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Abstract—For any d, n ≥ 2 and 1/(min{n, d})0.4999 < ε <
1, we show the existence of a set of n vectors X ⊂ R

d such
that any embedding f : X → R

m satisfying

∀x, y ∈ X, (1−ε)‖x−y‖22 ≤ ‖f(x)−f(y)‖22 ≤ (1+ε)‖x−y‖22
must have

m = Ω(ε−2 lg n).

This lower bound matches the upper bound given by the
Johnson-Lindenstrauss lemma [JL84]. Furthermore, our lower
bound holds for nearly the full range of ε of interest, since there
is always an isometric embedding into dimension min{d, n}
(either the identity map, or projection onto span(X)).

Previously such a lower bound was only known to hold
against linear maps f , and not for such a wide range of
parameters ε, n, d [LN16]. The best previously known lower
bound for general f was m = Ω(ε−2 lg n/ lg(1/ε)) [Wel74],
[Alo03], which is suboptimal for any ε = o(1).

I. INTRODUCTION

In modern algorithm design, often data is high-

dimensional, and one seeks to first pre-process the data

via some dimensionality reduction scheme that preserves

geometry in such a way that is acceptable for particular

applications. The lower-dimensional embedded data has

the benefit of requiring less storage, less communication

bandwith to be transmitted over a network, and less time to

be analyzed by later algorithms. Such schemes have been

applied to good effect in a diverse range of areas, such

as streaming algorithms [Mut05], numerical linear algebra

[Woo14], compressed sensing [CRT06], [Don06], graph

sparsification [SS11], clustering [BZMD15], [CEM+15],

nearest neighbor search [HIM12], and many others.

A cornerstone dimensionality reduction result is the fol-

lowing Johnson-Lindenstrauss (JL) lemma [JL84].

Theorem 1 (JL lemma). Let X ⊂ R
d be any set of size n,

and let ε ∈ (0, 1/2) be arbitrary. Then there exists a map
f : X → R

m for some m = O(ε−2 lg n) such that

∀x, y ∈ X, (1−ε)‖x−y‖22 ≤ ‖f(x)−f(y)‖22 ≤ (1+ε)‖x−y‖22.
(1)

Even though the JL lemma has found applications in a

plethora of different fields over the past three decades, its

optimality has still not been settled. In the original paper by

Johnson and Lindenstrauss [JL84], it was proven that for any

ε < 1/2, there exists n point sets X ⊂ R
n for which any em-

bedding f : X → R
m providing (1) must have m = Ω(lg n).

This was later improved in [Alo03], which showed the exis-

tence of an n point set X ⊂ R
n, such that any f providing

(1) must have m = Ω(min{n, ε−2 lg n/ lg(1/ε)}), which

falls short of the JL lemma for any ε = o(1). This lower

bound can also be obtained from the Welch bound [Wel74],

which states ε2k ≥ (1/(n − 1))(n/
(
m+k−1

k

) − 1) for any

positive integer k, by choosing 2k = 	lg n/ lg(1/ε)
. The

lower bound can also be extended to hold for any n ≤ ecε
2d

for some constant c > 0.
Our Contribution: In this paper, we finally settle the

optimality of the JL lemma. Furthermore, we do so for

almost the full range of ε.

Theorem 2. For any integers n, d ≥ 2 and ε ∈
(lg0.5001 n/

√
min{n, d}, 1), there exists a set of points

X ⊂ R
d of size n, such that any map f : X → R

m providing
the guarantee (1) must have

m = Ω(ε−2 lg(ε2n)). (2)

Here it is worth mentioning that the JL lemma can be

used to give an upper bound of

m = O(min{n, d, ε−2 lg n}),
where the d term is obvious (the identity map) and the

n term follows by projecting onto the ≤ n-dimensional

subspace spanned by X . Thus a requirement of at least

ε = Ω(1/
√

min{n, d}) is certainly necessary for the lower

bound (2) to be true, which our constraint on ε matches up

to the lg0.5001 n factor.
We also make the following conjecture concerning the be-

havior of the optimal form of Euclidean dimension reduction

possible as ε → 1/
√

min{n, d}. Note the lg(ε2n) term as

opposed to lg n in the upper bound.

