
A Proof of CSP Dichotomy Conjecture

Dmitriy Zhuk

Department of Mechanics and Mathematics
Lomonosov Moscow State University

Moscow, Russia
Email: zhuk@intsys.msu.ru

Abstract—Many natural combinatorial problems can be
expressed as constraint satisfaction problems. This class of
problems is known to be NP-complete in general, but certain
restrictions on the form of the constraints can ensure tractabil-
ity. The standard way to parameterize interesting subclasses
of the constraint satisfaction problem is via finite constraint
languages. The main problem is to classify those subclasses that
are solvable in polynomial time and those that are NP-complete.
It was conjectured that if a core of a constraint language has
a weak near unanimity polymorphism then the corresponding
constraint satisfaction problem is tractable, otherwise it is NP-
complete.

In the paper we present an algorithm that solves Constraint
Satisfaction Problem in polynomial time for constraint lan-
guages having a weak near unanimity polymorphism, which
proves the remaining part of the conjecture.

Keywords-Constraint satisfaction problem; CSP dichotomy;
computational complexity

I. INTRODUCTION

Formally, the Constraint Satisfaction Problem (CSP) is

defined as a triple 〈X,D,C〉, where

• X = {x1, . . . , xn} is a set of variables,

• D = {D1, . . . , Dn} is a set of the respective domains,

• C = {C1, . . . , Cq} is a set of constraints,

where each variable xi can take on values in the nonempty

domain Di, every constraint Cj ∈ C is a pair (tj , ρj) where

tj is a tuple of variables of length mj , called the constraint
scope, and ρj is an mj-ary relation on the corresponding

domains, called the constraint relation.

The question is whether there exists a solution to

〈X,D,C〉, that is a mapping that assigns a value from Di

to every variable xi such that for each constraints Cj the

image of the constraint scope is a member of the constraint

relation.

In this paper we consider only CSP over finite do-

mains. The general CSP is known to be NP-complete [1],

[2]; however, certain restrictions on the allowed form of

constraints involved may ensure tractability (solvability in

polynomial time) [3], [4], [5], [6], [7], [8]. Below we provide

a formalization to this idea.

To simplify the presentation we assume that all the

domains D1, . . . , Dn are subsets of a finite set A. By RA we

denote the set of all finitary relations on A, that is, subsets

of Am for some m. Then all the constraint relations can be

viewed as relations from RA.

For a set of relations Γ ⊆ RA by CSP(Γ) we denote

the Constraint Satisfaction Problem where all the constraint

relations are from Γ. The set Γ is called a constraint lan-
guage. Another way to formalize the Constraint Satisfaction

Problem is via conjunctive formulas. Every h-ary relation

on A can be viewed as a predicate, that is, a mapping

Ah → {0, 1}. Suppose Γ ⊆ RA, then CSP(Γ) is the

following decision problem: given a formula

ρ1(x1,1, . . . , x1,n1
) ∧ · · · ∧ ρs(xs,1, . . . , x1,ns

)

where ρi ∈ Γ for every i; decide whether this formula is

satisfiable.

It is well known that many combinatorial problems can

be expressed as CSP(Γ) for some constraint language Γ.

Moreover, for some sets Γ the corresponding decision prob-

lem can be solved in polynomial time; while for others it is

NP-complete. It was conjectured that CSP(Γ) is either in P,

or NP-complete [9].

Conjecture 1. Suppose Γ ⊆ RA is a finite set of relations.
Then CSP(Γ) is either solvable in polynomial time, or NP -
complete.

We say that an operation f : An → A preserves
the relation ρ ∈ RA of arity m if for any tu-

ples (a1,1, . . . , a1,m), . . . , (an,1, . . . , an,m) ∈ ρ the tuple

(f(a1,1, . . . , an,1), . . . , f(a1,m, . . . , an,m)) is in ρ. We say

that an operation preserves a set of relations Γ if it preserves

every relation in Γ. A mapping f : A → A is called an
endomorphism of Γ if it preserves Γ.

Theorem 1. [7] Suppose Γ ⊆ RA. If f is an endomorphism
of Γ, then CSP (Γ) is polynomially reducible to CSP (f(Γ))
and vice versa, where f(Γ) is a constraint language with
domain f(Γ) defined by f(Γ) = {f(ρ) : ρ ∈ Γ}.

A constraint language is a core if every endomorphism

of Γ is a bijection. It is not hard to show that if f is an

endomorphism of Γ with minimal range, then f(Γ) is a core.

Another important fact is that we can add all singleton unary

relations to a core constraint language without increasing the

complexity of its CSP. By σ=a we denote the unary relation

{a}.

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.38

331

Theorem 2. [7] Let Γ ⊆ RA be a core constraint language,
and Γ′ = Γ∪{σ=a | a ∈ A}, then CSP (Γ′) is polynomially
reducible to CSP (Γ).

Therefore, to prove Conjecture 1 it is sufficient to consider

only the case when Γ contains all unary singleton relations.

In other words, all the predicates x = a, where a ∈ A, are

in the constraint language Γ.

In [10] Schaefer classified all tractable constraint lan-

guages over two-element domain. In [11] Bulatov gener-

alized the result for three-element domain. His dichotomy

theorem was formulated in terms of a G-set. Later, the

dichotomy conjecture was formulated in several different

forms (see [7]).

The result of Mckenzie and Maróti [12] allows us to

formulate the dichotomy conjecture in the following nice

way. An operation f is called a weak near-unanimity op-
eration (WNU) if f(x, x, . . . , x) = x and f(y, x, . . . , x) =
f(x, y, x, . . . , x) = · · · = f(x, x, . . . , x, y).

Conjecture 2. Suppose Γ ⊆ RA is a finite set of relations,
{σ=a | a ∈ A} ⊆ Γ. Then CSP(Γ) can be solved
in polynomial time if there exists a WNU preserving Γ;
CSP (Γ) is NP-complete otherwise.

One direction of this conjecture follows from [12].

Theorem 3. [12] Suppose Γ ⊆ RA, {σ=a | a ∈ A} ⊆ Γ.
If there exists no WNU preserving Γ, then CSP(Γ) is NP-
complete.

The dichotomy conjecture was proved for many special

cases: for CSPs over undirected graphs [13], for CSPs

over digraphs with no sources or sinks [14], for constraint

languages containing all unary relations [15], and many

other. Recently, a proof of the dichotomy conjecture was

announced by Andrei Bulatov [16]. Note that Bulatov’s

algorithm also works for infinite constraint languages. More

information about the algebraic approach to CSP can be

found in [17].

In this paper we present an algorithm that solves CSP(Γ)
in polynomial time if Γ is preserved by a WNU, and there-

fore prove the dichotomy conjecture. This is a short version

of the paper published online [18] with some auxiliary

statements and proofs omitted.

The paper is organized as follows. In Section II we give

main definitions, in Section III we explain the algorithm. In

Section IV we prove a theorem that explains the main idea of

the algorithm and formulate theorems that prove correctness

of the algorithm. In Section V we give an example that

explains how the algorithm works for a system of linear

equations in Z4.

In the next section we give the remaining definitions. In

Section VII we formulate statements we will need in the

proof of main theorems (see [18] for the proof).

In the last section we prove the main theorems of this

paper formulated in Section IV. First, we explain how a

linear variable can be added and prove the existence of a

bridge. Finally, we use simultaneous induction to prove the

main theorems.

II. DEFINITIONS

A set of operations is called a clone if it is closed

under composition and contains all projections. For a set

of operations M by Clo(M) we denote the clone generated

by M .
A WNU w is called special if x ◦ (x ◦ y) = x ◦ y, where

x ◦ y = w(x, . . . , x, y). It is not hard to show that for any

WNU w on a finite set there exists a special WNU w′ ∈
Clo(w).

A relation ρ ⊆ A1 × · · · × An is called subdirect if for

every i the projection of ρ onto the i-th coordinate is Ai.

For a relation ρ by pri1,...,is(ρ) we denote the projection of

ρ onto the coordinates i1, . . . , is.

A. Algebras
An algebra is a pair A := (A;F), where A is a finite set,

called universe, and F is a family of operations on A, called

basic operations of A. In the paper we always assume that

we have a special WNU preserving all constraint relations.

