
Deterministic search for CNF satisfying assignments in almost polynomial time

Rocco A. Servedio

Department of Computer Science
Columbia University

New York, USA
rocco@cs.columbia.edu

Li-Yang Tan

Toyota Technological Institute at Chicago
Chicago, USA

liyang@cs.columbia.edu

Abstract—We consider the fundamental derandomization
problem of deterministically finding a satisfying assignment
to a CNF formula that has many satisfying assignments. We
give a deterministic algorithm which, given an n-variable
poly(n)-clause CNF formula F that has at least ε2n satisfying
assignments, runs in time

nÕ(log logn)2

for ε ≥ 1/polylog(n) and outputs a satisfying assignment
of F . Prior to our work the fastest known algorithm for
this problem was simply to enumerate over all seeds of a
pseudorandom generator for CNFs; using the best known
PRGs for CNFs [DETT10], this takes time nΩ̃(logn) even for
constant ε. Our approach is based on a new general framework
relating deterministic search and deterministic approximate
counting, which we believe may find further applications.

Keywords-Unconditional derandomization; CNF satisfiabil-
ity; deterministic approximate counting

I. INTRODUCTION

Understanding the role of randomness in efficient com-

putation has been a major focus of complexity theory

over the past several decades. In particular, much effort

has been dedicated to developing general techniques for

unconditional derandomization, i.e. methods of constructing

efficient deterministic algorithms (that do not rely on any

unproven hardness assumptions) for computational prob-

lems that are known to have efficient randomized algo-

rithms. Notable successes have been achieved in this line

of work: pseudorandom generators with highly non-trivial

seed length, and much-faster-than-brute-force deterministic

approximate counting algorithms, are now known for many

function classes such as those defined by logarithmic space,

small-depth circuits, sparse and low-degree F2 polynomi-

als, various classes of branching programs, functions of a

few halfspaces, low-degree polynomial threshold functions,

and more (see e.g. [AW85], [Nis91], [LVW93], [NW94],

[LV96], [SZ99], [Tre04], [Bra10], [RS10], [GOWZ10],

[DGJ+10], [DKN10], [GKM+11], [GMR+12], [IMZ12],

[Kan12], [MZ13], [TX13], [DS14], [BRRY14], [HS16] and

many other works).

While striking progress has thus been made, there remain

fundamental gaps in our understanding of the overarch-

ing question in unconditional derandomization: can every

randomized algorithm be made deterministic with only a

polynomial slowdown? In particular, while highly non-trivial

results have been achieved for the classes mentioned above,

a “full derandomization”—i.e. a deterministic algorithm run-

ning in polynomial time, as opposed to, say, quasipolynomial

time—remains elusive even for some of the simplest classes

of functions. (Even for the class of linear threshold functions,

a full derandomization was only achieved in relatively recent

work [RS10], [GKM+11].)
The question we consider: Perhaps the most basic full

derandomization problem that remains open is the CNF
search problem:

Input: An n-variable M -clause CNF formula F
that is promised to have many, say at least ε2n,

satisfying assignments.

Goal: Output any satisfying assignment of F .

Using randomness it is easy to find a satisfying assign-

ment with high probability simply by sampling O(1/ε)
many assignments and evaluting F on each one. Is there a

polynomial-time deterministic algorithm? This problem was

first considered by Ajtai and Wigderson in their pioneering

work [AW85] on unconditional derandomization, in which

they gave the first non-trivial (subexponential-time) deter-

ministic algorithm for the problem.

A. Prior results and related work

We briefly recall the prior state of the art for this and

related problems.
Pseudorandom generators and hitting sets for CNFs:

Prior to our work the fastest known algorithm was simply to

enumerate over all seeds of a pseudorandom generator G that

ε-fools the class of M -clause n-variable CNF formulas; the

definition of a pseudorandom generator immediately implies

that some seed string y will have F (G(y)) = 1. Using

the best known construction of ε-PRGs for M -clause n-

variable CNFs [DETT10], this gives an algorithm running

in time poly(n) · (M/ε)Õ(log(M/ε)). We observe that this

PRG-based approach is oblivious to the input formula F ,

and can be used even if F is only provided as a black-

box oracle instead of an explicit CNF formula. While this

may be viewed as an advantage, it also suggests that non-

oblivious approaches which exploit the structure of the input

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.80

813

formula F may be able to achieve faster runtimes. We further

observe that only an ε-hitting set for CNFs rather than an

ε-PRG is required for this oblivious approach, but the best

known explicit construction of hitting sets for general CNFs

is simply the [DETT10] PRG. We recall that a seemingly-

modest improvement of the [DETT10] PRG’s seed length

from Õ(log2(M/ε)) to O(log1.99(M/ε)), even for ε-hitting

sets, would improve state-of-the-art lower bounds against

depth-three circuits, breaking a longstanding barrier in cir-

cuit complexity. (For the special case of read-once CNF

formulas, Sı́ma and Zák [SZ10] have given an ε-hitting set

of poly(n) size for ε > 5/6, and Gopalan et al. [GMR+12]

have given an ε-PRG with seed length Õ(log(n/ε)).)

The work of Goldreich and Wigderson: Recently, Gol-

dreich and Widgderson [GW14] initiated the study of deter-

ministic search in the regime where ε is extremely close to

1, a relaxation of the standard regime where we typically

think of ε = 1/2 or ε = o(1). As one of their main results,

they give a polynomial-time deterministic search algorithm

for AC0 circuits when ε ≥ 1 − 2n
0.99

/2n. For the special

case of M -clause n-variable CNF formulas (the subject of

this work), they observe that if ε ≥ 1 − 1/(4M) then

any δ = 1/(4M)-biased sample space over {0, 1}n must

contain a satisfying assignment of F . Since well-known

deterministic algorithms [NN93], [AGHP92] can enumerate

all poly(n/δ) elements of such a sample space in poly(n/δ)
time, this gives a poly(n,M) time algorithm in this special

case. (As they note in their paper, this observation is already

implicit in the work of [GMR+12].)

Deterministic approximate counting and answering
Trevisan’s question: While the PRG-based approach de-

scribed above is the most efficient algorithm known for

deterministic CNF search, a more efficient algorithm is

known for deterministic approximate counting of CNF sat-

isfying assignments. Building on early work of Luby and

Veličković [LV96], Gopalan, Meka, and Reingold [GMR13]

gave a deterministic algorithm which, given as input an M -

clause n-variable CNF F and a parameter ε > 0, runs

in time (Mn/ε)Õ(log logn+log logM+log(1/ε)) and outputs an

(additive) ε-accurate estimate of the fraction of assignments

that satisfy F .

