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Abstract—The approximate degree of a Boolean function
f : {−1, 1}n → {−1, 1} is the least degree of a real polynomial
that approximates f pointwise to error at most 1/3. We
introduce a generic method for increasing the approximate
degree of a given function, while preserving its computability
by constant-depth circuits.

Specifically, we show how to transform any Boolean func-
tion f with approximate degree d into a function F on
O(n · polylog(n)) variables with approximate degree at least
D = Ω(n1/3 · d2/3). In particular, if d= n1−Ω(1), then D is
polynomially larger than d. Moreover, if f is computed by
a constant-depth polynomial-size Boolean circuit, then so is F .

By recursively applying our transformation, for any constant
δ > 0 we exhibit an AC0 function of approximate degree
Ω(n1−δ). This improves over the best previous lower bound
of Ω(n2/3) due to Aaronson and Shi (J. ACM 2004), and
nearly matches the trivial upper bound of n that holds for any
function. Our lower bounds also apply to (quasipolynomial-
size) DNFs of polylogarithmic width.

We describe several applications of these results. We give:
• For any constant δ > 0, an Ω(n1−δ) lower bound on the

quantum communication complexity of a function in AC0.
• A Boolean function f with approximate degree at least

C(f)2−o(1), where C(f) is the certificate complexity of f .
This separation is optimal up to the o(1) term in the
exponent.

• Improved secret sharing schemes with reconstruction
procedures in AC0.

Keywords-approximate degree; certificate complexity; com-
munication complexity; polynomial approximation; quantum
communication complexity; secret sharing

I. INTRODUCTION

The ε-approximate degree of a Boolean function

f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the least

degree of a real polynomial that approximates f pointwise

to error at most ε. By convention, d̃eg(f) is used to

denote d̃eg1/3(f), and this quantity is referred to without

qualification as the approximate degree of f . The choice of

the constant 1/3 is arbitrary, as d̃eg(f) is related to d̃egε(f)
by a constant factor for any constant ε ∈ (0, 1). Any Boolean

function f has an exact representation as a multilinear

polynomial of degree at most n, so the approximate degree

of f is always at most n.

Approximate degree is a natural measure of the complex-

ity of a Boolean function, with a wide variety of applications

throughout theoretical computer science. For example, upper

bounds on approximate degree underly many state-of-the-art

learning algorithms [8], [34]–[37], [43], [48], algorithmic

approximations for the inclusion-exclusion principle [33],

[51], and algorithms for differentially private data release

[25], [68]. Very recently, approximate degree upper bounds

have also been used to show new complexity-theoretic lower
bounds. In particular, upper bounds on the approximate

degree of Boolean formulae underly the best known lower

bounds on the formula complexity and graph complexity of

explicit functions [64]–[66].

Meanwhile, lower bounds on approximate degree have

enabled significant progress in quantum query complex-

ity [2], [4], [11], communication complexity [19], [26], [28]–

[30], [46], [50], [53], [54], [56], circuit complexity [41],

[52], oracle separations [14], [18], and secret-sharing [17].

In particular, approximate degree has been established as

one of the most promising tools available for understanding

the complexity of constant-depth polynomial-size Boolean

circuits (captured by the complexity class AC0). Indeed,

approximate degree lower bounds lie at the heart of the

best known bounds on the complexity of AC0 under mea-

sures such as sign-rank, discrepancy and margin complex-

ity, Majority-of-Threshold and Threshold-of-Majority circuit

size, and more.

Despite all of these applications, progress in understand-

ing approximate degree has been slow and difficult. As

noted by many authors, the following basic problem remains

unresolved [13], [17], [21]–[24], [49], [60].

Problem 1. Is there a constant-depth circuit in n variables
with approximate degree Ω(n)?

Prior to this work, the best result in this direction was

Aaronson and Shi’s well-known Ω(n2/3) lower bound on

the approximate degree of the Element Distinctness function

(ED for short). In this paper, we nearly resolve Open

Problem 1. Specifically, for any constant δ > 0, we exhibit

an explicit constant-depth circuit C with approximate degree

Ω(n1−δ). Moreover, the circuit C that we exhibit has depth

O(log(1/δ)). Our lower bound also applies to DNF formulae

of polylogarithmic width (and quasipolynomial size).
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Applications. We describe several consequences of the

above results in complexity theory and cryptography. We

state these results somewhat informally in this introduction,

leaving details to Section V. Specifically:

• For any constant δ > 0, we obtain an Ω(n1−δ) lower

bound on the bounded-error quantum communication

complexity of AC0. This nearly matches the trivial

O(n) upper bound that holds for any function, and

improves on the previous best lower bound of Ω(n2/3).
This lower bound also applies to the multiparty number-

on-the-forehead model, where the previous best lower

bound was again Ω(n2/3), even for classical random-

ized protocols.

• We exhibit a function f with approximate degree at

least C(f)2−o(1), where C(f) is the certificate com-
plexity of f . This separation is optimal up to the o(1)
term in the exponent. The previous best result was a

power-7/6 separation, reported by Aaronson et al. [3].

• We give improved secret sharing schemes with recon-

struction procedures in AC0.

While the first and third applications follow by combining

our approximate degree lower bounds with prior works in a

black box manner [17], [53], the second application requires

some additional effort.

Anshu et al. [10] have also observed that our second appli-

cation combines in a black-box manner with the techniques

of their recent work [9] to yield a nearly quadratic separation

between quantum communication complexity and the loga-

rithm of matrix rank. In addition, they have extended our

techniques to obtain a nearly power-4 separation between

quantum communication complexity and the logarithm of

approximate rank. Both results improve on their earlier re-

ported power-2 separation between quantum communication

complexity and the logarithm of approximate rank [9].

A. Prior Work on Approximate Degree

1) Early Results via Symmetrization: The notion of ap-

proximate degree was introduced in seminal work of Nisan

and Szegedy [42], who proved a tight Ω(n1/2) lower bound

on the approximate degree of ORn and ANDn. Nisan and

Szegedy’s proof exploited a powerful technique known as

symmetrization, which was introduced in the late 1960’s by

Minsky and Papert [41]. Until recently, symmetrization was

the primary tool available for proving approximate degree

lower bounds [4], [5], [14], [44], [45], [48].

Symmetrization arguments proceed in two steps. First, a

polynomial p on n variables (which is assumed to approxi-

mate the target function f ) is transformed into a univariate

polynomial q in such a way that deg(q) ≤ deg(p). Second, a

lower bound on deg(q) is proved, using techniques tailored

to the analysis of univariate polynomials.

Although powerful, symmetrization is inherently lossy: by

turning a polynomial p on n variables into a univariate poly-

nomial q, information about p is necessarily thrown away.

Hence, several works identified the development of non-

symmetrization techniques for lower bounding the approxi-

mate degree of Boolean functions as an important research

direction (e.g., [1], [50], [57]). A relatively new such lower-

bound technique called the method of dual polynomials plays

an essential role in our paper.

B. The Method of Dual Polynomials and the AND-OR Tree

A dual polynomial is a dual solution to a certain linear

program capturing the approximate degree of any function.

