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Abstract—The celebrated Time Hierarchy Theorem for Tur-
ing machines states, informally, that more problems can be
solved given more time. The extent to which a time hierarchy-
type theorem holds in the classic distributed LOCAL model
has been open for many years. In particular, it is consistent
with previous results that all natural problems in the LOCAL
model can be classified according to a small constant number
of complexities, such as O�1�, O�log� n�, O�log n�, 2O�

�
logn�,

etc.
In this paper we establish the first time hierarchy theorem

for the LOCAL model and prove that several gaps exist in the
LOCAL time hierarchy. Our main results are as follows:

� We define an infinite set of simple coloring problems called
Hierarchical 2 1

2
-Coloring. A correctly colored graph can

be confirmed by simply checking the neighborhood of each
vertex, so this problem fits into the class of locally check-
able labeling (LCL) problems. However, the complexity of
the k-level Hierarchical 2 1

2
-Coloring problem is Θ�n1�k�,

for k � Z
�. The upper and lower bounds hold for both

general graphs and trees, and for both randomized and
deterministic algorithms.

� Consider any LCL problem on bounded degree trees. We
prove an automatic-speedup theorem that states that any
randomized no�1�-time algorithm solving the LCL can be
transformed into a deterministic O�log n�-time algorithm.
Together with a previous result, this establishes that on
trees, there are no natural deterministic complexities in
the ranges ω�log� n�—o�log n� or ω�log n�—no�1�.

� We expose a gap in the randomized time hierarchy
on general graphs. Roughly speaking, any randomized
algorithm that solves an LCL problem in sublogarithmic
time can be sped up to run in O�TLLL� time, which is the
complexity of the distributed Lovász local lemma problem,
currently known to be Ω�log log n� and 2O�

�
log logn� on

bounded degree graphs.
Finally, we revisit Naor and Stockmeyer’s characterization

of O�1�-time LOCAL algorithms for LCL problems (as order-
invariant w.r.t. vertex IDs) and calculate the complexity gaps
that are directly implied by their proof. For n-rings we see a
ω�1�—o�log� n� complexity gap, for ��n��n�-tori an ω�1�—
o�
�
log� n� gap, and for bounded degree trees and general

graphs, an ω�1�—o�log�log� n�� complexity gap.

Keywords-distributed algorithm; locally checkable labeling;
local model; time hierarchy theorem;

I. INTRODUCTION

The goal of this paper is to understand the spectrum of

natural problem complexities that can exist in the LOCAL

Supported by NSF Grants CCF-1514383 and CCF-1637546.

model [1], [2] of distributed computation, and to quantify the

value of randomness in this model. Whereas the time hier-

archy of Turing machines is known1 to be very “smooth”,

recent work [5], [6] has exhibited strange gaps in the LOCAL
complexity hierarchy of LCL problems. Indeed, prior to this

work it was not even known if the LOCAL model could

support more than a small constant number of problem

complexities (for LCL problems). Before surveying prior

work in this area, let us formally define the deterministic

and randomized variants of the LOCAL model, and the

class of locally checkable labeling (LCL) problems, which

are intuitively those graph problems that can be computed

locally in nondeterministic constant time.

In both the DetLOCAL and RandLOCAL models the

input graph G � �V,E� and communications network are

identical. Each vertex hosts a processor and all vertices run

the same algorithm. Each edge supports communication in

both directions. The computation proceeds in synchronized

rounds. In a round, each processor performs some computa-

tion and sends a message along each incident edge, which is

delivered before the beginning of the next round. Each vertex

v is initially aware of its degree deg�v�, a port numbering

mapping its incident edges to �1, . . . , deg�v��, certain global

parameters such as n
def
� �V �, Δ

def
� maxv�V deg�v�,

and possibly other information. The assumption that global

parameters are common knowledge can sometimes be re-

moved; see Korman, Sereni, and Viennot [7]. The only

measure of efficiency is the number of rounds. All local

computation is free and the size of messages is unbounded.

Henceforth “time” refers to the number of rounds. The

differences between DetLOCAL and RandLOCAL are as

follows.

� DetLOCAL: In order to avoid trivial impossibilities, all

vertices are assumed to hold unique Θ�log n�-bit IDs.

Except for the information about deg�v�, ID�v�, and

the port numbering, the initial state of v is identical

to every other vertex. The algorithm executed at each

vertex is deterministic.

� RandLOCAL: In this model each vertex may locally

generate an unbounded number of independent truly

1For any time-constructible function T �n�, there is a problem solvable
in O�T �n�� but not o�T �n�� time [3], [4].
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random bits. There are no globally shared random bits.

Except for the information about deg�v� and its port

numbering, the initial state of v is identical to every

other vertex. Algorithms in this model operate for a

specified number of rounds and have some probability

of failure, the definition of which is problem specific.

We set the maximum tolerable global probability of

failure to be 1�n.

Clearly RandLOCAL algorithms can generate distinct IDs

(w.h.p.) if desired. Observe that the role of “n” is different

in the two LOCAL models: in DetLOCAL it affects the

ID length whereas in RandLOCAL it affects the failure

probability.

LCL Problems: Naor and Stockmeyer [8] introduced

locally checkable labelings to formalize a large class of

natural graph problems. Fix a class G of possible input

graphs and let Δ be the maximum degree in any such

graph. Formally, an LCL problem P for G has a radius r,

constant size input and output alphabets Σin,Σout, and a

set C of acceptable configurations. All of these parameters

may depend on Δ. Each C � C is a graph centered at a

specific vertex, in which each vertex has a degree, a port

numbering, and two labels from Σin and Σout. Given the

input graph G�V,E, φin� where φin : V �G� � Σin, an

acceptable output is any function φout : V �G� � Σout such

that for each v � V �G�, the subgraph induced by Nr�v�
(denoting the r-neighborhood of v together with information

stored there: vertex degrees, port numberings, input labels,

and output labels) is isomorphic to a member of C. An LCL

can be described explicitly by enumerating a finite number

of acceptable configurations. LCLs can be generalized to

graph classes with unbounded degrees.

Many natural symmetry breaking problems can be ex-

pressed as LCLs, such as MIS, maximal matching, �α, β�-
ruling sets, �Δ�1�-vertex coloring, and sinkless orientation.

