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Abstract—We show that the perfect matching
problem in general graphs is in quasi-NC. That is, we
give a deterministic parallel algorithm which runs in
O(log®n) time on pOUos” n) processors. The result is ob-
tained by a derandomization of the Isolation Lemma
for perfect matchings, which was introduced in the
classic paper by Mulmuley, Vazirani and Vazirani
[1987] to obtain a Randomized NC algorithm.

Our proof extends the framework of Fenner, Gurjar
and Thierauf [2016], who proved the analogous result
in the special case of bipartite graphs. Compared to
that setting, several new ingredients are needed due
to the significantly more complex structure of perfect
matchings in general graphs. In particular, our proof
heavily relies on the laminar structure of the faces of
the perfect matching polytope.

This is an extended abstract. The full version of the
paper, which includes all proofs, may be found at https:
/ /arxiv.org/abs/1704.01929.

I. INTRODUCTION

The perfect matching problem is a fundamental ques-
tion in graph theory. Work on this problem has con-
tributed to the development of many core concepts
of modern computer science, including linear-algebraic,
probabilistic and parallel algorithms. Edmonds [1] was
the first to give a polynomial-time algorithm for it.
However, half a century later, we still do not have full
understanding of the deterministic parallel complexity
of the perfect matching problem. In this paper we make
progress in this direction.

We consider a problem to be efficiently solvable in
parallel if it has an algorithm which uses polylogarithmic
time and polynomially many processors. More formally,
a problem is in the class NC if it has uniform circuits
of polynomial size and polylogarithmic depth. The class
RNC is obtained if we also allow randomization.

We study the decision version of the problem: given
an undirected simple graph, determine whether it has
a perfect matching — and the search version: find and
return a perfect matching if one exists. The decision
version was first shown to be in RNC by Lovész [2].
The search version has proved to be more difficult and
it was found to be in RNC several years later by Karp,
Upfal and Wigderson [3] and Mulmuley, Vazirani and
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Figure 1: Example of a Tutte matrix of an undirected
graph.

Vazirani [4]. All these algorithms are randomized, and
it remains a major open problem to determine whether
randomness is required, i.e., whether either version is in
NC.

A successful approach to the perfect matching prob-
lem has been the linear-algebraic one. It involves the
Tutte matrix associated with a graph G = (V, F), which
is a |V| x |V| matrix defined as follows (see Figure 1 for
an example):

X(u,v) if (u,v) € E and u < v,
T(@)yw = X if (u,v) € E and u > v,
0 if (u,v) ¢ E,

where X, .y for (u,v) € E are variables. Tutte’s theo-
rem [5] says that detT(G) # 0 if and only if G has a
perfect matching. This is great news for parallelization,
as computing determinants is in NC [6], [7]. However,
the matrix is defined over a ring of indeterminates, so
randomness is normally used in order to test if the
determinant is nonzero. One approach is to replace each
indeterminate by a random value from a large field.
This leads, among others, to the fastest known (single-
processor) running times for dense graphs [8], [9].

A second approach, adopted by Mulmuley, Vazirani
and Vazirani [4] for the search version, is to replace
the indeterminates by randomly chosen powers of two.
Namely, for each edge (u,v), a random weight w(u,v) €
{1,2,...,2|E[} is selected, and we substitute X, .) =
2w(u:v)  Now, let us make the crucial assumption that
one perfect matching M is isolated, in the sense that it
is the unique minimum-weight perfect matching (min-
imizing w(M)). Then det T(G) remains nonzero after
the substitution: one can show that M contributes a
term +22(M) to det T(G), whereas all other terms
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are multiples of 22*()+1 and thus they cannot cancel

22w(M) out. The determinant can still be computed in
NC as all entries 2(“?) of the matrix are of polynomial
bit-length, and so we have a parallel algorithm for the
decision version. An algorithm for the search version
also follows: for every edge in parallel, test whether
removing it causes this least-significant digit 22*(*) in
the determinant to disappear; output those edges for
which it does.

The fundamental claim in [4] is that assigning random
weights to edges does indeed isolate one matching with
high probability. This is known as the Isolation Lemma
and turns out to be true in the much more general setting
of arbitrary set families:

Lemma I.1 (Isolation Lemma). Let M C 2F bpe
any nonempty family of subsets of a universe E
{1,2,...,|E|}. Suppose we define a weight function w :
E — {1,2,...,2|E|} by selecting each w(e) for e € E
independently and uniformly at random. Then with prob-
ability at least 1/2, there is a unique set M € M which
minimizes the weight w(M) =3~ .\, w(e).

We call such a weight function w isolating. We take
M in Lemma 1.1 to be the set of all perfect matchings.

Since Lemma 1.1 is the only randomized ingredient of
the RNC algorithm, a natural approach to showing that
the perfect matching problem is in NC is the derandom-
ization of the Isolation Lemma. That is, we would like
a set of polynomially many weight functions (with poly-
nomially bounded values) which would be guaranteed to
contain an isolating one. To get an NC algorithm, we
should be able to generate this set efficiently in parallel;
then we can try all weight functions simultaneously.

However, derandomizing the Isolation Lemma turns
out to be a challenging open question. It has been done
for certain classes of graphs: strongly chordal [10], planar
bipartite [11], [12], or graphs with a small number of
perfect matchings [13], [14]. More generally, there has
been much interest in obtaining NC algorithms for the
perfect matching problem on restricted graph classes
(not necessarily using the Isolation Lemma), e.g.: regular
bipartite [15], Py-tidy [16], dense [17], convex bipartite
[18], claw-free [19], incomparability graphs [20]. The
general set-family setting of the Isolation Lemma is also
related to circuit lower bounds and polynomial identity
testing [21].

