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Abstract—We present a Las Vegas algorithm for dyna-
mically maintaining a minimum spanning forest of an n-
node graph undergoing edge insertions and deletions. Our
algorithm guarantees an O(no(1)) worst-case update time with
high probability. This significantly improves the two recent
Las Vegas algorithms by Wulff-Nilsen [2] with update time
O(n0.5−ε) for some constant ε > 0 and, independently, by
Nanongkai and Saranurak [3] with update time O(n0.494) (the
latter works only for maintaining a spanning forest).

Our result is obtained by identifying the common framework
that both two previous algorithms rely on, and then improve
and combine the ideas from both works. There are two main
algorithmic components of the framework that are newly
improved and critical for obtaining our result. First, we
improve the update time from O(n0.5−ε) in [2] to O(no(1))
for decrementally removing all low-conductance cuts in an
expander undergoing edge deletions. Second, by revisiting the
“contraction technique” by Henzinger and King [4] and Holm
et al. [5], we show a new approach for maintaining a minimum
spanning forest in connected graphs with very few (at most
(1 + o(1))n) edges. This significantly improves the previous
approach in [2], [3] which is based on Frederickson’s 2-
dimensional topology tree [6] and illustrates a new application
to this old technique.

Keywords-dynamic graph algorithms; minimum spanning
forests; graph decomposition;

I. INTRODUCTION

In the dynamic minimum spanning forest (MSF) problem,

we want to maintain a minimum spanning forest F of an

undirected edge-weighted graph G undergoing edge inser-

tions and deletions. In particular, we want to construct an

algorithm that supports the following operations.

• PREPROCESS(G): Initialize the algorithm with an input

graph G. After this operation, the algorithm outputs a

minimum spanning forest F of G.

• INSERT(u, v, w): Insert edge (u, v) of weight w to G.

After this operation, the algorithm outputs changes to

F (i.e. edges to be added to or removed from F ), if

any.

• DELETE(u, v): Delete edge (u, v) from G. After this

operation, the algorithm outputs changes to F , if any.

The goal is to minimize the update time, i.e., the time

needed for outputting the changes to F given each edge

update. We call an algorithm for this problem a dynamic

The full version of this paper is available as [1] at https://arxiv.org/abs/
1708.03962.

MSF algorithm. Below, we denote respectively by n and m
the upper bounds of the numbers of nodes and edges of G,

and use Õ to hide polylog(n) factors.

The dynamic MSF problem is one of the most fundamen-

tal dynamic graph problems. Its solutions have been used

as a main subroutine for several static and dynamic graph

algorithms, such as tree packing value and edge connectivity

approximation [7], dynamic k-connectivity certificate [8],

dynamic minimum cut [9] and dynamic cut sparsifier [10].

More importantly, this problem together with its weaker

variants – dynamic connectivity and dynamic spanning forest
(SF)1– have played a central role in the development in

the area of dynamic graph algorithms for more than three

decades. The first dynamic MSF algorithm dates back to

Frederickson’s algorithm from 1985 [6], which provides an

O(
√
m) update time. This bound, combined with the general

sparsification technique of Eppstein et al. from 1992 [8],

implies an O(
√
n) update time.

Before explaining progresses after the above, it is impor-

tant to note that the update time can be categorized into two

types: An update time that holds for every single update is

called worst-case update time. This is to contrast with an

amortized update time which holds “on average”2. Intuiti-

vely, worst-case update time bounds are generally more pre-

ferable since in some applications, such as real-time systems,

hard guarantees are needed to process a request before the

next request arrives. The O(
√
n) bound of Frederickson and

Eppstein et al. [6], [8] holds in the worst case. By allowing

the update time to be amortized, this bound was significantly

improved: Henzinger and King [11] in 1995 showed Las

Vegas randomized algorithms with O(log3 n) amortized

update time for the dynamic SF. The same authors [12]

in 1997 provided an O( 3
√
n log n) amortized update time for

the more general case of dynamic MSF. Finally, Holm et al.

[5] in 1998 presented deterministic dynamic SF and MSF

1The dynamic SF problem is the same as the dynamic MSF problem but
we only need to maintain some spanning forest of the graph. In the dynamic
connectivity problem, we need not to explicitly maintain a spanning forest.
We only need to answer the query, given any nodes u and v, whether u
and v are connected in the graph.

2In particular, for any t, an algorithm is said to have an amortized update
time of t if, for any k, the total time it spends to process the first k
updates (edge insertions/deletions) is at most kt. Thus, roughly speaking
an algorithm with a small amortized update time is fast “on average” but
may take a long time to respond to a single update.
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algorithms with O(log2 n) and O(log4 n) amortized update

time respectively. Thus by the new millennium we already

knew that, with amortization, the dynamic MSF problem

admits an algorithm with polylogarithmic update time. In

the following decade, this result has been refined in many

ways, including faster dynamic SF algorithms (see, e.g. [13],

[14], [15] for randomized ones and [16] for a deterministic

one), a faster dynamic MSF algorithm [17], and an Ω(logn)
lower bound for both problems [18].

Given that these problems were fairly well-understood

from the perspective of amortized update time, many re-

searchers have turned their attention back to the worst-case

update time in a quest to reduce gaps between amortized

and worst-case update time (one sign of this trend is the

2007 work of Pǎtraşcu and Thorup [19]). This quest was

not limited to dynamic MSF and its variants (e.g. [20], [21],

[22], [23], [24]), but overall the progress was still limited

and it has become a big technical challenge whether one can

close the gaps. In the context of dynamic MSF, the O(
√
n)

worst-case update time of [6], [8] has remained the best for

decades until the breakthrough in 2013 by Kapron, King

and Mountjoy [25] who showed a Monte Carlo randomized

algorithm with polylogarithmic worst-case bound for the

dynamic connectivity problem (the bound was originally

O(log5 n) in [25] and was later improved to O(log4 n) in

[26]). Unfortunately, the algorithmic approach in [25], [26]

seems insufficient for harder problems like dynamic SF and

MSF3, and the O(
√
n) barrier remained unbroken for both

problems.

It was only very recently that the polynomial improvement
to the O(

√
n) worst-case update time bound was presented

[2], [3]4. Wulff-Nilsen [2] showed a Las Vegas algorithm

with O(n0.5−ε) update time for some constant ε > 0 for

the dynamic MSF problem. Independently, Nanongkai and

Saranurak [3] presented two dynamic SF algorithms: one is

Monte Carlo with O(n0.4+o(1)) update time and another is

Las Vegas with O(n0.49306) update time. Nevertheless, the

large gap between polylogarithmic amortized update time

and the best worst-case update time remains.