Therefore, every domain D can be viewed as an algebra

(D;w). By Clo(A) we denote the clone generated by all

basic operations of A.
An equivalence relation σ on the universe of an algebra A

is called a congruence if it is preserved by every operation of

the algebra. A congruence (an equivalence relation) is called

proper, if it is not equal to the full relation A×A. We use

standard universal algebraic notions of a term operation, a

subalgebra, a factor algebra, a product of algebras, see [19].

We say that a subalgebra R = (R;FR) is a subdirect
subalgebra of A×B if R is a subdirect relation in A×B.

B. Polynomially complete algebras
An algebra is called polynomially complete (PC) if the

clone generated by FA and all constants on A is the clone

of all operations on A.

C. Linear algebra
A finite algebra (A;wA) is called linear if it is isomorphic

to (Zp1
× · · · × Zps

;x1 + . . . + xn) for prime numbers

p1, . . . , ps. It is not hard to show that for every algebra

(B;wB) there exists a minimal congruence σ, called the
minimal linear congruence, such that (B;wB)/σ is linear.

D. Absorption
Let B = (B;FB) be a subalgebra of A = (A;FA). We

say that B absorbs A if there exists t ∈ Clo(A) such that

t(B,B, . . . , B,A,B, . . . , B) ⊆ B for any position of A. In

this case we also say that B is an absorbing subuniverse of

A. If the operation t can be chosen binary then we say that

B is a binary absorbing subuniverse of A.

332

E. Center

Suppose A = (A;wA) is a finite algebra with a WNU

operation. C ⊆ A is called a center if there exists an algebra

B = (B;wB) with a WNU operation of the same arity and

a subdirect subalgebra (R;wR) of A×B such that there is

no binary absorbing subuniverse in B and

C = {a ∈ A | ∀b ∈ B : (a, b) ∈ R}.

F. CSP instance

An instance of the constraint satisfaction problem is called

a CSP instance. Sometimes we use the same letter for a CSP

instance and for the set of constraints of this instance. For

a variable z by Dz we denote the domain of the variable z.

We say that z1−C1− z2−· · ·−Cl−1− zl is a path in Θ
if zi, zi+1 are in the scope of Ci for every i. We say that a
path z1 −C1 − z2 − . . . Cl−1 − zl connects b and c if there

exists ai ∈ Dzi for every i such that a1 = b, al = c, and the

projection of Ci onto zi, zi+1 contains the tuple (ai, ai+1).

A CSP instance is called cycle-consistent if for every i
and a ∈ Di, any path starting and ending with xi in Θ
connects a and a.

A CSP instance Θ is called linked if for every variable

xi appearing in a constraint of Θ and every a, b ∈ Di there

exists a path in Θ that connects a and b. Suppose X′ ⊆ X.

Then we can define a projection of Θ onto X′, that is a CSP

instance where variables are elements of X′ and constraints

are projections of constraints of Θ onto X′. We say that an

instance Θ is fragmented if the set of variables X can be

divided into 2 nonempty disjoint sets X1 and X2 such that

the constraint scope of any constraint of C ∈ Θ either has

variables only from X1, or only from X2.

A CSP instance Θ is called irreducible if for any subset

of constraints Θ′ ⊆ Θ and any subset of variables X′ ⊆ X
the projection of Θ′ onto X′ is fragmented, linked, or its

solution set is subdirect.

We say that a constraint ((y1, . . . , yt); ρ1) is weaker than a

constraint ((z1, . . . , zs); ρ2) if {y1, . . . , yt} ⊆ {z1, . . . , zs},
ρ2(z1, . . . , zs) → ρ1(y1, . . . , yt), and ρ1(y1, . . . , yt) �→
ρ2(z1, . . . , zs).

Let D′i ⊆ Di for every i. A constraint C of Θ is

called crucial in (D′1, . . . , D
′
n) if Θ has no solutions

in (D′1, . . . , D
′
n) but the replacement of C ∈ Θ by

all weaker constraints gives an instance with a solution

in (D′1, . . . , D
′
n). A CSP instance Θ is called crucial

in (D′1, . . . , D
′
n) if every constraint of Θ is crucial in

(D′1, . . . , D
′
n).

Remark 1. Suppose Θ has no solutions in (D′1, . . . , D
′
n).

Then we can replace constraints of Θ by all weaker con-
straints until we get a CSP instance that is crucial in
(D′1, . . . , D

′
n).

III. ALGORITHM

A. Main part

Suppose we have a constraint language Γ0 that is pre-

served by a WNU operation. As it was mentioned before,

Γ0 is also preserved by a special WNU operation w. Let

k0 be the maximal arity of the relations in Γ0. By Γ we

denote the set of all relations of arity at most k0 that are

preserved by w. Obviously, Γ0 ⊆ Γ, therefore CSP(Γ0) can

be reduced to CSP(Γ).
In this section we provide an algorithm that solves

CSP(Γ) in polynomial time. Suppose we have a CSP

instance Θ = 〈X,D,C〉, where X = {x1, . . . , xn} is a set

of variables, D = {D1, . . . , Dn} is a set of the respective

domains, C = {C1, . . . , Cq} is a set of constraints. Let the

arity of the WNU w be equal to m.

The algorithm is recursive, the list of all possible recursive

calls is given in the end of this subsection. One of the main

recursive calls is the reduction of a subuniverse Di to D′i
such that either Θ has a solution with xi ∈ D′i, or it has no

solutions at all.

Step 1. Check whether Θ is cycle-consistent. If not then we
reduce a domain Di for some i or state that there are no
solutions.

Step 2. Check whether Θ is irreducible. If not then we
reduce a domain Di for some i or state that there are no
solutions.

Step 3. Replace every constraint of Θ by all weaker
constraints. Recursively calling the algorithm, check that
the obtained instance has a solution with xi = b for
every i ∈ {1, 2, . . . , n} and b ∈ Di. If not, reduce Di to
the projection onto xi of the solution set of the obtained
instance.

By Theorem 6 we cannot loose the only solution while

doing the following two steps.

Step 4. If Di has a binary absorbing subuniverse Bi � Di

for some i, then we reduce Di to Bi.

Step 5. If Di has a center Ci � Di for some i, then we
reduce Di to Ci.

By Theorem 7 we can do the following step.

Step 6. If there exists a congruence σ on Di such that the
algebra (Di;w)/σ is polynomially complete, then we reduce
Di to any equivalence class of σ.

By Theorem 4, it remains to consider the case when for

every domain Di there exists a congruence σi on Di such

that (Di;w)/σi is linear, i.e. it is isomorphic to (Zp1
×· · ·×

Zpl
;x1+ · · ·+xm) for prime numbers p1, . . . , pl. Moreover,

σi is proper if |Di| > 1.

We denote Di/σi by Li. We define a new CSP

instance ΘL with domains L1, . . . , Ln. To every con-

333

straint ((xi1 , . . . , xis); ρ) ∈ Θ we assign a constraint

((x′i1 , . . . , x
′
is
); ρ′), where ρ′ ⊆ Li1 × · · · × Lis and

(E1, . . . , Es) ∈ ρ′ ⇔ (E1 × · · · × Es) ∩ ρ �= ∅. The

constraints of ΘL are all constraints that are assigned to

the constraints of Θ.

Since every relation on Zp1
× · · · × Zpl

preserved by

x1 + . . . + xm is known to be a conjunction of linear

equations, the instance ΘL can be viewed as a system

of linear equations in Zp for different p. To simplify the

explanation we include variables with different domains

in one equation. Note that all essential variables of every

equation have the same domain.

Our general idea is to add some linear equations to ΘL so

that for any solution of ΘL there exists the corresponding

solution of Θ. We start with the empty set of equations Eq,

which is a set of constraints on L1, . . . , Ln.

Step 7. Put Eq := ∅.

Step 8. Solve the system of linear equations ΘL ∪ Eq
and choose independent variables y1, . . . , yk. If it has no
solutions then Θ has no solutions. If it has just one solution,
then, recursively calling the algorithm, solve the reduction
of Θ to this solution. Either we get a solution of Θ, or Θ
has no solutions.

Then there exist Z = Zq1×· · ·×Zqk and a linear mapping

φ : Z → L1×· · ·×Ln such that any solution of ΘL∪Eq can

be obtained as φ(a1, . . . , ak) for some (a1, . . . , ak) ∈ Z.

