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Abstract—We study the two-dimensional geometric
knapsack problem (2DK) in which we are given a set
of n axis-aligned rectangular items, each one with an
associated profit, and an axis-aligned square knapsack. The
goal is to find a (non-overlapping) packing of a maximum
profit subset of items inside the knapsack (without rotating
items). The best-known polynomial-time approximation
factor for this problem (even just in the cardinality case)
is 2+ ε [Jansen and Zhang, SODA 2004]. In this paper we
break the 2 approximation barrier, achieving a polynomial-
time 17

9
+ ε < 1.89 approximation, which improves to

558
325

+ ε < 1.72 in the cardinality case.
Essentially all prior work on 2DK approximation packs

items inside a constant number of rectangular containers,
where items inside each container are packed using a simple
greedy strategy. We deviate for the first time from this
setting: we show that there exists a large profit solution
where items are packed inside a constant number of
containers plus one L-shaped region at the boundary of the
knapsack which contains items that are high and narrow
and items that are wide and thin. The items of these two
types possibly interact in a complex manner at the corner
of the L.

The above structural result is not enough however: the
best-known approximation ratio for the subproblem in the
L-shaped region is 2 + ε (obtained via a trivial reduction
to one-dimensional knapsack by considering tall or wide
items only). Indeed this is one of the simplest special
settings of the problem for which this is the best known
approximation factor. As a second major, and the main
algorithmic contribution of this paper, we present a PTAS
for this case. We believe that this will turn out to be useful
in future work in geometric packing problems.

We also consider the variant of the problem with
rotations (2DKR), where items can be rotated by 90
degrees. Also in this case the best-known polynomial-time
approximation factor (even for the cardinality case) is 2+ε
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[Jansen and Zhang, SODA 2004]. Exploiting part of the
machinery developed for 2DK plus a few additional ideas,
we obtain a polynomial-time 3/2 + ε-approximation for
2DKR, which improves to 4/3+ ε in the cardinality case.

Index Terms—Approximation Algorithms; Two-
dimensional Knapsack; Geometric Packing; Rectangle
Packing;

I. INTRODUCTION

The (two-dimensional) geometric knapsack problem

(2DK) is the geometric variant of the classical (one-

dimensional) knapsack problem. We are given a set

of n items I = {1, . . . , n}, where each item i ∈ I
is an axis-aligned open rectangle (0, w(i)) × (0, h(i))
in the two-dimensional plane, and has an associated

profit p(i). Furthermore, we are given an axis-aligned

square knapsack K = [0, N ] × [0, N ]. W.l.o.g. we

next assume that all values w(i), h(i), p(i) and N are

positive integers. Our goal is to select a subset of items

OPT ⊆ I of maximum total profit opt = p(OPT ) :=∑
i∈OPT p(i) and to place them so that the selected

rectangles are pairwise disjoint and fully contained in the

knapsack. More formally, for each i ∈ OPT we have

to define a pair of coordinates (left(i), bottom(i)) that
specify the position of the bottom-left corner of i in the

packing. In other words, i is mapped into a rectangle

R(i) := (left(i), right(i)) × (bottom(i), top(i)), with
right(i) = left(i)+w(i) and top(i) = bottom(i)+h(i).
For any two i, j ∈ OPT , we must have R(i) ⊆ K and

R(i) ∩R(j) = ∅.
Besides being a natural mathematical problem,

2DK is well-motivated by practical applications. For

instance, one might want to place advertisements on a

board or a website, or cut rectangular pieces from a sheet

of some material. Also, it models a scheduling setting
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where each rectangle corresponds to a job that needs

some “consecutive amount” of a given resource (memory

storage, frequencies, etc.). In all these cases, dealing with

rectangular shapes only is a reasonable simplification and

often the developed techniques can be extended to deal

with more general instances.

2DK is NP-hard [1], and it was intensively studied

from the point of view of approximation algorithms. The

best known polynomial time approximation algorithm

for it is due to Jansen and Zhang and yields a (2 + ε)-
approximation [2]. This is the best known result even in

the cardinality case (with all profits being 1). However,
there are reasons to believe that much better polynomial

time approximation ratios are possible: there is a QPTAS

under the assumption that N = npoly(logn) [3], and there

are PTASs if the profit of each item equals its area [4],

if the size of the knapsack can be slightly increased

(resource augmentation) [5], [6], if all items are rela-

tively small [7] and if all input items are squares [8],

[9]. Note that, with no restriction on N , the current

best approximation for 2DK is 2 + ε even in quasi-
polynomial time1.
All prior polynomial-time approximation algorithms

for 2DK implicitly or explicitly exploit a container-
based packing approach. The idea is to partition the

knapsack into a constant number of axis-aligned rect-

angular regions (containers). The sizes (and therefore

positions) of these containers can be guessed in polyno-

mial time. Then items are packed inside the containers

in a simple way: either one next to the other from left

to right or from bottom to top (similarly to the one-

dimensional case), or by means of the simple greedy

Next-Fit-Decreasing-Height algorithm. Indeed, also the

QPTAS in [3] can be cast in this framework, with the

relevant difference that the number of containers in this

case is poly-logarithmic (leading to a quasi-polynomial

running time).

One of the major bottlenecks to achieve approximation

factors better than 2 (in polynomial-time) is that items

that are high and narrow (vertical items) and items that

are wide and thin (horizontal items) can interact in a

very complicated way. Indeed, consider the following

seemingly simple L-packing problem: we are given a

set of items i with either w(i) > N/2 (horizontal items)

or h(i) > N/2 (vertical items). Our goal is to pack

a maximum profit subset of them inside an L-shaped
region L = ([0, N ] × [0, hL]) ∪ ([0, wL] × [0, N ]), so
that horizontal (resp., vertical) items are packed in the

1The role of N in the running time is delicate, as shown by recent
results on the related strip packing problem [10], [11], [12], [13], [14].

bottom-right (resp., top-left) of L. To the best of our

knowledge, the best-known approximation ratio for L-

packing is 2+ε: Remove either all vertical or all horizon-

tal items, and then pack the remaining items by a simple

reduction to one-dimensional knapsack (for which an

FPTAS is known). It is unclear whether a container-

based packing can achieve a better approximation factor,

and we conjecture that this is not the case. As we

will see, a better understanding of L-packing will play

a major role in the design of improved approximation

algorithms for 2DK.

A. Our contribution

In this paper we break the 2-approximation barrier for

2DK. In order to do that, we substantially deviate for

the first time from pure container-based packings, which

are, either implicitly or explicitly, at the hearth of prior

work. Namely, we consider L&C-packings that combine

Oε(1) containers plus one L-packing of the above type

(see Fig.1.(a)), and show that one such packing has large

enough profit.