Trevisan [Tre10] has remarked that it is curious that

this deterministic approximate counting algorithm—which

in particular yields a certificate that F has at least Ω(ε2n)
satisfying assignments—does not yield a comparably effi-

cient algorithm to find a satisfying assignment. In [Tre10]

he posed the problem of developing a deterministic search

algorithm running in time comparable to that of determin-

istic approximate counting algorithms. Our work gives a

positive solution to this problem (though it should be noted

that our search algorithm’s exponent is roughly quadratic in

the exponent of the [GMR13] counting algorithm).

B. Our main result and approach

We give a deterministic CNF search algorithm that runs

in almost polynomial time:

Theorem 1. There is a deterministic algorithm which, when
given as input an M -clause CNF formula F over {0, 1}n
that has |F−1(1)| ≥ ε2n, runs in time(

Mn

ε

)Õ(log log(Mn)+log(1/ε))2

and outputs a satisfying assignment of F .

For the case when M = poly(n) and ε ≥ 1/polylog(n),

the running time of our algorithm is nÕ(log logn)2 . As

discussed above, the previous fastest algorithm takes time

nΩ̃(logn) when M = poly(n), even for constant ε.

Our approach is based on a new general framework for

obtaining deterministic search algorithms from deterministic

approximate counting algorithms (given a few additional

ingredients). Roughly speaking, this approach is an exten-

sion of the generic naive reduction described in the next

subsection; while the naive reduction constructs a satisfying

assignment one coordinate at a time, our approach assigns a

whole block of coordinates at each iteration as described in

Section I-B2 below. We are optimistic that this framework

may find further applications for other deterministic search

problems.

1) Warm up: a simple and naive search algorithm based
on approximate counting: To motivate our approach, we

begin by considering a very simple and naive way of ob-

taining a deterministic search algorithm from a deterministic

approximate counting algorithm. (We will specialize our

discussion to the class of CNF formulas, but the generic

reduction we describe here relates these two derandom-

ization tasks for all function classes.) Suppose we have

a deterministic approximate counting algorithm Acount for

the class of CNF formulas: given as input an M -clause

CNF formula F over {0, 1}n, this algorithm Acount runs

in time T (n,M, δ) and outputs an (additive) δ-accurate

estimate of Pr[F (x) = 1]. Then this immediately yields,

in a black-box manner, a deterministic search algorithm

Asearch with the following performance guarantee: given as

input an M -clause CNF formula F over {0, 1}n that has

|F−1(1)| ≥ ε2n, the algorithm Asearch runs in time

T (n,M, ε/(4n)) · 2n (1)

and outputs a satisfying assignment of F . The argu-

ment follows the standard n-stage decision-to-search re-

duction; in the (i + 1)-st stage, after the first i bits

(z1, . . . , zi) ∈ {0, 1}i have been obtained, the al-

gorithm runs Acount with accuracy parameter δ :=
ε/(4n) both on F (z1, . . . , zi, 0, xi+1, . . . , xn) and on

F (z1, . . . , zi, 1, xi+1, . . . , xn), and takes as the next coor-

dinate zi+1 the bit corresponding to the higher output value

814

from Acount. A straightforward induction shows that for all

i ∈ [n] we have

E
[
F (z1, . . . , zi,xi+1, . . . ,xn)

] ≥ E
[
F (x1, . . . ,xn)

]−2i·δ,
so the final string (z1, . . . , zn) satisfies E[F (z1, . . . , zn)] ≥
ε− ε

2 > 0 and hence F (z1, . . . , zn) = 1.
However, instantiating this approach with the best

known deterministic approximate counting algorithm due to

Gopalan, Meka, and Reingold [GMR13], which runs in time

T (m,M, δ) = (Mn/δ)Õ(log logn+log logM+log(1/δ)),

we see that the running time (1) evaluates to

(Mn/ε)Õ(log(n/ε)+log logM).

This is nΩ̃(logn) when M = poly(n) (even for constant

ε), which is no improvement over the trivial PRG-based

algorithm. The crux of the problem with this naive approach

is that we cannot afford to run the [GMR13] approximate

counting algorithm to such high accuracy, δ = O(ε/n).

2) Our approach: a more efficient reduction: At the

highest level, our search algorithm shares the same overall

structure as the naive bit-by-bit approach sketched above.

Our algorithm is recursive in nature and uncovers a satisfy-

ing assignment of F in a stage-wise manner: in each stage

we run a deterministic approximate counting algorithm on

subfunctions of F , and we recurse on the one for which

our estimate of its fraction of satisfying assignments is the

largest. However, instead of uncovering a single coordinate

of a satisfying assignment per stage, our algorithm uncovers

a p fraction of the remaining coordinates per stage where

p� 1/n. (In our analysis p = exp(−Θ(log log(Mn/ε))2),
though its precise value is unimportant for the rest of this

high-level discussion.) Roughly speaking, this allows us to

circumvent the problem highlighted above since there will

be at most p−1 lnn many stages in total (rather than n),

and so in each stage we can run the [GMR13] approximate

counting algorithm with a much larger error parameter

δ = Ω(ε/(p−1 lnn)) instead of δ = O(ε/n).

Three main ingredients of our approach.: We will

describe our approach in general terms, since the overall

framework is fairly versatile and could be instantiated in

other contexts.

• Let C be the function class of interest, the class for

which we would like to design a deterministic algorithm

for the “C search problem”: given as input an n-

variable function F ∈ C that is promised to have

at least ε2n satisfying assignments, find a satisfying

assignment. (Our analysis will assume that C is closed

under restrictions, which holds for natural function

classes including the class of M -clause CNF formulas.)

• Let Csimple ⊆ C be a subclass of “simple” functions

within C.

As alluded to above, the plan is to do search for C
recursively in stages, uncovering a satisfying assignment of

F ∈ C “chunk-by-chunk”. In each stage we employ three

pseudorandom constructs, the first two of which are:

1) A PRG for Csimple, and

2) A deterministic approximate counting algorithm Acount

for C.

The win of our approach over the trivial PRG-based search

algorithm will rely on both (1) the simplicity of the functions

in Csimple enabling PRGs of significantly shorter seed length

than those known for C, and in similar spirit, (2) the

existence of an approximate counting algorithm for C with

runtime significantly better than that of the trivial PRG-based

algorithm for C.

The third and final ingredient is a “pseudorandom C-to-

Csimple simplification lemma”:

3. Pseudorandom C-to-Csimple simplification lemma.

Roughly speaking, such a simplification lemma says

the following: there is a pseudorandom distribution

R over restrictions such that for all F ∈ C, with

high probability over ρ ← R the randomly restricted

function F � ρ belongs to Csimple. In more detail, this

pseudorandom distributionR over the space of restric-

tions {0, 1, ∗}n should have the following structure:

a) The set of “live” positions L ⊆ [n] (i.e. the set of

∗’s) can be sampled efficiently with seed length

rSL. We write L← Rstars to denote a draw from

this pseudorandom distribution over subsets of

[n].
b) Non-live positions [n] \ L are filled in indepen-

dently and uniformly with {0, 1}, and do not

count against the seed length rSL. We write

ρ ← {0, 1}[n]\L to denote a draw of such a

restriction.

