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Abstract—We show how to compute a relative-error low-rank
approximation to any positive semidefinite (PSD) matrix in
sublinear time, i.e., for any n × n PSD matrix A, in Õ(n ·
poly(k/ε)) time we output a rank-k matrix B, in factored
form, for which ‖A − B‖2F ≤ (1 + ε)‖A − Ak‖2F , where Ak

is the best rank-k approximation to A. When k and 1/ε are
not too large compared to the sparsity of A, our algorithm
does not need to read all entries of the matrix. Hence, we
significantly improve upon previous nnz(A) time algorithms
based on oblivious subspace embeddings, and bypass an nnz(A)
time lower bound for general matrices (where nnz(A) denotes
the number of non-zero entries in the matrix). We prove time
lower bounds for low-rank approximation of PSD matrices,
showing that our algorithm is close to optimal. Finally, we
extend our techniques to give sublinear time algorithms for low-
rank approximation of A in the (often stronger) spectral norm
metric ‖A−B‖22 and for ridge regression on PSD matrices.
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I. INTRODUCTION

A fundamental task in numerical linear algebra is to

compute a low-rank approximation of a matrix. Such an

approximation can reveal underlying low-dimensional struc-

ture, can provide a compact way of storing a matrix in

factored form, and can be quickly applied to a vector. Count-

less applications include clustering [1]–[4], datamining [5],

information retrieval [6], learning mixtures of distributions

[7], [8], recommendation systems [9], topic modeling [10],

and web search [11], [12].

One of the most well-studied versions of the problem is to

compute a near optimal low-rank approximation with respect

to the Frobenius norm. That is, given an n×n input matrix

A and an accuracy parameter ε > 0, output a rank-k matrix

B for which:

‖A−B‖2F ≤ (1 + ε)‖A−Ak‖2F , (1)

where for a matrix C, ‖C‖2F =
∑

i,j C
2
i,j is its squared

Frobenius norm, and Ak = argminrank-k B‖A−B‖F . Ak can

be computed exactly using the singular value decomposition,

but takes O(n3) time in practice and nω time in theory,

where ω ≈ 2.373 is the exponent of matrix multiplication.

In seminal work, Frieze, Kannan, and Vempala [13] and

Achlioptas and McSherry [14] show that using randomiza-

tion and approximation, much faster runtimes are possible.

Specifically, [13] gives an algorithm that, assuming access to

the row norms of A, outputs rank-k B, in factored form, such

that with good probability, ‖A−B‖2F ≤ ‖A−Ak‖2F+ε‖A‖2F .

The algorithm runs in just n · poly(k/ε) time. However

nnz(A) additional time is required to compute the row

norms, where nnz(A) denotes the number of non-zero

entries of A. Further, the guarantee achieved can be signifi-

cantly weaker than (1), since the error is of the form ε‖A‖2F
rather than ε‖A − Ak‖2F . Note that ‖A − Ak‖2F � ‖A‖2F
precisely when A is well-approximated by a rank-k matrix.

Related additive error algorithms with additional assump-

tions were given for tensors in [15].

Sarlós [16] showed how to achieve (1) with constant

probability in Õ(nnz(A) · k/ε) + n · poly(k/ε) time. This

was improved by Clarkson and Woodruff [17] who achieved

O(nnz(A))+n·poly(k/ε) time. See also work by Bourgain,

Dirksen, and Nelson [18], Cohen [19], Meng and Mahoney

[20], and Nelson and Nguyen [21] which further improved

the degree in the poly(k/ε) term. For a survey, see [22].

In the special case that A is rank-k and so ‖A−Ak‖2F =
0, (1) is equivalent to the well studied low-rank matrix

completion problem [23]. Much attention has focused on

completing incoherent low-rank matrices, whose singular

directions are represented uniformly throughout the rows and

columns and hence can be identified via uniform sampling

and without fully accessing the matrix. Under incoherence

assumptions, a number of methods are able to complete a

rank-k matrix in Õ(n · poly(k)) time [24], [25].

For general matrices, without incoherence, it is not hard

to see that Ω(nnz(A)) is a time lower bound: if one does

not read a constant fraction of entries of A, with constant

probability one can miss an entry much larger than all others,

which needs to be included in the low-rank approximation.

A. Low-rank Approximation of PSD Matrices

An important class of matrices for which low-rank ap-

proximation is often applied is the set of positive semidef-

inite (PSD) matrices. These are real symmetric matrices

with all non-negative eigenvalues. They arise for example

as covariance matrices, graph Laplacians, Gram matrices (in

particular, kernel matrices), and random dot product models

[26]. In multidimensional scaling, low-rank approximation
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of PSD matrices in the Frobenius norm error metric (1)

corresponds to the standard ‘strain minimization’ problem

[27]. Completion of low-rank, or nearly low-rank (i.e., when

‖A−Ak‖2F ≈ 0), PSD matrices from few entries is important

in applications such as quantum state tomography [28] and

global positioning using local distances [29], [30].

Due to its importance, a vast literature studies low-

rank approximation of PSD matrices [31]–[43]. However,

known algorithms either run in at least nnz(A) time, do not

achieve the relative-error guarantee of (1), or require strong

incoherence assumptions.1

At the same time, the simple Ω(nnz(A)) time lower

bound for general matrices does not hold in the PSD case.

Positive semidefiniteness ensures that for all i, j, |Ai,j | ≤
max(Ai,i, Aj,j). So ‘hiding’ a large entry in A requires

creating a corresponding large diagonal entry. By reading

the n diagonal elements, an algorithm can avoid being

tricked by this approach. While far from an algorithm, this

argument raises the possibility that improved runtimes could

be possible for PSD matrices.

B. Our Results

We give the first sublinear time relative-error low-rank

approximation algorithm for PSD matrices. Our algorithm

reads just nk · poly(log n/ε) entries of A and runs in

nkω−1 · poly(log n/ε) time (Theorem 9). With probability

99/100 it outputs a matrix B in factored form which satisfies

(1). We critically exploit the intuition that large entries

cannot ‘hide’ in PSD matrices, but surprisingly require

no additional assumptions on A, such as incoherence or

bounded condition number.

We complement our algorithm with an Ω(nk/ε) time

lower bound. The lower bound is information-theoretic,

showing that any algorithm which reads fewer than this

number of entries in the input cannot achieve the guarantee

of (1) with constant probability. As our algorithm only reads

nk · poly(log n/ε) entries of A, this is nearly optimal for

constant ε. We note that the actual time complexity of our

algorithm is slower by a factor of kω−2.

Finally, we show that our techniques can be extended to

compute B satisfying the spectral norm guarantee: ‖A −
B‖22 ≤ (1 + ε)‖A− Ak‖22 + ε

k‖A− Ak‖2F using just nk2 ·
poly(log n/ε) accesses to A and nkω · poly(log n/ε) time

(Theorem 18). This guarantee is often stronger than (1) when

‖A−Ak‖2F is large, and is important in many applications.

For example, we use this result to solve the ridge regression

problem minx∈Rn ‖Ax− y‖22+λ‖x‖22 up to (1+ ε) relative

error in Õ
(

nsωλ
ε2ω

)
time, where sλ = tr((A2 + λI)−1A2) is

the statistical dimension of the problem (see Theorem 19).

Typically sλ � n, so our runtime is sublinear and improves

1Many algorithms satisfy the additional constraint that the low-rank
approximation B is PSD. This is also known to be possible in O(nnz(A))
time using sketching-based algorithms for general matrices [43].

significantly on existing input-sparsity time results [44]. For

a summary of our results and comparison to prior work, see

Table 1 of our full paper.

C. Algorithm Overview

The starting point for our approach is the fundamental fact

that any matrix A contains a subset of O(k/ε) columns, call

them C, that span a relative-error rank-k approximation to

A [45]–[47]. Computing the best low-rank approximation to

A using an SVD requires access to all Θ(n2) dot products

between the columns of the matrix. However, given C, just

n·O(k/ε) dot products are needed – to project the remaining

columns of the matrix to the span of the subset.