Conjecture 1. If f(n, d, ε) denotes the smallest m such that
all n-point subsets of �d2 can be embedded into �m2 with
distortion at most 1+ε, then for all n, d > 1 and 0 < ε < 1,
f(n, d, ε) = Θ(min{n, d, ε−2 lg(2 + ε2n)}).

It is worth mentioning that the arguments in previous

work [Wel74], [Alo03], [LN16] all produced hard point sets
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P which were nearly orthogonal so that any embedding

into an incoherent collection provided low distortion under

the Euclidean metric. Recall P is ε-incoherent if every

x ∈ P has unit �2 norm, and ∀x �= y ∈ P one has

|〈x, y〉| = O(ε). Unfortunately though, it is known that for

any ε < 2−ω(
√
lgn), an incoherent collection of n vectors in

dimension m = o(ε−2 lg n) exists, beating the guarantee of

the JL lemma. The construction is based on Reed-Solomon

codes (see for example [AGHP92], [NNW14]). Thus proving

Theorem 2 requires a very different construction of a hard

point set when compared with previous work.

A. Prior Work

Prior to our work, a result of the authors [LN16] showed

an m = Ω(ε−2 lg n) bound in the restricted setting where

f must be linear. This left open the possibility that the JL

lemma could be improved upon by making use of nonlinear

embeddings. Indeed, as mentioned above even the hard

instance of [LN16] enjoys the existence of a nonlinear em-

bedding into m = o(ε−2 lg n) dimension for ε < 2−ω(
√
lgn).

Furthermore, that result only provided hard instances with

n ≤ poly(d), and furthermore n had to be sufficiently large

(at least Ω(d1+γ/ε2) for any constant γ > 0).

Also related is the so-called distributional JL (DJL)

lemma. The original proof of the JL lemma in [JL84] is

via random projection, i.e. ones picks a uniformly random

rotation U then defines f(x) to be the projection of Ux onto

its first m coordinates, scaled by 1/
√
m in order to have the

correct squared Euclidean norm in expectation. Note that this

construction of f is both linear, and oblivious to the data

set X . Indeed, all known proofs of the JL lemma proceed

by instantiating distributions Dε,δ satisfying the guarantee

of the below distributional JL (DJL) lemma.

Lemma 1 (Distributional JL (DJL) lemma). For any integer
d ≥ 1 and any 0 < ε, δ < 1/2, there exists a distribution
Dε,δ over m × d real matrices for some m � ε−2 lg(1/δ)
such that

∀u ∈ R
d, P

Π∼Dε,δ

(|‖Πu‖2 − ‖u‖2| > ε‖u‖2) < δ. (3)

One then proves the JL lemma by proving the DJL lemma

with δ < 1/
(
n
2

)
, then performing a union bound over all u ∈

{x−y : x, y ∈ X} to argue that Π simultaneously preserves

all norms of such difference vectors simultaneously with

positive probability. It is known that the DJL lemma is tight

[JW13], [KMN11]; namely any distribution Dε,δ over Rm×n

satisfying (3) must have m = Ω(min{d, ε−2 lg(1/δ)}). Note

though that, prior to our current work, it may have been

possible to improve upon the JL lemma by avoiding the DJL

lemma. Our main result implies that, unfortunately, this is

not the case: obtaining (1) via the DJL lemma combined

with a union bound is optimal.