We will require each subset L ∈ supp(Rstars) to have

size at least pn for some not-too-small p ∈ (0, 1)
(equivalently, we will require R to be supported on re-

strictions that leave at least a p fraction of coordinates

unfixed). As we will soon see, this is “the same p”

as the p in the high-level description of our approach

in the first paragraph of this subsection; the size of L
corresponds exactly to the number of coordinates of a

satisfying assignment that we uncover per stage.

The guarantee that we will require of this pseudoran-

dom C-to-Csimple simplification lemma is roughly as

follows: for every F ∈ C,

E
L←Rstars

[
Pr

ρ←{0,1}[n]\L

[
(F � ρ) /∈ Csimple

]] ≤ δSL,

(2)

where the failure probability δSL is as small as pos-

sible. In fact, our approach does not actually require

that F � ρ belong to Csimple; it suffices for F � ρ to be

well-approximated by some F ′ ∈ Csimple for a suitable

815

notion of approximation (F � ρ has a “δ-lower-

approximator” in Csimple). The analysis of our CNF

search algorithm will crucially exploit this relaxation

of (2), but for clarity of exposition we will assume

the stronger guarantee of (2) for the description of

our general framework.

For C being the class of CNF formulas, we remark that

“pseudorandom C-to-Csimple simplification lemmas” have

been the subject of much research [AW85], [AAI+01],

[IMP12], [GMR13], [TX13], [GW14]. These simplifica-

tion lemmas, more commonly referred to as pseudorandom
switching lemmas in this context, are achieved for various

notions of “simplicity”, with Csimple being juntas [AW85],

[AAI+01], [IMP12], [GW14], decision trees [TX13], or

small-width CNF formulas [GMR13]. We remark that for all

these notions of “simple” CNF formulas, there are indeed

PRGs with significantly shorter seed length than the best

known PRG for general CNF formulas [DETT10]. (In our

analysis Csimple will be the class of (log((logMn)/ε))-
width CNF formulas, as this leads to the best overall

parameters in our final result.)

Going back to the general framework, we now explain

how these three pseudorandom constructs—(1) PRG for

Csimple, (2) deterministic approximate counting algorithm

Acount for C, and (3) pseudorandom C-to-Csimple simplifi-

cation lemma—fit together to give a deterministic search

algorithm for C.

A simple but crucial fact from [AW85].: At the heart

of our analysis is an elementary fact about pseudorandom

simplification lemmas. This fact was first stated and utilized

in the influential work of Ajtai and Wigderson [AW85]

giving the first non-trivial PRG for AC0 circuits; variants

of it also play a role in the more recent PRG constructions

of [GMR+12], [IMZ12], [RSV13], [TX13].

Suppose that we have a pseudorandom C-to-Csimple sim-

plification lemma satisfying (2). Fix an L ∈ supp(Rstars)
such that the inner probability of (2) is at most δSL. Let D
be a distribution that δPRG-fools Csimple, and suppose D can

be sampled with rPRG many random bits. The simple but

crucial fact from [AW85] is the following: the distribution

over {0, 1}n where

1) The coordinates in [n] \ L are filled in with uniform

random bits;

2) The coordinates in L are filled in according to the

pseudorandom distribution D,

(δSL + δPRG)-fools C. That is, for all F ∈ C,

E
x←U
y←D

[
F (x[n]\L,yL)

]
= E

x←U
[
F (x)

]± (δSL + δPRG).

Given this observation of [AW85], it follows that there must

exist at least one y ∈ supp(D) such that

E
x←U

[
F (x[n]\L, yL)

] ≥ E
x←U

[
F (x)

]− (δSL + δPRG).

Equivalently, the restriction π∗ that fixes the coordinates in

L according to y preserves (from below) F ’s fraction of

satisfying assignments up to an error of (δSL + δPRG), by

which we mean:

E
x←U

[
(F � π∗)(x)

] ≥ E
x←U

[
F (x)

]− (δSL + δPRG). (3)

Note that the number of coordinates that π∗ fixes is precisely

the size of L, which explains why, as alluded to above, we

require the pseudorandom simplification lemma to be such

that every L ∈ supp(Rstars) has size at least pn for some

not-too-small p ∈ (0, 1).
Our search algorithm and its analysis.: Our goal in a

single stage of the recursive algorithm is to find a restriction

that (approximately) satisfies (3): such a restriction reduces

our search space {0, 1}n by |π∗−1({0, 1})| = |L| ≥ pn
many dimensions, while ensuring that the restricted function

F � π∗ still has “many” satisfying assignments.

To accomplish this, our search algorithm cycles through

all 2rSL+rPRG candidates π—that is, all possible restrictions

fixing L according to y where L ∈ supp(Rstars) and y ∈
supp(D)—and for each candidate π, it runs the deterministic

approximate counting algorithm Acount to estimate E[(F �
π)(x)] to accuracy δcount. It is straightforward to see that

the restriction π̃ for which Acount’s estimate is the largest

will satisfy

E
x←U

[
(F � π̃)(x)

] ≥ E
x←U

[
F (x)

]−(δSL+δPRG)−2δcount.

Up to an additive factor of 2δcount, this restriction π̃ is “as

good as” the restriction π∗ from (3). Our algorithm recurses

on F � π̃, a function over {0, 1}π̃−1(∗) where |π̃−1(∗)| ≤
(1 − p)n. The runtime of this single stage of our recursive

algorithm is at most

2rSL+rPRG · T (n, δcount),
where T (n, δ) denotes the running time of the deterministic

approximate counting algorithm Acount, when given as input

an n-variable function F ∈ C and accuracy parameter δ.

By fixing at least a p fraction of the remaining coordinates

in each stage, we ensure that there are at most p−1 lnn
many stages in total, after which all n coordinates will

have been fixed to a certain assignment x ∈ {0, 1}n and

the algorithm terminates with x as its output. Hence, by

choosing parameters so that

δSL + δPRG + 2δcount ≤ 1

2
· ε

p−1 lnn
,

we ensure that the algorithm always recurses on a sub-

function that is satisfied by at least an (ε/2)-fraction of

its assignments. In particular, this guarantees that the n-

bit assignment x ∈ {0, 1}n which the algorithm outputs is

indeed a satisfying assignment of F . The overall runtime of

the entire algorithm is

2rSL+rPRG · T (n, δcount) · p−1 lnn.

816

C. Organization of this paper

In the rest of this paper we instantiate the general frame-

work described above with C being the class of M -clause

n-variable CNF formulas, thus establishing our main result

(Theorem 1).

