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Abstract—We study the classic k-median and k-means
clustering objectives in the beyond-worst-case scenario.
We consider three well-studied notions of structured data
that aim at characterizing real-world inputs:
• Distribution Stability (introduced by Awasthi, Blum,

and Sheffet, FOCS 2010)
• Spectral Separability (introduced by Kumar and

Kannan, FOCS 2010)
• Perturbation Resilience (introduced by Bilu and Linial,

ICS 2010)
We prove structural results showing that inputs satisfying
at least one of the conditions are inherently “local”.
Namely, for any such input, any local optimum is close
both in term of structure and in term of objective value
to the global optima.

As a corollary we obtain that the widely-used Local
Search algorithm has strong performance guarantees
for both the tasks of recovering the underlying optimal
clustering and obtaining a clustering of small cost. This
is a significant step toward understanding the success of
local search heuristics in clustering applications.

I. INTRODUCTION

Clustering is a fundamental, routinely-used approach
to extract information from datasets. Given a dataset and
the most important features of the data, a clustering is a
partition of the data such that data elements in the same
part have common features. The problem of computing a
clustering has received a considerable amount of attention
in both practice and theory.

The variety of contexts in which clustering problems
arise makes the problem of computing a “good” clustering
hard to define formally. From a theoretician’s perspective,
clustering problems are often modeled by an objective
function we wish to optimize (e.g., the famous k-median
or k-means objective functions). This modeling step is
both needed and crucial since it provides a framework
to quantitatively compare algorithms. Unfortunately, the
most popular objectives for clustering, like the k-median
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and k-means objectives, are hard to approximate, even
when restricted to Euclidean spaces.

This view is generally not shared by practitioners.
Indeed, clustering is often used as a preprocessing step
to simplify and speed up subsequent analysis, even if
this analysis admits polynomial time algorithms. If the
clustering itself is of independent interest, there are
many heuristics with good running times and results on
real-world inputs.

This induces a gap between theory and practice. On
the one hand, the algorithms that are efficient in practice
cannot be proven to achieve good approximation to the k-
median and k-means objectives in the worst-case. Since ap-
proximation ratios are one of the main methods to evaluate
algorithms, theory predicts that determining a good clus-
tering is a difficult task. On the other hand, the best theo-
retical algorithms turn out to be noncompetitive in applica-
tions because they are designed to handle “unrealistically”
hard instances with little importance for practitioners. To
bridge the gap between theory and practice, it is necessary
to go beyond the worst-case analysis by, for example,
characterizing and focusing on inputs that arise in practice.

A. Real-world Inputs

Several approaches have been proposed to bridge
the gap between theory and practice. For example,
researchers have considered the average-case scenario
(e.g., [17]) where the running time of an algorithm is
analyzed with respect to some probability distribution
over the set of all inputs. Smooth analysis (e.g., [38])
is another celebrated approach that analyzes the running
time of an algorithm with respect to worst-case inputs
subject to small random perturbations.

Another successful approach, the one we take in this
paper, consists in focusing on structured inputs. In a semi-
nal paper, Ostrovsky, Rabani, Schulman, and Swamy [37]
introduced the idea that inputs that come from practice
induce a ground-truth or a meaningful clustering. They
argued that an input I contains a meaningful clustering
into k clusters if the optimal k-median cost of a clustering
using k centers, say OPTk(I), is much smaller than the
optimal cost of a clustering using k−1 centers OPTk−1(I).
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This is also motivated by the elbow method1 used by
practitioners to define the number of clusters. More
formally, an instance I of k-median or k-means satisfies
the α-ORSS property if OPTk(I)/OPTk−1(I) ≤ α.

The popular k-means++ algorithm [4] achieves an
O(1)-approximation for these inputs [20], [30], [37].
ORSS-stability also implies several other conditions
aiming to capture well-clusterable instances. Thus, the
inputs satisfying the ORSS property arguably share some
properties with the real-world inputs.

These results have opened new research directions and
raised several questions. For example:
• Is it possible to obtain similar results for more general

classes of inputs?
• How does the parameter α impact the approximation

guarantee and running time?
• Is it possible to prove good performance guarantees

for other popular heuristics?
• How close to the “ground-truth” clustering are the

approximate clusterings?
Many lines of research have tried to address these
questions. The arguably most important approaches and
most relevant to this paper can be roughly grouped under
one of the following stability notions.

Distribution Stability (Def. IV.1): Awasthi, Blum
and Sheffet [6] have tackled the first two questions by
introducing the notion of distribution stable instances.
Distribution stable instances are a generalization of the
ORSS instances (in other words, any instance satisfying
the ORSS property is distribution stable). They also
introduced a new algorithm tailored for distribution
stable instances that achieves a (1+ ε)-approximation for
α-ORSS inputs (and more generally α-distribution stable
instances) in time nO(1/εα). This was the first algorithm
whose approximation guarantee was independent from
the parameter α for α-ORSS inputs.

Spectral Separability (Def. VII.1): Kumar and
Kannan [33] tackled the first and third questions by
introducing the proximity condition2. This condition also
generalizes the ORSS condition. It is motivated by the
goal of learning a distribution mixture in a d-dimensional
Euclidean space. Quoting [33], the message of their
paper can loosely be stated as:

If the projection of any data point onto the line
joining its cluster center to any other cluster
center is γk times standard deviations closer
to its own center than the other center, then
we can cluster correctly in polynomial time.

In addition, they have made a significant step toward
understanding the success of the classic k-means by
showing that it achieves a 1 +O(1/γ)-approximation for

1The elbow-method consists in running an (approximation) algorithm
for an incrementally increasing number of clusters until the cost drops
significantly.

2 In this paper, we work with a slightly more general condition called
spectral separability but the motivations behind the two conditions
are similar.

instances that satisfy the proximity condition. This result
has been further improved by Awasthi and Sheffet [9].

Perturbation Resilience (Def. VI.1): In a seminal
work, Bilu and Linial [19] introduced a new condition to
capture real-world instances. They argue that the optimal
solution of a real-world instance is often much better
than any other solution and so, a slight perturbation of
the instance does not lead to a different optimal solution.
Perturbation-resilient instances have been studied in
various contexts (see e.g., [7], [11], [12]). For clustering
problems, an instance is said to be α-perturbation resilient
if an adversary can change the distances between pairs of
elements by a factor at most α and the optimal solution
remains the same. Recently, Angelidakis, Makarychev,
and Makarychev [3] have given a polynomial-time
algorithm for solving 2-perturbation-resilient instances3.
Balcan and Liang [12] have tackled the third question by
showing that a classic algorithm for hierarchical clustering
can solve 1 +

√
2-perturbation-resilient instances. This

very interesting result leaves open the question as whether
classic algorithms for (“flat”) clustering could also be
proven to be efficient for perturbation-resilient instances.

Main Open Questions: Previous work has made
important steps toward bridging the gap between theory
and practice for clustering problems. However, we still
do not have a complete understanding of the properties
of “well-structured” inputs, nor do we know why the
algorithms used in practice perform so well. Some of
the most important open questions are the following:
• Do the different definitions of well-structured input

have common properties?
• Do heuristics used in practice have strong approximation

ratios for well-structured inputs?
• Do heuristics used in practice recover the “ground-truth”

clustering on well-structured inputs?