Recently, in a major development, Fenner, Gurjar
and Thierauf [22] have almost derandomized the Isola-
tion Lemma for bipartite graphs. Namely, they define
a family of weight functions which can be computed
obliviously (only using the number of vertices n) and
prove that for any bipartite graph, one of these functions
is isolating. Because their family has quasi-polynomial
size and the weights are quasi-polynomially large, this
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has placed the perfect bipartite matching problem in the
class quasi-NC.

Nevertheless, the general-graph setting of the deran-
domization question (either using the Isolation Lemma
or not) remained open. Even in the planar case, with NC
algorithms for bipartite planar and small-genus graphs
having been known for a long time [23], [24], we knew no
quasi-NC algorithm for non-bipartite graphs. In general,
the best known upper bound on the size of uniform
circuits with polylogarithmic depth was exponential.

We are able to nearly bridge this gap in understanding.
The main result of our paper is the following:

Theorem 1.2. For any number n, we can in quasi-NC
construct nOos”n) weight functions on {172,...,(3)}
with weights bounded by nOUos® ) gych that for any graph
on n vertices, one of these weight functions isolates a

perfect matching (if one exists).

The results of [4] and Theorem 1.2 together imply that
the perfect matching problem (both the decision and
the search variant) in general graphs is in quasi-NC. See
Section II-A for more details on this. We remark that the
implied algorithm is very simple. The complexity lies in
the analysis, i.e., proving that one of the weight functions
is isolating (see Theorem IV.11).

In what follows, we first give an overview of the
framework in [22] for bipartite graphs. We then explain
how we extend the framework to general graphs. Due
to the more complex structure of perfect matchings in
general graphs, we need several new ideas. In particular,
we exploit structural properties of the perfect matching
polytope.

A. Isolation in bipartite graphs

In this section we shortly discuss the elegant frame-
work introduced by Fenner, Gurjar and Thierauf [22],
which we extend to obtain our result.

If a weight function w is mot isolating, then there
exist two minimum-weight perfect matchings, and their
symmetric difference consists of alternating cycles. In
each such cycle, the total weight of edges from the
first matching must be equal to the total weight of
edges from the second matching (as otherwise we could
obtain another matching of lower weight). The difference
between these two total weights is called the circulation
of the cycle. By the above, if all cycles have nonzero
circulation, then w is isolating. It is known how to obtain
weight functions which satisfy a polynomial number of
such non-equalities (see Lemma I11.4). However, a graph
may have an exponential number of cycles.

A key idea of [22] is to build the weight function in
logn rounds. In the first round, we find a weight function
with the property that each cycle of length 4 has nonzero
circulation. This is possible since there are at most n*
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Figure 2: An illustration of the difficulties of derandomizing the Isolation Lemma for general graphs as compared

to bipartite graphs.

On the left: in trying to remove the bold cycle, we select a weight function w such that the circulation of
the cycle is 1 — 0+ 1 — 0 # 0. By minimizing over w we obtain a new, smaller subface — the convex hull
of perfect matchings of weight 1 — but every edge of the cycle is still present in one of these matchings.
The cycle has only been eliminated in the following sense: it can no longer be obtained in the symmetric
difference of two matchings in the new face (since none of them select both swirly edges). The vertex
sets drawn in gray represent the new tight odd-set constraints that describe the new face (indeed: for a
matching to have weight 1, it must take only one edge from the boundary of a gray set). We will say that
the cycle does not respect the gray vertex sets (see Section III).

On the right: two even cycles whose symmetric difference contains no even cycle.

such cycles. We apply this function and from now on
consider only those edges which belong to a minimum-
weight perfect matching. Crucially, it turns out that in
the subgraph obtained this way, all cycles of length 4
have disappeared — this follows from the simple structure
of the bipartite perfect matching polytope (a face is
simply the bipartite matching polytope of a subgraph)
and fails to hold for general graphs. In the second round,
we start from this subgraph and apply another weight
function which ensures that all even cycles of length up
to 8 have nonzero circulation (one proves that there are
again < n* many since the graph contains no 4-cycles).
Again, these cycles disappear from the next subgraph,
and so on. After logn rounds, the current subgraph has
no cycles, i.e., it is a perfect matching. The final weight
function is obtained by combining the logn polynomial-
sized weight functions. To get a parallel algorithm, we
need to simultaneously try each such possible combina-
tion, of which there are quasi-polynomially many.

This result has later been generalized by Gurjar and
Thierauf [25] to the linear matroid intersection problem —
a natural extension of bipartite matching. From the work
of Narayanan, Saran and Vazirani [26], who gave an RNC
algorithm for that problem (also based on computing a
determinant), it again follows that derandomizing the
Isolation Lemma implies a quasi-NC algorithm.

B. Challenges of non-bipartite graphs

We find it useful to look at the method explained
in the previous section from a polyhedral perspective
(also used by [25]). We begin from the set of all perfect
matchings, of which we take the convex hull: the perfect
matching polytope. After applying the first weight func-
tion, we want to consider only those perfect matchings
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which minimize the weight; this is exactly the definition
of a face of the polytope. In the bipartite case, any face
was characterized by just taking a subset of edges (i.e.,
making certain constraints z. > 0 tight), so we could
simply think about recursing on a smaller subgraph. This
was used to show that any cycle whose circulation has
been made nonzero will not retain all of its edges in the
next subgraph. The progress we made in the bipartite
case could be measured by the girth (the minimum
length of a cycle) of the current subgraph, which doubled
as we moved from face to subface. Unfortunately, in
the non-bipartite case, the description of the perfect
matching polytope is more involved (see Section II-B).
Namely, moving to a new subface may also cause new
tight odd-set constraints to appear. These, also referred
to as odd cut constraints, require that, for an odd set
S C V of vertices, exactly one edge of a matching
should cross the cut defined by S. This complicates our
task, as depicted in the left part of Figure 2 (the same
example was given by [22] to demonstrate the difficulty
of the general-graph case). Now a face is described by
not only a subset of edges, but also a family of tight
odd-set constraints. Thus we can no longer guarantee
that any cycle whose circulation has been made nonzero
will disappear from the support of the new face, i.e.,
the set of edges that appear in at least one perfect
matching in this face. Our idea of what it means to
remove a cycle thus needs to be refined (see Section III),
as well as the measure of progress we use to prove
that a single matching is isolated after logn rounds (see
Section IV). We need several new ideas, which we outline
in Section I-C.

