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Abstract—A pervasive task in the differential privacy lit-
erature is to select the k items of “highest quality” out of
a set of d items, where the quality of each item depends
on a sensitive dataset that must be protected. Variants of
this task arise naturally in fundamental problems like feature
selection and hypothesis testing, and also as subroutines for
many sophisticated differentially private algorithms.

The standard approaches to these tasks—repeated use of
the exponential mechanism or the sparse vector technique—
approximately solve this problem given a dataset of n =
O(

√
k log d) samples. We provide a tight lower bound for

some very simple variants of the private selection problem.
Our lower bound shows that a sample of size n = Ω(

√
k log d)

is required even to achieve a very minimal accuracy guarantee.
Our results are based on an extension of the fingerprinting

method to sparse selection problems. Previously, the finger-
printing method has been used to provide tight lower bounds
for answering an entire set of d queries, but often only some
much smaller set of k queries are relevant. Our extension allows
us to prove lower bounds that depend on both the number of
relevant queries and the total number of queries.

Keywords-Differential Privacy, Selection, Fingerprinting,
Multiple Hypothesis Testing, Top-k Problem

I. INTRODUCTION

This work studies lower bounds on the sample complexity

of differentially private selection problems. Informally, a

selection problem consists of a large number of items each

with a corresponding value and the task is to select a small

subset of those items with large values. In a private selection

problem, the values of the items depend on a dataset of

sensitive information that must be protected.

Selection problems appear in many natural statistical

problems, including private multiple hypothesis testing [1],

sparse linear regression [2], [3], finding frequent itemsets [4],

and as subroutines in algorithms for answering exponentially

many statistical queries [5], [6], [7], [8], [9], approximation

algorithms [10], and for establishing the generalization

properties of differentially private algorithms [11]. Selection

problems appear in many different guises. As we are proving

lower bounds, we consider the simplest possible form of

selection problems.

More specifically, we consider the following simple selec-

tion problem motivated by applications in feature selection

and hypothesis testing. There is an unknown probability

distribution P over {0, 1}d with mean p := E [P] ∈ [0, 1]d,

and our goal is to identify a set of coordinates whose mean

is large—that is, a set S ⊂ [d] of size k � d, such that pj

is large for all j ∈ S. To do this, we obtain n independent

samples X1, · · · , Xn ∈ {0, 1}d from P . However, each

Xi corresponds to the private data of an individual.1 To

protect this data, our procedure for selecting S using the data

X1, · · · , Xn should satisfy differential privacy [12], which is

a strong notion of privacy requiring that no individual sample

Xi has a significant influence on the set of coordinates S
that we select.

For example, suppose P represents a population of patients

suffering from some illness and each coordinate represents

the presence of absence of a certain genetic trait. It would be

useful for medical researchers to identify genetic traits that are

unusually common in this population, but it is also essential

not to reveal any individual’s genetic information. Thus the

researchers would like to obtain genetic data X1, . . . , Xn

from n random members of this population and run a

differentially private selection algorithm on this dataset.

Without privacy, it is necessary and sufficient to draw

n � log d samples from P , and compute X = 1
n

∑
i Xi.

This ensures that ‖X − p‖∞ is small with high probability,2

so large coordinates of X correspond to large coordinates

of p. We can ensure differential privacy by adding carefully

calibrated noise to the empirical mean X to obtain a noisy

empirical mean X̃ [13], [14], [15], [12]. Unfortunately, there

are strong lower bounds showing that, unless n �
√
d, there

is no differentially private algorithm whose output X̃ gives

a useful approximation to the population mean p [16], [17],

[18].

We can avoid this
√
d lower bound if we only want

to identify the k approximately largest coordinates of p,

rather than approximating all d values. Specifically, we

can use the exponential mechanism [19] to identify an

approximate largest coordinate of p, and then repeat on the

other coordinates. This algorithm provides non-trivial error

using just n �
√
k log d samples. This sample complexity is

also achieved by the sparse vector algorithm [20], [21, §3.6]

and report noisy max [21, §3.3].

1For clarity, we use superscripts to denote the index of a column or item
and subscripts to denote the index of a row or individual.

2More precisely, if n ≥ log(2d/β)

2α2 , then P
[‖X − p‖∞ ≤ α

] ≥ 1− β.
Since we are proving negative results, we focus on the low-accuracy regime
of α, β = Ω(1), where n = Θ(log d) samples are both necessary and
sufficient.
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Our first result shows that this sample-complexity is

essentially the best possible for the approximate top-k
selection problem, even if P is a product distribution.

Theorem 1 (Informal version of Corollary 13). Fix n, d, k ∈
N with k � d. Let M be a differentially private algorithm
that takes a dataset X ∈ ({0, 1}d)n of n samples, and
outputs an indicator vector M(X) ∈ {0, 1}d such that
‖M(X)‖1 = k. Suppose that for every product distribution
P over {0, 1}d,

E
X←Pn

M

⎡
⎣ ∑
j∈[d] : M(X)j=1

pj

⎤
⎦ ≥ max

t∈{0,1}d
‖t‖1=k

∑
j∈[d] : tj=1

pj − k

10
,

(1)

where p = E [P]. Then n = Ω(
√
k log d).

Observe that our lower bound applies whenever the error

is at most k/10, which is just slightly smaller than the

trivial error of k that can be obtained by selecting the first

k coordinates.Scaling with the Privacy and Accuracy Parameters.: For

simplicity, we suppress the dependence on the privacy and

accuracy parameters in Theorem 1. We assume constant error
1
10 per selected coordinate, and our lower bound applies to

algorithms satisfying (1, 1/nd)-differential privacy. Generic

reductions can be used to give the appropriate dependence

on these parameters in many cases (see e.g. [16], [17]).
Empirical Error vs. Population Error: In Theorem 1,

accuracy was defined with respect to the population mean

p = E [P]. This statistical framework is motivated by the

fact that we are interested in finding underlying patterns in

the population, rather than random empirical deviations.