In Section II we recall the relevant definitions and state

a few simplifying assumptions. In Section III we state the

pseudorandom C-to-Csimple simplification lemma that we

will use in our context (the pseudorandom switching lemma

of [GMR13], with Csimple being the class of small-width

CNF formulas) and establish some of its basic properties. In

Sections IV and V we use an extension of the [AW85] fact,

together with this pseudorandom switching lemma and a

PRG for Csimple, to construct a small set of restrictions that is

guaranteed to contain a “good” restriction π∗, one that fixes

a significant fraction of coordinates while preserving the bias

of a CNF formula from below. In Section VI we show how to

use a deterministic approximate counting algorithm to search

through this set and find a restriction π̃ that is “almost as

good as” π∗, thus completing the description of one stage

of our recursive search algorithm. Finally, in Section VII we

put the pieces together and give our overall recursive search

algorithm.

II. BACKGROUND AND SETUP

For r < n, we say that a distribution D over {0, 1}n
can be sampled efficiently with r random bits if (i) D is

the uniform distribution over a multiset of size exactly 2r

of strings from {0, 1}n, and (ii) there is a deterministic

algorithm GenD which, given as input a uniform random

r-bit string x ← {0, 1}r, runs in time poly(n) and outputs

a string drawn from D.

For δ > 0 and a class C of functions from {0, 1}n to

{0, 1}, we say that a distribution D over {0, 1}n δ-fools C
with seed length r if (a) D can be sampled efficiently with r
random bits via algorithm GenD, and (b) for every function

f ∈ C, we have∣∣∣∣ E
s←{0,1}r

[f(GenD(s))]− E
x←{0,1}n

[f(x)]

∣∣∣∣ ≤ δ.

Equivalently, we say that GenD is a δ-PRG for C with seed
length r.

Given a function f : {0, 1}n → {0, 1} and a class of

functions C from {0, 1}n to {0, 1}, we say that f is δ-
sandwiched by C if there exist functions g�, gu ∈ C such

that (i) g�(x) ≤ f(x) ≤ gu(x) for all x ∈ {0, 1}n, and

(ii) Ex←{0,1}n [gu(x) − g�(x)] ≤ δ. The function g� (gu,

respectively) is said to be a lower δ-approximator (upper
δ-approximator, respectively) for f .

Some simplifying assumptions.: We first observe that

we may assume without loss of generality that our algorithm

is given the value of ε. This is because the algorithm can

try values ε = 1
2 ,

1
4 ,

1
8 , · · · , halting when it finds a satisfying

assignment, without changing the claimed asymptotic run-

ning time. We next observe that we may assume without

loss of generality that the input CNF formula has M ≥ n
many clauses. This is because if M < n then we can pad

F with n −M clauses (x1 ∨ x1), · · · , (xn−M ∨ xn−M) to

obtain an equivalent formula F ′ with n clauses and run the

algorithm on F ′.
The following simple observation allows us to assume

without loss of generality that the M -clause input CNF

formula has width bounded by O(log(M/ε)):

Observation 2 (Trimming F). Let F be an M -clause CNF
over {0, 1}n, and let F ′ be the CNF obtained from F by
trimming each clause of width w′ > w := log(2M/ε) to
width exactly w (by removing an arbitrary w′ − w literals
from the clause). Then

1) F ′−1(1) ⊆ F−1(1).
2) E[F ′(x)] ≥ E[F (x)]− ε/2.

We observe that F ′ can be constructed deterministically from
F in time poly(M,n).

Proof: The observation about efficiently constructing

F ′ from F is immediate, as is part (1) since if an assignment

satisfies a given clause of F ′ then clearly it satisfies the

corresponding clause of F . Part (2) holds because each time

a clause is replaced by its trimmed version, the total number

of satisfying assignments is reduced by at most 2−w · 2n =
ε

2M · 2n.

Our algorithm will begin by trimming all wide clauses of

F (of width greater than log(2M/ε)) to have width exactly

log(2M/ε). By Observation 2, if F is ε-satisfiable then the

resulting F ′ remains (ε/2)-satisfiable, and furthermore any

satisfying assignment of F ′ is a satisfying assignment of the

original CNF F .

Combining all of the simple observations in this section,

in order to prove Theorem 1 it suffices to prove the follow-

ing:

Theorem 3. There is a deterministic algorithm with the
following properties: It is given as input a value ε > 0 and
a CNF formula F over {0, 1}n with M ≥ n clauses, each
of width at most O(log(M/ε)), such that |F−1(1)| ≥ ε2n.
The algorithm runs in time(

M

ε

)Õ(log logM+log(1/ε))2

and outputs a satisfying assignment of F .

In the rest of the paper we prove Theorem 3 (so the

number of clauses M is assumed to be at least n throughout

the rest of the paper).

III. THE [GMR13] PSEUDORANDOM SWITCHING

LEMMA

As outlined in Section I-B2, one of the main ingredients

of our deterministic search framework is a “pseudorandom

817

C-to-Csimple simplification lemma”. For C being the class of

CNF formulas, these are more commonly known as pseu-
dorandom switching lemmas—randomness efficient versions

of the seminal switching lemmas [FSS84], [Ajt83], [Yao85],

[Hås86] from circuit complexity—and they have been the

subject of much research [AW85], [AAI+01], [IMP12],

[GMR13], [TX13], [GW14].

We will use a recent pseudorandom switching lemma

of Gopalan et al. [GMR13] as it leads to the best overall

running time. In this pseudorandom switching lemma Csimple

is the class of “narrow” (width-w′) CNFs. As alluded to

in Section I-B2, this is not quite a pseudorandom C-to-

Csimple simplification lemma in the sense of (2): rather

than showing that F � ρ belongs to Csimple with high

probability, the [GMR13] pseudorandom switching lemma

only guarantees that F � ρ is sandwiched by Fupper, Flower ∈
Csimple with high probability. But as we show in the next

section, the analysis we sketched in Section I-B2 extends to

accommodate this; in fact, for our purposes it suffices for

F � ρ just to have a lower sandwiching approximator in

Csimple.

We recall a standard definition from pseudorandomness:

Definition 1 (p-regular distributions). A distribution Rstars

over subsets of [n] is said to be p-regular if for each i ∈ [n]
we have PrL←Rstars [i ∈ L] = p.

