaussian.

Next we analyze the change of the covariance matrix.

Lemma 20. We have that dAt =
∫
Rn(x − μt)(x −

μt)
T
(
(x− μt)

T dWt

)
pt(x)dx−A2

tdt.

B. Bounding expansion

Our goal is to bound the expansion by the spectral norm of

the covariance matrix at time t. First, we bound the measure

of a set of initial measure 1
2 .

Lemma 21. For any set E ⊂ R
n with

∫
E
p(x)dx = 1

2 and
t ≥ 0, we have that

P

(
1

4
≤

∫
E

pt(x)dx ≤ 3

4

)

≥ 9

10
− P

(∫ t

0

‖As‖2 ds ≥
1

64

)
.

Proof: Let gt =
∫
E
pt(x)dx. Then, we have that

dgt =

〈∫
E

(x− μt)pt(x)dx, dWt

〉
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where the integral might not be 0 because it is over the

subset E and not all of Rn. Hence, we have,

d[gt]t =

∥∥∥∥
∫
E

(x− μt)pt(x)dx

∥∥∥∥
2

2

dt

= max
‖ζ‖2≤1

(∫
E

ζT (x− μt)pt(x)dx

)2

dt

≤ max
‖ζ‖2≤1

∫
Rn

(
ζT (x− μt)

)2
pt(x)dx

∫
Rn

pt(x)dxdt

= max
‖ζ‖2≤1

(
ζTAtζ

)
dt = ‖At‖2 dt.

Hence, we have that
d[gt]t
dt ≤ ‖At‖2. By the Dambis,

Dubins-Schwarz theorem, there exists a Wiener process W̃t

such that gt − g0 has the same distribution as W̃[g]t . Using

g0 = 1
2 , we have that

P(
1

4
≤ gt ≤ 3

4
)

= P(
−1
4
≤ W̃[g]t ≤

1

4
)

≥ 1− P( max
0≤s≤ 1

64

∣∣∣W̃s

∣∣∣ > 1

4
)− P([g]t >

1

64
)

1©
≥ 1− 4P(W̃ 1

64
>

1

4
)− P([g]t >

1

64
)

2©
≥ 9

10
− P([g]t >

1

64
)

where we used reflection principle for 1-dimensional Brown-

ian motion in 1© and the concentration of normal distribution

in 2©, namely Px∼N(0,1)(x > 2) ≤ 0.0228.

Theorem 22 (Brascamp-Lieb [36]). Let γ : Rn → R+ be
the standard Gaussian density in R

n. Let f : Rn → R+ be
any logconcave function. Define the density function h as
follows:

h(x) =
f(x)γ(x)∫

Rn f(y)γ(y) dy
.

Fix a unit vector v ∈ R
n, let μ = Eh(x). Then, for any

α ≥ 1, Eh(|vT (x− μ)|α) ≤ Eγ(|vTx|α).
Using the above, the following isoperimetric inequality

was proved in [30] and was also used in [9].

Theorem 23 ([30, Thm. 4.4]). Let h(x) =

f(x)e−
1
2x

TBx/
∫
f(y)e−

1
2y

TBydy where f : R
n → R+

is an integrable logconcave function and B is positive
definite. Then h is logconcave and for any measurable
subset S of Rn,∫

∂S
h(x)dx

min
{∫

S
h(x)dx,

∫
Rn\S h(x)dx

} = Ω
(∥∥B−1

∥∥− 1
2

2

)
.

In other words, the expansion of h is Ω
(∥∥B−1

∥∥− 1
2

2

)
.

Proof: The proof uses the localization lemma to reduce

the statement to a 1-dimensional statement about a Gaus-

sian times a logconcave density, where the Gaussian is a

projection of the Gaussian N
(
0, B−1

)
(but the logconcave

function might be different as the limit of localization is

the original function along an interval times an exponential

function). We then apply the Brascamp-Lieb inequality in

one dimension (Theorem 22) to prove that for the resulting

one-dimensional distribution, the variance is at most that of

the Gaussian, therefore at most
∥∥B−1

∥∥. The isoperimetric

constant is bounded by the inverse of the standard deviation

times a constant. The complete proof, in more general terms,

is carried out in [30, Thm. 4.4].