These polynomials act as certificates of the high approximate

degree of a function. Strong LP duality implies that the

technique is lossless, in contrast to symmetrization. That is,

for any function f and any ε, there is always some dual

polynomial ψ that witnesses a tight ε-approximate degree

lower bound for f .

A dual polynomial that witnesses the fact that d̃egε(fn) ≥
d is a function ψ : {−1, 1}n → {−1, 1} satisfying three

properties:

•
∑

x∈{−1,1}n ψ(x) · f(x) > ε. If ψ satisfies this condi-

tion, it is said to be well-correlated with f .

•
∑

x∈{−1,1}n |ψ(x)| = 1. If ψ satisfies this condition, it

is said to have �1-norm equal to 1.

• For all polynomials p : {−1, 1}n → R of degree less

than d, we have
∑

x∈{−1,1}n p(x) · ψ(x) = 0. If ψ
satisfies this condition, it is said to have pure high
degree at least d.

One success story for the method of dual polynomials

is the resolution of the approximate degree of the two-

level AND-OR tree. For many years, this was the simplest

function whose approximate degree resisted characterization

by symmetrization methods [5], [42], [57], [61]. Given two

functions fM , gN , let f ◦ g : {−1, 1}M ·N → {−1, 1} denote

their block composition, i.e., f ◦ g = f(g, . . . , g).

Theorem 1. The approximate degree of the function
ANDM ◦ ORN is Θ(

√
M ·N).

Ideas pertaining to both the upper and lower bounds of

Theorem 1 will be useful to understanding the results in

this paper. The upper bound of Theorem 1 was established

by Høyer, Mosca, and de Wolf [32], who designed a quan-

tum query algorithm to prove that d̃eg(ANDM ◦ ORN ) =
O(
√
MN). Later, Sherstov [58] proved the following more

general result.

Theorem 2 (Sherstov [58]). For any Boolean functions f, g,
we have d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)).

Sherstov’s remarkable proof of Theorem 2 is via a tech-

nique we call robustification. This approximation technique

will be an important source of intuition for our new results.
Robustification: Sherstov [58] showed that for any

polynomial p : {−1, 1}M → {−1, 1}, and every δ > 0, there

is a polynomial probust of degree O(deg(p) + log(1/δ)) that

is robust to noise in the sense that |p(y)−probust(y+e)| < δ
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for all y ∈ {−1, 1}M , and e ∈ [−1/3, 1/3]M . Hence, given

functions fM , gN , one can obtain an (ε+ δ)-approximating

polynomial for the block composition fM ◦ gN as fol-

lows. Let p be an ε-approximating polynomial for fM ,

and q a (1/3)-approximating polynomial for gN . Then the

block composition p∗ := probust(q, . . . , q) is an (ε + δ)-
approximating polynomial for fM ◦gN . Note that the degree

of p∗ is at most the product of the degrees of probust and q.

Sherstov [55] and the authors [20] independently used

the method of dual polynomials to obtain the matching

Ω(
√
M ·N) lower bound of Theorem 1. These lower bound

proofs work by constructing (explicitly in [20] and implicitly

in [55]) an optimal dual polynomial ψAND-OR for the AND-

OR tree. Specifically, ψAND-OR is obtained by taking dual

polynomials ψAND, ψOR respectively witnessing the fact that

d̃eg(ANDM ) = Ω(
√
M) and d̃eg(ORN ) = Ω(

√
N), and

combining them in a precise manner.

For arbitrary Boolean functions f and g, this method of

combining dual polynomials ψf and ψg to obtain a dual

polynomial ψf � ψg for f ◦ g was introduced in earlier line

of work by Shi and Zhu [62], Lee [38] and Sherstov [57].

Specifically, writing x = (x1, . . . , xM ) ∈ ({−1, 1}N)M
,

(ψf �ψg)(x) := 2M ·ψf (. . . , sgn(ψg(xi)), . . . )·
M∏
i=1

|ψg(xi)|.

This technique of combining dual witnesses, which we call

the “dual block” method, will also be central to this work.

The lower bound of [20], [55] refined the analysis of ψf �ψg

from [57] in the case where f = ANDM and g = ORN .

As argued in subsequent work of Thaler [67, Section

1.2.4], the combining method ψf �ψg is specifically tailored

to showing optimality of the polynomial approximation p∗

for f ◦ g obtained via robustification. This assertion can be

made precise via complementary slackness: the dual solution

ψf �ψg can be shown to obey complementary slackness in an

approximate (yet precise) sense with respect to the solution

to the primal linear program corresponding to p∗.
1) Additional Prior Work: The method of dual polyno-

mials has recently been used to establish a number of new

lower bounds for approximate degree [18], [21], [27], [43],

[57], [59], [67]. All of these results focus on block composed

functions, and can be viewed as hardness amplification re-

sults. Specifically, they show that the block composition f ◦g
is strictly harder to approximate by low-degree polynomials

(requiring either higher degree or higher error) than either

f or g individually. These results have enabled progress

on a number of open questions about the complexity of

AC0, as well as oracle separations involving the polynomial

hierarchy and notions of statistical zero-knowledge proofs.

Recently, a handful of works have proved stronger hard-

ness amplification results for approximate degree by moving

beyond block composed functions [22], [45]. These papers

use very different techniques than the ones we introduce in

this work, as they are focused on a different form of hardness

amplification for polynomial approximation (specifically,

they amplify approximation error instead of degree).

C. Our Results and Techniques

A major technical hurdle to progress on Problem 1 is the

need to go beyond the block composed functions that were

the focus of prior work. Specifically, Theorem 2 implies that

the approximate degree of fM ◦ gN (viewed as a function

of the number of inputs M · N ) is never higher than the

approximate degree of fM or gN individually (viewed as

a function of M and N respectively). For example, if fM
and gN both have approximate degree equal to the square

root of the number of inputs (i.e., d̃eg(fM ) = O(
√
M) and

d̃eg(gN ) = O(
√
N)), then the block composition fM ◦ gN

has the same property (i.e., d̃eg(fM ◦ gN ) = O(
√
M ·N)).

Our results introduce an analysis of non-block-composed

functions that overcomes this hurdle.

Quantitatively, our main lower bounds for constant-depth

circuits and DNFs are as follows. To obtain the tightest

possible results for a given circuit depth, our analysis pays

close attention to whether a circuit C is monotone (C is said

to be monotone if it contains no NOT gates).

Theorem 3. Let k ≥ 1 be any constant integer. Then there
is an (explicitly given, monotone) circuit on n · log4k−4(n)
variables of depth 2k, with AND gates at the bottom, which
computes a function with approximate degree Ω(n1−2k−1/3k ·
log3−2k+2/3k(n)).

For example, Theorem 3 implies a Boolean circuit of

depth 6 on n variables with approximate degree Ω̃(n23/27) =
Ω̃(n0.851...).

Theorem 4. Let k ≥ 1 be any constant integer. Then there is
an (explicitly given, monotone) DNF on n · log4k−4(n) vari-
ables of width O(log2k−1(n)) (and size 2O(log2k(n))) which
computes a function with approximate degree Ω(n1−2k−1/3k ·
log3−2k+2/3k(n)).