Note that for any tuple (a1, . . . , ak) ∈ Z we can check

recursively whether Θ has a solution in φ(a1, . . . , ak). To

do this, we just need to solve an easier CSP instance (on

smaller domains). Similarly, we can check whether Θ has

a solution in φ(a1, . . . , ak) for every (a1, . . . , ak) ∈ Z. To

do this, we just need to check the existence of a solution in

φ(0, . . . , 0, 1, 0, . . . , 0) and φ(0, . . . , 0) for any position of

1.

Step 9. If Θ has a solution in φ(0, . . . , 0), then Θ has a
solution.

Step 10. Put Θ′ := Θ. Iteratively remove from Θ′ all
constraints that are weaker than some other constraints of
Θ′.

Step 11. For every constraint C ∈ Θ′
1) Let Ω be obtained from Θ′ by replacing a constraint

C ∈ Θ′ by all weaker constraints without dummy
variables. Remove from Ω all constraints that are
weaker than some other constraints of Ω.

2) If Ω has no solutions in φ(a1, . . . , ak) for some
(a1, . . . , ak) ∈ Z, then put Θ′ := Ω. Repeat Step 11.

At this moment, the CSP instance Θ′ has the following

property. Θ′ has no solutions in φ(b1, . . . , bk) for some

(b1, . . . , bk) ∈ Z, but if we replace any constraint C ∈ Θ′

by all weaker constraints, then we get an instance that has

a solution in φ(a1, . . . , ak) for every (a1, . . . , ak) ∈ Z.

Therefore, Θ′ is crucial in φ(b1, . . . , bk).

In the remaining steps we will find a new linear equation

that can be added to ΘL. Suppose V is an affine subspace

of Zh
p of dimension h − 1, thus V is the solution set of a

linear equation c1x1+· · ·+chxh = c0. Then the coefficients

c0, c1, . . . , ch can be learned (up to a multiplicative constant)

by (p · h + 1) queries of the form “(a1, . . . , ah) ∈ V ?” as

follows. First, we need at most (h + 1) queries to find a

tuple (d1, . . . , dh) /∈ V . Then, to find this equation it is

sufficient to check for every a and every i whether the tuple

(d1, . . . , di−1, a, di+1, . . . , dh) satisfies this equation.

Step 12. Suppose Θ′ is not linked. For each i from 1 to k

1) Check that for every (a1, . . . , ai) ∈ Zq1 × · · · × Zqi

there exist (ai+1, . . . , ak) ∈ Zqi+1 × · · · × Zqk and a
solution of Θ′ in φ(a1, . . . , ak).

2) If yes, go to the next i.
3) If no, then find an equation c1y1+· · ·+ciyi = c0 such

that for every (a1, . . . , ai) ∈ Zq1×· · ·×Zqi satisfying
c1a1 + · · · + ciai = c0 there exist (ai+1, . . . , ak) ∈
Zqi+1×· · ·×Zqk and a solution of Θ′ in φ(a1, . . . , ak).

4) Add the equation c1y1 + · · ·+ ciyi = c0 to Eq.
5) Go to Step 8.

If Θ′ is linked, then by Theorem 8 there exists a con-

straint ((xi1 , . . . , xis), ρ) in Θ′ and a subuniverse σ of

Di1 × · · · × Dis × Zp such that the projection of σ onto

the first s coordinates is bigger than ρ but the projection of

σ ∩ (Di1 × · · · × Dis × {0}) onto the first s coordinates

is equal to ρ. Then we add a new variable z with domain

Zp and replace ((xi1 , . . . , xis), ρ) by ((xi1 , . . . , xis , z), σ).
We denote the obtained instance by Υ. Let L be the set of

all tuples (a1, . . . , ak, b) ∈ Zq1 × · · · × Zqk × Zp such that

Υ has a solution with z = b in φ(a1, . . . , ak). We know

that the projection of L onto the first n coordinates is a full

relation. Therefore L is defined by one linear equation. If

this equation is z = b for some b �= 0, then both Θ′ and Θ
have no solutions. Otherwise, we put z = 0 in this equation

and get an equation that describes all (a1, . . . , ak) such that

Θ′ has a solution in φ(a1, . . . , ak). It remains to find this

equation.

Step 13. Suppose Θ′ is linked.

1) Find an equation c1y1 + · · · + ckyk = c0 such that
for every (a1, . . . , ak) ∈ (Zq1 × · · · × Zqk) satisfying
c1a1 + · · · + ckak = c0 there exists a solution of Θ′

in φ(a1, . . . , ak).
2) If the equation was not found then Θ has no solutions.
3) Add the equation c1a1 + · · ·+ ckak = c0 to Eq.
4) Go to Step 8.

Note that every time we reduce our domains, we get

constraint relations that are still from Γ.

We have four types of recursive calls of the algorithm:

334

1) we reduce one domain Di, for example to a binary

absorbing subuniverse or to a center (Steps 1, 4, 5, 6).

2) we solve an instance that is not linked. In this case

we divide the instance into the linked parts and solve

each of them independently (Steps 2, 12).

3) we replace every constraint by all weaker constraints

and solve an easier CSP instance (Step 3).

4) we reduce every domain Di such that |Di| > 1 (Steps

8, 9, 11, 13).

Lemma 5 states the depth of the recursive calls of type 3

is at most |Γ|. It is easy to see that the depth of the recursive

calls of type 2 and 4 is at most |A|.
B. Remaining parts

In this section we explain Steps 1, 2, and 12 of the

algorithm, which were not clarified in the previous section.

Provide cycle-consistency. To provide cycle-consistency

it is sufficient to use constraint propagation providing (2,3)-

consistency. Formally, it can be done in the following way.

First, for every pair of variables (xi, xj) we consider the

intersections of projections of all constraints onto these

variables. The corresponding relation we denote by ρi,j . For

every i, j, k ∈ {1, 2, . . . , n} we replace ρi,j by ρ′i,j where

ρ′i,j(x, y) = ∃z ρi,j(x, y) ∧ ρi,k(x, z) ∧ ρk,j(z, y). It is not

hard to see that this replacement does not change the solution

set.

We repeat this procedure while we can change some ρi,j .

If at some moment we get a relation ρi,j that is not subdirect

in Di×Dj , then we can either reduce Di or Dj , or, if ρi,j is

empty, state that there are no solutions. If we cannot change

any relation ρi,j and every ρi,j is subdirect in Di×Dj , then

the original CSP instance is cycle-consistent.

Solve the instance that is not linked. Suppose the

instance Θ is not linked and not fragmented, then it can

be solved in the following way. We say that an element

di ∈ Di and an element dj ∈ Dj are linked if there exists a

path that connects di and dj . Let P be the set of pairs (i; a)
such that i ∈ {1, 2, . . . , n}, a ∈ Di. Then P can be divided

into the linked components.

It is easy to see that it is sufficient to solve the problem for

every linked component and join the results. Precisely, for a

linked component by D′i we denote the set of all elements

d such that (i, d) is in the component. It is easy to see

that ∅ � D′i � Di for every i. Therefore, the reduction to

(D′1, . . . , D
′
n) is a CSP instance on smaller domains.

Check irreducibility. For every k ∈ {1, 2, . . . , n} and

every maximal congruence σk on Dk we do the following.

1) Put I = {k}.
2) Choose a constraint C having the variable xi in the

scope for some i ∈ I , choose another variable xj from

the scope such that j /∈ I .

3) Denote the projection of C onto (xi, xj) by δ.

4) Put σj(x, y) = ∃x′∃y′δ(x, x′) ∧ δ(y, y′) ∧ σi(x
′, y′).

If σj is a proper equivalence relation, then add j to I .

5) go to the next C, xi, and xj in 2).

As a result we get a set I and a congruence σi on Di for

every i ∈ I . Put X′ = {xi | i ∈ I}. It follows from the

construction that for every equivalence class Ek of σk and

every i ∈ I there exists a unique equivalence class Ei of σi

such that there can be a solution with xk ∈ Ek and xi ∈ Ei.

Thus, for every equivalence class of σk we have a reduction

to the instance on smaller domains. Then for every i and

a ∈ Ei we consider the corresponding reduction and check

whether there exists a solution with xi = a.
Thus, we can check whether the solution set of the

projection of the instance onto X′ is subdirect or empty. If

it is empty then we state that there are no solutions. If it is

not subdirect, then we can reduce the corresponding domain.

If it is subdirect, then we go to the next k ∈ {1, 2, . . . , n}
and next maximal congruence σk on Dk, and repeat the

procedure.