B. Our Results: A unified approach via Local Search
We make a significant step toward answering the above

open questions. We show that the classic Local Search
heuristic (see Algorithm 1), that has found widespread
application in practice (see Section II), achieves
good approximation guarantees for distribution-stable,
spectrally-separable, and perturbation-resilient instances
(see Theorems IV.2, V.2, VII.2).

More concretely, we show that Local Search is a
polynomial-time approximation scheme (PTAS) for both
distribution-stable and spectrally-separable4 instances.
In the case of distribution stability, we also answer
the above open question by showing that most of the
structure of the optimal underlying clustering is recovered
by the algorithm.

For γ-perturbation-resilient instances, we show that
if γ > 3 then any solution is the optimal solution if it

3We note that it is NP-hard to recover the optimal clustering of any
2− ε-perturbation-resilient instance [18].

4Assuming a standard preprocessing step consisting of a projection
onto a subspace of lower dimension.
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cannot be improved by adding or removing 2γ centers.
We also show that the analysis is essentially tight.

These results show that well-structured inputs
have the property that the local optima are close
both qualitatively (in terms of structure) and
quantitatively (in terms of objective value) to the
global “ground-truth” optimum.

These results make a significant step toward
explaining the success of Local Search approaches
for solving clustering problems in practice.

Algorithm 1 Local Search(ε) for k-Median and k-Means

1: Input: point set A, candidate solutions F cost
function cost, integer k

2: Parameter: ε
3: S ← Arbitrary subset of F of cardinality at most k.
4: while ∃ S′ s.t. |S′| ≤ k and |S−S′|+|S′−S| ≤ 2/ε

and cost(S′) ≤ (1− ε/n) cost(S)
5: do
6: S ← S′
7: end while
8: Output: S

II. RELATED WORK

Worst-Case Hardness: The problems we study are
NP-hard: k-median and k-means are already NP-hard
in the Euclidean plane [36], [35]. In terms of hardness
of approximation, both problems are APX-hard, even
in the Euclidean setting when both k and d are part of
the input (see Guha and Khuller [25], Guruswami et
al. [28], and Awasthi et al. [8]). On the positive side,
constant factor approximations are known in metric
space for both k-median and k-means (see [2], [21]). For
Euclidean spaces we have a PTAS for both problems,
either assuming d fixed and k arbitrary [23], [24], [29],
[32], or assuming k fixed and d arbitrary [34].

Local Search: Local Search is an all-purpose
heuristic that may be applied to any problem, see Aarts
and Lenstra [1] for a general introduction. Arya et al. [5]
showed that Local Search with a neighborhood size of 1/ε
gives a 3 + 2ε approximation to k-median, see also [27].
Kanungo et al. [31] proved an approximation ratio of
9+ ε for k-means clustering by Local Search, which was
until very recently [2] the best known algorithm with a
polynomial running time in metric and Euclidean spaces.
Recently, Local Search with an appropriate neighborhood
size was shown to be a PTAS for k-means and k-median
in certain restricted metrics including constant dimensional
Euclidean space [23], [24]. Due to its simplicity, Local
Search is also a popular subroutine for clustering tasks in
various more specialized computational models, e.g., [26].

Stability Conditions: A further condition related to
the aforementioned is approximation stability. Defined
by Balcan et al. [10], [14] (see also robust-perturbation

resilience [16]), it requires that any clustering with cost
within a factor c of the optimum has a distance at most ε to
the target clustering. Balcan et al. [10], [14] then showed
that this condition is sufficient to both bypass worst-case
lower bounds for the approximation factor, and to find a
clustering with distance O(ε) from the target clustering.
The condition was extended to account for the presence
of noisy data by Balcan et al. [13]. This approach was
improved for other min-sum clustering objectives such as
correlation clustering by Balcan and Braverman [15]. For
constant c, (c, ε) approximation stability also implies the
β-stability condition of Awasthi et al. [6] with constant
β, if the target clusters are greater than εn.

III. DEFINITIONS AND NOTATIONS

The problem we consider in this work is the following
slightly more general version of the k-means and
k-median problems.

Definition III.1 (k-Clustering). Let A be a set of clients,
F a set of centers, both lying in a metric space (X , dist),
cost a function A × F → R+, and k a non-negative
integer. The k-clustering problem asks for a subset S
of F , of cardinality at most k, that minimizes

cost(S) =
∑
x∈A

min
c∈S

cost(x, c).

The clustering of A induced by S is the partition of
A into subsets C = {C1, . . . Ck} such that Ci = {x ∈
A | ci = argmin

c∈S
cost(x, c)} (breaking ties arbitrarily).

The well known k-median and k-means problems
correspond to the special cases cost(a, c) = dist(a, c)
and cost(a, c) = dist(a, c)2 respectively. Throughout
the rest of this paper, let OPT denote the value of
an optimal solution. To give slightly simpler proofs
for β-distribution-stable and α-perturbation-resilient
instances, we will assume that cost(a, b) = dist(a, b). If
cost(a, b) = dist(a, b)p, then α depends exponentially on
the p for perturbation resilience. For distribution stability,
we still have a PTAS by introducing a dependency in
1/εO(p) in the neighborhood size of the algorithm. The
analysis is unchanged save for various applications of
the following lemma at different steps of the proof.

Lemma III.2. Let p ≥ 0 and 1/2 > ε > 0. For any
a, b, c ∈ X , we have

cost(a, b) ≤ (1 + ε)pcost(a, c) + cost(c, b)(1 + 1/ε)p.

IV. DISTRIBUTION STABILITY

Definition IV.1. Let (A,F, cost, k) be an instance of
k-clustering where A ∪ F lie in a metric space and
let S∗ = {c∗1, . . . , c∗k} ⊆ F be a set of centers and
C∗ = {C∗1 , . . . , C∗k} be the clustering induced by S∗.
Further, let β > 0. Then the pair (A,F, cost, k), (C∗, S∗)
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is a β-distribution stable instance if, for any i and for
any x ∈ Ci, for any j �= i,

cost(x, c∗j ) ≥ β
OPT
|C∗j |

,

where cost(x, c∗j ) is the cost of assigning x to c∗j .

For any instance (A,F, cost, k) that is β-distribution
stable, we refer to (C∗, S∗) as a β-clustering of the
instance. We show the following theorem for the
k-median problem. For the k-clustering problem with
parameter p, the constant η becomes a function of p.

Theorem IV.2. Let p > 0, β > 0, and ε < 1/3. For
a β-stable instance with β clustering (C∗, S∗) and an
absolute constant η, the cost of the solution output by
Local Search(4ε−3β−1 +O(ε−2β−1)) (Algorithm 1) is
at most (1 + ηε)cost(C∗).

Moreover, let L = {L1, . . . , Lk} denote the clusters
of the solution output by Local Search(4ε−3β−1 +
O(ε−2β−1)). Then there exists a bijection φ : L �→ C∗
such that for at least m = k − O(ε−3β−1) clusters
L′1, . . . , L

′
m ⊆ L, the following two statements hold.