Theorems 3 and 4 are in fact corollaries of a more

general hardness amplification theorem. This result shows

how to take any Boolean function f and transform it into a

related function g on roughly the same number of variables

that has significantly higher approximate degree (unless the

approximate degree of f is already Ω̃(n)). Moreover, if f is

computed by a low-depth circuit, then g is as well.

Theorem 5. Let f : {−1, 1}n → {−1, 1} with d̃eg(f) =
d. Then f can be transformed into a related function
g : {−1, 1}m → {−1, 1} with m = O(n log4 n) and
d̃eg(g) = Ω(n1/3 · d2/3 · log n). Moreover, g satisfies the
following additional properties.
• If f is computed by a circuit of depth k, then g is

computed by a circuit of depth k + 3. (1)

• If f is computed by a monotone circuit of depth k with
AND gates at the bottom, then g is computed by a
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monotone circuit of depth k + 2 with AND gates at the
bottom. (2)

• If f is computed by monotone DNF of width w, then g
is computed by monotone DNF of width O(w · log2 n).

(3)

1) Hardness Amplification Construction: The goal of

this subsection is to convey the main ideas underlying the

transformation of f into the harder-to-approximate function

g in the statement of Theorem 5. We focus on illustrating

these ideas when we start with the function f = ANDR,

where we assume for simplicity that R is a power of 2. Let

n = N logR for a parameter N to be determined later. Con-

sider the function SURJECTIVITY : {−1, 1}n → {−1, 1}
(SURJN,R for short) defined as follows. SURJN,R inter-

prets its input s as a list of N numbers (s1, . . . , sN ) from

a range [R]. The function SURJN,R(s) = −1 if and only if

every element of the range [R] appears at least once in the

list. SURJN,R and related functions have been extensively

studied in quantum query complexity. In particular, Beame

and Machmouchi [13] showed that computing SURJN,R for

R = N/2 + 1 requires Ω̃(n) quantum queries, making it a

natural candidate for improved approximate degree lower

bounds for AC0.

When we apply Theorem 5 to f = ANDR, the harder

function g we construct is precisely SURJN,R (for a suitable

choice of N ≤ Õ(R)). Before describing our transformation

for general f , we provide some intuition for why SURJN,R

is harder to approximate than ANDR.

Getting to Know SURJECTIVITY: It is known that

d̃eg(SURJN,R) = Ω̃(n2/3) when R ≤ N and R = Θ(N)
[4]. We do not improve this lower bound for SURJN,R, but

we give a much more general and intuitive proof for it. The

best known upper bound on d̃eg(SURJN,R) is the trivial

O(n) that holds for any function on n variables.

Although this upper bound is trivial, the following is an

instructive way to achieve it. For (i, j) ∈ [R]× [N ], let

yij(s) =

{
−1 if sj = i

1 otherwise.

Observe that yij(s) is exactly computed by a polynomial in

s of degree at most logR, as yij(s) depends on only logR
bits of s. For brevity, we will typically denote yij(s) by

yij , but the reader should always bear in mind that yij is a

function of s.

Clearly, it holds that:

SURJN,R(s)=ANDR(ORN (y1), . . . ,ORN (yR)). (4)

Let p∗ be the polynomial approximation of degree

O(
√
R ·N) for the block composed function ANDR ◦ORN

obtained via robustification (cf. Section I-B). Then

p∗(y1,1, . . . , y1,N , . . . , yR,1, . . . , yR,N )

approximates SURJN,R, and has degree O(deg(p∗) · logR).
If N = O(R), then this bound is O(N logR) = O(n).

Our analysis in the proof of Theorem 5 is tailored to

showing a sense in which this robustification-based ap-

proximation method is nearly optimal. Unsurprisingly, our

analysis makes heavy use of the dual block method of

combining dual witnesses [38], [57], [62], as this method

is tailored to showing optimality of robustification-based

approximations (cf. Section I-B). However, there are several

technical challenges to overcome, owing to the fact that

Equation (4) does not express SURJ as a genuine block

composition (as a single bit of the input s ∈ {−1, 1}N ·logR

affects R of the variables yij).
The Transformation for General Functions: Recall

from the preceding discussion that when applying our

hardness-amplifying transformation to the function

f = ANDR, the harder function (on n = N · logR
bits, for some N = Õ(R)) takes the form SURJN,R =
ANDR(ORN (y1,1, . . . , y1,N ), . . . ,ORN (yR,1 . . . , yR,N )).
This suggests that for general functions f : {−1, 1}R →
{−1, 1}, one should consider the transformed function

F (s) := f(ORN (y1), . . . ,ORN (yR)).

Unfortunately, this simple candidate fails spectacularly. Con-

sider the particular case where f = ORR. It is easy to

see that in this case, F (s) evaluates to −1 on all inputs

s ∈ {−1, 1}N ·logR. Hence, it has (exact) degree equal to 0.

Fortunately, we are able to show that a modification of

the above candidate does work for general functions fR. Let

R′ = R logR. Still simplifying, but only slightly, the harder

function that we exhibit is g : {−1, 1}N ·log(R′) → {−1, 1}
defined via:

g(s) = (f ◦ ANDlogR)(ORN (y1),. . . ,ORN (yR′)).

2) Hardness Amplification Analysis: For expository pur-

poses, we again describe the main ideas of our analysis

in the case where f = ANDR. Recall that in this case,

the harder function g exhibited in Theorem 5 is SURJN,R

on n = N · logR bits. Moreover, in order to approximate

SURJN,R, it is sufficient to approximate the block composed
function ANDR ◦ ORN . This can be done by a polynomial

of degree O(
√
R ·N) using robustification.

The goal of our analysis is to show that there is a sense

in which this approximation method for SURJN,R is almost

optimal. Quantitatively, our analysis yields an Ω(R2/3)
lower bound on the approximate degree of SURJN,R.

At a high level, our analysis proceeds in two stages. In

the first stage (Section III), we give a reduction showing

that to approximate SURJN,R(x), it is necessary to approx-

imate ANDR ◦ ORN , under the promise that the input has

Hamming weight at most N . This reduction is somewhat

subtle, but conceptually crucial to our results. Nevertheless,

at the technical level, it is a straightforward application of a

symmetrization argument due to Ambainis [5].
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In the second stage (Section IV), we prove that approx-

imating ANDR ◦ ORN under the above promise requires

degree Ω(R2/3). Executing this second stage is the more

technically involved part of our proof, and we devote the

remainder of this informal overview to it. Specifically, for

some N = Õ(R), it is necessary and sufficient for us to

construct a dual polynomial ψAND-OR witnessing the fact

that d̃eg(ANDR ◦ ORN ) = Ω(R2/3), such that ψAND-OR is

supported only on inputs of Hamming weight at most N .
As a first attempt, one could consider the dual polynomial

ψAND � ψOR (cf. Section I-B) used in our prior work [20] to

lower bound the approximate degree of the AND-OR tree.

