
An Input Sensitive Online Algorithm for the Metric Bipartite Matching Problem

Krati Nayyar

Department of Computer Science, Virginia Tech
Blacksburg, USA
krati14@vt.edu

Sharath Raghvendra

Department of Computer Science, Virginia Tech
Blacksburg, USA
sharathr@vt.edu

Abstract—We present a novel input sensitive analysis of a
deterministic online algorithm [1] for the minimum metric
bipartite matching problem. We show that, in the adversarial
model, for any metric space M and a set of n servers S, the
competitive ratio of this algorithm is O(μM(S) log

2 n); here
μM(S) is the maximum ratio of the traveling salesman tour
and the diameter of any subset of S. It is straight-forward
to show that any algorithm, even with complete knowledge of
M and S, will have a competitive ratio of Ω(μM(S)). So, the
performance of this algorithm is sensitive to the input and
near-optimal for any given S and M. As consequences, we also
achieve the following results:
• If S is a set of points on a line, then μM(S) = Θ(1) and

the competitive ratio is O(log2 n), and,
• If S is a set of points spanning a subspace with doubling

dimension d, then μM(S) = O(n1−1/d) and the competi-
tive ratio is O(n1−1/d log2 n).

Prior to this result, the previous best-known algorithm for the
line metric has a competitive ratio of O(n0.59) and requires
both S and the request set R to be on a line. There is also
an O(log n) competitive algorithm in the weaker oblivious
adversary model.

To obtain our results, we partition the requests into well-
separated clusters and replace each cluster with a small and
a large weighted ball; the weight of a ball is the number of
requests in the cluster. We show that the cost of the online
matching can be expressed as the sum of the weight times
radius of the smaller balls. We also show that the cost of edges
of the optimal matching inside each larger ball can be shown
to be proportional to the weight times the radius of the larger
ball. We then use a simple variant of the well-known Vitali’s
covering lemma to relate the radii of these balls and obtain
the competitive ratio.

Keywords-online algorithms; minimum metric matching; in-
put sensitive analysis

I. INTRODUCTION

Driven by consumers’ demand for a quick access to

their ordered products, business ventures schedule their

delivery of goods and services in real-time, often without the

complete knowledge of the future request locations or their

order of arrival. Due to this lack of complete information,

decisions made tend to be sub-optimal. Therefore, there is

a need for robust and competitive online algorithms that

immediately and irrevocably allocate resources to requests

in real-time at minimal cost. These resources are servers

placed in various locations S with |S| = n of the city and

each server has a capacity that restricts how many requests

it can serve. When a new request r ∈ R arrives, one of the

servers which has a positive residual capacity is assigned to

this request. After this request is served, the residual capacity

of the server reduces by one. The cost associated with this

assignment is a metric cost; for instance, it could be the

minimum distance traveled by the server to reach the request.

The case where the capacity of every server is ∞ is the

celebrated k-server problem. The case where every server

has a capacity of 1 is the metric bipartite matching problem.

In this case, the requests arrive one at a time and we have

to immediately and irrevocably match it to some unmatched

server. The resulting assignment is a matching and is referred

to as an online matching. Finding a a minimum-cost online

matching is impossible because an adversary can easily fill

up the remaining locations of requests in R in a way that

our current assignment becomes sub-optimal. Therefore, we

want our algorithm to compute an online matching which

is competitive. For any input S,R and any arrival order of

requests in R, we say our algorithm is α-competitive, for

α > 1, when the cost of the online matching M is at most

α times the minimum cost, i.e.,

w(M) ≤ αw(MOPT).

Here MOPT is the minimum-cost matching of the locations

in S and R.

In the adversarial model, there is an adversary who knows

the server locations and the assignments made by the algo-

rithm and generates a sequence of requests to maximize α.

Another well-studied model is the random arrival model [2]

where the adversary chooses the set of request locations

R before the algorithm executes but the arrival order is

a permutation chosen uniformly at random from the set

of all possible permutations of R. A popular model of

theoretical interest is the oblivious adversary model. In this

model, the adversary knows the algorithm and decides the

request locations and their arrival order. However, the online

algorithm is a randomized algorithm and the adversary does

not know the random choices made by the algorithm. This

model is weaker than the adversarial model but stronger than

the random arrival model.

We would also like to note the role of the server locations

and the metric space in the design of online algorithms for

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.53

505

these problems. Many algorithms are designed to work for

any metric space and any set of server locations and they

are analyzed based on a worst-case choice of metric space

and server locations S. However, in practical scenarios, the

subspace spanned by the server locations may be “nice”

and may admit online algorithms that produce substantially

better quality solutions. For example, if servers are restricted

to be points on a line, one may expect better quality

algorithms. It is, therefore, desirable to have algorithms that

work optimally for any input metric space and any set of

server locations. In this paper, we present such an algorithm

for the minimum metric bipartite matching problem that is

sensitive to the input and simultaneously achieves a near-

optimal performance for every metric space.

Previous Work: Solutions for the k-server problem and

the online bipartite matching problem use similar mathemat-

ical tools and methodologies. Both of these problems have

been extensively studied in the adversarial model and the

oblivious model. In the random arrival model, there is an

online algorithm for the metric bipartite matching problem

that was presented recently [1]. We do not know of any work

for the k-server problem in the random arrival model.

The k-server problem is central to the theory of online

algorithms. The problem was first posted by Manasse et
al. [3]. In the adversarial model, the best-known determinis-

tic algorithm for this problem is the 2k−1-competitive work

function algorithm [4]. In this problem, we assume there are

k servers, each of which can serve arbitrary many of the n
arriving requests. It is known that no deterministic algorithm

can achieve a competitive ratio better than k in any metric

space with at least k + 1 points [3] and is conjectured that

in fact there is a k-competitive algorithm for this problem.

This conjecture is popularly called the k-server conjecture.

For the online metric bipartite matching problem, in the

adversarial model, there is a 2n−1-competitive deterministic

algorithm by Khuller et al. [5] and Kalyanasundaram and

Pruhs [6]. They also show that there is a metric space where

no online algorithm can achieve a better competitive ratio

in the adversarial model. For the line metric, i.e., when

the requests and servers are points on a line, it is possible

to achieve sub-linear competitive ratio of O(n0.59) [7] .

Khuller et al. [5] point to the possibility of better online

algorithms in d-dimensional Euclidean spaces but leave this

problem as open.