A. The Complexity Landscape of LOCAL

The complexity landscape for LCL problems is defined

by “natural” complexities (sharp lower and upper bounds

for specific LCL problems) and provably empty gaps in

the complexity spectrum. We now have an almost perfect

understanding of the complexity landscape for two simple

topologies: n-rings [9], [1], [10], [8], [5] and ��n � �
n�-

tori [8], [5], [6]. See Figure 1, Top and Middle. On the

n-ring, the only possible problem complexities are O�1�,
Θ�log� n� (e.g., 3-coloring), and Θ�n� (e.g., 2-coloring, if

bipartite). The gaps between these three complexities are

obtained by automatic speedup theorems. Naor and Stock-

meyer’s [8] characterization of O�1�-time LCL algorithms

actually implies that any o�log� n�-time algorithm on the n-

ring can be transformed to run in O�1� time; see Appendix.

Chang, Kopelowitz, and Pettie [5] showed that any o�n�-time

RandLOCAL algorithm can be made to run in O�log� n�
time in DetLOCAL.

The situation with ��n��n�-tori is almost identical [6]:

every known LCL has complexity O�1�, Θ�log� n� (e.g.,

4-coloring), or Θ��n� (e.g., 3-coloring). Whereas the gap

implied by [8] is ω�1�—o�log� n� on the n-ring, it is

ω�1�—o�
�
log� n� on the ��n��n�-torus; see Appendix.2

Whereas randomness is known not to help in n-rings [8],

[5], it is an open question on tori [6]. Whereas the clas-

sification question is decidable on n-rings (whether an

LCL is O�log� n� or Ω�n�, for example) this question is

undecidable on ��n��
n�-tori [8], [6].

The gap theorems of Chang et al. [5] show that no

LCL problem on general graphs has DetLOCAL complex-

ity in the range ω�log� n�—o�logΔ n�, nor RandLOCAL
complexity in the range ω�log� n�—o�logΔ log n�. Some

problems exhibit an exponential separation (O�logΔ log n�
vs. Ω�logΔ n�) between their RandLOCAL and DetLOCAL
complexities, such as Δ-coloring degree-Δ trees [11], [5]

and sinkless orientation [11], [12]. More generally, Chang et

al. [5] proved that the RandLOCAL complexity of any LCL

problem on graphs of size n is, holding Δ fixed, at least its

deterministic complexity on instances of size
�
log n. Thus,

on the class of degree Δ 	 O�1� graphs there were only five

known natural complexities: O�1�, Θ�log� n�, randomized

Θ�log log n�, Θ�log n�, and Θ�n�. For non-constant Δ,

the RandLOCAL lower bounds of Kuhn, Moscibroda, and

Wattenhofer [13] imply Ω�min
 logΔ
log logΔ ,

�
logn

log logn�� lower

bounds on O�1�-approximate vertex cover, MIS, and maxi-

mal matching. This Ω�logΔ� log logΔ� lower bound is only

known to be tight for O�1�-approximate vertex cover [14];

the best maximal matching [15] and MIS [16] algorithms’

dependence on Δ is Ω�logΔ�. The Ω�
�

logn
log logn � lower

bound is not known to be tight for any problem, but is

almost tight for maximal matching on bounded arboricity

graphs [15], e.g., trees or planar graphs.

New Results: In this paper we study the LOCAL
complexity landscape on more general topologies: bounded

degree trees and general graphs; see Figure 1, Bottom. We

establish a new complexity gap for trees, a complexity gap

for general graphs based on the distributed complexity of

the constructive Lovász local lemma, and a new infinite

hierarchy of coloring problems with polynomial time com-

plexities. In more detail,

� We prove that on the class of degree bounded trees,

no LCL has complexity in the range ω�log n�—no�1�.

Specifically, any no�1�-time RandLOCAL algorithm

can be converted to an O�log n�-time DetLOCAL al-

gorithm. Moreover, given a description of an LCL

problem P , it is decidable whether the RandLOCAL
complexity of P is nΩ�1� or the DetLOCAL complexity

2J. Suomela (personal communication, 2017) has a proof that there is an
ω�1�—o�log� n� complexity gap for tori, at least for LCLs that do not use
port numberings or input labels. The issues that arise with port numbering
and input labels can be very subtle.
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Figure 1. Top: the complexity landscape for LCL problems on the n-ring. Middle: the complexity landscape for LCL problems on the ��n��
n�-torus.

Refer to [8], [5], [6] and Appendix for proofs of the complexity gaps (‘X’) on rings and tori. Bottom: the complexity landscape for LCL problems on
bounded degree trees. The ω�log� n�—o�logn� DetLOCAL gap and ω�log� n�—o�log logn� RandLOCAL gap are due to [5]. The ω�TLLL�—o�logn�
and ω�logn�—no�1� gaps are new. Refer to Appendix for the ω�1�—o�log�log� n�� gap. It is unknown whether there are ω�n1��k�1��—o�n1�k� gaps.
With the exception of the ω�logn�—no�1� gap and the complexity of TLLL, this is exactly the known complexity landscape for general bounded degree
graphs as well.

of P is O�log n�. It turns out that this gap is maximal:

we cannot extend it lower than ω�log n� [1], [5], nor

higher than no�1�, as we show below.

� We define an infinite class of LCL problems called

Hierarchical 2 1
2 -Coloring. We prove that k-level Hi-

erarchical 2 1
2 -Coloring has complexity Θ�n1�k�. The

upper bound holds in DetLOCAL on general graphs,

and the lower bound holds even on degree-3 trees in

RandLOCAL. Thus, in contrast to rings and tori, trees

and general graphs support an infinite number of natural

problem complexities.

� Suppose we have a RandLOCAL algorithm for gen-

eral graphs running in C�Δ� � o�logΔ n� time. We

can transform this algorithm to run in O�C�Δ� �
TLLL� time, where TLLL is the complexity of a weak

(i.e., “easy”) version of the constructive Lovász lo-

cal lemma. The complexity TLLL seems to be sen-

sitive to the precise LLL criterion, whether random-

ness is allowed, the dependency graph topology and

its maximum degree; refer to [17] for a survey of

distributed LLL algorithms [18], [19], [11], [5], [20].

At present, TLLL is known to be Ω�log log n� [11]

(even on trees [17]), 2O��log logn� on bounded degree
graphs [20], and Θ�log log n� on trees [17]. Therefore,

our result implies new RandLOCAL complexity gaps

2ω�
�
log logn�—o�log n� for bounded degree graphs and

ω�log log n�—o�log n� for bounded degree trees.

Finally, it seems to be folklore that Naor and Stockmeyer’s

work [8] implies some kind of complexity gap, which

has been cited as ω�1�—o�log� n� [6, p. 2]. However, to

our knowledge, no proof of this complexity gap has been

published. We show how Naor and Stockmeyer’s approach

implies complexity gaps that depend on the graph topology:

— ω�1�—o�log� n� on rings.

— ω�1�—o�
�

log� n� on tori.