B. Subsequent Work

After the initial dissemination of this work, Alon and

Klartag asked the question of the optimal space complexity

for solving the static “approximate dot product” problem

on the sphere in d dimensions [AK17]. In this problem

one is given a set P of n points x1, . . . , xn in Sd−1

to preprocess into a data structure, as well as an error

parameter ε. Then in response to query(i, j), one must

output 〈xi, xj〉 with additive error at most ε. The work

[KOR00] provides a solution using space O(ε−2n lg n)
bits, which turns out to be optimal iff d = Ω(ε−2 lg n),
shown by [AK17]. In fact [AK17] was able to provide an

understanding of the precise asymptotic space complexity

s(n, d, ε) of this problem for all ranges of n, d, ε. This

understanding as a consequence provides an alternate proof

of the optimality of the JL lemma, since their work implies

s(n, n, 2ε) � s(n, cε−2 lg n, ε) for c > 0 a small constant

(and if dimension-reduction into dimension d′ were always

possible, one would have s(n, n, 2ε) ≤ s(n, d′, ε) by first

dimension-reducing the input!).

In terms of proof methods, unlike [Alo03], [Wel74], our

work uses an encoding argument. We proceed in a somewhat

ad hoc fashion, showing that one can use simple upper

bounds on the sizes of ε-nets of various convex bodies

to conclude that dimension reduction far below the JL

upper bound would imply an encoding scheme that is too

efficient to exist for some task, based on rounding vectors

to net points (see Section III for an overview). Interestingly

enough, the original m = Ω(lg n) lower bound of [JL84]

was via a volumetric argument, which is related to the

packing and covering bounds one needs to execute our

encoding argument! The work of [AK17] on understanding

s(n, d, ε) is also via an encoding argument. They observe

that the question of understanding s(n, d, ε) is essentially

equivalent to understanding the logarithm of the optimal size

of an ε-net under entrywise �∞ norm of n×n Gram matrices

of rank d, since P can be encoded as the name of the closest

point in the net to its Gram matrix. They then proceed to

provide tight upper and lower bounds on the optimal net

size for the full range of parameters.

The work [AK17] also made progress toward Conjec-

ture 1. In particular, they proved the lower bound for all

ranges of parameters, thus removing the “lg0.5001 n” term

in our requirement on ε in Theorem 2. As for the upper

bound, they made progress on a bipartite version of the

conjecture. In particular, they showed that for any 2n vectors

x1, . . . , xn, y1, . . . , yn ∈ Sd−1, one can find 2n vectors

a1, . . . , an, b1, . . . , bn ∈ Sm−1 for m = O(ε−2 lg(2+ ε2n))
so that for all i, j ∈ [n], |〈xi, yj〉 − 〈ai, bj〉| < ε. No

promise is given for dot product preservation amongst the

xi’s internally, or amongst the yj’s internally. Also note that

dot product preservation up to additive ε error does not

always imply norm preservation with relative error 1 + ε,
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i.e. when distances are small.

II. PRELIMINARIES ON COVERING CONVEX BODIES

We here state a standard result on covering numbers. The

proof is via a volume comparison argument; see for example

[Pis89, Equation (5.7)].

Lemma 2. Let E be an m-dimensional normed space, and
let BE denote its unit ball. For any 0 < ε < 1, one can
cover BE using at most 2m lg(1+2/ε) translated copies of
εBE .

Corollary 1. Let T be an origin symmetric convex body in
R

m. For any 0 < ε < 1, one can cover T using at most
2m lg(1+2/ε) translated copies of εT .

Proof: The Minkowski functional of an origin symmet-

ric convex body T , when restricted to the subspace spanned

by vectors in T , is a norm for which T is the unit ball

(see e.g. [Tho96, Proposition 1.1.8]). It thus follows from

Lemma 2 that T can be covered using at most 2m lg(1+2/ε)

translated copies of εT .

In the remainder of the paper, we often use the notation

Bd
p to denote the unit �p ball in R

d.

III. LOWER BOUND PROOF

In the following, we start by describing the overall strat-

egy in our proof. This first gives a fairly simple proof of a

sub-optimal lower bound. We then introduce the remaining

ideas needed and complete the full proof. The proof goes via

a counting argument. More specifically, we construct a large

family P = {P1, P2, . . . } of very different sets of n points

in R
d. We then assume all point sets in P can be embedded

into R
m while preserving all pairwise distances to within

(1 + ε). Letting f1(P1), f2(P2), . . . , denote the embedded

point sets, we then argue that our choice of P ensures that

any two fi(Pi) and fj(Pj) must be very different. If m is too

low, this is impossible as there are not enough sufficiently

different point sets in R
m.