We can now prove a bound on the expansion.

Lemma 24. Given a logconcave distribution p. Let At be
defined by Definition 18 using initial distribution p. Suppose
that there is T > 0 such that

P

(∫ T

0

‖As‖2 ds ≤
1

64

)
≥ 3

4

Then, we have that ψp = O
(
T−1/2

)
.

Proof: By Milman’s theorem [11], it suffices to consider

subsets of measure 1
2 . Consider any measurable subset E of

R
n of initial measure 1

2 . By Lemma 19, pt is a martingale

and therefore∫
∂E

p(x)dx =

∫
∂E

p0(x)dx = E

(∫
∂E

pt(x)dx

)
.

Next, by the definition of pT (III.1), we have that pT (x) ∝
ec

T
T x−T

2 ‖x‖2p(x) and Theorem 23 shows that the expansion

of E is Ω
(√

T
)

. Hence, we have

∫
∂E

p(x)dx = E

∫
∂E

pT (x)dx

= Ω(
√
T )E

(
min

(∫
E

pT (x)dx,

∫
Ē

pT (x)dx

))

≥ Ω(
√
T )P

(
1

4
≤

∫
E

pT (x)dx ≤ 3

4

)
Lem 21≥ Ω(

√
T )

(
9

10
− P(

∫ t

0

‖As‖2 ds ≥
1

64
)

)
= Ω(

√
T )

where we used the assumption at the end. Using Theorem

17, this shows that ψp = O
(
T−1/2

)
.

IV. CONTROLLING At VIA THE POTENTIAL Tr(A2
t )

A. Third moment bounds

Here are two key lemmas about the third-order tensor of

a log-concave distribution.
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Lemma 25. Given a logconcave distribution p with mean
μ and covariance A. For any positive semi-definite matrix
C, we have that∥∥Ex∼p(x− μ)(x− μ)TC(x− μ)

∥∥
2

= O
(
‖A‖1/22 Tr

(
A1/2CA1/2

))
.

Proof: We first prove the case C = vvT . Taking y =
A−1/2(x−μ) and w = A1/2v. Then, y follows an isotropic

logconcave distribution p̃ and hence∥∥∥Ey∼py
(
yTw

)2∥∥∥
2

=
∥∥∥Ey∼p̃A

1/2y
(
yTw

)2∥∥∥
2

= max
‖ζ‖2≤1

Ey∼p̃(A
1/2y)T ζ

(
yTw

)2
≤ max
‖ζ‖2≤1

√
Ey∼p̃

(
(A1/2y)T ζ

)2√
Ey∼p̃ (yTw)

4

= O
(
‖A‖1/22 ‖w‖22

)
where we used the fact that for a fixed w, yTw has a one-

dimensional logconcave distribution (Lemma 14) and hence

Lemma 15 shows that

Ey∼p̃

(
yTw

)4
= O(1)

(
Ey∼p̃

(
yTw

)2)2

= O(‖w‖42).

For a general PSD matrix C, we write C =
∑
λiviv

T
i

where λi ≥ 0, vi are eigenvalues and eigenvectors of C.

Hence, we have that∥∥Ex∼p(x− μ)(x− μ)TC(x− μ)
∥∥
2

≤
∑
i

λi
∥∥Ex∼p(x− μ)(x− μ)T vivTi (x− μ)

∥∥
2

≤ O(1)
∑
i

λi ‖A‖1/22

∥∥∥A1/2vi

∥∥∥2

= O(1) ‖A‖1/22

∑
i

Tr
(
A1/2λiviv

T
i A

1/2
)

= O(1) ‖A‖1/22 Tr
(
A1/2CA1/2

)
.