While it is easy to pack almost optimally items into

containers, the mentioned 2 + ε approximation for L-

packings is not sufficient to achieve altogether a better

than 2 approximation factor: indeed, the items of the L-

packing might carry all the profit! The main algorithmic

contribution of this paper is a PTAS for the L-packing

problem. It is easy to solve this problem optimally in

pseudo-polynomial time (Nn)O(1) by means of dynamic

programming. We show that a 1+ε approximation can be

obtained by restricting the top (resp., right) coordinates

of horizontal (resp., vertical) items to a proper set that

can be computed in polynomial time nOε(1). Given that,

one can adapt the above dynamic program to run in

polynomial time.

Theorem 1. There is a PTAS for the L-packing problem.

In order to illustrate the power of our approach, we

next sketch a simple 16
9 + O(ε) approximation for the

cardinality case of 2DK (details in Section III). By

standard arguments2 it is possible to discard large items

with both sides longer than ε ·N . The remaining items

have height or width smaller than ε ·N (horizontal and
vertical items, resp.). Let us delete all items intersecting

a random vertical or horizontal strip of width ε · N
inside the knapsack. We can pack the remaining items

into Oε(1) containers by exploiting the PTAS under one-

2There can be at most Oε(1) such items in any feasible solution,
and if the optimum solution contains only Oε(1) items we can solve
the problem optimally by brute force.
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dimensional resource augmentation for 2DK in [6]3. A

vertical strip deletes vertical items with O(ε) probability,
and horizontal ones with probability roughly propor-

tional to their width, and symmetrically for a horizontal

strip. In particular, let us call long the items with longer

side larger than N/2, and short the remaining items.

Then the above argument gives in expectation roughly

one half of the profit optlong of long items, and three

quarters of the profit optshort of short ones. This is

already good enough unless optlong is large compared

to optshort.
At this point L-packings and our PTAS come into

play. We shift long items such that they form 4 stacks

at the sides of the knapsack in a ring-shaped region,

see Fig.1.(b)-(c): this is possible since any vertical long

item cannot have a horizontal long item both at its left

and at its right, and vice versa. Next we delete the least

profitable of these stacks and rearrange the remaining

long items into an L-packing, see Fig.1.(d). Thus using

our PTAS for L-packings, we can compute a solution of

profit roughly three quarters of optlong. The reader might

check that the combination of these two algorithms gives

the claimed approximation factor.

Above we used either Oε(1) containers or one L-

packing: by combining the two approaches together and

with a more sophisticated case analysis we achieve the

following result:

Theorem 2. There is a polynomial-time 558
325 + ε < 1.72

approximation algorithm for cardinality 2DK.

For weighted 2DK we face severe technical complica-

tions for proving that there is a profitable L&C-packing.

One key reason is that in the weighted case we cannot

discard large items since even one such item might

contribute a large fraction to the optimal profit. In order

to circumvent these difficulties, we exploit the corridor-
partition at the hearth of the QPTAS for 2DK in [3] (in

turn inspired by prior work in [15]). Roughly speaking,

there exists a partition of the knapsack into Oε(1) corri-
dors, consisting of the concatenation of Oε(1) partially
overlapping rectangular regions (subcorridors). In [3] the
authors partition the corridors into a poly-logarithmic
number of containers. Their main algorithm then guesses

these containers in time npoly(logn). However, we can

only handle a constant number of containers in poly-

nomial time. Therefore, we present a different way to

partition the corridors into containers: here we lose the

3Technically this PTAS is not container-based, however we can show
that it can be cast in that framework. Our version of the PTAS simplifies
the algorithms and works also in the case with rotations: this might be
a handy black-box tool.

profit of a set of thin items, which in some sense play

the role of long items in the previous discussion. These

thin items fit in a very narrow ring at the boundary

of the knapsack and we map them to an L-packing in

the same way as in the cardinality case above. Some

of the remaining non-thin items are then packed into

Oε(1) containers that are placed in the (large) part

of the knapsack not occupied by the L-packing. Our

partition of the corridors is based on a somewhat intricate

case analysis that exploits the fact that long consecutive

subcorridors are arranged in the shape of rings or spirals:
this is used to show the existence of a profitable L&C-

packing.

Theorem 3. There is a polynomial-time 17
9 + ε < 1.89

approximation algorithm for (weighted) 2DK.

1) Rotation setting: In the variant of 2DK with
rotations (2DKR), we are allowed to rotate any rect-

angle i by 90 degrees. This means that i can also

be placed in the knapsack as a rectangle of the form

(left(i), left(i)+h(i))×(bottom(i), bottom(i)+w(i)).
The best known polynomial time approximation factor

for 2DKR (even for the cardinality case) is again 2+ ε
due to [2] and the mentioned QPTAS in [3] works also

for this case.

By using the techniques described above and exploit-

ing a few more ideas, we are also able to improve the

approximation factor for 2DKR. The basic idea is that

any thin item can now be packed inside a narrow vertical

strip (say at the right edge of the knapsack) by possibly

rotating it. This way we do not lose one quarter of the

profit due to the mapping to an L-packing and instead

place all items from the ring into the mentioned strip

(while we ensure that their total width is small). The

remaining short items are packed by means of a novel

resource contraction lemma: unless there is one huge
item that occupies almost the whole knapsack (a case that

we consider separately), we can pack almost one half of

the profit of non-thin items in a reduced knapsack where

one of the two sides is shortened by a factor 1−ε (hence
leaving enough space for the vertical strip). We remark

that here we heavily exploit the possibility to rotate

items. Thus, roughly speaking, we obtain either all profit

of non-thin items, or all profit of thin items plus one

half of the profit of non-thin items: this gives a 3/2 + ε
approximation. A further refinement of this approach

yields a 4/3 + ε approximation in the cardinality case.

We remark that, while resource augmentation is a well-

established notion in approximation algorithms, resource

contraction seems to be a rather novel direction to
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(a) (b) (c) (d)

Figure 1: (a) An L&C-packing with 4 containers, where the top-left container is packed by means of Next-Fit-

Decreasing-Height. (b) A subset of long items. (c) Such items are shifted into 4 stacks at the sides of the knapsack,

and the top stack is deleted. (d) The final packing into an L-shaped region.

explore.

Theorem 4. For any constant ε > 0, there exists
a polynomial-time 3

2 + ε approximation algorithm for
2DKR. In the cardinality case the approximation factor
can be improved to 4

3 + ε.

B. Other related work

The mentioned (2 + ε)-approximation for two-

dimensional knapsack [2] works in the weighted case

of the problem. However, in the unweighted case a

simpler (2 + ε)-approximation is known [16]. If one

can increase the size of the knapsack by a factor 1 + ε
in both dimensions then one can compute a solution of

optimal weight, rather than an approximation, in time

f(1/ε) ·nO(1) where the exponent of n does not depend

on ε [9] (for some suitable function f ). Similarly, for the

case of squares there is a (1+ε)-approximation algorithm

known with such a running time, i.e., an EPTAS [9].