In greater detail, the point sets in P are chosen as

follows: Let e1, . . . , ed denote the standard unit vectors

in R
d. For now, assume that d = n/ lg(1/ε) and ε ∈

(lg0.5001 n/
√
d, 1). We will later show how to generalize

the proof to the full range of d. For any set S ⊂ [d] of

k = ε−2/256 indices, define a vector yS :=
∑

j∈S ej/
√
k.

A vector yS has the property that 〈yS , ej〉 = 0 if j /∈ S and

〈yS , ej〉 = 16ε if j ∈ S. The crucial property here is that

there is a gap of 16ε between the inner products depending

on whether or not j ∈ S. Now if f is a mapping to R
m that

satisfies the JL-property (1) for P = {0, e1, . . . , ed, yS},
then first off, we can assume f(0) = 0 since pairwise

distances are translation invariant. From this it follows that f
must preserve norms of the vectors x ∈ P to within (1+ ε)

since

(1− ε)‖x‖22 = (1− ε)‖x− 0‖22 ≤ ‖f(x)− f(0)‖22
= ‖f(x)‖22 = ‖f(x)− f(0)‖22
≤ (1 + ε)‖x− 0‖22
= (1 + ε)‖x‖22.

We then have that f must preserve inner products 〈ej , yS〉
up to an additive of 4ε. This can be seen by the following

calculations, where v±X denotes the interval [v−X, v+X]:

‖f(ej)− f(yS)‖22 = ‖f(ej)‖22 + ‖f(yS)‖22
− 2〈f(ej), f(yS)〉 ⇒

2〈f(ej), f(yS)〉 ∈ (1± ε)‖ej‖22 + (1± ε)‖yS‖22
− (1± ε)‖ej − yS‖22 ⇒

2〈f(ej), f(yS)〉 ∈ 2〈ej , yS〉 ± ε(‖ej‖22 + ‖yS‖22
+ ‖ej − yS‖22)⇒

〈f(ej), f(yS)〉 ∈ 〈ej , yS〉 ± 4ε.

This means that after applying f , there remains a gap

of (16 − 8)ε = 8ε between 〈f(ej), f(yS)〉 depending on

whether or not j ∈ S. With this observation, we are ready

to describe the point sets in P (in fact they will not be point

sets, but rather ordered sequences of points, possibly with

repetition). Let Q = n− d− 1. For every choice of Q sets

S1, . . . , SQ ⊂ [d] of k indices each, we add a point set P to

P . The sequence P is simply (0, e1, . . . , ed, yS1
, . . . , ySQ

).

This gives us a family P of size
(
d
k

)Q
. If we look at JL

embeddings for all of these point sets f1(P1), f2(P2), . . . ,

then intuitively these embeddings have to be quite different.

This is true since fi(Pi) uniquely determines Pi simply

by computing all inner products between the fi(ej)’s and

fi(yS�
)’s. The problem we now face is that there are

infinitely many sets of n points in R
m that one can embed

to. We thus need to discretize R
m in a careful manner and

argue that there are not enough n-sized sets of points in this

discretization to uniquely embed each Pi when m is too low.

Encoding Argument: To give a formal proof that there

are not enough ways to embed the point sets in P into R
m

when m is low, we give an encoding argument. More specif-

ically, we assume that it is possible to embed every point set

in P into R
m while preserving pairwise distances to within

(1 + ε). We then present an algorithm that based on this

assumption can take any point set P ∈ P and encode it into a

bit string of length O(nm). The encoding guarantees that P
can be uniquely recovered from the encoding. The encoding

algorithm thus effectively defines an injective mapping g
from P to {0, 1}O(nm). Since g is injective, we must have

|P| ≤ 2O(nm). But |P| = (
d
k

)Q
= (ε2n/ lg(1/ε))Ω(ε−2n)

and we can conclude m = Ω(ε−2 lg(ε2n/ lg(1/ε))). For

ε > 1/n0.4999, this is m = Ω(ε−2 lg n).
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First Attempt: The difficult part is to design an en-

coding algorithm that yields an encoding of size O(nm)
bits. A natural first attempt would go as follows: recall

that any JL-embedding f for a point set P ∈ P (where f
may depend on P ) must preserve gaps in 〈f(ej), f(yS�

)〉’s
depending on whether or not j ∈ S�. This follows simply

by preserving distances to within a factor (1 + ε) as argued

above. If we can give an encoding that allows us to recover

approximations f̂(ej) of f(ej) and f̂(yS�
) of f(yS�

) such

that ‖f̂(ej)−f(ej)‖22 ≤ ε and ‖f̂(yS�
)−f(yS�

)‖22 ≤ ε, then

by the triangle inequality, the distance ‖f̂(ej)− f̂(yS�
)‖22 is

also a (1 + O(ε)) approximation to ‖ej − yS�
‖22 and the

gap between inner products would be preserved. To encode

sufficiently good approximations f̂(ej) and f̂(yS�
), one

could do as follows: since norms are roughly preserved by

f , we must have ‖f(ej)‖22, ‖f(yS�
)‖22 ≤ 1 + ε. Letting Bm

2

denote the �2 unit ball in R
m, we could choose some fixed

covering C2 of (1 + ε)Bm
2 with translated copies of εBm

2 .

Since f(ej), f(yS�
) ∈ (1 + ε)Bm

2 , we can find translations

c2(f(ej)) + εBm
2 and c2(f(yS�

)) + εBm
2 of εBm

2 in C2,

such that these balls contain f(ej) and f(yS�
) respectively.

Letting f̂(ej) = c2(f(ej)) and f̂(yS�
) = c2(f(yS�

)) be

the centers of these balls, we can encode an approxima-

tion of f(ej) and f(yS�
) using lg |C2| bits by specifying

indices into C2. Unfortunately, covering (1+ε)Bm
2 by εBm

2

needs |C2| = 2Ω(m lg(1/ε)) since the volume ratio between

(1 + ε)Bm
2 and εBm

2 is (1/ε)Ω(m). The lg(1/ε) factor

loss leaves us with a lower bound on m of no more than

m = Ω(ε−2 lg(ε2n/ lg(1/ε))/ lg(1/ε)), roughly recovering

the lower bound of Alon [Alo03] by a different argument.

Full Proof: The key idea to reduce the length of

the encoding to O(nm) is as follows: First observe that

we chose d = n/ lg(1/ε). Thus we can spend up to

O(m lg(1/ε)) bits encoding each f(ej)’s. Thus we simply

encode approximations f̂(ej) by specifying indices into a

covering C2 of (1 + ε)Bm
2 by εBm

2 as outlined above.

For the f(yS�
)’s, we have to be more careful as we

cannot afford m lg(1/ε) bits for each. First, we define the

d × m matrix A having the f̂(ej) = c2(f(ej)) as rows

(see Figure 1). Note that this matrix can be reconstructed

from the part of the encoding specifying the f̂(ej)s. Now

observe that the j’th coordinate of v� = Af(yS�
) is equal

to 〈f̂(ej), f(yS�
)〉. This is within O(ε) of 〈ej , yS�

〉. The

coordinates of v� thus determine S� due to the gap in inner

products depending on whether j ∈ S� or not. We therefore

seek to encode the v� efficiently. Since the v� are in R
d, this

seems quite hopeless to do in O(m) bits per v�. The key

observation is that they lie in an m-dimensional subspace

of R
d, namely in the column space of A. This observation

will allow us to get down to just O(m) bits. We are ready

to give the remaining details.