Unfortunately, this dual polynomial has inputs of Hamming

weight as large as Ω(R ·N) in its support.
Our strategy for handling this issue is to modify ψAND �

ψOR by post-processing it to zero out all of the mass it

places on inputs of Hamming weight more than N . This

must be done without significantly affecting its pure high

degree, its �1-norm, or its correlation with ANDR ◦ORN . In

more detail, let |y| denote the Hamming weight of an input

y ∈ {−1, 1}R·N , and suppose that we can show∑
|y|>N

|(ψAND � ψOR)(y)| � R−D. (5)

Intuitively, if Inequality (5) holds for a large value of D,

then inputs of Hamming weight greater than N are not very

important to the dual witness ψAND � ψOR, and hence it is

plausible that the lower bound witnessed by ψAND � ψOR

holds even if such inputs are ignored completely.
To make the above intuition precise, we use a result

of Razborov and Sherstov [47] to establish that Inequality

(5) implies the existence of a (explicitly given) function

ψcorr : {−1, 1}N ·R → {−1, 1} such that:

• ψcorr(y) = ψAND � ψOR(y) for all |y| > N ,

• ψcorr has pure high degree D, and

•
∑
|y|>N |ψcorr(y)| � R−D.

Let ψAND-OR = C · (ψAND � ψOR − ψcorr), where C ≥ 1−
o(1) is chosen so that the resulting function has �1-norm

equal to 1. Then ψAND-OR has:

1) Pure high degree min{D,√R ·N},
2) The same correlation, up to a factor of 1 − o(1), as

ψAND � ψOR has with ANDR ◦ ORN , and

3) Support restricted to Hamming weight at most N .

Hence, Step 2 of the proof is complete if we can show

that Inequality (5) holds for D = Ω(R2/3). Unfortunately,

Inequality (5) does not hold unless we modify the dual

witness ψOR to satisfy additional properties. First, we modify

ψOR so that

ψOR(x) = 0 whenever |x| > R1/3. (6)

Moreover, we further ensure that ψOR is biased toward inputs

of low Hamming weight in the sense that

For all t ≥ 0,
∑
|x|=t

|ψOR(x)| � 1/(t+ 1)2. (7)

We can guarantee that both Conditions (6) and (7) hold while

still ensuring that ψOR has pure high degree Ω(R1/6), as well

as the same �1-norm and correlation with ORN . (The fact

that this modified dual polynomial ψOR has pure high degree

Ω(R1/6) rather than Ω(R1/2) is the reason we are only able

to establish an Ω(R2/3) lower bound on the approximate

degree of SURJN,R, rather than Ω(R).)
We now explain why these modifications imply that

Inequality (5) holds for D = Ω(R2/3). Recall that

(ψAND � ψOR)(y1, . . . , yR)

= 2R · ψAND(. . . , sgn (ψOR(yi)) , . . . ) ·
R∏
i=1

|ψOR(yi)|.

For intuition, let us focus on the final factor in this ex-

pression,
∏R

i=1 |ψOR(yi)|. Since ψOR has �1-norm equal

to 1, the function |ψOR| is a probability distribution, and∏R
i=1 |ψOR(yi)| is a product distribution over

({−1, 1}N)R
.

At a high level, our analysis shows that this product distri-

bution is “exponentially more biased” toward inputs of low

Hamming weight than is ψOR itself.

More specifically, Conditions (6) and (7) together imply

that, if y = (y1, . . . , yR) ∈ {−1, 1}N ·R is drawn from

the product distribution
∏R

i=1 |ψOR(yi)|, then the probability

that y has Hamming weight more than N = Õ(R) is

dominated by the probability that roughly R2/3 of the yi’s
each have Hamming weight close to R1/3 (and the remaining

yi’s have low Hamming weight). But then Condition (7)

ensures that the probability that this occurs is at most

R−Ω(R2/3).
II. PRELIMINARIES

We begin by formally defining the notion of approximate

degree of any partial function defined on a subset of R
n.

Throughout, for any subset X ⊆ R
n and polynomial

p : X → R, we use deg(p) to denote the total degree of

p, and refer to this without qualification as the degree of p.

Definition 6. Let X ⊆ R
n, and let f : X → {−1, 1}. The

ε-approximate degree of f , denoted d̃egε(f), is the least
degree of a real polynomial p : Rn → R with |p(x)−f(x)| ≤
ε for all x ∈ X . We refer to such a p as an ε-approximating

polynomial for f . We use d̃eg(f) to denote d̃eg1/3(f).

Strong LP duality implies the following characterization

of approximate degree (see, e.g., [53]).

Theorem 7. Let X be a finite subset of R
n, and let f :

X → {−1, 1}. Then d̃egε(f) ≥ d if and only if there exists
a function ψ : X → R satisfying the following properties.∑

x∈X
ψ(x) · f(x) > ε, (8)

∑
x∈X

|ψ(x)| = 1, and (9)

∀p : X → R, deg p < d,
∑
x∈X

p(x) · ψ(x) = 0. (10)
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For functions ψ1 : X → R and ψ2 : X ′ → R defined on

finite domains X ,X ′ with X ⊆ X ′, we define

〈ψ1, ψ2〉 :=
∑
x∈X

ψ1(x) · ψ2(x),

and we refer to this as the correlation of ψ1 with ψ2. (We

define 〈ψ1, ψ2〉 similarly if instead X ′ ⊆ X .)

We refer to the right hand side of Equation (9) as the �1-

norm of ψ, and denote this quantity by ‖ψ‖1. If ψ satisfies

Equation (10), it is said to have pure high degree at least d.

Additional Notation: For an input x ∈ {−1, 1}n,

we use |x| to denote the Hamming weight of x, i.e.,

|x| := ∑n
i=1(1−xi)/2. Let {−1, 1}N≤k := {x ∈ {−1, 1}N :

|x| ≤ k}. We denote the set {1, . . . , N} by [N ] and the

set {0, . . . , N} by [N ]0. Given t ∈ R, we define sgn(t)
to equal 1 if t > 0 and to equal −1 otherwise. The

function 1N : {−1, 1}N → {−1, 1} denotes the constant

function that always evaluates to 1. We denote by 1N the

N -dimensional vector with all entries equal to 1.

A. The Dual Block Method
This section collects definitions and preliminary results on

the dual block method [38], [57], [62] for constructing dual

witnesses for a block composed function F ◦f by combining

dual witnesses for F and f respectively.

Definition 8. Let Ψ : {−1, 1}M → R and ψ : {−1, 1}m →
R be functions that are not identically zero. Let x =
(x1, . . . , xM ) ∈ ({−1, 1}m)M . The dual block composition

of Ψ and ψ, denoted Ψ � ψ : ({−1, 1}m)M → R is

(Ψ � ψ)(x) = 2M ·Ψ(. . . , sgn (ψ(xi)) , . . . ) ·
M∏
i=1

|ψ(xi)|.

Proposition 9. The dual block composition satisfies the
following properties:

Preservation of �1-norm [57]: If ‖Ψ‖1 = 1 and ‖ψ‖1 =
1, then ‖Ψ � ψ‖1 = 1. (11)

Multiplicativity of pure high degree [57]: If 〈Ψ, P 〉 = 0
for every polynomial P : {−1, 1}M → {−1, 1} of de-
gree less than D, and 〈ψ, p〉 = 0 for every polynomial
p : {−1, 1}m → {−1, 1} of degree less than d, then for
every polynomial q : {−1, 1}m·M → {−1, 1},

deg q < D · d =⇒ 〈Ψ � ψ, q〉 = 0. (12)

Associativity: For every ζ : {−1, 1}mζ → R, ϕ :
{−1, 1}mϕ → R, and ψ : {−1, 1}mψ → R, we have

(ζ � ϕ) � ψ = ζ � (ϕ � ψ). (13)

The following proposition identifies conditions under

which a dual witness ψ for the large (1/3)-approximate de-

gree of a function f can be transformed, via dual block com-

position with a certain function Ψ: {−1, 1}M → {−1, 1},
into a dual witness for the large (1− 2−Ω(M))-approximate

degree of the block composition ANDM ◦ f .