Another difficulty, of a more technical nature, concerns



the counting argument used to prove that a graph with
no cycles of length at most A contains only polynomially
many cycles of length at most 2. In the bipartite case,
the symmetric difference of two even cycles contains
a simple cycle, which is also even. In addition, one
can show that if the two cycles share many vertices,
then the symmetric difference must contain one such
even cycle that is short (of length at most A) and thus
should not exist. This enables a simple checkpointing
argument to bound the number of cycles of length at
most 2\, assuming that no cycle of length at most
A exists. Now, in the general case we are still only
interested in removing even cycles, but the symmetric
difference of two even cycles may not contain an even
simple cycle (see the right part of Figure 2). This forces
us to remove not only even simple cycles, but all even
walks, which may contain repeated edges (we call these
alternating circuits — see Definition I11.1), and to rework
the counting scheme, obtaining a bound of n'7 rather
than n*. Moreover, instead of simple graphs, we work on
node-weighted multigraphs, which arise by contracting
certain tight odd-sets.

C. Our approach

This section is a high-level, idealized explanation of
how to deal with the main difficulty (see the left part
of Figure 2); we ignore the more technical one in this
description.

Removing cycles which do not cross a tight odd-set:
As discussed in Section I-B, when moving from face to
subface we cannot guarantee that, for each even cycle
whose circulation we make nonzero, one of its edges will
be absent from the support of the new face. However,
this will at least be true for cycles that do not cross any
odd-set tight for the new face. This is because if there
are no tight odd-set constraints, then our faces behave as
in the bipartite case. So, intuitively, if we only consider
those cycles which do not cross any tight set, then we can
remove them using the same arguments as in that case.
This implies, by the same argument as in Section I-A,
that if we apply log n weight functions in succession, then
the resulting face will not contain in its support any even
cycle that crosses no tight odd-set. This is less than we
need, but a good first step. If, at this point, there were
no tight sets, then we would be done, as we would have
removed all cycles. However, in general there will still
be cycles crossing tight sets, which make our task more
difficult.

Decomposition into two subinstances: To deal with
the tight odd-sets, we will make use of two crucial
properties. The first property is easy to see: once we
fix the single edge e in the matching which crosses a
tight set S, the instance breaks up into two independent
subinstances. That is, every perfect matching which

699

contains e is the union of: the edge e, a perfect matching
on the vertex set S (ignoring the S-endpoint of e), and
a perfect matching on the vertex set V'\ S (ignoring the
other endpoint of e).

This will allow us to employ a divide-and-conquer
strategy: to isolate a matching in the entire graph,
we will take care of both subinstances and of the cut
separating them. We formulate the task of dealing with
such a subinstance (a subgraph induced on an odd-
cardinality vertex set) as follows: we want that, once the
(only) edge of a matching which lies on the boundary
of the tight odd-set is fixed, the entire matching inside
the set is uniquely determined. We will then call this set
contractible (see Definition IV.1). This can be seen as
a generalization of our isolation objective to subgraphs
with an odd number of vertices. If we can get that for the
tight set and for its complement, then each edge from the
cut separating them induces a unique perfect matching
in the graph. Therefore there are at most n? perfect
matchings left in the current face. Now, in order to
isolate the entire graph, we only need a weight function
w which assigns different weights to all these matchings.
This demand can be written as a system of n* linear non-
equalities on w, and we can generate a weight function
w satisfying all of them (see Lemma IIL.4).

While it is not clear how to continue this scheme
beyond the first level or why we could hope to have a low
depth of recursion, we will soon explain how we utilize
this basic strategy.

Laminarity: The second crucial property that we
utilize is that the family of odd-set constraints tight for
a face exhibits good structural properties. Namely, it is
known that a laminar family of odd sets is enough to
describe any face (see Section II-B). Recall that a family
of sets is laminar if any two sets in the family are either
disjoint or one is a subset of the other (see Figure 4 for
an example). This enables a scheme where we use this
family to make progress in a bottom-up fashion. This is
still challenging as the family does not stay fixed as we
move from face to face. The good news is that it can
only increase: whenever a new tight odd-set constraint
appears which is not spanned by the previous ones, we
can always add an odd-set to our laminar family.

Chain case: To get started, let us first discuss the
special case where the laminar family of tight constraints
is a chain, i.e., an increasing sequence of odd-sets S; C
So C ... € Sp. For this introduction, assume ¢ = 8 as
depicted in Figure 3. Denote by Uy, ..., Ug the layers of
this chain, ie., Uy = S and U, = S, \ Sp—; for p =
2,3, ...,8. Suppose this chain describes the face that was
obtained by applying the logn weight functions as above
that remove all even cycles that do not cross a tight set.
Then there is no cycle that lies inside a single layer U),.

