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Abstract—We consider the problem of efficiently lear-
ning mixtures of a large number of spherical Gaussians,
when the components of the mixture are well separated. In
the most basic form of this problem, we are given samples
from a uniform mixture of k standard spherical Gaussians
with means μ1, . . . , μk ∈ R

d, and the goal is to estimate
the means up to accuracy δ using poly(k, d, 1/δ) samples.

In this work, we study the following question: what
is the minimum separation needed between the means
for solving this task? The best known algorithm due to
Vempala and Wang [JCSS 2004] requires a separation
of roughly min{k, d}1/4. On the other hand, Moitra and
Valiant [FOCS 2010] showed that with separation o(1),
exponentially many samples are required. We address the
significant gap between these two bounds, by showing the
following results.

• We show that with separation o(
√
log k), super-

polynomially many samples are required. In fact, this
holds even when the k means of the Gaussians are
picked at random in d = O(log k) dimensions.

• We show that with separation Ω(
√
log k),

poly(k, d, 1/δ) samples suffice. Notice that the
bound on the separation is independent of δ. This
result is based on a new and efficient “accuracy
boosting” algorithm that takes as input coarse
estimates of the true means and in time (and
samples) poly(k, d, 1/δ) outputs estimates of
the means up to arbitrarily good accuracy δ
assuming the separation between the means is
Ω(min{√log k,

√
d}) (independently of δ). The idea

of the algorithm is to iteratively solve a “diagonally
dominant” system of non-linear equations.

We also (1) present a computationally efficient algorithm in
d = O(1) dimensions with only Ω(

√
d) separation, and (2)

extend our results to the case that components might have
different weights and variances. These results together
essentially characterize the optimal order of separation
between components that is needed to learn a mixture of
k spherical Gaussians with polynomial samples.

Keywords-mixtures of Gaussians; unsupervised lear-
ning; clustering; parameter estimation; sample complex-
ity; iterative algorithms

I. INTRODUCTION

Gaussian mixture models are one of the most widely

used statistical models for clustering. In this model, we

are given random samples, where each sample point x ∈
R

d is drawn independently from one of k Gaussian com-

ponents according to mixing weights w1, w2, . . . , wk,

where each Gaussian component j ∈ [k] has a mean

μj ∈ R
d and a covariance Σj ∈ R

d×d. We focus on an

important special case of the problem where each of the

components is a spherical Gaussian, i.e., the covariance

matrix of each component is a multiple of the identity.

If f represents the p.d.f. of the Gaussian mixture G, and

gj represents the p.d.f. of the jth Gaussian component,

gj =
1

σd
j

exp
(−π‖x− μj‖22/σ2

j

)
, f(x) =

k∑
j=1

wjgj(x).

The goal is to estimate the parameters {(wj , μj , σj) :
j ∈ [k]} up to required accuracy δ > 0 in time and

number of samples that is polynomial in k, d, 1/δ.

Learning mixtures of Gaussians has a long and rich

history, starting with the work of Pearson [22]. (See

Section I-B for an overview of prior work.) Most of

the work on this problem, especially in the early years

but also recently, is under the assumption that there

is some minimum separation between the means of

the components in the mixture. Starting with work by

Dasgupta [11], and continuing with a long line of work

(including [3, 27, 1, 19, 23, 12, 10, 20, 5, 6, 28, 13]),

efficient algorithms were found under mild separation

assumptions. Considering for simplicity the case of

uniform mixtures (i.e., all weights are 1/k) of standard

Gaussians (i.e., spherical with σ = 1), the best known

result due to Vempala and Wang [27] provides an effi-

cient algorithm (both in terms of samples and running

time) under separation of at least min{k, d}1/4 (up to

polylog factors) between any two means.

A big open question in the area is whether efficient

algorithms exist under weaker separation assumptions.

It is known that when the separation is o(1), a super-

polynomial number of samples is required (e.g., [21,

2, 16]), but the gap between this lower bound and the

above upper bound of roughly min{k, d}1/4 is quite
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wide. Can it be that efficient algorithms exist under only

Ω(1) separation? In fact, prior to this work, this was

open even in the case of d = 1.

Question I.1. What is the minimum order of sepa-

ration that is needed to learn the parameters of a

mixture of k spherical Gaussians up to accuracy δ using

poly(d, k, 1/δ) samples?

A. Our Results
By improving both the lower bounds and the up-

per bounds mentioned above, we characterize (up to

constants) the minimum separation needed to learn the

mixture from polynomially many samples. Our first

result shows super-polynomial lower bounds when the

separation is of the order o(
√
log k). In what follows,

Δparam(G, G̃) represents the “distance” between the

parameters of the two mixtures of Gaussians G, G̃ (see

Definition II.2 for the precise definition).

Informal Theorem I.2 (Lower Bounds). For any
γ(k) = o(

√
log k), there are two uniform mixtures of

standard spherical Gaussians G, G̃ in d = O(log k)
dimensions with means {μ1, . . . , μk}, {μ̃1, μ̃2, . . . , μ̃k}
respectively, that are well separated

∀i �= j ∈ [k] : ‖μi−μj‖2 ≥ γ(k), and ‖μ̃i−μ̃j‖2 ≥ γ(k),

and whose parameter distance is large
Δparam ({μ1, . . . , μk}, {μ̃1, . . . , μ̃k}) = Ω(1), but have
very small statistical distance ‖G − G̃‖TV ≤ k−ω(1).

The above statement implies that we need at least

kω(1) many samples to distinguish between G, G̃, and

identify G. See Theorem III.1 for a formal statement

of the result. In fact, these sample complexity lower

bounds hold even when the means of the Gaussians are

picked randomly in a ball of radius
√
d in d = o(log k)

dimensions. This rules out obtaining smoothed analysis

guarantees for small dimensions (as opposed to [8, 2]

which give polytime algorithms for smoothed mixtures

of Gaussians in kΩ(1) dimensions).
Our next result shows that the separation of

Ω(
√
log k) is tight – this separation suffices to learn

the parameters of the mixture with polynomial samples.

We state the theorem for the special case of uniform

mixtures of spherical Gaussians. (See Theorem V.1 for

the formal statement.)

Informal Theorem I.3 (Tight Upper Bound in terms

of k). There exists a universal constant c > 0, such
that given samples from a uniform mixture of standard
spherical Gaussians in R

d with well-separated means,
i.e.,

∀i, j ∈ [k], i �= j : ‖μi − μj‖2 ≥ c
√
log k (1)

there is an algorithm that for any δ > 0
uses only poly(k, d, 1/δ) samples and with
high probability finds {μ̃1, μ̃2, . . . , μ̃k} satisfying
Δparam ({μ1, . . . , μk}, {μ̃1, . . . , μ̃k}) ≤ δ.