We could equally well define accuracy with respect to

the empirical mean X = 1
n

∑
i Xi. Since E[‖X − p‖∞] ≤√

log(2d)
2n and we are interested in settings where n � log d,

these settings are equivalent.3 In particular, we can replace

the accuracy condition (1) in Theorem 1 with

E
M

⎡
⎣ ∑
j∈[d] : M(X)j=1

X
j

⎤
⎦ ≥ max

t∈{0,1}d
‖t‖1=k

∑
j∈[d] : tj=1

X
j − k

20
.

(2)

This empirical variant of the problem was first studied in a

very recent work by Bafna and Ullman [22]. They proved an

optimal lower bound for the empirical variant of the problem

in the regime where the error is very small. Specifically

they show that, if the empirical error is � k
√
log(d)/n

(i.e. a constant factor smaller than the sampling error), then a

dataset of size n = Ω(k log d) is necessary.4 However, their

3We need n � log d even in the non-private statistical setting to have
meaningful statistical accuracy. In the absence of privacy constraints, the
empirical accuracy guarantee can be satisfied for every n.

4The results of [22] actually use a slightly stronger accuracy requirement,

which requires that for every j ∈ [d], if M(X)j = 1 then X
(k) −X

j �√
log(d)/n where X

(k)
is the k-th largest entry of X . This technical

distinction is not crucial for this high-level discussion.

results do not give any lower bound for larger error, or for

the statistical problem of approximating the largest entries

of the population mean p. Indeed, their lower bounds hold

even for uniformly random datasets X . For these datasets we

can easily achieve empirical error k
√

2 log(d)/n and, since

p = ( 12 , . . . ,
1
2 ) is fixed, we can achieve population error

0. Thus, our lower bounds for large error are qualitatively

different from the lower bounds of [22] for small error.

Application to Multiple Hypothesis Testing: We can prove

an analogous lower bound for a related problem where we

do not have a fixed number of coordinates k that we want to

select, but instead we want to distinguish coordinates of p that

are larger than some threshold τ from those that are smaller

than some strictly lower threshold τ ′ < τ . This problem

is a special case of multiple hypothesis testing in statistics.

Without privacy it can be solved using just n = Oτ,τ ′(log d)
samples.

As before, we can use the exponential mechanism or the

sparse vector technique to obtain a private algorithm for this

problem. The algorithm uses n = Oτ,τ ′(
√
k log d) samples,

where k is an upper bound on the number of coordinates of

p that are above the threshold τ ′.5

Our second result shows that this sample complexity

is essentially optimal for the multiple hypothesis testing

problem, even if P is a product distribution.

Theorem 2 (Informal version of Corollary 14). Fix n, d, k ∈
N with k � d. There exist absolute constants τ, τ ′, ρ ∈ (0, 1),
τ ′ < τ such that the following holds. Let M be a differentially
private algorithm that takes a dataset X ∈ ({0, 1}d)n of n
samples, and outputs an indicator vector M(X) ∈ {0, 1}d.
Suppose that for every product distribution P over {0, 1}d
such that |{j : pj ≥ τ}| ≤ k,

1) pj ≤ τ ′ =⇒ P
X←Pn,M

[
M(X)j = 1

] ≤ ρk/d,

2) pj ≥ τ =⇒ P
X←Pn,M

[
M(X)j = 1

] ≥ 1− ρ,

where p = E [P]. Then n = Ω(
√
k log d).

As before, we remark that the fact that τ ′ = τ − Ω(1)
makes our lower bound stronger. Also, note that we allow

the probability of a false positive (pj ≤ τ ′ but M(X)j = 1)

to be as large as ρk/d, which means that in expectation there

can be as many as Ω(k) of these false positives. In contrast

there are only k true positives (pj ≥ τ and M(X)j = 1), so

our lower bound applies even to algorithms for which the

number of false positives is a constant fraction of the number

of true positives. The accuracy condition in Theorem 2 is

closely related to the false discovery rate, which is a widely

used statistical criterion introduced in the influential work of

Benjamini and Hochberg [23]. A recent work by Dwork, Su,

5We assume that the upper bound k is specified as part of the problem
input. If k is not specified, the problem and the accuracy guarantee can
be formulated differently, but this is not relevant for the current high-level
discussion.
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and Zhang [1] introduced the problem of privately controlling

the false discovery rate.

A. Techniques

Our techniques build on the recent line of work proving

lower bounds in differential privacy and related problems

via either fingerprinting codes or techniques inspired by

fingerprinting codes [16], [24], [25], [17], [18], [26]. Our

results follow from the following very general lower bound

that refines and generalizes several of the results from those

works.

Theorem 3 (Main Lower Bound). Let β, γ,Δ, k > 0 and
n, d ∈ N be a fixed set of parameters. Let P 1, · · · , P d be
independent draws from Beta(β, β) and let X ∈ ({0, 1}d)n
be a random dataset such that every Xj

i is independent
(conditioned on P ) and E[Xj

i ] = P j for every i ∈ [n] and
j ∈ [d].

Let M : ({0, 1}d)n → R
d be a (1, βγk/nΔ)-differentially

private algorithm and assume that M satisfies the conditions
E

P,X,M

[‖M(X)‖22
]
= k and ∀x P [‖M(x)‖1 ≤ Δ] = 1 and

the accuracy condition

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j ·
(
P j − 1

2

)⎤⎦ ≥ γk.

Then n ≥ γβ
√
k.

In our applications, γ = Ω(1) is a small constant, whereas

β = ω(1) is large, namely β = Θ(log(d/k)) for the top-

k lower bound. For the purposes of this introduction, it

suffices to know that Beta(α, β) is a family of probability

distributions over [0, 1] with mean α
α+β . For simplicity, we

restrict our attention to the symmetric case where α = β. The

distribution Beta(1, 1) is the uniform distribution on [0, 1]
and the distribution becomes more concentrated around 1/2
as β →∞, specifically the variance of Beta(β, β) is Θ( 1β ).
The necessary technical details about the beta distribution

are in Section II-C.