Notice that every layer U, is of even size and it touches
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Figure 3: Example of a chain consisting of 8 tight sets, and our divide-and-conquer argument.

two boundaries of tight odd-sets: S,_1 and S, (that
is, 0(Up) € 6(Sp—1) U 6(Sp)). Any perfect matching
in the current face will have one edge from 6(Sp_1)
and one edge from 0(S,) (possibly the same edge),
therefore U, will have two (or zero) boundary edges in
the matching. An exception is Uj, which is odd, only
touches S; and will have one boundary edge in the
matching. This motivates us to generalize our isolation
objective to layers as follows: we say that a layer U,
is contractible if choosing an edge from 6(Sp—1) and an
edge from §(S,) induces a unique matching inside U,.
This definition naturally extends to layers of the form
Sy \ Sp—1 = Up UUpy1 U ... UU,, which we will denote
by Up..

Recall that we have ensured that there is no cycle that
lies inside a single layer U, = U, . It follows that these
layers are contractible. This is because two different
matchings (but with the same boundary edges) in the
current face would induce an alternating cycle in their
symmetric difference.

Let us say that this was the first phase of our approach
(see Figure 3). In the second phase, we want to ensure
contractibility for double layers: U; 2, Us 4, Us 6 and Uy s.
In general, we double our progress in each phase: in the
third one we deal with the quadruple layers U; 4 and
Usg, and in the fourth phase we deal with the octuple
layer U g.

Let us now describe a single phase. Take e.g. the layer
Us,s and two boundary edges es € 6(Ss) and eg € 6(Ss)
(see Figure 3); we want to have only a unique matching
in Us g including these edges. Now we realize our divide-
and-conquer approach. Note that the layers Us g and Uz g
have already been dealt with (made contractible) in the
previous phase. Therefore, for each choice of boundary
edge eg € 0(Se) for the matching, there is a unique
matching inside both of these layers. Just like previously,
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this implies that there are only n? matchings using ey
and eg in the layer Usg, and we can select a weight
function that isolates one of them.We actually select only
one function per phase, which works simultaneously for
all layers Up,, in this phase (here: Uy 4 and Us g) and all
pairs of boundary edges e,_; and e,.

By generalizing this strategy (from ¢ = 8 to arbitrary
£) in the natural way, we can deal with any chain in
log¢ < logn phases, even if it consists of Q(n) tight
sets.

General case: Of course, there is no reason to expect
that the laminar family of tight cuts we obtain after
applying the initial log n weight functions will be a chain.
It also does not seem easy to directly generalize our
inductive scheme from a chain to an arbitrary family.
Therefore we put forth a different progress measure,
which allows us to make headway even in the absence
of such a favorable odd-set structure.

Since a laminar family can be represented as a tree,
we might think about a bottom-up strategy based on
it; however, we cannot deal with its nodes level-by-level,
since it may have height €(n) and we can only afford
poly(log n) many phases. Instead, we will first deal with
all tight odd-sets of size up to 4, then up to 8, then up
to 16 and so on, by making them contractible. At the
same time, we also remove all even cycles of length up
to 4, then up to 8 and so on. These two components
of our progress measure, which we call A-goodness, are
mutually beneficial, as we will see below.

Making odd-sets contractible enables us not only to
achieve progress, but also to simplify our setting. A
contractible tight set can be, for our purposes, thought
of as a single vertex — much like a blossom in Edmonds’
algorithm. This is because such a set has exactly one
boundary edge in a perfect matching (as does a vertex),
and choosing that edge determines the matching in the



Figure 4: Example of a general laminar family.
Dark-gray sets are of size at most A and
thus contractible.

Dashed sets are of size more than A but
at most 2); they must form chains (due to
the cardinality constraints). We make them
contractible in the first step. Then we con-
tract them (so now all light-gray and dark-
gray sets are contracted).

Thick sets are of size more than 2\. For
the second step, we erase the edges on their
boundaries. Then we remove cycles of length
up to 2\ from the resulting instance (the con-
traction), which has no tight odd-sets (and
no cycles of length up to \).

interior. As the name suggests, we will contract such sets.

Suppose that our current face is already A-good.
Roughly, this means that we have made odd-sets of
size up to A (which we will call small) contractible and
removed cycles of length up to A. Now we want to obtain
a face which is 2\-good.

The first step is to make odd-sets of size up to 2\
contractible. Let us zoom in on one such odd-set — a
maximal set of size at most 2\ (see the largest dashed set
in Figure 4). Once we have contracted all the small sets
into single vertices, all interesting sets are now of size
more than A but at most 2\, and any laminar family
consisting of such sets must be a chain, since a set of
such size cannot have two disjoint subsets of such size
(see Figure 4). But this is the chain case that we have
already solved!

Having made odd-sets of size up to 2\ contractible,
we can contract them. The second step is now to remove
cycles of length up to 2A. However, here we do not need
to care about those cycles which cross an odd-set S of
size larger than 2\ — the reason being, intuitively, that
in our technical arguments we define the length of a
cycle based on the sizes of sets that it crosses, and thus
such a cycle actually becomes longer than 2X. In other
words, we can think about removing cycles of length
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up to 2X from a version of the input graph where all
small odd-sets have been contracted and all larger ones
have had their boundaries erased (see Figure 4). We
call this version the contraction (see Definition IV.5).
Our A-goodness progress measure (see Definition IV.7)
is actually defined in terms of cycles in the contraction.

Now the second step is easy: we just need to remove
all cycles of length up to 2X from the contraction, which
has no tight odd-sets and no cycles of length up to A — a
simple scenario, already known from the bipartite case.
Applying one weight function is enough to do this.

Finally, what does it mean for us to remove a cycle?
When we make a cycle’s circulation nonzero, it is then
eliminated from the new face in the following sense:
either one of its edges disappears from the support of
the face (recall that this is what always happened in the
bipartite case), or a new tight odd-set appears, with the
following property: the cycle crosses the set with fewer
(or more) even-indexed edges than odd-indexed edges
(see the example in Figure 2). In short, we say that the
cycle does not respect the new face (see Section IIT). This
notion of removal makes sense when viewed in tandem
with the contraction, because once a cycle crosses a set
in the laminar family, there are two possibilities in each
phase: either this set is large — then its boundary is not
present in the contraction, which cancels the cycle, or
it is small — then it is contracted and the cycle also
disappears (for somewhat more technical reasons).