For the oblivious adversary, there are logO(1) n-

competitive algorithms for both the k-server problem and

the online metric bipartite matching problem. Bansal et
al. [8] achieve a O(log2 n)-competitive algorithm for the

metric bipartite matching problem. For the k-server prob-

lem, Bansal et al. [9] presented an O(polylog n log k)-
competitive algorithm. There is also an online algorithm [1]

for metric bipartite matching problem that simultaneously

achieves optimal competitive ratio of 2n − 1 and 2Hn − 1
under the adversarial and the random arrival model respec-

tively. Interestingly, the algorithm relies on a parameter

t > 1 and the competitive ratio approaches optimal as t
tends to ∞. In this paper, we will present an input sensitive

analysis of this algorithm in the adversarial model. However,

for our analysis, we need t to be a constant.
Also note that for metric with bounded doubling dimen-

sion, there is an a O(d log n)-competitive algorithm in the

oblivious model [10]; here d is the doubling dimension of

the metric space. In the adversarial model, the question of

finding a deterministic O(1)-competitive online algorithm

for the line metric is an important open question; see [7],

[11] for results on the special case of line metric.
Our Result: In this paper, we provide a new and

fine-grained analysis of the deterministic online algorithm

presented in [1] in the adversarial model. We refer to this

deterministic algorithm as the robust matching or the RM-

Algorithm. For a given metric space M, we show that this

algorithm achieves a competitive ratio of O(μM(S) log
2 n)

in the adversarial model; here μM(S) is the worst case

ratio of the cost of the traveling salesman tour and the

diameter of a subset of servers among all subsets S′ of S
that have a positive diameter. There is a straight-forward

lower bound of Ω(μM(S)) on the competitive ratio of any

algorithm that knows the metric space M and the initial

server configuration S and is designed to perform optimally

for M and S. Therefore, while our algorithm is oblivious

to the metric space M and also the server locations S, it

nevertheless is near-optimal for M and S. As consequences,

we obtain improved bounds on competitive ratio for the line

metric and any metric space with low doubling dimension.

• Suppose the server locations S are points on a line,

then μM(S) = Θ(1) and so our analysis leads to a

competitive ratio of O(log2 n) for the RM-Algorithm.

Note that we do not restrict the request locations in the

set R to be on a this line. The previous bound for the

line metric is an O(n0.59) competitive algorithm [7]

and this result requires both the servers S as well as

the requests R to be on a line.

• Suppose the subspace spanned by the server locations

in S has a doubling dimension of d, then μM(S) is

O(n1−1/d) and so we obtain a competitive ratio of

O(n1−1/d log2 n) for the RM-Algorithm in this case.

This is the first sub-linear and near-optimal competitive

algorithm in the adversarial model for any metric with

bounded doubling dimension.

Technical Contribution: Our analysis combines known

properties of the RM-Algorithm with carefully crafted con-

struction of certain inner and outer balls in the metric space

which can be related to the competitive ratio through a

variant of the well-known Vitali’s covering Lemma. We

present an overview of our analysis.
Using properties of the RM-Algorithm, we carefully

partition requests into O(log n) groups. Within each group,

we partition the requests into O(log n) outer groups. For a

506

fixed group and outer group, we cluster the requests based

on proximity and generate a set of well-separated clusters.

We then replace each cluster with two concentric weighted

balls; the weight of both these balls is set to the number of

requests in the cluster. We refer to the ball with a smaller

radius as the inner ball and the ball with a larger radius

as outer ball. The radius of the inner ball and the outer

ball is chosen carefully so that they relate to the online

and offline matching costs respectively (see Section III-B2

for their construction and properties). In particular, we can

express the cost of the online matching as the sum, over all

groups, outer groups and clusters, the product of the radius

and the weight of the inner balls (Lemma 7). We also show

that the outer ball contains edges of the optimal matching

whose cost is at least the weight of the outer ball times its

radius (Lemma 8). To bound the competitive ratio, we relate

the inner ball and its radius to the radius of the outer balls.

To understand how our analysis relates inner balls to

outer balls, consider the special case where each cluster has

exactly one request, i.e., the weight of inner and outer ball

is 1. Suppose also that the set of inner balls of all the well-

separated clusters are pairwise-disjoint and suppose there is

a cluster whose outer ball contains all the requests. We can

bound the cost of the online matching with sum of the radii

of the inner balls which, due to the disjointness of inner

balls, is bounded by the cost of the traveling salesman tour

of the requests. By the definition of outer ball, the optimal

matching is greater than or equal to the radius of any outer

ball. Since there is an outer ball that covers all the requests,

the cost of the optimal matching is at least the diameter

of the entire request set. Therefore, in this special case, we

can bound the competitive ratio by the ratio of the traveling

salesman tour and the diameter of the request set. Note that

this ratio is expressed with respect to the R. We use the

optimal matching to map requests to servers and express

this ratio as μM(S). However, the radius of the inner ball

and outer ball may not satisfy these special conditions, i.e.,

inner balls may not be pairwise disjoint and the outer balls

that we construct may not enclose all the requests.

We overcome this difficulty by using a simple variant of

the Vitali’s covering Lemma (Section III-B1). Using this

lemma, we express the competitive ratio as a weighted

average of several smaller sub-problems (Lemma 10) where

each sub-problem satisfies conditions similar to that of the

special case.

In Section II, we will present the RM-Algorithm and some

of its useful properties. In Section III, we will present the

input sensitive analysis of this algorithm. We present the

proofs for the useful properties of the RM-Algorithm in

Section IV. In Section V, we present a lower bound on

the competitive ratio of any algorithm for this problem. We

conclude in Section VI.

II. BACKGROUND AND ALGORITHM DETAILS

In this section, we will present the RM-Algorithm and

some of its useful properties. We begin by introducing

notations required to describe the RM-Algorithm.

Let S and R be the set of server and request locations. A

matching M ⊆ S ×R is any set of vertex-disjoint edges of

the complete bipartite graph G(S,R). We denote the cost of

server s serving a request r by d(s, r); we assume that the

locations S ∪ R along with the cost function d(·, ·) form a

metric space. For any subset K ⊆ S×R , we define the sum

of the cost of its edges as its cost and denote it by w(K) =∑
(s,r)∈K d(s, r). The cost of any matching M is w(M).

We extend this definition of cost to any path and cycle as

well. In a perfect matching every server in S will serve

exactly one request in R, and so, |M | = n. A minimum-cost
perfect matching is a perfect matching with the minimum

cost. We also refer to any minimum-cost perfect matching

as an optimal matching. Throughout this paper, we fix MOPT

to be a fixed optimal matching of the servers to requests. For

any request r ∈ R, we use opt(r) to denote the match of r
in MOPT. For any subset R′ ⊆ R, let opt(R′) denote the set

of servers to which requests of R′ match to in MOPT. We

also say that any edge (u, v) is contained inside a ball B if

both its end points are contained inside B. For the matching

MOPT and the ball B, we denote the edges of MOPT that are

contained in B by MOPT ∩B.

Given a matching M∗ in the complete graph G(S,R),
an alternating path (or cycle) is a simple path (resp. cycle)

whose edges alternate between those in M∗ and those not

in M∗. We refer to any server that is not yet matched in

M∗ as a free server and denote the set of free servers by

SF . An alternating tree is a tree rooted at a free request in

which every path is an alternating path. An augmenting path
P is an alternating path between a free request and a free

server. We can augment M∗ by one edge along the path P
if we remove the edges of P ∩M∗ from M∗ and add the

edges of P \M∗ to M∗. The matching after augmentation is

M∗⊕P , where ⊕ is the symmetric difference operator. For a

parameter t ≥ 1, we define the t-net-cost of any augmenting

path P to be:

φt(P) = t

⎛
⎝ ∑

(s,r)∈P\M∗
d(s, r)

⎞
⎠− ∑

(s,r)∈P∩M∗
d(s, r).

The parameter t is fixed at the beginning of the algorithm.

In this paper, we set t to be any constant, say t = 3.