Observe that in our lower bound the population mean P
is itself random. If the population mean were fixed, then we

could obtain a private algorithm with perfect accuracy by

ignoring the sample and outputting a fixed function of P .

Thus to obtain lower bounds then we must assume that the

distribution P is chosen randomly and that M is accurate

for these distributions P .

We now describe informally how Theorem 3 implies

Theorem 1. First, observe that any algorithm for approximate

top-k selection by definition satisfies E
[‖M(X)‖22

]
= k,

since it outputs an indicator vector with exactly k non-zero

coordinates. By Theorem 3, to prove an n = Ω(
√
k log d)

lower bound, it suffices to show that for some β =
Ω(log d), if M solves the approximate top-k problem,

then E

[∑
j M(X)j · (P j − 1

2 )
]
= Ω(k). By the accuracy

assumption (1), it suffices to show

E
P

⎡
⎣ max

t∈{0,1}d
‖t‖1=k

∑
j:tj=1

(
P j − 1

2

)
− k

10

⎤
⎦ ≥ Ω(k). (3)

This is simply a property of the beta distribution and our

choice of β. We give a simple anti-concentration result for

beta distributions showing that the required bound (3) holds

for some choice of β = Ω(log d).
We remark that previous fingerprinting-based lower bounds

in differential privacy [16], [27], [28], [17], [18], [3] essen-

tially correspond to setting β = O(1) in Theorem 3. Thus

the key novelty of our result is that we obtain stronger lower

bounds by setting β = ω(1).
Overview of the Analysis: We will sketch the argument for

our lower bound in the case of approximate top-k selection.

Inspired by prior lower bounds [16], [17], [18], [22] we

consider the quantity

Z :=
∑
i∈[n]

〈M(X), (Xi−P )〉 = n·
⎛
⎝ ∑

j:M(X)j=1

X
j − P j

⎞
⎠ .

We then use the privacy and accuracy assumptions to establish

conflicting upper and lower bounds on the quantity E [Z].
Combining the two bounds yields the result.

Firstly, we use the differential privacy of M to get

an upper bound on E [Z]. Specifically, for any i ∈ [n],
M(X) should have approximately the same distribution as

M(X∼i), where X∼i is the dataset we obtain by replacing

Xi with an independent sample from P . However, Xi and

M(X∼i) are independent (conditioned on P ) and, there-

fore, E [〈M(X∼i), Xi − P 〉] = 0. By differential privacy,

E [〈M(X), Xi − P 〉] ≈ E [〈M(X∼i), Xi − P 〉] = 0. More

precisely, we obtain E [〈M(X), Xi − P 〉] ≤ O(
√
k) and,

thus, E[Z] ≤ O(n
√
k) (Lemma 8).

Secondly, if M(X) solves the approximate top-k selection

problem, then E[Z] must be large (Lemma 11). This is

the technical heart of our result and requires extending the

analysis of fingerprinting codes. We give some imprecise

intuition for why we should expect E [Z] ≥ Ω(kβ).
The beta distribution has the following “conjugate prior”

property. Suppose we sample P ← Beta(β, β), indepen-

dently sample Y1, . . . , Yn ∈ {0, 1} with mean P , and let

Y = 1
n

∑
i Yi. Then the conditional distribution of P given

Y is

(P | Y = y) ∼ Beta (β + ny, β + n(1− y)) ,

so that

E
[
P | Y = y

]
=

β + ny

2β + n
.

Thus, if y ≥ 1
2 +Ω(1), then

E
[
Y − P | Y = y

]
=

(2y − 1)β

2β + n
= Ω(β/n).
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We connect this back to Z by observing that, if M accurately

solves the approximate top-k selection problem, then it will

identify a set of k coordinates such that X
j
= 1

2 +Ω(1) on

average over the selected indices j. Applying this analysis

and summing over the k selected coordinates yields

1

n
E [Z] =E

⎡
⎣ ∑
j∈[d] : M(X)j=1

X
j − P j

⎤
⎦

≈k · E
[
X

j − P j

∣∣∣∣ Xj ≥ 1

2
+ Ω(1)

]
≥Ω(βk/n),

as desired. Unfortunately, our actual proof is somewhat more

technical and deviates significantly from this intuition, but

also gives a more versatile result.

Finally, combining the bounds Ω(kβ) ≤ E [Z] ≤ O(n
√
k)

yields n ≥ Ω(
√
kβ) (Theorem 3).

B. Relationship to Previous Lower Bounds and Attacks

Our argument is closely related to the work on tracing
attacks [29], [30], [16], [17], [18], [26], [31]. In a tracing

attack, the adversary is given (i) the output M(X) (where

X ← Pn consists of n independent samples of individuals’

data), (ii) an approximate population mean p ≈ E [P], and

(iii) the data Y of a “target” individual. The target individual

is either a random member of the dataset X or an independent

random sample from the population P , and the attacker’s

goal is to determine which of these two is the case. Although

we don’t state our attack in this model, our attack has

essentially this format. Specifically, we consider the quantity

Z = ZY,M(X),p = 〈M(X), Y − p〉. If Y ← P is a fresh

sample from the population, Z is zero in expectation and

small with high probability. Whereas, when Y = Xi for a

random i ∈ [n], Z is large in expectation, thus we have some

ability to distinguish between these two cases.

Another line of work proves lower bounds in differential

privacy via reconstruction attacks [13], [32], [33], [34],

[35], [36], [37]. At a high-level, in a reconstruction attack,

each sample Xi contains some public information and an

independent, random sensitive bit. The attacker is given

M(X) and the public information, and must determine the

sensitive bit for 99% of the samples. These attacks do not give

any asymptotic separations between the sample complexities

of private and non-private problems, because it is easy to

prevent reconstruction attacks without providing meaningful

privacy by simply throwing out half of the samples and then

running a non-private algorithm on the remaining samples.

This subsampling prevents reconstruction and only increases

the sample complexity by a factor of two compared to the

non-private setting.

The work of Bun, Ullman, and Vadhan [16] combines

tracing attacks with reconstruction attacks to prove tight lower

bounds for large, structured sets of queries (e.g. all k-wise

conjunctions). In particular, their work demonstrates that the

private multiplicative weights algorithm [7] is nearly optimal.