Proposition 10 (Bun and Thaler [21]). Let m,M ∈ N.
There is a function Ψ : {−1, 1}M → R with the following
properties. Let f : {−1, 1}m → {−1, 1} be any function. Let
ψ : {−1, 1}m → R be any function such that 〈ψ, f〉 ≥ 1/3,
‖ψ‖1 = 1, and ψ(x) ≥ 0 whenever f(x) = 1. Then

〈Ψ � ψ,ANDM ◦ f〉 ≥ 1− (2/3)M , (14)

‖Ψ � ψ‖1 = 1, (15)

〈Ψ,1M 〉 = 0. (16)

The following proposition roughly states that if ψ and Ψ
are dual polynomials that are well-correlated with f and F
respectively, then the dual block composition Ψ �ψ is well-

correlated with the block composed function F ◦f . There is,

however, a potential loss in correlation that is proportional

to the number of variables on which F is defined.

Proposition 11 (Sherstov [57]). Let f : {−1, 1}m →
{−1, 1} and F : {−1, 1}M → {−1, 1}, and let ε, δ > 0.
Let ψ : {−1, 1}m → {−1, 1} be a function with ‖ψ‖1 = 1
and 〈ψ, f〉 ≥ 1 − δ. Let Ψ: {−1, 1}M → {−1, 1} be a
function with ‖Ψ‖1 = 1 and 〈Ψ, F 〉 ≥ ε. Then

〈Ψ � ψ, F ◦ f〉 ≥ ε− 4Mδ.

III. CONNECTING SYMMETRIC PROPERTIES AND BLOCK

COMPOSED FUNCTIONS

In this section, we execute Stage 1 of our program for

proving our main hardness amplification theorem, Theo-

rem 5. Fix an arbitrary function FR : {−1, 1}R → {−1, 1}.
(In order to prove Theorem 5, we will ultimately set

R = 10 · n · log n, and take FR = f ◦ AND10 logn for

f : {−1, 1}n → {−1, 1}.)
We define a promise variant of the function FR ◦ ORN .

Definition 12. Fix positive numbers N and R. Recall that
{−1, 1}N ·R≤N denotes the subset of {−1, 1}N ·R consisting of
vectors of Hamming weight at most N . Define G≤N to be
the partial function obtained from FR ◦ORN by restricting
its domain to {−1, 1}N ·R≤N .

Our goal is to reduce establishing Theorem 5 to estab-

lishing a lower bound on the approximate degree of G≤N .

Specifically, we prove the following theorem relating the

approximate degree of G≤N to that of a function g which

is not much more complex than FR:

Theorem 13. Let G≤N : {−1, 1}N ·R≤N → {−1, 1} be as in
Definition 12. There exists a function
g : {−1, 1}12·N ·�log(R+1)� → {−1, 1} such that

d̃egε(g) ≥ d̃egε(G
≤N ) · �log(R+ 1)�. (17)

Moreover:
• If FR is computed by a circuit of depth k, then g is

computed by a circuit of depth k + 2. (18)

• If FR is computed by a monotone circuit of depth k,
then g is computed by a monotone circuit of depth
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k + 2 with AND gates at the bottom. (19)

• If FR is computed by a monotone DNF of width w,
then g is computed by a monotone DNF of width
O(w · logR). (20)

The proof of Theorem 13 appears in the full version of

this work, and builds on a symmetrization argument due to

Ambainis [5].

IV. ANALYZING BLOCK COMPOSED FUNCTIONS ON

LOW HAMMING WEIGHT INPUTS

To complete the proof of Theorem 5, we combine the

following theorem with Theorem 13.

Theorem 14. Let fn : {−1, 1}n → {−1, 1} be any
function. Let N = c · n log3 n for a sufficiently large
constant c > 0. Let G≤N : {−1, 1}10·N ·n·log n

≤N → {−1, 1}
equal fn ◦ AND10 logn ◦ ORN restricted to inputs in
{−1, 1}10·N ·n·log n

≤N = {x ∈ {−1, 1}10·N ·n·log n : |x| ≤ N}
(cf. Definition 12). Then d̃eg(G≤N ) ≥ n1/3 · d̃eg(fn)2/3.

The primary goal of this section is to prove Theorem 14.

Before embarking on this proof, we use it to complete the

proofs of Theorems 3-5 from Section I-C.

Proof of Theorem 5 assuming Theorem 14.: We begin

by establishing Property (1) in the conclusion of Theorem 5.

Let R = 10 ·n · log n and FR := fn ◦AND10·logn. Applying

Theorem 13 to FR yields a function g on O(N logR) =
O(n log4 n) variables satisfying

d̃egε(g) ≥ d̃egε(G
≤N ) · �log(R+ 1)�

≥ Ω(n1/3 · d̃eg(fn)2/3 · log n),
where the final inequality holds by Theorem 14. Proper-

ties (1), (2), and (3) now follow from Properties (18), (19),

and (20) of Theorem 13, respectively.

Proof of Theorems 3 and 4 assuming Theorem 5: One

can almost obtain Theorems 3 and 4 by recursively applying

Theorem 5, starting in the base case with the function ORn.

However, to obtain stronger degree lower bounds for a given

circuit depth or DNF width, we instead use the following

well-known result of Aaronson and Shi [4] regarding the

approximate degree of (the negation of) the well-known

Element Distinctness function.

Lemma 15 (Sherstov [49], refining Aaronson and Shi [4]).
There is a function ED : {−1, 1}n → {−1, 1} such that
d̃eg(ED) = Ω(n2/3 log1/3 n). Moreover, ED is computed
by a monotone DNF of polynomial size and width O(log n).

Lemma 15 immediately implies Theorems 3 and 4 in the

case k = 1. Theorems 3 and 4 now follow by induction via

Properties (2) and (3) of Theorem 5, respectively.

A. Organization of the Proof of Theorem 14

Our proof of Theorem 14 entails using a dual witness for

the approximate degree of fn to construct a dual witness

for the higher approximate degree of G≤N . For expository

purposes, we think about the construction of a dual witness

for G≤N as consisting of four steps.

Step 1: Let d = d̃eg(fn). We begin by constructing

a dual witness ϕ for the Ω(
√
k)-approximate degree of

the ORN function when restricted to inputs of Hamming

weight at most k = (n/d)2/3. This construction closely

mirrors previous constructions of Špalek [63] and Bun and

Thaler [21]. However, we need ϕ to satisfy an additional

metric condition that is not guaranteed by these prior con-

structions. Specifically, we require that the total �1 weight

that ϕ places on the t’th layer of the Hamming cube should

be upper bounded by O(1/(t+ 1)2).
Step 2: We apply the error amplification construction of

Proposition 10 to transform ϕ into a new dual polynomial ψ
that witnesses the fact that the (1−δ)-approximate degree of

the function AND10 logn ◦ORN remains Ω(
√
k), even with

error parameter δ ≤ 1/N2.