— ω�1�—o�log�log� n�� on bounded degree trees and

general graphs.

These gaps apply to the general class of LCL problems

defined in this paper, in which vertices initially hold an

input label and possible port numbering. Port numberings

are needed to represent “edge labeling” problems (like

maximal matching, edge coloring, and sinkless orientation)

unambiguously as vertex labelings. They are not needed for

native “vertex labeling” problems like �Δ � 1�-coloring or

MIS. J. Suomela (personal communication) gave a proof that

the ω�1�—o�log� n� gap exists in tori as well, for the class

of LCL problems without input labels or port numbering;

see Appendix.
Commentary: Our ω�log n�—no�1� complexity gap

for trees is interesting from both a technical and greater

philosophical perspective, due to the fact that many natu-

ral problems have been “stuck” at no�1� complexities for

decades. Any DetLOCAL algorithm that relies on network

decompositions [21] currently takes 2O��logn� time. If our

automatic speedup theorem could be extended to the class

of all graphs, this would immediately yield O�log n�-time

algorithms for MIS, �Δ�1�-coloring, and many other LCLs.

All the existing automatic speedup theorems are quite dif-

ferent in terms of proof techniques. Naor and Stockmeyer’s

approach is based on Ramsey theory. The speedup theorems
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of [5], [6] use the fact that o�logΔ n� algorithms on general

graphs (and o�n� algorithms on n-rings and o��n� algo-

rithms on ��n��n�-tori) cannot “see” the whole graph, and

can therefore be efficiently tricked into thinking the graph

has constant size. Our no�1� � O�log n� speedup theorem

introduces an entirely new set of techniques based on classic

automata theory. We show that any LCL problem gives rise

to a regular language that represents partial labelings of the

tree that can be consistently extended to total lablelings. By

applying the pumping lemma for regular languages, we can

“pump” the input tree into a much larger tree that behaves

similar to the original tree. The advantage of creating a larger

imaginary tree is that each vertex can (mentally) simulate

the behavior of an no�1�-time algorithm on the imaginary
tree, merely by inspecting its O�log n�-neighborhood in

the actual tree. Moreover, because the pumping operation

preserves properties of the original tree, a labeling of the

imaginary tree can be efficiently converted to a labeling of

the original tree.

B. Related Results

There are several LOCAL lower bounds for natural prob-

lems that do not quite fit in the LCL framework. Göös, Hir-

vonen, and Suomela [22] proved a sharp Ω�Δ� lower bound

for fractional maximal matching and Göös and Suomela

proved Ω�log n� lower bounds on �1�δ�-approximating the

minimum vertex cover, δ � 0, even on degree-3 graphs.

See [23], [24] for lower bounds on coloring problems that

apply to constrained algorithms or a constrained version of

the LOCAL model.

In recent years there have been efforts to develop a

complexity theory of locality. The gap theorems of [8],

[5], [6] have already been discussed. Suomela surveys [25]

the class of problems that can be computed with O�1�
time. Fraigniaud et al. [26] defined a distributed model for

locally deciding graph properties; see [27] for a survey of

variants of the local distributed decision model. Göös and

Suomela [28] considered the proof complexity (measured

in terms of bits-per-vertex label) of locally verifying graph

properties. Very recently, Ghaffari, Kuhn, and Maus [29]

defined the SLOCAL model (sequential LOCAL) and exhib-

ited several complete problems for this model, inasmuch as

a polylog�n�-time DetLOCAL algorithm for any complete

problem implies a polylog�n� DetLOCAL algorithm for

every polylog�n�-time problem in SLOCAL.3

C. Organization

In Section II we introduce Hierarchical 2 1
2 -Coloring and

prove that the k-level variant of this problem has complexity

Θ�n1�k�. In Section III we prove the no�1� � O�log n�
speedup theorem for bounded degree trees. In Section IV

3The class of O�1�-time SLOCAL algorithms is, roughly speaking,
those graph labelings that can be computed sequentially, by a truly local
algorithm. This class is a strict subset of LCLs.

we discuss the constructive Lovász local lemma and prove

the o�logΔ n� � TLLL randomized speedup theorem. In

Section V we discuss open problems and outstanding conjec-

tures. Appendix reviews Naor and Stockmeyer’s characteri-

zation of O�1�-time LCL algorithms, using Ramsey theory,

and explains how it implies gaps in the complexity hierarchy

that depend on graph topology.

II. AN INFINITUDE OF LOCAL COMPLEXITIES:

HIERARCHICAL 2 1
2 -COLORING

In this section we give an infinite sequence �Pk�k�Z� of

LCL problems, where the complexity of Pk is precisely

Θ�n1�k�.4 The upper bound holds on general graphs in

DetLOCAL and the lower bound holds in RandLOCAL, even

on degree-3 trees. Informally, the task of Pk is to 2-color

(with ��,�	) certain specific subgraphs of the input graph.

Some vertices are exempt from being colored (in which case

they are labeled �), and in addition, it is possible to decline

to 2-color certain subgraphs, by labeling them �.

There are no input labels. The output label set is Σout 

��,�,�,�	.5 The problem Pk is an LCL defined by the

following rules.

Levels. Subsequent rules depend on the levels of vertices.

Let Vi, i � �1, . . . , k � 1	, be the set of vertices on level i,
defined as follows.

G1 
 G

Gi 
 Gi�1 � Vi�1, for i � 
2, k � 1�
Vi 
 �v � V �Gi� � degGi

�v� � 2	, for i � 
1, k�
Vk�1 
 V �Gk�1�

Remember that vertices know their degrees, so a vertex in

V1 deduces this with 0 rounds of communication. In general

the level of v can be calculated from information in Nk�v�.
Exemption. A vertex labeled � is called exempt. No V1

vertex is labeled �; all Vk�1 vertices are labeled �. Any Vi

vertex is labeled � iff it is adjacent to a lower level vertex

labeled �,�, or �. Define Di � Vi to be the set of level i
exempt vertices.

Two-Coloring. Vertices not covered by the exemption rule

are labeled one of �,�,�.

— Any vertex in Vi, i � 
1, k�, labeled � has no neighbor

in Vi labeled � or �.

— Any vertex in Vi, i � 
1, k�, labeled � has no neighbor

in Vi labeled � or �.

— Any vertex in Vk �Dk with exactly 0 or 1 neighbors

in Vk �Dk must be labeled � or �.

4Brandt et al. [6, Appendix A.3] described an LCL that has complexity
Θ��n� on general graphs, but not trees. It may be possible to generalize
their LCL to any complexity of the form Θ�n1�k�.

5Venus, Mars, Mercury, Saturn.