While the above algorithm uses only poly(k, d, 1/δ)
samples, it is computationally inefficient. Our next result

shows that in constant dimensions, one can obtain a

computationally efficient algorithm. In fact, in such low

dimension a separation of order Ω(1) suffices.

Informal Theorem I.4 (Efficient algorithm in low

dimensions). There exists a universal constant c > 0,
such that given samples from a uniform mixture of
standard spherical Gaussians in R

d with well-separated
means, i.e.,

∀i, j ∈ [k], i �= j : ‖μi − μj‖2 ≥ c
√
d (2)

there is an algorithm that for any δ > 0
uses only polyd(k, 1/δ) time (and samples) and
with high probability finds {μ̃1, μ̃2, . . . , μ̃k} satisfying
Δparam ({μ1, . . . , μk}, {μ̃1, . . . , μ̃k}) ≤ δ.

See Theorem V.3 for a formal statement. An im-

portant feature of the above two algorithmic results

is that the separation is independent of the accuracy

δ that we desire in parameter estimation (δ can be

arbitrarily small compared to k and d). These results

together essentially give a tight characterization (up to

constants) for the amount of separation needed to learn

with poly(k, d, 1/δ) samples.
Iterative Algorithm.: The core technical portion

of Theorem I.3 and Theorem I.4 is a new iterative

algorithm, which is the main algorithmic contribution

of the paper. This algorithm takes coarse estimates of

the means, and iteratively refines them to get arbitrarily

good accuracy δ. We now present an informal statement

of the guarantees of the iterative algorithm.

Informal Theorem I.5 (Iterative Algorithm Guaran-

tees). There exists a universal constant c > 0, such
that given samples from a uniform mixture of standard
spherical Gaussians in R

d with well-separated means,
i.e.

∀i, j ∈ [k], i �= j : ‖μi − μj‖2 ≥ cmin{
√
log k,

√
d}
(3)

and suppose we are given initializers μ̃1, . . . , μ̃k for the
means μ1, . . . , μk satisfying

∀j ∈ [k],
1

σj
‖μj − μ̃j‖2 ≤ 1/poly

(
min{d, k}).

There exists an iterative algorithm that for any
δ > 0 that runs in poly(k, d, 1/δ) time (and sam-
ples), and after T = O(log log(k/δ)) iterations,
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finds with high probability μ
(T )
1 , . . . , μ

(T )
k such that

Δparam({μ1, . . . , μk}, {μ(T )
1 , . . . , μ

(T )
k }) ≤ δ.

The above theorem also holds when the weights and

variances are unequal. See Theorem IV.1 for a formal

statement. Note that in the above result, the desired

accuracy δ can be arbitrarily small compared to k, and

the separation required does not depend on δ. To prove

the polynomial identifiability results (Theorems I.3

and I.4), we first find coarse estimates of the means

that serve as initializers to this iterative algorithm, which

then recovers the means up to arbitrarily fine accuracy

independent of the separation.

The algorithm works by solving a system of non-

linear equations that is obtained by estimating simple

statistics (e.g., means) of the distribution restricted to

certain carefully chosen regions. We prove that the

system of non-linear equations satisfies a notion of

“diagonal dominance” that allows us to leverage itera-

tive algorithms like Newton’s method and achieve rapid

(quadratic) convergence.

The techniques developed here can find such initiali-

zers using only poly(k, d) many samples, but use time

that is exponential in k. This leads to the following

natural open question:

Open Question I.6. Given a mixture of spherical

Gaussians with equal weights and variances, and with

separation

∀i �= j ∈ [k], ‖μi − μj‖2 ≥ c
√
log k

for some sufficiently large absolute constant c > 0, is

there an algorithm that recovers the parameters up to δ
accuracy in time poly(k, d, 1/δ)?

Our iterative algorithm shows that to resolve this open

question affirmatively, it is enough to find initializers

that are reasonably close to the true parameters. In fact,

a simple amplification argument shows that initializers

that are c
√
log k/8 close to the true means will suffice

for this approach.

Our iterative algorithm is reminiscent of some com-

monly used iterative heuristics, such as Lloyd’s Algo-

rithm and especially Expectation Maximization (EM).

While these iterative methods are the practitioners’

method-of-choice for learning probabilistic models, they

have been notoriously hard to analyze. We believe that

the techniques developed here may also be useful to

prove guarantees for these heuristics.

B. Prior Work and Comparison of Results

Gaussian mixture models are among the most widely

used probabilistic models in statistical inference [22,

24, 25]. Algorithmic results fall into two broad classes

— separation-based results, and moment-based methods

that do not assume explicit geometric separation.

Separation-based results.: The body of work that

is most relevant to this paper assumes that there is

some minimum separation between the means of the

components in the mixture. The first polynomial time

algorithmic guarantees for mixtures of Gaussians were

given by Dasgupta [11], who showed how to learn

mixtures of spherical Gaussians when the separation is

of the order of d1/2. This was later improved by a series

of works [3, 27, 1, 19, 12, 10, 20] for both spherical

Gaussians and general Gaussians. The work of Vempala

and Wang [27] uses PCA along with distance-based

clustering to learn mixtures of spherical Gaussians when

the separation ‖μi − μj‖2 is at least

(min{k, d}1/4 log1/4(dk/δ) + log1/2(dk/δ))(σi + σj).

For non-spherical Gaussians, the result of [10] assumes

a similar separation condition, but involving just the

variance along the direction of the line joining the

respective means, as opposed to (‖Σi‖+‖Σj‖). We also

note that all these clustering-based algorithms required

a separation that either implicitly or explicitly depend

on the estimation accuracy δ.1

Iterative methods like Expectation Maximization

(EM) and Lloyd’s algorithm (sometimes called the k-

means heuristic) are commonly used in practice to

learn mixtures of spherical Gaussians. Dasgupta and

Schulman [12] proved that a variant of the EM algo-

rithm learns mixtures of Gaussians with separation of

the order of d1/4polylog(dk). Kumar and Kannan [20]

showed that spectral clustering (PCA followed by k-

means) recovers the clusters under deterministic condi-

tions about the data, that specializes to a separation of

order
√
k for mixtures of spherical Gaussians [5]. Very

recently, the EM algorithm was shown to succeed for

mixtures of k = 2 spherical Gaussians with Ω(σ) sepa-

ration [6, 28, 13] (we note that in this setting with k =
O(1), polynomial time guarantees are also known using

other algorithms like the method-of-moments [18], as

we will see in the next paragraph).