Step 3: We appeal to the degree amplification con-

struction of Proposition 11 to combine ψ from Step 2 with

a dual witness Ψ for the high approximate degree of fn.

This yields a dual witness ζ showing that the approximate

degree of the composed function fn ◦AND10 logn ◦ORN is

Ω(d · √k) = Ω(n1/3 · d2/3).
Step 4: Using a construction of Razborov and Sher-

stov [47], we zero out the mass that ζ places on inputs of

Hamming weight larger than N , while maintaining its pure

high degree and correlation with G≤N . This yields the final

desired dual witness ζ̂ for G≤N .

B. Step 1: A Dual Witness for ORN

Proposition 16. Let k,N ∈ N with k ≤ N . There exist
c1 ∈ (0, 1) and ψ : {−1, 1}N≤k → {−1, 1} such that:
〈ψ,ORN 〉 ≥ 1/3 (21)

‖ψ‖1 = 1 (22)

∀p : {−1, 1}N → R, deg p < c1
√
k =⇒ 〈ψ, p〉 = 0 (23)

ψ(1N ) > 0 (24)∑
|x|=t

|ψ(x)| ≤ 5/(t+ 1)2 ∀t = 0, 1, . . . , k (25)

For intuition, we mention that Properties (21)-(24) amount

to a dual formulation of the fact that the “one-sided” approx-

imate degree of ORN is Ω(
√
k), even under the promise that

the input has Hamming weight at most k. Property (25) is

an additional metric condition that we require later in the

proof. The construction closely follows previous work of

Špalek [63] and Bun and Thaler [21], and appears in the

full version of this work.

C. Steps 2 and 3: A Preliminary Dual Witness for G =
fn ◦ AND10 logn ◦ ORN

Recall that our ultimate goal in this section is to construct

a dual witness for the veracity of Theorem 14. Here, we

begin by defining a preliminary dual witness ζ. While ζ itself

is insufficient to witness the veracity of Theorem 14, we will
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ultimately “post-process” ζ into the desired dual witness ζ̂.

We start by fixing choices of several key parameters:

• d = d̃eg2/3(fn).

• k = �(n/d)1/3�2
• D = c1

√
k ·d = O(n1/3 ·d2/3), where c1 is the constant

from Proposition 16

• R = 10n log n
• N = �c2R log2R�, where c2 is a universal constant to

be determined later (cf. Proposition 18)

• m = R ·N
To state our construction of a preliminary dual witness ζ,

we begin with the following objects:

• A dual witness ϕ : {−1, 1}n → R for the fact

that d̃eg2/3(fn) ≥ d. By Theorem 7, ϕ satisfies the

following conditions.

〈ϕ, fn〉 ≥ 2/3 (26)

‖ϕ‖1 = 1 (27)

∀p : {−1, 1}n → R, deg p < d =⇒ 〈ϕ, p〉 = 0
(28)

• The function Ψ : {−1, 1}10 logn → R whose existence

is guaranteed by Proposition 10.

• The dual witness ψ : {−1, 1}N → R for ORN

guaranteed by Proposition 16, using the choice of the

parameter k above.

We apply dual block composition sequentially to the three

dual witnesses to obtain a function ζ = ϕ � Ψ � ψ. This

function is well-defined because dual block composition is

associative (Proposition 9).

Proposition 17. The dual witness ζ = ϕ � Ψ � ψ satisfies
the following properties:

〈ζ,G〉 ≥ 1/2 (29)

‖ζ‖1 = 1 (30)

∀p : (({−1, 1}N )10 logn)n → R, deg p < D

=⇒ 〈ζ, p〉 = 0. (31)

Proposition 17 follows by regarding ζ as ϕ � (Ψ � ψ) and

applying the hardness amplification results Proposition 10

and Proposition 11.

D. Step 4: Constructing the Final Dual Witness

For a fixed number N ∈ N, let X = {−1, 1}N ·10 logn·n
≤N =

{x ∈ (({−1, 1}N )10 logn)n : |x| ≤ N}. Recall that this set

X is the same one that appears in Definition 12 when applied

to the function FR := fn ◦ AND10 logn on R = 10n log n
variables.

Proposition 18. Let ζ : (({−1, 1}N )10 logn)n → R be as
constructed in Proposition 17. Then there exists a constant
c2 > 0 such that, for N = �c2R log2R� and sufficiently
large n,

∑
x/∈X

|ζ(x)| ≤ (2NR)−2R/k ≤ (2NR)−2D. (32)

Proof: For the proof of Proposition 18, it is now

useful to regard the dual witness ζ as the iterated dual

block composition (ϕ �Ψ) � ψ. In this proof, let us denote

Φ := ϕ�Ψ. Then Φ : {−1, 1}R → R where R = 10n log n.

By symmetry, the function ψ(x) may be written as

ω(|x|)/(N
|x|

)
where ω : [k]0 → R. We may decompose

ω = ω+1 − ω−1 where ω+1 and ω−1 are non-negative

functions satisfying
k∑

t=0

ω+1(t) =
k∑

t=0

ω−1(t) = 1/2. (33)

By the definition of dual block composition, we have

ζ(x1, . . . , xR) = 2R · Φ(. . . , sgn (ψ(xi)) , . . . ) ·
R∏
i=1

|ψ(xi)|.

A calculation reveals that∑
x/∈X

|ζ(x)| = 2R
∑

z∈{−1,1}R
|Φ(z)|

⎛⎝ ∑
(t1,...,tR)∈P

R∏
i=1

ωzi(ti)

⎞⎠
where

P = {(t1, . . . , tR) ∈ [k]R0 : t1 + · · ·+ tR > N},
To control this quantity, we appeal to the following com-

binatorial lemma, whose proof appears in the full version of

this work.

Lemma 19. Let k,R ∈ N with k ≤ N . There is a constant
α > 0 such that the following holds. Let N = �αR log2R�.
Let ηi : [k]0 → R, for i = 1, . . . R, be a sequence of non-
negative functions where for every i,

k∑
r=0

ηi(r) ≤ 1/2 (34)

ηi(r) ≤ 5/(r + 1)2 ∀r = 0, 1, . . . , k. (35)

For P = {
t = (t1, . . . , tR) ∈ [k]R0 : t1 + · · ·+ tR > N},∑
�t∈P

R∏
i=1

ηi(ti) ≤ 2−R · (2NR)−2R/k.

Observe that the functions ωzi satisfy Condition (34) (cf.

Equation (33)) and Condition (35) (cf. Property (25)). We

complete the proof of Proposition 18 by letting c2 equal the

constant α appearing in the statement of Lemma 19, and

bounding

2R
∑

z∈{−1,1}R
|Φ(z)|

⎛⎝∑
�t∈P

R∏
i=1

ωzi(ti)

⎞⎠
≤ 2R

∑
z∈{−1,1}R

|Φ(z)| ·
(
2−R · (2NR)−2R/k

)
= (2NR)−2R/k ≤ (2NR)−2D.