To reiterate, our strategy is to simultaneously remove
cycles up to a given length and make odd-sets up to a
given size contractible. We can do this in logn phases.
In each such phase we need to apply a sequence of logn
weight functions in order to deal with a chain of tight
odd-sets (as outlined above). In all, we are able to isolate
a perfect matching in the entire graph using a sequence
O(log2 n) weight functions with polynomially bounded
weights.

D. Future work

The most immediate open problem left by our work
is to get down from quasi-NC to NC for the perfect
matching problem. Even for the bipartite case, this will
require new insights or methods, as it is not clear how we
could e.g. reduce the number of weight functions from
logn to only a constant.

Proving that the search version of the perfect match-
ing problem in planar graphs is in NC is also open.
While the quasi-NC result of [22] gives rise to a new NC
algorithm for bipartite planar graphs, which proceeds by
verifying at each step whether the chosen weight function
has removed the wanted cycles (it computes the girth of
the support of the current face in NC), our A-goodness
progress measure seems to be difficult to verify in NC.



A related problem which has resisted derandomization
so far is exact matching [27]. Here we are given a graph,
whose some edges are colored red, and an integer k; the
question is to find a perfect matching containing exactly
k red edges. The problem is in RNC [4], but not known
to even be in P.

Finally, our polyhedral approach motivates the ques-
tion of what other zero-one polytopes admit such a
derandomization of the Isolation Lemma. One class that
comes to mind are totally unimodular polyhedra.

E. Outline

The rest of the paper is organized as follows. In
Section IT we introduce notation and define basic notions
related to the perfect matching polytope and to the
weight functions that we use. In Section III we define
alternating circuits (our generalization of alternating
cycles), discuss what it means for such a circuit to
respect a face, and develop our tools for circuit removal.
In Section IV we introduce our measure of progress (A-
goodness), contractible sets and the contraction multi-
graph. We also state Theorem IV.11, which implies our
main result. We defer to the full version of the paper
the proof of our key technical theorem: that applying
logsn + 1 weight functions allows us to make progress
from A-good to 2\-good.

II. PRELIMINARIES

Throughout the paper we consider a fixed graph
G = (V, E) with n vertices. We remark that the isolating
weight functions whose existence we prove can be gen-
erated without knowledge of the graph. For notational
convenience, we assume that log,n evaluates to an
integer; otherwise simply replace log, n by [log, n]. We
also assume that n is sufficiently large.

We use the following notation. For a subset S C V of
the vertices, let 6(S) = {e € E : |[en S| = 1} denote
the edges crossing the cut (S,V \ S) and E(S) = {e €
E :len S| =2} denote the edges inside S. We shorten
5({v}) to 8(v) for v € V. For a vector (x¢)ecr € RIP!, we
define 2(6(S5)) = X .c5(5) e, as well as supp(z) = {e €
E : z. > 0}. For a subset X C E we define 1x to be
the vector with 1 on coordinates in X and 0 elsewhere.
We again shorten 1., to 1. for e € E. Sometimes we
identify matchings M with their indicator vectors 1,;.

A matching is a set of edges M C FE such that no two
edges in M share an endpoint. A matching M is perfect
if [M]=%.

A. Parallel complexity

The complexity class quasi-NC is defined as
quasi-NC Uk>0quasi-NCk, where quasi-NC* s
the class of problems having uniform circuits of quasi-
polynomial size 2log”n and polylogarithmic depth
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O(log* n) [28]. Here by “uniform” we mean that the
circuit can be generated in polylogarithmic space.

By the results of [4], Theorem 1.2 implies that the
perfect matching problem (both the decision and the
search variant) in general graphs is in quasi-NC. The
same can be said about maximum cardinality matching,
as well as minimum-cost perfect matching for small costs
(given in unary); see Section 5 of [4].

Some care is required to obtain our postulated running
time, i.e., that the perfect matching problem has uniform
circuits of size n®1°8" ™) and depth O(log® n). We could
get a quasi-NC* algorithm by applying the results of
[29, Section 6.1] to compute the determinant(s). To
shave off one logn factor, we use the following Chinese
remaindering method, pointed out to us by Rohit Gurjar
(it will also appear in the full version of [22]). We first
compute determinants modulo small primes; since the
determinant has 20(1og*n) bits, we need as many primes
(each of O(log®n) bits). For one prime this can be done
in NC? [7]. Then we reconstruct the true value from the
remainders. Doing this for an n-bits result would be in
NC' [30], and thus for a result with 20(°8° ) bits it is
in quasi-NC3.

B. Perfect matching polytope

Edmonds [31] showed that the following set of equali-
ties and inequalities on the variables (2 )ecr determines
the perfect matching polytope (i.e., the convex hull of
indicator vectors of all perfect matchings):

z(6(v)) =1 forveV,
z(6(S)) >1 for S CV with |S| odd,
z. >0 foreec k.

Note that the constraints imply that z. < 1 for any
e € E. We refer to the perfect matching polytope of
the graph G = (V, E) by PM(V, E) or simply by PM.
Our approach exploits the special structure of faces
of the perfect matching polytope. Recall that a face
of a polytope is obtained by setting a subset of the
inequalities to equalities. We follow the definition of a
face from the book of Schrijver [32] — in particular, every
face is nonempty.