Our Result.
We significantly reduce the gap by showing the dynamic

MSF algorithm with subpolynomial (O(no(1))) update time:

Theorem I.1. There is a Las Vegas randomized dynamic
MSF algorithm on an n-node graph that can answer each
update in O(no(1)) time both in expectation and with high

3Note that the algorithms in [25], [26] actually maintain a spanning
forest; however, they cannot output such forest. In particular, [25], [26]
assume the so-called oblivious adversary. Thus, [25], [26] do not solve
dynamic SF as we define here, as we require algorithms to report how the
spanning forest changes. See further discussions on the oblivious adversary
in [3].

4Prior to this, Kejlberg-Rasmussen et al. [27] improved the bound slightly
to O(

√
n(log logn)2/ logn) for dynamic SF using word-parallelism.

Their algorithm is deterministic.

probability.

Needless to say, the above result completely subsu-

mes the result in [2], [3]. The o(1) term above hides a

O(log log log n/ log log n) factor.5 Recall that Las Vegas

randomized algorithms always return correct answers and

the time guarantee is randomized. Also recall that an event

holds with high probability (w.h.p.) if it holds with probabi-

lity at least 1−1/nc, where c is an arbitrarily large constant.

Key Technical Contribution and Organization. We prove

Theorem I.1 by identifying the common framework behind

the results of Nanongkai-Saranurak [3] and Wullf-Nilsen [2]

(thereafter NS and WN), and significantly improving some

components within this framework. In particular, in retro-

spect it can be said that at a high level NS [3] and WN [2]

share the following three components:

1) Expansion decomposition: This component decompo-

ses the input graph into several expanders and the

“remaining” part with few (o(n)) edges.

2) Expander pruning: This component helps maintaining

an MSF/SF in expanders from the first component by

decrementally removing all low-conductance cuts in an

expander undergoing edge deletions.

3) Dynamic MSF/SF on ultra-sparse graphs: This com-

ponents maintains MSF/SF in the “remaining” part

obtained from the first component by exploiting the fact

that this part has few edges6.

The key difference is that while NS [3] heavily relied on

developing fast algorithms for these components using recent

flow techniques (from, e.g., [28], [29]), WN [2] focused on

developing a sophisticated way to integrate all components

together and used slower (diffusion-based) algorithms for

the three components. In this paper we significantly improve

algorithms for the second and third components from those

in NS [3], and show how to adjust the integration method

of WN [2] to exploit these improvements; in particular, the

method has to be carefully applied recursively. Below we

discuss how we do this in more detail.

(i) Improved expander pruning (Details in Sections III to VI).
We significantly improve the running time of the one-shot
expander pruning algorithm by NS [3]7 and the dynamic

5Note that by starting from an empty graph and inserting one edge at
a time, the preprocessing time of our algorithm is clearly O(m1+o(1)),
where m is the number of edges in the initial graph. However, note further
that the o(1) term in our preprocessing time can be slightly reduced to

O(
√

log logm/ logm) if we analyze the preprocessing time explicitly
instead.

6For the reader who are familiar with the results in [3] and [2]. The first
component are shown in Theorem 4 in [2] and Theorem 5.1 in [3]. The
second are shown in Theorem 5 in [2] and Theorem 6.1 in [3]. The third
are shown in Theorem 3 from [2] and Theorem 4.2 in [3].

7In [3], the authors actually show the local expansion decomposition
algorithm which is the same as one-shot expander pruning but it does not
only prune the graph but also decompose the graph into components. In
retrospect, we can see that it is enough to instead use the one-shot expander
pruning algorithm in [3].
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expander pruning by WN [2]. For the one-shot case, given a

single batch of d edge deletions to an expander, the one-shot

expander pruning algorithm by NS [3] takes O(d1.5+o(1))
time for removing all low-conductance cuts. We improve

the running time to O(d1+o(1)). To do this, in Section III

we first extend a new local flow-based algorithm8 for finding

a low-conductance cut by Henzinger, Rao and Wang [30],

and then use this extension in Section IV to get another

algorithm for finding a locally balanced sparse (LBS) cut.
Then in Section V-A we apply the reduction from LBS

cut algorithms by NS [3] and obtain an improved one-shot

expander pruning algorithm.

For the dynamic case, given a sequence of edge deletions

to an expander, the dynamic expander pruning algorithm

by WN [2] dynamically removes all low-conductance cuts

and takes O(n0.5−ε) time for each update. We improve the

update time to O(no(1)). Our algorithm is also arguably

simpler and differ significantly because we do not need

random sampling as in [2]. To obtain the dynamic expander

pruning algorithm, we use many instances of the static

ones, where each instance is responsible on finding low-

conductance cuts of different sizes. Each instance is called

periodically with different frequencies (instances for finding

larger cuts are called less frequently). See Section V-B for

details.

(ii) Improved dynamic MSF algorithm on “ultra-sparse”
graphs (Details in Section VII). We show a new way to

maintain dynamic MSF in a graph with few (o(n)) “non-

tree” edges that can also handle a batch of edge insertions.

Both NS and WN [3], [2] used a variant of Frederickson’s

2-dimensional topology tree [6] to do this task9. In this

paper, we change the approach to reduce this problem on

graphs with few non-tree edges to the same problem on

graphs with few edges and fewer nodes; this allows us to

apply recursions later in Section IX. We do this by applying

the classic “contraction technique” of Henzinger and King

[4] and Holm et al. [5] in a new way: This technique was

used extensively previously (e.g. [12], [4], [5], [17], [2]) to

reduce fully-dynamic algorithms to decremental algorithms

(that can only handle deletions). Here, we use this technique

so that we can recurse.

In Sections VIII and IX, we take a close look into the

integration method in WN [2] which is used to compose the

three components. We show that it is possible to replace all

the three components with the tools based on flow algorithms

from either this paper or from NS [3] instead.

In particular, in Section VIII we consider a subroutine

implicit in WN [2], which is built on top of the expansion

decomposition algorithm (the first component above). To

8By local algorithms, we means algorithms that can output its answer
without reading the whole input graph.

9Unlike [2], the algorithm in [3] cannot handle inserting a batch of many
non-tree edges.

make the presentation more modular, we explicitly state

this subroutine and its needed properties and name it MSF
decomposition in Section VIII. This subroutine can be used

as it is constructed in [2], but we further show that it can

be slightly improved if we replace the diffusion-based ex-

pansion decomposition algorithm in [2] with the flow-based

expansion decomposition by NS [3] in the construction. This

leads to a slight improvement in the o(1) term in our claimed

O(no(1)) update time.

Then, in Section IX, we combine (using a method in

WN [2]) our improved MSF decomposition algorithm (from

Section VIII) with our new dynamic expander pruning

algorithm and our new dynamic MSF algorithm on ultra-

sparse graphs (for the second and third components above).