• At least a (1 − ε) fraction of IRε2

i ∩ C∗i are served
by a unique center L(i) in solution L.

• The total number of clients p ∈ ⋃j �=i C
∗
j served by

L(i) in L is at most ε|C∗i |.
We first give a high-level description of the analysis.

Assume for simplicity that all the optimal clusters cost
less than an ε3 fraction of the total cost of the optimal so-
lution. Combining this assumption with the β-distribution-
stability property, one can show that the centers and points
close to the center are far away from each other. Thus,
guided by the objective function, the local search algorithm
identifies most of these centers. In addition, we can show
that for most of these good centers the corresponding
cluster in the local solution is very similar to the optimal
cluster. In total, only very few clusters (a function of ε
and β) of the optimal solution are not present in the local
solution. We conclude our proof by using local optimality.
Our proof includes a few ingredients from [6] such as
the notion of inner-ring (we work with a slightly more
general definition) and distinguishes between cheap and
expensive clusters. Nevertheless our analysis is slightly
stronger as we consider a significantly weaker stability
condition and can not only analyze the cost of the solution
of the algorithm, but also the structure of its clusters.

Throughout this section, we consider a set of
centers S∗ = {c∗1, . . . , c∗k} whose induced clustering
is C∗ = {C∗1 , . . . , C∗k} and such that the instance
is β-stable with respect (C∗, S∗). We denote by
clusters the parts of a partition C∗ = {C∗1 , . . . , C∗k}. Let

cost(C∗) =
∑k

i=1

∑
x∈C∗i cost(x, c∗i ). Moreover, for any

cluster C∗i , for any client x ∈ C∗i , denote by gx the cost
of client x in solution C∗: gx = cost(x, c∗i ) = dist(x, c∗i )
since we consider the k-median problem. Let L denote the
output of LocalSearch(β−1ε−3) and lx the cost induced

by client x in solution L, namely lx = min�∈L cost(x, �),
and cost(L) = ∑x∈A lx. The following definition is a
generalization of the inner-ring definition of [6].

Definition IV.3. For any ε0, we define the inner ring
of cluster i, IRε0

i , as the set of x ∈ A ∪ F such that
dist(x, c∗i ) ≤ ε0βOPT/|C∗i |.

We say that cluster i is cheap if
∑

x∈C∗i gx ≤ ε3βOPT,

and expensive otherwise. We aim at proving the following
structural lemma.

Lemma IV.4. There exists a set of clusters Z∗ ⊆ C∗ of
size at most 2ε−3β−1 + O(ε−2β−1) such that for any
cluster C∗i ∈ C∗ − Z∗, we have the following properties
1) C∗i is cheap.
2) At least a (1 − ε) fraction of IRε2

i ∩ C∗i are served
by a unique center L(i) in solution L.

3) The total number of clients p ∈ ⋃j �=i Cj served by
L(i) in L is at most ε|IRε2

i ∩ C∗i |.
We start with the following lemma which generalizes

Fact 4.1 in [6].

Lemma IV.5. Let C∗i be a cheap cluster. For any ε0,
we have |IRε0

i ∩ C∗i | > (1− ε3/ε0)|C∗i |.
We then prove that the inner rings of cheap clusters

are disjoint for ε3

ε0
< 1 and ε0 <

1
3 .

Lemma IV.6. Let ε3

ε0
< 1 and ε0 <

1
3 . If C∗i �= C∗j are

cheap clusters, then IRε0
i ∩ IRε0

j = ∅.
For each cheap cluster C∗i , let L(i) denote a center

of L that belongs to IRε
i if there exists exactly such

center and remain undefined otherwise. By Lemma IV.6,
L(i) �= L(j) for i �= j.

Lemma IV.7. Let ε < 1
3 . Let C∗ − Z1 denote the

set of clusters C∗i that are cheap, such that L(i) is
defined and such that at least (1 − ε)|IRε2

i ∩ C∗i |
clients of IRε2

i ∩ C∗i are served in L by L(i). Then
|Z1| ≤ (2ε−3 + 11.25 · ε−2 + 22.5 · ε−1)β−1.

Proof: There are five different types of clusters in C∗:

1) k1 expensive clusters
2) k2 cheap clusters with no center of L belonging to IRε

i

3) k3 cheap clusters with at least two centers of L
belonging to IRε

i

4) k4 cheap clusters with L(i) being defined and less

than (1 − ε)|IRε2

i ∩ C∗i | clients of IRε2

i ∩ C∗i are
served in L by L(i)

5) k5 cheap clusters with L(i) being defined and at least

(1 − ε)|IRε2

i ∩ C∗i | clients of IRε2

i ∩ C∗i are served
in L by L(i)

The definition of cheap clusters immediately yields
k1 ≤ ε−3β−1.

Since L and C∗ both have k clusters and the inner
rings of cheap clusters are disjoint (Lemma IV.6), we
have c1k1+ c3k3+ k4+ k5 = k1+ k2+ k3+ k4+ k5 =
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|Z1| + k5 = k with c1 ≥ 0 and c3 ≥ 2 resulting in
k3 ≤ (c3 − 1)k3 = (1− c1)k1 + k2 ≤ k1 + k2.

Before bounding k2 and k4, we discuss the impact of a
cheap cluster C∗i with at least a p fraction of the clients of

IRε2

i ∩C∗i being served in L by some centers that are not
in IRε

i . By the triangular inequality, the cost for any client
x of this p fraction is at least (ε− ε2)βcost(C∗)/|C∗i |.
Then the total cost of all clients of this p fraction in L is

at least p|IRε2

i ∩C∗i |(1−ε)εβcost(C∗)/|C∗i |. By Lemma

IV.5, substituting |IRε2

i ∩ C∗i | yields for this total cost

p|IRε2

i ∩ C∗i |(1− ε)εβ
cost(C∗)
|C∗i |

≥

p(1− ε)2|C∗i |εβ
cost(C∗)
|C∗i |

= p(1− ε)2εβcost(C∗).

To determine k2, we must use p = 1 while we have p > ε
for k4. Therefore, the total costs of all clients of the k2
and the k4 clusters in L are at least k2(1−ε)2εβcost(C∗)
and k4(1− ε)2ε2βcost(C∗), respectively.

Now, since cost(L) ≤ 5OPT ≤ 5cost(C∗), we have
(k2 + k4ε)εβ ≤ 5/(1− ε)2 ≤ 45/4.

Therefore, we have |Z1| = k1 + k2 + k3 + k4 ≤
2k1+2k2+k4 ≤ (2ε−3+11.25·ε−2+22.5·ε−1)β−1.

We continue with the following lemma, whose proof
relies on similar arguments.

Lemma IV.8. There exists a set Z2 ⊆ C∗ − Z1 of
size at most 11.25ε−1β−1 such that for any cluster
C∗j ∈ C∗ − Z2, the total number of clients x ∈ ⋃i�=j Ci,
that are served by L(j) in L is at most ε|IRε2

i ∩ C∗i |.
Therefore, the proof of Lemma IV.4 follows from

combining Lemmas IV.7 and IV.8.
We now turn to the analysis of the cost of L. Let

C(Z∗) =
⋃

C∗i ∈Z∗ C
∗
i . For any cluster C∗i ∈ C∗ − Z∗,

let L(i) be the unique center of L that serves at least

(1− ε)|IRε2

i ∩ C∗i | > (1− ε)2|Ci| clients of IRε2

i ∩ C∗i ,

see Lemmas IV.4 and IV.5. Let L̂ =
⋃

C∗i ∈C∗−Z∗ L(i)
and define Â to be the set of clients that are served
in solution L by centers of L̂. Finally, let A(L(i)) be
the set of clients that are served by L(i) in solution L.