Lemma 26. Given a logconcave distribution p with mean
μ and covariance A. We have

Ex,y∼p |〈x− μ, y − μ〉|3 = O
(
Tr

(
A2

)3/2)
.

Proof: Without loss of generality, we assume μ = 0.

For a fixed x and random y, 〈x, y〉 follows a one-dimensional

logconcave distribution (Lemma 14) and hence Lemma 15

shows that

Ey∼p |〈x, y〉|3 ≤ O(1)
(
Ey∼p〈x, y〉2

)3/2
= O

(
xTAx

)3/2
.

Next, we note that A1/2x follows a logconcave distribution

(Lemma 14) and hence Lemma 15 shows that

Ex,y∼p |〈x, y〉|3 = O(1)Ex∼p

∥∥∥A1/2x
∥∥∥3

≤ O(1)

(
Ex∼p

∥∥∥A1/2x
∥∥∥2

)3/2

= O
(
Tr

(
A2

)3/2)
.

B. Analysis of At

Using It’s formula and Lemma 20, we compute the

derivatives of TrA2
t .

Lemma 27. Let At be defined by Definition 18. We have
that

dTrA2
t = 2Ex∼pt

(x− μt)
TAt(x− μt)(x− μt)

T dWt

− 2Tr(A3
t )dt+ Ex,y∼pt

(
(x− μt)

T (y − μt)
)3
dt.

Lemma 28. Given a logconcave distribution p with covari-
ance matrix A s.t. TrA2 = n. Let At defined by Definition
18 using initial distribution p. There is a universal constant
c1 such that

P( max
t∈[0,T ]

Tr
(
A2

t

) ≥ 8n) ≤ 0.01 with T =
c1√
n
.

Proof: Let Φt = TrA2
t . By Lemma 27, we have that

dΦt =− 2Tr(A3
t )dt+ Ex,y∼pt

(
(x− μt)

T (y − μt)
)3
dt

+ 2Ex∼pt(x− μt)
TAt(x− μt)(x− μt)

T dWt

def
=δtdt+ vTt dWt. (IV.1)

For the drift term δtdt, Lemma 26 shows that

δt ≤ Ex,y∼pt

(
(x− μt)

T (y − μt)
)3

= O
(
Tr

(
A2

t

)3/2)
≤ C ′Φ3/2

t (IV.2)

for some universal constant C ′. Note that we dropped

the term −2Tr(A3
t ) since At is positive semidefinite and

therefore the term is negative.

For the martingale term vTt dWt, we note that

‖vt‖2 =
∥∥Ex∼pt

(x− μt)
TAt(x− μt)(x− μt)

∥∥
2

Lem 25≤ ‖At‖1/22 Tr
∣∣A2

t

∣∣ ≤ Φ
5/4
t .

So the drift term grows roughly as Φ3/2t while the stochastic

term grows as Φ
5/4
t

√
t. Thus, both bounds (on the drift term

and the stochastic term) suggest that for t up to O
(

1√
n

)
,

the potential Φt remains O(n). We now formalize this, by

decoupling the two terms.
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Let f(a) = − 1√
a+n

. By (IV.1) and It’s formula, we have

that

df(Φt) = f ′(Φt)dΦt +
1

2
f ′′(Φt)d[Φ]t

=

(
1

2

δt
(Φt + n)3/2

− 3

8

‖vt‖22
(Φt + n)5/2

)
dt

+
1

2

vTt dWt

(Φt + n)3/2

≤ C ′dt+ dYt (IV.3)

where dYt = 1
2

vT
t dWt

(Φt+n)3/2
, Yt = 0 and C ′ is the universal

constant in (IV.2).

Note that

d[Y ]t
dt

=
1

4

‖vt‖22
(Φt + n)3

= O(1)
Φ5/2

(Φt + n)3
≤ C√

n
.

By Theorem 13, there exists a Wiener process W̃t such that

Yt has the same distribution as W̃[Y ]t . Using the reflection

principle for 1-dimensional Brownian motion, we have that

P( max
t∈[0,T ]

Yt ≥ γ) ≤ P( max
t∈[0, C√

n
T ]
W̃t ≥ γ)

= 2P(W̃ C√
n
T ≥ γ)

≤ 2 exp(−γ
2
√
n

2CT
).