As our new algorithm on ultra-sparse graphs is actually a

reduction to the dynamic MSF problem on a smaller graph,

we recursively apply our new dynamic MSF algorithm on

that graph. By a careful time analysis of our recursive

algorithm, we eventually obtain the O(no(1)) update time.

II. PRELIMINARIES

When the problem size is n, we denote Õ(f(n)) =
O(f(n)polylog(n)), for any function f . We denote by ∪̇
and

⋃̇
the disjoint union operations. We denote the set minus

operation by both \ and −. For any set S and an element

e, we write S − e = S − {e} = S \ {e}.
Let G = (V,E,w) be any weighted graph where each

edge e ∈ E has weight w(e). We usually denote n = |V |
and m = |E|. We also just write G = (V,E) when the

weight is clear from the context. We assume that the weights

are distinct. For any set V ′ ⊆ V of nodes, G[V ′] denotes

the subgraph of G induced by V ′. We denote V (G) the

set of nodes in G and E(G) the set of edges in G. In this

case, V (G) = V and E(G) = E. Let MSF(G) denote

the minimum spanning tree of G. For any set E′ ⊆ E,

let end(E′) be the set of nodes which are endpoints of

edges in E′. Sometimes, we abuse notation and treat the

set of edges in E′ as a graph G′ = (end(E′), E′) and vice

versa. For example, we have MSF(E′) = MSF(G′) and

E − MSF(G′) = E − E(MSF(G′)). The set of non-tree
edges of G are the edges in E −MSF(G). However, when

it is clear that we are talking about a forest F in G, non-tree

edges are edges in E − F .

A cut S ⊆ V is a set of nodes. A volume of S is vol(S) =∑
v∈S deg(v). The cut size of S is denoted by δ(S) which

is the number of edges crossing the cut S. The conductance
of a cut S is φ(S) = δ(S)

min{vol(S),vol(V−S) . The conductance

of a graph G = (V,E) is φ(G) = min∅�=S⊂V φ(S).

Remark II.1 (Local-style input). Whenever a graph G is

given to any algorithm A in this paper, we assume that a

pointer to the adjacency list representing G is given to A.

This is necessary for some of our algorithms which are local
in the sense that they do not even read the whole input graph.

Recall that in an adjacency list, for each node v we have a
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list �v of edges incident to v , and we can access the head

�v in constant time. (See details in, e.g., [31, Section 22.1])

Additionally, we assume that we have a list of nodes whose

degrees are at least 1 (so that we do not need to probe lists

of single nodes).

We extensively use the following facts about MSF.

Fact II.2 ([8]). For any edge sets E1 and E2, MSF(E1 ∪
E2) ⊆ MSF(E1) ∪MSF(E2).

Let G′ = (V ′, E′) be a graph obtained from G by

contracting some set of nodes into a single node. We always

keeps parallel edges in G′ but sometimes we do not keep

all the self loops. We will specify which self loops are

preserved in G′ when we use contraction in our algorithms.

We usually assume that each edge in G′ “remember” its

original endpoints in G. That is, there are two-way pointers

from each edge in E′ to its corresponding edge in E. So, we

can treat E′ as a subset of E. For example, for a set D ⊆ E
of edges in G, we can write E′ − D and this means the

set of edges in G′ excluding the ones which are originally

edges in D. With this notation, we have the following fact

about MSF:

Fact II.3. For any graph G and (multi-)graph G′ obtained
from G by contracting two nodes of G, MSF(G′) ⊆
MSF(G).

Definition II.4 (Dynamic MSF). A (fully) dynamic MSF
algorithm A is given an initial graph G to be preprocessed,
and then A must return an initial minimum spanning forest.
Then there is an online sequence of edge updates for G,
both insertions and deletions. After each update, A must
return the list of edges to be added or removed from the
previous spanning tree to obtain the new one. We say A is
an incremental/decremental MSF algorithm if the updates
only contain insertions/deletions respectively.

The time an algorithm uses for preprocessing the initial

graph and for updating a new MSF is called preprocessing
time and update time respectively. In this paper, we consider

the problem where the update sequence is generated by an

adversary10. We say that an algorithm has update time t with
probability p, if, for each update, an algorithm need at most

t time to update the MSF with probability at least p.

Let G be a graph undergoing a sequence of edge updates.

If we say that G has n nodes, then G has n nodes at any

time. However, we say that G has at most m edges and k
non-tree edges, if at any time, G is updated in such a way

that G always has at most m edges and k non-tree edges.

We also say that G is an m-edge k-non-tree-edge graph. Let

10There are actually two kinds of adversaries: oblivious ones and adaptive
ones. In [3], they formalize these definitions precisely and discuss them
in details. In this paper, however, we maintain MSF which is uniquely
determined by the underlying graph at any time (assuming that the edge
weights are distinct). So, there is no difference in power of the two kinds
of adversaries and we will not distinguish them.

F = MSF(G). Suppose that there is an update that deletes

e ∈ F . We say that f is a replacement/reconnecting edge if

F ∪ f − e = MSF(G− e). We also use the the top tree data

structure (see e.g. [32], [33]).

III. THE EXTENDED UNIT FLOW ALGORITHM

In this section, we show an algorithm called Extended
Unit Flow in Theorem III.3. It is the main tool for developing

an algorithm in Section IV called locally balanced sparse
cut, which will be used in our dynamic algorithm. The

theorem is based on ideas of flow algorithms by Henzinger,

Rao and Wang [30].

Flow-related notions.
We derive many notations from [30], but note that they

are not exactly the same. (In particular, we do not consider

edge capacities, but instead use the notion of congestion.)

A flow is defined on an instance Π = (G,Δ, T ) consisting

of (i) an unweighted undirected graph G = (V,E), (ii) a

source function Δ : V → Z≥0, and (iii) a sink function
T : V → Z≥0. A preflow is a function f : V × V → Z

such that f(u, v) = −f(v, u) for any (u, v) ∈ V × V
and f(u, v) = 0 for every (u, v) /∈ E. Define f(v) =
Δ(v) +

∑
u∈V f(u, v). A preflow f is said to be source-

feasible (respectively sink-feasible) if, for every node v,∑
u f(v, u) ≤ Δ(v) (respectively f(v) ≤ T (v).). If f is

both source- and sink-feasible, then we call it a flow. We

define cong(f) = max(u,v)∈V×V f(u, v) as the congestion
of f . We emphasize that the input and output functions

considered here (i.e. Δ, T, f , and cong) map to integers.
One way to view a flow is to imagine that each node v

initially has Δ(v) units of supply and an ability to absorb
T (v) units of supply. A preflow is a way to “route” the

supply from one node to another. Intuitively, in a valid

routing the total supply out of each node v should be at

most its initial supply of Δ(v) (source-feasibility). A flow

describes a way to route such that all supply can be absorbed

(sink feasibility); i.e. in the end, each node v has at most

T (v) units of supply. The congestion measures how much

supply we need to route through each edge.