Additionally, a subset of size poly(k/ε) can be identified

using an intuitive approach known as adaptive sampling
[46]: columns are iteratively added to the subset, with each

new column being sampled with probability proportional

to its norm outside the column span of the current subset.

Formally, column ai is selected with probability
‖ai−PCai‖22
‖A−PCA‖2F

where PC is the projection onto the current subset C. Com-

puting these sampling probabilities requires knowing the

norm of each ai along with its dot product with each column

currently in C. So, overall this approach gives a relative-

error low-rank approximation using just n · poly(k/ε) dot

products between columns of A.

The above observation is surprising – not only does every

matrix contain a small column subset witnessing a near

optimal low-rank approximation, but also, such a witness

can be found using significantly less information about the

column span of the matrix than is required by a full SVD.

This fact is not immediately algorithmically useful,

as computing the required dot products takes nnz(A) ·
poly(k/ε) time. However, given PSD A, we can write the

eigendecomposition A = UΛUT where Λ is a non-negative

diagonal matrix of eigenvalues, and let A1/2 = UΛ1/2UT

be the matrix square root of A. Since A1/2A1/2 = A, the

entry Ai,j is just the dot product between the ith and jth

columns of A1/2. So with A in hand, the dot products

have been ‘precomputed’ and the above approach yields

a low-rank approximation algorithm for A1/2 running in

just n · poly(k/ε) time. Note that, aligning with our initial

intuition that reading the diagonal entries of A is necessary

to avoid the nnz(A) time lower bound for general matrices,

the diagonal entries of A are the column norms of A1/2,

and hence their values are critical to computing the adaptive

sampling probabilities.

By the above argument, given PSD A, we can compute

in n · poly(k/ε) time a rank-k orthogonal projection matrix

P ∈ R
n×n (in factored form) for which ‖A1/2−A1/2P‖2F ≤

(1+ ε)‖A1/2−A
1/2
k ‖2F . This approach can be implemented

using adaptive sampling [46], sublinear time volume sam-

pling [48], or as shown in [42], recursive ridge leverage
score sampling. The ridge leverage scores are a natural inter-

polation between adaptive sampling and the widely studied
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leverage scores, which, as we will see, have a number of

additional algorithmically useful properties. As discussed in

[42], the guarantee for A1/2 is useful for a number of kernel

learning methods such as kernel ridge regression. However,

it is very different from our final goal. In fact, one can show

that projecting to P can yield an arbitrarily bad low-rank

approximation to A itself (see Appendix A in our full paper).

We note that, since P is constructed via column selection

methods, it is possible to efficiently compute a factorization

of A1/2PA1/2 (see Appendix A in our full paper). Further,

this matrix gives a near optimal low-rank approximation of

A if we use error ε′ = ε/
√
n. This gives a first sublinear

time algorithm, but it is significantly suboptimal. Namely, it

requires reading Õ(nk/ε′) = Õ(n3/2k/ε) entries of A and

takes n1.69 ·poly(k/ε) time using fast matrix multiplication.

To improve the dependence on n, we need a better under-

standing of how to perform ridge leverage score sampling on

A itself. We start by showing that the ridge leverage scores of

A1/2 are within a factor of O(
√

n/k) of the ridge leverage

scores of A. By this bound, if we over-sample columns

of A by a factor of O(
√

n/k) using the ridge leverage

scores of A1/2 (computable via [42]), obtaining a sample

of Õ(
√
n/k · k/ε2) columns, the sample will be a so-called

projection-cost preserving sketch (PCP) of A. The notion of

a PCP was introduced in [4]: C is an (ε, k)-column PCP of

A if for all rank-k projection matrices P ,

(1− ε)‖A− PA‖2F ≤‖C − PC‖2F
≤ (1 + ε)‖A− PA‖2F . (2)

One important property of a PCP is that good low-rank

approximations to C translate to good low-rank approxi-

mations of A. More precisely, if U is an n × k matrix

with orthonormal columns for which ‖C − UUTC‖2F ≤
(1+ε)‖C−Ck‖2F , then ‖A−UUTA‖2F ≤ (1+ε)2

(1−ε) ‖A−Ak‖2F .

Letting C be the n × Õ(
√
nk/ε2) submatrix which we

sample via ridge leverage scores, we can apply an nnz(C)
time algorithm to compute U ∈ R

n×k whose columns span

a near-optimal low-rank approximation of C, and hence of

A by the PCP property. Using standard sampling techniques,

we can approximately project the columns of A to U ,

producing our final solution. This gives time complexity

n3/2 ·poly(k/ε), slightly improving upon our first approach.

To reduce the time to linear in n, we must further reduce

the size of C by sampling a subset of its rows, which

themselves form a PCP. To find these rows, we cannot use

sketching techniques, which would take at least nnz(C)
time, nor can we use our previous method for providing

O(
√
n/k) overestimates to the ridge leverage scores, since

C is no longer PSD. In fact, the row ridge leverage scores

of C can be arbitrarily large compared to those of A1/2.

The key idea to getting around this issue is that, since C
is a column PCP of A, projecting its columns onto A’s top

eigenvectors gives a near optimal low-rank approximation.

Further, we can show that the ridge leverage scores of A1/2

(appropriately scaled) upper bound the standard leverage
scores of this low-rank approximation. Sampling by these

leverage scores is not enough to give a guarantee like (2)

– they ignore the entire component of C not falling in the

span of A’s top eigenvectors and so may significantly distort

projection costs over the matrix. Further, it is unclear how

to estimate the row norms of C, or even its Frobenius norm,

with n poly(k/ε) samples, which are necessary to implement

any kind of adaptive sampling approach.

Fortunately, using that row sampling at least preserves C
in expectation, along with a few other properties of the ridge

leverage scores of A1/2, we show that, with good probability,

sampling Õ(
√
nk/ poly(ε)) rows of C by these scores yields

R satisfying for all rank-k projection matrices P :

(1−ε)‖C−CP‖2F ≤ ‖R−RP‖2F +Δ ≤ (1+ε)‖C−CP‖2F
where Δ is a fixed value, independent of P , with |Δ| ≤
c‖C −Ck‖2F for some constant c. Since the same Δ distor-

tion applies to all P , and since it is at most a constant times

the true optimum, a near optimal low-rank approximation

for R still translates to a near optimal approximation for C.

At this point R is a small matrix, and we can run

any O(nnz(R)) time algorithm to find a good low-rank

factorization EFT to it, where FT is k×Õ(
√
nk/ poly(ε)).

Since R is a row PCP for C, by regressing the rows

of C to the span of F , we can obtain a near optimal

low-rank approximation to C. We can solve this multi-

response regression approximately in sublinear time via

standard sampling techniques. Approximately regressing A
to the span of this approximation using similar techniques

yields our final result. The total runtime is dominated by

the input-sparsity low-rank approximation of R requiring

O(nnz(R)) = Õ(nk/ poly(ε)) time.

To improve ε dependencies in our final runtime, achieving

sample complexity Õ
(

nk
ε2.5

)
, we modify this approach some-

what, showing that R actually satisfies a stronger spectral
norm PCP property for C. This property lets us find a low-

rank span Z with ‖C − CZZT ‖22 ≤ ε
k‖A − Ak‖2F , from

which, through a series of approximate regression steps,

we can extract a low-rank approximation to A satisfying

(1). This stronger spectral guarantee also lies at the core

of our extensions to near optimal spectral norm low-rank

approximation (Theorem 18), ridge regression (Theorem

19), and low-rank approximation where B is restricted to

be PSD (Theorem 10).