Since Φ0 = ‖Ap‖2F = n, we have that f(Φ0) = − 1√
2n

and

therefore (IV.3) shows that

P( max
t∈[0,T ]

f(Φt) ≥ − 1√
2n

+ C ′T + γ) ≤ 2 exp(−γ
2
√
n

2CT
).

Putting T = 1
256(C′+C)

√
n

and γ = 1
4
√
n

, we have that

P( max
t∈[0,T ]

f(Φt) ≥ − 1

3
√
n
) ≤ 2 exp(−8)).

Note that f(Φt) ≥ − 1
3
√
n

implies that Φt ≥ 8n. Hence, we

have that P(maxt∈[0,T ] Φt ≥ 8n) ≤ 0.01.

C. Proof of Theorem 8

Proof of Theorem 8.: By rescaling, we can assume

TrA2 = n. By Lemma 28, we have that

P( max
s∈[0,t]

Tr
(
A2

s

) ≤ 8n) ≥ 0.99 with t =
c1√
n
.

Since Tr
(
A2

t

) ≤ 8n implies that ‖At‖2 ≤ √
8n, we

have that P(
∫ T

0
‖As‖ ds ≤ 1

64 ) ≥ 0.99 where T =

min
{

1
64
√
8
, c1

}
1√
n

. Now the theorem follows from Lemma

24.

V. LOCALIZATION PROOFS

We begin with the proof of the infinitesimal change in the

density.

Proof of Lemma (19).: Let qt(x) = ec
T
t x− t

2‖x‖2p(x).
By It’s formula, applied to f(a, t)

def
= ea−

t
2‖x‖2p(x) with

a = cTt x, we have that

dqt(x) =
df(a, t)

da
dcTt x+

df(a, t)

dt
dt

+
1

2

d2f(a, t)

da2
d[cTt x]t +

1

2

d2f(a, t)

dt2
d[t]t

+
1

2
· 2 · d

2f(a, t)

dadt
d[cTt x, t]t

=

(
dcTt x−

1

2
‖x‖22 dt+

1

2
d[cTt x]t

)
qt(x).

By the definition of ct, we have dcTt x = 〈dWt + μtdt, x〉.
The quadratic variation of cTt x is d[cTt x]t = 〈x, x〉 dt. The

other two quadratic variation terms are zero. Therefore, this

gives

dqt(x) = 〈dWt + μtdt, x〉 qt(x). (V.1)

Let Vt =
∫
Rn qt(y)dy. Then, we have

dVt =

∫
Rn

dqt(y)dy =

∫
Rn

〈dWt + μtdt, y〉 qt(y)dy
= Vt 〈dWt + μtdt, μt〉 .

By It’s formula, we have that

dV −1
t = − 1

V 2
t

dVt +
1

V 3
t

d[V ]t

= −V −1
t 〈dWt + μtdt, μt〉+ V −1

t 〈μt, μt〉 dt
= −V −1

t 〈dWt, μt〉 . (V.2)

Combining (V.1) and (V.2), we have that

dpt(x) = d(V −1
t qt(x))

= qt(x)dV
−1
t + V −1

t dqt(x) + d[V −1
t , qt(x)]t

= pt(x) 〈dWt, x− μt〉 .

The next proof is for the change in the covariance matrix.

Proof of Lemma (20).: Recall that

At =

∫
Rn

(x− μt)(x− μt)
T pt(x)dx.