IV. CORRECTNESS OF THE ALGORITHM

A. Rosenberg completeness theorem
The main idea of the algorithm is based on a beautiful

result obtained by Ivo Rosenberg in 1970, who found all

maximal clones on a finite set. Applying this result to the

clone generated by a WNU together with all constant opera-

tions, we can show that every algebra with a WNU operation

has a binary absorption, a center, or it is polynomially

complete or linear modular some congruence.

Theorem 4. Suppose A = (A;w) is an algebra, w is
a special WNU of arity m. Then one of the following
conditions hold:

1) there exists a binary absorbing set B � A,
2) there exists a center C � A,
3) there exists a proper congruence σ on A such that

(A;w)/σ is polynomially complete,
4) there exists a proper congruence σ on A such that

(A;w)/σ is isomorphic to (Zp;x1 + · · ·+ xm).

Proof: Let us prove this statement by induction on the

size of A. If we have a binary absorbing subuniverse in A
then there is nothing to prove. Let M be the clone generated

by w and all constant operations on A. If M is the clone of

all operations, then (A;w) is polynomially complete.
Otherwise, by Rosenberg Theorem [20], M belongs to

one of the following maximal clones.

1) Maximal clone of monotone operations;

2) Maximal clone of autodual operations;

3) Maximal clone defined by an equivalence relation;

4) Maximal clone of quasi-linear operations;

5) Maximal clone defined by a central relation;

6) Maximal clone defined by an h-universal relation.

Let us consider all the cases.

1) The minimal element of the partial order can be

viewed as a center. Since there is no binary absorbing

subuniverse, we have a center in A.

335

2) Constants are not autodual operations. This case can-

not happen.

3) Let δ be a maximal congruence on A. We consider

a factor algebra (A;w)/δ and apply the inductive

assumption.

a) If A/δ has a binary absorbing subuniverse B′ ⊆
A/δ, then we can check that

⋃
E∈B′ E is a binary

absorbing subuniverse of A.

b) If A/δ has a center C ′ ⊆ A/σ, then we can

check that
⋃

E∈C′ E is a center of A.

c) Suppose (A/δ)/σ is polynomially complete.

Since δ is a maximal congruence, σ is an equality

relation and A/δ is polynomially complete.

d) Suppose (A/δ)/σ is isomorphic to (Zp;x1 +
. . . + xm). Since δ is a maximal congruence, σ
is an equality relation and A/δ is isomorphic to

(Zp;x1 + . . .+ xm).

4) By Lemma 6.4 from [21], we know that

w(x1, . . . , xm) = x1 + . . . + xm, where + is

the operation in an abelian group. We assume that A
has no nontrivial congruences, otherwise we refer to

case 3). Then the algebra A is simple and isomorphic

to (Zp;x1 + · · ·+ xm) for a prime number p.

5) We consider the central relation ρ. Let k be the arity

of ρ. It is not hard to see that the existence of a

binary absorbing subuniverse on A× · · · ×A︸ ︷︷ ︸
k−1

implies

the existence of a binary absorbing subuniverse on A.

Therefore, the center of ρ can be viewed as a center.

6) By Corollary 5.10 from [21] this case cannot happen.

B. Correctness of the algorithm
Lemma 5. The depth of the recursive calls of type 3 in the
algorithm is less than |Γ|.

Proof: First, we introduce a partial order on the set of

relations in Γ in the following way. We say that ρ1 ≤ ρ2 if

one of the following conditions hold

1) the arity of ρ1 is less than the arity of ρ2.

2) the arity of ρ1 equals the arity of ρ2, pri(ρ1) ⊆
pri(ρ2) for every i, prj(ρ1) �= prj(ρ2) for some j.

3) the arity of ρ1 equals the arity of ρ2, pri(ρ1) =
pri(ρ2) for every i, and ρ1 ⊇ ρ2.

It is easy to see that any reduction makes every relation

smaller or does not change it. Since our constraint language

Γ is finite, there can be at most |Γ| recursive calls of type 3.

The following three theorems will be proved in Sec-

tion VIII.

Theorem 6. Suppose Θ is a cycle-consistent irreducible
CSP instance, B is a binary absorbing set or a center of
Di. Then Θ has a solution if and only if Θ has a solution
with xi ∈ B.

Theorem 7. Suppose Θ is a cycle-consistent irreducible
CSP instance, there does not exist a binary absorbing
subuniverse or a center on Dj for every j, (Di;w)/σ is
a polynomially complete algebra, E is an equivalence class
of σ. Then Θ has a solution if and only if Θ has a solution
with xi ∈ E.

Theorem 8. Suppose the following conditions hold:
1) Θ is a cycle-consistent irreducible CSP instance with

domain set (D1, . . . , Dn);
2) there does not exist a binary absorbing subuniverse or

a center on Dj for every j;
3) if we replace every constraint of Θ by all weaker

constraints then the obtained instance has a solution
with xi = b for every i and b ∈ Di;

4) ΘL is Θ factorized by minimal linear congruences;
5) (D′1, . . . , D

′
n) is a solution of ΘL, and Θ is crucial

in (D′1, . . . , D
′
n).

Then there exists a constraint ((xi1 , . . . , xis), ρ) in Θ and
a subuniverse ζ of Di1 × · · · × Dis × Zp such that the
projection of ζ onto the first s coordinates is bigger than ρ
but the projection of ζ ∩ (Di1 × · · · ×Dis × {0}) onto the
first s coordinates is equal to ρ.

V. AN EXAMPLE IN Z4

In this section we demonstrate the main part of the

algorithm for a system of linear equations in Z4. Suppose

we have a system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + 2x2 + x3 + x4 = 0

2x1 + x2 + x3 + x4 = 0

x1 + x2 = 2

x1 + x2 + 2x3 + 2x4 = 0

(1)

The minimal congruence σ such that (Z4;x1+. . .+x5)/σ
is linear is an equivalence relation modulo 2.

We write the corresponding system of linear equations in

Z2, where x′i = xi mod 2.⎧⎪⎨
⎪⎩

x′1 + x′3 + x′4 = 0

x′2 + x′3 + x′4 = 0

x′1 + x′2 = 0

(2)

We choose independent variables x′1 and x′3, and write the

general solution: x′1 = x′1, x
′
2 = x′1, x

′
3 = x′3, x

′
4 = x′1 + x′3.

We check that (1) doesn’t have a solution, corresponding to

x′1 = x′3 = 0. Let us remove the last equation from (1).⎧⎪⎨
⎪⎩

x1 + 2x2 + x3 + x4 = 0

2x1 + x2 + x3 + x4 = 0

x1 + x2 = 2

(3)

We check that (3) still has no solutions corresponding to

x′1 = x′3 = 0.

We check that if we remove any equation from (3), then

for any a1, a3 ∈ Z2 there will be a solution corresponding

336

to x′1 = a1 and x′3 = a3. Hence we need to add exactly

one equation to describe all pairs (a1, a3) such that (3) has

a solution corresponding to x′1 = a1 and x′3 = a3. Let the

equation be c1x
′
1 + c3x

′
3 = c0. We need to find c1, c3, and

c0.

Since (3) has a solution corresponding to x′1 = 1, x′3 = 0,

but no solutions for x′1 = 0, x′3 = 1, the equation is x′1 = 1.

We add this equation to (2) and solve the new system of

linear equations in Z2.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′1 + x′3 + x′4 = 0

x′2 + x′3 + x′4 = 0

x′1 + x′2 = 0

x′1 = 1

(4)

The general solution of this system is x′1 = 1, x′2 = 1,

x′3 = x′3, x′4 = x′3 + 1, where x′3 is an independent

variable. We go back to (1), and check whether it has a

solution corresponding to x′3 = 0. Thus, we find a solution

(1, 1, 0, 1).

While solving the system of equations, we just solved

systems of linear equations in the field Z2 and constraint

satisfaction problems on 2 element set (which are also

equivalent to system of equations in Z2).

VI. THE REMAINING DEFINITIONS

A. Additional notations

We say that the i-th variable of a relation ρ is compatible
with the congruence σ if (a1, . . . , an) ∈ ρ and (ai, bi) ∈ σ
implies (a1, . . . , ai−1, bi, ai+1, . . . , an) ∈ ρ. We say that a

relation is compatible with σ if every variable of this relation

is compatible with σ.