D. Some Further Intuition on Error Guarantees

Observe that in computing a low-rank approximation of

A, we read just Õ(n·poly(k/ε)) entries of the matrix, which

is, up to lower order terms, the same number of entries

(corresponding to column dot products of A1/2) that we

accessed to compute a low-rank approximation of A1/2 in

our description above. However, these sets of entries are
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very different. While low-rank approximation of A1/2 looks

at an n× poly(k/ε) sized submatrix of A together with the

diagonal entries, our algorithm considers a carefully chosen√
nk poly(log n/ε)×√nk poly(log n/ε) submatrix together

with the diagonal entries, which gives significantly more

information about the spectrum of A.

As a simple example, consider A with top eigenvalue

λ1 =
√
n, and λi = 1 for i = 2, ...n. ‖A1/2‖2F =∑n

i=1 λi =
√
n+n−1 while ‖A1/2−A

1/2
1 ‖2F =

∑n
i=2 λi =

n− 1. So, A1/2 has no good rank-1 approximation. Unless

we set ε = O(1/
√
n), a low-rank approximation algorithm

for A1/2 can learn nothing about λ1 and still be near

optimal. In contrast, ‖A‖2F =
∑n

i=1 λ
2
i = 2n − 1 and

‖A − A1‖2F =
∑n

i=2 λ
2
i = n − 1. So, even with ε = 1/2,

any rank-1 approximation algorithm for A must identify the

presence of λ1 and project this direction off the matrix. In

this sense, our algorithm is able to obtain a much more

accurate picture of A’s spectrum.

With incoherence assumptions, prior work on PSD low-

rank approximation [36] obtains the bound ‖A−B‖∗ ≤ (1+
ε)‖A−Ak‖∗ in sublinear time, where ‖M‖∗ =

∑n
i=1 σi(M)

is the nuclear norm of M . Recent work ( [48] in combination

with [34]) gives ‖A − B‖F ≤ (k + 1)‖A − Ak‖∗ without

the incoherence assumption. These nuclear norm bounds are

closely related to approximation bounds for A1/2 and it is

not hard to see that neither require λ1 to be detected in the

example above, and so in this sense are weaker than our

Frobenius norm bound.

A natural question if even stronger bounds are possible:

e.g., can we compute B with ‖A − B‖22 ≤ (1 + ε)‖A −
Ak‖22 in sublinear time? We partially answer this question

in Theorem 18. In Õ(nkω poly(log n/ε)) time, we can find

B satisfying ‖A−B‖22 ≤ (1+ε)‖A−Ak‖22+ ε
k‖A−Ak‖2F .

Significantly improving the above bound seems hard: it

is easy to see that a relative error spectral norm guarantee

requires Ω(n2) time. Consider A which is the identity except

with Ai,j = Aj,i = 1 for some random pair (i, j). Finding

(i, j) requires Ω(n2) queries to A. However, it is necessary

to achieve a relative error spectral norm guarantee with ε < 3
since ‖A‖22 = 4 while ‖A−A1‖22 = 1 where A1 is all zeros

with ones at its (i, i), (j, j), (i, j), and (j, i) entries.

A similar argument shows that relative error low-rank

approximation in higher Schatten-p norms, i.e., ‖A − B‖pp
for p > 2 requires superlinear dependence on n (where

‖M‖pp =
∑n

i=1 σ
p
i (M).) We can set A to be the identity but

with an all ones block on a uniform random subset of n1/p

indices. This block has associated eigenvalue λ1 = n1/p

and so, since all other (n − n1/p) eigenvalues of A are 1,

‖A‖pp = Θ(n), and the block must be recovered to give a

relative error approximation to ‖A−A1‖pp. However, as the

block is placed uniformly at random and contains just n2/p

entries, finding even a single entry requires n2−2/p queries

to A – superlinear for p > 2.

E. Open Questions

While it is apparent that obtaining stronger error guaran-

tees than (1) may require increased runtime, understanding

exactly what can be achieved in sublinear time is an in-

teresting direction for future work. We also note that it is

still unknown how to compute a number of basic properties

of PSD matrices in sublinear time. For example, while we

can output B satisfying ‖A − B‖2F ≤ (1 + ε)‖A − Ak‖2F ,

surprisingly it is not clear how to actually estimate the

value ‖A − Ak‖2F to within a (1 ± ε) factor. This can be

achieved in n3/2 poly(k/ε) time using our PCP techniques.

However, obtaining linear runtime in n is open. Estimating

‖A − Ak‖2F seems strongly connected to estimating other

important quantities such as the statistical dimension of A
for ridge regression (see Theorem 19) which we do not know

how to do in o(n3/2) time.

Finally, an open question is if these techniques can be

generalized to a broader class of matrices. As discussed,

in the matrix completion literature, much attention has

focused on incoherent low-rank matrices [23] which can

be approximated with uniform sampling. PSD matrices are

not incoherent in general, which is highlighted by the fact

that our sampling schemes are far from uniform and very

adaptive to previously seen matrix entries. However, perhaps

there is some other parameter (maybe relating to a measure

of diagonal dominance) which characterizes when low-rank

approximation can be performed with just a small number

of adaptive accesses to A.

F. Paper Outline

Section II: Ridge Leverage Score Sampling. We show that

the ridge leverage scores of A are within an O(
√

n/k) factor

of those of A1/2, letting us use the fast ridge leverage score

sampling algorithm of [42] to sample Õ(
√
nk/ε2) columns

of A that form a column PCP of the matrix.

Section III: Row Sampling. We discuss how to further

accelerate our algorithm by obtaining a row PCP for our

column sample, allowing us to achieve runtime linear in n.

Section IV: Full Algorithm. We use the primitives in

the previous sections along with approximate regression

techniques to give our full sublinear time low-rank approx-

imation algorithm.

Section V: Lower Bounds. We show that our algorithm is

nearly optimal – any relative error low-rank approximation

algorithm must read Ω(nk/ε) entries of A.

Section VI: Spectral Norm Bounds. We modify the algo-

rithm of Section IV to give a tighter approximation in the

spectral norm and discuss applications to ridge regression.

II. RIDGE LEVERAGE SCORE SAMPLING

Our main algorithmic tool will be ridge leverage score

sampling, which is used to identify a small subset of columns
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of A that span a good low-rank approximation of the matrix.

Following the definition of [49], the rank-k ridge leverage

scores of any matrix A are given by:

Definition 1 (Ridge Leverage Scores). For any A ∈ R
n×d,

letting ai ∈ R
n be the ith column of A, the ith rank-k

column ridge leverage score of A is:

τki (A) = aTi

(
AAT +

‖A−Ak‖2F
k

I

)+

ai.

Above I is the appropriately sized identity matrix and M+

denotes the matrix pseudoinverse, equivalent to the inverse

unless ‖A−Ak‖2F = 0 and A is singular. Analogous scores

can be defined for the rows of A by simply transposing the

matrix. It is not hard to see that 0 < τki (A) < 1 for all

i. Since we use these scores as sampling probabilities, it is

critical that the sum of scores, and hence the size of the

subsets we sample, is not too large. We have the following

(see Appendix B in full paper):

Lemma 2 (Sum of Ridge Leverage Scores). For any A ∈
R

n×d,
∑d

i=1 τ
k
i (A) ≤ 2k.

Intuitively, the ridge leverage scores are similar to

the standard leverage scores of A, which are given by

aTi (AAT )+ai. By writing A = UΣV T in its SVD, one

sees that standard leverage scores are just the squared

column norms of V T . Sampling columns by ridge leverage

scores yields a spectral approximation to the matrix. The

addition of the weighted identity (or ‘ridge’)
‖A−Ak‖2F

k I
‘dampens’ contributions from smaller singular directions of

A, decreasing the sum of the scores and allowing us to

sample fewer columns. At the same time, it introduces error

dependent on the size of the tail ‖A − Ak‖2F , ultimately

giving an approximation from which it is possible to output a

near optimal low-rank approximation to the original matrix.