Let W denote the subspace of Rd spanned by the columns

A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂(e1)
T

f̂(e2)
T

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

f̂(ed)
T

· f̂i(yS�
) =

〈
f̂(e1), f̂(yS�

)
〉

〈
f̂(e2), f̂(yS�

)
〉

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·〈

f̂(ed), f̂(yS�
)
〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

v�

Figure 1. Notation to describe a more efficient encoding of P ∈ P .

of A. We have dim(W ) ≤ m. Define T as the convex body

T := Bd
∞ ∩W.

That is, T is the intersection of the subspace W with the

d-dimensional �∞ unit ball Bd
∞. Now let C∞ be a minimum

cardinality covering of (22ε)T by translated copies of εT ,

computed by any deterministic procedure that depends only

on T . Since T is origin symmetric, by Corollary 1 it follows

that |C∞| ≤ 2m lg 45. To encode the vectors yS1
, . . . , ySQ

we

make use of the following lemma, whose proof we give in

Section III-A:

Lemma 3. For every ej and yS�
in P , we have

|〈f̂(ej), f(yS�
)〉 − 〈ej , yS�

〉| ≤ 6ε.

From Lemma 3, it follows that |〈f̂(ej), f(yS�
)〉| ≤ 6ε +

〈ej , yS�
〉 ≤ 22ε for every ej and yS�

in P . Since the j’th

coordinate of Af(yS�
) equals 〈f̂(ej), f(yS�

)〉, it follows that

Af(yS�
) ∈ (22ε)T . Using this fact, we encode each yS�

by

finding some vector c∞(yS�
) such that c∞(yS�

) + εT is a

convex shape in the covering C∞ and Af(yS�
) ∈ c∞(yS�

)+
εT . We write down c∞(yS�

) as an index into C∞. This costs

a total of Qm lg 45 = O(Qm) bits over all yS�
. We now

describe our decoding algorithm.

Decoding Algorithm: To recover P =
{0, e1, . . . , ed, yS1

, . . . , ySQ
} from the above encoding,

we only have to recover yS1 , . . . , ySQ
as {0, e1, . . . , ed}

is the same for all P ∈ P . We first reconstruct the matrix

A. We can do this since C2 was chosen independently

of P and thus by the indices encoded into C2, we

recover c2(ej) = f̂(ej) for j = 1, . . . , d. These are the

rows of A. Then given A, we know T . Knowing T , we

compute C∞ since it was constructed via a deterministic

procedure depending only on T . This finally allows us to

recover c∞(yS1
), . . . , c∞(ySQ

). What remains is to recover

yS1
, . . . , ySQ

. Since yS�
is uniquely determined from the

set S� ⊆ {1, . . . , d} of k indices, we focus on recovering

this set of indices for each yS�
.
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For � = 1, . . . , Q recall that Af(yS�
) is in c∞(yS�

)+ εT .

Observe now that:

Af(yS�
) ∈ c∞(yS�

) + εT ⇒
Af(yS�

)− c∞(yS�
) ∈ εT ⇒

‖Af(yS�
)− c∞(yS�

)‖∞ ≤ ε.

But the j’th coordinate of Af(yS�
) is 〈f̂(ej), f(yS�

)〉. We

combine the above with Lemma 3 to deduce |(c∞(yS�
))j −

〈ej , yS�
〉| ≤ 7ε for all j. We thus have that (c∞(yS�

))j ≤ 7ε
for j /∈ Si and (c∞(yS�

))j ≥ 9ε for j ∈ S�. We

finally conclude that the set S�, and thus yS�
, is uniquely

determined from c∞(yS�
).

Analysis: We finally analyse the size of the encod-

ing produced by the above procedure and derive a lower

bound on m. Recall that the encoding procedure produces

a total of dm lg(1 + 4/ε) + O(Qm) = O(nm) bits. But

|P| ≥
((

d
k

)
/2

)Q

≥ (d/(2k))kQ = (d/(2k))k(n−d−1) ≥
(d/(2k))kn/2. We therefore must have

nm = Ω(kn lg(d/k))⇒
m = Ω(ε−2 lg(ε2n/ lg(1/ε))).