This improves previous results such as a (5/4 + ε)-
approximation [17] and the mentioned PTAS [8]. Two-

dimensional knapsack is the separation problem when we

want to solve the configuration-LP for two-dimensional

bin-packing. Even though we do not have a PTAS for

the former problem, Bansal et al. [4] show how to solve

the latter LP to an (1 + ε)-accuracy using their PTAS

for two-dimensional knapsack for the special case where

the profit of each item equals its area. The best known

(asymptotic) result for two-dimensional bin packing is

due to Bansal and Khan [18] and it is based on this

configuration-LP, achieving an approximation ratio of

1.405 [19] which improves a series of previous results

[6], [20], [21], [22], [23]. See also the recent survey in

[24].

II. A PTAS FOR L-PACKINGS

In this section we present a PTAS for the problem of

finding an optimal L-packing. In this problem we are

given a set of horizontal items Ihor with width larger

than N/2, and a set of vertical items Iver with height

larger than N/2. Furthermore, we are given an L-shaped

region L = ([0, N ]×[0, hL])∪([0, wL]×[0, N ]). Our goal
is to pack a subset OPT ⊆ I := Ihor∪Iver of maximum

total profit opt = p(OPT ) :=
∑

i∈OPT p(i), such that

OPThor := OPT ∩ Ihor is packed inside the horizontal
box [0, N ] × [0, hL] and OPTver := OPT ∩ Iver is

packed inside the vertical box [0, wL] × [0, N ]. We

remark that packing horizontal and vertical items inde-

pendently is not possible due to the possible overlaps in

the intersection of the two boxes: this is what makes this

problem non-trivial, in particular harder than standard

(one-dimensional) knapsack.

Observe that in an optimal packing we can assume

w.l.o.g. that items in OPThor are pushed as far to

the right/bottom as possible. Furthermore, the items

in OPThor are packed from bottom to top in non-

increasing order of width. Indeed, it is possible to

permute any two items violating this property while

keeping the packing feasible. A symmetric claim holds

for OPTver. See Fig. 1.(d) for an illustration.

Given the above structure, it is relatively easy to define

a dynamic program (DP) that computes an optimal L-

packing in pseudo-polynomial time (Nn)O(1). The basic

idea is to scan items of Ihor (resp. Iver) in decreasing

order of width (resp., height), and each time guess if

they are part of the optimal solution OPT . At each step

either both the considered horizontal item i and vertical

item j are not part of the optimal solution, or there exist
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a guillotine cut4 separating i or j from the rest of OPT .
Depending on the cases, one can define a smaller L-

packing sub-instance (among N2 choices) for which the

DP table already contains a solution.

In order to achieve a (1 + ε)-approximation in poly-

nomial time nOε(1), we show that it is possible (with

a small loss in the profit) to restrict the possible top

coordinates of OPThor and right coordinates of OPTver

to proper polynomial-size subsets T and R, resp. We

call such an L-packing (T ,R)-restricted. By adapting

the above DP one obtains:

Lemma 5. An optimal (T ,R)-restricted L-packing can
be computed in time polynomial in m := n+ |T |+ |R|
using dynamic programming.

We will show that there exists a (T ,R)-restricted L-

packing with the desired properties.

Lemma 6. There exists a (T ,R)-restricted L-packing
solution of profit at least (1− 2ε)opt, where the sets T
and R have cardinality at most nO(1/ε1/ε) and can be
computed in polynomial time based on the input (without
knowing OPT ).

Lemmas 5 and 6 together immediately imply a PTAS

for L-packings (showing Theorem 1). The rest of this

section is devoted to the proof of Lemma 6.

We will describe a way to delete a subset of items

Dhor ⊆ OPThor with p(Dhor) ≤ 2εp(OPThor), and
shift down the remaining items OPThor \Dhor so that

their top coordinate belongs to a set T with the desired

properties. Symmetrically, we will delete a subset of

items Dver ⊆ OPTver with p(Dver) ≤ 2εp(OPTver),
and shift to the left the remaining items OPTver \Dver

so that their right coordinate belongs to a set R with

the desired properties. We remark that shifting down

(resp. to the left) items of OPThor (resp., OPTver)

cannot create any overlap with items of OPTver (resp.,

OPThor). This allows us to reason on each such set

separately.

We next focus on OPThor only: the construction for

OPTver is symmetric. For notational convenience we let

1, . . . , nhor be the items of OPThor in non-increasing

order of width and from bottom to top in the starting

optimal packing. We remark that this sequence is not

necessarily sorted (increasingly or decreasingly) in terms

of item heights: this makes our construction much more

complicated.

4A guillotine cut is an infinite, axis-parallel line � that partitions the
items in a given packing in two subsets without intersecting any item.

Let us first introduce some useful notation. Consider

any subsequence B = {bstart, . . . , bend} of consecutive

items (interval). For any i ∈ B, we define topB(i) :=∑
k∈B,k≤i h(k) and bottomB(i) = topB(i) − h(i).

The growing subsequence G = G(B) = {g1, . . . , gh}
of B (with possibly non-contiguous items) is defined

as follows. We initially set g1 = bstart. Given the

item gi, gi+1 is the smallest-index (i.e., lowest) item

in {gi + 1, . . . , bend} such that h(gi+1) ≥ h(gi). We

halt the construction of G when we cannot find a proper

gi+1. For notational convenience, define gh+1 = bend+1.
We let BG

i := {gi + 1, . . . , gi+1 − 1} for i = 1, . . . , h.
Observe that the sets BG

i partition B \ G. We will

crucially exploit the following simple property.

Lemma 7. For any gi ∈ G and any j ∈
{bstart, . . . , gi+1 − 1}, h(j) ≤ h(gi).

Proof. The items j ∈ BG
i = {gi+1, . . . , gi+1−1} have

h(j) < h(gi). Indeed, any such j with h(j) ≥ h(gi)
would have been added to G, a contradiction.

Consider next any j ∈ {bstart, . . . gi−1}. If j ∈ G the

claim is trivially true by construction of G. Otherwise,

one has j ∈ BG
k for some gk ∈ G, gk < gi. Hence, by

the previous argument and by construction of G, h(j) <
h(gk) ≤ h(gi).

The intuition behind our construction is as follows.