Specifically, sampling by ridge leverage scores yields a

projection-cost preserving sketch (PCP) of A:

Lemma 3 (Theorem 6 of [49]). For any A ∈ R
n×d, for

i ∈ {1, . . . , d}, let τ̃ki ≥ τki (A) be an overestimate for the
ith rank-k ridge leverage score. Let pi =

τ̃k
i∑
i τ̃

k
i

and t =
c log(k/δ)

ε2

∑
i τ̃

k
i for any ε < 1 and sufficiently large constant

c. Construct C by sampling t columns of A, each set to
1√
tpi

ai with probability pi. With probability 1 − δ, for any
rank-k orthogonal projection P ∈ R

n×n,

(1− ε)‖A− PA‖2F ≤ ‖C − PC‖2F ≤ (1 + ε)‖A− PA‖2F .
We refer to C as an (ε, k)-column PCP of A.

Since the ‘cost’ ‖A−PA‖2F of any rank-k projection of A
is preserved by C, any near-optimal low-rank approximation

of C yields a near optimal low-rank approximation of A.

Further, C is much smaller than A, so such a low-rank

approximation can be computed quickly. The difficulty is

in computing the approximate leverage scores. To do this,

we use the main result from [42]:

Lemma 4 (Corollary of Theorem 20 of [42]). There is
an algorithm that given any PSD matrix A ∈ R

n×n, runs
in O(n(k log(k/δ))ω−1) time, accesses O(nk log(k/δ)) en-
tries of A, and returns for each i ∈ [1, .., n], τ̃ki (A

1/2) such
that with probability 1− δ, for all i:

τki (A
1/2) ≤ τ̃ki (A

1/2) ≤ 3τki (A
1/2).

Proof: Theorem 20 of [42] shows that by using a

recursive ridge leverage score sampling algorithm, it is

possible to return (with probability 1−δ) a sampling matrix

S ∈ R
n×s with s = O (k log(k/δ)) such that, letting

λ = 1
k‖A1/2 −A

1/2
k ‖2F :

1

2
(A+ λI) 	

(
A1/2SSTA1/2 + λI

)
	 3

2
(A+ λI)

where M 	 N indicates xTMx ≤ xTNx for all x. If

we set τ̃ki (A
1/2) = 2 ·xT

i

(
A1/2SSTA1/2 + λI

)+
xi, where

xi is the ith column of A1/2 we have the desired bound.

Of course, we cannot directly compute this value without

factoring A to form A1/2. However, as shown in Lemma 6

of [42]:

xT
i (A

1/2SSTA1/2 + λI)−1xi

=
1

λ

(
A−AS(STAS + λI)−1STA

)
i,i

.

Computing (STAS + λI)−1 requires accessing A
O(s2) = O((k log(k/δ))2) times and runtime O(sω) =
O((k log(k/δ))ω). Computing all n diagonal entries of

AS(STAS + λI)−1STA then requires O(nk log(k/δ)) ac-

cesses to A and O(n(k log(k/δ))ω−1) time. With these

entries in hand we can simply subtract from the diagonal

entries of A and rescale to give the final leverage score

approximation. Critically, this calculation always reads all
diagonal entries of A, allowing it to identify rows containing

large off diagonal entries and skirt the nnz(A) time lower

bound for general matrices.

Note that the stated runtime in [42] for outputting S is

Õ(nk) accesses to A (kernel evaluations in the language

of [42]) and Õ(nk2) runtime. However this runtime is

improved to Õ(nkω−1) using fast matrix multiplication.

In order to apply Lemmas 3 and 4 to low-rank approxi-

mation of A, we now show that the ridge leverage scores of

A1/2 coarsely approximate those of A:

Lemma 5 (Ridge Leverage Score Bound). For any PSD
matrix A ∈ R

n×n:

τki (A) ≤ 2

√
n

k
· τki (A1/2).

Proof: We write A1/2 in its eigendecomposition A1/2 =
UΛ1/2UT , where Λi,i = λi is the ith eigenvalue of A.
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Letting xi denote the ith column of A1/2 we have:

τki (A
1/2) = xT

i

(
A+

‖A1/2 −A
1/2
k ‖2F

k
I

)−1

xi

= xT
i U Λ̄UTxi

where Λ̄i,i
def
= 1

λi+
1
k

∑n
j=k+1 λj

. We can similarly write:

τki (A) = aTi

(
A2 +

‖A−Ak‖2F
k

I

)−1

ai

= xT
i A

1/2

(
A2 +

‖A−Ak‖2F
k

I

)−1

A1/2xi

= xT
i U Λ̂UTxi

where Λ̂i,i
def
= λi

λ2
i+

1
k

∑n
j=k+1 λ2

j

. Showing Λ̂ 	 2
√

n
k · Λ̄ is

enough to give the lemma. Specifically we must show, for

all i, Λ̂i,i ≤ 2
√

n
k · Λ̄i,i which after cross-multiplying is

equivalent to:

λ2
i +

1

k
λi

n∑
j=k+1

λj ≤ 2

√
n

k

⎛
⎝λ2

i +
1

k

n∑
j=k+1

λ2
j

⎞
⎠ . (3)

First consider the relatively large eigenvalues. Say we have
1
k

∑n
j=k+1 λj ≤

√
n
kλi. Then:

λ2
i +

1

k
λi

n∑
j=k+1

λj ≤
(
1 +

√
n/k

)
λ2
i

which gives (3). Next consider small eigenvalues with
1
k

∑n
j=k+1 λj ≥

√
n
kλi. In this case:

λ2
i +

1

k
λi

n∑
j=k+1

λj ≤ λ2
i +

1√
n · k3/2

⎛
⎝ n∑

j=k+1

λj

⎞
⎠

2

≤ λ2
i +

1√
n · k3/2 · n

n∑
j=k+1

λ2
j

(Norm bound: ‖ · ‖21 ≤ n‖ · ‖22)

≤
√

n

k

⎛
⎝λ2

i +
1

k

n∑
j=k+1

λ2
j

⎞
⎠

which gives (3), completing the proof.

Combining Lemmas 2, 3, 4, 5 we have:

Corollary 6 (Fast PSD Ridge Leverage Score Sampling).
There is an algorithm that given any PSD matrix A ∈ R

n×n

runs in Õ(nkω−1) time, accesses Õ(nk) entries of A, and
with prob. 1 − δ outputs a weighted sampling matrix S1 ∈
R

n×Õ
(√

nk
ε2

)
such that AS1 is an (ε,k)-column PCP of A.

Proof: By Lemma 4 we can compute constant factor

approximations to the ridge leverage scores of A1/2 in time

Õ(nkω−1). Applying Lemma 5, if we scale these scores

up by 2
√
n/k they will be overestimates of the ridge

leverage scores of A. If we set t = O
(

log(k/δ)
ε2 ·∑ τ̃ki

)
,

and generate S1 by sampling t columns of A with prob-

abilities proportional to these estimated scores, by Lemma

3, AS1 will be an (ε, k)-column PCP of A with probability

1 − δ. By Lemma 2,
∑n

i=1 τ
k
i (A

1/2) ≤ 2k. So we have

t = Õ(
∑

τ̃ki /ε
2) = Õ(

√
nk/ε2).

Forming AS1 requires reading just Õ(n3/2
√
k/ε2) entries

of A. At this point, we could employ any input sparsity

time algorithm to find a near optimal rank-k projection P
for approximating AS1 in O(nnz(AS1)) + n poly(k/ε) =
n3/2·poly(k/ε) time. This would in turn yield a near optimal

low-rank approximation of A. However, as we will see in

the next section, by further sampling the rows of AS1, we

can significantly improve this runtime.

III. ROW SAMPLING

To achieve near linear dependence on n, we sample

roughly
√
nk rows from AS1, producing an even smaller

matrix ST
2 AS1, which we can fully read and from which we

can form a near optimal low-rank approximation to AS1 and

consequently to A. However, sampling AS1 is challenging:

we cannot employ input sparsity time methods as we cannot

afford to read the full matrix, and since it is no longer

PSD, we cannot apply the same approach we used for A,

approximating the ridge leverage scores with those of A1/2.

