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Abstract—We consider properties of edge-colored vertex-
ordered graphs – graphs with a totally ordered vertex set and
a finite set of possible edge colors – showing that any hereditary
property of such graphs is strongly testable, i.e., testable with
a constant number of queries. We also explain how the proof
can be adapted to show that any hereditary property of two-
dimensional matrices over a finite alphabet (where row and
column order is not ignored) is strongly testable. The first
result generalizes the result of Alon and Shapira [FOCS’05;
SICOMP’08], who showed that any hereditary graph property
(without vertex order) is strongly testable. The second result
answers and generalizes a conjecture of Alon, Fischer and
Newman [SICOMP’07] concerning testing of matrix properties.

The testability is proved by establishing a removal lemma for
vertex-ordered graphs. It states that if such a graph is far enough
from satisfying a certain hereditary property, then most of its
induced vertex-ordered subgraphs on a certain (large enough)
constant number of vertices do not satisfy the property as well.

The proof bridges the gap between techniques related to the
regularity lemma, used in the long chain of papers investigating
graph testing, and string testing techniques. Along the way
we develop a Ramsey-type lemma for multipartite graphs with
“undesirable” edges, stating that one can find a Ramsey-type
structure in such a graph, in which the density of the undesirable
edges is not much higher than the density of those edges in the
graph.

Index Terms—property testing; removal lemma; ordered
graphs; Ramsey; hereditary properties;

I. INTRODUCTION

Property Testing is dedicated to finding fast algorithms for

decision problems of the following type: Given a combinato-

rial structure S, distinguish quickly between the case where

S satisfies a property P and the case where S is far from

satisfying the property. Being far means that one needs to

modify a significant fraction of the data in S to make it satisfy

P . Property Testing was first formally defined by Rubinfeld

and Sudan [46], and the investigation in the combinatorial

context was initiated by Goldreich, Goldwasser and Ron [33].

This area has been very active over the last twenty years, see,

e.g. [32] for various surveys on it.

In this paper we focus on property testing of two-

dimensional structures over a finite alphabet, or equivalently,
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two-variable functions with a fixed finite range. Specifi-

cally, we consider graphs and matrices. Graphs are functions

G :
(
V
2

) → {0, 1} where V is the vertex set; more generally

edge-colored graphs (with a finite color set Σ) are functions

G :
(
V
2

) → Σ. Matrices over a finite alphabet Σ (or images)

are functions M : U × V → Σ. In this paper we generally

consider edge-colored graphs rather than standard graphs, as

the added generality will prove useful later, so the term graph
usually refers to an edge-colored graph.

For a fixed finite set Σ, a property of functions over Σ is

simply a collection of functions whose range is Σ. Specifically,

any collection of (edge-colored) graphs G :
(
V
2

) → Σ is an

ordered graph property. As a special case, an unordered graph
property is an ordered graph property that is also invariant
under vertex permutations: If G ∈ P and π is any permutation

on VG, then the graph Gπ , defined by Gπ(π(u)π(v)) = G(uv)
for any u �= v ∈ VG, satisfies Gπ ∈ P . Similarly, an (ordered)
matrix property, or an image property, is a collection of

functions M : [m]× [n]→ Σ. For simplicity, most definitions

given below are stated only for graphs, but they carry over

naturally to matrices.

A graph G :
(
[n]
2

)→ Σ is ε-far from the property P if one

needs to modify the value G(ij) for at least ε
(
n
2

)
of the edges

ij to make G satisfy P , where ij denotes the (unordered) edge

{i, j} ∈ (
[n]
2

)
. A tester for the property P is a randomized

algorithm that is given a parameter ε > 0 and query access

to its input graph G. The tester must distinguish, with error

probability at most 1/3, between the case where G satisfies P
and the case where G is ε-far from satisfying P . The tester is

said to have one-sided error if it always accepts inputs from P ,

and rejects inputs that are ε-far from P with probability at least

2/3. It is desirable to obtain testers that are efficient in terms

of the query complexity (i.e. the maximal possible number of

queries made by the tester). A property P is strongly testable if

there is a one-sided error tester for P whose query complexity

is bounded by a function Q(P, ε). In other words, the query

complexity of the tester is independent of the size of the input.

From now on, we generally assume (unless it is explicitly

stated that we consider unordered graphs) that the vertex set

V of a graph G has a total ordering (e.g. the natural one

for V = [n]), which we denote by <. The (induced) ordered
subgraph of the graph G :

(
V
2

) → Σ on U ⊆ V , where the
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elements of U are u1 < . . . < uk, is the graph H :
(
[k]
2

) →
Σ which satisfies H(ij) = G(uiuj) for any i < j ∈ [k].
For a family F of “forbidden” graphs, the property PF of

F-freeness consists of all graphs G for which any ordered

subgraph H of G satisfies H /∈ F . Finally, a property P is

hereditary if it is closed under taking induced subgraphs. That

is, for any G ∈ P and any ordered subgraph H of G, it holds

that H ∈ P . Note that a property P is hereditary if and only

if P = PF for some (possibly infinite) family F of graphs

over Σ.

The analogous notions of ordered subgraphs, F-freeness

and hereditary properties for matrices are “structure pre-

serving”. Here, the ordered submatrix of the matrix M :
[m] × [n] → Σ on A × B, where the elements of A and

B are a1 < . . . < ak and b1 < . . . < bl, is the matrix

N : [k] × [l] → Σ defined by N(i, j) = M(ai, bj) for any

i ∈ [k] and j ∈ [l].

II. PREVIOUS RESULTS ON GRAPHS AND MATRICES

Some of the most interesting results in property testing have

been those that identify large families of properties that are

efficiently testable, and those that show that large families of

properties cannot be tested efficiently.

One of the most widely investigated questions in property

testing has been that of characterizing the efficiently testable

unordered graph properties. In the seminal paper of Goldreich,

Goldwasser and Ron [33] it was shown that all unordered

graph properties that can be represented by a certain graph

partitioning, including properties such as k-colorability and

having a large clique, are (two-sided) testable using a constant

number of queries. See also [35]. Alon, Fischer, Krivelevich

and Szegedy [5] showed that the property of F-freeness

is strongly testable for any finite family F of forbidden

unordered graphs (here the term unordered graphs refers to

the usual notion of graphs with no order on the vertices).

Their main technical result, now known as the induced graph
removal lemma, is a generalization of the well-known graph
removal lemma [4], [47].