Our deterministic search framework requires that the

pseudorandom C-to-Csimple simplification lemma holds with

respect to a distribution over restrictions with the following

structure: first a draw from a pseudorandom distribution

Rstars selects a subset L ⊆ [n] of coordinates which will

“receive ∗’s” (the Live coordinates), and then the non-∗
coordinates [n] \ L are filled in uniformly at random with

bits. The [GMR13] pseudorandom switching lemma satisfies

this prescribed structure:

Theorem 4 (Theorem 5.3 of [GMR13], pseudorandom

switching lemma). There is a universal constant C > 0
such that for all w,w′, δsand, η > 0 and all p satisfying

p ≤ η

(w log(1/δsand))C logw
, (4)

there is a p-regular distribution Rstars over subsets of [n]
that can be sampled efficiently using rSL random bits where

rSL = O((logw)(log n+ w′ log((logw)/η))
+ w log(w log(1/δsand))) (5)

and the following holds: for any width-w CNF F ,

Pr[F � ρ is not δsand-sandwiched by width-w′ CNFs]

≤ δsand + ηw
′/4,

where the probability is taken with respect to L ← Rstars

and ρ← {0, 1}[n]\L.

We require pseudorandom restrictions that do not put

down too few ∗’s. This motivates the following corollary:

Corollary III.1 (Condition on having sufficiently many

stars). For the distribution Rstars defined in Theorem 4,
let R′stars denote the distribution of L ← supp(Rstars)
conditioned on L satisfying |L| ≥ pn/2. Then for any width-
w CNF F ,

Pr[F � ρ is not δsand-sandwiched by width-w′ CNFs]

≤ 2(δsand + ηw
′/4)

p
,

where the probability is taken with respect to L← R′stars
and ρ← {0, 1}[n]\L.

Proof: Since Rstars is p-regular we have that

EL←Rstars
[|L|] = pn, and so

Pr
L←Rstars

[L ∈ supp(R′stars)] = Pr
L←Rstars

[
|L| ≥ pn

2

]
≥ p

2
.

Hence

Pr
L←R′stars

ρ←{0,1}[n]\L

[F � ρ is not δsand · · ·]

= Pr
L←Rstars

ρ←{0,1}[n]\L

[F � ρ is not δsand · · · | L ∈ supp(R′stars)]

≤ Pr
L←Rstars

ρ←{0,1}[n]\L

[F � ρ is not δsand · · ·] · 1

Pr[L ∈ supp(R′stars)]

≤ 2(δsand + ηw
′/4)

p
.

IV. BIAS PRESERVATION VIA PSEUDORANDOM

SWITCHING LEMMAS

An important ingredient in our approach is a simple but

ingenious observation due to Ajtai and Wigderson [AW85]

which we state and prove as Lemma IV.1 below. Informally,

it says the following: Let F : {0, 1}n → {0, 1} be a Boolean

function and suppose there is a partition of [n] into L and

[n] \ L with the following property: with high probability

over a uniform random restriction ρ fixing the coordinates

in [n]\L and leaving the coordinates in L free, the function

F � ρ falls into a class Csimple that is fooled by a distribution

D over {0, 1}n. Then the pseudorandom distribution over

restrictions that fixes the coordinates in L according to D
and leaves coordinates in [n]\L free approximately preserves

the bias of F .

In fact, in our analysis we will only require that F � ρ
has a lower approximator in Csimple. This is because for our

purposes (deterministic search) it suffices to approximately

preserve the bias of F only in one direction: we have to

ensure that the bias of F does not decrease by too much

(so that we do not lose too many or all of the satisfying

assignments), but we are fine if the bias increases.

818

Lemma IV.1 (Implicit in [AW85]). Let F : {0, 1}n →
{0, 1} and L ⊆ [n]. Fix a class Csimple of functions over
{0, 1}n and let D be a distribution over {0, 1}n that δPRG-
fools Csimple. Suppose that

Pr
ρ←{0,1}[n]\L

[F � ρ does not have a lower

δsand-approximator in Csimple] ≤ δSL. (6)

Then

E
x←U
y←D

[F (x[n]\L,yL)] ≥ E
x←U

[F (x)]− (δPRG+ δsand+ δSL).

Proof: If F � ρ has a lower δsand-approximator F ′ ∈
Csimple then

E
x←U

[(F � ρ)(x)] ≤ E
x←U

[F ′(x)] + δsand

(F ′ is a δsand-approximator for F � ρ)

≤
(

E
y←D

[F ′(y)] + δPRG

)
+ δsand

(D δPRG-fools F ′)

≤
(

E
y←D

[(F � ρ)(y)] + δPRG

)
+ δsand,

(F ′ ≤ (F � ρ) pointwise)

and so

E
x←U

[F (x)]

= E
ρ←{0,1}[n]\L

[
E

x←U
[(F � ρ)(x)]

]

≤
(

E
ρ←{0,1}[n]\L

[
E

y←D
[(F � ρ)(y)]

]
+ δPRG + δsand

)
+ δSL

((6) and above)

= E
x←U
y←D

[F (x[n]\L,yL)] + (δPRG + δsand + δSL).

This completes the proof.

We will apply Lemma IV.1 with Csimple being the class

of width-w′ CNFs (we will keep w′ a free parameter

for now, but looking ahead we will ultimately set w′ =
Θ(logw + log((logM)/ε))), and D being the distribution

given by [GMR13]’s pseudorandom generator:

Theorem 5 (Theorem 3.1 of [GMR13], PRG for width-w′

CNFs). The class of width-w′ CNFs over {0, 1}n can be
δPRG-fooled by a distribution DPRG which can be sampled
with

rPRG = O((w′)2(log(w′ log(1/δPRG)))
2

+ w′ log(w′) log(1/δPRG) + log logn).

random bits.

(We remark that the [DETT10] PRG for width-w′ M -

clause CNFs can be used in place of Theorem 5 in our

analysis, and will result the same overall running time.)

V. EXISTENCE OF A BIAS-PRESERVING RESTRICTION π∗

We are ready to combine the results from the previous

sections to prove the key structural fact underlying our

search algorithm. Roughly speaking, the next lemma says

that there is a small set of restrictions, all of which fix a

significant fraction of coordinates, such that for every width-

w CNF F there is at least one restriction in this set that

approximately preserves the bias of F from below.

Lemma V.1 (Existence of a bias-preserving restriction). For
all w,w′, δsand, δPRG, η > 0 and all p satisfying assumption
(4) of Theorem 4, there is a distribution Rgentle over
restrictions in {0, 1, ∗}n such that the following hold:

1) Rgentle is uniform over a multiset of at most
2rSL+rPRG many outcomes, where

rSL = O((logw)(log n+ w′ log((logw)/η))
+ w log(w log(1/δsand)))

rPRG = O((w′)2(log(w′ log(1/δPRG)))
2

+ w′ log(w′) log(1/δPRG) + log log n).

2) |π−1({0, 1})| ≥ pn/2 for all π ∈ supp(Rgentle).
3) For any width-w CNF F over {0, 1}n, there is at least

one π∗ ∈ supp(Rgentle) such that

E
x←U

[(F � π∗)(x)] ≥ E
x←U

[F (x)]−(δPRG+δsand+δSL),

(7)

where

δSL =
2(δsand + ηw

′/4)

p
.