Observe that the A(L(i)) partition Â.

Lemma IV.9. We have

−ε · cost(L)/n+
∑

x(A− ̂A)∪−C(Z∗)

lx ≤

∑
x∈(A− ̂A)∪−C(Z∗)

gx +
2ε

(1− ε)2
· (cost(C∗) + cost(L)).

Proof: Consider the following mixed solution

M = L̂ ∪ {c∗i | C∗i ∈ Z∗}. We start by bounding the

cost of M. For any client x ∈ Â, the center that serves
it in L belongs to M. Thus its cost in M is at most lx.
Now, for any client x ∈ C(Z∗), the center that serves
it in C∗ is in M, so its cost in M is at most gx.

Finally, we evaluate the cost of the clients in

A− (Â ∪ C(Z∗)). Consider such a client x and let C∗i
be the cluster it belongs to in solution C∗. Since C∗i ∈
C∗ − Z∗, L(i) is defined and we have L(i) ∈ L̂ ⊆ M.
Hence, the cost of x in M is at most cost(x,L(i)).
Observe that by the triangular inequality, cost(x,L(i)) ≤
cost(x, c∗i ) + cost(c∗i ,L(i)) = gx + cost(c∗i ,L(i)).

Now consider a client x′ ∈ Ri := IRε2

i ∩C∗i ∩A(L(i)).
By the triangular inequality, we have cost(c∗i ,L(i)) ≤
cost(c∗i , x

′) + cost(x′,L(i)) = gx′ + lx′ . Hence,

cost(c∗i ,L(i)) ≤
1

|Ri|
∑

x′∈Ri

(gx′ + lx′).

It follows that assigning the clients of C∗i ∩ (A− Â) to
L(i) induces a cost of at most∑

x∈C∗i ∩(A− ̂A)

gx +
|C∗i ∩ (A− Â)|

|Ri|
∑

x′∈Ri

(gx′ + lx′).

Due to Lemma IV.4, we have |Ri| =

|IRε2

i ∩ C∗i ∩ A(L(i))| ≥ (1 − ε) · |IRε2

i ∩ C∗i |
and |(IRε2

i ∩ C∗i ) ∩ (A − Â)| ≤ ε · |IRε2

i ∩ C∗i |.
Further, |(C∗i − IRε2

i ) ∩ (A − Â)| ≤ |(C∗i − IRε2

i )| =
|C∗i |−|IRε2

i ∩C∗i |. Combining these three bounds, we have

|C∗i ∩ (A− Â)|
|Ri| =

|C∗i ∩ (A− Â)|
|IRε2

i ∩ C∗i ∩A(L(i))|

≤ |C∗i | − (1− ε)|IRε2

i ∩ C∗i |
(1− ε) · |IRε2

i ∩ C∗i |
(1)

=
|C∗i |

(1− ε) · |IRε2
i ∩ C∗i |

− 1

≤ |C∗i |
(1− ε)2 · |C∗i |

− 1 ≤ 2ε− ε2

(1− ε)2
<

2ε

(1− ε)2
,(2)

where the inequality in (2) follows from Lemma IV.5.
Summing over all clusters C∗i ∈ C∗ − Z∗, we obtain

that the cost in M for the clients in (A − Â) ∩ C∗i is
less than∑
c∈A−( ̂A∪C(Z∗))

gx +
2ε

(1− ε)2
· (cost(C∗) + cost(L)).

By Lemmas IV.7 and IV.8, we have
|M−L|+ |L−M| = 2 · |Z∗| ≤ (4ε−3+O(ε−2))β−1.
By selecting the neighborhood size of Local Search
(Algorithm 1) to be greater than this value, we have
(1 − ε/n) · cost(L) ≤ cost(M). Therefore, combining
the above observations, we have

(1− ε
n ) · cost(L) ≤∑

x∈ ̂A−C(Z∗)

lx +
∑

x∈C(Z∗)
gx+∑

x∈A−( ̂A∪C(Z∗))
gx +

2ε
(1−ε)2 · (cost(C∗) + cost(L)).
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By simple transformations, we then obtain

− ε

n
· cost(L) +

∑
x∈A−( ̂A)∪C(Z∗)

lx ≤

∑
x∈A−( ̂A)∪C(Z∗)

gx +
2ε

(1− ε)2
· (cost(C∗) + cost(L)).

We now turn to evaluate the cost for the clients that
are in Â − C(Z∗). For any cluster C∗i ∈ C∗ − C(Z∗)
and for any x ∈ C∗i − A(L(i)) define Reassign(x) to
be the cost of x with respect to the center in L(i). Note
that there exists only one center of L in IRε

i for any
cluster C∗i ∈ C∗ − C(Z∗). Before going deeper in the
analysis, we need the following lemma.

Lemma IV.10. For any C∗i ∈ C∗ − C(Z∗), we have∑
x∈C∗i −A(L(i))

Reassign(x) ≤

∑
x∈C∗i −A(L(i))

gx +
2ε

(1− ε)2

∑
x∈C∗i

(lx + gx).

We now partition the clients of cluster C∗i ∈ C∗ −Z∗.
For any i, let Bi be the set of clients of C∗i that are served
in solution L by a center L(j) for some j �= i and C∗j ∈
C∗ − Z∗. Moreover, let Di = (A(L(i)) ∩ (⋃j �=i Bj)).

Finally, define Ei = (C∗i ∩ Â)−⋃j �=i Dj .

Lemma IV.11. Let C∗i be a cluster in C∗ − Z∗. Define
the solution Mi = L − {L(i)} ∪ {c∗i } and denote by
mi

x the cost of client x in solution Mi. Then∑
x∈A mi

x ≤∑
x∈A−

(A(L(i))∪Ei)
lx +

∑
x∈Ei

gx +
∑

x∈Di
Reassign(x)

+
∑

x∈A(L(i))−
(Ei∪Di)

lx +
ε

(1−ε) (
∑

x∈Ei
gx + lx).

We can thus prove the following lemma, which
concludes the proof.

Lemma IV.12. We have

−ε · cost(L) +
∑

x∈ ̂A−C(Z∗)

lx ≤

∑
x∈ ̂A−C(Z∗)

gx +
3ε

(1− ε)2
· (cost(L) + cost(C∗)).

The proof of Theorem IV.2 follows from (1) summing
the equations from Lemmas IV.9 and IV.12 and noting
that ((A − Â) ∪ C(Z∗)) ∪ (Â − C(Z∗)) = A. The
comparison of the structure of the local solution to the
structure of C∗ is an immediate corollary of Lemma IV.4.

V. PERTURBATION RESILIENCE

We first give the definition of α-perturbation-resilient
instances.