Viewing At = f(μt, pt), i.e., as a function of the variables

μt and pt, we apply It’s formula. In the derivation below,

we use [μt, μ
T
t ]t to denote the matrix whose i, j coordinate

is [μt,i, μt,j ]t. Similarly, [μt, pt(x)]t is a column vector and
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[μT
t , pt(x)]t is a row vector.

dAt =

∫
Rn

(x− μt)(x− μt)
T dpt(x)dx

−
∫
Rn

dμt(x− μt)
T pt(x)dx

−
∫
Rn

(x− μt)(dμt)
T pt(x)dx

− 1

2
· 2

∫
Rn

(x− μt)d[μ
T
t , pt(x)]tdx

− 1

2
· 2

∫
Rn

d[μt, pt(x)]t(x− μt)
T dx

+
1

2
· 2d[μt, μ

T
t ]t

∫
Rn

pt(x)dx.

where the factor 2 comes from the Hessians of x2 and xy.

Now the second term vanishes because∫
Rn

dμt(x− μt)
T pt(x)dx = dμt(

∫
Rn

(x− μt)pt(x)dx)
T

= 0.

Similarly, the third term also vanishes:
∫
Rn(x −

μt)(dμt)
T pt(x)dx = 0.

To compute the last 3 terms, we note that

dμt = d

∫
Rn

xpt(x)dx

=

∫
Rn

x(x− μt)
T dWtpt(x)dx

=

∫
Rn

(x− μt)(x− μt)
T dWtpt(x)dx

+

∫
Rn

μt(x− μt)
T dWtpt(x)dx

= AtdWt.

Therefore, we have for the last term(
d[μt, μ

T
t ]t

)
ij
=

∑



(At)i
 (At)j
 dt

= (AtA
T
t )ijdt = (A2

t )ijdt

which we can simply write as d[μt, μ
T
t ]t = A2

tdt. Similarly,

we have d[μt, pt(x)]t = pt(x)At(x − μt)dt. This gives the

fourth term∫
Rn

(x− μt)d[μ
T
t , pt(x)]tdx

=

∫
Rn

(x− μt)(x− μt)
TAtpt(x)dtdx

= A2
tdt.

Similarly, we have the fifth term
∫
Rn d[μt, pt(x)]t(x −

μt)
T dx = A2

tdt. Combining all the terms, we have that

dAt =

∫
Rn

(x− μt)(x− μt)
T dpt(x)dx−A2

tdt.

Next is the proof of stochastic derivative of the potential

Φt = Tr(A2
t ).

Proof of Lemma 27: Let Φ(X) = Tr(X2). Then

the first and second-order directional derivatives of Φ at

X is given by ∂Φ
∂X

∣∣
H

= 2Tr(XH) and ∂2Φ
∂X∂X

∣∣∣
H1,H2

=

2Tr(H1H2). Using these and It’s formula, we have that

dTr(A2
t ) = 2Tr(AtdAt) +

∑
ij

d[Aij , Aji]t

where Aij is the real-valued stochastic process defined by

the (i, j)th entry of At. Using Lemma 20 and Lemma 19,

we have that

dAt =
∑
z

Ex∼pt(x− μt)(x− μt)
T (x− μt)zdWt,z

−A2
tdt (V.3)

where Wt,z is the zth coordinate of Wt. Therefore,

d[Aij , Aji]t

=
∑
z

(
Ex∼pt

(x− μt)i(x− μt)j(x− μt)
T ez

)
× (

Ex∼pt
(x− μt)j(x− μt)i(x− μt)

T ez
)
dt

= Ex,y∼pt
(x− μt)i(x− μt)j(y − μt)j ·

· (y − μt)i(x− μt)
T (y − μt)dt. (V.4)

Using the formula for dAt (V.3) and d[Aij , Aji]t (V.4), we

have that

dTr(A2
t )

= 2Ex∼pt
(x− μt)

TAt(x− μt)(x− μt)
T dWt

− 2Tr(A3
t )dt+

∑
ij

Ex,y∼pt(x− μt)i(x− μt)j ·

· (y − μt)j(y − μt)i(x− μt)
T (y − μt)dt

= 2Ex∼pt(x− μt)
TAt(x− μt)(x− μt)

T dWt

− 2Tr(A3
t )dt+ Ex,y∼pt

((x− μt)
T (y − μt))

3dt.
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