Theorem II.1 (Induced graph removal lemma [5]). For any
finite family F of unordered graphs and ε > 0 there exists
δ = δ(F , ε) > 0, such that any graph G which is ε-far from
F-freeness contains at least δnq copies of some F ∈ F with
q vertices.

The original proof of Theorem II.1 uses a strengthening of

the celebrated Szemerédi graph regularity lemma [48], known

as the strong graph regularity lemma.

It is clear that having a removal lemma for a family F
immediately implies that F-freeness is strongly testable: A

simple tester which picks a subgraph H whose size depends

only on F and ε, and checks whether H contains graphs from

F or not, is a valid one-sided tester for F-freeness. Hence,

removal lemmas have a major role in property testing. They

also have implications in different areas of mathematics, such

as number theory and discrete geometry. For more details, see

the survey of Conlon and Fox [22].

By proving a variant of the induced graph removal lemma

that also holds for infinite families, Alon and Shapira [9]

generalized the results of [5]. The infinite variant is as follows.

Theorem II.2 (Infinite graph removal lemma [9]). For any
finite or infinite family F of unordered graphs and ε > 0
there exist δ = δ(F , ε) > 0 and q0 = q0(F , ε), such that any
graph G which is ε-far from F-freeness contains at least δnq

copies of some F ∈ F on q ≤ q0 vertices.

Theorem II.2 directly implies that any hereditary unordered

graph property is strongly testable, exhibiting the remarkable

strength of property testing.

Theorem II.3 (Hereditary graph properties are strongly

testable [9]). Let Σ be a finite set with |Σ| ≥ 2. Any hereditary
unordered graph property over Σ is strongly testable.

Alon, Fischer, Newman and Shapira later presented [7] a

complete combinatorial characterization of the graph proper-

ties that are testable (with two-sided error) using a constant

number of queries, building on results from [27], [35]. Inde-

pendently, Borgs, Chayes, Lovász, Sós, Szegedy and Veszter-

gombi [16], and later Lovász and Szegedy [41], obtained

analytic characterizations of testable properties through the

theory of graph limits. See also [39], [40].

An efficient finite induced removal lemma for binary ma-

trices with no row and column order was obtained by Alon,

Fischer and Newman [6]. In this case, δ−1 is polynomial in

ε−1 (where ε, δ play the same roles as in the above removal

lemmas). It was later shown by Fischer and Rozenberg [28]

that when the alphabet is bigger than binary, the dependence of

δ−1 on ε−1 is super-polynomial in general, and in fact testing

submatrix-freeness over a non-binary alphabet is at least as

hard as testing triangle-freeness in graphs, for which the

dependence is also known to be super-polynomial in general

[1], see also [2]. Actually, the main tool in [6] is an efficient

conditional regularity lemma for ordered binary matrices, and

it was conjectured there that this regularity lemma can be used

to obtain a removal lemma for ordered binary matrices.

Conjecture II.4 (Ordered binary matrix removal lemma [6]).
For any finite family F of ordered binary matrices and any
ε > 0 there exists δ = δ(F , ε) such that any n × n binary
matrix which is ε-far from F-freeness contains at least δna+b

copies of some a× b matrix from F .

In contrast to the abundance of general testing results

for two-dimensional structures with an inherent symmetry,

such as unordered graphs and matrices, no similar results

for ordered two-dimensional structures (i.e. structures that do

not have any underlying symmetry) have been established.

Even seemingly simple special cases, such as F -freeness for

a single ordered graph F , or M -freeness for a single 2 × 2
ordered matrix M , have not been known to be strongly testable

in general [2]. A good survey on the role of symmetry in

property testing is given by Sudan [49], who suggests that the

successful characterization of the strongly testable unordered

graph properties is attributable to the underlying symmetry of
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these properties. See also [34].

Despite the lack of general results as above for the ordered

case, property testing of multi-dimensional ordered structures

has recently been an active area of research. Notable examples

of properties that were investigated in the setting of ordered

matrices include monotonicity (see, e.g., [19], [20] for some

of the recent works in the matrix setting), extensions of mono-

tonicity such as k-monotonicity [18] and more generally poset

properties [26], visual and geometric properties of images,

such as connectedness, convexity, being a half plane [44], [14]

and being a Lipschitz function [11], [15], and local properties,

such as consecutive pattern-freeness [13]. Ordered graphs were

less investigated in the context of property testing, but are the

subject of many works in Combinatorics and other areas. See,

e.g., a recent work on Ramsey-type questions in the ordered

setting [23], in which it is shown that Ramsey numbers of

simple ordered structures might differ significantly from their

unordered counterparts.

Finally, we mention a relevant result on one-dimensional
structures. Alon, Krivelevich, Newman and Szegedy [8]

showed that regular languages are strongly testable. One can

combine this result with the well-known Higman’s lemma

in order theory [37] to show that any hereditary property of

words (i.e. one dimensional functions) over a finite alphabet

is strongly testable.

III. OUR CONTRIBUTIONS

We prove generalizations of Theorems II.3 and II.2 to the

ordered setting, as well as analogous results for matrices. The

following result generalizes Theorem II.3.

Theorem III.1 (Hereditary properties of ordered graphs are

strongly testable). Fix a finite set Σ with |Σ| ≥ 2. Any
hereditary ordered graph property over Σ is strongly testable.

To prove Theorem III.1, we establish an order-preserving
induced graph removal lemma, which holds for finite and

infinite families of ordered graphs. This is a generalization

of Theorem II.2.

Theorem III.2 (Infinite ordered graph removal lemma). Fix a
finite set Σ with |Σ| ≥ 2. For any (finite or infinite) family F
of ordered graphs F :

(
[nF ]
2

) → Σ and any ε > 0 there exist
q0 = q0(F , ε) and δ = δ(F , ε) > 0, such that any ordered
graph G :

(
[n]
2

) → Σ that is ε-far from F-freeness contains
at least δnq induced copies of some graph F ∈ F on q ≤ q0
vertices.

An analogue of Theorem III.1 for matrices is also proved.

Theorem III.3 (Hereditary properties of ordered matrices

are strongly testable). Fix a finite set Σ with |Σ| ≥ 2.
Any hereditary (ordered) matrix property over Σ is strongly
testable.

As in the case of ordered graphs, to prove Theorem III.3 we

establish the following ordered matrix removal lemma, which

holds for finite and infinite families of matrices, and settles a

generalized form of Conjecture II.4.