Moment-based methods: In a series of influential

results, algorithms based on the method-of-moments

were developed by [18, 21, 7] for efficiently learning

mixtures of k = O(1) Gaussians under arbitrarily

small separation. To perform parameter estimation up

to accuracy δ, the running time of the algorithms is

poly(d, 1/wmin, 1/δ)
O(k2) (this holds for mixtures of

1Such a dependency on δ seems necessary for such clustering-based
algorithm that clusters every point accurately with high probability.
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general Gaussians). This exponential dependence on k
is necessary in general, due to statistical lower bound

results [21].

Recent work [17, 9, 15, 8, 2, 14] use uniqueness

of tensor decompositions (of order 3 and above) to

implement the method of moments and give polynomial

time algorithms assuming the means are sufficiently

high dimensional, and do not lie in certain degenerate

configurations. Hsu and Kakade [17] gave a polynomial

time algorithm based on tensor decompositions to learn

a mixture of spherical Gaussians, when the means are

linearly independent. This was extended by [15, 8, 2]

to give smoothed analysis guarantees to learn “most”

mixtures of spherical Gaussians when the means are in

d = kΩ(1) dimensions. These algorithms do not assume

any strict geometric separation conditions and learn the

parameters in poly(k, d, 1/δ) time (and samples), when

these non-degeneracy assumptions hold. However, there

are many settings where the Gaussian mixture consists

of many clusters in a low dimensional space, or have

their means lying in a low dimensional subspace or

manifold, where these tensor decomposition guaran-

tees do not apply. Besides these algorithms based on

tensor decompositions seem less robust to noise than

clustering-based approaches and iterative algorithms.

Lower Bounds: Moitra and Valiant [21] showed

that exp(k) samples are needed to learn the para-

meters of a mixture of k Gaussians [21]. In fact,

the lower bound instance of [21] is one dimensional,

with separation of order 1/
√
k. Anderson et al. [2]

proved a lower bound on sample complexity that is

reminiscent of our Theorem I.2. Specifically, they obtain

a super-polynomial lower bound assuming separation

O(σ/poly log(k)) for d = O(log k/ log log k). This is

in contrast to our lower bound which allows separation

greater than σ, or o(σ
√
log k) to be precise.

C. Overview of Techniques

Iterative Algorithm: Our iterative algorithm will

function in both the settings of interest: the high-

dimensional setting when we have Ω(
√
log k) separa-

tion, and the low-dimensional setting when d < log k
and we have Ω(

√
d) separation. For the purpose of

this description, let us assume δ is arbitrarily small

compared to (kd)−ω(1) (for instance, think of k, d as

small). In our proposed algorithm, we will consider

distributions obtained by restricting the support to just

certain regions around the initializers z1 = μ̃1, . . . , zk =
μ̃k that are somewhat close to the means μ1, μ2, . . . , μk

respectively. Roughly speaking, we first partition the

space into a Voronoi partition given by {zj : j ∈ [k]},
and then for each component j ∈ [k] in G, let Sj denote

the region containing zj (see Definition IV.2 for details).

For each j ∈ [k] we consider only the samples in the

set Sj and be uj ∈ R
d be the (sample) mean of these

points in Sj , after subtracting zj .

The regions are chosen in such a way that Sj has

a large fraction of the probability mass from the jth
component, and the total probability mass from the

other components is relatively small (it will be at

most 1/poly(k) with Ω(
√
log k) separation, and Od(1)

with Ω(1) separation in constant dimensions). However,

since δ can be arbitrarily small functions of k, d, there

can still be a relatively large contribution from the other

components. For instance, in the low-dimensional case

with O(1) separation, there can be Ω(1) mass from a

single neighboring component! Hence, uj does not give

a δ-close estimate for μj (even up to scaling), unless

the separation is at least of order
√
log(1/δ) – this is

too large when δ = k−ω(1) with
√
log k separation, or

δ = od(1) with Ω(1) separation in constant dimensions.

Instead we will use these statistics to set up a system

of non-linear equations where the unknowns are the

true parameters and solve for them using the Newton

method. We will use the initializers zj = μ
(0)
j , to define

the statistics that give our equations. Hence the unknown

parameters {μi : i ∈ [k]} satisfy the following equation

for each j ∈ [k]:

k∑
i=1

wi

∫
y∈Sj

(y−zj)·σ−d
j exp

(
−π‖y − μi‖22

σ2
i

)
dy = uj .

(4)

Note that in the above equation, the only unknowns

or variables are the true means {μi : i ∈ [k]}. After

scaling the equations, and a suitable change of variables

xj = μj/σj to make the system “dimensionless” we get

a non-linear system of equations denoted by F (x) = b.
For the above system, x∗i = μi/σi represents a solution

to the system given by the parameters of G. The Newton

algorithm uses the iterative update

x(t+1) = x(t) + (F ′(x(t)))
−1

(b− F (x(t))).

For the Newton method we need access to the esti-

mates for b, and the derivative matrix F ′ (the Jacobian)

evaluated at x(t). The derivative of the j equation w.r.t.

xi is ∇xiFj(x) which equals

wi

wjσjσi

∫
y∈Sj

(y − zj)(y − σixi)
T gσixi,σi

(y) dy ,

where gσixi,σi
(y) represents the p.d.f. at a point y due to

a spherical Gaussian with mean at σixi and covariance

σ2
i /(2π) in each direction. Unlike usual applications

of the Newton method, we do not have closed form
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expressions for F ′ (the Jacobian), due to our definition

of the set Sj . However, we will instead be able to

estimate the Jacobian at x(t) by calculating the above

expression (RHS) by considering a Gaussian with mean

σix
(t)
i and variance σ2

i /(2π). The Newton method can

be shown to be robust to errors in b, F, F ′.
We want to learn each of the k means up to good

accuracy; hence we will measure the error and con-

vergence in ‖·‖∞ norm. This is important in low-

dimensions since measuring convergence in �2 norm

will introduce extra
√
k factors, that are prohibitive

for us since the means are separated only by Θd(1).
The convergence of the Newton’s method depends on

upper bounding the operator norm of the inverse of

the Jacobian ‖(F ′)−1‖ and the second-derivative ‖F ′′‖,
with the initializer being chosen δ-close to the true

parameters so that δ‖(F ′)−1‖‖F ′′‖ < 1/2.

The main technical effort for proving convergence

is in showing that the inverse (F ′)−1 evaluated at

any point in the neighborhood around x∗ is well-

conditioned. We will show the convergence of the

Newton method by showing “diagonal dominance”

properties of the dk × dk matrix F ′. This uses the

separation between the means of the components, and

the properties of the region Sj that we have defined.