With the view above, we call f(v) (defined earlier) the
amount of supply ending at v after f . For every node v, we

denote exf (v) = max{f(v)−T (v), 0} as the excess supply
at v after f and abf (v) = min{T (v), f(v)} as the absorbed
supply at v after f . Observe that exf (v) + abf (v) = f(v),
for any v, and f is a feasible flow iff exf (v) = 0 for all

nodes v ∈ V . When f is clear from the context, we simply

use ex and ab to denote exf and abf . For convenience,

we denote |Δ(·)| = ∑
v Δ(v) as the total source supply,

|T (·)| = ∑
v T (v) as the total sink capacity, |exf (·)| =∑

v exf (v) as the total excess, and |abf (·)| =
∑

v abf (v)
as the total supply absorbed.

Remark III.1 (Input and output formats). The input graph

G is given to our algorithms as described in Section II;
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in particular, our algorithms do not need to read G entirely.

Functions Δ and T are input in the form of sets {(v,Δ(v)) |
Δ(v) > 0} and {(v, T (v)) | T (v) < deg(v)}, respectively.

Our algorithms will read both sets entirely.

Our algorithms output a preflow f as a set

{((u, v), f(u, v)) | f(u, v) �= 0}. When f is outputted, we

can assume that we also obtained functions exf and abf
which are represented as sets {(v, exf (v)) | exf (v) > 0}
and {(v, abf (v)) | abf (v) > 0}, respectively. This is

because the time for computing these sets is at most

linear in the time for reading Δ and T plus the time for

outputting f .

Remark III.2 (T (·)). We need another notation to state our

result. Throughout, we only consider sink functions T such

that T (v) ≤ deg(v) for all nodes v ∈ V . When we compute

a preflow, we usually add to each node v an artificial supply
T (v) = deg(v) − T (v) to both Δ(v) and T (v) so that

T (v) = deg(v). Observe that adding the artificial apply does

not change the problem (i.e. a flow and preflow is feasible

in the new instance if and only if it is in the old one). We

define |T (·)| = ∑
v T (v) = 2m−|T (·)| as the total artificial

supply. This term will appear in the running time of our

algorihtm.

The main theorem.
Now, we are ready to state the main result of this section.

Theorem III.3 (Extended Unit Flow Algorithm). There
exists an algorithm called Extended Unit Flow which takes
the followings as input:
• a graph G = (V,E) with m edges (possibly with

parallel edges but without self loops),
• positive integers h ≥ 1 and F ≥ 1,
• a source function Δ such that Δ(v) ≤ F deg(v) for all
v ∈ V , and

• a sink function T such that |Δ(·)| ≤ |T (·)| (also recall
that T (v) ≤ deg(v), ∀v ∈ V , as in Remark III.2).

In time O(hF (|Δ(·)| + |T (·)|) logm) the algorithm
returns (i) a source-feasible preflow f with congestion
cong(f) ≤ 2hF and (ii) |exf (·)|. Moreover, either
• (Case 1) |exf (·)| = 0, i.e. f is a flow, or
• (Case 2) the algorithm returns a set S ⊆ V such that
φG(S) <

1
h and vol(S) ≥ |exf (·)|

F . (All nodes in S are
outputted.)

Interpretation of Theorem III.3.
One way to interpret Theorem III.3 is the following.

(Note: readers who already understand Theorem III.3 can

skip this paragraph.) Besides graph G and source and sink

functions, the algorithm in Theorem III.3 takes integers h
and F as inputs. These integers indicate the input that we

consider “good”: (i) the source function Δ is not too big at

each node, i.e. ∀v ∈ V, Δ(v) ≤ F deg(v), and (ii) the graph

G has high conductance; i.e. φ(G) > 1/h. Note that for the

good input it is possible to find a flow of congestion Õ(hF ):
each set S ⊆ V there can be

∑
v∈S Δ(v) ≤ F ·vol(S) initial

supply (by (i)), while there are δ(S) > vol(S)/h edges to

route this supply out of S (by (ii)); so, on average there is∑
v∈S Δ(v)

δ(S) ≤ hF supply routed through each edge. This is

essentially what our algorithm achieves in Case 1. If it does

not manage to compute a flow, it computes some source-

feasible preflow and outputs a “certificate” that the input is

bad, i.e. a low-conductance cut S as in Case 2. Moreover, the

larger the excess of the preflow, the higher the volume of S;

i.e. vol(S) is in the order of exf (·)/F . In fact, this volume-

excess relationship is the key property that we will need

later. One way to make sense of this relationship is to notice

that if vol(S) ≥ |exf (·)|/F , then we can put as much as

F · vol(S) ≥ |exf (·)| initial supply in S. With conductance

of S low enough (φG(S) ≤ 1
2h suffices), we can force most

of the initial supply to remain in S and become an excess.

Note that this explanation is rather inaccurate, but might

be useful to intuitively understand the interplay between

vol(S), |exf (·)| and F .

Finally, we note again that our algorithm is local in the

sense that its running time is lower than the size of G.

For this algorithm to be useful later, it is important that

the running time is almost-linear in (|Δ(·)|+ |T (·)|). Other

than this, it can have any polynomial dependency on h, F
and the logarithmic terms.

The main idea for proving Theorem III.3 is to slightly

extend the algorithm called Unit Flow by Henzinger, Rao

and Wang [30]. See the full version of paper for the proof.

IV. LOCALLY BALANCED SPARSE CUT

In this section, we show an algorithm for finding a locally
balanced sparse cut, which is a crucial tool in Section V.

The main theorem is Theorem IV.4. First, we need this

definition:

Definition IV.1 (Overlapping). For any graph G = (V,E),
set A ⊂ V , and real 0 ≤ σ ≤ 1, we say that a set S ⊂ V
is (A, σ)-overlapping in G if vol(S ∩A)/vol(S) ≥ σ.

Let G = (V,E) be a graph. Recall that a cut S is α-sparse
if it has conductance φ(S) = δ(S)

min{vol(S),vol(V−S)} < α.

Consider any set A ⊂ V , an overlapping parameter 0 ≤
σ ≤ 1 and a conductance parameter 0 ≤ α ≤ 1. Let

S∗ be the set of largest volume that is α-sparse (A, σ)-
overlapping and such that vol(S∗) ≤ vol(V − S∗). We

define OPT(G,α,A, σ) = vol(S∗). If S∗ does not exist,

then we define OPT(G,α,A, σ) = 0. From this definition,

observe that OPT(G,α,A, σ) ≤ OPT(G,α′, A, σ) for any

α ≤ α′. Now, we define the locally balanced sparse cut

problem formally:

Definition IV.2 (Locally Balanced Sparse (LBS) Cut). Con-
sider any graph G = (V,E), a set A ⊂ V , and parameters
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csize ≥ 1, ccon ≥ 1, σ and α. We say that a cut S where
vol(S) ≤ vol(V − S) is a (csize, ccon)-approximate locally

balanced sparse cut with respect to (G,α,A, σ) (in short,
(csize, ccon, G, α,A, σ)-LBS cut) if

φ(S) < α and csize · vol(S) ≥ OPT(G,α/ccon, A, σ).