Here, the equality appeals to the fact that ‖Φ‖1 = 1 (by

Property (11) of Proposition 9), and the last inequality holds
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for sufficiently large n by virtue of the fact that R/k =
Θ(n1/3d2/3 log n), while D = O(n1/3d2/3) for the values

of R and D specified at the start of Section IV-C.

We are now in a position to construct our final dual

witness for the high approximate degree of G≤N . This dual

witness ζ̂ is obtained by modifying ζ to zero out all of the

mass it places on inputs of total Hamming weight larger than

N . This zeroing process is done in a careful way so as not to

decrease the pure high degree of ζ, nor to significantly affect

its correlation with G≤N . The technical tool that enables this

process is a construction of Razborov and Sherstov [47].

Lemma 20 (cf. [47, Proof of Lemma 3.2]). Let D,m ∈ N

with 0 ≤ D ≤ m − 1. Then for every y ∈ {−1, 1}m with
|y| > D, there is a function φy : {−1, 1}m → R such that

φy(y) = 1 (36)

|x| > D, x �= y =⇒ φy(x) = 0 (37)

deg p < D =⇒ 〈φy, p〉 = 0 (38)∑
|x|≤D

|φy(x)| ≤ 2D
(|y|
D

)
. (39)

Proposition 21. There exists a function ν :
(({−1, 1}N )10 logn)n → R such that

∀p : (({−1, 1}N )10 logn)n → R, deg p < D

=⇒ 〈ν, p〉 = 0 (40)

‖ν‖1 ≤ 1/10 (41)

|x| > N =⇒ ν(x) = ζ(x), (42)

where ζ is as in Proposition 17.

Proof: Define

ν(x) =
∑

y:|y|>N

ζ(y)φy(x),

where φy is as in Lemma 20 with m and D set as at the

beginning of Section IV-C. Property (40) follows immedi-

ately from Property (38) and linearity. Property (41) follows

from Proposition 18 and Properties (36), (37), and (39) of

Proposition 21. Finally, Property (42) follows from (36)

and (37), together with the fact that D < N .

Combining Proposition 21 with Proposition 17 allows us

to complete the proof of Theorem 14, which was the goal

of this section.

Proof of Theorem 14: Let ζ = ϕ�Ψ�ψ be as defined in

Section IV-C, and let ν be the correction object constructed

in Proposition 21. Observe that ‖ζ − ν‖1 > 0, as ‖ζ‖1 = 1
(cf. Equality (30)) and ‖ν‖1 ≤ 1/10 (cf. Inequality (41)).

Define the function

ζ̂(x) =
ζ(x)− ν(x)
‖ζ − ν‖1 .

Since ν(x) = ζ(x) whenever |x| > N (cf. Equation (42)),

the function ζ̂ is supported on the set X . By Theorem 7, to

show that it is a dual witness for the high approximate degree

of G≤N , it suffices to show that ζ̂ satisfies the following

three properties:

〈ζ̂ , G≤N 〉 ≥ 1/3 (43)

‖ζ̂‖1 = 1 (44)

∀p : (({−1, 1}N )10 logn)n → R, deg p < D

=⇒ 〈ζ̂ , p〉 = 0. (45)

Inequality (43) follows from the fact that ζ = ν outside X ,

together with Properties (29), (30), and (41). Equation (44)

is immediate from the definition of ζ̂. Finally, (45) follows

from (31), (40), and linearity.

V. APPLICATIONS

A. Approximate Rank and Quantum Communication Com-
plexity of AC0

For a matrix F ∈ {−1, 1}N×N , the ε-approximate rank

of F , denoted rankε(F ), is the least rank of a matrix

A ∈ R
N×N such that |Aij − Fij | ≤ ε for all (i, j) ∈

[N ]× [N ]. Sherstov’s pattern matrix method [53] allows one

to translate approximate degree lower bounds into approxi-

mate rank lower bounds in a black-box manner. Moreover,

the logarithm of the approximate rank of a communication

matrix is known to lower bound its quantum communication

complexity, even when prior entanglement is allowed [39].

By combining the pattern matrix method with Theorems 3

and 4, we obtain the following corollary.

Corollary 22. For any constant δ > 0, there is an
AC0 function F : {−1, 1}n × {−1, 1}n → {−1, 1} such
that [F (x, y)]x,y has approximate rank rank1/3(F ) ≥
exp(n1−δ). Similarly, there is a DNF F : {−1, 1}n ×
{−1, 1}n → {−1, 1} of width polylog(n) (and quasipoly-
nomial size) such that [F (x, y)]x,y has approximate rank
at least exp(n1−δ). Moreover, the quantum communication
complexity of F (with arbitrary prior entanglement), denoted
Q∗1/3(F ), is Ω(n1−δ).

The best previous lower bound on the approximate rank

and quantum communication complexity of an AC0 function

was exp
(
Ω̃(n2/3)

)
and Ω̃(n2/3) respectively. This follows

from combining the Element Distinctness lower bound (The-

orem 15), with the pattern matrix method [53].

Subsequent to [53], a number of works [12], [26], [29],

[40], [54], [56] generalized the pattern matrix method to the

multiparty number-on-the-forehead model. Combining our

new approximate degree bounds with sharpest version of

these results [56] yields the following corollary.

Corollary 23. For any integer k ≥ 1 and any constant
δ > 0, there is an AC0 function F : ({−1, 1}n)k → {−1, 1}
such that the k-party quantum number-on-the-forehead com-
munication complexity of F (with arbitrary prior entangle-
ment), denoted Q∗1/3(F ), is Ω((n/4kk2)1−δ).
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The previous best lower bound for an AC0 function was

Ωk(n
2/3), again by applying the pattern matrix method

to the Element Distinctness function. Moreover, this was

the best-known lower bound even for classical randomized

number-on-the-forehead communication complexity.

B. Nearly Optimal Separation Between Certificate Complex-
ity and Approximate Degree

Certificate complexity, approximate degree, Fourier de-

gree, block sensitivity, and deterministic, randomized, and

quantum query complexities are all natural measures of the

complexity of Boolean functions, with many applications in

theoretical computer science. While all of these measures

are polynomially related, much effort has been devoted to

understanding the maximal possible separations between

these measures. Ambainis et al. [7], building on techniques

of Göös, Pitassi, and Watson [31], recently made remarkable

progress in this direction, establishing a number of surprising

separations between several of these measures. Subsequent

work by Aaronson, Ben-David, and Kothari [3] unified and

strengthened a number of these separations.

Let f : {−1, 1}n → {−1, 1} be a (total) Boolean function.

In the full version of this work, we study the relationship

between certificate complexity, denoted C(f), and approxi-

mate degree. We build on Theorem 4 to construct a function

F : {−1, 1}n → {−1, 1} with d̃eg(F ) = n1−o(1) and

certificate complexity n1/2+o(1). The function F exhibits

what is essentially the maximal possible separation between

these two measures, as it is known that d̃eg(f) = O(C(f)2)
for all Boolean functions f . The best previous separation was

reported by Aaronson et al. [3], who gave a function f with

d̃eg(f) = Ω̃(C(f)7/6).

Theorem 24. There is a Boolean function F : {−1, 1}n →
{−1, 1} such that d̃eg(F ) ≥ C(F )2−o(1).