Consider the growing sequence G = G(OPThor), and
suppose that p(G) ≤ ε · p(OPThor). Then we might

simply delete G, and shift the remaining items OPThor\
G = ∪jB

G
j as follows. Let 	x
y denote the smallest

multiple of y not smaller than x. We consider each set

BG
j separately. For each such set, we define a baseline

vertical coordinate basej = 	bottom(gj)
h(gj)/2, where
bottom(gj) is the bottom coordinate of gj in the original

packing. We next round up the height of i ∈ BG
j to

ĥ(i) := 	h(i)
h(gj)/(2n), and pack the rounded items

of BG
j as low as possible above the baseline. The reader

might check that the possible top coordinates for rounded

items fall in a polynomial size set (using Lemma 7). It

is also not hard to check that items are not shifted up.

We use recursion in order to handle the case p(G) >
ε ·p(OPThor). Rather than deleting G, we consider each

BG
j and build a new growing subsequence for each such

set. We repeat the process recursively for rhor many

rounds. Let Gr be the union of all the growing subse-

quences in the recursive calls of level r. Since the sets

Gr are disjoint by construction, there must exist a value

rhor ≤ 1
ε such that p(Grhor ) ≤ ε ·p(OPThor). Therefore

we can apply the same shifting argument to all growing

subsequences of level rhor (in particular we delete all of
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Figure 2: Illustration of the delete&shift procedure with rhor = 2. The dashed lines indicate the value of the

new baselines in the different stages of the algorithm. (Left) The starting packing. Dark and light grey items denote

the growing sequences for the calls with r = 2 and r = 1, resp. (Middle) The shift of items at the end of the

recursive calls with r = 1. Note that light grey items are all deleted, and dark grey items are not shifted. (Right)

The shift of items at the end of the process. Here we assume that the middle dark grey item is deleted.

them). In the remaining growing subsequences we can

afford to delete 1 out of 1/ε consecutive items (with a

small loss of the profit), and then apply a similar shifting

argument.

We next describe our approach in more detail. We

exploit a recursive procedure delete&shift. This

procedure takes as input two parameters: an interval

B = {bstart, . . . , bend}, and an integer round param-
eter r ≥ 1. Procedure delete&shift returns a set

D(B) ⊆ B of deleted items, and a shift function

shift : B \ D(B) → N. Intuitively, shift(i) is the

value of the top coordinate of i in the shifted packing

w.r.t. a proper baseline value which is implicitly defined.

We initially call delete&shift(OPThor, rhor), for
a proper rhor ∈ {1, . . . , 1

ε} to be fixed later. Let

(D, shift) be the output of this call. The desired set

of deleted items is Dhor = D, and in the final packing

top(i) = shift(i) for any i ∈ OPThor \Dhor (the right

coordinate of any such i is N ).

The procedure behaves differently in the cases r = 1
and r > 1. If r = 1, we compute the growing sequence

G = G(B) = {g1 = bstart, . . . , gh}, and set D(B) =
G(B). Consider any set BG

j = {gj + 1, . . . , gj+1 − 1},
j = 1, . . . , h. Let basej := 	bottomB(gj)
h(gj)/2. We

define for any i ∈ BG
j ,

shift(i) = basej +
∑

k∈BG
j ,k≤i

	h(k)
h(gj)/(2n).

Observe that shift is fully defined since ∪h
j=1B

G
j =

B \D(B).

If instead r > 1, we compute the growing sequence

G = G(B) = {g1 = bstart, . . . , gh}. We next delete

a subset of items D′ ⊆ G. If h < 1
ε , we let D′ =

D′(B) = ∅. Otherwise, let Gk = {gj ∈ G : j = k
(mod 1/ε)} ⊆ G, for k ∈ {0, . . . , 1/ε − 1}. We set

D′ = D′(B) = {d1, . . . , dp} = Gx where x =
argmink∈{0,...,1/ε−1} p(Gk).

Proposition 8. One has p(D′) ≤ ε ·p(G). Furthermore,
any subsequence {gx, gx+1, . . . , gy} of G with at least
1/ε items contains at least one item from D′.

Consider each set BG
j = {gj + 1, . . . , gj+1 − 1},

j = 1, . . . , h: We run delete&shift(BG
j , r− 1). Let

(Dj , shiftj) be the output of the latter procedure, and

shiftmax
j be the maximum value of shiftj . We set the

output set of deleted items to D(B) = D′ ∪ (∪h
j=1Dj).

It remains to define the function shift. Consider any
set BG

j , and let dq be the deleted item in D′ with largest

index (hence in topmost position) in {bstart, . . . , gj}:
define baseq = 	bottomB(dq)
h(dq)/2. If there is no

such dq , we let dq = 0 and baseq = 0. For any i ∈ BG
j

we set:

shift(i) = baseq +
∑

gk∈G,dq<gk≤gj
h(gk)

+
∑

gk∈G,dq≤gk<gj
shiftmax

k + shiftj(i).

Analogously, if gj �= dq , we set

shift(gj) = baseq +
∑

gk∈G,dq<gk≤gj
h(gk)

+
∑

gk∈G,dq≤gk<gj
shiftmax

k .

This concludes the description of delete&shift.
We next show that the final packing has the desired

properties. Next lemma shows that the total profit of

deleted items is small for a proper choice of the starting

round parameter rhor.

Lemma 9. There is a choice of rhor ∈ {1, . . . , 1
ε}

such that the final set Dhor of deleted items satisfies
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p(Dhor) ≤ 2ε · p(OPThor).

Proof. Let Gr denote the union of the sets G(B)
computed by all the recursive calls with input round

parameter r. Observe that by construction these sets are

disjoint. Let also Dr be the union of the sets D′(B) on
those calls (the union of sets D(B) for r = rhor). By
Proposition 8 and the disjointness of sets Gr one has

p(Dhor) =
∑

1≤r≤rhor
p(Dr)

≤ ε ·∑r<rhor
p(Gr) + p(Drhor )

≤ ε · p(OPThor) + p(Drhor ).

Again by the disjointness of sets Gr (hence Dr), there

must exists a value of rhor ∈ {1, . . . , 1
ε} such that

p(Drhor ) ≤ ε · p(OPThor). The claim follows.

Next lemma shows that, intuitively, items are only

shifted down w.r.t. the initial packing.

Lemma 10. Let (D, shift) be the output of some execu-
tion of delete&shift(B, r). Then, for any i ∈ B\D,
shift(i) ≤ topB(i).

Proof. We prove the claim by induction on r. Consider
first the case r = 1. In this case, for any i ∈ BG

j :

shift(i)

=	bottomB(gj)
h(gj)/2 +
∑

k∈BG
j ,k≤i

	h(k)
h(gj)/(2n)

≤topB(gj)−
1

2
h(gj) +

∑
k∈BG

j ,k≤i

h(k) + n · h(gj)
2n

=topB(i).