Rewriting Definition 1 using the SVD AS1 = UΣV T

(and transposing AS1 to give row instead of column scores)

we see that the row ridge leverage scores of AS1 are the

diagonal entries of:

AS1

(
ST
1 A

TAS1 +
‖AS1 − (AS1)k‖2F

k
I

)+

ST
1 A

T = U Σ̄UT

where Σ̄i,i =
Σ2

i,i

Σ2
i,i+

‖AS1−(AS1)k‖2F
k

. That is, the row ridge

leverage scores depend only on the column span U of AS1

and its spectrum. Since AS1 is a column PCP of A this gives

hope that the two matrices have similar leverage scores.

Unfortunately, this is not the case. It is possible to have

rows in AS1 with ridge leverage scores significantly higher

than in A. Thus, even if we knew the ridge leverage scores

of A, we would have to scale them up significantly to

sample from AS1. As an example, consider A with relatively

uniform ridge leverage scores: τi(A) ≈ k/n for all i. When

a column is selected to be included in AS1 it will be

reweighted by roughly a factor of
√
n/k. Now, append a

number of rows to A each with very small norm and just

a containing single non-zero entry. These rows will have

little effect on the ridge leverage scores if their norms are

small enough. However, if the column corresponding to the

nonzero in a row is selected, the row will appear in AS1 with√
n/k times the weight that it appears in A, and its ridge

leverage score will be roughly a factor n/k times higher.

Fortunately, we are still able to show that sampling the

rows of AS1 by the rank k′ = O(k/ε) leverage scores of
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A1/2 scaled up by a
√

n/k′ factor yields a row PCP for this

matrix. Our proof works not with the ridge scores of AS1 but

with the standard leverage scores of a near optimal low-rank

approximation to this matrix – specifically the approximation

given by projecting onto the top eigenvectors of A. We have:

Lemma 7 (Row PCP). For any PSD A ∈ R
n×n and

ε ≤ 1 let k′ = 
ck/ε� and let τ̃k
′

i (A1/2) ≥ τk
′

i (A1/2)
be an overestimate for the ith rank-k′ ridge leverage score
of A1/2. Let �̃i =

√
16nε
k · τ̃k′i (A1/2), pi = �̃i∑

i �̃i
, and

t = c′ logn
ε2

∑
i �̃i. Construct weighted sampling matrices

S1, S2 ∈ R
n×t each whose jth column is set to 1√

tpi
ei

with probability pi. For sufficiently large constants c, c′,
with probability 99

100 , letting Ã = ST
2 AS1, for any rank-k

orthogonal projection P ∈ R
t×t:

(1− ε)‖AS1(I − P )‖2F ≤ ‖Ã(I − P )‖2F +Δ

≤ (1 + ε)‖AS1(I − P )‖2F
for some fixed Δ (independent of P ) with |Δ| ≤ 600‖A −
Ak‖2F . We refer to Ã as an (ε, k)-row PCP of AS1.

Note that by Lemma 2,
∑

i τ
k′
i (A1/2) = O(k/ε). So if

τ̃k
′

i (A1/2) is a constant factor approximation to τk
′

i (A1/2),

t = O
(√

nk logn
ε2.5

)
. Also note that the Lemma requires both

S1 and S2 to be sampled using the rank k′ ridge scores. If

we sample S1 using a sum of the rank-k and rank-k′ ridge

scores (appropriately scaled) Lemma 7 and Lemma 3 will

hold simultaneously.
By applying an input sparsity time low-rank approxima-

tion algorithm to Ã (which has just Õ
(
nk
ε5

)
entries) we

can find a near optimal low-rank approximation of AS1,

and thus for A. However, in our final algorithm, we will

take a somewhat different approach. We are able to show

that using appropriate sampling probabilities, we can in fact

sample Ã which is a projection-cost preserving sketch of

AS1 for spectral norm error. As we will see, recovering a

near optimal spectral norm low-rank approximation to AS1

suffices to find a near optimal Frobenius norm approximation

to A, and lets us improve ε dependencies in our final runtime.

Lemma 8 (Spectral Norm Row PCP). For any PSD A ∈
R

n×n, and ε < 1 let k′ = 
ck/ε2� and τ̃k
′

i (A1/2) ≥
τk
′

i (A1/2) be an overestimate for the ith rank-k′ ridge
leverage score of A1/2. Let �̃i = 4ε

√
n
k τ

k′
i (A1/2), pi =

�̃i∑
i �̃i

, and t = c′ logn
ε2 ·∑i �̃i. Construct weighted sampling

matrices S1, S2 ∈ R
n×t, each whose jth column is set to

1√
tpi

ei with probability pi. For sufficiently large constants
c, c′, with high probability (i.e. probability ≥ 1 − 1/nd

for some large constant d), letting Ã = ST
2 AS1, for any

orthogonal projection P ∈ R
t×t:

(1− ε)‖AS1(I − P )‖22 −
ε

k
‖A−Ak‖2F ≤ ‖Ã(I − P )‖22

≤ (1 + ε)‖AS1(I − P )‖22 +
ε

k
‖A−Ak‖2F .

We refer to Ã as an (ε, k)-spectral PCP of AS1.

Note that if τ̃k
′

i (A1/2) is a constant factor approximation

to τk
′

i (A1/2), t = O
(√

nk logn
ε3

)
. The proofs of Lemmas 7

and 8 are given in Appendix B of the our full paper.

IV. FULL LOW-RANK APPROXIMATION ALGORITHM

We are finally ready to give our main algorithm for

relative error low-rank approximation of PSD matrices in

Õ(n poly(k/ε)) time, Algorithm 1. We set k1
def
= 
ck/ε� and

estimate the both the rank-k and rank-c′k1 ridge leverage

scores of A1/2 using the algorithm of [42] (Step 1). If c, c′

are sufficiently large, sampling by the sum of these scores

(Steps 2-3) ensures that AS1 is an (ε, k)-column PCP for

A and simultaneously, by applying Lemmas 7 and 8 that

Ã = ST
2 AS1 is a row PCP in both spectral and Frobenius

norm with rank k1 and error ε = 1/2 for AS1

In conjunction, these guarantees ensure that we can apply

an input sparsity time algorithm to Ã (Step 4) to find a rank-

k1 Z satisfying ‖AS1−AZZT ‖22 = O(‖AS1−(AS1)k1‖22+
1
k1
‖A−Ak‖2F ) = O

(
ε
k‖A−Ak‖2F

)
, where the final bound

holds since k1 = Θ(k/ε). Due to this strong spectral norm

bound, projecting AS1 to Z and taking the best rank-k
approximation in the span gives a near optimal Frobenius

norm low-rank approximation to AS1 and hence A.

We can still not afford to read AS1 in its entirety, so

we employ a number of standard leverage score sampling

techniques to perform this projection approximately. In Step

5, we sample Õ(k/ε2) columns of AS1 using the leverage

scores of Z (its row norms since it is an orthonormal matrix)

to form AS1S3. We argue that there is a good rank-k
approximation to AS1 lying in both the column span of

AS1S3 and the row span of ZT . In Step 6 we find a near

optimal such approximation by further sampling Õ(k/ε4)
rows AS1 by the leverage scores of AS1S3 (the row norms

of V , an orthonormal basis for its span), and computing the

best rank-k approximation to the sampled matrix falling in

the column span of AS1S3 and the row span of ZT .

Finally, in Step 7 we approximately project A to the span

of this rank-k approximation by first sampling by its leverage

scores (the row norms of Q) and projecting.

Algorithm 1: PSD Low-Rank Approximation
1) Let k1 = �ck/ε�. For all i ∈ [1, .., n] compute τ̃k

i (A
1/2)

and τ̃ c′k1
i (A1/2) which are constant factor approximations

to the ridge leverage scores τk
i (A

1/2) and τ c′k1
i (A1/2)

respectively.