C. Secret Sharing Schemes

Bogdanov et al. [17] observed that for any f : {−1, 1}n →
{−1, 1} and integer d > 0, any dual polynomial μ for the

fact that d̃egε(f) ≥ d leads to a scheme for sharing a

single secret bit b ∈ {−1, 1} among n parties as follows.

Decompose μ as μ+ − μ−, where μ+ and μ− are non-

negative functions with ‖μ+‖1 = ‖μ0‖1 = 1/2. Then

in order to split b among n parties, one draws an input

x = (x1, . . . , xn) ∈ {−1, 1}n from the distribution 2 · μb,

and gives bit xi to the ith party. In order to reconstruct b,
one simply applies f to (x1, . . . , xn).

Because μ is ε-correlated with f , the probability of correct

reconstruction if the bit is chosen at random is at least (1+
ε)/2 (and the the reconstruction advantage, defined to equal

Prx∼μ+ [f(x) = 1]− Prx∼μ− [f(x) = 1], is at least ε). The

fact that μ has pure high degree at least d means that any

subset of shares of size less than d provides no information

about the secret bit b. We direct the interested reader to [17]

for further details.

Hence, an immediate corollary of our new approximate

degree lower bounds for AC0 is the following.

Corollary 25. For any arbitrarily small constant δ > 0,
there is a secret sharing scheme that shares a single bit b
among n parties by assigning a bit xi to each party i. The
scheme satisfies the following properties.
(a) Reconstruction is computed by an AC0 circuit.
(b) The reconstruction advantage is at least 0.49.
(c) Any subset of shares of size less than d = Ω(n1−δ)

provides no information about the secret bit b.

The above corollary improves over an analogous result

of Bogdanov et al. [17], who used the Element Distinctness

lower bound (cf. Theorem 15) to give a scheme for which

subsets of shares of size less than d = Ω(n2/3) provides no

information about the secret bit b.

VI. FUTURE DIRECTIONS

A. Stronger Results for Constant Error Approximation

Throughout this section, δ denotes an arbitrarily small

positive constant. While our Ω(n1−δ) lower bound on the

approximate degree of AC0 comes close to resolving Prob-

lem 1 from the introduction, we fall short of a full solution.

Can our techniques be refined to give an Ω(n) lower bound

on the approximate degree of a function in AC0? Even

the approximate degree of the SURJECTIVITY function

remains unresolved. No approximating polynomial of degree

o(n) is known, yet our methods do not improve on the

known Ω(n2/3) lower bound for this function.

It would also be very interesting to extend our Ω(n1−δ)
lower bounds for DNFs of polylogarithmic width and

quasipolynomial size to DNFs of polynomial size (and

ideally of logarithmic width). Currently, the best known

lower bound on the approximate degree of polynomial size

DNFs remains Ω̃(n2/3) for Element Distinctness.

For any constant integer k > 0, the k-sum function is a

DNF of width O(log n) that might have approximate degree

Ω(nk/(k+1)) [6], [16]. Another candidate DNF that might

have approximate degree polynomially larger than Ω(n2/3)
is the k-distinctness function for k ≥ 3. (The best known

upper bound on the approximate degree of the k-distinctness

function is O(n1−2k−2/(2k−1)); this bound approaches n3/4

as k →∞ [15].)

B. Stronger Results for Large Error Approximation

Another open direction is to strengthen our ε-approximate

degree lower bounds on AC0 from ε = 1/3 to ε much closer

to 1. For example, the following two variants of Problem 1

from the introduction are open.

Problem 2. Is there a constant-depth circuit in n variables
with ε-approximate degree Ω(n), for (say) ε = 1− 2−Ω(n)?

Problem 3. Is there a constant-depth circuit in n variables
with ε-approximate degree Ω(n), for any ε < 1?
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Problem 3 is equivalent to asking whether there is an

AC0 function with linear threshold degree. Resolving Prob-

lems 2 and 3 would have a wide variety of consequences

in computational learning theory, circuit complexity, and

communication complexity (see, e.g., [18], [22], [60] and

the references therein).

Despite attention by many researchers, the best known

lower bounds in the directions of Problems 2 and 3 are:

(a) For any constant Γ > 0, a depth-3 circuit with ε-
approximate degree Ω(n1/2−δ) for ε = 1− 2−nΓ [22],

(b) A depth-3 circuit with threshold degree Ω(n3/7) [49],

and

(c) A depth-4 circuit with threshold degree Ω(n1/2) [49].

We believe that the following three results in the directions

of Problems 2 and 3 should be achievable via relatively

modest extensions of our techniques.

First, it should be possible to nearly resolve Problem 2

as follows. Recall from Section I-B1 that our recent work

[22] also proved stronger hardness amplification results for

approximate degree by moving beyond block composed

functions. The methods of [22] amplify approximation error

but not degree, while in this paper we amplify degree but

not approximation error. We believe that it is possible to

combine the two sets of techniques to exhibit a function in

AC0 on n variables with ε-approximate degree at least n1−δ ,

even for ε = 1 − 2−Ω(n1−δ). Such a result would translate

in a black-box manner into lower bounds of 2Ω(n1−δ) on the

margin complexity, (multiplicative inverse of) discrepancy,

threshold weight, and Majority-of-Threshold circuit size of

AC0, nearly matching trivial 2O(n) upper bounds.

Second, we are confident that the polylogarithmic width

DNF f : {−1, 1}n → {−1, 1} of approximate degree

Ω(n1−δ) exhibited in Theorem 4 in fact has large one-sided
approximate degree [21]. Moreover, this should be provable

via a modest extension of our techniques. Combining such

a lower bound with a result of Sherstov [60] would imply

that ANDn1−δ ◦ f has threshold degree Ω(n1−δ), thereby

yielding a depth three circuit (of quasipolynomial size) on

N = n2−2δ variables with threshold degree Ω(N1/2−δ).
Third, we believe that the following function g on

O(n log4 n) variables has threshold degree Ω(n3/5). Let

fn = ANDn1/5 ◦ORn2/5 ◦ANDn2/5 , and let g be the harder

function obtained by applying the construction of Theorem

5 to fn. Note that g is computed by a circuit of depth 5.

Sherstov [60] constructed a dual polynomial ψ witnessing

the fact that

deg± (ANDn1/5 ◦ ORn2/5 ◦ ANDn2/5 ◦ ORn2/5) = Ω(n3/5).

(Note that this block composed function is defined over n7/5

variables.) In order to show that g likewise has threshold

degree Ω(n3/5), our results from Section III imply that it is

enough to “zero out” the mass that ψ places on inputs of

Hamming weight larger than a suitable threshold N = Õ(n),
without affecting the sign of ψ on the remaining inputs. We

believe that is possible to achieve this via a refinement of

the zeroing technique used in this work.
A final ambitious direction: A more ambitious direction

toward resolving Problems 2 and 3 would be to obtain a

version of our hardness amplification result (Theorem 5)

that (a) applies to threshold degree rather than approximate

degree and (b) can be applied recursively. This would allow

one to obtain an Ω(n1−δ) lower bound on the threshold

degree of AC0, nearly resolving Problem 3 above.
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