We say that a congruence σ is irreducible if it cannot

be represented as an intersection of other binary relations

δ1, . . . , δs compatible with σ. For an irreducible congruence

σ on a set A by σ∗ we denote the minimal binary relation

δ � σ compatible with σ.

For a relation ρ by Con(ρ, i) we denote the binary relation

σ(y, y′) defined by

∃x1 . . . ∃xi−1∃xi+1 . . . ∃xnρ(x1, . . . , xi−1, y, xi+1, . . . , xn)

∧ρ(x1, . . . , xi−1, y
′, xi+1, . . . , xn).

For a constraint C = ρ(x1, . . . , xn), by Con(C, xi) we

denote Con(ρ, i).

A subuniverse A′ of A is called a PC subuniverse if

A′ = E1 ∩ · · · ∩ Es, where Ei is an equivalence class of a

congruence σi such that A/σi is a PC algebra.

For an algebra A by ConLin(A) we denote the minimal

linear congruence. A subuniverse of A is called a linear
subuniverse if it is compatible with ConLin(A).

B. Variety of algebras

We consider the variety of all algebras A = (A;w) such

that w is a special WNU operation of arity m. In the paper

every algebra and every domain is considered as an algebra

in this variety. Every relation ρ ⊆ A1 × · · · ×An appearing

in the paper is a subalgebra of A1 × · · · × An for some

algebras A1, . . . ,An of this variety.

C. Formulas

Every variable x appearing in the paper has its domain,

which we denote by Dx. A set of constraints is called a

formula. Sometimes we write a formula as C1 ∧ · · · ∧ Cn.

For example, a CSP instance can be viewed as a formula.

For a formula Ω by Var(Ω) we denote the set of all

variables of Ω. For a formula Ω by Expanded(Ω) we denote

the set of all formulas Ω′ such that there exists a mapping

S : Var(Ω′)→ Var(Ω) satisfying the following conditions:

1) for every constraint (ρ; (x1, . . . , xn)) of Ω′ either vari-

ables S(x1), . . . , S(xn) are different and the constraint

(ρ; (S(x1), . . . , S(xn))) is weaker than or equal to

some constraint of Ω, or ρ is a binary reflexive relation

and S(x1) = S(x2);
2) if a variable x appears in Ω and Ω′ then S(x) = x.

Remark 2. It is easy to check for every cycle-consistent
irreducible CSP instance Θ that any instance Θ′ ∈
Expanded(Θ) is also cycle-consistent and irreducible.

For a formula Θ and a variable x of this formula by

LinkedCon(Θ, x) we denote the congruence on the set Dx

defined as follows: (a, b) ∈ LinkedCon(Θ, x) if there exists

a path in Θ that connects a and b.

D. Critical relations and parallelogram property

We say that a relation has parallelogram property if

any permutation of variables in ρ satisfies the following

implication

∀α1, β1, α2, β2 : (α1β2, β1α2, β1β2 ∈ ρ⇒ α1α2 ∈ ρ).

We say that the i-th variable of a relation ρ is rectangular,

if for every (ai, bi) ∈ Con(ρ, i) and (a1, . . . , an) ∈ ρ we

have (a1, . . . , ai−1, bi, ai+1, . . . , an) ∈ ρ. We say that a

relation is rectangular if all of its variables are rectangular.

The following facts can be easily seen: if the i-th variable of

ρ is rectangular then Con(ρ, i) is a congruence; if a relation

has parallelogram property then it is rectangular.

A relation ρ ⊆ A1×· · ·×An is called critical if it cannot

be represented as an intersection of other subalgebras of

A1 × · · · ×An and it has no dummy variables.

A constraint is called critical if the constraint relation is

critical.

337

E. Reductions

A CSP instance is called 1-consistent if every constraint

of the instance is subdirect.

Suppose the domain set of the instance Θ is D =
(D1, . . . , Dn). The domain set D′ = (D′1, . . . , D

′
n) is called

a reduction if D′i is a subuniverse of Di for every i.
The reduction D′ = (D′1, . . . , D

′
n) is called 1-consistent

if the instance obtained after reduction of every domain is

1-consistent.

We say that D′ is an absorbing reduction, if D′i is a

binary absorbing subuniverse of Di with a term operation t
for every i. We say that D′ is a central reduction, if D′i is

a center of Di for every i. We say that D′ is a PC/linear
reduction, if D′i is a PC/linear subuniverse of Di and Di does

not have a center or binary absorbing subuniverse for every i.
Additionally, we say that D′ is a minimal central/PC/linear
reduction if D′ is a minimal center/PC/linear subuniverse

of Di for every i. We say that D′ is a minimal absorbing
reduction for a term operation t if D′ is a minimal absorbing

subuniverse of Di with t for every i.
A reduction is called nonlinear if it is an absorbing,

central, or PC reduction. A reduction D′ is called proper
if it is an absorbing, central, PC, or linear reduction such

that D′ �= D.

We usually denote reductions by D(j) for some j (or

by D(�)). In this case by C(j) we denote the constraint

obtained after reduction of the constraint C. Similarly, by

Θ(j) we denote the instance obtained after reduction of Θ.

For a relation ρ by ρ(j) we denote the relation ρ restricted

to the corresponding domains of D(j). Sometimes we write

(a1, . . . , an) ∈ D(j) to say that every ai belongs to the

corresponding D
(j)
x .

A strategy for a CSP instance Θ with a domain set D
is a sequence of reductions D(0), . . . , D(s), where D(i) =

(D
(i)
1 , . . . , D

(i)
n), such that D(0) = D and D(i) is a proper 1-

consistent reduction of Θ(i−1) for every i ≥ 1. A strategy is

called minimal if every reduction in the sequence is minimal.

F. Bridges

Suppose σ1 and σ2 are congruences on D1 and D2,

correspondingly. A relation ρ ⊆ D2
1 ×D2

2 is called a bridge
from σ1 to σ2 if the first two variables of ρ are compatible

with σ1, the last two variables of ρ are compatible with

σ2, pr1,2(ρ) � σ1, pr3,4(ρ) � σ2, and (a1, a2, a3, a4) ∈ ρ
implies

(a1, a2) ∈ σ1 ⇔ (a3, a4) ∈ σ2.

Suppose σ1, σ2, σ3 are irreducible congruences, we have

a bridge ρ1 from σ1 to σ2 and a bridge ρ2 from σ2

to σ3. Then we can define a bridge from σ1 to σ3 by

∃y1∃y2ρ1(x1, x2, y1, y2) ∧ ρ2(y1, y2, z1, z2).
A bridge ρ ⊆ D4 is called reflexive if (a, a, a, a) ∈ ρ for

every a ∈ D.

We say that two congruences σ1 and σ2 on a set D are

adjacent if there exists a reflexive bridge from σ1 to σ2.

Remark 3. Since we can always put ρ(x1, x2, x3, x4) =
σ(x1, x3) ∧ σ(x2, x4), any congruence σ is adjacent with
itself.

We say that two constraints C1 and C2 are adjacent in

a common variable x if Con(C1, x) and Con(C2, x) are

adjacent. A formula is called connected if every constraint

in the formula is rectangular and for every two constraints

there exists a path that connects them. It can be shown

(see Theorem 22) that every two constraints with a common

variable in a connected instance are adjacent.

Then a CSP instance, whose constraints are rectangular,

can be divided into the connected components.

VII. AUXILIARY STATEMENTS WITHOUT PROOF

A. Absorption, Center, PC Subuniverse, and Linear Subuni-
verse

In this subsection we formulate the common property of

a binary absorption, a center, a PC subuniverse, and a linear

subuniverse, that is, if we restrict all but one variables of a

subdirect relation to binary absorbing subuniverses, centers,

PC subuniverses, or linear subuniverses, then we restrict the

remaining variable correspondingly. The proof of Lemma 9

can be found in [22], the proof of remaining lemmas are in

the full proof [18].

Lemma 9. Suppose ρ ⊆ A1 × · · · × An is a relation such
that pr1(ρ) = A1, C = pr1((C1×· · ·×Cn)∩ρ), where Ci is
a binary absorbing subuniverse in Ai with a term operation
t for every i. Then C is a binary absorbing subuniverse in
A1 with the term operation t.

Lemma 10. Suppose ρ ⊆ A1 × · · · ×An is a relation such
that pr1(ρ) = A1, C = pr1((C1× · · ·×Cn)∩ ρ), where Ci

is a center in Ai for every i. Then C is a center in A1.