(1)

In words, the (csize, ccon, G, α,A, σ)-LBS cut can be

thought of as a relaxed version of OPT(G,α,A, σ): On

the one hand, we define OPT(G,α,A, σ) to be a highest-
volume cut with low enough conductance and high enough

overlap with A (determined by α and σ respectively).

On the other hand, a (csize, ccon, G, α,A, σ)-LBS cut does

not need to overlap with A at all; moreover, its volume

is only compared to OPT(G,α/ccon, A, σ), which is at

most OPT(G,α,A, σ), and we also allow the gap of

csize in such comparison. We note that the existence of a

(csize, ccon, G, α,A, σ)-LBS cut S implies that any (A, σ)-
overlapping cut of volume more than csize · vol(S) must

have conductance at least α/ccon (because any (A, σ)-
overlapping cut with conductance less than α/ccon has

volume at most csize · vol(S)).
Definition IV.3 (LBS Cut Algorithm). For any parameters
csize and ccon, a (csize, ccon)-approximate algorithm for the
LBS cut problem (in short, (csize, ccon)-approximate LBS

cut algorithm) takes as input a graph G = (V,E), a set
A ⊂ V , an overlapping parameter 0 ≤ σ ≤ 1, and an
conductance parameter 0 ≤ α ≤ 1. Then, the algorithm
either

• (Case 1) finds a (csize, ccon, G, α,A, σ)-LBS cut S, or
• (Case 2) reports that there is no (α/ccon)-sparse
(A, σ)-overlapping cut, i.e. OPT(G,α/ccon, A, σ) = 0.

From Definition IV.3, if there exists an (α/ccon)-sparse

(A, σ)-overlapping cut, then a (csize, ccon)-approximate

LBS cut algorithm A can only do Case 1, or if there is

no α-sparse cut, then A must do Case 2. However, if there

is no (α/ccon)-sparse (A, σ)-overlapping cut but there is an

α-sparse cut, then A can either do Case 2, or Case 1 (which

is to find any α-sparse cut in this case).

The main result of this section is the following:

Theorem IV.4. Consider the special case of the LBS cut
problem where the input (G, A, σ, α) is always such that (i)
2vol(A) ≤ vol(V − A) and (ii) σ ∈ [ 2vol(A)

vol(V−A) , 1]. In this
case, there is a (O(1/σ2), O(1/σ2))-approximate LBS cut
algorithm that runs in Õ( vol(A)

ασ2 ) time.

We note that in our later application it is enough to have

an algorithm with poly( logn
ασ ) approximation guarantees

and running time almost linear in vol(A) (possibly with

poly( logn
ασ )).

Before proving the above theorem, let us compare the

above theorem to related results in the literature. Previously,

Orecchia and Zhu [29] show two algorithms for a problem

called local cut improvement. This problem is basically

the same as the LBS cut problem except that there is no

guarantee about the volume of the outputted cut. Nanongkai

and Saranurak [3] show that one of the two algorithms

by [29] implies a ( 3σ ,
3
σ )-approximate LBS cut algorithm

with running time Õ(( vol(A)
σ )1.5). While the approximation

guarantees are better than the one in Theorem IV.4, this

algorithm is too slow for us. By the same techniques, one can

also show that the other algorithm by [29] implies a (n, 3
σ )-

approximate LBS cut algorithm with running time Õ( vol(A)
ασ )

similar to Theorem IV.4, but the approximation guarantee

on csize is too high for us. Thus, the main challenge here

is to get a good guarantee on both csize and running time.

Fortunately, given the Extended Unit Flow algorithm from

Section III, it is not hard to obtain Theorem IV.4. See the

full version of the paper for the proof of Theorem IV.4.

V. EXPANDER PRUNING

The main result of this section is the dynamic expander
pruning algorithm. This algorithm was a key tool introduced

by Wulff-Nilsen [2, Theorem 5] for obtaining his dyna-

mic MSF algorithm. We significantly improve his dynamic

expander pruning algorithm which is randomized and has

n0.5−ε0 update time for some constant ε0 > 0. Our algorithm

is deterministic and has no(1) update time. Although the

algorithm is deterministic, our final dynamic MSF algorithm

is randomized because there are other components that need

randomization.

First we state the precise statement (explanations follow

below).

Theorem V.1 (Dynamic Expander Pruning). Consider any
ε(n) = o(1), and let α0(n) = 1/nε(n). There is a dynamic
algorithm A that can maintain a set of nodes P for a graph
G undergoing T = O(mα2

0(n)) edge deletions as follows.
Let Gτ and Pτ be the graph G and set P after the τ th

deletion, respectively.

• Initially, in O(1) time A sets P0 = ∅ and takes as input
an n-node m-edge graph G0 = (V,E) with maximum
degree 3.

• After the τ th deletion,A takes nO(log log 1
ε(n)

/ log 1
ε(n)

) =
no(1) time to report nodes to be added to Pτ−1 to form
Pτ where, if φ(G0) ≥ α0(n), then

∃Wτ ⊆ Pτ s.t. Gτ [V −Wτ ] is connected. (2)

The goal of our algorithm is to gradually mark nodes in

a graph G = (V,E) so that at all time – as edges in G are

deleted – all nodes that are not yet marked are in the same

connected component in G. In other words, the algorithm

maintains a set P of (marked) nodes, called pruning set,
such that there exists W ⊆ P where G[V −W ] is connected

(thus Equation (2)). In our application in Section IX, we will

955



delete edges incident to P from the graph, hence the name

pruning set.

Recall that the algorithm takes an input graph in the local

manner, as noted in Remark II.1, thus taking no(1) time.

Observe that if we can set P = V from the beginning,

the problem becomes trivial. The challenge here is that we

must set P = ∅ in the initial step, and thus must grow P
smartly and quickly (in no(1) time) after each deletion so

that Equation (2) remains satisfied.

Observe further that this task is not possible to achieve in

general: if the first deletion cuts G into two large connected

components, then P has to grow tremendously to contain

one of these components, which is impossible to do in

no(1) time. Because of this, our algorithm is guaranteed to

work only if the initial graph has high enough expansion; in

particular, an initial expansion of α0(n) as in Theorem V.1

suffices for us.