2) Set �
(1)
i =

√
n
k
τ̃k
i (A

1/2) +
√

nε4

k1
τ̃ c′k1
i (A1/2) and �

(2)
i =

√
n
k1

τ̃ c′k1
i (A1/2). Set p

(1)
i =

�
(1)
i∑
i �

(1)
i

and p
(2)
i =

�
(2)
i∑
i �

(2)
i

.

3) Set t1 = c1 logn
ε2

∑
i �

(1)
i and t2 = c2 log n

∑
i �

(2)
i . Sample

S1 ∈ R
n×t1 whose jth column is set to 1√

tp
(1)
i

ei with

probability p
(1)
i . Sample S2 ∈ R

n×t2 analogously with p
(2)
i .
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4) Let Ã = ST
2 AS1, and use an input sparsity time algorithm

to compute orthonormal Z ∈ R
t1×k1 satisfying the spectral

guarantee ‖Ã−ÃZZT ‖22 ≤ 2‖Ã−Ãk1‖22+ 2
k1
‖Ã−Ãk1‖2F .

5) Let t3 = c3
(

k log(k/ε)
ε

+ k
ε2

)
, set p

(3)
i =

‖zi‖22
‖Z‖2

F
, and sample

S3 ∈ R
t1×t3 where the jth column is set to 1√

t3p
(3)
i

ei

with probability p
(3)
i . Compute V ∈ R

n×t3 which is an
orthogonal basis for the column span of AS1S3.

6) Let p
(4)
i =

‖vi‖22
‖V ‖2

F
and t4 = c4

(
t3 log t3

ε2

)
. Sample S4 ∈

R
n×t4 where the jth column is set to 1√

t4p
(4)
i

ei with

probability p
(4)
i . Compute W ∈ R

t3×t1 satisfying:

W = argmin
W | rank(W )=k

‖ST
4 AS1S3WZT − ST

4 AS1‖2F .

7) Compute an orthogonal basis Q ∈ R
n×k for the column span

of AS1S3W . Let t5 = c5
(
k log k + k

ε

)
, set p

(5)
i =

‖qi‖22
‖Q‖2

F
,

where qi is the ith row of Q. Sample S5 ∈ R
n×t5 where the

jth column is set of 1√
t5p

(5)
i

ei with probability p
(5)
i . Solve:

N = argmin
N∈Rn×k

‖ST
5 QNT − ST

5 A‖2F .

8) Return Q,N ∈ R
n×k.

A proof of correctness for Algorithm 1 is contained in

our full paper, yielding:

Theorem 9 (Sublinear Time Low-Rank Approximation).
Given any PSD A ∈ R

n×n, for sufficiently large constants
c, c′, c1, c2, c3, c4, c5, for any ε < 1, Algorithm 1 accesses
O(n·k log2 n

ε2.5 +
√
nk1.5 · log2 n · poly(1/ε)) entries of A,

runs in Õ
(

nkω−1

ε2(ω−1) +
√
nkω−.5 · poly(1/ε)

)
time, and with

probability at least 9/10 outputs M,N ∈ R
n×k with:

‖A−MNT ‖2F ≤ (1 + ε)‖A−Ak‖2F .
In many applications it is desirable that the low-rank

approximation to A is also symmetric and positive semidef-

inite. We show in Appendix C of the full paper that a

modification to Algorithm 1 can satisfy this constraint also

in Õ(n poly(k/ε)) time. The upshot is:

Theorem 10 (Sublinear Time Low-Rank Approximation –

PSD Output). There is an algorithm that given any PSD
A ∈ R

n×n, accesses Õ
(

nk2

ε2 + nk
ε3

)
entries of A, runs in

Õ
(

nkω

εω + nkω−1

ε3(ω−1)

)
time and with probability at least 9/10

outputs M ∈ R
n×k with:

‖A−MMT ‖2F ≤ (1 + ε)‖A−Ak‖2F .
V. QUERY LOWER BOUND

We now present our lower bound on the number of

accesses to A required to compute a near optimal low-rank

approximation, matching the query complexity of Algorithm

IV up to a Õ(1/ε1.5) factor.

Theorem 11. Assume that k, ε are such that nk/ε = o(n2).
Any algorithm that given PSD A ∈ R

n×n outputs a (1+ ε)-
approximate rank-k approximation to A (in the Frobenius
norm) with probability at least 2/3 must read at least
Ω(nk/ε) positions of A in expectation.

The idea behind Theorem 11 is to draw A from a distri-

bution over binary matrices. A has all 1’s on its diagonal,

along with k randomly positioned (non-consecutive) blocks

of all 1’s, each of size
√

2εn/k×√
2εn/k. In other words,

A is the adjacency matrix (plus identity) of a graph with k
cliques of size

√
2εn/k, placed on random subsets of the

vertices, with all other vertices isolated.

It is easy to see that A is PSD since applying a permu-

tation yields a block diagonal matrix, each of whose blocks

is a PSD matrix (either a single 1 entry or a rank-1 all

1’s block). The optimal rank-k approximation to A projects

off each of the k blocks, achieving Frobenius norm error

‖A − Ak‖2F = n − k
√

2εn/k ≈ n. In order to match this

up to a 1+ ε factor, any near optimal rank-k approximation

must at least capture a constant fraction of the Frobenius

norm mass in the blocks since this mass is k ·2εn/k = 2εn.

Doing so requires identifying at least a constant fraction

of the blocks. However, since block positions are chosen

uniformly at random, and since the diagonal entries of A are

identical and so convey no information about the positions,

to identify a single block, any algorithm essentially must

read arbitrary off diagonal entries until it finds a 1. There

are ≈ n2 off diagonal entries with just 2εn of them 1’s, so

identifying a first block requires Ω(n/ε) queries to A. Since

the vast majority of vertices are isolated and not contained

within a block, finding this first block does little to make

finding future blocks easier. So overall, the algorithm must

make Ω(nk/ε) queries to find a constant fraction of the k
blocks and output a near optimal low-rank approximation.

While the above intuition is the key idea behind the lower

bound, a rigorous proof requires a number of additional steps

and modifications, detailed in the remainder of this section.

A. Primitive Lower bound

We first prove a lower bound of Ω(n/ε) accesses to A
for a restricted class of algorithms, and then strengthen this

to Ω(nk/ε) for any k for every algorithm, via a reduction.

Our stronger lower bound for every algorithm will use our

lower bound for the restricted class of algorithms as a black

box. We call our lower bound for restricted algorithms our

primitive lower bound.

For our Ω(n/ε) primitive lower bound, we assume that

n/ε = o(n2), as otherwise the bound becomes Ω(n2) which

is best possible. For our strengthened Ω(nk/ε) lower bound

for every algorithm, we assume that nk/ε = o(n2), as

otherwise again the bound becomes Ω(n2).
Consider a distribution μ on n × n binary PSD matrices

A. We choose a uniformly random subset S of [n] where
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|S| = √
64εn, where we assume, w.l.o.g., that |S| is an

integer. We generate A by setting for each i �= j ∈ S,

Ai,j = 1. We then set Ai,i = 1 for all i and set all remaining

entries of A to equal 0. It is clear that A is PSD – after a

permutation is composed of an |S| × |S| all ones block and

an (n−|S|)×(n−|S|) identity. Let ν be the distribution on

n×n PSD matrices A which only has support on the identity

matrix I . Let γ = μ/2 + ν/2. Note that we associate a

random subset S with the sampling of a matrix A according

to γ (as well as to μ); in case A is drawn from ν this set S
is not used in the construction of A.

Definition 12. A matrix A′ is said to be ε-primitive for an A
in the support of γ if the squared Frobenius norm of A−A′,
restricted to entries in ([n] \ S)2, is at least n − |S| − 8.
Furthermore, ‖A−A′‖2F ≤ (1+ε)n. Note that A′ is allowed
to have any rank.

Lemma 13. If A′ is ε-primitive for an A in the support of
μ, then A′ is not ε-primitive for I .