159



Commentary: The Level rule states that the graph

induced by Vi consists of paths and cycles. The Two-

Coloring rule implies that each component of non-exempt

vertices in the graph induced by Vi � Di must either (a)

be labeled uniformly by � or (b) be properly 2-colored by

��,��. Every path in Vk �Dk must be properly 2-colored,

but cycles in Vk�Dk are allowed to be labeled uniformly by

�. This last provision is necessary to ensure that every graph

can be labeled according to Pk since there is no guarantee

that cycles in Vk �Dk are bipartite.

Remark 1. As stated Pk is an LCL with an alphabet size
of 4 and a radius k, since the coloring rules refer to levels,
which can be deduced by looking up to radius k. On the
other hand, we can also represent Pk as an LCL with radius
1 and alphabet size 4k by including a vertex’s level in
its output label. A correct level assignment can be verified
within radius 1. For example, level 1 vertices are those with
degree at most 2, and a vertex is labeled i � �2, k� iff all
but at most 2 neighbors have levels less than i.

Theorem 1. The DetLOCAL complexity of Pk on general
graphs is O�n1�k�.

Proof: The algorithm fixes the labeling of

V1, . . . , Vk, Vk�1 in order, according to the following

steps. Assume that all vertices in V1, . . . , Vi�1 have already

been labeled.

� Compute Di according to the Exemption rule. (E.g.,

D1 	 
, Dk�1 	 Vk�1.)

� Each path in the subgraph induced by Vi�Di calculates

its length. If it contains at most
�
2n1�k

�
vertices, it

properly 2-colors itself with ��,��; longer paths and

cycles in Vi �Di label themselves uniformly by �.

This algorithm correctly solves Pk provided that it never

labels a path in Vk � Dk with �. Let Ui be the subgraph

induced by those vertices in V1�� � ��Vi labeled �. Consider

a connected component C in Ui whose Vi-vertices are

arranged in a path (not a cycle). We argue by induction

that C has at least 2ni�k vertices. This is clearly true in the

base case i 	 1: if a path component of U1 were colored

�, it must have more than
�
2n1�k

�
vertices. Now assume

the claim is true for i � 1 and consider a component C
of Ui. If the Vi-vertices in C form a path, it must have

length greater than 2n1�k. Each vertex in that path must

be adjacent to an endpoint of a Vi�1 path. Since Vi�1

paths have two endpoints, the Vi path is adjacent to at least�
2n1�k

�

2 � n1�k components in Ui�1, each of which has

size at least 2n�i�1��k, by the inductive hypothesis. Thus, the

size of C is at least n1�k �2n�i�1��k�2n1�k � 2ni�k. Because

there are at most n vertices in the graph, it is impossible for

Vk vertices arranged in a path to be colored �.

Theorem 2. The RandLOCAL complexity of Pk on trees
with maximum degree Δ 	 3 is Ω�n1�k�.

Proof: Fix an integer parameter x and define a sequence

of graphs �Hi�1�i�k as follows. Each Hi has a head and a

tail.

� H1 is a path (or backbone) of length x. One end of the

path is the head and the other end the tail.

� To construct Hi, i � �2, k � 1�, begin with a backbone
path �v1, v2, . . . , vx�, with head v1 and tail vx. Form

x � 1 copies �H
�j�
i�1�1�j�x�1 of Hi�1, where v�j� is

the head of H
�j�
i�1. Connect v�j� to vj by an edge, for

j � �1, x�, and also connect v�x�1� to vx by an edge.

� Hk is constructed exactly as above, except that we

generate x � 2 copies of Hk�1 and connect the heads

of two copies of Hk�1 to both v1 and vx. See Figure 2

for an example with k 	 3.

Let us make several observations about the construction

of Hk. First, it is a tree with maximum degree 3. Second,

when decomposing V �Hk� into levels �V1, . . . , Vk, Vk�1�,
Vi is precisely the union of the backbones in all copies of

Hi, and Vk�1 	 
. Third, the number of vertices in Hk is

Θ�xk�, so a o�n1�k� algorithm for Pk must run in o�x� time

on Hk.

Consider a RandLOCAL algorithm A solving Pk on Hk

within t � x
5�O�1� time, that fails with probability pfail.
If A is a good algorithm then pfail � 1
�V �Hk��. However,

we will now show that pfail is constant, independent of

�V �Hk��.

Define Ei to be the event that Di � 
 and pi 	 Pr�Ei�.
By an induction from i 	 2 to k, we prove that pi � 2�i�
1� � pfail.

Base case. We first prove that Pr�Hk is not correctly colored

according to Pk � E2� � 1
2.

Conditioning on E2 means that D2 � 
. Fix any v � D2

and let P be a copy of H1 (a path) adjacent to v. In order

for v � D2, it must be that P is properly 2-colored with

��,��. Since t � x
5�O�1�, there exist two vertices u and

u� in P such that

1) N t�u�, N t�u��, and N t�v� are disjoint sets,

2) the subgraphs induced by N t�u� and N t�u�� are

isomorphic, and

3) the distance between u and u� is odd.

Let p� and p� be the probabilities that u/u� is labeled � and

�, respectively. A proper 2-coloring of P assigns u and u�

different colors, and that occurs with probability 2p�p� �
2p��1�p�� � 1
2. Moreover, this holds independent of the

random bits generated by vertices in N t�v�. The algorithm

fails unless u, u� have different colors, thus pfail � p2
2, and

hence p2 � 2 � pfail.

Inductive Step. Let 3 � i � k. The inductive hypothesis

states that pi�1 � 2�i � 2� � pfail. By a proof similar to the

base case, we have: Pr�Hk is not correctly colored according

to Pk � Ei�Ei�1� � 1
2.
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Figure 2. The graph Hk with parameters k 3, x 7. White vertices are in V1, gray in V2, and black in V3. V4 Vk 1 is empty.

We are conditioning on Ei Ei 1. If this event is empty,

then pi pi 1 2 i 2 pfail and the induction is complete.

On the other hand, if Ei Ei 1 holds then there is some v
Di adjacent to a copy of Hi 1 with backbone path P , where

P Di 1 . In other words, if Hk is colored according

to Pk then P must be properly 2-colored with , . The

argument above shows this occurs with probability at least

1/2. Thus,

pfail Pr Hk is incorrectly colored

Pr Ei Ei 1 2

pi pi 1 2,

or pi 2pfail pi 1 2 i 1 pfail, completing the

induction.

Finally, let P be the path induced by vertices in

Vk. The probability that Ek holds (P Dk )

is pk 2 k 1 pfail. On the other hand,

Pr Hk not colored correctly Ek 1 2 by the argument

above, hence pfail 1 pk 2, or pk 1 2pfail.
Combining the upper and lower bounds on pk we conclude

that pfail 2k 1 is constant, independent of V Hk .