Theorem III.4 (Infinite ordered matrix removal lemma). Fix
a finite set Σ with |Σ| ≥ 2. For any (finite or infinite) family
F of ordered matrices over Σ and any ε > 0 there exist q0 =
q0(F , ε) > 0 and δ = δ(F , ε) > 0, such that any ordered
matrix over Σ that is ε-far from F-freeness contains at least
δnq+q′ copies of some q× q′ matrix F ∈ F , where q, q′ ≤ q0.

Actually, the proof of Theorem III.4 is almost identical to

that of Theorem III.2, so we only describe what modifications

are needed to make the proof of Theorem III.2 also work

here, for the case of square matrices. However, all proofs can

be adapted to the non-square case as well. An outline for the

proof of the graph case, and of its adaptation to the matrix

case, is given in Section V. The full proofs of these results

are provided in the full version of this paper [3]. In section

VI we state and prove a Ramsey-type lemma for multipartite

graphs in the presence of undesirable edges, which is needed

for the proof, and we believe it is interesting in its own right.

To the best of our knowledge, Theorems III.1 and III.3

are the first known testing results of this type for ordered

two-dimensional structures, and Theorems III.2 and III.4 are

the first known order-preserving removal lemmas for two-

dimensional structures.

It is interesting to note that some of the properties mentioned

in Section II, such as monotonicity, k-monotonicity, and

forbidden-poset type properties in matrices, are hereditary (as

all of them can be characterized by a finite set of forbidden

submatrices), so Theorem III.3 gives a new proof that these

properties, and many of their natural extensions, are strongly

testable. Naturally, our general testers are much less efficient

than the testers specifically tailored for each of these properties

(in terms of the dependence of the underlying constants on

the parameters of the problem), but the advantage of our

result is its generality, that is, the fact that it applies to any

hereditary property. Thus, for example, for any fixed ordered

graph H and any integer k, the property that an ordered graph

G admits a k-edge coloring with no monochromatic (ordered)

induced copy of H is strongly testable. As mentioned above

Ramsey properties of this type have been considered in the

Combinatorics literature, see [23] and the references therein.

Another family of examples includes properties of (integer)

intervals on the line. Any interval can be encoded by an

edge connecting its two endpoints, where the order on the

vertices (the endpoints) is the usual order on the real line. A

specific example of a hereditary property is that the given set of

intervals is closed under intersection. The forbidden structure

is a set of 4 vertices i < j < k < l where ik and jl are edges

(representing intervals) whereas jk is a non-edge.

Finally, there are various examples of unordered hereditary

graph properties that have simple representations using a

small finite forbidden family of ordered subgraphs, while in

the unordered representation, the forbidden family is infinite.

Some examples of such properties are bipartiteness, being a

chordal graph, and being a strongly chordal graph [24], [17].

For such properties, when the input graph is supplied with

the “right” ordering of the vertices, one can derive the strong
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testability using the version of Theorem III.2 for finite families

of forbidden ordered subgraphs, instead of using the infinite

unordered version, Theorem II.2.

IV. DISCUSSION AND OPEN QUESTIONS

Several possible directions for future research follow from

our work.

Dependence between the parameters

Our proofs rely heavily on strong variants of the graph

regularity lemma. Regularity-based proofs generally have a

notoriously bad dependence between the parameters of the

problem. In the notation of Theorem III.2, for a fixed finite

family F of forbidden ordered subgraphs, δ−1 is generally

very large in terms of ε−1, meaning that the number of queries

required for the corresponding tester for such properties is

very large in terms of ε−1. Indeed, the original Szemerédi

regularity lemma imposes a tower-type dependence between

these parameters [36], [30], [42], while the variant we use

is at least as strong (and at least as expensive) as the strong

regularity lemma [5], which is known to have a wowzer (tower

of towers) type dependence between its parameters [21], [38].

Note that for infinite families F the dependence between the

parameters may be arbitrarily bad [10].

In a breakthrough result of Fox [29], the first known proof

for the (unordered) graph removal lemma that does not use the

regularity lemma is given. However, the dependence between

the parameters there is still of a tower type. In any case, it will

be interesting to try to obtain a proof for the ordered case, that

does not go through the strong regularity needed in our proof.

Better dependence for specific properties

As discussed in Section II, for ordered binary matrices there

is an efficient conditional regularity lemma [6], in which the

dependence of δ−1 on ε−1 is polynomial. It will be interesting

to try to combine the ideas from our proof with this binary

matrix regularity lemma, to obtain a removal lemma for finite

families of ordered binary matrices with better dependence

between the parameters. Ideally, one hopes for a removal

lemma with polynomial dependence, but even obtaining such

a lemma with, say, exponential dependence will be interesting.

More generally, it will be interesting to find large families

of hereditary ordered graph or matrix properties that have

more efficient testers than those obtained from our work. See,

e.g., [31] for recent results of this type for unordered graph

properties.

Characterization of strongly testable ordered properties

For unordered graphs, Alon and Shapira [9] showed that

a property is strongly testable using an oblivious one-sided

tester, which is a tester whose behavior is independent of the

size of the input, if and only if the property is (almost) hered-

itary. It will be interesting to obtain similar characterizations

in the ordered case.

More generally, in the ordered case there are other general

types of properties that may be of interest. Ben-Eliezer,

Korman and Reichman [13] recently raised the question of

characterizing the efficiently testable local properties, i.e.,

properties that are characterized by a collection of forbidden

local substructures. It will also be interesting to identify and

investigate large classes of visual (or geometric) properties.

Due to the lack of symmetry, obtaining a complete character-

ization of the efficiently testable properties of ordered graphs

and matrices seems to be very difficult. In fact, considering that

all properties whatsoever can be formulated as properties of

ordered structures (e.g. strings), any characterization here will

have to define and refer to some “graphness” of our setting,

even that we do not allow the graph symmetries.

Generalization to ordered hypergraphs and hypermatrices

It will be interesting to obtain similar removal lemmas

(and consequently, testing results) for the high-dimensional

analogues of ordered graphs and matrices, namely ordered k-

uniform hypergraphs and k-dimensional hypermatrices. Such

results were proved for unordered hypergraphs [45], [43], [50].

Analytic analogues via graph limits

The theory of graph limits has provided a powerful approach

for problems of this type in the unordered case [16], [40], [39].

It will be interesting to define and investigate a limit object for

ordered graphs; this may also help with the characterization

question above.

V. PROOF OUTLINE

Here we provide a sketch of the proofs for our removal

lemmas. For the full details, please refer to the full version of

this paper [3].