Since selection is a subroutine of private multiplicative

weights, this implies a lower bound for private selection.

However, this implicit lower bound for private selection

only holds in a complex adaptive setting [26], where the

algorithm must select k items one at a time and the values

of the available items change after each selection is made.

In contrast, our lower bound is stronger, as it holds for a

simple set of items with fixed values.
For the special case of pure differential privacy (i.e. (ε, δ)-

differential privacy with δ = 0) lower bounds can be proved

using the “packing” technique [38], [39], [40]. The sample

complexity of the top-k selection problem becomes n =
Θ(k log d) under pure differential privacy. (The upper bound

is still attained by repeated use of the exponential mechanism,

but the stricter privacy requirement changes the analysis and

increases the sample complexity.) Packing arguments do not

provide any non-trivial lower bounds for general differentially

private algorithms (i.e. (ε, δ)-differential privacy with δ > 0).

II. PRELIMINARIES

A. Notational Conventions
We will use the following notational conventions exten-

sively throughout our analysis. We use [n] = {1, 2, · · · , n}
to denote the first n natural numbers. We use X ← D to

denote that X is sampled from the probability distribution

D. We also use the shorthand X1···n ← D to denote

that X1, · · · , Xn are drawn independently from D. Given

a probability p ∈ [0, 1], we use the shorthand X ← p
to denote that X ← Bernoulli(p) is a sample from a

Bernoulli distribution. Likewise, X1···n ← p denotes that

X1, . . . , Xn are independent samples from Bernoulli(p). We

follow the convention that upper case (non-caligraphic)

letters represent random variables and lower case letters

represent their realizations. We will treat X ∈ ({0, 1}d)n
and X ∈ {0, 1}n×d equivalently. For i ∈ [n], j ∈ [d], we

will subscript Xi to denote the ith row, superscript Xj to

denote the jth column, and Xj
i to denote the entry in the ith

row and jth column, for i ∈ [n] and j ∈ [d]. We use log to

denote the natural logarithm, i.e. log(z) := loge(z).

B. Differential Privacy
A dataset x = (x1, . . . , xn) ∈ ({0, 1}d)n is an n × d

matrix. We say that two datasets x, x′ are neighbors if they

differ on at most one row.

Definition 4 (Differential Privacy [12]). Fix n, d ∈ N, ε, δ >
0. A (randomized) algorithm M : ({0, 1}d)n → R is (ε, δ)-
differentially private if, for every pair of neighboring datasets
x, x′, and every R ⊆ R,

P [M(x) ∈ R] ≤ eεP [M(x′) ∈ R] + δ.

This definition provides meaningful privacy roughly when

ε ≤ 1 and δ � 1
n [41]. Since our lower bounds allow for
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ε = 1 and δ almost as large as 1
n , they apply to nearly the

entire range of parameters for which differential privacy is

meaningful.

C. Beta Distributions

Our results make heavy use of the properties of beta

distributions. A beta distribution, denoted Beta(α, β), is a

continuous distribution on [0, 1] with two parameters α > 0
and β > 0 and probability density at p proportional to

pα−1(1− p)β−1. More precisely, the cumulative distribution

function is described by ∀α > 0 ∀β > 0 ∀p∗ ∈ [0, 1]

P
P←Beta(α,β)

[P ≤ p∗] =
∫ p∗

0

pα−1(1− p)β−1

B(α, β)
dp,

where B(α, β) :=
∫ 1

0
pα−1(1− p)β−1dp is the beta function.

For all α, β > 0,

E
P←Beta(α,β)

[P ] =
α

α+ β

and

Var
P←Beta(α,β)

[P ] =
αβ

(α+ β)2(α+ β + 1)
.

Note that Beta(1, 1) is simply the uniform distribution on

[0, 1], and Beta(β, β) becomes more concentrated around its

mean of 1/2 as β gets larger.

The key result we need is a form of anti-concentration for

beta distributions, which says that if we draw d independent

samples from a certain beta distribution with mean 1/2, then

in expectation the k largest samples are at least 3/4.

Proposition 5. Fix β > 0 and d, k ∈ N. Let P 1, · · · , P d

be independent samples from Beta(β, β). If k ≥ 1 and 1 ≤
β ≤ 1 + 1

2 log
(

d
8max{2k,28}

)
, then

E
P 1···d

⎡
⎣ max
s⊂[d] : |s|=k

∑
j∈s

P j

⎤
⎦ ≥ 3

4
k.

The above proposition follows from an anti-concentration

lemma for the beta distribution.

Lemma 6. For all β ≥ 1 and all p∗ ∈ [0, 1/2],

P
P←Beta(β,β)

[P > 1− p∗] = P
P←Beta(β,β)

[P < p∗]

≥ (4p∗(1− p∗))
β−1 p∗

β

≥p∗ · e(log(4p∗(1−p∗))−1)(β−1).

Proof of Lemma 6: The equality in the statement follows

from the fact that Beta(β, β) is symmetric around 1/2. Now

we prove the inequalities. We use two bounds: Firstly, p(1−
p) ≤ 1/4 for all p ∈ [0, 1]. Secondly, p(1− p) ≥ p(1− p∗)

for all p ∈ [0, p∗]. Thus

P
P←Beta(β,β)

[P < p∗] =

∫ p∗
0

(p(1− p))β−1dp∫ 1

0
(p(1− p))β−1dp

≥
∫ p∗
0

(p(1− p∗))β−1dp∫ 1

0
(1/4)β−1dp

=
(1− p∗)β−1

∫ p∗
0

pβ−1dp
(1/4)β−1

= (4(1− p∗))
β−1 pβ∗

β

= (4p∗(1− p∗))
β−1 p∗

β
=: fp∗(β).

This proves the first inequality. Now we prove the second

inequality by applying calculus to the function fp∗ we have

just defined.