Since we assume ε > lg0.5001 n/
√
d ≥ lg0.5001 n/

√
n, this

can be simplified to

m = Ω(ε−2 lg(ε2n)).

This shows that m = Ω(ε−2 lg(ε2n)) for d = n/ lg(1/ε)
and ε ∈ (lg0.5001 n/

√
d, 1). The following paragraph shows

how to handle the remaining values of d.

Handling Other Values of d: For d > n/ lg(1/ε), the

proof is easy: Simply repeat the above construction using

only the first n/ lg(1/ε) standard unit vectors in the point

sets of P . This reproves the above lower bound, with the

only further restriction that ε ∈ (lg0.5001 n/
√

min{d, n}, 1)
as opposed to ε ∈ (lg0.5001 n/

√
d, 1).

For d < n/ lg(1/ε) and ε ∈ (lg0.5001 n/
√
d, 1), assume

for the sake of contradiction that it is possible to embed

into o(ε−2 lg(ε2n)) dimensions. Now take any point set P
in R

d′ with d′ = n/ lg(1/ε) and apply a JL transform into d
dimensions on it, obtaining a point set P ′ in d dimensions.

This new point set has all distances preserved to within

(1 +O(
√
lg n/d)) (by the standard JL upper bound). Next

apply the hypothetical JL transform in d dimensions to

reduce the target dimension to o(ε−2 lg(ε2n)). Distances

are now preserved to within (1 + O(
√
lg n/d))(1 + ε).

Since we assumed ε > lg0.5001 n/
√
d, we have that

(1 + O(
√
lg n/d)) = (1 + o(ε)), which implies (1 +

O(
√

lg n/d))(1 + ε) = (1 + O(ε)). This contradicts the

lower bound for d′ = n/ lg(1/ε) dimensions.

A. Proof of Lemma 3

In this section, we prove the lemma:

Restatement of Lemma 3. For every ej and yS�
in P , we

have

|〈f̂(ej), f(yS�
)〉 − 〈ej , yS�

〉| ≤ 6ε.

Proof: First note that:

〈f̂(ej), f(yS�
)〉 =

〈c2(ej)− f(ej) + f(ej), f(yS�
)〉 =

〈f(ej), f(yS�
)〉+ 〈c2(ej)− f(ej), f(yS�

)〉 ∈
〈f(ej), f(yS�

)〉 ± ‖c2(ej)− f(ej)‖2‖f(yS�
)‖2.

Since C2 was a covering with εBm
2 , we have ‖c2(ej) −

f(ej)‖2 ≤ ε. Recall that ‖f(yS�
)‖22 ≤ (1 + ε). This in

particular implies that ‖f(yS�
)‖2 ≤ 2. We thus have:

〈f̂(ej), f(yS�
))〉 ∈ 〈f(ej), f(yS�

)〉 ± 2ε. (4)

To bound 〈f(ej), f(yS�
)〉, observe that

‖f(ej)− f(yS�
)‖22 =

‖f(ej)‖22 + ‖f(yS�
)‖22 − 2〈f(ej), f(yS�

)〉.

This implies that

2〈f(ej), f(yS�
)〉 ∈

‖ej‖22(1± ε) + ‖yS�
‖22(1± ε)− ‖ei − yS�

‖22(1± ε) ⊆
2〈ej , yS�

〉 ± ε(‖ej‖22 + ‖yS�
‖22 + ‖ej − yS�

‖22) ⊆
2〈ej , yS�

〉 ± ε(4(‖ej‖22 + ‖yS�
‖22))

That is, we have

〈f(ej), f(yS�
)〉 ∈ 〈ej , yS�

〉 ± 2ε(‖ej‖22 + ‖yS�
‖22)

Both the ej’s and yS�
’s have unit norm, hence

〈f(ej), f(yS�
)〉 ∈ 〈ej , yS�

〉 ± 4ε

Inserting this in (4), we obtain

〈f̂(ej), f(yS�
)〉 ∈ 〈ej , yS�

〉 ± 6ε.
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