A proof of a graph removal lemma typically goes along the

following lines: First, the vertex set of the graph is partitioned

into a “constant” (not depending on the input graph size itself)

number of parts, and a corresponding regularity scheme is

found. The regularity scheme essentially allows that instead

of considering the original graph, one can consider a very

simplified picture of a constant size structure approximately

representing the graph. On one hand, the structure has to

approximate the original graph in the sense that we can “clean”

the graph, changing only a small fraction of the edges, so

that the new graph will not contain anything not already

“predicted” by the representing structure. On the other hand,

the structure has to be “truthful”, in the sense that everything

predicted by it in fact already exists in the graph.

In the simplest case, just a regular partition given by

the original Szemerédi Lemma would suffice. More complex

cases, like [5] and [9], require a more elaborate regularity

scheme. In our case, we provide a regularity scheme that

addresses both edge configuration and vertex order, combining

a graph regularity scheme with a scheme for strings.

Given a regularity scheme, we provide the graph cleaning

procedure, and prove that if the cleaned graph still contains a

forbidden subgraph, then the original graph already contains a

structure containing many such graphs (this will consist of

some vertex sets referenced in the regularity scheme). We
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show how to use the scheme to prove the removal lemma

and the testability theorem for the case of a finite family F of

forbidden subgraphs, and later, we describe how to extend it

for the case of a possibly infinite family F . The latter case also

requires a formal definition of what it means for the regularity

scheme to predict the existence of a forbidden subgraph, while

for the finite case it is enough to keep it implicit.

To extract the regularity scheme we need two technical aids.

One of which is just a rounding lemma that allows us to

properly use integer quantities to approximate real ones. While

in many works the question of dealing with issues related to

the divisibility of the number of vertices is just hand-waved

away, the situation here is complex enough to merit a formal

explanation of how rounding works.

In Section VI we develop a Ramsey-type theorem that we

believe to be interesting in its own right. The use of Ramsey-

type theorems is prevalent in nearly all works dealing with

regularity schemes, as a way to allow us to concentrate only on

“well-behaved” structures in the scheme when we are about to

clean the graph. Because of the extra complication of dealing

with vertex-ordered graphs, we cannot just find Ramsey-type

instances separately in different parts of the regularity scheme.

Instead, we need to find the well-behaved structure “all at

once”, and furthermore assure that we avoid enough of the

“undesirable” parts where the regularity scheme does not

reflect the graph. The fraction of undesirable features, while

not large, must not depend on any parameters apart from

the original distance parameter ε (and in particular must not

depend on the size of the regularity scheme), which requires

us to develop the new Ramsey-type theorem.

Roughly speaking, the theorem states the following: If we

have a k-partite edge-colored graph with sufficiently many

vertices in each part, then we can find a subgraph where

the edges between every two parts are of a single color

(determined by the identity of the two parts). However, we do

it in a way that satisfies another requirement: If additionally

the original graph is supplied with a set of “undesirable” edges

comprising an α fraction of the total number of edges, then

the subgraph we find will include not more than an (1 + η)α
fraction of the undesirable edges, for an η as small as we

would like (in our application η = 1 will suffice).

Finding a regularity scheme

To prove the removal lemma we need a regularity scheme,

that is a sequence of vertex sets whose “interaction” with the

graph edges, and in our case also the graph vertex order, allows

us to carry a cleaning procedure using combinatorial lemmas.

Historically, in the case of properties like triangle-freeness

in ordinary graphs, a regular equipartition served well enough

as a regularity scheme. One needs then to just remove all

edges that are outside the reach of regularity, such as edges

between the sets that do not form regular pairs. When moving

on to more general properties of graphs, this is not enough.

We need a robust partition (see [27]) instead of just a regular

one, and then we can find a subset in each of the partition

sets so that these “representative” sets will all form regular

pairs. This allows us to decide what to do with problem pairs,

e.g. whether they should become complete bipartite graphs or

become edgeless (we also need to decide what happens inside
each partition set, but we skip this issue in the sketch).

For vertex ordered graphs, a single robust partition will not

do. The reason is that even if we find induced subgraphs using

sets of this partition, there will be no guarantees about the

vertex order in these subgraphs. The reason is that the sets

of the robust partition could interact in complex ways with

regards to the vertex order. Ideally we would like every pair

of vertex sets to appear in one of the following two possible

ways: Either one is completely before the other, or the two

are completely “interwoven”.
To interact with the vertex order, we consider the robust par-

tition along with a secondary interval partition. If we consider

what happens between two intervals, then all vertices in one of

the intervals will be before all vertices in the other one. This

suggests that further dividing a robust partition according to

intervals is a good idea. However, we also need that inside each

interval, the relevant robust partition sets will be completely

interwoven. In more explicit terms, we consider what happens

when we intersect them with intervals of a refinement of the

original interval partition. If these intersections all have the

“correct” sizes in relation to the original interval (i.e., a set that

intersects an interval also intersects all relevant sub-intervals

with sufficient vertex counts), then we have the “every possible

order” guarantee.
To obtain the formulation and existence proof of a regularity

scheme suitable for ordered graphs, we first present the

concept of approximating partitions, showing several useful

properties of them. Importantly, the notion of a robust partition

is somewhat preserved when moving to a partition approximat-

ing it. Then, we develop the lemma that gives us the required

scheme. Roughly speaking, it follows the following steps.

• We find a base partition P of the graph G, robust enough

with regards to the graph edge colors, so as to ensure that

it remains robust even after refining it to make it fit into

a secondary interval partition.

• We consider an interval partition J of the vertex set V of

G, that is robust with respect to P . That is, if we partition

each interval of J into a number of smaller intervals (thus

obtaining a refinement J ′), most of the smaller intervals

will contain about the same ratio of members of each set

of P as their corresponding bigger intervals.

• Now we consider what happens if we construct a partition

resulting from taking the intersections of the members of

P with members of J ′. In an ideal world, if a set of P
intersects an interval of J , then it would intersect “nicely”

also the intervals of J ′ that are contained in that interval.

However, this is only mostly true. Also, this “partition by

intersections” will usually not be an equipartition.

• We now modify a bit both P and J , to get Q and I
that behave like the ideal picture, and are close enough

to P and J . Essentially we move vertices around in P to

make the intersections with the intervals in J ′ have about

the same size inside each interval of J . We also modify
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the intersection set sizes (which also affects J a little) so

they will all be near multiples of a common value (on

the order of n). This is so we can divide them further

into an equipartition that refines both the robust graph

partition and the interval partition. The rounding Lemma

mentioned above helps us here.