Definition V.1. Let I = (A,F, cost, k) be an instance
for the k-clustering problem. For α ≥ 1, I is α-
perturbation-resilient if there exists a unique optimal
set of centers C∗ = {c∗1, . . . , c∗k} and for any instance
I ′ = (A,F, cost′, k, p), such that

∀ a, b ∈ P, cost(a, b) ≤ cost′(a, b) ≤ αcost(a, b),

the unique optimal set of centers is C∗ = {c∗1, . . . , c∗k}.
For ease of exposition, we assume that

cost(a, b) = dist(a, b) (i.e., we work with the k-
median problem). Given solution S0, we say that S0
is 1/ε-locally optimal if any solution S1 such that
|S0 − S1|+ |S1 − S0| ≤ 2/ε has at least cost(S0).

Theorem V.2. Let α > 3. For any instance of the
k-median problem that is α-perturbation-resilient, any
2(α − 3)−1-locally optimal solution is the optimal set
of centers {c∗1, . . . , c∗k}.

Moreover, define lc to be the cost for client c in
solution L and gc to be its cost in the optimal solution
C∗. Finally, for any sets of centers S and S0 ⊂ S, define
NS(S0) to be the set of clients served by a center of S0
in solution S, i.e.: NS(S0) = {x | ∃s ∈ S0, dist(x, s) =
mins′∈S dist(x, s′)}.

The proof of Theorem V.2 relies on the following
theorem of particular interest.

Theorem V.3 (Local-Approximation Theorem.). Let L be
a 1/ε-locally optimal solution and C∗ be any solution. De-
fine S = L∩C∗ and L̃ = L−S and C̃∗ = C∗−S. Then∑

c∈NC∗ (C̃∗)−NL(L̃)
lc +

∑
c∈NL(L̃)

lc ≤
∑

c∈NC∗ (C̃∗)−NL(L̃)
gc + (3 + 2ε)

∑
c∈NL(L̃)

gc.

We first show how Theorem V.3 allows us to prove
Theorem V.2.

Proof of Theorem V.2: Given an instance
(A,F, dist, k), we define the following instance
I ′ = (A,F, dist′, k), where dist′(a, b) is a distance
function defined over A ∪ F that we detail below. For
each client c ∈ NL(L̃) ∪NC∗(C̃∗), let �c be the center
of L that serves it in L, for any point p �= �c, we define
dist′(c, p) = αdist(c, p) and dist′(c, �c) = dist(c, �c).
For the other clients we set dist′ = dist. Observe that
by local optimality, the clustering induced by L is
{c∗1, . . . , c∗k} if and only if L = C∗. Therefore, the cost
of C∗ in instance I ′ is equal to

α
∑

c∈NL(L̃)
gc +

∑
c∈NC∗ (C̃∗)
−NL(L̃)

min(αgc, lc) +
∑

c�∈NC∗ (C̃∗)
∪NL(L̃)

gc.
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On the other hand, the cost of L in I ′ is the same as
in I . By Theorem V.3∑

c∈NC∗ (C̃∗)−NL(L̃)
lc +

∑
c∈NL(L̃)

lc+ ≤∑
c∈NC∗ (C̃∗)−NL(L̃)

gc + (3 + 2(α−3)
2 )

∑
c∈NL(L̃)

gc

and by definition of S we have, for each element
c /∈ NC∗(C̃∗) ∪NL(L̃), lc = gc.

Thus the cost of L in I ′ is at most(
3 +

2(α− 3)
2

) ∑
c∈NL(L̃)

gc+
∑

c∈NC∗ (C̃∗)
−NL(L̃)

gc+
∑

c�∈NC∗ (C̃∗)
∪NL(L̃)

gc

Now, observe that for the clients in NC∗(C̃∗) −
NL(L̃) = NC∗(C̃∗) ∩NL(S), we have lc ≥ gc.

Therefore, we have that the cost of L is at most the
cost of C∗ in I ′ and so by definition of α-perturbation-
resilience, we have that the clustering {c∗1, . . . , c∗k} is
the unique optimal solution in I ′. Therefore L = C∗ and
the Theorem follows.

We now turn to the proof of Theorem V.3.
Consider the following bipartite graph Γ = (L̃∪ C̃∗, E)

where E is defined as follows. For any center f ∈ C̃∗,
we have (f, �) ∈ E where � is the center of L̃ that is the
closest to f . Denote NΓ(�) the neighbors of the point
corresponding to center � in Γ.

For each edge (f, �) ∈ E , for any client
c ∈ NC∗(f)−NL(�), we define Reassignc as the cost of
reassigning client c to �. We derive the following lemma.

Lemma V.4. For any client c, Reassignc ≤ lc + 2gc.

Proof: By definition we have Reassignc = dist(c, �).
By the triangle inequality dist(c, �) ≤ dist(c, f) +
dist(f, �). Since f serves c in C∗ we have dist(c, f) = gc,
hence dist(c, �) ≤ gc + dist(f, �). We now bound
dist(f, �). Consider the center �′ that serves c in
solution L. By the triangle inequality we have
dist(f, �′) ≤ dist(f, c) + dist(c, �′) = gc + lc. Finally,
since � is the closest center of f in L, we have dist(f, �) ≤
dist(f, �′) ≤ gc + lc and the lemma follows.

We partition the centers of L̃ as follows. Let L̃0 be the
set of centers of L̃ that have degree 0 in Γ. Let L̃≤ε−1

be the set of centers of L̃ that have degree at least one
and at most 1/ε in Γ. Let L̃>ε−1 be the set of centers
of L̃ that have degree greater than 1/ε in Γ.

We now partition the centers of L̃ and C̃∗ using
the neighborhoods of the vertices of L̃ in Γ. We start
by iteratively constructing two set of pairs S≤ε−1 and

S>ε−1 . For each center � ∈ L̃≤ε−1 ∪ L̃>ε−1 , we pick

a set A� of |NΓ(�)| − 1 centers of L̃0 and define a pair
({�} ∪ A�, NΓ(�)). We then remove A� from L̃0 and
repeat. Let S≤ε−1 be the pairs that contain a center of

L̃≤ε−1 and let S>ε−1 be the remaining pairs.
The following lemma follows from the definition of

the pairs.

Lemma V.5. Let (RL̃, RC̃∗) be a pair in S≤ε−1∪S>ε−1 .
If � ∈ RL̃, then for any f such that (f, �) ∈ E , f ∈ RC̃∗ .

Lemma V.6. For any pair (RL̃, RC̃∗) ∈ S≤ε−1 we
have that∑

c∈NC∗ (RC̃∗ )

lc ≤
∑

c∈NC∗ (RC̃∗ )

gc + 2
∑

NL(RL̃)

gc.

Proof: Consider the mixed solution M =
L−RL̃ ∪RC̃∗ . For each point c, let mc denote the cost
of c in solution M . We have the following upper bounds

mc ≤

⎧⎪⎨⎪⎩
gc if c ∈ NC∗(R

C̃∗).

Reassignc if c ∈ NL(RL̃)−NC∗(R
C̃∗).

lc Otherwise.