Using these notations, we will now describe our algo-

rithm. Our algorithm maintains two matchings: an online

matching M and an offline matching M∗ both of which are

initialized to ∅. After processing i−1 requests, the matching

M and M∗ will match each of the i− 1 requests to servers

in S such that the set of unmatched servers SF is the same

for both the online matching M and the offline matching

507

M∗. To process the ith request ri, the algorithm does the

following:

1) Compute the minimum t-net-cost augmenting path Pi

with respect to the offline matching M∗. Let Pi be

this path that starts at ri and ends at some free server;

we denote this free server as si ∈ SF .

2) Update offline matching M∗ by augmenting it along

Pi, i.e., M∗ ←M∗ ⊕ Pi.

3) Match ri to si in the online matching M , i.e., M ←
M ∪ {(si, ri)}.

We refer to the steps taken by the RM-Algorithm to

process request ri as phase i of the algorithm. There is

an O(n2)-time algorithm to compute such a minimum t-
net-cost path in Step 1 of any phase i. This algorithm

maintains a dual weight y(v) for each v ∈ S ∪ R. This set

of dual weights play an important role in the input-sensitive

analysis presented in this paper. The offline matching M∗

that is maintained by the algorithm is always a t-feasible
matching: M∗ along with the set of dual weights y(·) is a

t-feasible matching if the following conditions hold for any

(s, r) ∈ S ×R :

y(s) + y(r) ≤ td(s, r), (1)

y(s) + y(r) = d(s, r) for (s, r) ∈M∗. (2)

Initially, at the start of phase 1, every request and server will

have a dual weight of 0 and the empty matching M∗ along

with these dual weights together form a t-feasible matching.

Also, we refer to an edge (s, r) ∈ S ×R to be eligible if it

satisfies the following conditions:

y(s) + y(r) = td(s, r), if (s, r) /∈M∗ (3)

y(s) + y(r) = d(s, r) if (s, r) ∈M∗. (4)

During phase i, we process the request ri in two sub-

phases. The first sub-phase (Step 1 of the RM-Algorithm)

is similar to the Hungarian Search procedure where we

compute the minimum t-net-cost path Pi with respect to M∗

by growing an alternating consisting only of eligible edges.

To grow this tree, we adjust the dual weights of every server

and request until at least one more edge becomes eligible

and a new vertex enters the tree. This search procedure

ends when an augmenting path Pi consisting only of eligible

edges is found. Let Ai (resp. Bi) be the set of requests (resp.

servers) that participated in this alternating tree for request

ri. We would like to note that during this sub-phase, the

dual weights of requests in Ai will only increase where as

the dual weights of servers in Bi will only reduce. It can be

shown that Pi is the minimum t-net-cost augmenting path

with respect to the matching M∗.
The second sub-phase (Steps 2 and 3 of the RM-

Algorithm) begins once the augmenting path Pi is found.

We augment the matching M∗ along this path. Note that,

any edge (s, r) that newly entered the offline matching

M∗ will satisfy (3). However, in order to ensure that the

matching remains t-feasible after the augmentation, this edge

(s, r) must satisfy (2). We will reduce the dual weight of

r, y(r) ← y(r) − (t − 1)d(s, r) which will guarantee that

the edge (s, r) satisfies (2). Details and correctness proof

for the RM-Algorithm can be found in [1]. In addition, it is

also shown that the algorithm maintains the following three

invariants:

(I1) M∗ and dual weights y(·) form a t-feasible matching,

(I2) For every server s ∈ S, y(s) ≤ 0 and if s ∈ SF ,

y(s) = 0. For every request r ∈ R, y(r) ≥ 0 and if r
has not yet arrived, y(r) = 0.

(I3) At the end of the first sub-phase, i.e., Step 1 of the

algorithm is executed and the augmenting path Pi is

found, the dual weight of ri, y(ri), is equal to the t-
net-cost φt(Pi).

Note that (I3) is not explicitly presented in [1], however,

it can be inferred from Lemma 4 of [1]. Throughout the

rest of this paper, we will use the following notations. We

will index the requests in the order of their arrival, i.e., let

ri be the ith request to arrive. For any subset of requests

R′ ⊆ R, let σ(R′) = 〈r′1, r′2..., r′i, ..., r′|R′|〉 be the sequence

of all the requests in R′ sorted in the order in which they

are processed by the algorithm, i.e., r′i was processed before

r′j if i < j. For any request r, let h(r) be the index of

this request in σ(R). While processing a request ri from

σ(R), our algorithm will compute a minimum t-net-cost

augmenting path Pi. While processing a request r, let P
be the augmenting path computed by the algorithm. For

notational convenience, we denote the t-net-cost φt(P) by

φt(r). For the ith request processed by the algorithm, i.e., ri,
we simplify the notation further and denote the t-net-cost of

Pi by φi(= φt(Pi)). We denote the free server at the other

end of the Pi as si. Let M∗
i be the offline matching after the

ith request has been processed; i.e., the matching obtained

after augmenting the matching M∗
i−1 along Pi. Note that

M∗
0 is an empty matching and M∗

n = M∗ is the final offline

matching after all the n requests have been processed. Let

Mi be the online matching produced by the algorithm for the

first i requests. Mi consists of edges
⋃i

j=1(sj , rj). Let SF
i

be the free servers with respect to matchings M and M∗

after processing i requests. The following two properties,

whose proof is provided in Section IV, will be useful in the

analysis:

(P1) The cost of offline matching after phase i, w(M∗
i), is

at most tw(MOPT),
(P2) The t-net-cost φi of the augmenting path Pi satisfies:

0 ≤ φi ≤ tw(MOPT).

In [1], is has been shown that, when t > 1, the cost of the

online matching can be bounded by the sum of the t-net-cost

of all augmenting paths generated by the algorithm.

Lemma 1 ([1]). For t ≥ 1 and when processing request
ri, let Pi be the augmenting path computed by the RM-

508

Algorithm and φi be the t-net-cost of Pi. Then, the following
holds:

n∑
i=1

φi ≥ t− 1

2
w(M) +

t+ 1

2
w(MOPT). (5)

III. ANALYSIS OF THE ALGORITHM

For a set of points W , let DIAM(W) denote the cost

between the farthest pair of points in W , i.e., DIAM(W) =
maxa,b∈W d(a, b). When DIAM(S) = 0, it is easy to see

that any matching of servers to requests, including the

one produced by the RM-Algorithm, will be an optimal

matching. Therefore, we work under the assumption that

the DIAM(S) > 0.

Let TSP(W) denote the smallest cost simple cycle that

visits every vertex in W exactly once. Given the server

locations S, we define μM(S) to be

μM(S) = max
W⊆S,DIAM(W)>0

TSP(W)

DIAM(W)
.

We can bound the competitive ratio of the RM-algorithm

by using Lemma 1 and relating the sum of the t-net-cost of

the augmenting paths to the cost of the optimal matching.