Thus, algorithm A cannot succeed with high probability.

III. A COMPLEXITY GAP ON BOUNDED DEGREE TREES

In this section we prove an no 1 O log n speedup

theorem for LCL problems on bounded degree trees. Due

the page limit, we only present the high level structure of

the proof and the key ideas. See [30] for the full proof.

Throughout, P is a radius-r LCL and A is an no 1 -time

algorithm for P on bounded degree trees.

Consider this simple way to decompose a tree in O log n
time, inspired by Miller and Reif [31]. Iteratively remove

paths of degree-2 vertices (compress) and vertices with

degree 0 or 1 (rake). Vertices removed in iteration i are at

level i. If O log n rakes alone suffice to decompose a tree

then it has O log n diameter and any LCL can be solved

in O log n time on such a graph. Thus, we mainly have

to worry about the situation where compress removes very

long (ω 1 -length) paths.

The first observation is that it is easy to split up long

degree-2 paths of level-i vertices into constant length paths,

by artificially promoting a well-spaced subset of level-i
vertices to level i 1. Thus, we have a situation that looks

like this: level-i vertices are arranged in an O 1 -length path,

each the root of a (colored) subtree of level- i vertices

that were removed in previous rake/compress steps, and

bookended by level- i (black) vertices. Call the subgraph

between the bookends H .

In our approach it is the level- i vertices that are in

charge of coordinating the labeling of level- i vertices

in their purview. In this diagram, H is in the purview

of both black bookends. We only have one tool available

for computing a labeling of this subgraph: an no 1 -time

RandLOCAL algorithm A that works w.h.p. What would

happen if we simulated A on H? The simulation would fail

catastrophically of course, since it needs to look up to an

no 1 radius, to parts of the graph far outside of H .

Note that the colored subtrees are unbounded in terms of

size and depth. Nonetheless, they fall into a constant number

of equivalence classes in the following sense. The class of a

rooted tree is the set of all labelings of the r-neighborhood

of its root that can be extended to total labelings of the tree

that are consistent with P .

In other words, the large and complex graph H can be

succinctly encoded as a simple class vector c1, c2, . . . , c� ,

where cj is the class of the jth colored tree. Consider the

set of all labelings of H that are consistent with P . This set
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can also be succinctly represented by listing the labelings of

the r-neighborhoods of the bookends that can be extended

to all of H , while respecting P . The set of these partial

labelings defines the type of H . We show that the type of H
can be computed by a finite automaton that reads the class

vector c1, . . . , c� one character at a time. By the pigeonhole

principle, if � is sufficiently large then the automaton loops,

meaning that c1, . . . , c� can be written as x y z, which

has the same type as every x yj z, for all j 1. This

pumping lemma for trees lets us dramatically expand the

size of H without affecting its type, i.e., how it interacts

with the outside world beyond the bookends.

This diagram illustrates the pumping lemma with a sub-

string of y 3 trees (rooted at gray vertices) repeated

j 3 times. Now let us reconsider the simulation of A. If

we first pump H to be long enough, and then simulate A on

the middle section of pumped-H , A must, according to its

no 1 time bound, compute a labeling without needing any
information outside of pumped-H , i.e., beyond the bookends.

Thus, we can use A to pre-commit to a labeling of a

small (radius-r) subgraph of pumped-H . Given this pre-

commitment, the left and right bookends no longer need

to coordinate their activities: everything left (right) of the

pre-committed zone is now in the purview of the left (right)

bookend. Interestingly, these manipulations (tree surgery and

pre-commitments) can be repeated for each i, yielding a

hierarchy of imaginary trees such that a proper labeling at

one level of the hierarchy implies a proper labeling at the

previous level.

Theorem 3. Let P be any LCL problem on trees with Δ
O 1 . If there exists a RandLOCAL algorithm A that solves
P in no 1 rounds, then there exists a DetLOCAL algorithm
A that solves P in O log n rounds. Moreover, given a
description of P , it is decidable whether the RandLOCAL
complexity of P is nΩ 1 or the DetLOCAL complexity of P
is O log n .

Our O log n -time decomposition algorithm also works

on graphs of girth at least c log n, where c is a sufficiently

large constant depending on P . This implies that Theorem 3

also applies to the class of n-vertex graphs with girth

ω log n .

IV. A GAP IN THE RandLOCAL COMPLEXITY

HIERARCHY

Consider a set V of independent random variables, and a

set X of bad events, where A X depends only on some

subset vbl A V of variables.6 The dependency graph
GX X , A,B vbl A vbl B joins events

by an edge if they depend on at least one common variable.

The Lovász local lemma (LLL) and its variants give criteria

under which Pr A X A 0, i.e., it is possible that all

bad events do not occur. We will narrow our discussion to

symmetric criteria, expressed in terms of p and d, where

p maxA X Pr A and d is the maximum degree in GX .

A standard version of the LLL states that if ep d 1 1,

then Pr A 0. Given that all bad events can be avoided,

it is often desirable to constructively find a point in the

probability space (i.e., an assignment to variables in V) that

avoids them. This problem has been thoroughly investigated

in the sequential context [18], [32], [33], [34], [35], [36],

[37], but somewhat less so from the point of view of parallel

and distributed computation [19], [16], [11], [5], [38], [20],

[17].

The distributed constructive LLL problem is the follow-

ing. The communications network is precisely GX . Each

vertex (event) A knows the number of bad events in GX and

the distribution of those variables appearing in vbl A V .

Vertices communicate for some number of rounds, and col-

lectively reach a consensus on an assignment to V in which

no bad event occurs. Moser and Tardos’s [18] parallel re-

sampling algorithm implies an O log2 n time RandLOCAL
algorithm under the LLL criterion ep d 1 1. Chung,

Pettie, and Su [19] gave an O log1 epd2 n time algorithm

under the LLL criterion epd2 1 and an O log n log logn
time algorithm under criterion p poly d 2d O 1 . They

observed that under any criterion of the form p f d 1,

Ω log n time is necessary. Ghaffari’s [16] weak MIS algo-

rithm, together with [19], implies an O log d log1 ep d 1 n
algorithm under LLL criterion ep d 1 1. Brandt et

al. [11] proved that Ω logd log n time in RandLOCAL is

necessary, even under the permissive LLL criterion p2d 1.