Organization. The rest of this section is for proving The-

orem V.1. The key tool is an algorithm called the one-
shot expander pruning, which was also the key tool in

Nanongkai and Saranurak [3] for obtaining their Las Vegas

dynamic SF algorithm. We show an improved version of this

algorithm in Section V-A using the faster LBS cut algorithm

we developed in Section IV. In Section V-B, we show how

to use several instances of the one-shot expander pruning

algorithm to obtain the dynamic one and prove Theorem V.1.

A. One-shot Expander Pruning

In the following, we show the one-shot expander pruning
algorithm which is significantly improved from [3]. In

words, the one-shot expander pruning algorithm is different

from the dynamic one from Theorem V.1 in two aspects:

1) it only handles a single batch of edge deletions, instead

of a sequence of edge deletions, and so only outputs a

pruning set P once, and 2) the pruning set P has a stronger

guarantee than the pruning set for dynamic one as follows:

P does not only contains all nodes in the cuts that are

completely separated from the graphs (i.e. the separated

connected components) but P contains all nodes in the cuts

that have low conductance. Moreover, P contains exactly
those nodes and hence the complement G[V − P ] has high

conductance. For the dynamic expander pruning algorithm,

we only have that there is some W ⊆ P where G[V −W ]
is connected.

The theorem below shows the precise statement. Below,

we think of Gb = (V,E ∪ D) as the graph before the

deletions, and G = Gb −D as the graph after deleting D.

In [3], Nanongkai and Saranurak show this algorithm where

the dependency on D is ∼ D1.5+δ , while in our algorithm

the dependency of D is ∼ D1+δ .

Theorem V.2 (One-shot Expander Pruning). There is an
algorithm A that can do the following:

• A is given G,D,αb, δ as inputs: G = (V,E) is an n-
node m-edge graph with maximum degree Δ, αb is a
conductance parameter, δ ∈ (0, 1) is a parameter, and
D is a set of edges where D ∩ E = ∅ where |D| =
O(α2

bm/Δ). Let Gb = (V,E ∪D).
• Then, in time t = Õ(Δ|D|

1+δ

δα6+δ
b

), A either reports
φ(Gb) < αb, or outputs a pruning set P ⊂ V .
Moreover, if φ(Gb) ≥ αb, then we have
– volG(P ) ≤ 2|D|/αb, and
– a pruned graph H = G[V − P ] has high conduc-

tance: φ(H) ≥ α = Ω(αb
2/δ).

We call t the time limit and α the conductance guarantee
of A. If we do not care about the time limit, then there

is the following algorithm gives a very good conductance

guarantee: just find the cut C∗ of conductance at most

αb/10 that have maximum volume and output P = C∗.
If vol(P ) > 2|D|/αb, then report φ(Gb) < αb. Otherwise,

we must have φ(G[V − P ]) = Ω(αb). This can be shown

using the result by Spielman and Teng [34, Lemma 7.2].

However, computing the optimum cut C∗ is NP-hard.

In [3], they implicitly showed that using only the LBS

cut algorithm, which is basically an algorithm for finding a

cut similar to C∗ but the guarantee is only approximately
and locally, one can quickly obtain the one-shot expander

pruning algorithm whose conductance guarantee is not too

bad. Below, we explicitly state the reduction in [3]. See the

full version of the paper for the proof.

Lemma V.3 ([3]). Suppose there is a (csize(σ), ccon(σ))-
approximate LBS cut algorithm with running time
tLSB(n, vol(A), α, σ) when given (G,A, σ, α) as inputs
where G = (V,E) is an n-node graph, A ⊂ V is a
set of nodes, σ is an overlapping parameter, and α is a
conductance parameter. Then, there is a one-shot expander
pruning algorithm with input (G,D,αb, δ) that has time

limit

t = O((
|D|
αb

)δ · csize(αb/2)

δ
· tLSB(n,

Δ|D|
αb

, αb, αb))

and conductance guarantee

α =
αb

5ccon(αb/2)1/δ−1
.

Having the above lemma and our new LBS cut algorithm

from Section IV, we have that Theorem V.2 follows by

setting the right parameters and some simple calculation.

B. Dynamic Expander Pruning

In this section, we exploit the one-shot expander pruning

algorithm from Section V-A. To prove Theorem V.1, it is

more convenience to prove the more general statement as

follows:

Lemma V.4. There is an algorithm A that can do the
following:
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• A is given G0, α0, � as inputs: G0 = (V,E) is an n-
node m-edge graph with maximum degree Δ, and α0 =
1
nε and � are parameters. Let P0 = ∅.

• Then G0 undergoes the sequence of edge deletions of
length T = O(α2

0m/Δ).
• Given the τ -th update, A takes Õ(�2ΔnO(1/�+ε��))

time. Then, A either reports φ(G0) < α0 and halt,
or A updates the pruning set P to Pτ where Pτ−1 ⊆
Pτ ⊆ V .

• If φ(G0) ≥ α0 then, for all τ , there exists Wτ ⊆ Pτ

where Gτ [V −Wτ ] is connected.

From Lemma V.4, we immediately obtain Theorem V.1

by choosing the right parameters.

Proof of Theorem V.1: We set � =
log 1

ε

2 log log 1
ε

, so that

�� = O( 1
ε1/2

). Hence,

nO(1/�+ε��) = nO(log log 1
ε / log 1

ε+ε1/2)

= nO(log log 1
ε / log 1

ε ) = no(1)

when ε = o(1). We apply Lemma V.4 with this parameters

� and α0 = 1
nε and we are done.

It remains to prove Lemma V.4. See the full version of the

paper for the proof. The main idea is to “schedule” many

instance of the one-shot pruning algorithm in a clever way.

VI. PRUNING ON ARBITRARY GRAPHS

In Theorem V.1, we show a fast deterministic algorithm

that guarantees connectivity of the pruned graph G[V −W ]
only when an initial graph is an expander. If the initial graph

is not an expander, then there is no guarantee at all. With

a simple modification, in this section, we will show a fast

randomized algorithm for an arbitrary initial graph that either

outputs the desired pruning set or reports failure. Moreover,

if the the initial graph is an expander, then it never fails with

high probability.

This section is needed in order to make our final algorithm

Las Vegas. If we only want a Monte Carlo algorithm, then

it is enough to use Theorem V.1 when we combine every

component together in Section IX.

Theorem VI.1. Consider any ε(n) = o(1), and let α0(n) =
1/nε(n). There is a dynamic algorithm A that can maintain
a set of nodes P for a graph G undergoing T = O(mα2

0(n))
edge deletions as follows. Let Gτ and Pτ be the graph G
and set P after the τ th deletion, respectively.
• Initially, in Õ(n log 1

p ) time A sets P0 = ∅ and takes
as input an n-node m-edge graph G0 = (V,E) with
maximum degree 3.