The above process generates the following scheme. Q is

the modified base equipartition, and its size (i.e. number of

parts) is denoted by k. I is the modified “bigger intervals”

equipartition, and its size is denoted by m. We are allowed

to require in advance that m will be large enough (that is, to

have m bigger than a predetermined constant m0). There is

an equipartition Q′ of size mt which refines both Q and I .

That is, each part of Q′ is fully contained in a part of Q and a

part of I , and so each part of Q contains exactly mt/k parts

of Q′. Moreover, there is the “smaller intervals” equipartition

I ′ which refines I , and has size mb where b = r(m, t) for

a two-variable function r that we are allowed to choose in

advance (r is eventually chosen according to the Ramsey-type

arguments needed in the proof). Each part of I contains exactly

b parts of I ′. Finally, there is a “perfect” equipartition Q′′

which refines Q′ and I ′ and has size mbt, such that inside

any bigger interval from I , the intersection of each part of

Q′ with each smaller interval from I ′ consists of exactly one

part of Q′′. Additionally, Q′ can be taken to be very robust,

where we are allowed to choose the robustness parameters in

advance.

We are guaranteed that the numbers m and t are bounded

in terms of the above function r, the robustness parameters,

and m0 for which we required that m ≥ m0. These bounds

do not depend on the size of the input graph.

A more formal statement of the regularity scheme is given

in Section VII.

Proving a finite removal lemma

Consider an ordered colored graph G :
(
[n]
2

) → Σ,

and consider a regularity scheme consisting of equipartitions

Q, I,Q′, I ′, Q′′ for G as described above.

We start by observing that if Q′′ is robust enough, then

there is a tuple W of “representatives” for Q′′, satisfying the

following conditions.

• For each part of Q′′ there is exactly one representative,

which is a subset of this part.

• Each representative is not too small: it is of order n
(where the constants here may depend on all other

parameters discussed above, but not on the input size n).

• All pairs of representatives are very regular (in the

standard Szemerédi regularity sense).

• The densities of the colors from Σ between pairs of

representatives are usually similar to the densities of those

colors between the pairs of parts of Q′′ containing them.

Here the density of a color σ ∈ Σ between vertex sets A
and B is the fraction of σ-colored edges in A×B.

Actually, the idea of using representatives, as presented above,

was first developed in [5]. Note that each part of Q′ contains

exactly b representatives (since it contains b parts from Q′′)
and each small interval of I ′ contains exactly t representatives.

Now if Q′ is robust enough then the above representatives

for Q′′ also represent Q′ in the following sense: Densities of

colors between pairs of representatives are usually similar to

the densities of those colors between the pairs of parts of Q′

containing them.
Consider a colored graph H whose vertices are the small

intervals of I ′, where the “color” of the edge between two

vertices (i.e. small intervals) is the t × t “density matrix”

described as follows: For any pair of representatives, one

from each small interval, there is an entry in the density

matrix. This entry is the set of all colors from Σ that are

dense enough between these two representatives, i.e., all colors

whose density between these representatives is above some

threshold.
An edge between two vertices of H is considered unde-

sirable if the density matrix between these intervals differs

significantly from a density matrix of the large intervals

from I containing them. If Q′ is robust enough, then most

density matrices for pairs of small intervals are similar to the

density matrices of the pairs of large intervals containing them.

Therefore, the number of undesirables in H is small in this

case.
Consider now H as an m-partite graph, where each part

consists of all of the vertices (small intervals) of H that are

contained in a certain large interval from I . We apply the

undesirability-preserving Ramsey on H , and then a standard

multicolored Ramsey within each part, to obtain an induced

subgraph D of H with the following properties.

• D has exactly dF vertices (small intervals) inside each

part of H , where dF is the maximum number of vertices

in a graph from the forbidden family F .

• For any pair of parts of H , all D-edges between these

parts have the same “color”, i.e. the same density matrix.

• For any part of H , all D-edges inside this part have the

same “color”.

• The fraction of undesirables among the edges of D is

small.

Finally we wish to “clean” the original graph G as dictated

by D. For any pair Q′1, Q
′
2 of (not necessarily distinct) parts

from Q′, let I1, I2 be the large intervals from I ′ containing

them, and consider the density matrix that is common to all

D-edges between I1 and I2. In this matrix there is an entry

dedicated to the pair Q′1, Q
′
2, which we refer to as the set of

colors from Σ that are “allowed” for this pair. The cleaning

of G is done as follows: For every u ∈ Q′1 and v ∈ Q′2,

if the original color of uv in G is allowed, then we do not

recolor uv. Otherwise, we change the color of uv to one of

the allowed colors.
It can be shown that if D does not contain many undesir-

ables, then the cleaning does not change the colors of many

edges in G. Therefore, if initially G is ε-far from F-freeness,

then there exists an induced copy of a graph F ∈ F in G with

l ≤ dF vertices after the cleaning. Considering our cleaning

method, it can then be shown that there exist representatives
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R1, . . . , Rl with the following properties. For any i, all vertices

of Ri come before all vertices of Ri+1 in the ordering of the

vertices, and for any i < j, the color of F (ij) has high density

in Ri×Rj . Recalling that all pairs of representatives are very

regular, a well-known lemma implies that the representatives

R1, . . . , Rl span many copies of F , as desired.

From finite to infinite removal lemma

After the finite removal lemma is established, adapting the

proof to the infinite case is surprisingly not difficult. The only

problem of the finite proof is that we required D to have

exactly dF vertices in each large interval, where dF is the

maximal number of vertices of a graph in F . This requirement

does not make sense when F is infinite. Instead we show that

there is a function dF (m, t) that “plays the role” of dF in the

infinite case.

dF (m, t) is roughly defined as follows: We consider the

(finite) collection C(m, t) of all colored graphs with loops that

have exactly m vertices, where the set of possible colors is the

same as that of H (so the number of possible colors depends

only on |Σ| and t). We take dF (m, t) to be the smallest number

that guarantees the following. If a graph C ∈ C(m, t) exhibits

(in some sense) a graph from F , then C also exhibits a graph

from F with no more than dF (m, t) vertices.

The rest of the proof follows as in the finite case, replacing

any occurrence of dF in the proof with dF (m, t). Here, if G
contains a copy of a graph from F after the cleaning, then there

is a set of no more than dF (m, t) different representatives that

are very regular in pairs and have the “right” densities with

respect to some F ∈ F with at most dF (m, t) vertices, so we

are done as in the finite case.