Now, observe that the solution M differs from L by
at most 2/ε centers. Thus, by 1/ε-local optimality we
have cost(L) ≤ cost(M). Summing over all clients and
simplifying, we obtain∑

c∈NC∗ (RC̃∗ )

lc +
∑

c∈NL(RL̃)−NC∗ (RC̃∗ )

lc ≤
∑

c∈NC∗ (RC̃∗ )

gc +
∑

c∈NL(RL̃)−NC∗ (RC̃∗ )

Reassignc.

The lemma follows by combining with Lemma V.4.
We now analyze the cost of the clients served by a

center of L that has degree greater than ε−1 in Γ. The
argument is very similar.

Lemma V.7. For any pair (RL̃, RC̃∗) ∈ S>ε−1 we
have that∑
c∈NC∗ (RC̃∗ )

lc ≤
∑

c∈NC∗ (RC̃∗ )

gc + 2(1 + ε)
∑

NL(RL̃)

gc.

Proof: Consider the center �̂ ∈ RL̃ that has in-degree

greater than ε−1. Let L̂ = RL̃ − {�̂}. For each � ∈ L̂,

we associate a center f(�) in RC̃∗ in such a way that
each f(�) �= f(�′), for � �= �′. Note that this is possible

since |L̂| = |RC̃∗ | − 1. Let f̃ be the center of RC̃∗ that

is not associated with any center of L̂.
Now, for each center � of L̂ we consider the mixed

solution M � = L − {�} ∪ {f(�)}. For each client c, we
bound its cost m�

c in solution M �. We have

m�
c =

⎧⎪⎨⎪⎩
gc if c ∈ NC∗(f(�)).

Reassignc if c ∈ NL(�)−NC∗(f(�)).

lc Otherwise.

Summing over all center � ∈ L̂, we have by ε−1-local
optimality ∑

c∈NC∗ (RC̃∗ )−NC∗ (f̃)

lc +
∑
�∈RL̃

∑
c∈NL(�)

lc ≤ (3)

∑
c∈NC∗ (RC̃∗ )−NC∗ (f̃)

gc +
∑
�∈RL̃

∑
c∈NL(�)

Reassignc.
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We now complete the proof of the lemma by
analyzing the cost of the clients in NC∗(f̃). We consider

the center �∗ ∈ L̂ that minimizes the reassignment
cost of its clients. Namely, the center �∗ such that∑

c∈NL(�∗) Reassignc is minimized. We then consider

the solution M (�∗,f̃) = L−{�∗}∪{f̃}. For each client c,

we bound its cost m
(�∗,f̃)
c in solution M (�∗,f̃). We have

m(�∗,f̃)
c ≤

⎧⎪⎨⎪⎩
gc if c ∈ NC∗(f̃).

Reassignc if c ∈ NL(�∗)−NC∗(f̃).

lc Otherwise.

Thus, summing over all clients c, we have by local
optimality ∑

c∈NC∗ (f̃)

lc +
∑

c∈NL(�∗)−NC∗ (f(�∗))

lc ≤ (4)

∑
c∈NC∗ (f̃)

gc +
∑

c∈NL(�∗)−NC∗ (f(�∗))

Reassignc.

By Lemma V.4, combining Equations 3 and 4 and
averaging over all centers of L̂ we have∑
c∈NC∗ (RC̃∗ )

lc ≤
∑

c∈NC∗ (RC̃∗ )

gc + 2(1 + ε)
∑

NL(RL̃)

gc.

We now turn to the proof of Theorem V.3.
Proof of Theorem V.3: Observe first that for any

c ∈ NL(L̃)−NC∗(C̃∗), we have lc ≤ gc. This follows
from the fact that the center that serves c in C∗ is in
S and so in L and thus, we have lc ≤ gc. Therefore∑

c∈NL(L̃)−NC∗ (C̃∗)

lc ≤
∑

c∈NL(L̃)−NC∗ (C̃∗)

gc. (5)

We now sum the equations of Lemmas V.6 and V.7
over all pairs and obtain∑
(RL̃,RC̃∗ )

∑
c∈NC∗ (RC̃∗ )∪NL(RL̃)

lc ≤

∑
(RL̃,RC̃∗ )

⎛⎝ ∑
c∈NC∗ (RC̃∗ )∪NL(RL̃)

gc + (2 + 2ε)
∑

NL(RL̃)

gc

⎞⎠
⇒

∑
c∈NC∗ (C̃∗)∪NL(L̃)

lc ≤
∑

c∈NC∗ (C̃∗)∪NL(L̃)
gc + (2 + 2ε)

∑
c∈NL(L̃)

gc.

Therefore, ∑
c∈NC∗ (C̃∗)−NL(L̃)

lc +
∑

NL(L̃)
lc ≤∑

c∈NC∗ (C̃∗)−NL(L̃) gc + (3 + 2ε)
∑

c∈NL(L̃) gc.

VI. STRONG PERTURBATION-RESILIENCE

Given a set of centers C = {c1, ..., ck}, we define the
induced clustering of C to be the following partition of
the clients {S1, . . . , Sk} where Si = {a | dist(a, ci) ≤
dist(a, C)}, where ties are broken arbitrarily.

Definition VI.1. Let I = (A,F, cost, k) be an instance
for the k-clustering problem. For α ≥ 1, I is α-strong-
perturbation-resilient if there exists a unique optimal
set of centers C∗ = {c∗1, . . . , c∗k} and a unique induced
clustering S∗ = {S1, . . . , Sk} and for any instance
I ′ = (A,F, cost′, k, p), such that

∀ p, q ∈ P, cost(p, q) ≤ cost′(p, q) ≤ αcost(p, q),

the unique optimal set of centers is C∗ = {c∗1, . . . , c∗k}
and the unique induced clustering of C∗ is
S∗ = {S1, . . . , Sk}.

VII. SPECTRAL SEPARABILITY

In this section we will study the spectral separability
condition for the Euclidean k-means problem.

Definition VII.1 (Spectral Separation [33]5). Let
(A,Rd, || · ||2, k) be an input for k-means clustering
in Euclidean space and let {C∗1 , . . . C∗k} denote an
optimal clustering of A with centers S = {c∗1, . . . c∗k}.
Denote by C an n × d matrix such that the row Ci =
argmin
c∗j∈S

||Ai − c∗j ||2. Denote by || · ||2 the spectral norm

of a matrix. Then {C∗1 , . . . C∗k} is γ-spectrally separated,
if for any pair (i, j) the following condition holds:

||c∗i − c∗j || ≥ γ ·
⎛⎝ 1√|C∗i | + 1√

|C∗j |

⎞⎠ ||A− C||2.

Nowadays, a standard preprocessing step in Euclidean
k-means clustering is to project onto the subspace
spanned by the rank k-approximation. Indeed, this is the
first step of the algorithm by Kumar and Kannan [33]
(see Algorithm 2).