For Ω(
√
log k) separation, this uses standard facts about

Gaussian concentration to argue that each of the (k−1)
off-diagonal blocks (in the jth row of F ′) is at most

1/(2k) factor of the corresponding diagonal term. With

Ω(1) separation in d = O(1) dimensions, we can

not hope to get such a uniform bound on all the off-

diagonal blocks (a single off-diagonal block can itself

be Ωd(1) times the corresponding diagonal entry). We

will instead use careful packing arguments to show

that the required diagonal dominance condition. Hence,

the initializers are used to both define the regions Sj ,

and as initialization for the Newton method. Using

this diagonal dominance in conjunction with initializers

gives rapid convergence to the true parameters.

Lower bound for O(
√
log k) separation: The sam-

ple complexity lower bound proceeds by showing a

more general statement: in any large enough collection

of uniform mixtures, for all but a small fraction of

the mixtures, there is at least one other mixture in

the collection that is close in statistical distance (see

Theorem III.2). For our lower bounds, we will just

produce a large collection of uniform mixtures of well-

separated spherical Gaussians in d = c log k dimensi-

ons, whose pairwise parameter distances are reasonably

large. In fact, we can even pick the means of these

mixtures randomly in a ball of radius
√
d in d = c log k

dimensions; w.h.p. most of these mixtures will need at

least kω(1) samples to identify.

To show the above pigeonhole style statement about

large collections of mixtures, we will associate with a

uniform mixture having means μ1, . . . , μk, the follo-

wing quantities that we call “mean moments,” and we

will use them as a proxy for the actual moments of the

distribution:

(M1, . . . ,MR) where ∀1 ≤ r ≤ R :Mr =
1

k

k∑
j=1

μ⊗r
j .

The mean moments just correspond to the usual mo-

ments of a mixture of delta functions centered at

μ1, . . . , μk. Closeness in the first R = O(1/ε) mean

moments (measured in injective tensor norm) implies

that the two corresponding distributions are ε close in

statistical distance (see Lemma III.7 and Lemma III.8).

The key step in the proof uses a careful packing argu-

ment to show that for most mixtures in a large enough

collection, there is a different mixture in the collection

that approximately matches in the first R mean moments

(see Lemma III.6).

II. PRELIMINARIES

Consider a mixture of k spherical Gaussians G in R
d

that has parameters {(wj , μj , σj) : j ∈ [k]}. The jth
component has mean μj and covariance σ2

j /2π · Id×d.

For μ ∈ R
d, σ ∈ R+, let gμ,σ : Rd → R+ represent the

p.d.f. of a spherical Gaussian centered at μ and with

covariance σ2/(2π)·Id×d. We will use f to represent the

p.d.f. of the mixture of Gaussians G, and gj to represent

the p.d.f. of the jth Gaussian component.

Definition II.1 (Standard mixtures of Gaussians).
A standard mixture of k Gaussians with means

μ1, . . . , μk ∈ R
d is a mixture of k spherical Gaussians

{( 1k , μj , 1) : j ∈ [k]}.
A standard mixture is just a uniform mixture of

spherical Gaussians with all covariances σ2 = 1/(2π).
Before we proceed, we define the following notion of

parameter “distance” between mixtures of Gaussians:

Definition II.2 (Parameter distance). Given two mixtu-

res of Gaussians in R
d, G = {(wj , μj , σj) : j ∈ [k]}

and G′ = {(w′j , μ′j , σ′j) : j ∈ [k]}, define

Δparam (G,G′) = min
π∈Permk

k∑
j=1

|wj − wπ(j)|
min{wj , wπ(j)}

+
k∑

j=1

‖μj − μ′π(j)‖2
min{σj , σ′π(j)}

+
k∑

j=1

|σj − σ′π(j)|
min{σj , σ′π(j)}

.
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For standard mixtures, the definition

simplifies to Δparam ((μ1, . . . , μk), (μ
′
1, . . . , μ

′
k))

= minπ∈Permk

∑k
j=1‖μj − μ′π(j)‖2.

Note that this definition is invariant to scaling the

variances (for convenience). We note that parameter

distance is not a metric, but it is just a convenient way

of measure closeness of parameters between two distri-

butions. The distance between two individual Gaussian

components can also be measured in terms of the total

variation distance between the components [21].

Definition II.3 (ρ-bounded mixtures). For ρ ≥ 1, a

mixture of spherical Gaussians G = {(wj , μj , σj)}kj=1

in R
d is called ρ-bounded if for each j ∈ [k], ‖μj‖2 ≤ ρ

and 1
ρ ≤ σj ≤ ρ. In particular, a standard mixture is

ρ-bounded if for each j ∈ [k], ‖μj‖2 ≤ ρ.

Also, for a given mixture of k spherical gaus-

sians G = {(wj , μj , σj) : j ∈ [k]}, we will

denote wmin = minj∈[k] wj , σmax = maxj∈[k] σj
and σmin = minj∈[k] σj . We will denote indi-

vidual aspect ratios for variances and weights gi-

ven by ρσ = maxi∈[k] σi/mini∈[k] σi, and ρw =
maxi∈[k] wi/mini∈[k] wi.

In the above notation the bound ρ can be thought

of as a sufficiently large polynomial in k, since we

are aiming for bounds that are polynomial in k. Since

we can always scale the points by an arbitrary factor

without affecting the performance of the algorithm, we

can think of ρ as the (multiplicative) range of values

taken by the parameters {μi, σi : i ∈ [k]}.
Finally, we list some of the conventions used in this

paper. We will denote by N(0, σ2) a normal random

variable with mean 0 and variance σ2. For x ∈ R

generated according to N(0, σ2), let Φ̃0,σ(t) denote the

probability that x > t, and let Φ̃−1
0,σ(y) denote the

quantile t at which Φ̃0,σ(t) ≤ y. For any function

f : R
d → R, f ′ will denote the first derivative (or

gradient) of the function, and f ′′ will denote the second

derivative (or Hessian). We define ‖f‖1,S =
∫
S
|f(x)|dx

to be the L1 norm of f restricted to the set S. Typically,

we will use indices i, j to represent one of the k
components of the mixture, and we will use r (and s)
for coordinates. For a vector x ∈ R

d, we will use x(r)
denote the rth coordinate. Finally, we will use w.h.p. in

statements about the success of algorithms to represent

probability at least 1− γ where γ = (d+ k)−Ω(1).

Norms: For any p ≥ 1, given a matrix M ∈ R
d×d,

we will denote the matrix operator norms by:

‖M‖p→p = max
x∈Rd:‖x‖p=1

‖Mx‖p.

A. Notation and Preliminaries about Newton’s method

Consider a system of m non-linear equations in

variables u1, u2, . . . , um:

∀j ∈ [m], fj(u1, . . . , um) = bj .

Let F ′ = J(u) ∈ R
m×m be the Jacobian of the

system given by the non-linear functional f : Rm →
R

m, where the (j, i)th entry of J is the partial derivative
∂fj(u)
∂ui

is evaluated at u. Newton’s method starts with

an initial point u(0), and updates the solution using the

iteration:

u(t+1) = u(t) +
(
J(u(t))

)−1 (
bj − f(u(t))

)
.