• After the τ th deletion, A takes
O(nO(log log 1

ε(n)
/ log 1

ε(n)
) log 1

p ) = O(no(1) log 1
p )

time to either 1) report nodes to be added to Pτ−1 to
form Pτ where

∃Wτ ⊆ Pτ s.t. Gτ [V −Wτ ] is connected

or 2) reports failure. If φ(G0) ≥ α0(n), then A never
fails with probability 1− p.

See the full paper for the proof of Theorem VI.1. The key

idea is to use the Monte Carlo dynamic spanning forest by

Kapron et al. [25] as a certificate for connectivity.

VII. REDUCTION FROM GRAPHS WITH FEW NON-TREE

EDGES UNDERGOING BATCH INSERTIONS

In this section, we show the following crucial reduction:

Theorem VII.1. Suppose there is a decremental MSF
algorithm A for any m′-edge graph with max degree 3
undergoing a sequence of edge deletions of length T (m′),
and A has tpre(m

′, p) preprocessing time and tu(m
′, p)

worst-case update time with probability 1− p.
Then, for any numbers B and k where 15k ≤ m′, there

is a fully dynamic MSF algorithm B for any m-edge graph
with at most k non-tree edges such that B can:
• preprocess the input graph in time

t′pre(m, k,B, p) = tpre(15k, p
′) +O(m log2 m),

• handle a batch of B edge insertions or a single edge
deletion in time t′u(m, k,B, p) which is

O(
B log k

k
·tpre(15k, p′)+B log2 m+

k log k

T (k)
+log k·tu(15k, p′)),

where p′ = Θ(p/ log k) and the time guarantee for each
operation holds with probability 1− p.

The proof of Theorem VII.1 is by extending the reduction

by Wulff-Nilsen [2] in two ways. First, the resulting algo-

rithm is more efficient when there are few non-tree edges.

Second, the resulting algorithm can also quickly handle a

batch of edge insertions.

Although, the extension of the reduction is straightforward

and also uses the same “contraction” technique by Henzinger

and King [4] and Holm et al. [5], we emphasize that our

purpose for using the “contraction” technique is conceptually

very different from all previous applications of the (similar)

technique [12], [5], [17], [2]. The purpose of all previous

applications is for reducing decremental algorithms to fully

dynamic algorithms. However, this goal is not crucial for

us. Indeed, in our application, by slightly changing the algo-

rithm, the input dynamic MSF algorithm for Theorem VII.1

can also be fully-dynamic and not decremental. But it is

very important that the reduction must give an algorithm

that is faster when there are few non-tree edges and can

handle batch insertions. Therefore, this work illustrates a

new application of the “contraction” technique.

There are previous attempts for speeding up the algorithm

when there are few non-tree edges. In the dynamic SF
algorithm of Nanongkai and Saranurak [3] and the dyn-

amic MSF algorithm of Wulff-Nilsen [2], they both also

devised the algorithms that run on a graph with k non-

tree edges by extending the 2-dimensional topology tree of
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Frederickson [6]. The algorithms have O(
√
k) update time.

In the context of [3], [2], they have k = n1−ε0 for some

small constant ε0 > 0 where n is the number of nodes,

and hence O(
√
k) = O(n0.5−ε0/2). This eventually leads

to their dynamic SF and MSF algorithms with update time

n0.5−Ω(1).

In our application paper, we will have k = n1−o(1)

and the update time of O(
√
k) is too slow. Fortunately,

using the reduction from this section, we can reduce to the

problem where the algorithm runs on graphs with only O(k)
edges, and then recursively run our algorithm on that graph.

Together with other components, this finally leads to the

algorithm with subpolynomial update time.

See the full version of the paper for the proof of Theo-

rem VII.1.

VIII. MSF DECOMPOSITION

In this section, we show an improved algorithm for

computing a hierarchical decomposition of a graph called

MSF decomposition. This decomposition is introduced by

Wulff-Nilsen [2, Section 3.1] and it is the main subroutine in

the preprocessing algorithm of his dynamic MSF algorithm

and also of ours. Our improved algorithm has a better

trade-off between the running time and the “quality” of the

decomposition as will be made precise later. The improved

version is obtained simply by using the flow-based expansion
decomposition algorithm11 by Nanongkai and Saranurak [3]

as the main subroutine, instead of using diffusion/spectral-

based algorithms as in [2]. Moreover, as the expansion

decomposition algorithm is defined based on expansion and

not conductance, this is easier to work with and it simplifies

some steps of the algorithm.Before stating the main result

in Theorem VIII.3, we need the following definition:

Definition VIII.1 (Hierarchical Decomposition). For any
graph G = (V,E), a hierarchical decomposition H of G
is a rooted tree. Each node C ∈ H corresponds to some
subgraph of G which is called a cluster. There are two
conditions that H needs to satisfy: 1) the root cluster of
H corresponds to the graph G itself, 2) for each non-
leaf cluster C ∈ H, let {C ′i}i be the children of C. Then
vertices of {C ′i}i form a partition of vertices in C, i.e.
V (C) =

⋃̇
iV (C ′i). The root cluster is a level-1 cluster. A

child of level-i cluster is a level-(i + 1) cluster. The depth

of H is the depth of the tree. Let EC = E(C) − ⋃̇
iE(C ′i)

be the set of edges in C which are not edges in any of
C ′i’s. We call an edge e ∈ EC a C-own edge, and an edge
f ∈ E(C)− EC =

⋃̇
iE(C ′i) a C-child edge.

We note that, for any cluster C with a child C ′, it is

possible that E(C ′) is a proper subset of E(C[V (C ′)]). That

is, there might be some edge e = (u, v) ∈ E(C) where

11The expansion decomposition algorithm was used as a main prepro-
cessing algorithm for their dynamic SF algorithm.

u, v ∈ V (C ′) but e /∈ E(C ′). In other words, there can be

a C-own edge (u, v) where both u, v ∈ V (C ′). Observe the

following:

Fact VIII.2. Let H be a hierarchical decomposition of a
graph G = (V,E). Then

⋃̇
C∈HE

C = E.

Throughout this section, we assume that, in an input

graph with m-edge, the edges have distinct weights ran-

ging from number 1 to m. Throughout this section, let

γ = nO(
√

log logn/ logn) = no(1) where n is the number

of nodes in a graph. The main result of this section is the

below theorem:

Theorem VIII.3. There is a randomized algorithm called
MSF decomposition, MSFdecomp, which takes the follo-
wing as input:
• a connected graph G = (V,E,w) with n nodes, m

edges and max degree 3, where w : E → {1, . . . ,m}
is the weight function of edges in G,

• a failure probability parameter p ∈ (0, 1], a conduc-
tance parameter α ∈ [0, 1], and parameters d ≥ 3,
slow and shigh where shigh ≥ slow.