We have fp∗(1) = p∗ and

f ′p∗(β) = (4p∗(1− p∗))
β−1 p∗

β

(
log(4p∗(1− p∗))− 1

β

)
≥fp∗(β) (log(4p∗(1− p∗))− 1) .

This differential inequation implies

fp∗(β) ≥ p∗e(log(4p∗(−p∗))−1)(β−1),

as required.

III. PROOF OF THE MAIN LOWER BOUND (THEOREM 3)

The goal of this section is to prove the following theorem

from the introduction.

Theorem 7 (Theorem 3 restated). Let β, γ,Δ, k > 0 and
n, d ∈ N be a fixed set of parameters. Let P 1, · · · , P d be
independent draws from Beta(β, β) and let X ∈ ({0, 1}d)n
be a random dataset such that every Xj

i is independent
(conditioned on P ) and E[Xj

i ] = P j for every i ∈ [n] and
j ∈ [d].

Let M : ({0, 1}d)n → R
d be a (1, βγk/nΔ)-differentially

private algorithm and assume that M satisfies the conditions
E

P,X,M

[‖M(X)‖22
]
= k and ∀x P [‖M(x)‖1 ≤ Δ] = 1 and

the accuracy condition

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j ·
(
P j − 1

2

)⎤⎦ ≥ γk.

Then n ≥ γβ
√
k.

For the remainder of this section, we will fix the following

parameters and variables. Fix β, γ, ε, δ,Δ > 0 and n, d ∈ N.

Let M : ({0, 1}d)n → R
d satisfy (ε, δ)-differential privacy.

Let P 1, · · · , P d ← Beta(β, β) be independent samples. De-

fine a random variable X ∈ ({0, 1}d)n to have independent

entries (conditioned on P ) where E[Xj
i ] = P j for all i ∈ [n]

and j ∈ [d].
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The crux of the proof is to analyze the expected value

of
∑

i∈[n],j∈[d] M(X)j(Xj
i − P j). To this end, for every

i ∈ [n] and j ∈ [d], we define the random variables

Zj
i =M(X)j · (Xj

i − P j), Zi =
∑
j∈[d]

Zj
i ,

Zj =
∑
i∈[n]

Zj
i , Z =

∑
i∈[n]
j∈[d]

Zj
i .

At a high level, we will show that when the size of the

dataset n is too small, we obtain contradictory upper and

lower bounds on E
P,X,M

[Z].

A. Upper Bound via Privacy

First we prove that (ε, δ)-differential privacy of M implies

an upper bound on E
P,X,M

[Z].

Lemma 8. Suppose that ‖M(X)‖1 ≤ Δ with probability 1.
Then

E
P,X,M

[Z] ≤ n

2
·
(
eε
√

E
P,X,M

[‖M(X)‖22] + Δδ

)
.

Proof: Fix i ∈ [n] and also fix the vector P ∈ [0, 1]d.

Since
∑

j∈[d] |M(X)j | ≤ Δ, we have

Zi =
∑
j∈[d]

M(X)j
(
P j − 1

2

)
≤ 1

2
Δ.

Let X∼i ∈ ({0, 1}d)n denote X with Xi replaced with

an independent draw from P . In particular, the marginal

distribution of X∼i is the same as X . However, conditioned

on P , Xi is independent from X∼i. By the differential privacy

assumption M(X) and M(X∼i) are indistinguishable. We

can use this fact to bound the expectation of Zi in the

following calculation.

E
X,M

[Zi] ≤ E
X,M

[max{0, Zi}]

=

∫ Δ/2

0

P
X,M

[Zi ≥ z]dz

=

∫ Δ/2

0

P
X,M

⎡
⎣∑
j∈[d]

M(X)j
(
Xj

i − P j
)
≥ z

⎤
⎦dz

(4)

Now, defining the event

T (z) :=

⎧⎨
⎩y ∈ R

d :
∑
j∈[d]

yj
(
Xj

i − P j
)
≥ z

⎫⎬
⎭ ,

we can apply (ε, δ)-differential privacy to (4) to obtain

(4)=

∫ Δ/2

0

P
X,M

[M(X) ∈ T (z)]dz

≤
∫ Δ/2

0

min

{
1, eε P

X,X∼i,M
[M(X∼i) ∈ T (z)] + δ

}
dz

=

∫ Δ/2

0

min

⎧⎨
⎩1, eεP

⎡
⎣∑

j

M(X∼i)j
(
Xj

i −P j
)
≥z

⎤
⎦+δ

⎫⎬
⎭ dz

(5)

Observe that in (5), M(X∼i) is independent of Xi, which

allows us to bound (5) as follows

(5)≤
∫ Δ/2

0

eεP

⎡
⎣∑
j∈[d]

M(X∼i)j
(
Xj

i −P j
)
≥z

⎤
⎦+δ dz

= eεE

⎡
⎣max

⎧⎨
⎩0,

∑
j∈[d]

M(X∼i)j
(
Xj

i −P j
)⎫⎬
⎭
⎤
⎦+Δ

2
δ

≤ eε

√√√√√√E

⎡
⎢⎣
⎛
⎝∑

j∈[d]
M(X∼i)j

(
Xj

i − P j
)⎞⎠

2
⎤
⎥⎦+Δ

2
δ

= eε

√√√√√ E
X∼i,M

⎡
⎣∑

j

(M(X∼i)j)2 E
Xi

[(
Xj

i −P j
)2]⎤⎦+Δ

2
δ

≤ eε

√√√√√ E
X∼i,M

⎡
⎣∑
j∈[d]

(M(X∼i)j)2
1

4

⎤
⎦+

1

2
Δδ

= eε
1

2

√
E

X,M
[‖M(X)‖22] +

1

2
Δδ.

Finally, we sum over i and average over P to obtain

E
P,X,M

[Z] ≤n · E
P

[
eε

1

2

√
E

X,M
[‖M(X)‖22] +

1

2
Δδ

]

≤n ·
(
eε

1

2

√
E

P,X,M
[‖M(X)‖22] +

1

2
Δδ

)
,

where the final inequality follows from Jensen’s inequality

and the concavity of the function x �→ √
x.