Algorithm 2 k-means with spectral initialization [33]

1: Project points onto the best rank k subspace
2: Compute a clustering C with constant approximation

factor on the projection
3: Initialize centroids of each cluster of C as centers

in the original space
4: Run Lloyd’s k-means until convergence

In general, projecting onto the best rank k subspace
and computing a constant approximation on the projection
results in a constant approximation in the original space.
Kumar and Kannan [33] and later Awasthi and Sheffet [9]
gave tighter bounds if the spectral separation is large

5The proximity condition of Kumar and Kannan [33] implies the
spectral separation condition.
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enough. Our algorithm omits steps 3 and 4. Instead, we
project onto slightly more dimensions and subsequently
use Local Search as the constant factor approximation
in step 2. To utilize Local Search, we further require a
candidate set of solutions. Due to space constraints and
the fact that these types of techniques are fairly standard,
we only give high-level details. Roughly speaking,
we compute a γ-ball-cover for a sufficiently small γ
depending only on ε and β. Such ball covers preserve cost
and stability up to small multiplicative constant factors,
and typically have size O(γ−d). To reduce the dependency
on the dimension, we then apply Johnson-Lindenstrauss
type embeddings, leading to a set of candidate solutions of

size npoly(ε−1). For pseudocode, we refer to Algorithm 3.
Our main result is to show that, given spectral separability,
this algorithm is PTAS for k-means (Theorem VII.2).

Algorithm 3 SpectralLS

1: Project points A onto the best rank k/ε subspace
2: Embed points into a random subspace of dimension

O(ε−2 log n)
3: Local Search(Θ(ε−4))
4: Output clustering

Theorem VII.2. Let (A,Rd, || · ||2, k) be an instance
of Euclidean k-means clustering with optimal clustering
C = {C∗1 , . . . C∗k} and centers S = {c∗1, . . . c∗k}. If C
is more than 3

√
k-spectrally separated, Algorithm 3 is

a polynomial time approximation scheme.

We first recall the basic notions and definitions for
Euclidean k-means. Let A ∈ R

n×d be a set of points
in d-dimensional Euclidean space, where the row Ai

contains the coordinates of the ith point. The singular
value decomposition is defined as A = UΣV T , where
U ∈ R

n×d and V ∈ R
d×d are orthogonal and Σ ∈ R

d×d

is a diagonal matrix containing the singular values where
per convention the singular values are given in descending
order, i.e. Σ1,1 = σ1 ≥ Σ2,2 = σ2 ≥ . . .Σd,d = σd.
Denote the Euclidean norm of a d-dimensional vector

x by ||x|| =
√∑d

i=1 x
2
i . The spectral norm and

Frobenius norm are defined as ||A||2 = σ1 and

||A||F =
√∑d

i=1 σ
2
i , respectively.

The best rank k approximation min
rank(X)=k

||A−X||F is

given via Ak = UkΣV
T = UΣkV

T = UΣV T
k , where

Uk, Σk and V T
k consist of the first k columns of U ,

Σ and V T , respectively, and are zero otherwise. The
best rank k approximation also minimizes the spectral
norm, that is ||A−Ak||2 = σk+1 is minimal among all
matrices of rank k. The following fact is well known
throughout k-means literature and will be used frequently
throughout this section.

Fact VII.3. Let A be a set of points in Euclidean space
and denote by c(A) = 1

|A|
∑

x∈A x the centroid of A.

Then the 1-means cost of any candidate center c can
be decomposed via∑
x∈A
||x− c||2 =

∑
x∈A
||x− c(A)||2 + |A| · ||c(A)− c||2

and ∑
x∈A
||x− c(A)||2 = 1

2 · |A|
∑
x∈A

∑
y∈A
||x− y||2.

Note that the centroid is the optimal 1-means center of
A. For a clustering C = {C1, . . . Ck} of A with centers

S = {c1, . . . ck}, the cost is then
∑k

i=1

∑
p∈Ci

||p−ci||2.

Further, if ci =
1
|Ci|

∑
p∈Ci

p, we can rewrite the objec-

tive function in matrix form by associating the ith point
with the ith row of some matrix A and using the cluster

matrix X ∈ R
n×k with Xi,j =

{
1√|C∗j | if Ai ∈ C∗j

0 else

to denote membership. Note that XTX = I , i.e. X is
an orthogonal projection and that ||A − XXTA||2F is
the cost of the optimal k-means clustering. k-means is
therefore a constrained rank k-approximation problem.

We first restate the separation condition.

Definition VII.4 (Spectral Separation). Let A be a set
of points and let {C1, . . . Ck} be a clustering of A with
centers {c1, . . . ck}. Denote by C an n× d matrix such
that Ci = argmin

j∈{1,...,k}
||Ai − cj ||2. Then {C1, . . . Ck} is

γ spectrally separated, if for any pair of centers ci and
cj the following condition holds:

||ci − cj || ≥ γ ·
(

1√|Ci|
+

1√|Cj |

)
||A− C||2.

The following crucial lemma relates spectral separation
and distribution stability.

Lemma VII.5. For a point set A, let C = {C1, . . . , Ck}
be an optimal clustering with centers S = {c1, . . . , ck}
associated clustering matrix X that is at least γ · √k
spectrally separated, where γ > 3. For ε > 0, let Am

be the best rank m = k/ε approximation of A. Then
there exists a clustering K = {C ′1, . . . C ′2} and a set of
centers Sk, such that
1) the cost of clustering Am with centers Sk via the

assignment of K is less than ||Am−XXTAm||2F and
2) (K,Sk) is Ω((γ − 3)2 · ε)-distribution stable.

We note that this lemma would also allow us to use the
PTAS of Awasthi et al. [6]. Before giving the proof, we
outline how Lemma VII.5 helps us prove Theorem VII.2.
We first notice that if the rank of A is of order k, then
elementary bounds on matrix norm show that spectral
separability implies distribution stability. We aim to com-
bine this observation with the following theorem due to
Cohen et al. [22]. Informally, it states that for every rank k
approximation, (an in particular for every constrained rank

57



k approximation such as k-means clustering), projecting
to the best rank k/ε subspace is cost-preserving.

Theorem VII.6 (Theorem 7 of [22]). For any A ∈ R
n×d,

let A′ be the rank �k/ε�-approximation of A. Then there
exists some positive number c such that for any rank k
orthogonal projection P ,

||A−PA||2F ≤ ||A′−PA′||2F +c ≤ (1+ε)||A−PA||2F .
The combination of the low rank case and this theorem

is not trivial as points may be closer to a wrong center
after projecting. Lemma VII.5 determines the existence
of a clustering whose cost for the projected points Am

is at most the cost of C∗. Moreover, this clustering has
constant distribution stability as well which, allows us to
use Local Search. Given that we can find a clustering with
cost at most (1+ε) · ||Am−XXTAm||2F , Theorem VII.6
implies that we will have a (1+ε)2-approximation overall.

To prove the lemma, we will require the following steps:

• A lower bound on the distance of the projected centers
||ciVmV T

m − cjVmV T
m || ≈ ||ci − cj ||.

• Find a clustering K with centers S∗m =
{c1VmV T

m , . . . , c∗kVmV T
m} of Am with cost less

than ||Am −XXTAm||2F .
• Show that in a well-defined sense, K and C∗ agree

on a large fraction of points.
• For any point x ∈ Ki, show that the distance of x to

any center not associated with Ki is large.

We first require a technical statement.