Recollect that we fixed MOPT to be an optimal matching and

for any request ri, opt(ri) represents the server to which ri
is matched to in MOPT. We divide the request set R into

R′ and R′′ where R′ contains every request ri of R that

satisfies (a) φi ≤ w(MOPT)
n or (b) φi ≤ 16td(ri, opt(ri)). The

requests that do not satisfy both (a) and (b) are added to

R′′, i.e., R′′ = R \R′.
There are at most n requests and so the total contribution

of requests that satisfy (a) to the LHS of (5) is at most

w(MOPT). Any request ri that satisfies (b) contributes at most

16t times d(ri, opt(ri)) to the LHS of (5). Thus the total

contribution of all such requests satisfying (b) to the LHS

of (5) is at most 16tw(MOPT). Every request in R′ satisfies

(a) or (b) and therefore, we have∑
ri∈R′

φi ≤ (16t+ 1)w(MOPT). (6)

We partition the requests of R′′ into groups {R1, . . . ,Rm}
where any request ri is added to a group Rj if

2j−1w(MOPT)
n ≤

φi <
2jw(MOPT)

n . For any request ri ∈ R′′, by construction

φi >
w(MOPT)

n and from (P2) φi ≤ tw(MOPT) and so m =
O(log nt). Combining (6) with (5), we get∑
ri∈R′

φi +
∑

ri∈R′′
φi ≥ t− 1

2
w(M) +

t+ 1

2
w(MOPT),

m∑
j=1

∑
ri∈Rj

φi ≥ t− 1

2
w(M)− 31t+ 1

2
w(MOPT),

2

t− 1

(∑m
j=1

∑
ri∈Rj

φi

w(MOPT)
+

31t+ 1

2

)
≥ w(M)

w(MOPT)
.

For each 1 ≤ j ≤ m, if we bound

∑
ri∈Rj

φi

w(MOPT)
by

O(μM(S) log n), then along with the fact that t is a constant

greater than or equal to 3 we obtain the following:

Theorem 1. Given any metric space M and any initial
server configuration S with DIAM(S) > 0, the competi-
tive ratio of the RM-Algorithm is O(μM(S) log

2 n) where
μM(S) is the largest ratio of the traveling salesman tour
and the diameter of a subset among all subsets of S with a
positive diameter.

A. Analysis for each Group

In the rest of this section, we will provide our analysis

for some group Rj . As noted earlier, the t-net-cost of any

request ri in group Rj satisfies φi > 16td(ri, opt(ri)) and
2j−1w(MOPT)

n ≤ φi < 2jw(MOPT)
n , where (ri, opt(ri)) is an

edge in the fixed optimal matching MOPT. For simplicity,

we will drop j from the notation. We will denote the set

Rj by R and use N to denote the number of requests in R,

i.e., |R| = N . Consider the sequence σ(R) = 〈r1, . . . , rN 〉.
Recollect that σ(R) sorts requests of R based on their arrival

order.

We will partition the requests in R into clusters. For each

cluster C ⊆ R, we will designate one of the requests as

its center. We construct these clusters by processing the

requests of σ(R) = 〈r1, ..., rN 〉 in the order in which

they appear in this sequence. While processing any request

ri, suppose ri is “close” (defined below) to the center of

an already existing cluster, we assign ri to this cluster.

Otherwise, we create a new cluster that contains ri and we

will make ri the center of this cluster. More specifically,

suppose we have already partitioned requests 〈r1, ..., ri−1〉
into clusters 〈C1, ..., Cp〉. For any cluster Ck′ , let c(k

′) be

its center. For the next request ri, let Ck be the cluster such

that its center c(k) is the closest cluster center to ri, i.e.,

k = argmink′=1,...,p d(c
(k′), ri).

• If d(c(k), ri) < 2j−2w(MOPT)
tn , then we assign the request

ri to cluster Ck,

• Otherwise, we create a new cluster Cp+1 = {ri} and

set its center to ri, i.e., c(p+1) ← ri.

Let k̃ be the number of clusters formed after all the requests

in σ(R) are processed. Suppose c(k) was the hth request to

be processed by the RM-Algorithm. We associate a match-

ing with cluster Ck, denoted by M (k) and set it to the offline

matching maintained by the RM-Algorithm right before the

request c(k) is processed by it, i.e., M (k) = M∗
h−1. From

the construction of the clusters and the observation that c(k)

is the first request in the sequence σ(Ck), we obtain (C1)

and (C2):

(C1) For any cluster Ck, the cost of any request r ∈ Ck

to its center is d(r, c(k)) < 2j−2w(MOPT)
tn and for any

two cluster Ck and Ck′ , the cost between their centers,

d(c(k), c(k
′)) ≥ 2j−1w(MOPT)

tn .

509

(C2) Every request in Ck is free with respect to the matching

M (k).

Recollect that we need to construct outer balls that contain

a high density of edges of the optimal matching MOPT. To

assist in defining outer balls, for every request rg ∈ R, we

associate a path Qg containing many edges from the optimal

matching. We refer to this path as the optimal path. Suppose

rg is in the cluster Ck. We define the optimal path Qg for

rg as follows: Consider the graph G̃ = G̃(S ∪ R,MOPT ⊕
M (k)). MOPT is a perfect matching and so G̃ will contain

only alternating cycles and one augmenting path for each

free request with respect to the matching M (k). From (C2),

rg is a free vertex with respect to M (k). We set Qg to be

the augmenting path corresponding to rg in G̃. Let δg be the

maximum cost between the center c(k) of cluster Ck, and

any request or server that participates on the optimal path

Qg , i.e.,

δg = max
v∈Qg

d(c(k), v).

In other words, a ball with c(k) as its center and δg as its

radius will contain all the edges of the path Qg , including

the edges of MOPT that participate in the path Qg . Using

Lemma 2, in Lemma 3 we provide a lower bound and an

upper bound on δg .

Lemma 2. Let R be requests of group j and for a request
rg ∈ R, let rg belong to the cluster Ck with center c(k). Let
SF be the free servers with respect to the matching M (k).
Among all servers in SF , let s ∈ SF be the server that is
closest to c(k). Then, d(s, c(k)) ≥ 2j−1w(MOPT)

nt .

Proof: For the sake of contradiction, let us assume that

s ∈ SF satisfies d(s, c(k)) < 2j−1w(MOPT)
nt . Since c(k) is in

group Rj (note, Rj = R),
2j−1w(MOPT)

nt ≤ φt(c
(k))
t and so

d(s, c(k)) < φt(c
(k))
t . When processing c(k), let y(c(k)) and

y(s) be the dual weights at the end of the first sub-phase of

the algorithm. From (I3), we know that
φt(c

(k))
t = y(c(k))

t .

Combining these inequalities, we get

y(c(k)) > td(s, c(k)).

The algorithm maintains a t-feasible matching and so, from

feasibility condition (1), we have y(c(k))+y(s) ≤ td(s, c(k))
implying that the free server s has a dual weight y(s) < 0
contradicting invariant (I2).

Next, we present an upper bound and a lower bound on

δg .

Lemma 3. For any request rg ∈ R, let rg belong to cluster
Ck. Let Qg be the optimal path of rg and let let δg be the
cost of c(k) to the vertex of Qg that is furthest from it. Then,

2j−1w(MOPT)

tn
≤ δg ≤ (t+

3

2
)w(MOPT).

Proof: Let SF be the free servers with respect to M (k).

Since Qg is an augmenting path with respect to M (k), it

contains a free server s ∈ SF . From Lemma 2, we know

that the cost of c(k) to s is at least
2j−1w(MOPT)

tn implying

that δg ≥ 2j−1w(MOPT)
tn .