Chang et al. [5]’s results imply that Ω logd n time is

necessary in DetLOCAL, again, under the LLL criterion

p2d 1. We define TLLL n, d to be the RandLOCAL time

to compute a point in the probability space avoiding all bad

events (w.h.p.), under any “polynomial” LLL criterion of the

form

pdc O 1 , (1)

where c can be an arbitrarily large constant. Earlier prior

results [19], [11] imply that TLLL n, d is Ω loglog d log n ,

Ω log n , and O log1 epd2 n . Very recently, it has been

shown that LLL can be solved in sublogarithmic time. In par-

ticular, TLLL n, d 2O log logn for d log logn 1 5

on general graphs [20], and TLLL n, d O log log n for

tree-structured instances [17].

In this section we prove an automatic speedup theorem for

sublogarithmic RandLOCAL algorithms. We do not assume

6Each variable V V may have a different distribution and range, so
long as the range is some finite set.
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that Δ � O�1� in this section.

Theorem 4. Suppose that A is a RandLOCAL algorithm
that solves some LCL problem P (w.h.p.), in TΔ�n� time.
For a sufficiently small constant ε � 0, suppose TΔ�n� is
upper bounded by C�Δ��ε logΔ n, for some function C. It is
possible to transform A into a new RandLOCAL algorithm
A� that solves P (w.h.p.) in O�C�Δ� � TLLL�n,Δ

O�C�Δ����
time.

Proof: Suppose that A has a local probability of failure

1�n, that is, for any v � V �G�, the probability that Nr�v�
is inconsistent with P is 1�n, where r is the radius of P .

Once we settle on the LLL criterion exponent c in (1), we

fix ε � O��2c��1�. Define n� as the minimum value for

which

t� � TΔ�n
�� 	 �1�2c� � logΔ n� 
 r.

It follows that t� � O�C�Δ�� and n� � ΔO�C�Δ��.
The algorithm A� applied to an n-vertex graph G works

as follows. Imagine an experiment where we run A, but lie

to the vertices, telling them that “n” = n�. Any v � V �G�
will see a t�-neighborhood N t��v� that is consistent with

some n�-vertex graph. However, the bad event that Nr�v�
is incorrectly labeled is 1�n�, not 1�poly�n�, as desired.

We now show that this system of bad events satisfies the

LLL criterion (1). Define the following events, graph, and

quantities:

Ev : the event that Nr�v� is incorrectly labeled

according to P
X � �Ev � v � V �G�
 (the set of bad events)

GX � �X , ��Eu, Ev� � Nr�t��u� �Nr�t��v� � �
�

(the dependency graph)

d � Δ2�r�t��

p � 1�n�

The event Ev is determined by the labeling of Nr�v� and the

label of each v� � Nr�v� is determined by N t��v��, hence Ev
is determined by (the data stored in, and random bits gener-

ated by) vertices in Nr�t��v�. Clearly Ev is independent of

any Eu for which Nr�t��u��Nr�t��v� � �, which justifies

the definition of the edge set of GX . Since the maximum

degree in G is Δ, the maximum degree d in GX is less than

Δ2�r�t��. By definition of A, Pr�Ev� � 1�n� � p. This

system satisfies LLL criterion (1) since, by definition of t�,

pdc � pΔ2c�r�t�� 	 �1�n�� � n� � 1.

The algorithm A� now simulates a constructive LLL al-

gorithm on GX in order to find a labeling such that no

bad event occurs. Since a virtual edge �Eu, Ev� exists iff

u and v are at distance at most 2�r � t�� � O�C�Δ��,
any RandLOCAL algorithm in GX can be simulated in

G with O�C�Δ�� slowdown. Thus, A� runs in O�C�Δ� �
TLLL�n,Δ

O�C�Δ���� time.

Theorem 4 shows that when Δ � O�1�, o�log n�-
time RandLOCAL algorithms can be sped up to run in

O�TLLL�n,O�1��� time. Another consequence of this same

technique is that sublogarithmic RandLOCAL algorithms

with large messages can be converted to (possibly slightly

slower) algorithms with small messages. The statement of

Theorem 5 reflects the use of a particular distributed LLL

algorithm, namely [19, Corollary 1 and Algorithm 2]. It may

be improvable using future distributed LLL technology.

The LLL algorithm of [19] works under the assumption

that epd2 	 1, and that each bad event A � X is associated

with a unique ID. The algorithm starts with a random

assignment to the variables V . In each iteration, let F be

the set of bad events that occur under the current variable

assignment; let I be the subset of F such that A � I
if and only if ID�A� 	 ID�B� for each B � F such

that vbl�A� � vbl�B� � �. The next variable assignment

is obtained by resampling all variables in
�

A�I vbl�A�.
After O�log1�epd2 n� iterations, no bad event occurs with

probability 1
 1�poly�n�.

Theorem 5. Let A be a �C�Δ� � ε logΔ n�-time
RandLOCAL algorithm that solves some LCL problem P
with high probability, where ε � 0 is a sufficiently small
constant. Each vertex locally generates rΔ�n� random bits
and sends mΔ�n�-bit messages. It is possible to trans-
form A into a new RandLOCAL algorithm A� that solves
P (w.h.p.) in O�logΔ n� time, where each vertex gener-
ates O�log n � rΔ�ζ� � logζ n� random bits, and sends
O�min�log��Σout�� � Δ

O�1� � mΔ�ζ� � ζ, rΔ�ζ� � ζ
�-bit
messages, where ζ � ΔO�C�Δ�� depends on Δ.

Proof: We continue to use the notation and definitions

from Theorem 4, and fix c � 3 in the LLL criterion (1).

Since d � Ω�ΔO�C�Δ��� � Ω�ζ� and we selected t� w.r.t.

c � 3 (i.e., LLL criterion pd3 	 1), we have 1�epd2 � Ω�ζ�.
If A� uses the LLL algorithm of [19], each vertex v � V �G�
will first generate an O�log n�-bit unique identifier ID�Ev�
(which costs O�log n� random bits) and generate rΔ�n

�� �
O�log1�epd2 n� � O�rΔ�ζ� � logζ n� random bits throughout

the computation. Thus, the total number of random bits per

vertex is O�log n� rΔ�ζ� � logζ n�.

In each resampling step of A�, in order for v to tell

whether Ev � I, it needs the following information: (i)

ID�Eu� for all u � N2�r�t���v�, and (ii) whether Eu
occurs under the current variable assignment, for all u �
N2�r�t���v�. We now present two methods to execute one

resampling step of A�; they both take O�C�Δ�� time using

a message size that depends on Δ but is independent of

n. There are O�log1�epd2 n� � O�logζ n� � O� logΔ n
C�Δ� �

resampling steps, so the total time is O�logΔ n�, independent

of the function C.