Lemma 11. Suppose ρ ⊆ A1 × · · · × An is a subdirect
relation, there is no binary absorption and center on Ai for
every i, C = pr1((C1 × · · · × Cn) ∩ ρ), where Ci is a PC
subuniverse in Ai for every i. Then C is a PC subuniverse
in A1.

Lemma 12. Suppose ρ ⊆ A1 × · · · ×An is a relation such
that pr1(ρ) = A1, there is no binary absorption on A1, C =
pr1((C1 × · · · ×Cn)∩ ρ), where Ci is a linear subuniverse
in Ai for every i. Then C is a linear subuniverse in A1.

B. Properties of reductions

The next two lemmas summarize some properties of

minimal reductions (see the proof in [18]).

Lemma 13. Suppose D(1) is a proper minimal reduction,
the constraint ρ(x1, . . . , xn) is subdirect, ρ(1)(x1, . . . , xn)
is not empty. Then ρ(1)(x1, . . . , xn) is subdirect.

338

Lemma 14. Suppose D(1) is a proper minimal reduction
for a cycle-consistent irreducible CSP instance Θ, Θ(1) has
a solution. Then Θ(1) is cycle-consistent and irreducible.

The next theorem allows us to find the next minimal

reduction whenever there exists a binary absorption, a center,

or a PC subuniverse. Combining this with Theorem 4, we

obtain that the difficulties with finding the next reduction

can be only if ConLin(Di) is proper for any domain Di

such that |Di| > 1 (see the proof in [18]).

Theorem 15. Suppose D(0), D(1), . . . , D(s) is a strategy for
a cycle-consistent CSP instance Θ.
• If D(s)

x has a binary absorbing set B then there exists
a 1-consistent minimal absorbing reduction D(s+1) of
Θ(s) with D

(s+1)
x ⊆ B.

• If D
(s)
x has a center B then there exists a 1-

consistent minimal central reduction D(s+1) of Θ(s)

with D
(s+1)
x ⊆ B.

• If D(s)
y has no binary absorption and center for every

y but there exists a proper PC subuniverse B in D
(s)
x

for some x, then there exists a 1-consistent minimal PC
reduction of Θ(s) with D

(s+1)
x ⊆ B.

The next lemma shows an important property of a relation

without parallelogram property.

Lemma 16. Suppose D(0), D(1), . . . , D(s) is a strategy for
the constraint ρ(x1, . . . , xn), D(s+1) is a linear reduction,

(b1, . . . , bt, at+1, . . . , an) ∈ ρ,

(a1, . . . , at, bt+1, . . . , bn) ∈ ρ,

(b1, . . . , bt, bt+1, . . . , bn) ∈ ρ,

(a1, . . . , at, at+1, . . . , an) ∈ D(s+1).

Then there exists (d1, d2, . . . , dn) ∈ ρ(s+1).

VIII. PROOF OF THE MAIN THEOREMS

A. Adding linear variable

First, we prove a property of critical relations with a

rectangular variable. Then, we prove the main property of a

bridge, that is, we explain how a bridge can be used to add

a new linear variable to a CSP instance.

Lemma 17. Suppose ρ is a critical subdirect relation, the
i-th variable of ρ is rectangular. Then Con(ρ, i) is an
irreducible congruence.

Proof: Assume the converse. To simplify notations

assume that i = 1. Put σ = Con(ρ, i). Consider binary rela-

tions δ1, . . . , δs compatible with σ such that δ1∩· · ·∩δs = σ.

Put

ρi(x1, . . . , xn) = ∃x′1 ρ(x′1, x2, . . . , xn) ∧ δi(x1, x
′
1).

It is easy to see that the intersection of ρ1, . . . , ρs gives ρ,

which contradicts the fact that ρ is critical.

Below we formulate few statements from [21] that will

help us to prove the main property of a bridge. A relation

ρ ⊆ An is called strongly rich if for every tuple (a1, . . . , an)
and every j ∈ {1, . . . , n} there exists a unique b ∈ A such

that (a1, . . . , aj−1, b, aj+1, . . . , an) ∈ ρ. We will need two

statements from [21].

Theorem 18. [21] Suppose ρ ⊆ An is a strongly rich rela-
tion preserved by a WNU. Then there exists an abelian group
(A; +) and bijective mappings φ1, φ2, . . . ,φn : A→ A such
that

ρ = {(x1, . . . , xn) | φ1(x1) + φ2(x2) + . . .+ φn(xn) = 0}.
Lemma 19. [21] Suppose (G; +) is a finite abelian group,
the relation σ ⊆ G4 is defined by σ = {(a1, a2, a3, a4) |
a1 + a2 = a3 + a4}, σ is preserved by a WNU f . Then
f(x1, . . . , xn) = t · x1 + t · x2 + . . . + t · xn for some
t ∈ {1, 2, 3, . . .}.
Theorem 20. Suppose σ ⊆ A2 is a congruence,
ρ(x1, x2, y1, y2) is a bridge from σ to σ such that
ρ(x, x, y, y) defines a full relation, pr1,2(ρ) = ω, ω is a
minimal relation compatible with σ such that ω � σ. Then
there exists a prime number p and a relation ζ ⊆ A×A×Zp

such that (x1, x2, 0) ∈ ζ ⇔ (x1, x2) ∈ σ and pr1,2 ζ = ω.

Proof: Since the relations ρ and ω are compatible with

σ, we consider A/σ instead of A and assume that σ is the

equality relation, ρ and ω are relations on A/σ.
Without loss of generality we assume that

ρ(x1, x2, y1, y2) = ρ(y1, y2, x1, x2) and (a, b, a, b) ∈ ρ
for any (a, b) ∈ ω. Otherwise, we consider the relation ρ′

instead of ρ, where

ρ′(x1, x2, y1, y2) = ∃z1∃z2ρ(x1, x2, z1, z2)∧ρ(y1, y2, z1, z2).
We prove by induction on the size of A. Assume that for

some subuniverse A′ � A we have (A′×A′)∩ (ω \σ) �= ∅.

By ρ′, σ′ we denote the restriction of ρ, σ to A′ corre-

spondingly. By ω′ we denote a minimal relation compatible

with σ′ such that σ′ � ω′ ⊆ (A′ × A′) ∩ ω. By the

inductive assumption for ρ∩ (ω′×ω′) there exists a relation

ζ ′ ⊆ A′×A′×Zp such that (x1, x2, 0) ∈ ζ ′ ⇔ (x1, x2) ∈ σ′

and pr1,2(ζ) = ω′. Put

ζ(x1, x2, z) = ∃y1∃y2 ρ(x1, x2, y1, y2) ∧ ζ ′(y1, y2, z).

It is easy to see that ζ satisfies the necessary conditions.
Thus, we assume that for any subuniverse A′ � A we

have (A′ ×A′) ∩ (ω \ σ) = ∅.
Consider a pair (a1, a2) ∈ ω\σ. Then {a | (a1, a) ∈ ω} =

{a | (a, a2) ∈ ω} = A. Hence, any element connected in ω
to some other element is connected to all elements. Since

(a1, a), (a, a2) ∈ ω for every a ∈ A \ {a1, a2}, if |A| > 2
then ω = A×A.

If |A| = 2 and ω �= A×A then ω = {(a, a), (a, b), (b, b)}.
This case cannot happen because the corresponding relation

ρ is not preserved by any WNU.

339

Thus, we assume that ω = A×A.

Let us show that for any a1, a2, a3 ∈ A there exists a

unique a4 such that (a1, a2, a3, a4) ∈ ρ. For every a ∈ A put

λa(x1, x2) = ∃y2ρ(x1, x2, a, y2). It is easy to see that σ �

λa ⊆ ω. Therefore λa = ω = A×A for every a. We consider

the unary relation defined by δ(x) = ρ(a1, a2, a3, x). By

the above fact δ is not empty. If δ contains more than one

element, then we get a contradiction with the fact that there

are no proper subuniverses.

Then ρ is a strongly rich relation. By Theorem 18,

there exist an Abelian group (A; +) and bijective mappings

φ1, φ2, φ3, φ4 : A→ A such that

ρ = {(a1, a2, b1, b2) | φ1(a1)+φ2(a2)+φ3(b1)+φ4(b2) = 0}.
We know that (a, a, b, b) ∈ ρ for any a, b ∈ A,

ρ(x1, x2, y1, y2) = ρ(y1, y2, x1, x2). Then without loss of

generality we can assume that φ1(x) = φ3(x) = x,

φ2(x) = φ4(x) = −x.