B. Lower Bound via Accuracy

The more involved part of the proof is to use the accuracy

assumption

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j ·
(
P j − 1

2

)⎤⎦ ≥ γ· E
P,X,M

[‖M(X)‖22
]
.

to prove a lower bound on E
P,X,M

[Z]. In order to do so we

need to develop a technical tool that we call a “fingerprinting

lemma,” which is a refinement of similar lemmas from

557



prior work [17], [18], [26] that more carefully exploits the

properties of the distribution P .

Fingerprinting Lemma: To keep our notation compact,

throughout this section we will use the shorthand X1···n ← p
to denote that X1, X2, · · · , Xn ∈ {0, 1} are independent

random variables each with mean p.

Lemma 9 (Rescaling of [25], [18]). Let f : {0, 1}n → R.
Define g : [0, 1]→ R by

g(p) = E
X1···n←p

[f(X)].

Then

E
X1···n←p

⎡
⎣f(X)

∑
i∈[n]

(Xi − p)

⎤
⎦ = p(1− p)g′(p)

for all p ∈ [0, 1].

Proof of Lemma 9: Firstly, P
X←p

[X = 1] = p and

P
X←p

[X = 0] = 1− p. Thus

p(1− p)
d

dp
P

X←p
[X = 1] = p(1− p) = (1− p) P

X←p
[X = 1]

(6)

and

p(1−p) d

dp
P

X←p
[X = 0] = −p(1−p) = (0−p) P

X←p
[X = 0].

(7)

Hence

p(1− p)g′(p)

= p(1− p)
d

dp

∑
x∈{0,1}n

P
X1···n←p

[X = x]f(x)

=
∑

x∈{0,1}n
f(x)p(1− p)

d

dp

∏
i∈[n]

P
X←p

[X = xi]

=
∑

x∈{0,1}n
f(x)

∑
i∈[n]

⎛
⎝ ∏

j∈[n]\{i}
P

X←p
[X = xj ]

⎞
⎠

·
(
p(1− p)

d

dp
P

X←p
[X = xi]

)

=
∑

x∈{0,1}n
f(x)

∑
i∈[n]

⎛
⎝ ∏

j∈[n]\{i}
P

X←p
[X = xj ]

⎞
⎠

(by (6) and (7)) ·
(
(xi − p) P

X←p
[X = xi]

)

=
∑

x∈{0,1}n
f(x)

∑
i∈[n]

(xi − p)

⎛
⎝∏

j∈[n]
P

X←p
[X = xj ]

⎞
⎠

= E
X1···n←p

⎡
⎣f(X)

∑
i∈[n]

(Xi − p)

⎤
⎦.

Lemma 10. Let f : {0, 1}n → R and let α, β > 0. Define
g : [0, 1]→ R by

g(p) = E
X1···n←p

[f(X)].

Then

E
P←Beta(α,β)
X1···n←P

⎡
⎣f(X)

∑
i∈[n]

(Xi − P )

⎤
⎦

= (α+ β) E
P←Beta(α,β)

[
g(P )

(
P − α

α+ β

)]
.

This is the form of the lemma we use. Note that E [P ] =
α/(α+ β).

Proof of Lemma 10: The proof is a calculation using

integration by parts. Using Lemma 9 and the fundamental

theorem of calculus, we have

E
P←Beta(α,β)
X1···n←P

⎡
⎣f(X)

∑
i∈[n]

(Xi − P )

⎤
⎦

= E
P←Beta(α,β)

[P (1− P )g′(P )]

=

∫ 1

0

p(1− p)g′(p) · p
α−1(1− p)β−1

B(α, β)
dp

=
1

B(α, β)

∫ 1

0

g′(p) · pα(1− p)βdp

=
1

B(α, β)

∫ 1

0

(
d
dp

(
g(p) · pα(1− p)β

)
−g(p) · d

dp

(
pα(1− p)β

)
)
dp

=
1

B(α, β)

(
g(1) · 1α(1− 1)β − g(0) · 0α(1− 0)β

)
− 1

B(α, β)

∫ 1

0

g(p) · d

dp

(
pα(1− p)β

)
dp

=
−1

B(α, β)

∫ 1

0

g(p) · (α− (α+ β)p)pα−1(1− p)β−1)dp

= E
P←Beta(α,β)

[g(P )((α+ β)P − α)].

This completes the proof.

Using the Fingerprinting Lemma: Now we can use Lemma

10 to prove a lower bound

Lemma 11.

E
P,X,M

[Z] ≥ 2β E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j
(
P j − 1

2

)⎤⎦
Proof of Lemma 11: Fix a column j ∈ [d]. Define

f : {0, 1}n → [0, 1] and g : [0, 1]→ [0, 1] to be

f(xj) := E
P−j ,X−j

[
M(x−j‖Xj)j

]
and define g to be

g(pj) := E
P−j ,Xj

1...n∼P j

[
f(Xj)

]
.
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That is f(x) is the expectation of M(X)j conditioned on

Xj = x, where the expectation is over the randomness of

M and the randomness of P j′ and Xj′ for j′ �= j. Similarly

g(p) is the expectation of M(X)j conditioned on P j = p,

where the expectation is over M and P j′ and Xj′ for j′ �= j
and also over Xj . Now we can calculate

E
P,X,M

[
Zj
]
= E

P,X,M

⎡
⎣M(X)j

∑
i∈[n]

(Xj
i − P j)

⎤
⎦

= E
Pj←Beta(β,β)

X
j
1···n←Pj

⎡
⎣f(Xj)

∑
i∈[n]

(Xj
i − P j)

⎤
⎦

= 2β E
P j←Beta(β,β)

[
g(P j)

(
P j − 1

2

)]
(Lemma 10)

= 2β E
Pj←Beta(β,β)

X
j
1···n←Pj

[
f(Xj)

(
P j − 1

2

)]

= 2β E
P,X,M

[
M(X)j

(
P j − 1

2

)]
,

The result now follows by summation over j ∈ [d].