Assume next that the claim holds up to round parameter

r − 1 ≥ 1, and consider round r. For any i ∈ BG
j with

baseq = 	bottomB(dq)
h(dq)/2, one has

shift(i)

=	bottomB(dq)
h(dq)/2 +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

shiftmax
k + shiftj(i)

≤topB(dq) +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

topBG
k
(gk+1 − 1) + topBG

j
(i)

=topB(i).

An analogous chain of inequalities shows that

shift(gj) ≤ topB(gj) for any gj ∈ G \ D′. A

similar proof works for the special case baseq = 0.

It remains to show that the final set of values of

top(i) = shift(i) has the desired properties. This is

the most delicate part of our analysis. We define a

set T r of candidate top coordinates recursively in r.
Set T 1 contains, for any item j ∈ Ihor, and any

integer 1 ≤ a ≤ 4n2, the value a · h(j)
2n . Set T r, for

r > 1 is defined recursively w.r.t. to T r−1. For any

item j, any integer 0 ≤ a ≤ 2n − 1, any tuple of

b ≤ 1/ε − 1 items j(1), . . . , j(b), and any tuple of

c ≤ 1/ε values s(1), . . . , s(c) ∈ T r−1, T r contains

the sum a · h(j)
2 +

∑b
k=1 h(j(k)) +

∑c
k=1 s(k). Note

that sets T r can be computed based on the input only

(without knowing OPT ). It is easy to show that T r has

polynomial size for r = Oε(1).

Lemma 11. For any integer r ≥ 1, |T r| ≤
(2n)

r+2+(r−1)ε

εr−1 .

Proof. We prove the claim by induction on r. The claim
is trivially true for r = 1 since there are n choices for

item j and 4n2 choices for the integer a, hence altogether
at most n · 4n2 < 8n3 choices. For r > 1, the number

of possible values of T r is at most

n · 2n · (
1/ε−1∑
b=0

nb) · (
1/ε∑
c=0

|T r−1|c) ≤ 4n2 · n 1
ε−1 · |T r−1| 1ε

≤ (2n)
1
ε+1((2n)

r+1+(r−2)ε

εr−2 )
1
ε ≤ (2n)

r+2+(r−1)ε

εr−1 .

Next lemma shows that the values of shift returned
by delete&shift for round parameter r belong to

T r, hence the final top coordinates belong to T :=
T rhor .

Lemma 12. Let (D, shift) be the output of some execu-
tion of delete&shift(B, r). Then, for any i ∈ B\D,
shift(i) ∈ T r.

Proof. We prove the claim by induction on r. For the

case r = 1, recall that for any i ∈ BG
j one has

shift(i) = 	bottomB(gj)
h(gj)/2
+

∑
k∈BG

j ,k≤i

	h(k)
h(gj)/(2n).

By Lemma 7, bottomB(gj) =
∑

k∈B,k<gj
h(k) ≤ (n−

1) ·h(gj). By the same lemma,
∑

k∈BG
j ,k≤i h(k) ≤ (n−
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1) · h(gj). It follows that

shift(i) ≤ 2(n− 1) · h(gj) +
h(gj)

2
+ (n− 1) · h(gj)

2n

≤ 4n2 · h(gj)
2n

.

Hence shift(i) = a · h(gj)
2n for some integer 1 ≤ a ≤

4n2, and shift(i) ∈ T 1 for j = gj and for a proper

choice of a.

Assume next that the claim is true up to r−1 ≥ 1, and
consider the case r. Consider any i ∈ BG

j , and assume

0 < baseq = 	bottomB(dq)
h(dq)/2. One has:

shift(i) = 	bottomB(dq)
h(dq)/2 +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

shiftmax
k + shiftj(i).

By Lemma 7, bottomB(dq) ≤ (n − 1)h(dq), therefore

	bottomB(dq)
h(dq)/2 = a · h(dq)
2 for some integer

1 ≤ a ≤ 2(n−1)+1. By Proposition 8, |{gk ∈ G, dq <
gk ≤ gj}| ≤ 1/ε − 1. Hence

∑
gk∈G,dq<gk≤gj

h(gk) is

a value contained in the set of sums of b ≤ 1/ε−1 item

heights. By inductive hypothesis shiftmax
k , shiftj(i) ∈

T r−1. Hence by a similar argument the value of∑
gk∈G,dq≤gk<gj

shiftmax
k + shiftj(i) is contained in

the set of sums of c ≤ 1/ε − 1 + 1 values taken from

T r−1. Altogether, shift(i) ∈ T r. A similar argument,

without the term shiftj(i), shows that shift(gj) ∈ T r

for any gj ∈ G \ D′. The proof works similarly in the

case baseq = 0 by setting a = 0. The claim follows.

Proof of Lemma 6. We apply the procedure

delete&shift to OPThor as described before,

and a symmetric procedure to OPTver. In particular

the latter procedure computes a set Dver ⊆ OPTver

of deleted items, and the remaining items are shifted

to the left so that their right coordinate belongs to a

set R := Rrver , defined analogously to the case of

T := T rhor , for some integer rver ∈ {1, . . . , 1/ε}
(possibly different from rhor, though by averaging this

is not critical).

It is easy to see that the profit of non-deleted items sat-

isfies the claim by Lemma 9 and its symmetric version.

Similarly, the sets T and R satisfy the claim by Lemmas

11 and 12, and their symmetric versions. Finally, w.r.t.

the original packing non-deleted items in OPThor and

OPTver can be only shifted to the bottom and to the

left, resp., by Lemma 10 and its symmetric version. This

implies that the overall packing is feasible.

III. A SIMPLE IMPROVED APPROXIMATION FOR

CARDINALITY 2DK

In this section we present a simple improved ap-

proximation for the cardinality case of 2DK. We can

assume that the optimal solution OPT ⊆ I satisfies that

|OPT | ≥ 1/ε3 since otherwise we can solve the problem
optimally by brute force in time nO(1/ε3). Therefore, we

can discard from the input all large items with both sides

larger than ε · N : any feasible solution can contain at

most 1/ε2 such items, and discarding them decreases

the cardinality of OPT at most by a factor 1 + ε. Let
OPT denote this slightly sub-optimal solution obtained

by removing large items.

We will need the following technical lemma, that

holds also in the weighted case (see also Fig.1.(b)-(d)).

Lemma 13. Let H and V be given subsets of items
from some feasible solution with width and height strictly
larger than N/2, resp. Let hH and wV be the total height
and width of items of H and V , resp. Then there exists
an L-packing of a set APX ⊆ H ∪ V with p(APX) ≥
3
4 (p(H) + p(V )) into the area L = ([0, N ]× [0, hH ]) ∪
([0, wV ]× [0, N ]).

Proof. Let us consider the packing of H ∪ V . Consider

each i ∈ H that has no j ∈ V to its top (resp., to its

bottom) and shift it up (resp. down) until it hits another

i′ ∈ H or the top (resp, bottom) side of the knapsack.