Standard results shows quadratic convergence of the

Newton method for general normed spaces [4]. We

restrict our attention in the restricted setting where both

the range and domain of f is R
m, equipped with an

appropriate norm ‖·‖ to measure convergence.

Theorem II.4 (Theorem 5.4.1 in [4]). Assume u∗ ∈
R

m is a solution to the equation f(y) = b where f :
R

m → R
m and the inverse Jacobian J−1 exists in a

neighborhood N = {u : ‖u− u∗‖ ≤ ‖u(0) − u∗‖}, and
F ′ : Rm → R

m×m is locally L-Lipschitz continuous
in the neighborhood N i.e., ∀u, v ∈ N, ‖F ′(u) −
F ′(v)‖ ≤ L‖u − v‖. Then we have ‖u(t+1) − u∗‖ ≤
L · ‖J(u(t))−1‖ · ‖u(t) − u∗‖2.

In particular, for Newton’s method to work, ‖u0 −
u∗‖ ≤ (Lmaxu∈N ‖J(u)−1‖)−1 will guarantee con-

vergence. A statement of the robust convergence of

Newton’s method in the presence of estimates is given

in the full version of the paper.

We want to learn each of the k sets of parameters

up to good accuracy; hence we will measure the error

in �∞ norm. To upper bound ‖J−1‖∞→∞, we will use

diagonal dominance properties of the matrix J . Note

that ‖A‖∞→∞ is just the maximum �1 norm of the

rows of A. The following lemma bound ‖A−1‖∞→∞
for a diagonally dominant matrix A.

Lemma II.5 ([26]). Consider any square matrix A of
size n× n satisfying

∀i ∈ [n] aii −
∑
j 	=i

|aij | ≥ α.

Then, ‖A−1‖∞→∞ ≤ 1/α.

Finally, we will use some standard facts about high-

dimensionsal Gaussians. Using concentration bounds

for the χ2 random variables, we have the following

bounds for the lengths of vectors picked according to a

standard Gaussian in d dimensions.
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Lemma II.6. For a standard Gaussian in d dimensions
(mean 0 and variance 1/(2π) in each direction), and
any t > 0

P
x∼γd

[
‖x‖2 ≥ 1

2π
(d+ 2

√
dt+ 2t)

]
≤ e−t.

P
x∼γd

[
‖x‖2 ≤ 1

2π
(d− 2

√
dt)

]
≤ e−t.

III. LOWER BOUNDS WITH O(
√
log k) SEPARATION

Here we show a sample complexity lower bound

for learning standard mixtures of k spherical Gaussians

even when the separation is of the order of
√
log k.

In fact, this lower bound will also hold for a random
mixture of Gaussians in d ≤ c · log k dimensions (for

sufficiently small constant c) with high probability.2

Theorem III.1. For any large enough C there exist
c, c2 > 0, such that the following holds for all k ≥ C8.
Let D be the distribution over standard mixtures of k
spherical Gaussians obtained by picking each of the
k means independently and uniformly from a ball of
radius

√
d around the origin in d = c log k dimensions.

Let {μ1, μ2, . . . , μk} be a mixture chosen according to
D. Then with probability at least 1 − 2/k there exists
another standard mixture of k spherical Gaussians with
means {μ̃1, μ̃2, . . . , μ̃k} such that both mixtures are

√
d

bounded and well separated, i.e., ∀i, j ∈ [k], i �= j:

‖μi − μj‖ ≥ c2
√
log k and ‖μ̃i − μ̃j‖ ≥ c2

√
log k,

and their p.d.f.s satisfy

‖f − f̃‖1 ≤ k−C (5)

even though their parameter distance is at least
c2
√
log k. Moreover, we can take c = 1/(4 logC) and

c2 = C−24.

Remark. In Theorem III.1, there is a trade-off between

getting a smaller statistical distance ε = k−C , and a

larger separation between the means in the Gaussian

mixture. When C = ω(1), with c1, c = o(1) we see that

‖f − f̃‖1 ≤ k−ω(1) when the separation is o(
√
log k)σ.

On the other hand, we can also set C = kε
′

(for some

small constant ε′ > 0) to get lower bounds for mixtures

of spherical Gaussians in d = 1 dimension with ‖f −
f̃‖1 = exp(−kΩ(1)) and separation 1/kO(1) between

the means.

2In particular, this rules out polynomial-time smoothed analysis
guarantees of the kind shown for d = kΩ(1) in [8, 2].

A. Proof of Theorem III.1

The key to the proof of Theorem III.1 is the following

pigeonhole statement, which can be viewed as a bound

on the covering number (or equivalently, the metric

entropy) of the set of Gaussian mixtures.

Theorem III.2. Suppose we are given a collection
F of standard mixtures of spherical Gaussians in d
dimensions that are ρ =

√
d bounded, i.e., ‖μj‖ ≤

√
d

for all j ∈ [k]. There are universal constants c0, c1 ≥ 1,
such that for any η > 0, ε ≤ exp(−c1d), if

|F| > 1

η
exp

(
c0

( log(1/ε)
d

)d

· log(1/ε) log(3d)
)
,

(6)

then for at least (1 − η) fraction of the mixtures
{μ1, μ2, . . . , μk} from F , there is another mixture
{μ̃1, μ̃2, . . . , μ̃k} from F with p.d.f. f̃ such that ‖f −
f̃‖1 ≤ ε. Moreover, c0 = 8πe and c1 = 36 suffice for
our purposes.

Remark III.3. Notice that k plays no role in the state-

ment above. In fact, the proof also holds for mixtures

with arbitrary number of components and arbitrary

weights.

We start with a simple claim (proof in full version).

Claim III.4. Let x1, . . . , xN be chosen independently
and uniformly from the ball of radius r in R

d. Then for
any 0 < γ < 1, with probability at least 1−N2γd, we
have that for all i �= j, ‖xi − xj‖ ≥ γr.

Proof of Theorem III.1: Set γ := 2−6/c, and

consider the following probabilistic procedure. We first

let X be a set of (1/γ)d/3 points chosen independently

and uniformly from the ball of radius
√
d. We then

output a mixture chosen uniformly from the collection

F , defined as the collection of all standard mixtures

of spherical Gaussians obtained by selecting k distinct

means from X . Observe that the output of this procedure

is distributed according to D. Our goal is therefore to

prove that with probability at least 1− 2/k, the output

of the procedure satisfies the property in the theorem.

First, by Claim III.4, with probability at least 1 −
γd/3 ≥ 1− 1/k, any two points in X are at distance at

least γ
√
d. It follows that in this case, the means in any

mixture in F are at least γ
√
d apart, and also that any

two distinct mixtures in F have a parameter distance of

at least γ
√
d since they must differ in at least one of

the means. Note that γ = C−24 for our choice of c, γ.