C. Putting it Together

We can now combine the upper bound (Lemma 8) and

the lower bound (Lemma 11) that we’ve proven on the

expectation of Z to complete the proof of Theorem 3.

Proof of Theorem 3: By our accuracy assumption and

Lemmas 11 and 8,

2βγ · E
P,X,M

[‖M(X)‖22
]

≤ 2β E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j
(
P j − 1

2

)⎤⎦
≤ E

P,X,M
[Z]

≤ n

2
· eε
√

E
P,X,M

[‖M(X)‖22] +
n

2
Δδ.

This implies

n ≥
4βγ E

P,X,M

[‖M(X)‖22
]− nΔδ

eε
√

E
P,X,M

[‖M(X)‖22]

≥3βγ

e

√
E

P,X,M
[‖M(X)‖22]

≥βγ
√
k,

where the final inequality follows from E
P,X,M

[‖M(X)‖22
]
=

k, ε = 1, and δ = βγk/nΔ.

IV. USING OUR LOWER BOUND

In this section we show how to apply the lower bound of

Theorem 3 to natural problems, and thereby prove Theorems

1 and 2 from the introduction. We can also use it to derive

known lower bounds for releasing the dataset mean [16],

[17], [18], which we detail in Section IV-C.

A. Application to Approximate Top-k Selection

We first state an upper bound for the top-k selection

problem:

Theorem 12. Fix d, k ∈ N and α, ε, δ > 0. For every
n ≥ 1

αε

√
8k log( e

ε

δ ) log(d), there is an (ε, δ)-differentially
private algorithm M : ({0, 1}d)n → {0, 1}d such that for
every x ∈ ({0, 1}d)n, such that

E
M

⎡
⎣∑
j∈[d]

M(x)jxj

⎤
⎦ ≥ max

s⊂[d]:|s|=k

∑
j∈s

xj − αk.

This theorem follows immediately by using the exponential

mechanism [19] (see [21, Theorem 3.10] and [11, Lemma

7.1] for the analysis) to repeatedly “peel off” the column of

x with the approximately largest mean xj , and applying the

composition theorem for differential privacy [12], [42], [43].

Alternatively, Theorem 12 can provide ρ-concentrated

differential privacy [43] (instead of (ε, δ)-differential privacy)

for n ≥ log d
α

√
2k
ρ (with the same accuracy guarantee).

Using Theorem 3 we can obtain a nearly matching lower

bound that is tight up to a factor of O(
√

log(1/δ)) in most

parameter regimes.6 The lower bound actually holds even

for algorithms M that provide just average case accuracy

guarantees.

Corollary 13. Fix n, d, k ∈ N with d ≥ max{16k, 224}.
Set β = 1 + 1

2 log
(

d
8max{2k,28}

)
. Let P 1, · · · , P j be

independent draws from Beta(β, β) and let X ∈ ({0, 1}d)n
be such that each Xj

i is independent (conditioned on P )
and E

[
Xj

i

]
= P j for all i ∈ [n] and j ∈ [d]. Let

M : ({0, 1}d)n → {0, 1}d be (1, 3β/20n)-differentially
private. Suppose ‖M(x)‖1 = ‖M(x)‖22 = k for all x with
probability 1. Suppose

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)jP j

⎤
⎦ ≥ E

P

⎡
⎣ max
s⊂[d]:|s|=k

∑
j∈s

P j

⎤
⎦− k

10
.

Then n ≥ 3
40

√
k log( d

16k+208 ).

Although Corollary 13 is stated for accuracy guarantees

that hold with respect to the population mean P , since

6The lower bound can be made to include a log(1/δ) factor using a
group privacy reduction [17]. For the sake of clarity, we do not delve into
this issue.
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E
X

[‖X − P‖∞
] ≤ √ log(2d)

2n , we can replace the accuracy

condition with

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)jX
j

⎤
⎦

≥ E
P,X

⎡
⎣ max
s⊂[d]:|s|=k

∑
j∈s

X
j

⎤
⎦− k

(
1

10
−
√

2 log(2d)

n

)

to get a theorem that is more directly comparable to Theorem

12.

Proof of Corollary 13: By Proposition 5 and our choice

of β,

E
P 1···d

⎡
⎣ max
s⊂[d] : |s|=k

∑
j∈s

P j

⎤
⎦ ≥ 3

4
k.

Thus

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j
(
P j − 1

2

)⎤⎦
≥ 1

4
k − k

10
=

3

20
E

P,X,M

[‖M(X)‖22
]
.

Thus, by Theorem 3,

n ≥ β
3

20

√
k =

3

20

√
k

(
1 +

1

2
log

(
d

8max{2k, 28}
))

.

This completes the proof.

B. Application to Multiple Hypothesis Testing

Corollary 14. Fix n, d, k ∈ N with d ≥ 16k ≥ 32. Set
β = 1+ 1

2 log
(

d
16k

)
. Let P 1, · · · , P j be independent draws

from Beta(β, β) and let X ∈ ({0, 1}d)n be such that each
Xj

i is independent (conditioned on P ) and E

[
Xj

i

]
= P j

for all i ∈ [n] and j ∈ [d]. Let M : ({0, 1}d)n → {0, 1}d
be (1, 1/8nd)-differentially private. Suppose that M is such
that for every j,

(1) P j ≤ 7
8 − 3

16 =⇒ P
X,M

[
M(X)j = 1

] ≤ k
16d , and

(2) P j ≥ 7
8 =⇒ P

X,M

[
M(X)j = 1

] ≥ 1− 1
16 ,

then n ≥ 1
16

√
k log( d

16k ).

The assumptions of the theorem may seem a bit confusing,

so we will clarify a bit. Note that for every j ∈ [d] we have

P
[
P j > 7

8

] ≥ 2k
d (Lemma 6), so in expectation there are

at least 2k such values P j . Thus, the second assumption

implies that on average M(X)j must have at least 30
16k

non-zero entries. Thus, the parameter k plays roughly the

same role in this problem as it does for the top-k selection

problem. Furthermore, since P 1, · · · , P d are independent,∣∣{j ∈ [d] : P j > 7
8

}∣∣ concentrates around its expectation.