Throughout the paper, we will only consider the per-
fect matching polytope and so the term “face” will always
refer to a face of PM. We sometimes abuse notation
and say that a perfect matching M is in a face F if
its indicator vector is in F'. When talking about faces,
we also use the following notation:

Definition I1.1. For a face F' we define
E(F)={e€E:(Jx €F) x. >0}
and

S(F)={SCV:|S| odd and Vx € F) z(4(5))

1}.



In other words, E(F) contains the edges that appear in
a perfect matching in F' and S(F) contains the tight cut
constraints of F.

Notice that if a set is tight for a face, then it is also
tight for any of its subfaces.

Standard uncrossing techniques imply that faces can
be defined using laminar families of tight constraints.
This is proved using Lemma II.2 below, which is also
useful in our approach.

Two subsets S, T C V of vertices are said to be
crossing if they intersect and none is contained in the
other, i.e., SNT, S\T,T\ S # 0. A family £ of subsets
of vertices is laminar if no two sets S, T" € L are crossing.
Furthermore, we say that £ is a maximal laminar subset
of a family § if no set in S\ £ can be added to £ while
maintaining laminarity.

Note that any single-vertex set is tight for any face,
and therefore a maximal laminar family contains all
these sets. The laminar families in our arguments will
always contain all singletons.

The following lemma is known.

Lemma I1.2. Consider a face F. For any mazimal
laminar subset L of S(F) we have

span(L) = span(S(F)),

where for a subset T C S(F), span(T) denotes the linear
subspace of RF spanned by the boundaries of sets in T,
i.e., span(7) = span{lsg) : S € T}.

Intuitively, Lemma II.2 implies that a maximal lam-
inar family £ of S(F) is enough to describe a face F
(together with the edge set E(F)). Furthermore, given
a subface F' C F, we can extend £ to a larger laminar
family £’ D £ which describes F”.

As the perfect matching polytope PM is defined as
the convex hull of the indicator vectors of all perfect
matchings, it is an integral polytope. In particular, it
follows that every face of PM is also integral.

C. Weight functions

For our derandomization of the Isolation Lemma we
will use families of weight functions which are possible
to generate obliviously, i.e., by only using the number of
vertices in G. We define them below.

Definition I1.3. Given t > 7, we define the family of
weight functions W(t) as follows. Number the edge set
E = {ey,...,e|g|} arbitrarily. Let wy : E — Z be given
by wi(ej) = (4n® + 1)7 mod k for j = 1,...|E| and k =
2,...,t. We define W(t) = {wy, : k=2,...,t}.

For brevity, we write W := W(n2°).

In our argument we will obtain a decreasing sequence
of faces. Each face arises from the previous by minimiz-
ing over a linear objective (given by a weight function).
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Definition I1.4. Let F be a face and w a weight func-
tion. The subface of F minimizing w will be called Flw]:

Flw] := argmin{{w, x) : x € F}.

Instead of minimizing over one weight function and
then over another, we can concatenate them in such
a way that minimizing over the concatenation yields
the same subface. In particular, we will argue that one
just needs to try all possible concatenations of O(log2 n)
weight functions from W in order to find one which
isolates a unique perfect matching in G (i.e., it produces
a single extreme point as the minimizing subface).

Definition II.5. For two weight functions w and w’,
where w E — Z and w' € W, we define their
concatenation w o w’ := n?tw + v, i.e.,

(wow')(e) : (€) +w'(e).

We also define W* to be the set of all concatenations of
k weight functions from W, i.e.,

:n21_w

wk .= {wi owsg 0...0owy : wy,wa, ..., w, € W}.
Fact I1.6. We have Flw][w'] = Flw o w'].
The proof can be found in the full version of the paper.

III. ALTERNATING CIRCUITS AND RESPECTING A FACE

In this section we introduce two notions which are vi-
tal for our approach. Before giving the formal definitions,
we give an informal motivation.

Our argument is centered around removing even cy-
cles. As discussed in Section I-B and Figure 2, the
meaning of this term in the non-bipartite case needs to
be more subtle than just “removing an edge of the cycle”.

In order to deal with a cycle, we find a weight function
w which assigns it a nonzero circulation. Formally, given
an even cycle C' with edges numbered in order, define
a vector (£1)c € {-1,0,1}F as having 1 on even-
numbered edges of C, —1 on odd-numbered edges of C,
and 0 elsewhere. Then, nonzero circulation means that
((£1)¢e,w) # 0. Now, in the bipartite case, if such a cycle
survived in the new face Flw], that is, C C E(F[w]),
then the vector (£1)¢ could be used to obtain a point
in the face F' with lower w-weight than the points in
F[w], a contradiction. This argument is possible because
of the simple structure of the bipartite perfect matching
polytope.

In the non-bipartite case, it is not enough that C' C
E(F[w]) in order to obtain such a point (and a contra-
diction). It is also required that, if the cycle C enters
a tight odd-set S on an even-numbered edge, it exits it
on an odd-numbered edge (and vice versa). This makes
intuitive sense: if C' were obtained from the symmetric
difference of two perfect matchings which both have
exactly one edge crossing S, then C' would have this



Figure 5: An example of an alternating circuit C' of
length 6 with indicator vector (+1)c
Yoiio(=1)'1e, = =1, +1e, — 1+ 1, (since
1., and 1., cancel each other). Also note
that <(:i:]l)c, 15(5)> = 0 for the tight set S

depicted in gray.

property. Formally, we require that {(+1)¢, 1ss)) = 0
for each S € S(F[w)). If C satisfies these two conditions,
i.e., that C C E(F[w]) and that ((£1)c, Lss)) = 0 for
every S € S(F[w]), then we say that C respects the face
F[w]. The notion of respecting a face exactly formalizes
what is required to obtain a contradictory point as above
(see the proof of Lemma III.3).