From ordered graphs to ordered matrices

To prove Theorem III.4 for square matrices, we reduce the

problem to a graph setting. Suppose that M : U × V → Σ
is a matrix, and add an additional color σ0 to Σ. All edges

between U and V will have the original colors from Σ, and

edges inside U and inside V will have the new color σ0. Note

that we are not allowed to change colors to or from the color

σ0, as it actually signals “no edge”. The proof now follows

from the proof for graphs: We can ask the partition I into

large intervals to “respect the middle”, so all parts of I are

either fully contained in U or in V . Moreover, colors of edges

inside U or inside V are not modified during the cleaning

step, and edges between U and V are not recolored to σ0,

since this color does not appear at all between the relevant

representatives (and in particular, does not appear with high

density).

To adapt the proof of Theorem III.4 for non-square matrices,

we need the divisibility condition to be slightly different than

respecting the middle. In the case that m = o(n), we need

to construct two separate “large intervals” equipartitions, one

for the rows and one for the columns, instead of one such

equipartition I as in the graph case. The rest of the proof

does not change.

VI. A QUANTITATIVE RAMSEY-TYPE THEOREM

The multicolored Ramsey number Ram(s, k) is the mini-

mum integer n so that in any coloring of Kn with s colors

there is a monochromatic copy of Kk. It is well known that

this number exists (i.e. is finite) for any s and k. For our

purposes, we will also need a different Ramsey-type result,

that keeps track of “undesirable” edges, as described below.

Let Σ be a finite alphabet. A k-partite Σ-chart G =
(V1, . . . , Vk, c) is defined by k disjoint vertex sets V1, . . . , Vk

and a function c : EG → Σ, where EG =
⋃

1≤i<j≤k Vi × Vj .

In other words, it is an edge-colored complete k-partite graph.

Given a k-partite Σ-chart, we would like to pick a given

number of vertices from each partition set, so that all edges

between remaining vertices in each pair of sets are of the same

color. However, in our situation we also have a “quantitative”

requirement: A portion of the edges is marked as “undesir-

able”, and we require that in the chart induced on the picked

vertices the ratio of undesirable edges does not increase by

much.

Formally, we prove the following, which is stated as a

theorem because we believe it may have uses beyond the use

in this paper.

Theorem VI.1. There exists a function RV I.1 : N × N ×
N × (0, 1] → N, so that if G = (V1, . . . , Vk, c) is a k-partite
Σ-chart with n ≥ RV I.1(|Σ|, k, t, α) vertices in each class,
and B ⊆ ⋃

i<j∈[k](Vi × Vj) is a set of “undesirable edges”
of size at most ε

(
k
2

)
n2, then G contains an induced subchart

HV I.1(G,B, t, α) = (W1, . . . ,Wk, c �⋃
1≤i<j≤k(Wi×Wj)) with

the following properties.

• |Wi| = t for every 1 ≤ i ≤ k.
• c �Wi×Wj is a constant function for every 1 ≤ i < j ≤ k.
• The size of B ∩ (

⋃
1≤i<j≤k(Wi ×Wj)) is at most (1 +

α)ε
(
k
2

)
t2.

In our use for the proofs of Theorem III.2 and III.4, these

“vertices” would actually be themselves sets of a robust parti-

tion of the original graph, and “colors” will encode densities;

an undesirable pair would have the “wrong” densities. Also, in

our use case the undesirability of an edge will be determined

solely by its color and the Wi that its end vertices belong

to, which means that for each 1 ≤ i < i′ ≤ k the edge

set Wi ×Wi′ consist of either only desirable edges or only

undesirable edges. When this happens, a later pick of smaller

sets W ′
i ⊂ Wi will still preserve the ratio of undesirable

edges (we will in fact perform such a pick using the original

Ramsey’s theorem inside each Wi). The following corollary

summarizes our use of the theorem.

Definition VI.2. Given a k-partite Σ-chart
G = (V1, . . . , Vk, c) and a set B ⊆ ⋃

i<j∈[k](Vi × Vj),
we say that B is orderly if for every 1 ≤ i < j ≤ k there
are no e ∈ (Vi × Vj) ∩ B and e′ ∈ (Vi × Vj) \ B for which
c(e) = c(e′). In other words, the “position” and color of an
edge fully determines whether it is in B.
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Corollary VI.3. There exists a function RV I.3 : N×N×N→
N, so that if G = (

⋃k
i=1 Vi, c) is a Σ-colored graph with

|Vi| = n ≥ RV I.3(|Σ|, k, t) for any i ∈ [k] and Vi ∩ Vj = ∅
for any i �= j ∈ [k], and B ⊆ ⋃

i<j∈[k](Vi×Vj) is an orderly
set of “undesirable edges” of size at most ε

(
k
2

)
n2, then G

contains an induced subgraph D satisfying the following.
• The vertex set of D is

⋃l
i=1 Ui where Ui ⊆ Vi and |Ui| =

t for any i ∈ [k].
• For any i ∈ [k], all edges inside Ui have the same color.
• For any i < j ∈ [k], all edges in Ui ×Uj have the same

color.
•

∑
i<j∈[k] |B ∩ (Ui × Uj)| ≤ 2ε

(
k
2

)
t2.

Proof: Take RV I.3(s, k, t) = RV I.1(s, k,Ram(s, t), 1)
(recall that Ram(s, t) denotes the “traditional” s-colored

Ramsey function). By Theorem VI.1, there exists a chart

H = (W1, . . . ,Wk) with the following properties.

• Wi ⊆ Vi and |Wi| = Ram(t, |Σ|) for every i ∈ [k].
• For any pair i < j ∈ [k], all edges in Wi ×Wj have the

same color.

•
∑

i<j∈[k] |B ∩ (Wi ×Wj)| ≤ 2ε
(
k
2

)
(Ram(t, |Σ|))2.

Observe that for any pair i < j ∈ [k], either Wi×Wj ⊆ B or

(Wi×Wj)∩B = ∅, since all edges in Wi×Wj have the same

color and B is orderly. Therefore, the number of pairs i < j for

which (Wi×Wj)∩B �= ∅ is at most 2ε
(
k
2

)
. Now we apply the

traditional Ramsey’s theorem inside each Wj to obtain a set

Uj ⊆Wj of size t such that all edges inside Wj have the same

color. Since
∑

i<j |B∩(Ui×Uj)| ≤
∑

i<j:(Wi×Wj)∩B �=∅ |B∩
(Ui × Uj)| ≤ 2ε

(
k
2

)
t2, the proof follows.