Proof: The distribution Rgentle is defined as follows:

to make a draw π ← Rgentle,

1) Draw L ← R′stars, the distribution over subsets L ⊆
[n] defined in Corollary III.1.

2) Draw y ← DPRG, the distribution over {0, 1}n from

Theorem 5 that δPRG-fools w′-CNFs.

3) Output the restriction π ∈ {0, 1, ∗}n where

πi =

{
yi if i ∈ L

∗ otherwise.

By Corollary III.1 and Theorem 5, we have that R′stars
is uniform over a multiset of at most 2rSL outcomes and

DPRG is uniform over a multiset of 2rPRG many outcomes,

and hence Rgentle is uniform over a multiset of at most

2rSL+rPRG many outcomes. By its definition, the distribution

R′stars satisfies |L| ≥ pn/2 for all L ∈ supp(R′stars), and

hence |π−1({0, 1})| ≥ pn/2 for all π ∈ supp(Rgentle).

It remains to justify the third claim above. For any width-

w CNF F , by Corollary III.1 there must be at least one

L ∈ supp(R′stars) that satisfies the assumption (6) of

Lemma IV.1 with Csimple being the class of width-w′ CNFs

819

and δSL = 2(δsand+ηw
′/4)/p. For such an L, it follows from

Lemma IV.1 and the fact that DPRG δPRG-fools Csimple that

E
x←U

y←DPRG

[F (x[n]\L,yL)] ≥ E
x←U

[F (x)]−(δPRG+δsand+δSL),

and hence

E
x←U

[F (x[n]\L, yL)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL)

for at least one y ∈ supp(DPRG). This pair (y, L) therefore

defines a restriction π∗ ∈ supp(Rgentle)—the restriction that

fixes the coordinates in L according to y—that satisfies (7),

and the proof is complete.

VI. FINDING π∗ , OR A RESTRICTION π̃ THAT IS ALMOST

AS GOOD

To find a restriction that (approximately) satisfies (7) we

will approximate the bias of F � π for all candidates π ∈
supp(Rgentle) using a deterministic approximate counting

algorithm for CNF formulas:

Theorem 6 (Theorem 4.6 of [GMR13] (second equation

before end of proof), approximate counting algorithm).
There is a deterministic algorithm that runs in time

Tcount = MnO(log(w/δcount))

· (log n)O(w)2O(w log(w/δcount)(log log(w/δcount))
2)

and δcount-approximates the bias of any M -clause width-w
CNF F over {0, 1}n, i.e. it outputs a value v ∈ [0, 1] such
that |v −Ex←{0,1}n [F (x)]| ≤ δcount.

Combining Lemma V.1 and Theorem 6, we get:

Corollary VI.1 (One stage of our recursive algorithm).
There is a deterministic algorithm A with the following
guarantee. Given as input an M -clause width-w CNF F
over {0, 1}n and parameters w′, δsand, δPRG, δcount, η > 0
and p satisfying assumption (4) of Theorem 4,

1) A runs in time

exp(rSL(n,w,w
′, η, δsand)

+ rPRG(n,w
′, δPRG)) · Tcount(n,M,w, δcount),

where rSL and rPRG are as defined in Lemma V.1,
and Tcount is as defined in Theorem 6.

2) A outputs a restriction π̃ ∈ {0, 1, ∗}n such that
a) |π̃−1({0, 1})| ≥ pn/2,
b) π̃ approximately preserves the bias of F from

below:

E
x←U

[(F � π̃)(x)]

≥ E
x←U

[F (x)]− (δPRG + δsand + δSL)− 2δcount,

where

δSL =
2(δsand + ηw

′/4)

p
.

Proof: The algorithm A cycles through all (at most)

2rSL+rPRG many restrictions π in the support of the dis-

tribution Rgentle defined in Lemma V.1, and for each one

uses [GMR13]’s approximate counting algorithm in Theo-

rem 6 to approximate the bias of F � π to accuracy δcount.
A outputs the restriction π̃ for which its estimate of the bias

of F � π̃ is the largest.

The bound on the running time of A is an immediate

consequence of Lemma V.1 and Theorem 6, as is item

2(a) in the claim. It remains to verify that π̃ satisfies 2(b).
By Lemma V.1, there is at least one π∗ ∈ supp(Rgentle)
satisfying

E
x←U

[(F � π∗)(x)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL).

By the correctness of [GMR13]’s approximate counting

algorithm, A’s estimate of the bias F � π∗ is at least

E
x←U

[(F � π∗)(x)]− δcount

≥ E
x←U

[F (x)]− (δPRG + δsand + δSL)− δcount,

and hence so is its estimate of the bias of F � π̃. Finally,

again by the correctness of [GMR13]’s approximate count-

ing algorithm, we conclude that the true bias of F � π̃ is

within δcount of A’s estimate, and hence

E
x←U

[(F � π∗)(x)]

≥
(

E
x←U

[F (x)]− (δPRG + δsand + δSL)− δcount

)
− δcount

= E
x←U

[F (x)]− (δPRG + δsand + δSL)− 2δcount.

This completes the proof.

A. Applying Corollary VI.1: setting of parameters

We first introduce two more parameters T ∈ N and τ ∈
(0, 1) to denote

T :=
2 lnn

p
and τ :=

ε

2T
.

Looking ahead, the semantics of T and τ are as follows: each

stage of our recursive search algorithm—a call to the sub-

routine in Corollary VI.1—fixes at least a p/2 fraction of the

remaining coordinates (recall item 2(a) of Corollary VI.1),

so T is chosen so that after T stages the number of unfixed

coordinates is at most

n · (1− p/2)T = n · (1− p/2)(2 lnn)/p < 1,

i.e. we will have arrived at an actual assignment to the CNF

F . Since T is an upper bound on the number of calls to the

subroutine in Corollary VI.1, we will set parameters so that

the bias of F is preserved to within an additive τ = ε/2T
in each call. This ensures that the bias of F remains at least

ε− τ · T =
ε

2
> 0

820

throughout, and hence the final assignment we arrive at is

in fact a satisfying assignment of F .

With these definitions of T and τ in hand, we will invoke

the algorithm in Corollary VI.1 with the following choice

of parameters:

p =

(
1

w log((logM)/ε)

)2C logw

,

η =
1

w log((logM)/ε)
,

w′ = 16C logw + 4 log

(
192 lnM

ε

)
,

where C > 0 is the universal constant from Theorem 4, and

δcount =
τ

3
, δPRG =

τ

6
, δsand =

pτ

48
.

The next proposition justifies our choice of parameters:

Proposition VI.2. For this choice of parameters, we have
that

1) p, η, and δsand satisfy assumption (4) of Theorem 4:

p ≤ η

(w log(1/δsand))C logw
.