Method 1. Before the LLL algorithm proper begins, we

do the following preprocessing step. Each vertex v gathers
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up all IDs and random bits in its 3�t� � r�-neighborhood.

This takes O��log n � rΔ�ζ� � logζ n� � ζ�b� time with b-

bit messages (recall that ΔO�t��r� � ΔO�C�Δ�� � ζ). In

particular, the runtime can be made O�logΔ n� if we set

b � O�rΔ�ζ� � ζ�.
During the LLL algorithm, each vertex u owns one

random variable: an rΔ�n��-bit string Vu. In order for v
to tell whether Eu occurs for each u � N2�r�t���v� under

the current variable assignment, it only needs to know how

many times each Vu, u � N3�r�t���v�, has been resampled.

Whether the output labeling of u � N2�r�t���v� is locally

consistent depends on the output labeling of vertices in

Nr�u�, which depends on the random bits and the graph

topology within Nr�t��u� � N3�r�t���v�. Given the graph

topology, IDs, and the random bits within N3�r�t���v�, the

vertex v can locally simulate A and decides whether Ev � I.

Thus, in each iteration of the LLL algorithm, each vertex v
simply needs to alert its 3�r� t��-neighborhood whether Vv

is resampled or not. This can be accomplished in O�r�t�� �
O�C�Δ�� time with ζ-bit messages.

Method 2. In the second method, vertices keep their random

bits private. Similar to the first method, we do a preprocess-

ing step to let each vertex gathers up all IDs in its 2�t��r�-
neighborhood. This can be done in O�logΔ n� time using

ζ-bit messages.

During the LLL algorithm, in order to tell which subset

of bad events 	Ev
v�V �G� occur under the current variable

assignment, all vertices simulate A for t� rounds, sending

mΔ�n��-bit messages. After the simulation, for a vertex v to

tell whether Ev occurs, it needs to gather the output labeling

of the vertices in Nr�v�. This can be done in r � O�1�
rounds, sending log��Σout�� �ΔO�1�-bit messages.7 Next, for

a vertex v to tell whether Ev � I, it needs to know whether

Eu occurs for all u � N2�r�t���v�. This information can be

gathered in O�C�Δ�� time using messages of size O�ζ�.
To summarize, the required message size is O�log��Σout�� �
ΔO�1� �mΔ�ζ� � ζ�.

An interesting corollary of Theorem 5 is that when

Δ � O�1�, randomized algorithms with unbounded length

messages can be simulated with 1-bit messages.

Corollary 1. Let P be any LCL problem. When Δ � O�1�,
any o�log n� algorithm solving P w.h.p. using unbounded

length messages can be made to run in O�log n� time with
1-bit messages.

V. CONCLUSION

We now have a very good understanding of the LOCAL
complexity landscape for cycles, tori, bounded degree trees,

and to a lesser extent, general bounded degree graphs. See

7An output label can be encoded as a log��Σout��-bit string. We do not
assume that Δ is constant so �Σout�, which may depend on Δ but not
directly on n, is also not constant. E.g., consider the O�Δ� vertex coloring
problem.

Figure 1. However, there are some very critical gaps in our

understanding.

Our randomized speedup theorem of Section IV depends

on the complexity of a relatively weak version of the Lovász

local lemma. Since the LLL is essentially a “complete”

problem for sublogarithmic RandLOCAL algorithms, un-

derstanding the distributed complexity of the LLL is a

significant open problem.

Conjecture 1. There exists a sufficiently large constant c
such that the distributed LLL problem can be solved in
O�log log n� time on bounded degree graphs, under the
symmetric LLL criterion pdc � 1.

After the initial publication of this work [30], Fischer and

Ghaffari [20] gave an LLL algorithm for bounded degree

graphs running in 2O��log logn� time.8 Building on [20],

Chang, He, Li, Pettie, and Uitto [17] proved the O�log log n�
bound of Conjecture 1 for the special case of tree-structured
dependency graphs. The results of [20], [17] make us more

optimistic that Conjecture 1 is true.

The new polynomial complexities introduced in Section II

are of the form Θ�n1�k�, k � Z
�. Is this set of polynomial

complexities exhaustive? Is it possible to engineer problems

with complexity Θ�nq� for any given rational q? We think

the answer is no, and resolving Conjecture 2 would be the

first step.

Conjecture 2. Any o�n�-time DetLOCAL algorithm for an
LCL problem can be automatically sped up to run in O�
n�
time. In general, there is an ω�n1��k�1��—o�n1�k� gap in the
DetLOCAL complexity hierarchy.
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APPENDIX

Let A be any T �n�-round DetLOCAL algorithm. Let η
and η� be any two order-indistinguishable assignments of

distinct IDs to NT �n��v�, i.e., for u,w � NT �n��v�, η�u� �
η�w� if and only if η��u� � η��w�. If, for every possible

input graph fragment induced by NT �n��v�, the output label

of v is identical under every pair of order-indistinguishable

η, η�, then A is order-invariant.
Suppose that there exists a number n� � O�1� such that

ΔT �n���r � n�. If A is order-invariant then it can be turned

into an O�1�-round DetLOCAL algorithm A�, since we can

pretend that the total number of vertices is n� instead of n.

Naor and Stockmeyer [8] proved that any DetLOCAL
algorithm that takes τ � O�1� rounds on a bounded

degree graph can be turned into an order-invariant τ -round

DetLOCAL algorithm. A more careful analysis shows that

the proof still works when τ is a slowly growing function

of n.

Requirement for Automatic Speedup: The muticolor

hypergraph Ramsey number R�p,m, c� is the minimum

number such that the following holds. Let H be a complete

p-uniform hypergraph of at least R�p,m, c� vertices. Then

any c-edge-coloring of H contains a monochromatic clique

of size m.

Given the number τ � 2, the three parameters p, m, and

c are selected as follows. (See the proof of [8, Lemma 3.2]

for more details.)

� The number p is the maximum number of vertices in

Nτ �v�, over all vertices v � V �G� and all graphs G
under consideration. For rings, p � 2τ � 1. For tori,

p � 2�τ � 1�2. For trees or general graphs, p � Δτ .

� The number m is the maximum number of vertices in

Nτ�r�v�, over all vertices v � V �G� and all graphs G
under consideration. E.g., for rings, p � 2τ � 2r � 1
and for general graphs, p � Δτ�r.

� The number z counts the distinguishable radius-τ cen-

tered subgraphs, disregarding IDs. For example, for

LCLs on the ring without input labels or port num-

bering, z � 1, whereas with input labels and port

numbering it is �2	Σin	�2τ�1 since each vertex has one

of 	Σin	 input labels and 2 port numberings. In general

z is less than 2�Δ
τ

2 � 
 �Δ!	Σin	�p.