Before moving to the proof of Theorem VI.1 itself, let us

quickly note that a quantitative counterpart for the traditional

(not k-partite) graph case does not exist (indeed, Corollary

VI.3 is a way for us to circumvent such issues).

Proposition VI.4. For any α > 0, m, k, and large enough
l, for infinitely many n there is a graph G and a set of
undesirable pairs B, so that G has n vertices, B consists
of at most 1

mk

(
n
2

)
pairs, G has no independent set of size l,

and every clique of l vertices in G holds at least ( 1
m −α)

(
l
2

)

members of B.

Proof: We construct G for any n that is a multiple of

mk larger than lk. The graph G will be the union of k
vertex-disjoint cliques, each with n/k vertices. In particular,

G contains no independent set with l vertices, and any clique

with l vertices must be fully contained in one of the cliques

of G.
Now B will be fully contained in the edge-set of G, and

will consist of the edge-set of mk vertex-disjoint cliques with

n/mk vertices each, so that each of the cliques of G contains

m of them. It is now not hard to see that any clique with l
vertices in G will contain at least ( 1

m − αl)
(
l
2

)
) members of

B, where liml→∞ αl = 0.
Moving to the proof, the following is our main lemma. It

essentially says that we can have a probability distribution

over “Ramsey-configurations” in our chart that has some

approximate uniformity properties.

Lemma VI.5. There exists a function RV I.5 : N × N × N ×
(0, 1] → N, so that if G = (V1, . . . , Vk, c) is a k-partite Σ-
chart with n ≥ RV I.5(|Σ|, k, t, δ) vertices in each class, then
G contains a randomized induced subchart HV I.5(G, t, δ) =
(W1, . . . ,Wk, c �⋃

1≤i<j≤k(Wi×Wj)) satisfying the following
properties.
• Either |Wi| = t for every 1 ≤ i ≤ k, or the chart is

empty (Wi = ∅ for every i).
• c �Wi×Wj

is a constant function for every 1 ≤ i < j ≤ k
(with probability 1).

• For every 1 ≤ i ≤ k, every v ∈ Vi will be in Wi with
probability at most t/n.

• For every 1 ≤ i < j ≤ k, every v ∈ Vi and every w ∈ Vj ,
the probability for both v ∈ Wi and w ∈ Wj to hold is
bounded by (t/n)2.

• The probability that the chart is empty is at most δ.

Before we prove this lemma, we show how it implies

Theorem VI.1.

Proof of Theorem VI.1: We set RV I.1(a, k, t, α) =
RV I.5(a, k, t, α/3). Given the k-partite Σ-chart G, we

take the randomized subchart H = HV I.5(G, t, α/3) =
(W1, . . . ,Wk, c �⋃

1≤i<j≤k(Wi×Wj)), and prove that with pos-

itive probability it is the required subchart.

Let B′ = B ∩ (
⋃

1≤i<j≤k Wi × Wj) denote the set of

undesirable pairs that are contained in H . By the probability

bound on pair containment and by the linearity of expectation,

E[|B′|] ≤ (t/n)2|B| ≤ ε
(
k
2

)
t2. Therefore, the probability

for |B′| to be larger than (1 + α)ε
(
k
2

)
t2 is bounded by

1
1+α ≤ 1 − α/2. Therefore, with positive probability, both

|B′| is not too large and H is not the empty chart. Such an

H is the desired subchart.

To prove Lemma VI.5 we shall make good use of the

following near-trivial observation.

Observation VI.6. There exists a function mV I.6 : N× N×
(0, 1]→ N, such that if A is a set of size at least mV I.6(k, t, δ)
and A = (A1, . . . , Ak) is a partition of A to k sets, then there
exists a randomized subset B = BV I.6(A, t, δ) satisfying the
following properties.
• Either |B| = t or B = ∅.
• B is fully contained in a single Ai.
• For every a ∈ A, the probability for a ∈ B is at most

t/|A|.
• The probability for B = ∅ is at most δ.

Proof: To choose the randomized subset B, first choose a

random index I where Pr[I = i] = |Ai|/|A| for all 1 ≤ i ≤ k.

Next, if |AI | < t then set B = ∅, and otherwise set B to be

a subset of size exactly t of AI , chosen uniformly at random

from all
(|AI |

t

)
possibilities. Setting mV I.6(k, t, δ) = tk/δ, it

is not hard to see that all properties for the random set B
indeed hold.

Proof of Lemma VI.5: The proof is done by induction

over k. The base case k = 1 is easy – set RV I.5(|Σ|, 1, t, δ) =
t, and let W1 be a uniformly random subset of size t of V1.

For the induction step from k − 1 to k, we set
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RV I.5(|Σ|, k, t, δ) = mV I.6(|Σ|s, r, 1
k+1δ), where s =

mV I.6(|Σ|k−1, t, 1
k+1δ) and r = RV I.5(|Σ|, k − 1, t, 1

k+1δ).
We set W1, . . . ,Wk to be the result of the following random

process.

First, we set V ′1 ⊆ V1 to be a uniformly random subset of

size exactly s. Then, for every 2 ≤ i ≤ k, we set V ′i ⊆ Vi to be

the random set BV I.6(Vi, r, 1
k+1δ), where Vi is the partition

of Vi obtained by classifying every v ∈ Vi according to the

colors 〈c(w, v)〉w∈V ′
1
, i.e., two vertices in Vi are in the same

partition set if all their pairs with vertices from V ′1 have the

same colors.

If any of the V ′i came out empty, we set all Wi to ∅ and

terminate the algorithm (this occurs with probability at most
k−1
k+1δ), and otherwise we continue. Note now, in particular, that

for every w ∈ V1 and v ∈ Vi the probability for both w ∈ V ′1
and v ∈ V ′i to hold is bounded by (s/n)(r/n). This is since

the probability guarantees of Observation VI.6 hold for any

possible value of V ′1 . Also, since each V ′i was independently

drawn, for v ∈ Vi and w ∈ Vj (where 1 < i < j ≤ k) the

probability for both v ∈ V ′i and w ∈ V ′j to hold is bounded

by (r/n)2.