Proof of Corollary 14: First, we can lower bound the

expected norm of M(X) by

E
P,X,M

[‖M(X)‖22
]

= E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j

⎤
⎦

=
∑
j∈[d]

P
P,X,M

[
M(X)j = 1

]
(M(X)j ∈ {0, 1})

≥
∑
j∈[d]

P
P

[
P j ≥ 7

8

]
· P
P,X,M

[
M(X)j = 1 | P j ≥ 7

8

]

≥
∑
j∈[d]

2k

d
· 15
16

(Lemma 6 and Assumption 2)

≥ k

We need to relate this quantity to

E

[∑
j M(X)j(P j − 1

2 )
]
. As a shorthand, let

τ := 7
8 − 3

16 = 11
16 be the constant from assumption

2. We start by writing

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j
(
P j − 1

2

)⎤⎦
=
∑
j∈[d]

E
P,X,M

[
M(X)j

(
P j − 1

2

)]

=
∑
j∈[d]

P
P

[
P j ≤ τ

] · (Aj) + P
P

[
P j > τ

] · (Bj)

where we define

(Aj) := E
P,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣ P j ≤ τ

]

(Bj) := E
P,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣ P j > τ

]
We will manipulate each of the three terms separately. First,

for (Aj), using our first assumption on M we can calculate

(Aj) = E
P,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣ P j ≤ τ

]

≥ E
P,X,M

[
M(X)j

∣∣ P j ≤ τ
] · (0− 1

2

)
(M(X)j ≥ 0)

= E
P,X,M

[
M(X)j

∣∣ P j ≤ τ
] · (τ − 1

2

)
− τ · E

P,X,M

[
M(X)j

∣∣ P j ≤ τ
]

≥ E
P,X,M

[
M(X)j

∣∣ P j ≤ τ
] · (τ − 1

2

)
− τ · k

16d
(Assumption 1)

≥ E
P,X,M

[
M(X)j

∣∣ P j ≤ τ
] · (τ − 1

2

)
− k

16d
(τ ≤ 1)
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And, for (Bj), we can calculate

(Bj) = E
P,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣ P j > τ

]

≥ E
P,X,M

[
M(X)j

∣∣ P j > τ
] · (τ − 1

2

)

Combining our inequalities for (Aj) and (Bj) we have

∑
j∈[d]

P
P

[
P j ≤ τ

] · (Aj) + P
P

[
P j > τ

] · (Bj)

≥
∑
j∈[d]

E
P,X,M

[
M(X)j

](
τ − 1

2

)
− k

16d

=

(
τ − 1

2

)
· E
P,X,M

[‖M(X)‖22
]− k

16
(M(X)j ∈ {0, 1})

≥
(
τ − 1

2
− 1

16

)
· E
P,X,M

[‖M(X)‖22
]

(E
[‖M(X)‖22

] ≥ k)

=
1

8
· E
P,X,M

[‖M(X)‖22
]

(τ = 11
16 )

Applying Theorem 3 completes the proof.

C. Releasing the Dataset Mean

To illustrate the versatility of Theorem 3, we show how it

implies known lower bounds for releasing the mean of the

dataset [16], [17], [18].

Corollary 15. Let M : ({0, 1}d)n → [0, 1]d be (1, 1/10n)-
differentially private. LetP 1, · · · , P j be independent draws
from the uniform distribution on [0, 1] and let X ∈ ({0, 1}d)n
be such that each Xj

i is independent (conditioned on P )
and E

[
Xj

i

]
= P j for all i ∈ [n] and j ∈ [d]. Assume

E
P,X,M

[‖M(X)− P‖22
] ≤ α2d. If α ≤ 1/18, then n ≥

√
d/5.

Note that we can use empirical values X =
1
n

∑
i∈[n] Xi instead of population values P , as we have

E
P,X

[‖X − P‖22
]

= 1
n

∑
j∈[d] EP

[
P j(1− P j)

] ≤ d
4n . In

this case the accuracy assumption would be replaced with

E
P,X,M

[‖M(X)−X‖22
] ≤ (α2 − 1

4n )d

Proof: Let k = E
P,X,M

[‖M(X)‖22
]
. We have

|k − d/3|
=

∣∣∣∣ E
P,X,M

[‖M(X)‖22 − ‖P‖22
]∣∣∣∣

=

∣∣∣∣ E
P,X,M

[(‖M(X)‖2 − ‖P‖2) (‖M(X)‖2 + ‖P‖2)]
∣∣∣∣

≤
∣∣∣∣ E
P,X,M

[
‖M(X)− P‖2 · 2

√
d
]∣∣∣∣

≤ 2
√

d E
P,X,M

[‖M(X)− P‖22]

≤ 2αd.

So d(1/3− 2α) ≤ k ≤ d(1/3 + 2α). Furthermore,

E
P,X,M

⎡
⎣∑
j∈[d]

M(X)j ·
(
P j − 1

2

)⎤⎦

= E
P,X,M

⎡
⎣∑
j∈[d]

P j ·
(
P j − 1

2

)⎤⎦

− E
P,X,M

⎡
⎣∑
j∈[d]

(P j −M(X)j) ·
(
P j − 1

2

)⎤⎦

≥ d

4
−

√√√√√ E
P,X,M

⎡
⎣∑
j∈[d]

(P j −M(X)j)2

⎤
⎦

·

√√√√√ E
P,X,M

⎡
⎣∑
j∈[d]

(
P j − 1

2

)2
⎤
⎦ (Cauchy-Schwartz)

≥ d

4
−
√
α2d ·

√
d

4

= d

(
1

4
− α

2

)

≥ 1

2
d

(
1

3
+ 2α

)

≥ 1

2
k,

as long as α ≤ 1/18. Hence, if α ≤ 1/18, by Theorem 3

(with β = 1 and γ = 1/2), we have

n ≥ 1

2

√
k ≥

√
d/3− 2αd

2
≥
√

2
9d

2
≥
√
d

5
.

This completes the proof.
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