We know that Qg is an augmenting path with respect to

M (k) containing only edges of M (k) and MOPT. From (P1),

M (k) ≤ tw(MOPT) and so w(Qg) ≤ (t+ 1)w(MOPT). Since

rg in cluster Ck of group Rj , from property (C1), the cost

of any request rg to its representative request c(k) can be

bounded by

d(rg, c(k)) <
2j−2w(MOPT)

tn
≤ φt(r

g)

2t
≤ w(MOPT)

2
.

The last inequality follows from (P2). Let δg be the distance

from the representative request c(k) to the furthest vertex of

the path Qg . By triangle inequality,

δg ≤ d(rg, c(k)) + w(Qg) ≤ w(MOPT)/2 + (t+ 1)w(MOPT)

≤ (t+
3

2
)w(MOPT).

Lemma 4. For requests of group j given by R, let Ck ⊆ R

be any of its clusters. Let Qk be the set containing optimal
paths for every request in Ck. Then, the following properties
hold:

(a) Qk is a set of vertex-disjoint augmenting paths with
respect to M (k),

(b) For rg ∈ Ck, let Qg be the optimal path in Qk. The
total cost of the edges in Q, given by w(Q), is at least
δg/2

(c) For any optimal path Q ∈ Qk, w(MOPT∩Q)
w(Q) ≥ 1

t+1 .

Proof: For (a), from (C2), we know that every request

of Ck is free with respect to the matching M (k). By

construction, the graph G̃ = G̃(S ∪ R,MOPT ⊕M (k)) has

vertex-disjoint augmenting paths with respect to M (k) for

each of the free request of Ck. This set of optimal paths is

Qk.

For (b), we can reach any vertex on the path Qg from

c(k) by first moving from c(k) to rg and then following the

path Q. From triangle inequality,

δg ≤ w(Qg) + d(c(k), rg). (7)

From Lemma 3,
2j−1w(MOPT)

nt ≤ δg and from (C1)

d(c(k), rg) ≤ 2j−2w(MOPT)
nt ≤ δg/2. Plugging in these bounds

to (7) we get w(Qg) ≥ δg/2.
To prove (c), let Q be the optimal path for the request

r ∈ Ck . By construction, Q is an augmenting path with

respect to M (k) and contains only edges of M (k) and MOPT.

Let s be the free server at the other end of Q. For the sake

of contradiction, let us assume

w(Q ∩MOPT)

w(Q)
<

1

t+ 1
,

510

(t+ 1)w(Q ∩MOPT) < w(Q),

tw(Q \M (k)) < w(Q)− w(Q ∩MOPT) = w(Q ∩M (k)),

tw(Q \M (k))− w(Q ∩M (k)) < 0,

implying that φt(Q) < 0. The RM-Algorithm computes the

minimum t-net-cost augmenting path for the request c(k).
Since Q is an augmenting path with respect to M (k), it

follows that the t-net-cost of the augmenting path computed

by the RM-Algorithm is negative contradicting (P2).

Lemma 4 establishes some key properties of the op-

timal paths. In particular, it provides a lower bound on

the length of any optimal path (Lemma 4(b)) and also

shows that at least 1
t+1 of this length belongs to edges of

MOPT(Lemma 4(c)). These observations will help us in the

construction of an outer ball.

Outer Groups: Next, we will use the optimal paths to

partition the requests of group Rj into outer groups. For any

request rg ∈ R, we assign rg to the outer group l denoted

by the set Rl if:

2l−1w(MOPT)

nt
≤ δg <

2lw(MOPT)

nt
. (8)

Doing so will partition requests in R into several outer

groups. From Lemma 3, δg ≥ 2j−1w(MOPT)
tn and so the

outer group with the smallest index is Rj . Since δg ≤
(t+ 3

2)w(MOPT), the outer group with the largest index Rm′

is such that
2m
′−1w(MOPT)

tn ≤ (t + 3
2)w(MOPT) <

2m
′
w(MOPT)
tn

implying m′ = O(log(nt)). Therefore, the total number of

outer groups is O(log(nt)). Recollect that we had set out to

show that for any group j,

∑
ri∈R φi

w(MOPT)
is O(μM(S) log n). The

requests in R are partitioned into O(log(nt)) outer groups.

Therefore, for any outer group Rl, if we show that

∑
ri∈Rl φi

w(MOPT)

is O(μM(S)) then we can bound∑
ri∈Rj

φi

w(MOPT)
=

m′∑
l=j

(∑
ri∈Rl φi

w(MOPT)

)
= O(μM(S) log n).

This leads to the following lemma.

Lemma 5. For any j, let R be the requests in group j which
are partitioned into outer groups {Rj , . . . ,Rm′}. Suppose,

for each outer group l, j ≤ l ≤ m′,
∑

ri∈Rl φi

w(MOPT)
= O(μM(S)),

then
∑

ri∈R φi

w(MOPT)
= O(μM(S) log n).

B. Analysis for an Outer Group

For any outer group l of group j, if we show that∑
ri∈Rl φi

w(MOPT)
= O(μM(S)), from Lemma 5 we will immedi-

ately prove Theorem 1. So, in this section, for any outer

group l of group j, we will bound

∑
ri∈Rl φi

w(MOPT)
by O(μM(S)).

Let N l represent the number of requests in outer group l.

So,
∑m′

l=j N
l = N . To assist with the analysis for each

outer group, we will introduce a weighted variant of Vitali’s

covering Lemma. We will then use this variant to present

our input sensitive analysis for each outer group.

1) A variant of the Vitali’s covering lemma: We present

a variant of Vitali’s covering lemma. For any given ball B

with a center c and radius r, let 3B denote the 3-expansion
of ball B which is a ball with center c and radius 3r. Given

a set of balls B, Vitali’s covering lemma states that it is

possible to select a subset B′ ⊆ B such that B′ is a set of

mutually disjoint balls and the union of their 3-expansion

contains every ball in B.

For our variant of this lemma, we consider a set B =
{B1, . . . ,Bp} of weighted balls, all with the same radius

r. The weight of any ball Bi ∈ B is given by βi > 0.

We present a greedy procedure that selects a set B′ =
{Bs1 ,Bs2 , . . . ,Bsq} where B′ ⊆ B and for each Bsi in B′,
it also selects an intersecting set ISsi ⊆ B satisfying the

following properties (Lemma 6):

(a) For any ball B ∈ B there is exactly one i, 1 ≤ i ≤ q
such that B ∈ ISsi ,

(b) For any 1 ≤ i < j ≤ q, Bsi ∩Bsj = ∅,
(c) For any 1 ≤ i ≤ q,

(⋃
B∈ISsi

B
)
⊆ 3Bsi , and,

(d) For any ball Bj ∈ B let the set ISsi contain Bj . Then,

βsi ≥ βj .