We now let H ′ denote the (k − 1)-partite Σ-chart in-

duced by V ′2 , . . . , V
′
k , and use the induction hypothesis to

(randomly) set W2, . . . ,Wk as the corresponding vertex sets of

HV I.5(H
′, t, 1

k+1δ). As before, if we receive empty sets then

we also set W1 = ∅ and terminate. Note that for 1 < i ≤ k
and v ∈ V ′i , the probability for v to be in Wi is bounded by

t/r. Hence, for v ∈ Vi, the probability for v ∈ Wi to hold is

bounded by (r/n)(t/r) = t/n. Similarly, for 1 < i < j ≤ k,

for every v ∈ Vi and w ∈ Vj the probability for both v ∈ Wi

and w ∈ Wj to hold is bounded by (t/n)2. Also by similar

considerations, for v ∈ V1 and w ∈ Vi, the probability for

both v ∈ V ′1 and w ∈Wi to hold is bounded by (s/n)(t/n).

Finally, we set W1 to be the random set BV I.6(V ′, t, 1
k+1δ),

where V ′ is the partition of V ′1 obtained by classifying each

v ∈ V ′1 by the colors 〈c(v, w)〉w∈Wi
. Note that c(v, w) in

that expression depends only on v and the index i for which

w ∈ Wi, because of how we chose each V ′i above. In

particular, after the choice of W1, the function c �W1×Wi
is

constant for each 1 < i ≤ k. Again, if we got an empty set for

W1, we set all W2, . . . ,Wk to be empty as well. By similar

considerations as in the preceding steps, also here, for any

v ∈ V1 the probability of v ∈W1 is bounded by t/n, and for

w ∈ Vi where 1 < i ≤ k, the probability of both v ∈W1 and

w ∈Wi is bounded by (t/n)2.

The probability of obtaining empty sets in any of the steps

is bounded by δ by a union bound, and all other properties of

the random sets W1, . . . ,Wk have already been proven above.

VII. THE REGULARITY SCHEME

Here we provide a more formal statement of the regularity

scheme needed for the proof. We start with the definitions

required to formally present the scheme.

Basic definitions

Recall that a Σ-colored graph G = (V, cG) is defined by a

totally ordered set of vertices V and a function cG :
(
V
2

)→ Σ,

and a (k,Σ)-chart C = (V1, . . . , Vk, cC) is an edge-colored

complete k-partite graph with the parts V1, . . . , Vk. For C and

G as above, where additionally V =
⋃k

i=1 Vi, we say that C

is a partition of G if V =
⋃k

i=1 Vi and cG(e) = cC(e) for any

edge e ∈ EC . Moreover, C is equitable if ||Vi| − |Vj || ≤ 1
for any 1 ≤ i, j ≤ k; an equitable partition is usually called

an equipartition. C is an interval partition if v < v′ for any

v ∈ Vi, v
′ ∈ Vj with i < j.

For a partition C as above, a (k′,Σ)-chart C ′ which is

also a partition of G is said to be a refinement of C if we

can write C ′ = (V11, . . . , V1j1 , . . . , Vk1, . . . , Vkjk , cC′) where

Vi =
⋃ji

l=1 Vil. Note that cG(e) = cC(e) = cC′(e) for any

edge e ∈ EC .

For two partitions P = (V1, . . . , Vk) and Q = (U1, . . . , Ul)
of a colored graph G, the least common refinement (LCR)
P 
 Q of P and Q is the partition (V1 ∩ U1, . . . , V1 ∩
Ul, . . . , Vk∩U1, . . . , Vk∩Ul) (after removing empty sets from

the list). Note that even if P and Q are equitable, P 
 Q is

not necessarily equitable.

Definitions: Robustness and regularity

For two disjoint sets of vertices U,W and a coloring

c : U ×W → Σ, we say that the density of σ ∈ Σ in (U,W, c)
is dσ(U,W, c) = |(U × W ) ∩ c−1(σ)|/|U ||W |. the squared

density is denoted by d2σ(U,W, c). The index of (U,W, c) is

ind(U,W, c) =
∑

σ∈Σ
d2σ(U,W, c).

Note that 0 ≤ ind(U, V, c) ≤ 1 always holds.

For a partition C as above we define the index of C as

ind(C) =
∑

1≤i<i′≤k

|Vi||Vi′ |(|V |
2

) ind(Vi, Vi′ , c �Vi×Vi′ )

where V =
⋃k

i=1 Vi. By the Cauchy-Schwarz inequality, for

any two partitions C, C ′ of G where C ′ is a G-refinement of

C we have 0 ≤ ind(C) ≤ ind(C ′) ≤ 1.

For a function f : N→ N and a constant γ > 0, we say that

an equipartition C of size k is (f, γ)-robust if there exists no

refining equipartition C ′ of C of size at most f(k) for which

ind(C ′) > ind(C) + γ. The notion of robustness is stronger,

for fast enough f , than the more commonly used notion of

regularity given below. This was first proved (implicitly) by

Ruzsa and Szemerédi in [47]. Here, For a Σ-colored graph

G = (V, c) and an equipartition P = (V1, . . . , Vk) of G, a pair

(Vi, Vj) is ε-regular if |dσ(Vi, Vj) − dσ(V
′
i , V

′
j )| ≤ ε for any

σ ∈ Σ and V ′i ⊆ Vi, V
′
j ⊆ Vj that satisfy |V ′i | ≥ ε|Vi|, |V ′j | ≥

ε|Vj |. P is an ε-regular partition if all but at most ε
(
k
2

)
of the

pairs (Vi, Vj) are ε-regular.

Statement of the regularity scheme

We are finally ready to provide the statement of the regu-

larity scheme, used in the proof of the removal lemma.
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Lemma VII.1. For any positive integer k, real value γ,
functions r : N × N → N and f : N → N, and any n-vertex
ordered colored graph G (for large enough n), there exist
• An interval equipartition I of G into m parts, where k ≤

m ≤ S(γ, k, f, r).
• An equipartition Q′ of G into mt parts (not necessarily

an interval equipartition) which refines I and is addition-
ally (f, γ)-robust, where t ≤ T (γ, k, f, r).

• An interval equipartition I ′ into m · r(m, t) parts also
refining I , so that the LCR Q′′ = Q′ 
 I ′ is an
equipartition into exactly mt · r(m, t) parts (so each set
of Q′ intersects “nicely” all relevant intervals in I ′).

The flexibility of the statement of Lemma VII.1 has an

unexpected benefit: It allows to move from a removal lemma

that works for finite forbidden families to one that also works

for infinite families with almost no effort, where historically

[9], moving from a finite unordered graph removal lemma to

an infinite one was harder.

For the existence proof of the regularity scheme, and for

more details on how to use it to prove the desired removal

lemma, please refer to the full version of this paper [3].
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