Since w is a special WNU, it follows from Lemma 19 that

w on A is defined by x1+ . . .+xm. Therefore, the relation

ζ ⊆ A×A×A defined by ζ = {(b1, b2, b3) | b1− b2+ b3 =
0} is preserved by w. If (A; +) is not simple, then there

exists a subuniverse A′ � A contradicting our assumption.

Therefore, (A; +) is a simple Abelian group.

Corollary 20.1. Suppose σ ⊆ A2 is an irreducible con-
gruence, ρ(x1, x2, y1, y2) is a bridge from σ to σ such
that ρ(x, x, y, y) defines a full relation. Then there exists
a prime number p and a relation ζ ⊆ A×A×Zp such that
(x1, x2, 0) ∈ ζ ⇔ (x1, x2) ∈ σ and pr1,2 ζ = σ∗.

B. Existence of a bridge

In this subsection we explain how we to get a bridge

from a rectangular relation and join bridges appeared in the

instance together.

Lemma 21. Suppose ρ ⊆ A1 × · · · × An is a subdirect
relation, the first and the last variables of ρ are rectangular,
there exist (b1, a2, . . . , an), (a1, . . . , an−1, bn) ∈ ρ such that
(a1, a2, . . . , an) /∈ ρ. Then there exists a bridge δ from
Con(ρ, 1) to Con(ρ, n) such that δ(x, x, y, y) is equal to
the projection of ρ onto the first and the last variables.

Proof: The required bridge can be defined by

δ(x1, x2, y1, y2) = ∃z2 . . . ∃zn−1 ρ(x1, z2, . . . , zn−1, y1)∧
ρ(x2, z2, . . . , zn−1, y2).

Theorem 22. Suppose Θ is a cycle-consistent connected
formula such that every constraint relation is a critical
rectangular relation. Then for every constraints C,C ′ with a
common variable x there exists a bridge δ from Con(C, x)
to Con(C ′, x) such that δ(x, x, y, y) contains the relation
LinkedCon(Θ, x).

Proof: Since C and C ′ are connected, there exists a

path z0C1z1C2z2 . . . Ct−1zt−1Ctzt, where z0 = zt = x,

C1 = C, Ct = C ′, and Ci and Ci+1 are adjacent in zi for

every i.
By Lemma 17, every relation defined by Con(C0, x0) for

some C0 and x0 is an irreducible congruence. Suppose σi is

a reflexive bridge from Con(Ci, zi) to Con(Ci+1, zi), δi is a

bridge from Con(Ci, zi−1) to Con(Ci, zi) from Lemma 21

for every i. Then we join all bridges together and define a

new bridge δ(u0, u
′
0, vt, v

′
t) by

∃u1∃u′1∃v1∃v′1 . . . ∃ut−1∃u′t−1∃vt−1∃v′t−1δ1(u0, u
′
0, v1, v

′
1)

∧
t−1∧
i=1

(σi(vi, v
′
i, ui, u

′
i) ∧ δi+1(ui, u

′
i, vi+1, v

′
i+1)).

Since Θ is cycle-consistent, δ is a reflexive bridge from

Con(C, x) to Con(C ′, x). Thus we proved that any two

constraints with a common variable are adjacent.
It is not hard to show that there exists a path in Θ

starting and ending at x that connects any pair of elements

(a, b) ∈ LinkedCon(Θ, x). Since every pair of constraints

with common variable are adjacent, we can assume that

the above path z0C1z1C2z2 . . . Ct−1zt−1Ctzt satisfies this

property. Then it is easy to check that δ(x, x, y, y) contains

LinkedCon(Θ, x).

C. Three main statements
In this subsection we prove that all constraints in a crucial

instance have the parallelogram property, show that we can

always find a linked connected component with required

properties, prove that we cannot loose the only solution

while applying a minimal nonlinear reduction.
We prove theorems of this subsection simultaneously by

the induction on the size of the reductions (domain sets).

First, we need to introduce an order on the reductions.

Suppose we have two domain sets D(�) and D(⊥). We say

that D(⊥) ≤ D(�) if for every D
(⊥)
y one of the following

conditions hold

1) there exists a variable x such that D
(⊥)
y = D

(�)
x .

2) there exists a variable x such that D
(⊥)
y � D

(�)
x ; there

does not exist a variable z such that D
(⊥)
z = D

(�)
x .

We say that D(⊥) < D(�) if D(⊥) ≤ D(�) and D(�) �≤
D(⊥). It is not hard to see that the relation ≤ is transitive

and there does not exist an infinite descending chain of

reductions.
Let D(⊥) be a domain set. Assume that Theorems 24

and 25 hold if D(1) < D(⊥), and Theorem 23 holds if

D(s) < D(⊥). We omit the proof of Theorem 24 (see [18])

and prove Theorem 25 for D(1) = D(⊥), and Theorem 23

for D(s) = D(⊥).

Theorem 23. Suppose D(0), . . . , D(s) is a minimal strategy
for a cycle-consistent irreducible CSP instance Θ, the con-
straint ρ(x1, . . . , xn) is crucial in D(s). Then ρ is a critical
relation with the parallelogram property.

340

Proof: Since ρ(x1, . . . , xn) is crucial, ρ is a critical

relation. Let Θ′ be obtained from Θ by replacement of

ρ(x1, . . . , xn) by all weaker constraints.

Assume that |D(s)
x | = 1 for every variable x. Since the

reduction D(s) is 1-consistent, we get a solution, which

contradicts the fact that Θ has no solutions in D(s).

If we have a binary absorption, or a center, or a proper

PC subuniverse on some domain D
(s)
x , then by Theorem 15

there exists a minimal nonlinear reduction D(s+1) for Θ.

By Lemma 14, Θ′(s) is cycle-consistent and irreducible.

Hence, by Theorem 25 Θ′ has a solution in D(s+1). Hence,

ρ(x1, . . . , xn) is crucial in D(s+1). By the inductive assump-

tion ρ has parallelogram property.

It remains to consider the case when ConLin(D
(s)
x) is

proper for every x such that |D(s)
x | > 1. Let α be a solution

of Θ′ in D(s). Let the projection of α onto the variables

x1, . . . , xn be (a1, . . . , an).
Assume that ρ does not have the parallelogram property.

Without loss of generality we can assume that there exist

c1, . . . , cn and d1, . . . , dn such that

(c1, . . . , ck, ck+1, . . . , cn) /∈ ρ,

(c1, . . . , ck, dk+1, . . . , dn) ∈ ρ,

(d1, . . . , dk, ck+1, . . . , cn) ∈ ρ,

(d1, . . . , dk, dk+1, . . . , dn) ∈ ρ.

Put

ρ′(x1, . . . , xn) = ∃y1 . . . ∃yn ρ(x1, . . . , xk, yk+1, . . . , yn)∧
ρ(y1, . . . , yk, xk+1, . . . , xn) ∧ ρ(y1, . . . , yk, yk+1, . . . , yn).

Obviously, ρ � ρ′ and ρ′ ∈ Γ, therefore (a1, . . . , an) ∈ ρ′.
Hence, there exist b1, . . . , bn such that

(a1, . . . , ak, bk+1, . . . , bn) ∈ ρ,

(b1, . . . , bk, ak+1, . . . , an) ∈ ρ,

(b1, . . . , bk, bk+1, . . . , bn) ∈ ρ.

By Lemma 16, there exists a tuple (e1, . . . , en) ∈ ρ such

that (ai, ei) ∈ ConLin(D
(s)
xi) for every i. It is easy to see

that Θ(s) factorized by ConLin(D
(s)
x) for every x has a

solution corresponding to α. By Lemma 12, the minimal

linear reduction containing this solution is 1-consistent. We

denote this reduction by D(s+1). Since Θ′ has a solution

in D(s+1), ρ(x1, . . . , xn) is crucial in D(s+1). We get a

longer minimal strategy with smaller D(s+1), hence by the

inductive assumption the relation ρ is a critical relation with

the parallelogram property.