In other words, if we assign a nonzero circulation to a
cycle, then it will not respect the new face, and this is
what is now meant by removing a cycle.

To deal with the second, more technical difficulty dis-
cussed in Section I-B, we need to remove not only simple
cycles of even length, but also walks with repeated edges.
However, we would run into problems if we allowed all
such walks (up to a given length). Consider for example
a walk C of length 2; such a walk traverses an edge back
and forth. It is impossible to assign a nonzero circulation
to C, because its vector (+1)¢ is zero. We overcome this
technicality by defining alternating circuits to be those
even walks whose vector (£1)¢ is nonzero (see Figure 5
for an example). For generality, we also formulate the
definition of respect in terms of the vector (+1)¢.

Definition III.1. Let C = (eq,...,ex—1) be a nonempty
cyclic walk of even length k.

o We define the alternating indicator vector (£1)¢ of
C to be (1) = Y5} (~1)'1,,, where 1, € RP
1s the indicator vector having 1 on position e and 0
elsewhere.

We say that C is an alternating circuit if its al-
ternating indicator vector is nonzero. We also refer
to C as an alternating (simple) cycle if it is an
alternating circuit that visits every vertex at most
once.

When talking about a graph with node-weights, the
node-weight of an alternating circuit is the sum of all
node-weights of visited vertices (with multiplicities if
visited multiple times).

Definition II1.2. We say that a vector y € ZF respects
a face F if:
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e supp(y) C E(F), and

e for each S € S(F) we have <y, 15(S)> =0.
Furthermore, we say that an alternating circuit C' re-
spects a face F if its alternating indicator vector (£1)¢
respects F'.

Clearly, if F/ C F are faces and a vector respects F”,
then it also respects F.

Now we argue that we can remove an alternating
circuit by assigning it a nonzero circulation. The proof
of this lemma (which generalizes Lemma 3.2 of [22])
motivates Definition II1.2.

Lemma II1.3. Let y € ZF be a vector and F a face.
If w: E — R is such that {(y,w) # 0, then y does not
respect the face F' = Fw].

Proof: Suppose towards a contradiction that y re-
spects F’. Assume that (w,y) < 0 (otherwise use —y
in place of y). We pick z € F’ to be the average of all
extreme points of F’, so that the constraints of PM which
are tight for x are exactly those which are tight for F’.
Select € > 0 very small. Then (z + ey, w) < (x,w), which
will contradict the definition of F' = argmin{(w,z) :
x € F} once we show that x 4+ ey € F. We show that
x + ey € F' C F by verifying:

If e € E(F") (i.e., € is an edge with z, > 0), then
(z4+ey)e = Te +eye > 0if € is chosen small enough.
If e € E\ E(F) (ie., e is an edge with z, = 0),
then from y respecting F’ we get e ¢ supp(y) and
so (z + €y)e = 0.

If S ¢ S(F') is an odd set not tight for F’, ie.,
<Z’, ]15(3)> > 1, then <1‘ +z—:y,]15(5)> = <£L’, ]15(3)> +
€ <y, ]15(5)> > 1 if € is chosen small enough.

If S € S(F') is an odd set tight for F’ (this
includes all singleton sets), then from y respecting
F' we get (y, 1g(s)) = 0 and thus (z + ey, 15s)) =
(2, 15(5)) = 1.

|

The following lemma says that we can assign nonzero

circulation to many vectors at once using an oblivious

choice of weight function from W. It is a minor gener-

alization of Lemma 2.3 of [22] and the proof remains
similar.

Lemma II1.4. For any number s and for any set of s
vectors yi, ..., ys € ZE\{0} with the boundedness property
llyilli < 4n?, there exists w € W(n3s) with (y;,w) # 0
foreachi=1,...s.

We usually invoke Lemma III.4 with vectors y; being
the alternating indicator vectors of alternating circuits.
Then the quantities (y;, w) are the circulations of these
circuits.

Lemmas II1.3 and I11.4 together imply the following:



Corollary II1.5. Let F be a face. For any finite set
of vectors Y C ZE \ {0} with the boundedness property
lylli < 4n? for every y € Y, there exists w € W(n3|Y|)
such that each y € Y does not respect the face F' = Fw].

IV. CONTRACTIBLE SETS AND A-GOODNESS

We will make progress by ensuring that larger and
larger parts of the graph are “isolated” in our current
face F. By “parts of the graph” we mean sets S which
are tight for F'. As discussed in Section I-C, for such a set
S, the following isolation property is desirable: once the
(only) edge of a matching which lies on the boundary
of S is fixed, the entire matching inside S is uniquely
determined. This motivates the following definition:

Definition IV.1. Let F be a face and let S € S(F') be
a tight set for F'. We say that S is F-contractible if for
every e € §(S) there are no two perfect matchings in F
which both contain e and are different inside S.

Note that, in the above definition, there could be no
such perfect matching for certain edges e € §(S) (this
is the case if and only if e ¢ FE(F)). Intuitively, a
contractible set can be thought of as a single vertex with
respect to the structure of the current face of the perfect
matching polytope. The notion of contractibility enjoys
the following two natural monotonicity properties:

Fact IV.2. Let F' C F be two faces. If S is F-
contractible, then it is also F'-contractible.

Lemma IV.3. Let F be a face and S C T two sets tight
for F (i.e., S,T € S(F)). If T is F-contractible, then so
s S.

The proof can be found in the full version of the paper.
In our proof, we will be working with faces and laminar
families which are compatible in the following sense:

Definition IV.4. Let F be a face and L a laminar
family. If L C S(F), i.e., all sets S € L are tight for
F, then we say that (F, L) is a face-laminar pair.