2) For δSL = 2(δsand + ηw
′/4)/p,

δPRG + δsand + δSL + 2δcount ≤ τ.

Proof: For the first claim, we note that

log

(
1

δsand

)
= log

(
192 lnn

εp2

)
= log((log n)/ε) + 2 log(1/p) +O(1)

= O(log2 w)(log((logM)/ε)),

and so indeed for w larger than a suitable absolute constant,

we have

η

(w log(1/δsand))C logw
>

η

(w log((logM)/ε))1.01C logw

=

(
1

w log((logM)/ε)

)1.01C logw+1

>

(
1

w log((logM)/ε)

)2C logw

= p.

As for the second claim, by our choice of δPRG = τ/6 and

δcount = τ/3 the claimed bound is equivalent to

δsand + δSL ≤ τ

6
.

Since δsand < δSL, it suffices to ensure that

δSL ≤ τ

12
, or equivalently, δsand + ηw

′/4 ≤ pτ

24
.

Recalling our choice of δsand = pτ/48, it remains to check

that

ηw
′/4 ≤ pτ

48
=

εp2

192 lnn
.

Indeed,

ηw
′/4 =

(
1

w log((logM)/ε)

)4C logw+log((192 lnM)/ε)

<

(
1

w log((logM)/ε)

)4C logw

· 2− log((192 lnM)/ε)

=
εp2

192 lnM
≤ εp2

192 lnn
(using M ≥ n).

This completes the proof of the second claim.

We note the following estimates for our choice of param-

eters when w = O(log(M/ε)) (recall Theorem 3 and in

particular that M ≥ n):

1

p
= (log(M/ε))O(log log(M/ε)) (8)

log(1/η) = O(log log(M/ε)) (9)

w′ = O(log((logM)/ε)) (10)

log(1/δ) = O(log((logM)/ε)) +O(log log(M/ε))2 (11)

for δ ∈ {δcount, δPRG, δsand}. Proposition VI.2 yields the

following special case of Corollary VI.1:

Corollary VI.3 (Corollary VI.1 for our choice of parame-

ters). There is a deterministic algorithm A with the following
guarantee. Given as input an M -clause width-w CNF F
over {0, 1}n,

1) A runs in time

exp(rSL(n,w,w
′, η, δsand) + rPRG(n,w

′, δPRG))

· Tcount(n,M,w, δcount)

=

(
M

ε

)Õ(log((logM)/ε))2

2) A outputs a restriction π̃ ∈ {0, 1, ∗}n such that
a) |π̃−1({0, 1})| ≥ pn/2,
b) E

x←U
[(F � π̃)(x)] ≥ E

x←U
[F (x)]− τ.

VII. PUTTING THE PIECES TOGETHER: THE OVERALL

SEARCH ALGORITHM

Using the results of the previous subsections we now

prove Theorem 3. The claimed algorithm is given as input

a pair (F, ε); recall that from the theorem statement and as

shown in Section II, we may assume that the CNF F has

M ≥ n clauses each of width at most w = O(log(M/ε)).
The algorithm proceeds for at most T = (2 lnn)/p

iterative stages (where p is as defined in Section VI-A)

as follows. In the t-th stage it operates on a CNF formula

F � (π̃0 ◦ · · · ◦ π̃t−1); the first stage is the (t = 1)-th stage

and we take π̃0 to be the trivial restriction which assigns ∗
to each of the n input variables, so F � π̃0 is simply the

input CNF F . Before starting the first stage, the algorithm

records the values of parameters w,w′, η, δsand, and δPRG.

(Observe that all of these values w,w′, η, δsand, δPRG are

defined solely in terms of M and ε, see Equations (9), (10)

821

and (11); these values will never change during the execution

of the algorithm.)

Stage 1 is carried out as follows:

• Let n1 denote the number of variables that are

alive under restriction π̃0, which in stage 1 is

n1 = n. The algorithm compute the seed lengths

rSL,1 := rSL(n1, w, w
′, η, δsand) and rPRG,1 :=

rPRG(n1, w
′, δPRG).

• Then the algorithm executes the deterministic algorithm

A from Corollary VI.3 on the n1-variable function

F � π̃0. The algorithm produces a restriction π̃1 ∈
{0, 1, ∗}n1 with the properties described in 2(a) and

2(b) of Corollary VI.3.

The general t-th stage of the algorithm is carried out in a

similar way:

• Let nt denote the number of variables that are

alive under the restriction π̃0 ◦ · · · ◦ π̃t−1 ∈
{0, 1, ∗}n. The algorithm computes the seed lengths

rSL,t := rSL(nt, w, w
′, η, δsand) and rPRG,t :=

rPRG(nt, w
′, δPRG) which are appropriate for the pseu-

dorandom switching lemma and pseudorandom gener-

ators for nt-variable functions.

• Then the algorithm executes the deterministic algorithm

A from Corollary VI.3 on the nt-variable CNF F �
(π̃0 ◦ · · · ◦ π̃t−1). The algorithm produces a restriction

π̃t ∈ {0, 1, ∗}nt with the properties described in 2(a)

and 2(b) of Corollary VI.3.

We may view the restriction π̃0 ◦ · · · ◦ π̃t as belonging

to {0, 1, ∗}n. If π̃0 ◦ · · · ◦ π̃t belongs to {0, 1}n (leaves no

variables free) then the algorithm halts and outputs π̃0 ◦· · ·◦
π̃t, otherwise it increments t and proceeds to the next stage.

It remains to establish correctness; this is easy given

Corollary VI.3. A crucial aspect of the algorithm is that

in the t-th stage it works on the nt-variable CNF F �
(π̃0 ◦ · · · ◦ π̃t−1). Thanks to part 2(a) of Corollary VI.3,

this implies that each value of nt is at most n(1− p/2)t−1,

so consequently after at most T stages the algorithm will

indeed obtain a restriction π̃0 ◦ · · · ◦ π̃t ∈ {0, 1}n and

halt as desired. For the running time of the algorithm, it

follows from part (1) of Corollary VI.3 that the running

time of each of the (at most) T = (2 lnn)/p stages is

upper bounded by (M/ε)
Õ(log((logM)/ε))2

and hence this

is also an upper bound on the running time of the entire

algorithm (recalling the bound on p from (8)). Finally, from

the discussion at the start of Section VI-A, we have that the

bias of F (π̃0 ◦ · · · ◦ π̃t) is greater than zero, and hence

π̃0 ◦ · · · ◦ π̃t is a satisfying assignment as desired. This

concludes the proof of Theorem 3.

ACKNOWLEDGMENT

RAS is supported by NSF grants CCF-1420349 and CCF-

1563155. LYT is supported by NSF grant CCF-1563122;

part of this research was done during a visit to Columbia

University.