To complete the proof, we notice that by our choice
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of parameters, and denoting ε = k−C ,

|F| =
(|X |
k

)
≥

( 1

γ

)dk/3

· k−k = kk

≥ k · exp
(
c0

( log(1/ε)
d

)d

· log(1/ε) log(3d)
)
.

The last inequality follows since ε = k−C , c = 1
4 logC

and C is large enough with C ≥ c0, so that(
log(1/ε)

d

)d

= kc log(C/c) <
√
k, and

c0 log(1/ε) log(3d) ≤ c0C log k log(3c log k) <
√
k.

Hence applying Theorem III.2 to F , for at least 1−1/k
fraction of the mixtures in F , there is another mixture in

F that is ε close in total variation distance. We conclude

that with probability at least 1−2/k, a random mixture

in F satisfies all the required properties, as desired.

B. Proof of Theorem III.2

It will be convenient to represent the p.d.f. f(x) of

the standard mixture of spherical Gaussians with means

μ1, μ2, . . . , μk as a convolution of a standard mean zero

Gaussian with a sum of delta functions centered at

μ1, μ2, . . . , μk, f(x) =
(

1
k

∑k
j=1 δ(x− μj)

)
∗e−π‖x‖22 .

Instead of considering the moments of the mixture of

Gaussians, we will consider moments of just the corre-

sponding mixture of delta functions at the means. We

will call them “mean moments,” and we will use them

as a proxy for the actual moments of the distribution.

(M1, . . . ,MR) where ∀1 ≤ r ≤ R :Mr =
1

k

k∑
j=1

μ⊗r
j .

To prove Theorem III.2 we will use three main steps.

Lemma III.6 will show using the pigeonhole princi-

ple that for any large enough collection of Gaussian

mixtures F , most Gaussians mixtures in the family

have other mixtures which approximately match in their

first R = O(log(1/ε)) mean moments. This closeness

in moments will be measured using the symmetric

injective tensor norm. Lemma III.7 shows that the two

distributions that are close in the first R mean moments

are also close in the L2 distance. This translates to small

statistical distance between the two distributions using

Lemma III.8.

We will use the following standard packing claim,

whose proof we defer to the full version.

Claim III.5. Let ‖ · ‖ be an arbitrary norm on R
D. If

x1, . . . , xN ∈ R
D are such that ‖xi‖ ≤ Δ for all i, and

for all i �= j, ‖xi−xj‖ > δ, then N ≤ (1+2Δ/δ)D. In
particular, if x1, . . . , xN ∈ R

D are such that ‖xi‖ ≤ Δ

for all i, then for all but (1 + 2Δ/δ)D of the indices
i ∈ [N ], there exists a j �= i such that ‖xi − xj‖ ≤ δ.

Lemma III.6. Suppose we are given a set F of standard
mixtures of spherical Gaussians in d dimensions with
means of length at most

√
d. Then for any integer

R ≥ d, if |F| > 1
η · exp

(
(2eR/d)dR log(3d)

)
, it

holds that for at least (1 − η) fraction of the mix-
tures {μ1, μ2, . . . , μk} in F , there is another mixture
{μ̃1, μ̃2, . . . , μ̃k} in F satisfying that for r = 1, . . . , R,

∥∥∥1
k

k∑
j=1

μ⊗r
j − 1

k

k∑
j=1

(μ̃j)
⊗r

∥∥∥
∗
≤ d−R/4. (7)

With any choice of means μ1, μ2, . . . , μk ∈ R
d we

can associate a vector of moments ψ(μ1, μ2, . . . , μk) =
(M1, . . . ,MR), whose dimension D =

(
d+R
R

)
<

(2eR/d)d since R ≥ d. The proof then follows using

a packing argument in this D dimensional space. We

defer the details to the full version.

Next we show that the closeness in moments implies

closeness in the L2 distance. This follows from fairly

standard Fourier analytic techniques. We will first show

that if the mean moments are close, then the low-order

Fourier coefficients are close. This will then imply that

the Fourier spectrum of the corresponding Gaussian

mixtures f and f̃ are close.

Lemma III.7. Suppose f(x), f̃(x) are the p.d.f. of G, G̃
which are both standard mixtures of k Gaussians in
d dimensions with means {μj : j ∈ [k]} and {μ̃j :
j ∈ [k]} respectively that are both ρ =

√
d bounded.

There exist universal constants c1, c0 ≥ 1, such that for
every ε ≤ exp(−c1d) if the following holds for R =
c0 log(1/ε): ∀1 ≤ r ≤ R,

1

k

∥∥∥ k∑
j=1

μ⊗r
j −

k∑
j=1

(μ̃j)
⊗r

∥∥∥
∗
≤ εr := ε

( r

8πe
√

log(1/ε)

)r

,

(8)

then ‖f − f̃‖2 ≤ ε.

We defer the proof to the full version of the paper.

The following lemma shows how to go from L2

distance to L1 distance using the Cauchy-Schwartz

lemma. Here we use the fact that all the means have

length at most
√
d. Hence, we can focus on a ball

of radius at most O(
√

log(1/ε)), since both f, f̃ have

negligible mass outside this ball.

Lemma III.8. In the notation above, suppose the p.d.f.s
f, f̃ of two standard mixtures of Gaussians in d dimen-
sions that are

√
d-bounded (means having length ≤ √d)

satisfy ‖f − f̃‖2 ≤ ε, for some ε ≤ exp(−6d). Then,
‖f − f̃‖1 ≤ 2

√
ε.
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We defer the proof to the full version.

IV. ITERATIVE ALGORITHMS FOR

min{Ω(√log k),
√
d} SEPARATION

We now briefly describe the new iterative algorithm

that estimates the means of a mixture of k spher-

ical Gaussians up to arbitrary accuracy δ > 0 in

poly(d, k, log(1/δ)) time when the means have separa-

tion of order Ω(
√
log k) or Ω(

√
d), when given coarse

initializers. In all the bounds that follow, the most inte-

resting setting of parameters is when 1/δ is arbitrarily

small compared to k, d (e.g., 1/wmin ≤ poly(k) and

δ = k−ω(1), or when d = O(1) and δ = o(1)). Please

see the full version of the paper for the details.

We assume that we are given coarse initializers

μ
(0)
1 , μ

(0)
2 , . . . , μ

(0)
k ; we use them to set up an “approx-

imate” system of non-linear equations with “diagonal

dominance” properties, and then use the Newton method

with the same initializers to solve it. In what follows,

ρw and ρσ denote the aspect ratio for the weights and

variances respectively as defined in Section II.