Theorem 24. Suppose D(1) is a proper minimal 1-consistent
reduction of a cycle-consistent irreducible CSP instance Θ,
Θ is linked and crucial in D(1). Then there exists an instance
Θ′ ∈ Expanded(Θ) that is crucial in D(1) and contains a
linked connected component such that it has no solutions in
D(1) or its solution set is not subdirect.

Theorem 25. Suppose D(1) is a minimal 1-consistent
nonlinear reduction of a cycle-consistent irreducible CSP
instance Θ. If Θ has a solution then it has a solution in
D(1).

Proof: Assume the converse. Suppose D(1) is a PC

reduction. Then we replace constraints of Θ by all weaker

constraints while there exists a 1-consistent minimal PC

reduction such that the instance has no solutions in it. Thus,

we can assume that if we replace any constraint of Θ by all

weaker constraints then we get an instance with a solution

in every 1-consistent minimal PC reduction.

By Remark 1, we weaken the instance to get an instance

that is crucial in D(1). If the obtained instance is not

linked, then we consider a linked component Υ having a

nonempty intersection with D(1) and apply the inductive

assumption (see details in [18]). Therefore, by Theorem 23,

every constraint in the obtained instance has the parallel-

ogram property. By Theorem 24, there exists an instance

Θ′ ∈ Expanded(Θ) that is crucial in D(1) and contains a

linked connected component Ω.

Choose a variable x appearing in a constraint C ∈ Ω.

By Lemma 17, Con(C, x) is irreducible. By Theorem 22,

there exists a bridge δ from Con(C, x) to Con(C, x) such

that δ(x, x, y, y) is a full relation. By Corollary 20.1, there

exists a relation ζ ⊆ Dx ×Dx × Zp such that (x1, x2, 0) ∈
ζ ⇔ (x1, x2) ∈ Con(C, x) and pr1,2(ζ) = Con(C, x)

∗
. Let

us replace the variable x of C in Θ′ by x′ and add the

constraint ζ(x, x′, z). The obtained instance we denote by

Θ′′. By the assumption, Θ′′ has a solution with z = 0, and

a solution in D(1) with z �= 0.

If D(1) is an absorbing or central reduction, then by

Corollaries 9, 10 the restriction of all variable of Θ′′ but z
to D(1) implies the corresponding restriction of the variable

z. This contradicts the fact that the domain of z is Zp.

It remains to consider the case when D(1) is a PC

reduction. Combining our assumption for the PC case and

Theorem 15, we can show that for every variable y and a

PC subuniverse U of Dy the instance Θ′′ has a solution with

y ∈ U . Hence, by Corollary 11, the restriction of Θ′′ to D(1)

implies the corresponding restriction of z, which contradicts

the fact that the domain of z is Zp.

D. Proof of Theorems from Section IV

Proof of Theorem 6 and Theorem 7. By Theorem 15, there

exists a smaller minimal reduction. By Theorem 25, there

exists a solution in this reduction.

Proof of Theorem 8. Assume the converse. We denote the

reduction (D′1, . . . , D
′
n) by D(1). By Theorem 23, every

constraint in Θ has the parallelogram property. By Theo-

rem 24, there exists an instance Θ′ ∈ Expanded(Θ) that is

crucial in D(1) and contains a linked connected component

Ω such that the solution set of Ω is not subdirect or Ω(1) has

no solutions. By condition 3), if the solution set of Ω is not

341

subdirect then Ω contains a constraint relation from Θ. Since

Θ is crucial in D(1), if Ω(1) has no solutions then Ω contains

a constraint relation from Θ. Let ((xi1 , . . . , xis), ρ) ∈ Ω be

a constraint such that ρ is a constraint relation from Θ.

By Lemma 17, Con(ρ, 1) is an irreducible congruence.

By Theorem 22, there exists a bridge δ from Con(ρ, 1)
to Con(ρ, 1) such that δ(x, x, y, y) is a full relation. By

Corollary 20.1, there exists a relation ξ ⊆ Di1 ×Di1 × Zp

such that (x1, x2, 0) ∈ ξ ⇔ (x1, x2) ∈ Con(ρ, 1) and

pr1,2(ξ) = Con(ρ, 1)
∗
.

Put ζ(xi1 , . . . , xis , z) = ∃x′i1 ρ(x′i1 , xi2 , . . . , xis) ∧
ξ(xi1 , x

′
i1
, z).

REFERENCES

[1] A. K. Mackworth, “Consistency in networks of relations,”
Artificial Intelligence, vol. 8, no. 1, pp. 99–118, 1977.

[2] U. Montanari, “Networks of constraints: Fundamental prop-
erties and applications to picture processing,” Information
Sciences, vol. 7, pp. 95–132, 1974.

[3] M. C. Cooper, “Characterising tractable constraints,” Artificial
Intelligence, vol. 65, no. 2, pp. 347–361, 1994.

[4] P. Jeavons, D. Cohen, and M. Gyssens, “Closure properties of
constraints,” J. ACM, vol. 44, no. 4, pp. 527–548, Jul. 1997.

[5] P. G. Jeavons and M. C. Cooper, “Tractable constraints on
ordered domains,” Artificial Intelligence, vol. 79, no. 2, pp.
327–339, 1995.

[6] L. M. Kirousis, “Fast parallel constraint satisfaction,” Artifi-
cial Intelligence, vol. 64, no. 1, pp. 147–160, 1993.

[7] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the
complexity of constraints using finite algebras,” SIAM J.
Comput., vol. 34, no. 3, pp. 720–742, Mar. 2005.

[8] A. A. Bulatov and M. A. Valeriote, “Recent results on the
algebraic approach to the csp,” in Complexity of Constraints,
ser. Lecture Notes in Computer Science, N. Creignou, P. Ko-
laitis, and H. Vollmer, Eds. Springer Berlin Heidelberg, 2008,
vol. 5250, pp. 68–92.

[9] T. Feder and M. Y. Vardi, “The computational structure of
monotone monadic snp and constraint satisfaction: A study
through datalog and group theory,” SIAM J. Comput., vol. 28,
no. 1, pp. 57–104, Feb. 1999.

[10] T. J. Schaefer, “The complexity of satisfiability problems,” in
Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing, ser. STOC ’78. New York, NY, USA: ACM,
1978, pp. 216–226.

[11] A. A. Bulatov, “A dichotomy theorem for constraint satisfac-
tion problems on a 3-element set,” J. ACM, vol. 53, no. 1,
pp. 66–120, Jan. 2006.

[12] M. Maróti and R. Mckenzie, “Existence theorems for weakly
symmetric operations,” Algebra universalis, vol. 59, no. 3–4,
pp. 463–489, 2008.

[13] P. Hell and J. Nešetřil, “On the complexity of h-coloring,”
Journal of Combinatorial Theory, Series B, vol. 48, no. 1,
pp. 92–110, 1990.

[14] L. Barto, M. Kozik, and T. Niven, “The csp dichotomy holds
for digraphs with no sources and no sinks (a positive answer
to a conjecture of bang-jensen and hell),” SIAM Journal on
Computing, vol. 38, no. 5, pp. 1782–1802, 2009.

[15] A. A. Bulatov, “Tractable conservative constraint satisfaction
problems,” in Logic in Computer Science, 2003. Proceedings.
18th Annual IEEE Symposium on. IEEE, 2003, pp. 321–330.

[16] ——, “A dichotomy theorem for nonuniform csps,”
CoRR, vol. abs/1703.03021, 2017. [Online]. Available:
https://arxiv.org/abs/1703.03021v1

[17] L. Barto, A. Krokhin, and R. Willard, “Polymorphisms, and
how to use them,” 2017, preprint.

[18] D. Zhuk, “The proof of csp dichotomy conjecture,”
CoRR, vol. abs/1704.01914, 2017. [Online]. Available:
https://arxiv.org/abs/1704.01914

[19] C. Bergman, Universal algebra: Fundamentals and selected
topics. CRC Press, 2011.

[20] I. Rosenberg, “über die funktionale vollständigkeit in den
mehrwertigen logiken,” Rozpravy Československe Akad. Věd.,
Ser. Math. Nat. Sci., vol. 80, pp. 3–93, 1970.

[21] D. Zhuk, “Key (critical) relations preserved by a weak near-
unanimity function,” Algebra Universalis, vol. 77, no. 2, pp.
191–235, 2017.

[22] L. Barto and A. Kazda, “Deciding absorption,” International
Journal of Algebra and Computation, vol. 26, no. 05, pp.
1033–1060, 2016.

342