Note that, since h(j) > N/2 for any j ∈ V , one of the

two cases above always applies. We iterate this process

as long as possible to move any such i. We perform

a symmetric process on V . At the end of the process

all items in H ∪ V are stacked on the 4 sides of the

knapsack5.

Next we remove the least profitable of the 4 stacks:

by a simple permutation argument we can guarantee that

this is the top or right stack. We next discuss the case

that it is the top one, the other case being symmetric. We

show how to repack the remaining items in a boundary L
of the desired size by permuting items in a proper order.

In more detail, suppose that the items packed on the left

(resp., right and bottom) have a total width of wl (resp.,

total width of wr and total height of hb). We next show

that there exists a packing into L′ = ([0, N ]× [0, hb])∪
([0, wl+wr]× [0, N ]). We prove the claim by induction.

Suppose that we have proved it for all packings into

left, right and bottom stacks with parameters w′l, w
′
r,

5It is possible to permute items in the left stack so that items
appear from left to right in non-increasing order of height, and
symmetrically for the other stacks. This is not crucial for this proof,
but we implemented this permutation in Fig.1.(c).
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and h′ such that h′ < hb or w′l + w′r < wl + wr or

w′l + w′r = wl + wr and w′r < wr.

In the considered packing we can always find a

guillotine cut �, such that one side of the cut contains

precisely one lonely item among the leftmost, rightmost

and bottommost items. Let � be such a cut. First assume

that the lonely item j is the bottommost one. Then by

induction the claim is true for the part above � since the

part of the packing above � has parameters wl, wr, and

h − h(j). Thus, it is also true for the entire packing.

A similar argument applies if the lonely item j is the

leftmost one.

It remains to consider the case that the lonely item j
is the rightmost one. We remove j temporarily and move

all other items by w(j) to the right. Then we insert j
at the left (in the space freed by the previous shifting).

By induction, the claim is true for the resulting packing

since it has parameters wl + w(j), wr − w(j), and h,
resp.

For our algorithm, we consider the following three

packings. The first uses an L that occupies the full

knapsack, i.e., wL = hL = N . Let OPTlong ⊆ OPT
be the items in OPT with height or width strictly larger

than N/2 and define OPTshort = OPT \OPTlong. We

apply Lemma 13 to OPTlong and hence obtain a packing

for this L with a profit of at least 3
4p(OPTlong). We run

our PTAS for L-packings from Theorem 1 on this L, the

input consisting of all items in I having one side longer

than N/2. Hence we obtain a solution with profit at least

( 34 −O(ε))p(OPTlong).
For the other two packings we employ the one-

sided resource augmentation PTAS from [6]. We ap-

ply this algorithm to the slightly reduced knapsacks

[0, N ]× [0, N/(1 + ε)] and [0, N/(1 + ε)]× [0, N ] such
that in both cases it outputs a solution that fits in the

full knapsack [0, N ] × [0, N ] and whose profit is by at

most a factor 1 +O(ε) worse than the optimal solution

for the respective reduced knapsacks. We will prove in

Theorem 14 that one of these solutions yields a profit of

at least ( 12 − O(ε))p(OPT ) + ( 14 − O(ε))p(OPTshort)
and hence one of our packings yields a ( 169 + ε)-
approximation.

Theorem 14. There is a 16
9 + ε approximation for the

cardinality case of 2DK.

Proof. Let OPT be the considered optimal solution with

opt = p(OPT ). Recall that there are no large items.

Let also OPTvert ⊆ OPT be the (vertical) items with

height more than ε ·N (hence with width at most ε ·N ),

and OPThor = OPT \OPTver (horizontal items). Note

that with this definition both sides of a horizontal item

might have a length of at most ε ·N . We let optlong =
p(OPTlong) and optshort = p(OPTshort).
As mentioned above, our L-packing PTAS achieves a

profit of at least ( 34−O(ε))optlong which can be seen by

applying Lemma 13 with H = OPTlong ∩OPThor and

V = OPTlong∩OPTver. In order to show that the other

two packings yield a good profit, consider a random
horizontal strip S = [0, N ]×[a, a+ε·N ] (fully contained
in the knapsack) where a ∈ [0, (1 − ε)N) is chosen

unformly at random. We remove all items of OPT
intersecting S. Each item in OPThor and OPTshort ∩
OPTver is deleted with probability at most 3ε and
1
2 + 2ε, resp. Therefore the total profit of the remaining

items is in expectation at least (1 − 3ε)p(OPThor) +
( 12 − 2ε)p(OPTshort ∩ OPTvert). Observe that the re-

sulting solution can be packed into a restricted knapsack

of size [0, N ] × [0, N/(1 + ε)] by shifting down the

items above the horizontal strip. Therefore, when we

apply the resource augmentation algorithm in [6] to the

knapsack [0, N ] × [0, N/(1 + ε)], up to a factor 1 − ε,
we will find a solution of (deterministically!) at least

the same profit. In other terms, this profit is at least

(1−4ε)p(OPThor)+( 12 − 5
2ε)p(OPTshort∩OPTvert).

By a symmetric argument, we obtain a solu-

tion of profit at least (1 − 4ε)p(OPTver) + ( 12 −
5
2ε)p(OPTshort∩OPThor) when we apply the algorithm
in [6] to the knapsack [0, N/(1 + ε)] × [0, N ]. Thus

the best of the latter two solutions has profit at least

( 12 − 2ε)optlong + ( 34 − 13
4 ε)optshort = ( 12 − 2ε)opt +

( 14 − 5
4ε)optshort. The best of our three solutions has

therefore value at least ( 9
16 −O(ε))opt where the worst

case is achieved for roughly optlong = 3 · optshort.

In the above result we use either an L-packing or a

container packing. The 558
325+ε approximation claimed in

Theorem 2 is obtained by a careful combination of these

two packings. In particular, we consider configurations

where long items (or a subset of them) can be packed

into a relatively small L, and pack part of the remaining

short items in the complementary rectangular region (us-

ing container packings and Steinberg’s algorithm [25]).

The proof is based on a long and tedious case analysis,

that we omit for reasons of space.

IV. WEIGHTED CASE WITHOUT ROTATIONS

As mentioned in the introduction, for the weighted

case we exploit the corridor-partition in [3]. Due to

reasons of space, we will give only the high level

intuition and omit the technical details. We consider an

almost optimal solution OPT . By standard arguments,
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we can assume that OPT does not contain any small
item, with both sides much smaller than N (such items

can be packed very accurately in the residual free space

at the end of the process).