Selection Procedure: Initialize B̂ to B and B′ = ∅.
We select the subset of balls B′ = {Bs1 , . . . ,Bsq} in an

iterative fashion as follows: At the start of iteration i, let

B′ = {Bs1 , . . . ,Bsi−1
} be the set of disjoint balls selected

in the first i−1 iterations. Let Bsi be the ball with the largest

weight in B̂. Consider the largest subset of balls of B̂ that

intersect with Bsi . We refer to this set as the intersecting set
of Bsiand denote it by ISsi . Note that Bsi is also included

in the intersecting set ISsi . We add Bsi to B′ and remove all

the balls in the intersecting set from B̂, i.e., B̂ ← B̂ \ ISsi .
This procedure ends when B̂ = ∅, i.e., every ball in B has

been covered. The next lemma will establish property (a)–

(d).

Lemma 6. Given a set of weighted balls B, the set B′ =
{Bs1 ,Bs2 , . . . ,Bsq} and the set {ISs1 , ISs2 , . . . , ISsq}
computed by the selection procedure described above will
satisfy (a),(b),(c) and (d).

Proof: Since B̂ = B at the start of the selection

procedure and B̂ = ∅ at the end, there is some iteration

i where B is removed from B̂. By construction B belongs

to the intersecting set ISsi of this iteration leading to (a).

Let 1 ≤ i < j ≤ q. In iteration i, the selection procedure

adds Bsi to B′ and removes from B̂ all balls that intersect

with Bsi . Since j > i, so Bsj is selected from B̂ which does

not contain any balls that intersect Bsi and Bsi ∩ Bsj = ∅
leading to (b).

By construction, every ball in the intersecting set B ∈ ISsi
intersects Bsi . Since B and Bsi have the same radius r and

since they mutually intersect, from triangle inequality we

511

have B ⊂ 3Bsi leading to (c).

In iteration j, Bsi was chosen as its weight was no less

than the weight of any ball in B̂ including Bj . Therefore,

βi ≤ βsj and (d) holds.

2) Rest of the Analysis: Recollect that every cluster Ck is

a subset of requests in group j, i.e., Ck ⊆ R. Let Cl
k denote

those requests of Ck that were assigned an outer group l and

let βl
k = |Cl

k|. Therefore, the cluster Ck is partitioned based

on outer groups into {Cj
k, . . . , C

m′
k }. Every request of outer

group l belongs to some cluster, and so the requests of Rl

are partitioned by the clusters {Cl
1, . . . , C

l
k̃
} and

∑k̃
k=1 β

l
k =

N l. Next, we define inner and outer balls for each cluster

Cl
k and then prove useful properties of these balls. Using

this variant of Vitali’s covering lemma, we will then bound,

for any outer group l of group j,

∑
ri∈Rl φi

w(MOPT)
by O(μM(S)).

Inner and Outer Ball: For each cluster Cl
k for group

j and outer group l, we define a ball IBl
k centered at c(k)

and radius
2j−1w(MOPT)

tn to be its inner ball. We denote the

radius of the inner ball as the inner radius and represented

it by rjIB. We define the outer ball of Cl
k, OBl

k, to be a ball

centered at c(k) with a radius
2lw(MOPT)

tn . The radius of the

outer ball, which we refer to as the outer radius, is denoted

by rlOB. We make a few straight-forward observations about

inner ball and the outer ball.

1) The inner ball IBl
k and OBl

k are concentric balls with

the same weight of βl
k.

2) Since l is greater than or equal to j,
2j−1w(MOPT)

tn <
2lw(MOPT)

tn and so the inner radius is strictly smaller

than the outer radius,

3) For any request rg ∈ Rl, δg ≤ 2lw(MOPT)
tn and so if

rg ∈ Cl
k, the optimal path Qg is contained inside its

outer ball OBl
k.

Next, we derive useful properties of the inner ball and

outer ball. The following lemma relates the inner ball radius

to
∑

ri∈Rl φi and also the traveling salesman tour of a subset

of servers.

Lemma 7. For a set of requests of group j and outer group
l denoted by Rl, let for any cluster Cl

k, for 1 ≤ k ≤ k̃, the
inner ball IBl

k have a radius rjIB and a weight βl
k. Then,

the following properties will hold true:

(a)
∑k̃

k=1 β
l
kr

j
IB >

∑
ri∈Rl φi

2t ,
(b) Let R̃ be any subset of cluster centers where |R̃| > 1

and let S̃ = opt(R̃) be the set of servers to which the
requests in R̃ match in MOPT, then |S̃| r

j
IB

4 ≤ TSP(S̃).

Proof: For any request ri in group j, by definition,

φi <
2jw(MOPT)

n . Dividing both the sides of the inequality by

2t we get
φg

2t
<

2j−1w(MOPT)

tn
= rjIB.

Summing over all requests ri belonging to any cluster Cl
k

and over all clusters 1 ≤ k ≤ k̃ we get,

k̃∑
k=1

∑
ri∈Cl

k

φi

2t
<

k̃∑
k=1

∑
ri∈Cl

k

rjIB =
k̃∑

k=1

βl
kr

j
IB (9)

Since any request ri belongs to exactly one cluster in

{Cl
1, . . . , C

l
k̃
}, we immediately get (a).

From (C1), the cost between any two cluster centers

c(k), c(k
′) is at least

2j−2w(MOPT)
nt , i.e.,

d(c(k), c(k
′)) ≥ 2j−2w(MOPT)

nt
. (10)

Let s(k) = opt(c(k)) and s(k
′) = opt(c(k

′)). Recollect

that both c(k) and c(k
′) are requests of R ⊂ R′′ and so

2jw(MOPT)
n > φt(c

(k)) > 16td(c(k), s(k)) and
2jw(MOPT)

n >

φt(c
(k′)) > 16td(c(k

′), s(k
′)). From this, we have that

both d(c(k), s(k)) and d(c(k
′), s(k

′)) are at most
2j−1w(MOPT)

8nt .

From triangle inequality, we get

d(c(k), c(k
′)) ≤ d(c(k), s(k)) + d(s(k), s(k

′)) + d(s(k
′), c(k

′))

≤ 2j−1w(MOPT)

4nt
+ d(s(k), s(k

′)).

Combining (10) and (11), we get

d(s(k), s(k
′)) >

2j−1w(MOPT)

4nt
= rjIB/4. (11)

The minimum cost between any two servers in S̃ is at least

rjIB/4. Let T = 〈s̃1, s̃2, . . . , s̃|S̃|, s̃1〉 be the smallest cost

simple cycle to visit every vertex in S̃. The cost of T is

TSP(S̃) = d(s̃1, s̃2) + ...+ d(s̃|S̃|, s̃1) > |S̃|
rjIB
4

.

as desired.

The following lemma will show that the total cost of

the edges of MOPT that are contained in any outer ball is

proportional to the product of its weight and its radius.

Lemma 8. For any cluster Cl
k, let OBl

k be the outer ball
with a radius rlOB and weight βl

k. Then w(OBl
k ∩MOPT) ≥

4
(t+1)β

l
kr

l
OB.

Proof: Let Ql
k be the set of optimal paths for requests

in Cl
k. From Lemma 4(a) and the fact that Cl

k ⊆ Ck, it

follows that Ql
k is a set of vertex-disjoint augmenting paths.

Each path Qg ∈ Ql
k is an optimal path for some request

rg ∈ Cl
k. By definition, rlOB = 2lw(MOPT)

nt and from Lemma

4(b), we know that w(Qg) ≥ δg/2 ≥ 2l−2w(MOPT)
tn = 4rlOB.