Proof: Using |S| ≥ 2, which follows from assuming

that n/ε = o(n2), each matrix A in the support of μ has

|S|2 − |S| ≥ |S|2
2 = 32εn off-diagonal entries which are 1

on rows and columns indexed by S. The submatrix of A
indexed by rows and columns in [n] \ S is the identity It,
where t = n − |S| = n − √64εn. By definition, any ε-
primitive matrix A′ for A has squared Frobenius norm error

at least t − 8 on these coordinates. It follows that A′ must

have value at least 1/2 on at least 16εn of the off-diagonal

entries on rows and columns indexed by S. Otherwise, since

there are at least 32εn off-diagonal entries which are 1 on

rows and columns indexed by S, we would have

‖A−A′‖2F > n−
√
64εn− 8 +

1

4
· 16εn > n+ εn,

contradicting that A′ is ε-primitive for A. Here we used that

3εn ≥ 8 +
√
64εn. Note that since n/ε = o(n2), we have

εn = ω(1), so this inequality is valid.

If also A′ were ε-primitive for I , then ‖A′ − I‖2F ≤
(1 + ε)n. The previous paragraph implies on the rows and

columns indexed by S, the squared Frobenius norm of

the difference between A′ and I is at least 4εn. On the

remaining coordinates, by definition, the squared Frobenius

norm of the difference between A′ and I must be at least

n −√64εn − 8 > n − 3εn. Hence ‖A′ − I‖2F > (1 + ε)n,

a contradiction.

Recall for distributions α and β supported on ele-

ments s of a finite set S, that the total variation distance

DTV (α, β) =
∑

s∈S |α(s) − β(s)|, where α(s) is the

probability of s in distribution α.

Corollary 14. Suppose there is an algorithm which, with
probability at least 2/3, over its random coin tosses and
random A drawn from γ, outputs an ε-primitive matrix for
A. Further, suppose the algorithm reads at most r positions

of A, possibly adaptively. Let S be a random variable
indicating the list of positions read and their corresponding
values. Let L(μ) denote the distribution of S when A ∼ μ,
and let L(ν) denote the distribution of S when A ∼ ν. Then

DTV (L(μ), L(ν)) ≥ 1/3.

Proof: By Lemma 13, if the algorithm succeeds then

its output can be used to decide if A ∼ μ or if A ∼ ν.

The success probability of any such algorithm is well-known

(see, e.g., Proposition 2.58 of [50]) to be at most 1/2 +
DTV (L(μ), L(ν))/2. Making this quantity at least 2/3 and

solving for DTV (L(μ), L(ν)) proves the corollary.

We now state the main theorem of this subsection, which

we strengthen in the next subsection.

Theorem 15. Suppose there is an algorithm which, with
probability at least 2/3, over its random coin tosses and
random A drawn from γ, outputs an ε-primitive matrix for
A. Further, suppose the algorithm reads at most r positions
of A, possibly adaptively. Then r = Ω(n/ε).

Proof: By Corollary 14, and using the notation in

that corollary, it suffices to show for r = o(n/ε), that

DTV (L(μ), L(ν)) < 1/3.

By Yao’s minimax principle ( [51], Theorem 3), we can

assume the algorithm is deterministic, since if there is a

randomized algorithm with the guarantees of the theorem,

then by averaging there is also a deterministic one for some

fixing of its random coin tosses. We can also assume the

algorithm does not read the diagonal entries of A, since they

are equal to 1 in all matrices in the support of both μ and ν. It

follows that given that the algorithm reads a prefix of r zeros,

then it always reads the same sequence (i1, j1), . . . , (ir, jr)
of entries of A. Note that for A ∼ ν, all off-diagonal

entries are 0 and so L(ν)((i1, j1, 0), . . . , (ir, jr, 0)) =
1. To show the claim then, it suffices to show

that L(μ)((i1, j1, 0), . . . , (ir, jr, 0)) ≥ 2/3, as then

DTV (L(μ), L(ν)) < 1/3. This is equivalent to showing

that with probability at least 2/3, over A ∼ μ, that

Ai1,j1 = Ai2,j2 = · · · = Air,jr = 0. For any � ∈ [r],

Pr[Ai�,j� = 0] =
(|S|2 − |S|)

n2 − n
≤ 128ε

n
,

assuming n ≥ 2. By a union bound, for r = o(n/ε), we

thus have with probability 1 − o(1), for A ∼ μ, Ai1,j1 =
Ai2,j2 = · · · = Air,jr = 0. This completes the proof.

B. Lower Bound for General Algorithms

In this subsection we remove the requirement that the

low-rank approximation needs to be primitive, and simul-

taneously improve our lower bound to Ω(nk/ε) whenever

nk/ε = o(n2). We will use our lower bound for primitive

low-rank approximation as a black box.

W.l.o.g. assume n is divisible by k and partition n into

k blocks. On the i-th block, i = 1, . . . , k, we independently
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draw a random n/k×n/k PSD matrix Ai from γ, where n
is replaced by n/k. Let Si be a random subset of

√
64εn/k

indices in that block. Let γb be the distribution over n× n
block matrices whose ith block is Ai drawn as described.

Let ε′ = ε/10. Consider an algorithm which outputs a

(1+ε′) rank-k approximation B to A ∼ γb, with probability

at least 2/3 over the random choice of A and the random

coins of the algorithm. Again by Yao’s minimax principle

we can assume that the algorithm is deterministic. Towards

a contradiction, we also assume that the algorithm always

reads o(kn/ε′) = o(kn/ε) entries of any input matrix. By

construction, for any A ∼ γb there is a rank-k approximation

of cost at most n; indeed this follows by choosing the best

rank-1 solution for each block. Consequently if the algorithm

succeeds, then the output B satisfies ‖B −A‖2F ≤ n+ ε′n.

Let Bi be the restriction of B to coordinates in the i-th
block. The restriction of A to coordinates outside of ∪iS

i is

an identity matrix and so the squared Frobenius norm cost

of any rank-k approximation restricted to these coordinates

is at least n − k. Let ci be the squared Frobenius norm

cost of Bi for Ai restricted to the coordinates in Si. Note

that ci is a random variable. Then, n − k +
∑k

i=1 ci ≤∑k
i=1 ‖Bi − Ai‖2F ≤ ‖B − A‖2F ≤ n + ε′n, and so by

averaging for at least a 7/8 fraction of the blocks i, ci ≤
8 + 8ε′n/k ≤ 9ε′n/k, assuming ε′n/k ≥ 8, which holds

if εn/k = ω(1), which follows from our assumption that

nk/ε = o(n2).
Let bi be the squared Frobenius norm cost of Bi for Ai

restricted to coordinates outside Si. Here bi is a random

variable and
∑

i bi ≥ n−k. By averaging, for at least a 7/8
fraction of the i, bi ≥ n/k − 8.

It follows by a union bound that for a uniformly random

chosen block i, with probability at least 3/4 over A ∼ γb,

we have ci ≤ 9ε′n/k and bi ≥ n/k− 8. We also have for a

uniformly random block i, that with probability 1 − o(1)
over A ∼ γb, the number of entries read in the block

is o(n/ε′) = o(n/ε). The latter follows by a Markov

bound given that the total number of entries is o(nk/ε′)
by assumption. By a union bound, there exists a block i∗

for which with probability at least 3/4 − o(1) > 2/3 over

A ∼ γb, we have (1) ci∗ ≤ 9ε′n/k and bi∗ ≥ n/k − 8, and

(2) the algorithm reads o(n/ε) entries of the block.

It follows that with probability at least 2/3, the output

Bi∗ satisfies ‖Bi∗ −Ai∗‖2F ≤ 9ε′n/k+ n/k ≤ (1 + ε)n/k,

and bi∗ ≥ n/k − 8, and so Bi∗ is ε-primitive for Ai∗ .