Recall that we are given a constant number of cor-

ridors, each one consisting of a constant number of

subcorridors. We partition each subcorridor into a con-

stant number of containers. We start the partition from a

subcorridor that is either at the end of a corridor or that

is the central subcorridor of 3 consecutive subcorridors

arranged in an U -shaped manner. We partition this

subcorridor into a constant number of containers of

roughly the same size. It is possible to pack almost

all items contained in the considered subcorridor into

the containers. The remaining items would fit into an

additional very thin container, however, our space does

not suffice to add it to the rest of the packing. The

constructed containers induce a partition of the rest of

the corridor into a constant number of smaller corridors,

and the process is then applied recursively until each

subcorridor has been partitioned into containers. This

yields a constant number of containers overall. We call

the items F packed into the containers fat, and the

remaining items T thin.

We say that a subcorridor is long if (essentially) its

longer side is longer than N/2, and it is short otherwise.
We denote by L the items that are contained in a long

subcorridor and by S the remaining items. We define

LF = L ∩ F and analogously SF , LT , and ST . We

observe that if a corridor has several consecutive long

subcorridors then those are arranged in the shape of

spirals or rings. One can show that if a subcorridor is

processed last (among all subcorridors of some corridor)

in the above container partition then we can pack all its

items into the containers and hence do not loose the

profit of any of its items (i.e., there are no thin items in

this subcorridor).

In the partitioning routine above we have some flexi-

bility in the order in which we partition the subcorridors,

which also results in different sets F and T . Depending
on this order, a case analysis (involving 7 cases) shows

that we can obtain container-based solutions roughly of

profit either p(LF ) + p(SF ), or p(LF ) + p(SF )/2 +
p(LT )/2, or p(LF ) + p(SF )/2 + p(ST )/2. This is not
yet sufficient to a achieve a better than 2 approximation:

at this point our PTAS for L-packings comes into play.

Thin items are either very wide and thin (horizontal)
or very tall and narrow (vertical). In the above partition

method we can enforce that the total height/width of hor-

izontal/vertical thin items is an arbitrarily small fraction

of N . Therefore, we can pack (roughly) at least three

quarters of the profit of LT in a very thin L-shaped

region at the boundary of the knapsack by a similar

argument as in Section III, and then pack also ST in

a slightly larger L-shaped region. The space left free by

this L-packing is almost the entire knapsack. A random

strip argument similar to the one in Section III shows that

in the remaining space there is a packing with constantly

many containers which achieves at least half of the profit

of SF . Altogether we essentially get a profit at least
3
4p(LT ) + p(ST ) + 1

2p(SF ). One can show that the

best solution among the ones provided above yields a

(17/9 +O(ε))-approximation algorithm where the term

O(ε) is due to using PTASs for computing the actual

packing and certain omitted technical details.

V. IMPROVED APPROXIMATION FOR CARDINALITY

2DKR

In this section we present a simple polynomial time

(3/2 + ε)-approximation algorithm for 2DKR for the

cardinality case. We next assume w.l.o.g. that ε is

sufficiently small.

Consider some optimal solution OPT to 2DKR, with

an associated packing in the knapsack. We crucially

exploit the following resource contraction lemma, which

is our main new idea in the rotation case.

Lemma 15. (Resource Contraction Lemma) For given
positive constants ε ≤ 1/13 and εsmall < ε

1
2ε+1,

suppose that there exists a feasible packing of a set
of items M , with |M | ≥ 1/ε3small. Then it is possible
to pack a subset M ′ ⊆ M of cardinality at least
2
3 (1 − O(ε))|M | into [0,

(
1− ε

1
2ε+1

)
N ] × [0, N ] if

rotations are allowed.

Given the above lemma, it is not hard to achieve the

desired approximation.

Theorem 16. There is a 3
2 + ε approximation for the

cardinality case of 2DKR.

Proof. Let OPT be some optimal solution with an

associated packing. If |OPT | ≤ 1
ε3small

, then we can

solve the problem optimally by brute force. Otherwise,

by Lemma 15 there exists OPT ′ ⊆ OPT of cardinality

at least 2
3 (1 − O(ε))|OPT | that can be packed inside

K ′ = [0,
(
1− ε

1
2ε+1

)
N ] × [0, N ]. Therefore, applying

the resource augmentation PTAS in [6] toK ′ with proper
constants, one obtains a feasible packing of at least

|OPT ′| items into the original knapsack.

It remains to prove Lemma 15. W.l.o.g., assume

h(i) ≥ w(i) for all items i ∈ M . Let us remove
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from M all items that are larger than εsmallN in both

dimensions. Let M2 be the resulting set: observe that

|M2| ≥ (1− εsmall)|M |.
We next show how to remove from M2 a set of

cardinality at most ε|M2| such that the remaining items

M3 are either very tall or not too tall. The exact meaning

will be given next. We use the notation [k] = {1, . . . , k}
for a positive integer k.

Lemma 17. Given any constant 1/2 > ε > 0, there
exists a value i ∈ [	1/(2ε)
] such that all items in M2

having height in ((1 − 2εi)N, (1 − εi+1)N ] have total
cardinality at most ε|M2|.
Proof. Let Ki be the set of items in M2 with height in

((1 − 2εi)N, (1 − εi+1)N ] for i ∈ [	1/(2ε)
]. An item

can belong to at most two such sets as ε < 1/2. Thus,
the smallest such set has cardinality at most ε|M2|.

We remove from M2 the elements from the set Ki of

minimum cardinality guaranteed by the above lemma,

and let M3 be the resulting set. We also define εs = εi

for the same i. Thus, εs ≥ ε1/2ε > εsmall/ε. Note that

the items in M3 have height either at most (1− 2εs)N
or above (1− ε · εs)N .

For any δ > 0 denote the strips of width N and height

δN at the top and bottom of the knapsack by ST,δ :=
[0, N ] × [(1 − δ)N,N ] and SB,δ := [0, N ] × [0, δN ],
resp. Similarly, denote the strips of height N and width

δN to the left and right of the knapsack by SL,δ :=
[0, δN ] × [0, N ] and SR,δ := [(1 − δ)N,N ] × [0, N ],
resp. The set of items in M3 intersected by and fully

contained in strip SK,δ are denoted by EK,δ and CK,δ ,

resp. Obviously CK,δ ⊆ EK,δ . Let a(I) denote the total

area of items in I , i.e., a(I) =
∑

i∈I w(i) · h(i).

Lemma 18. Either a(EL,εs ∪ ER,εs) ≤ (1+8εs)
2 N2 or

a(ET,εs ∪ EB,εs) ≤ (1+8εs)
2 N2.