Theorem IV.1. There exist universal constants c, c0 > 0
such that the following holds. Suppose we are given
samples from a mixture of k spherical Gaussians G with
parameters {(wj , μj , σj) : j ∈ [k]}, where the weights
and covariances are known, satisfying

∀i �= j ∈ [k], ‖μi − μj‖2 (9)

≥ c(σi + σj)min{
√
d+

√
log(ρwρσ),

√
log(ρσ/wmin)}

and suppose we are given initializers
μ
(0)
1 , μ

(0)
2 , . . . , μ

(0)
k satisfying

∀j ∈ [k],
1

σj
‖μ(0)

j − μj‖2 ≤ c0

min{d, k}5/2
. (10)

Then for any δ > 0, there is an iterative algorithm that
runs in poly(k, d, 1/δ) time (and samples), and after
T = O(log log(k/δ)) iterations recovers {μj : j ∈ [k]}
up to δ relative error w.h.p. i.e., finds {μ(T )

j : j ∈ [k]}
such that ∀j ∈ [k], we have ‖μ(T )

j − μj‖2/σj ≤ δ.

For standard mixtures, (9) corresponds to a separation

of order min{√log k,
√
d}. Firstly, we will assume

without loss of generality that d ≤ k, since otherwise

we can use a PCA-based dimension-reduction result due

to Vempala and Wang [27] (see the full version for a

self-contained proof).

A. Description of the Non-linear Equations and Itera-
tive Algorithm

For each component j ∈ [k] in G, we first define

a region Sj around zj as follows. We will show that

the total probability mass in Sj from other components

is much smaller than the probability mass from the

component j. Since we assume that variances and

weights are known, we will use τj to refer to the known

σj in the algorithm description and analysis that follows.

Definition IV.2 (Region Sj). For the set of (gi-

ven) initializers z1, z2, . . . , zk ∈ R
d, define êj
 as

the unit vector along z
 − zj , and τj = σj . Then

Sj = {x : |〈x− zj , êj
〉| ≤ 4τj

√
log

(
ρσ

wmin

) ∀� ∈
[k] and ‖x− zj‖2 ≤ 4τj(

√
d+

√
log(ρσρw))}.

We will use a simple change of variables (so that they

are “dimension-free”), that will make our system easier

to analyze.

Definition IV.3. For i ∈ [k], let xi ∈ R
d represent

variables of the non-linear system, where τixi repre-

sents the (unknown) mean of the ith component. Also,

let x∗i = μi/τi, represents the desired solution to the

system, and τi = σi ∀i ∈ [k].

System of non-linear equations.: We now describe

the system of non-linear equations that we use for the

algorithm. In what follows for each j, τj = σj , and

zj = μ
(0)
j corresponds to the initializer close to μj .

1) For each j ∈ [k] we consider only the samples

y(1), y(2), . . . , y(N) ∈ R
d in the set Sj and let ũj

be the sample average of (y(
) − zj) for � ∈ [N ].

Let b̃
(μ)
j = 1

wjτj
ũj

2) Consider the system F (x) = b of non-linear

equations: ∀j ∈ [k], Fj(x) = b̃
(μ)
j with

Fj(x) :=
1

wjτj

k∑
i=1

wi

∫
y∈Sj

(y−zj)gτixi,σi
(y) dy,

(11)

where gτixi,σi
(y) is the p.d.f. of a Gaussian with

mean τixi ∈ R
d, and variance σ2

i /2π in each

direction. The above constraints are equations

involving the variables x = (x1, . . . ,xk) (though

not in closed-form).

We observe that the population average (i.e., with infi-

nite samples) b
(μ)
j ∈ R

d equals Fj(μi/τi : i ∈ [k]) in

(11); hence x∗ is indeed a solution to the system with

infinite samples.

Iterative Algorithm to solve the non-linear system.:
We will use Newton’s method to solve the non-linear

system of equations with initializers x
(0)
i = 1

τi
μ
(0)
i for

each i ∈ [k]. The Newton method uses the following

iterative update: x(t+1) = x(t) − (F ′(x(t)))−1(b −
F (x(t))), where F ′(x(t)) is the first derivative matrix

(Jacobian) evaluated at x(t).
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We first derive the expression for F ′ : Rk·d → R
k·d

assuming σj = τj . For all i, j ∈ [k], ∇xi
Fj(x) =

πwi

wjτjτi

∫
y∈Sj

(y − zj)(y − τixi)
T gτixi,τi(y) dy

However, we do not have a closed-form expres-

sion for F ′, F . Instead we will estimate the values of

F ′(x(t)), F (x(t)) from samples. The full version of the

paper shows how Fj , F
′
j can be estimated at any point

x(t) from samples drawn from the distribution with

parameters {(wj , τjx
(t)
j , τj) : j ∈ [k]} up to any desired

inverse polynomial accuracy η > 0 with polynomial

samples. This also shows that the RHS of the equations

b can be estimated up to accuracy η.
In what follows ε0 < c0d

−5/2, where c0 > 0 is an

appropriate constant.

Iterative Algorithm for Amplifying Accuracy of
Parameter Estimation

Input: Estimation accuracy δ > 0, N samples from a

mixture of well-separated Gaussians G (known weights

and variances) and initializers μ
(0)
i for each i ∈ [k]

such that ‖μ(0)
i − μi‖∞ ≤ ε0, and set τi = σi.

Set T = C log log(dk/δ), for some sufficiently large

constant C > 0.
Output: Estimates (μ

(T )
i : i ∈ [k]) for each component

i ∈ [k] such that ‖μ(T )
i − μi‖∞ ≤ δσi.

1) If δ ≥ ε0
√
d, then we just output μ

(T )
i = μ

(0)
i for

each i ∈ [k].

2) Set x
(0)
i = 1

τi
μ
(0)
i for each i ∈ [k]. Set

η1, η2, η3 = δ/(8c′ρ2σk
6), where c′ > 0 is an

appropriately small absolute constant.

3) Obtain an estimate b̃(μ) of b(μ) from the N
samples of the given mixture of k Gaussians.

4) For t = 1 to T = O(log log(1/δ) steps do the

following:

a) Estimate for each j ∈ [k] an estimate

F̃ (x(t)) of F (x(t)) at x(t).

b) Estimate for each j ∈ [k] an estimate J̃(x(t))
of F ′(x(t)) = ∇xF (x

(t)).
c) Update with the Newton iteration x(t+1) =

x(t) −
(
J̃(x(t))

)−1 (
b̃− F̃ (x(t))

)
.

5) Output μ
(T )
i = τix

(T )
i for each i ∈ [k].

B. Outline of the Convergence Analysis using the New-
ton method

We will now analyze the convergence of the Newton

algorithm. We want each parameter x
(T )
i ∈ R

d to be

close to x∗i in an appropriate norm (e.g., �2 or �∞).