From Lemma 4(c) it follows that

(t+ 1)w(MOPT ∩Qg) ≥ w(Qg) ≥ 4rlOB

or

w(MOPT ∩Q) ≥ 4rlOB

t+ 1
.

512

The optimal paths for the βl
k requests of Cl

k are vertex-

disjoint and contained inside the ball OBl
k. So, |Cl

k| =
|Ql

k| = βl
k and we can bound the edges of the optimal

matching MOPT contained inside OBl
k by

w(MOPT ∩ OBl
k) ≥

∑
Q∈Ql

k

w(MOPT ∩Q)

≥
∑

Q∈Ql
k

4rlOB

t+ 1
=

4βl
kr

l
OB

t+ 1

as desired.

Next, by using Lemma 9 and combining properties of

inner and outer balls with our variant of Vitali’s cover-

ing lemma, we obtain our analysis for each outer group

(Lemma 10).

Lemma 9. For group Rj and any cluster Ck. Let s(k) =
opt(c(k)). Then s(k) ∈ OBl

k.

Proof: c(k) ∈ R′′ and so, φt(c
(k)) ≥ 16td(c(k), s(k)).

Since c(k) in also in group Rj , φt(c
(k))/2t ≤ 2j−1w(MOPT)

nt =

rjIB. Combining these inequalities, we get d(c(k), s(k)) ≤
rjIB/8 implying that s(k) ∈ IBl

k. Since the inner ball IBl
k

is contained inside the outer ball OBl
k, s(k) ∈ OBl

k.

Lemma 10. Let Rl be requests group j and outer group l.
Then, ∑

ri∈Rl φi

w(MOPT)
= O(μM(S)).

Proof: From Lemma 7(a), 2t
∑k̃

k=1 β
l
kr

j
IB ≥∑

ri∈Rl φi. We set t to be a constant and so it suffices to

show that ∑k̃
k=1 β

l
kr

j
IB

w(MOPT)
= O(μM(S)). (12)

Let B = {OBl
1,OB

l
2, . . . ,OB

l
k̃
} be the set of k̃ outer

balls, one for each cluster with βl
k as the weight of OBl

k.

If Cl
k = ∅, i.e., there is no request in Ck that is as-

signed an outer group l, then the ball OBl
k will have a

weight of 0. So, B may contain balls with a weight of

0. We apply the selection procedure for our variant of

Vitali’s covering Lemma. This procedure will return a subset

B′ = {OBs1 ,OBs2 , . . . ,OBsq} of pairwise-disjoint outer

balls and for each ball OBsi in this set it will also return

an intersecting set ISsi . The selected outer balls of B′ and

their intersection sets will satisfy Lemma 6 (a)–(d).

For any outer ball OBsi with weight βsi , from Lemma 8,

w(MOPT ∩OBsi) ≥ 4
(t+1)βsir

l
OB. From Lemma 6(b), outer

balls in B′ are pairwise disjoint, and so we can relate the

radius of the outer ball to the total cost of the optimal

matching

w(MOPT) ≥
∑

OBsi
∈B′

w(MOPT ∩ OBsi) ≥

∑
Bsi

∈B′

4βsir
l
OB

(t+ 1)
=

∑
Bsi

∈B′
κsi . (13)

Here κsi =
4βsi

rlOB

(t+1) .

There is an intersecting set ISsi for every selected ball

Bsi ∈ B′. Let Ksi be the index of all those clusters whose

outer ball participates in ISsi , i.e., k ∈ Ksi if and only if

OBl
k ∈ ISsi . Let θsi = |Ksi |βsir

j
IB. If βsi > 0, then we

define γsi =
θsi
κsi

. Otherwise, if βsi is 0, then we define

γsi = 0. From Lemma 6(a), we know that every outer ball

in the set B belongs to exactly one intersecting set and from

Lemma 6(d), we know that βsi = maxk∈Ksi
βl
k . Therefore,

we can express

k̃∑
k=1

βl
kr

j
IB =

∑
Bsi

∈B′

∑
k∈Ksi

βl
kr

j
IB ≤

∑
Bsi

∈B′
θsi . (14)

Combining (14) and (13), we can rewrite (12) as∑k̃
k=1 β

l
kr

j
IB

w(MOPT)
≤
∑

Bsi
∈B′ θsi∑

Bsi
∈B′ κsi

(15)

=
∑

Bsi
∈B′

(
κsi∑

Bsh
∈B′ κsh

)
γsi . (16)

Note that for any ball Bsi if βsi = 0, then both θsi and κsi

will be 0 and so, we can ignore them in the summation of

(15). Therefore,

∑
Bsi

∈B′ θsi
∑

Bsi
∈B′ κsi

is simply a weighted average

of γsi values. To complete the proof, we will bound γsi by

O(μM(S)).
We consider two cases: (i) |Ksi | = 1 and (ii) |Ksi | > 1.

In case (i), since |Ksi | = 1, there is only outer ball OBsi

in the intersecting set ISsi . So, κsi = 4
(t+1)βsir

l
OB and

θsi = βsir
j
IB The inner radius is smaller than the outer

radius and so, γsi = O(1) = O(μM(S)).
For case (ii), fix a ball OBsi ∈ B′. Let R̃si be the centers

of all the outer balls of ISsi , i.e., R̃si =
⋃

k∈Ksi
c(k). R̃si

is also a set of cluster centers. Let S̃si = opt(R̃si), i.e., the

set of servers to which the requests of R̃si are matched to

in MOPT. From Lemma 7(b), since |Ksi | = |S̃si | ≥ 2, we

get |S̃si |rjIB ≤ 4TSP(S̃si) and DIAM(S̃si) > 0

For any ball OBl
k in the intersecting set ISsi , let s(k) =

opt(c(k)). From Lemma 9, s(k) ∈ OBl
k. From Lemma 6(c),

every ball OBl
k is inside 3OBsi . So, S̃si ⊂ 3OBsi implying

6rlOB ≥ DIAM(S̃si). Therefore,

θsi
κsi

=
|S̃si |rjIB
4

(t+1)r
l
OB

≤ O(1)TSP(S̃si)

DIAM(S̃si)
= O(μM(S)).

513

This concludes our analysis for each outer group. Com-

bining this with Lemma 5, we get Theorem 1.

IV. PROPERTIES OF THE ALGORITHM

Now, we prove properties (P1) and (P2).

Lemma 11. For any augmenting path Pi computed by our
algorithm, the t-net-cost of the augmenting path Pi is at
least 0 and at most tw(MOPT).

Proof: Let MOPT be an optimal matching of S and R.

For the ith request ri, let M∗
i−1 be the offline matching main-

tained by the algorithm just before request ri is processed.

Consider the graph G(S ∪R,MOPT ⊕M∗
i−1). Since MOPT is

the perfect matching, graph G contains a set of n − i + 1
vertex disjoint augmenting paths with respect to M∗

i−1, each

having exactly one of the n − i + 1 remaining requests as

its end vertex. Let P ′ be the augmenting path in G that has

ri as one of its end vertex and let the t-net-cost of P ′ be

φ′. From the definition of t-net-cost,

φ′ = t

⎛
⎝ ∑

(s,r)∈MOPT∩P ′
d(s, r)

⎞
⎠− ∑

(s,r)∈M∗
i−1∩P ′

d(s, r),

or,

φ′ ≤ t
∑

(s,r)∈MOPT∩P ′
d(s, r) ≤ tw(MOPT).