Proof. Let us define V := EL,εs ∪ ER,εs and H :=
ET,εs ∪ EB,εs . Note that, a(V ) + a(H) = a(V ∪H) +
a(V ∩H). Clearly a(V ∪H) ≤ N2 since all items fit into

the knapsack. On the other hand, except possibly four

items (the ones that contain at least one of the points

(εsN, εsN), ((1− εs)N, εsN), (εsN, (1− εs)N), ((1−
εs)N, (1− εs)N)) all other items in V ∩H lie entirely

within the four strips SL,εs ∪ SR,εs ∪ ST,εs ∪ SB,εs .

Thus a(V ∩ H) ≤ 4εsN
2 + 4εsmallN

2 ≤ 8εsN
2, as

εsmall ≤ εs. We can conclude that min{a(V ), a(H)} ≤
a(V ∪H)+a(V ∩H)

2 ≤ (1+8εs)
2 N2.

Now we state Steinberg’s Theorem that we use in

Lemma 20.

Theorem 19 (A. Steinberg [25]). We are given a set of
items I ′ and a knapsack Q = [0, w]× [0, h]. Let wmax ≤
w and hmax ≤ h be the maximum width and maximum
height among the items in I ′ respectively. Also we denote
x+ := max(x, 0). If

2a(I ′) ≤ wh− (2wmax − w)+(2hmax − h)+

then I ′ can be packed into Q.

Lemma 20. Given a constant 0 < εa < 1/2 and a set
of items M̃ := {1, . . . , k} with w(i) ≤ εsmallN for all
i ∈ M̃ . If a(M̃) ≤ (1/2+εa)N

2, then a subset of M̃ of
cardinality at least (1 − 2εs − 2εa)|M̃ | can be packed
into [0, (1− εs)N ]× [0, N ].

Proof. W.l.o.g., assume the items in M̃ are given in

nondecreasing order according to their area. Note that

a(i) ≤ εsmallN
2 ≤ εs

2 N
2 for any i ∈ M̃ . Let

S := {1, . . . , j} be such that
(1−2εs)

2 N2 ≤∑j
i=1 a(i) ≤

(1−εs)
2 N2 and

∑j+1
i=1 a(i) > (1−εs)

2 N2. Then from

Theorem 19, S can be packed into [0, (1−εs)N ]×[0, N ].
As we considered items in the order of nondecreasing

area,
|S|
|M̃ | ≥

( 1
2−εs)

( 1
2+εa)

. Thus, |S| ≥
(
1− (εa+εs)

( 1
2+εa)

)
|M̃ | >

(1− 2εa − 2εs)|M̃ |.
From Lemma 18, we can assume w.l.o.g. that

a(ET,εs ∪ EB,εs) ≤ (1+8εs)
2 N2. Let X be the set of

items inM3 that intersect both ST,εs and SB,εs and Y :=
{ET,εs ∪EB,εs} \X . Define Z := M3 \ {X ∪ Y } to be

the rest of the items. Let us define w(X) =
∑

i∈X w(i).
Now there are two cases.

Case A. w(X) ≥ 12ε·εsN . From Lemma 17, all items in

X intersect both ST,ε·εs and SB,ε·εs . So the removal of

X∪CT,ε·εs∪CB,ε·εs creates a few empty strips of height

N and total width of w(X). By a simple permutation

argument, all items in Y ∪Z can be packed inside [0, N−
w(X)]× [0, N ], leaving an empty vertical strip of width

w(X) on the right side of the knapsack. Next we rotate

CT,ε·εs and CB,ε·εs and pack them in two vertical strips,

each of width ε · εsN . Note that w(i) ≤ ε · εsN for all

i ∈ X . Now take items in X by nondecreasing width, till

their total width is in [w(X)−4ε ·εsN,w(X)−3ε ·εsN ]
and pack them into another vertical strip. The cardinality

of this set is at least
(w(X)−4ε·εsN)

w(X) |X| ≥ 2
3 |X|, where

the last inequality follow by the Case A assumption.

Hence, at least 2
3 |X|+ |Y |+ |Z| ≥ 2

3 (|X|+ |Y |+ |Z|)
items can be packed into [0, (1− ε · εs)N ]× [0, N ].
Case B. w(X) < 12ε · εsN . Observe that Y = (ET,εs \
X)∪̇(EB,εs \X), hence |Y | = |ET,εs \X|+ |EB,εs \X|.
Assume w.l.o.g. that |EB,εs \X| ≥ |Y |/2 ≥ |ET,εs \X|.
Then remove ET,εs . We can pack X on top of M \
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ET,εs as 12ε · εs ≤ εs − ε · εs for ε ≤ 1/13. This

gives a packing of |X|+ |Z|+ |Y |
2 . On the other hand,

as a(X ∪ Y ) = a(ET,εs ∪ EB,εs) ≤ (1+8εs)
2 N2, from

Lemma 20, it is possible to pack at least (1 − 2εs −
8εs)|X ∪ Y | ≥ (1 − 10εs)(|X| + |Y |) many items into

[0, (1− ε · εs)N ]× [0, N ].
Thus we can always pack a set of items of cardinality

at least
max{(1− 10εs)(|X|+ |Y |), |X|+ |Z|+ |Y |

2 }
≥ 1

3 (1− 10εs)(|X|+ |Y |) + 2
3 (|X|+ |Z|+

|Y |
2 )

≥ 2
3 (1− 10εs)(|X|+ |Y |+ |Z|)

= 2
3 (1− 10εs)|M3|.

This concludes the proof of Lemma 15.

The 4
3 + ε approximation mentioned in Theorem 4 is

obtained by combining the above approach with some

techniques developed for 2DK in the weighted case.

In particular, we use part of the vertical free strip

guaranteed by the resource contraction lemma to pack

the thin items as defined in that section.

VI. WEIGHTED CASE WITH ROTATIONS

In the weighted case it is not possible to simply

discard large items as this might be too costly. We

first show that if there is no massive item, i.e., an item

with both side lengths at least (1 − ε)N , then we can

achieve an analogous resource contraction lemma to get

a container packing with a profit of ( 23 −O(ε))p(OPT ).
We separately consider the case when there exists a

massive item and show that even in that case there exists

a container packing with ( 23−O(ε))p(OPT ) profit. This
gives us a ( 32 + ε)-approximation, see Theorem 4.

VII. OPEN PROBLEMS

The main problem that we left open is to find a PTAS,

if any, for 2DK and 2DKR. This would be interesting

even in the cardinality case. We believe that a better

understanding of natural generalizations of L-packings

might be useful. For example, is there a PTAS for ring-
packing instances arising by shifting of long items? This

would directly lead to an improved approximation factor

for 2DK (though not to a PTAS). Is there a PTAS for

L-packings with rotations? Our improved approximation

algorithms for 2DKR are indeed based on a different

approach. Is there a PTAS for O(1) instances of L-

packing? This would also lead to an improved approxi-

mation factor for 2DK, and might be an important step

towards a PTAS.
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