Hence, we will measure the convergence and error of

x = (xi : i ∈ [k]) to be measured in �∞ norm.

Definition IV.4 (Neighborhood). Consider a mixture

of Gaussians with parameters ((μi, σi, wi) : i ∈ [k]),
and let (xi : i ∈ [k]) ∈ R

kd be the corresponding

parameters of the non-linear system F (x) = b. The

neighborhood set N = {(xi : i ∈ [k]) ∈ R
kd | ∀i ∈

[k], ‖xi − x∗i ‖∞ < ε0 = c0d
−5/2}, is the set of

values of the variables that are close to the true values

x∗i = μi

τi
∀i ∈ [k], and c0 > 0 is an appropriately large

universal constant given in Theorem IV.1.

We will now show the convergence of the Newton

method by showing diagonal dominance properties of

the non-linear system given in Lemma II.5. To prove

Theorem IV.1, we show that ‖F ′‖‖F ′′‖ε0 < 1/2, and

use the guarantees of the Newton algorithm. The main

technical component of the proof is to show that the

function (F ′(x))−1 has bounded operator norm using

the diagonal dominance properties of F .

Lemma IV.5. For any point x ∈ N , the operator F ′ :
R

d·k → R
d·k satisfies ‖(F ′(x))−1‖∞→∞ ≤ 8.

The following lemma shows that the function F ′(x)
is locally Lipschitz i.e., we bound the second derivative

operator.

Lemma IV.6. At any x ∈ N , the operator F ′′ : Rd·k×
R

d·k → R
d·k satisfies ‖F ′′‖∞,∞→∞ ≤ c′d5/2, for some

absolute constant c′ > 0.

This above two lemmas (especially Lemma IV.5) use

diagonal dominance that arises from the separation bet-

ween the means of the components. We show that most

of the probability mass from jth component around μj

is confined to Sj , while the other components of G are

far enough from zj that they do not contribute much �1
mass in total to Sj . The proof of the latter statement is

the more technical of the two, and it is very different

for separation of order
√
log k and

√
d – hence they are

handled separately in the full version. We defer all the

proofs to the full version of the paper.

V. INITIALIZATION AND ALGORITHMIC

GUARANTEES

Initialization for High-dimensions: We now give

the general statement of the theorem showing that a

mean separation of order Ω(
√
log k) suffices to learn

model parameters can be learned up to arbitrary accu-

racy δ > 0, with poly(d, k, log(1/δ)) samples. In all the

bounds that follow, the interesting settings of parameters

are when ρ, 1/wmin ≤ poly(k). In what follows ρσ
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corresponds to the aspect ratio of the covariances i.e.,

ρσ = maxi∈[k] σi/mini∈[k] σi.

Theorem V.1 (Same as Theorem I.3). There exists a
universal constant c > 0 such that suppose we are
given samples from a mixture of spherical Gaussians
G = {(wi, μi, σi) : i ∈ [k]} (with known weights and
variances) that are ρ-bounded and the means are well-
separated i.e. ∀i, j ∈ [k], i �= j:

‖μi − μj‖2 ≥ c
√
log(ρσ/wmin)(σi + σj), (12)

there is an algorithm that for any δ > 0, uses
poly(d, ρ, 1/wmin, 1/δ) samples and recovers with high
probability the means up to δ relative error i.e., finds
μ′1, . . . , μ

′
k s.t. ‖μ′j − μj‖2 ≤ δσj for all j ∈ [k].

Such results are commonly referred to as poly-
nomial identifiability or robust identifiability results.

Theorem V.1 follows in a straightforward manner by

combining the iterative algorithm, with initializers given

by the following theorem (note that the separation here

does depend on the accuracy k−c).

Theorem V.2. For any constant c ≥ 10, suppose we are
given samples from a mixture of spherical Gaussians
G = {(wi, μi, σi) : i ∈ [k]} that are ρ-bounded and the
means are well-separated i.e. ∀i, j ∈ [k], i �= j:

‖μi − μj‖2 ≥ 4c
√
log(ρσ/wmin)(σi + σj). (13)

There is an algorithm that uses poly(kc, d, ρ) samples
and with high probability learns the parameters of
G up to k−c accuracy, i.e., finds another mixture of
spherical Gaussians G̃ that has parameter distance
Δparam(G, G̃) ≤ k−c.

Initialization for Low-dimensions: We now state

our general result giving a computationally efficient

algorithm that works in d = O(1) dimensions, even

when the separation is of order O(1). In comparison,

previous algorithms need separation of the order of

Ω(
√
log k). We prove the following theorem.

Theorem V.3. There exists universal constants c > 0
such that the following holds. Suppose we are gi-
ven samples from a mixture of spherical Gaussians
G = {(wj , μj , σj) : j ∈ [k]}, where the weights and
covariances are known, such that ‖μj‖ ≤ ρ ∀j ∈ [k]
and ∀i, j ∈ [k], i �= j:

‖μi−μj‖2 ≥ c
(√

d+
√
log(ρσρw)

)
· (σi+σj). (14)

For any δ > 0, there is an algorithm using time
(and samples) poly

(
w−1

min, δ
−1, ρ, ρσ

)O(d)
that with high

probability recovers the means up to δ accuracy i.e.
finds for each j ∈ [k], μ̃j such that ‖μ̃j − μj‖2 ≤ δσj .

In the above theorem, when both ρw, ρσ = O(1) as

in the case of uniform mixtures, this corresponds to a

separation of order Ω(
√
d).

The above theorem follows by applying the guaran-

tees of the iterative algorithm (Theorem IV.1) along

with a computationally efficient procedure that finds

appropriate initializers. The following theorem shows

how to find reasonable initializers for {μ̃j : j ∈ [k]} that

can be used by the iterative algorithm. We will show

that for any ε0 = exp(−c0d), we have an algorithm

running in time (ρ/ε30wmin)
O(d) that with separation of

order
√
d will find initializers {μ̃j : j ∈ [k]} such that

‖μj − μ̃j‖ ≤ ε0σj ∀j ∈ [k].

Theorem V.4. Let c0 ≥ 2 be any constant, and
ε0 = exp(−c0d). There is an algorithm running
in (ρ/(ε30wmin))

O(d) time that given samples from a
ρ-bounded mixture of k spherical Gaussians G =
{(wj , μj , σj) : j ∈ [k]} in d dimensions satisfying ∀i �=
j ∈ [k], ‖μi − μj‖2 ≥ 4c0

(√
d+

√
log(ρwρσ)

)
(σi +

σj), can find with high probability μ̃1, . . . , μ̃k s.t.
‖μ̃j − μj‖2 ≤ ε0σj

√
d for all j ∈ [k].
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