Given a face-laminar pair (F, L), we will often work
with a multigraph obtained from G by contracting all
small sets, i.e., those with size being at most some
parameter A (which is a measure of our progress). This
multigraph will be called the contraction (see Figure 6
for an example).

In the contraction, we will also remove all boundaries
of larger sets (i.e., those with size larger than A). This
is done to simulate working inside each such large set
independently, because the contraction then decomposes
into a collection of disconnected components, one per
each large set. Because, in the contraction, each set in
L has either been contracted or has had its boundary
removed, our task is reduced to dealing with instances
having no laminar sets.
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Moreover, we only include those edges which are still
in the support of the current face F, i.e., the set E(F).

Definition IV.5. Given a face-laminar pair (F, L) and
a parameter X (with 1 < X < 2n), we define the
(F, L, X)-contraction of G as a node-weighted multigraph
as follows:

o the node set is the set of maximal sets of size
(cardinality) at most X in L,
each node has a node-weight equal to the size of the
corresponding set,
the edge set is obtained from E(F)\Ure . 7> 0(T)
by contracting each of these mazimal sets. That is,
an edge of G maps to an edge of the contraction if
it is in E(F), it is not inside any of the contracted
sets and it does mot cross any cut defined by a set
TeLl:|T| >\

In the (F, £, \)-contractions arising in our arguments,
we will always only contract sets S € £ which are F-
contractible (i.e., the vertices of a contraction will always
correspond to F-contractible sets). Then, a very useful
property is that alternating circuits in the contraction
can be lifted to alternating circuits in the entire graph
G in a canonical way.

Finally, we need the following extension of Defini-
tion III.2 for vectors defined on the contraction.

Definition IV.6. Denote the (F, L, \)-contraction of G
as H, and let z € ZPWH) be a vector on the edges of H.
We say that z respects a subface F' C F if !
e supp(z) C E(F"), and
o for each S € S(F') which is a union of sets corre-
sponding to vertices in V (H ),we have <z, 115(3)> =0.
As before, we say that an alternating circuit C in H
respects a subface F' if its alternating indicator vector
(£1)¢ € ZPWH) respects F.

Now we are able to define our measure of progress. On
one hand, we want to make larger and larger laminar sets
contractible. On the other hand, there could very well be
no laminar sets, so we also proceed as in the bipartite
case: remove longer and longer alternating circuits.

Definition IV.7. Let (F, L) be a face-laminar pair and
A a parameter (with 1 < X < 2n). We say that (F, L) is
A-good if L is a mazimal laminar subset of S(F') and:
(i) each S € L with |S| < X is F-contractible,
(i) in the (F, L, \)-contraction of G, there is no alter-
nating circuit of node-weight at most A.

We begin with A = 1, which is trivial, and then show
that by concatenating enough weight functions we can

n the following conditions we abuse notation and think of z
as a vector in Z¥ obtained by identifying each edge of H with its
preimage in G and letting those edges of G without a preimage in
H have value 0.



& J

(a) A graph G and a laminar family £. We only
draw the edges in E(F'). We also do not draw
ellipses for the singleton sets in £. The dark-
gray sets are F-contractible.

. /

(b) The (F,L,4)-contraction of G. Its vertices
are labeled by their node-weights.

Figure 6: An example of the (F, L, \)-contraction of G.

obtain face-laminar families which are 2-good, 4-good,
8-good, and so on. We are done once we have a A-
good family with A > n. The components of this proof
strategy are given in the following three claims. The first
step is clear:

Fact IV.8. Let Ly be a mazimal laminar subset of
S(PM). Then the face-laminar pair (PM, Lo) is 1-good.

We then proceed iteratively in log, n rounds using the
following theorem. Its proof, which constitutes the bulk
of our argument, can be found in the full version of the
paper.

Theorem IV.9. Let (F,L) be a A-good face-laminar
pair. Then there erists a weight function w € YW'g2n+1
and a laminar family L' 2 L such that (Flw],L') is a
2X-good face-laminar pair.

We are done once A exceeds n:

Lemma IV.10. Suppose (F, L) is A-good for some \ >
n. Then |F| = 1.

The proof can be found in the full version of the paper.
Let us see how Fact IV.8, Theorem IV.9,
and Lemma IV.10 together give our desired result:

Theorem IV.11. There ezists an isolating weight func-
tion w € Wleganthlogan ¢ one with | PM[w]| = 1.

Proof: We iteratively construct a sequence of face-
laminar pairs (F;, £;) for i« = 0,1,...,logyn such that
(F;, L;) is 2%-good and F; = F;_1[w;] for some weight
function w; € W2+l We begin by setting Fy = PM
and Ly to be a maximal laminar subset of S(PM). By
Fact IV.8, (Fy, Lo) is 1-good. Then for i = 1, ...,log, n we
use Theorem IV.9 to obtain the wanted weight function
w; along with a laminar family £; 2 £; ;. Finally,
we have that (Flog, n, Liog, n) iS 2log2 "_g00d, so that by
Lemma IV.10, |Fiog, n| = 1.

It remains to argue that Flog,, = PM[w] for some
w e Wlogzntllogan  To do this, we proceed as in
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Section II-C: define the concatenation w’' e w”
n210og2 n+ 1)y Ly’ for two weight functions w’ and w”,
where w” € W!'g27+1 By the same reasoning as for
Fact I1.6 we get that Fiog, n = PM[w1][ws]...[wiog, n] =
PM[w; ewze...0weg, n]. We put w = wyewze...0wigg, p.
|
Theorem IV.11 implies Theorem 1.2 because we
have |W(log2 n+1) log, n‘ |W|(log2 n+1)log, n <
n20(ogz nt1)logz n the values of any w € W08z n+1)logy n
are bounded by n2'(eg2ntllogn anq the functions
w € W can be generated obliviously using only the
number of vertices n.
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