� The number c is defined as 	Σout	p!z . Intuitively, we

can use a number in �c� to encode a function that maps

a radius-τ centered subgraph (that is equipped with

unique vertex IDs from a set S with cardinality p) to

an output label in Σout.

Recall that vertices in DetLOCAL have O�log n�-bit IDs,

i.e., they can be viewed as elements of �nk� for some k �
O�1�. Naor and Stockmeyer’s proof implies that, as long as

nk � R�p,m, c�, any DetLOCAL τ -round algorithm on a

bounded degree graph can be turned into an order-invariant

τ -round DetLOCAL algorithm, which then implies an O�1�-
round DetLOCAL algorithm.

The Ramsey number R�p,m, c�: According to the proof

of [39, §1, Theorem 2], we have:

For p � 1, R�p,m, c� � c�m
 1� � 1

For p � 1, R�p,m, c� � 2cx

where x �
R�p�1,m,c��1�

i�p�1

�
i� 1

p
 1

�
� R�p
 1,m, c�p

Therefore, log��R�p,m, c�� � p� log�m� log� c�O�1�.
Automatic Speedup Theorems: Observe that in all sce-

narios, if the running time τ � τ�n� � ω�1�, we have

log�m � log� c � o�p�. Therefore, having p � ε log� n
for some small enough constant ε suffices to meet the

condition nk � R�p,m, c�. We conclude that the complexity

of any LCL problem (with or without input labels and port

numbering) in the LOCAL model never falls in the following

gaps:

ω�1�—o�log� n� for n-rings.

ω�1�—o�
�

log� n� for ��n��
n�-tori.

ω�1�—o�log�log� n�� for bounded degree trees

or general graphs.

Due to the “Stepping-Up Lemma” (see [39, §4, Lemma 17]),

we have log��R�p,m, 2�� � Ω�p�. Thus, Naor and Stock-

meyer’s approach alone cannot give an ω�1�—o�log� n� gap

for general graphs.

However, for a certain class of LCL problems on ��n��
n�-tori, the gap can be widened to ω�1�—o�log� n� [6, p.

2]. The following proof is due to Jukka Suomela (personal

communication).

Theorem 6 (J. Suomela). Let P be any LCL problem on
��n��

n�-tori that does not refer to input labels or port-
numbering. The DetLOCAL and RandLOCAL complexity of
P is either O�1� or Ω�log� n�.

Proof: Given a ��n��
n�-torus G, we associate each

vertex v � V �G� with a coordinate �α, β�, where α, β �
�0, . . . ,�n 
 1�. We consider the following special way

to generate unique k log n-bit IDs. Let φx and φy be two

functions mapping integers in �0, . . . ,�n 
 1� to integers

in �0, . . . , nk	2 
 1�. We additionally require that φx�0� �
. . . � φx�

�
n 
 1� � φy�0� � . . . � φy�

�
n 
 1�. If v is

at position �α, β�, it has ID φx�α� 
 nk	2 � φy�β�. Notice

that the IDs of all vertices in Nτ �v� can be deduced from
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just 4τ � 2 numbers: φx�i�, i � �α � τ, α � τ � and φy�j�,
j � �β � τ, β � τ �.

Suppose that the complexity of P is o�log� n�. Let A
be any τ -round DetLOCAL algorithm for solving P , where

τ � o�log� n�. Notice that the algorithm A works correctly

even when we restrict ourselves to the above special ID

assignment. Our goal is to show that P is actually trivial
in the sense that there exists an element σ � Σout such that

labeling all vertices by σ gives a legal labeling, assuming

w.l.o.g. that
	
n 
 2r � 1. Thus, P can be solved in O�1�

rounds.

In subsequent discussion, we let v be any vertex whose

position is �α, β�, where τ � r � α � �	n� 1� � �τ � r�
and τ�r � β � �	n�1���τ�r�. That is, v is sufficiently

far way from the places where the coordinates wrap around.

Given A, we construct a function f as follows. Let

S � �s1, . . . , s4τ�2� be a vector of 4τ � 2 numbers in

�0, . . . , nk�2�1
 such that sk � sk�1 for each k � �4τ�2�.
Then f�S� � Σout is defined as the output labeling of v
resulting from executing A with the following ID assignment

of vertices in Nτ �v�. We set φx�α�τ�1� i� � si for each

i � �2τ � 1� and set φy�β � τ � 1� j� � sj�2τ�1 for each

j � �2τ � 1� Recall that P does not use port-numbering and

input labeling, so the output labeling of v depends only on

IDs of vertices in Nτ �v�.
We set p � 4τ�2, m � 4τ�4r�2, and c � �Σout�. Notice

that the calculation of the parameter c here is different from

the original proof of Naor and Stockmeyer. Since we already

force that φx�0� � . . . � φx�
	
n � 1� � φy�0� � . . . �

φy�
	
n�1�, we do not need to consider all p! permutations

of the set S.

We have R�p,m, c� � nk�2 (since p � o�log� n�). Thus,

there exists a set S� of m distinct numbers in �0, . . . , nk�2

such that the following is true. We label these m numbers

φx�i�, i � �α � τ � r, α � τ � r�, and φy�j�, j � �β � τ �
r, β� τ � r� by the set S� such that φx�α� τ � r� � . . . �
φx�α � τ � r� � φy�β � τ � r� � . . . � φy�β � τ � r�.
Then the output labels of all vertices in Nr�v� assigned by

A are identical.

Therefore, there exists an element σ � Σout such that

labeling all vertices by σ yields a legal labeling of G. Thus,

P can be solved in O�1� rounds.

Discussion: It still remains an outstanding open prob-

lem whether the gap for other cases can also be widened to

ω�1�—o�log� n�.
The proof of Theorem 6 extends easily to d-dimensional

tori, but does not extend to bounded degree trees, since there

is a non-trivial problem that can be solved in O�1� rounds on

a subset of bounded degree trees. Naor and Stockmeyer [8]

showed that on any graph class in which all vertex degrees

are odd, weak 2O�Δ logΔ�-coloring can be solved in 2 rounds

and weak 2-coloring can be solved in O�log�Δ� rounds in

DetLOCAL.9 This problem is non-trivial in the sense that

coloring all vertices by the same color is not a legal solution.

Since the d-dimensional torus is Δ-regular, Δ � 2d, we

conclude that the complexity of weak O�1�-coloring on Δ-

regular graphs is Θ�log� n� for every fixed even number

Δ � 2.

9A weak coloring is one in which every vertex is colored differently than
at least one neighbor.
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