Note that the augmenting path Pi computed by our

algorithm while processing request ri is a minimum t-net-

cost augmenting path with a t-net-cost of φi. Therefore,

φi ≤ φ′ ≤ tw(MOPT)

as desired.

Next, we prove that φi ≥ 0. For the sake of contradiction,

suppose φi < 0. Let y(·) be the dual weights right before

processing ri. Using feasibility conditions (1) and (2), we

can express φi as

φi = t
∑

(s,r)∈Pi\M∗
i−1

d(s, r)−
∑

(s,r)∈Pi∩M∗
i−1

d(s, r) ≥
∑

(s,r)∈Pi\M∗
i−1

(y(s) + y(r))−
∑

(s,r)∈Pi∩M∗
i−1

(y(s) + y(r)).

The dual weight of every vertex of Pi except the first vertex

ri and the last vertex si cancel each other in the above

inequality and we get φi ≥ y(si) + y(ri). Since y(si) = 0
and φi < 0, we get y(ri) < 0 contradicting (I2).

Lemma 12. The cost of the offline matching M∗ maintained
by the algorithm after the end of phase i is at most
tw(MOPT).

Proof: Consider M∗
i , which is the offline matching

computed by the algorithm after all the first i requests have

been processed. Let MOPT be the optimal matching for the

set S and R. Let y(·) denote the dual weights at the end

of phase i. From (I1), (I2) and the fact that all requests

that have not yet arrived have a dual weight of 0, we get∑
v∈S∪R y(v) = w(M∗

i). For any edge (u, v) in MOPT, from

(1), y(u) + y(v) ≤ td(u, v). Adding over all the edges of

MOPT, we get w(M∗
i) =

∑
v∈S∪R y(v) ≤ tw(MOPT).

V. LOWER BOUND

In this section, we will provide a sketch of the lower

bound construction that bounds from below the competitive

ratio of any online algorithm A in a metric space M and

for server locations S is Ω(μM(S)). Let S′ be the subset

such that TSP(S′)/DIAM(S′) = μM(S). The adversary can

remove any server s′ that is not in S′ by simply placing

a request at the location of s′; any other allocation by the

algorithm A will only result in a higher cost assignment.

After this, we are left with servers in the set S′. Without

loss of generality, we assume that all the servers of S′ are in

distinct locations. The adversary will generate the remaining

requests as follows. Let s1 be some server in S′. The

adversary will place two requests r1 and r2 at the location of

s1. The first request is matched by s1 at a cost 0 and let s2 be

the server assigned by A to request r2 with a cost d(s1, s2).
Next, the adversary will place a request r3 at location of

server s2. For the ith request, let si−1 be the server assigned

to ri−1 at a cost d(si−2, si−1), then the adversary will place

request ri at the location of server si−1; let si be the server

assigned by A to request ri; the cost of this assignment is

d(si−1, si). In this fashion, the total cost incurred by A is∑|S′|−1
i=1 d(si, si+1) which is the cost of a path that visits

every vertex in S′. Therefore, the cost incurred by A is at

least TSP(S′)/2. For i ≥ 2, the optimal matching will match

ri to si−1 at zero cost. It will also match the request r1
to s|S′| with a cost d(r1, s|S′|) ≤ DIAM(S′). Therefore, the

ratio of the cost of the online solution and the offline solution

produced by A is at least TSP(S′)/2DIAM(S′) = μM(S)/2
leading to the following theorem.

Theorem 2. In the adversarial model, given a set of servers
S in a metric space M, any online algorithm A will
competitive ratio of Ω(μM(S)).

VI. CONCLUSION

In this paper, we present a novel input sensitive analysis of

a deterministic online algorithm that was introduced in [1].

In particular, we show that for any metric space M and a set

of server locations S, the competitive ratio of the algorithm

is O(μM(S) log
2 n) where μM(S) is the maximum ratio of

the traveling salesman tour and the diameter of a subset of

servers among all subsets of S with a positive diameter.

We also show that any algorithm, optimized for the metric

space M and the server locations S has a competitive ratio

of Ω(μM(S)).

514

It is possible to construct a 1-dimensional example for

which the competitive ratio of this RM-Algorithm has a

competitive ratio of Θ(log n). Therefore, for the line metric,

i.e., the server locations are points on a line, the RM-

Algorithm cannot achieve a competitive ratio of Θ(μM(S)).
We conclude by stating the following open problem.

• Is there an online algorithm that achieves a competitive

ratio of Θ(μM(S)) for any metric space M and server

configuration S?

ACKNOWLEDGMENT

This work is supported by an NSF CRII grant CCF-

1464276.

REFERENCES

[1] S. Raghvendra, “A Robust and Optimal Online Algorithm
for Minimum Metric Bipartite Matching,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2016), vol. 60, 2016,
pp. 18:1–18:16.

[2] M. Mahdian and Q. Yan, “Online bipartite matching with ran-
dom arrivals: An approach based on strongly factor-revealing
lps,” in Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing, ser. STOC ’11, 2011, pp. 597–606.

[3] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, “Compet-
itive algorithms for server problems,” J. Algorithms, vol. 11,
no. 2, pp. 208–230, May 1990.

[4] E. Koutsoupias and C. H. Papadimitriou, “On the k-server
conjecture,” J. ACM, vol. 42, no. 5, pp. 971–983, Sep. 1995.

[5] S. Khuller, S. G. Mitchell, and V. V. Vazirani, “On-line algo-
rithms for weighted bipartite matching and stable marriages,”
Theor. Comput. Sci., vol. 127, no. 2, pp. 255–267, 1994.

[6] B. Kalyanasundaram and K. Pruhs, “Online weighted match-
ing,” J. Algorithms, vol. 14, no. 3, pp. 478–488, 1993.

[7] A. Antoniadis, N. Barcelo, M. Nugent, K. Pruhs, and M. Sc-
quizzato, “A o(n)-competitive deterministic algorithm for
online matching on a line,” in Approximation and Online
Algorithms: 12th International Workshop, WAOA 2014, 2015,
pp. 11–22.

[8] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor, “An
O(log2k)-competitive algorithm for metric bipartite match-
ing,” in Algorithms - ESA 2007, 15th Annual European
Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
2007, pp. 522–533.

[9] N. Bansal, N. Buchbinder, A. Madry, and J. Naor, “A
polylogarithmic-competitive algorithm for the k-server prob-
lem,” in Proceedings of the IEEE 52nd Annual Symposium
on Foundations of Computer Science (FOCS), Oct 2011, pp.
267–276.

[10] A. Gupta and K. Lewi, “The online metric matching problem
for doubling metrics,” in Automata, Languages, and Program-
ming, 2012, vol. 7391, pp. 424–435.

[11] E. Koutsoupias and A. Nanavati, Approximation and Online
Algorithms: First International Workshop, WAOA 2003, Bu-
dapest, Hungary, September 16-18, 2003. Revised Papers.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ch. The
Online Matching Problem on a Line, pp. 179–191.

515