REFERENCES

[AAI+01] Manindra Agrawal, Eric Allender, Russell Impagli-
azzo, Toniann Pitassi, and Steven Rudich. Reducing
the complexity of reductions. Comput. Complexity,
10(2):117–138, 2001. I-B2, III

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René
Peralta. Simple constructions of almost k-wise in-
dependent random variables. Random Structures &
Algorithms, 3(3):289–304, 1992. I-A

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals

of Pure and Applied Logic, 24(1):1–48, 1983. III

[AW85] Miklós Ajtai and Avi Wigderson. Deterministic simu-
lation of probabilistic constant depth circuits. In Pro-
ceedings of the 26th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 11–19, 1985. I,
I, I-B2, I-B2, I-B2, I-C, III, IV, IV.1

[Bra10] Mark Braverman. Polylogarithmic independence fools
AC0 circuits. Journal of the ACM, 57(5):28, 2010. I

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir
Yehudayoff. Pseudorandom generators for regular
branching programs. SIAM J. Comput., 43(3):973–
986, 2014. I

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Mad-
hur Tulsiani. Improved pseudorandom generators for
depth 2 circuits. In Proceedings of the 13th Interna-
tional Workshop on Randomization and Computation
(RANDOM), pages 504–517, 2010. (document), I-A,
I-B2, IV

[DGJ+10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal,
Rocco Servedio, and Emanuele Viola. Bounded
independence fools halfspaces. SIAM Journal on
Computing, 39(8):3441–3462, 2010. I

[DKN10] Ilias Diakonikolas, Daniel Kane, and Jelani Nelson.
Bounded independence fools degree-2 threshold func-
tions. In Proceedings of the 51st Annual Symposium
on Foundations of Computer Science (FOCS), pages
11–20, 2010. I

[DS14] Anindya De and Rocco Servedio. Efficient determin-
istic approximate counting for low-degree polynomial
threshold functions. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing (STOC),
pages 832–841, 2014. I

[FSS84] Merrick Furst, James Saxe, and Michael Sipser. Parity,
circuits, and the polynomial-time hierarchy. Mathe-
matical Systems Theory, 17(1):13–27, 1984. III

[GKM+11] Parikshit Gopalan, Adam Klivans, Raghu Meka,
Daniel Štefankovič, Santosh Vempala, and Eric
Vigoda. An FPTAS for #Knapsack and related count-
ing problems. In 52nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 817–
826, 2011. I

822

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold,
Luca Trevisan, and Salil P. Vadhan. Better pseudo-
random generators from milder pseudorandom restric-
tions. In Proceedings of the 53rd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 120–129, 2012. I, I-A, I-A, I-B2

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold.
DNF sparsification and a faster deterministic counting
algorithm. Comput. Complexity, 22(2):275–310, 2013.
I-A, I-B1, I-B2, I-B2, I-C, III, III, 4, IV, 5, 6, VI

[GOWZ10] Parikshit Gopalan, Ryan O’Donnell, Yi Wu, and
David Zuckerman. Fooling functions of halfspaces
under product distributions. In Proceedings of the 25th
Annual IEEE Conference on Computational Complex-
ity (CCC), pages 223–234, 2010. I

[GW14] Oded Goldreich and Avi Widgerson. On deran-
domizing algorithms that err extremely rarely. In
Proceedings of the 46th Annual ACM Symposium on
Theory of Computing (STOC), pages 109–118. ACM,
2014. I-A, I-B2, III

[Hås86] Johan Håstad. Almost optimal lower bounds for small
depth circuits. In Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, pages 6–
20, 1986. III

[HS16] Prahladh Harsha and Srikanth Srinivasan. On polyno-
mial approximations to AC0. In Proceedings of the
19th International Workshop on Randomization and
Computation (RANDOM), pages 32:1–32:14, 2016. I

[IMP12] Russell Impagliazzo, William Matthews, and Ra-
mamohan Paturi. A satisfiability algorithm for AC0.
In Proceedings of the 23rd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 961–972, 2012.
I-B2, III

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuck-
erman. Pseudorandomness from shrinkage. In Pro-
ceedings of the 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 111–
119, 2012. I, I-B2

[Kan12] Daniel Kane. A structure theorem for poorly an-
ticoncentrated Gaussian chaoses and applications to
the study of polynomial threshold functions. In
Proceedings of the 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 91–
100, 2012. I

[LV96] Michael Luby and Boban Veličković. On deterministic
approximation of DNF. Algorithmica, 16(4-5):415–
433, 1996. I, I-A

[LVW93] Michael Luby, Boban Veličković, and Avi Wigder-
son. Deterministic approximate counting of depth-2
circuits. In Proceedings of the 2nd ISTCS, pages 18–
24, 1993. I

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom
generators for polynomial threshold functions. SIAM
Journal on Computing, 42(3):1275–1301, 2013. I

[Nis91] Noam Nisan. Pseudorandom bits for constant depth
circuits. Combinatorica, 11(1):63–70, 1991. I

[NN93] Joseph Naor and Moni Naor. Small-bias probability
spaces: efficient constructions and applications. SIAM
J. Comput., 22(4):838–856, 1993. I-A

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. ran-
domness. J. Comput. System Sci., 49(2):149–167,
1994. I

[RS10] Yuval Rabani and Amir Shpilka. Explicit construction
of a small epsilon-net for linear threshold functions.
SIAM J. on Comput., 39(8):3501–3520, 2010. I

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan.
Pseudorandomness for regular branching programs via
Fourier analysis. In Proceedings of the 17th Interna-
tional Workshop on Randomization and Computation
(RANDOM), pages 655–670, 2013. I-B2

[SZ99] Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆
DSPACE(S3/2). J. Comput. System Sci., 58(2):376–
403, 1999. I

[SZ10] Jirı́ Sı́ma and Stanislav Zák. A polynomial time
construction of a hitting set for read-once branching
programs of width 3. Electronic Colloquium on
Computational Complexity (ECCC), 17:88, 2010. I-A

[Tre04] Luca Trevisan. A note on approximate counting
for k-DNF. In Proceedings of the 8th International
Workshop on Randomization and Computation (RAN-
DOM), pages 417–426, 2004. I

[Tre10] Luca Trevisan. Open Problems in Unconditional
Derandomization. Presentation at China Theory
Week 2010, slides available at http://conference.itcs.
tsinghua.edu.cn/CTW2010/content/Slides/2.pdf, 2010.
I-A

[TX13] Luca Trevisan and Tongke Xue. A derandomized
switching lemma and an improved derandomization of
AC0 . In Proceedings of the 28th Annual IEEE Con-
ference on Computational Complexity (CCC), pages
242–247, 2013. I, I-B2, I-B2, III

[Yao85] Andrew Yao. Separating the polynomial-time hier-
archy by oracles. In Proceedings of the 26th An-
nual Symposium on Foundations of Computer Science,
pages 1–10, 1985. III

823