To obtain a contradiction to Theorem 15, we perform

the following simulation. Given an n/k × n/k PSD matrix

Ã ∼ γ, we create an n× n PSD block matrix A by setting

Ai∗ = Ã and by independently sampling Aj for all j �= i∗

according to γ. We then run the above algorithm and output

Bi∗ . For each entry of Aj the above algorithm reads for

some j �= i∗, we can input that entry to the algorithm

without reading any entry of Ã. If the algorithm reads an

entry of Ai∗ then we read the corresponding entry of Ã. If

the algorithm ever reads more than o(n/ε) entries of Ã, then

we abort. By the above, with probability at least 2/3, Bi∗

is ε-primitive for Ã. Finally, to contradict Theorem 15 we

need to ensure that (n/k)/ε = o((n/k)2), which is implied

by our assumption that nk/ε = o(n2).
Thus we have contradicted Theorem 15, and our main

lower bound theorem follows by rescaling ε by a constant:

Theorem 16. Let nk/ε = o(n2). Suppose there is an
algorithm which, with probability at least 2/3, over its
random coin tosses and random A drawn from γb, outputs
a (1 + ε)-approximate rank-k approximation to A. Further,
suppose the algorithm reads at most r positions of A,
possibly adaptively. Then r = Ω(nk/ε).

Theorem 11 follows immediately from the above.

VI. SPECTRAL NORM ERROR BOUNDS

We conclude by discussing how to modify Algorithm 1 to

output low-rank B achieving the spectral norm guarantee:

‖A−B‖22 ≤ (1 + ε)‖A−Ak‖22 +
ε

k
‖A−Ak‖2F . (4)

This can be significantly stronger than the Frobenius guar-

antee (1) when ‖A − Ak‖2F is large, and e.g., is critical in

our application to sublinear time ridge regression.

Since additive error in the Frobenius norm upper bounds

additive error in the spectral norm (see e.g. Theorem 3.4

of [52]), for B satisfying the Frobenius norm guarantee

‖A−B‖2F ≤ (1 + ε)‖A−Ak‖2F , we immediately have the

spectral bound ‖A − B‖22 ≤ ‖A − Ak‖22 + ε‖A − Ak‖2F .

Thus, we can achieve 4 simply by running Algorithm 1

with error parameter ε/k. However, this approach is subop-

timal. Applying Theorem 9, our query complexity would be

Θ
(

nk3.5 log2 n
ε2.5

)
. We improve this k dependence significantly

in Algorithm 2. Since (4) is often applied with k′ = k/ε and

ε = Θ(1) to give ‖A−B‖22 ≤ O
(
ε
k‖A−Ak‖2F

)
, optimizing

k dependence is especially important.

We first give an extension of Lemma 3 to the spectral

norm case. This lemma provides the column sampling

analog to Lemma 8. It is proven in our full paper.

Lemma 17 (Spectral Norm PCP). For any A ∈ R
n×d, for

i ∈ {1, . . . , d}, let τ̃ki ≥ τki (A) be an overestimate for the
ith rank-k ridge leverage score. Let pi =

τ̃k
i∑
i τ̃

k
i

and t =
c log(k/δ)

ε2

∑
i τ̃

k
i for any ε < 1 and sufficiently large constant

c. Construct C by sampling t columns of A, each set to
1√
tpi

ai with probability pi. With probability 1 − δ, for any
orthogonal projection P ∈ R

n×n: (1−ε)‖A−PA‖22− ε
k‖A−

Ak‖2F ≤ ‖C−PC‖22 ≤ (1+ ε)‖A−PA‖22+ ε
k‖A−Ak‖2F .

We refer to C as an (ε, k)-spectral PCP of A.

A. Spectral Norm Low-Rank Approximation Algorithm

We now apply Lemmas 8 and 17 to give our spectral norm

low-rank approximation algorithm, Algorithm 2.
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In Steps 1-3 we sample both rows and columns of A via

the rank Θ(k/ε) ridge leverage scores of A1/2, ensuring

with high probability that AS1 is an (ε, k)-spectral PCP of

A and Ã is in turn an (ε, k)-spectral row PCP of AS1. Thus,

if we compute (in input sparsity time) a span Z which gives

a near optimal spectral norm low-rank approximation to Ã
(Step 3), this span will also be nearly optimal for AS1.

We approximately project AS1 to Z by further sampling

its columns using Z’s leverage scores (Step 4). We use

leverage score sampling again in Step 5 to approximately

project A to the span of the result. This yields our final

approximation, using that AS1 is a spectral PCP for A.

Algorithm 2: Low-Rank Approximation, Spectral
1) Let k1 = �ck/ε2�. For all i ∈ [1, .., n] compute τ̃k1

i (A1/2)
which is a constant factor approximation to τk1

i (A1/2).

2) Set �
(1)
i = 4ε

√
n
k
τ̃k1
i (A1/2). Set p

(1)
i =

�
(1)
i∑
i �

(1)
i

and t1 =

c1 logn
ε2

∑
i �

(1)
i . Sample S1, S2 ∈ R

n×t1 each whose jth

column is set to 1√
tp

(1)
i

ei with probability p
(1)
i .

3) Let Ã = ST
2 AS1, and use an input sparsity time algorithm

to compute orthonormal Z ∈ R
t1×k satisfying both ‖Ã −

ÃZZT ‖2F ≤ 2‖Ã − Ãk‖2F along with ‖Ã − ÃZZT ‖22 ≤
(1 + ε)‖Ã− Ãk‖22 + ε

k
‖Ã− Ãk‖2F .

4) Let t3 = c3
(
k log k + k2

ε

)
, set p

(3)
i =

‖zi‖22
‖Z‖2

F
, and sample

S3 ∈ R
t1×t3 whose jth column is set to ei√

t3p
(3)
i

with prob-

ability p
(3)
i . Solve M = argmin ‖AS1S3 −MZTS3‖2F .

5) Compute a basis Q ∈ R
n×k for the column span of M .

Let t4 = c4
(
k log k + k2

ε

)
, set p

(4)
i =

‖qi‖22
‖Q‖2

F
and sample

S4 ∈ R
n×t4 where the jth column is set to 1√

t4p
(4)
i

ei with

probability p
(4)
i . Solve N = argmin ‖ST

4 QNT − ST
4 A‖2F .

6) Return Q,N ∈ R
n×k.

In our full paper we formally analyze Algorithm 2, giving:

Theorem 18 (Sublinear Time Low-Rank Approximation

–Spectral Norm Error). Given any PSD A ∈ R
n×n,

for sufficiently large constants c, c1, c2, c3, c4, Algorithm
2 accesses O(n·k log2 n

ε6 + nk2

ε ) entries of A, runs in
Õ

(
nkω

ε + nk
ε6 + (

√
nkω−1 + kω+1) · poly(1/ε)) time and

with probability at least 9/10 outputs M,N ∈ R
n×k with

‖A−MNT ‖22 ≤ (1 + ε)‖A−Ak‖22 + ε
k‖A−Ak‖2F .

Theorem 18 can be leveraged to give a sublinear time,

relative error algorithm for approximately solving the ridge

regression problem minx∈Rn ‖Ax − y‖22 + λ‖x‖22 for PSD

A. In our full paper we show that for sufficiently large k,

any O(1) optimal rank-k approximation to A can be used to

solve ridge regression to relative error. This approximation

can be computed in sublinear time via Algorithm 2 yielding:

Theorem 19 (Sublinear Time Ridge Regression). Given any
PSD A ∈ R

n×n, λ ≥ 0, y ∈ R
n, and upper bound s̃λ on

the statistical dimension sλ
def
= tr((A2 + λI)−1A2), there is

an algorithm accessing Õ
(

ns̃2λ
ε4

)
entries of A and running

in Õ
(

ns̃ωλ
ε2ω

)
time, which outputs x̃ satisfying ‖Ax̃ − y‖22 +

λ‖x̃‖22 ≤ (1 + ε) ·minx∈Rn ‖Ax− y‖22 + λ‖x‖22.
When s̃λ � n as is often the case, the above significantly

improves upon state-of-the-art input sparsity time runtimes

for general matrices [44]. For a proof see our full paper.
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