In time Õ(ndγ log 1
p ) where γ = nO(

√
log logn/ logn),

the algorithm returns (i) a graph G′ = (V,E,w′) with a
new weight function w′ : E → R and (ii) a hierarchical
decompositionH of the re-weighted graph G′ with following
properties:

1) For all e ∈ E, w′(e) ≥ w(e).
2) | {e ∈ E | w(e) �= w′(e)} | ≤ αdγn.
3) For any cluster C ∈ H and any set of ed-

ges D, MSF(C − D) =
⋃̇

C′:child of CMSF(C ′ −
D)∪̇(MSF(C −D) ∩ (EC −D)).

4) H has depth at most d.
5) A cluster C is a leaf cluster iff E(C) ≤ shigh.
6) Each leaf cluster contains at least slow/3 nodes.
7) For level i, |⋃̇C:non-leaf, level-iE

C | ≤ n/(d− 2) + αγn.
8) With probability 1−p, all non-root clusters C ∈ H are

such that φ(C) = Ω(α/slow).

We call the lower bound of conductance for all non-root

clusters is the conductance guarantee of the hierarchical

decomposition H, which is Ω(α/slow) in our algorithm.

Compared with the MSF decomposition algorithm in [2,

Section 3.1], our algorithm runs significantly faster and has

a better trade-off guarantee between conductance of the

cluster and the number of edges re-weighted. In particular,

the running time of our algorithm does not depends on the

conductance parameter α.

Now, we give some intuition why this decomposition

can be useful in our application. Given an input n-node

graph G, we set α = 1/γ3, d = γ, slow = γ, and

shigh = n/γ. The algorithm increases the weight of only

(1/γ)-fraction of edges resulting in the re-weighted graph

G′, and then it outputs the hierarchy decompositionH of G′.
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Property 3 of H is crucial and it implies that MSF(G′) =⋃̇
C∈H(MSF(C) ∩ EC), and this holds even after deleting

any set of edges. This suggests that, to find MSF(G), we

just need separately find MSF(C) ∩ EC , i.e., the C-own

edges that are in MSF(C), for every cluster C ∈ H. That

is, the task of maintaining the MSF is also “decomposed”

according the decomposition. Other properties are about

bounding the size of some sets of edges and the conductance

of clusters. These properties will allow our dynamic MSF
algorithm to have fast update time.

See the full version of the paper for the proof of Theo-

rem VIII.3.

IX. DYNAMIC MSF ALGORITHM

In this section, we prove the main theorem:

Theorem IX.1. There is a fully dynamic MSF algorithm
on an n-node m-edge graph that has preprocessing time
O(m1+O(

√
log logm/ logm) log 1

p ) = O(m1+o(1) log 1
p ) and

worst-case update time O(nO(log log logn/ log logn) log 1
p ) =

O(no(1) log 1
p ) with probability 1− p.

By using a standard reduction or a more powerful re-

duction from Theorem VII.1, it is enough to show the

following:

Lemma IX.2. There is a decremental MSF algorithm
A on an n-node m-edge graph G with max degree 3
undergoing a sequence of edge deletions of length T =
Θ(n1−O(log log logn/ log logn)). A has preprocessing time
O(n1+O(

√
log logn/ logn) log 1

p ) and worst-case update time
O(nO(log log logn/ log logn) log 1

p ) with probability 1− p.

We note that essentially all the ideas in this section, in par-

ticular the crucial definition of compressed clusters, already

appeared in Wulff-Nilsen [2]. In this section, we only make

sure that, with our improved tools from previous sections,

we can integrate all of them using the same approach as in

[2]. Obviously, the run time analysis must change because

our algorithm is faster and need somewhat more careful

analysis. Although the correctness follows as in [2], the

terminology changes a bit because MSF decomposition from

Theorem VIII.3 is presented in a more modular way.

The high-level idea in [2] of the algorithm A is simple.

To maintain MSF(G), we maintain a graph H , called the

sketch graph, where at any time MSF(G) = MSF(H) and

H contains only few non-tree edges with high probability.

Then we just maintain MSF(H) using another algorithm for

graphs with few non-tree edges. See the full version of the

paper for the proof of Lemma IX.2.

X. OPEN PROBLEMS

Dynamic MSF.
First, it is truly intriguing whether there is a deterministic

algorithm that is as fast as our algorithm. The current

best update time of deterministic algorithms is still Õ(
√
n)

[6], [8], [27] (even for dynamic connectivity). Improving

this bound to O(n0.5−Ω(1)) will already be a major result.

Secondly, can one improve the O(no(1)) update time to

O(polylog(n))? There are now several barriers in our appro-

ach and this improvement should require new ideas. Lastly,

it is also very interesting to simplify our algorithm.

Expander-related Techniques.
The combination of the expansion decomposition and

dynamic expander pruning might be useful for other dy-

namic graph problems. Problems whose static algorithms

are based on low-diameter decomposition (e.g. low-stretch

spanning tree) are possible candidates. Indeed, it is con-

ceivable that the expansion decomposition together with

dynamic expander pruning can be used to maintain low

diameter decomposition under edge updates, but additional

work maybe required.

Worst-case Update Time Against Adaptive Adversaries.
Among major goals for dynamic graph algorithm are

(1) to reduce gaps between worst-case and amortized
update time, and (2) to reduce gaps between update time of

algorithms that work against adaptive adversaries and those

that require oblivious adversaries. Upper bounds known for

the former case (for both goals) are usually much higher than

those for the latter. However, worst-case bounds are crucial

in real-time applications, and being against adversaries is

often needed when algorithms are used as subroutines of sta-

tic algorithms. Note that of course deterministic algorithms

always work against adaptive adversaries.

The result in this paper is a step towards both goals. The

best amortized bound for dynamic MSF is O(polylog(n))
[5], [17]. For dynamic SF problem, the result by [25],

[26] implies the current best algorithm against oblivious

adversaries with O(polylog(n)) worst-case update time. Our

dynamic MSF algorithm is against adaptive adversaries

and has O(no(1)) worst-case update time. This significantly

reduces the gaps on both cases.

It is a challenging goal to do the same for other fundamen-

tal problems. For example, dynamic 2-edge connectivity has

O(polylog(n)) amortized update time [5] but only O(
√
n)

worst-case bound [35], [8]. Dynamic APSP has Õ(n2)
amortized bound [36] but only Õ(n2+2/3) worst-case bound

[22]. There are fast algorithms against oblivious adversaries

for dynamic maximal matching [37], spanner [38], and

cut/spectral sparsifier [10]. It will be exciting to have algo-

rithms against adaptive adversaries with comparable update

time for these problems.
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