Lemma VII.7. For a point set A, let C = {C1, . . . Ck}
be a clustering with associated clustering matrix X and
let A′ and A′′ be optimal low rank approximations where
without loss of generality k ≤ rank(A′) < rank(A′′).
Then for each cluster Ci∣∣∣∣∣∣
∣∣∣∣∣∣ 1

|Ci|
∑
j∈Ci

(
A′′j −A′j

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
√

k

|Ci| · ||A−XXTA||2.

Proof: By Fact VII.3 |Ci|·|| 1
|Ci|

∑
j∈Ci

(A′′i −A′i)||22
is, for a set of point indexes Ci, the cost of moving the
centroid of the cluster computed on A′′ to the centroid of
the cluster computed on A′. For a clustering matrix X ,
||XXTA′ −XXTA′||2F is the sum of squared distances
of moving the centroids computed on the point set A′′
to the centroids computed on A′. We then have

|Ci| ·
∣∣∣∣∣∣ 1
|Ci|

∑
j∈Ci

(A′′j −A′j)
∣∣∣∣∣∣2
2

≤ ||XXTA′′ −XXTA′||2F ≤ ||X||2F · ||A′′ −A′||22
≤ k · σ2k+1 ≤ k · ||A−XXTA||22.

Proof of Lemma VII.5: For any point p associated
with some row of A, let pm = pVmV T

m be the
corresponding row in Am. Similarly, for some cluster Ci,
denote the center in A by ci and the center in Am by

cmi . Extend these notion analogously for projections pk

and cki to the span of the best rank k approximation Ak.
We have for any m ≥ k i �= j

||cmi − cmj || ≥
||ci − cj || − ||ci − cmi || − ||cj − cmj || ≥

γ ·
(

1√
|Ci|

+ 1√
|Cj |

)√
k||A−XXTA||2

−
(

1√
|Ci|

+ 1√
|Cj |

)√
k||A−XXTA||2 =

(γ − 1) ·
(

1√
|Ci|

+ 1√
|Cj |

)√
k||A−XXTA||2, (6)

where the second inequality follows from Lemma VII.7.

In the following, let Δi =
√
k√
|Ci|
||A−XXTA||2. We

will now construct our target clustering K. Note that we
require this clustering (and its properties) only for the
analysis. We distinguish between the following three cases.
Case 1: p ∈ Ci and cmi = argmin

j∈{1,...,k}
||pm − cj ||

These points remain assigned to cmi . The distance
between pm and a different center cmj is at least
1
2 ||cmi − cmj || ≥ γ−1

2 ε(Δi +Δj) due to Equation 6.
Case 2: p ∈ Ci, cmi �= argmin

j∈{1,...,k}
||pm − cj ||,and

cki �= argmin
j∈{1,...,k}

||pk − ckj ||
These points will get reassigned to their closest

center. The distance between pm and a different center
cmj is at least 1

2 ||cmi − cmj || ≥ γ−1
2 (Δi +Δj) due to

Equation 6.
Case 3: p ∈ Ci, cmi �= argmin

j∈{1,...,k}
||pm − cmj ||,and

cki = argmin
j∈{1,...,k}

||pk − ckj ||
We assign pm to cmi at the cost of a slightly

weaker movement bound on the distance between
pm and cmj . Due to orthogonality of V , we have

for m > k, (Vm − Vk)
TVk = V T

k (Vm − Vk) = 0.
Hence VmV T

mVk = VmV T
k Vk + Vm(Vm − Vk)

TVk =
VkV

T
k Vk +(Vm−Vk)V

T
k Vk = VkV

T
k Vk = Vk. Then

pk = pVkV
T
k = pVmV T

mVkV
T
k = pmVkV

T
k .

Further, ||pk−ckj || ≥ 1
2 ||ckj −cki || ≥ γ−1

2 (Δi+Δj)
due to Equation 6. Then the distance between pm and
a different center cmj

||pm − cmj ||
≥ ||pm − ckj || − ||cmj − ckj ||
=

√
||pm − pk||2 + ||pk − ckj ||2 − ||cmj − ckj ||

≥ ||pk − ckj || −Δj ≥ γ − 3
2

(Δi +Δj),

where the equality follows from orthogonality and the
second to last inequality follows from Lemma VII.7.
Now, given the centers {cm1 , . . . cmk }, we obtain

a center matrix MK where the ith row of MK is
the center according to the assignment of above.
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Since both clusterings use the same centers but
K improves locally on the assignments, we have
||Am −MK ||2F ≤ ||Am − XXTAm||2F , which proves
the first statement of the lemma. Additionally, due to the
fact that Am −XXTAm has rank m = k/ε, we have

||Am −MK ||2F ≤ ||Am −XXTAm||2F
≤ m · ||Am −XXTAm||22
≤ k/ε · ||A−XXTA||2F (7)

To ensure stability, we will show that for each element
of K there exists an element of C , such that both clusters
agree on a large fraction of points. This can be proven by
using techniques from Awasthi and Sheffet [9] (Theorem
3.1) and Kumar and Kannan [33] (Theorem 5.4), which
we repeat for completeness.

Lemma VII.8. Let K = {C ′1, . . . C ′k} and
C = {C1, . . . Ck} be defined as above. Then there exists
a bijection b : C → K such that for any i ∈ {i, . . . , k}(
1− 32

(γ − 1)2
)
|Ci| ≤ b(|Ci|) ≤

(
1 +

32

(γ − 1)2
)
|Ci|.

Proof: Denote by Ti→j the set of points from Ci

such that ||cki − pk|| > ||ckj − pk||. We first note that

||Ak − XXTA||2F ≤ 2k · ||Ak − XXTA||22 ≤
2k · (||A−Ak||2 + ||A−XXTA||2

)2 ≤
8k · ||A − XXTA||22 ≤ 8 · |Ci| · Δ2

i for any
i ∈ {1, . . . , k}. The distance ||pk−cki || ≥ 1

2 ||cki −ckj || ≥
γ−1
2 ·

(
1√
Ci
+ 1√

|Cj |

)√
k||A − XXTA||22. Assigning

these points to cki , we can bound the total number of points
added to and subtracted from cluster Cj by observing

Δ2
j

∑
i�=j |Ti→j | ≤

∑
i�=j |Ti→j | ·

(
γ−1
2

)2 · (Δi +Δj)
2

≤ ||Ak −XXTA||2F ≤ 8 · |Cj | ·Δ2
j

and analogously

Δ2
j

∑
i �=j

|Tj→i| ≤ 8 · |Cj | ·Δ2
j .

Therefore, the cluster sizes are up to some multiplicative

factor of
(
1± 32

(γ−1)2
)

identical.

We now have for each point pm ∈ C ′i a minimum
distance of

||pm − cmj ||

≥ γ − 3
2
·
(

1√|Ci|
+

1√|Cj |

)
·
√
k · ||A−XXTA||2

≥ γ − 3
2
· ·
√
k · ||A−XXTA||2 ·⎛⎜⎝√√√√ 1(

1 + 32
(γ−1)2

)
· |C ′i|

+

√√√√ 1(
1 + 32

(γ−1)2
)
· |C ′j |

⎞⎟⎠ .

where the first inequality holds due to Case 3, the second
inequality holds due to Lemma VII.8. Finally, due to
γ > 3 and Equation 7, this shows that the cost of
assigning pm to cmj is at least

4 · (γ − 3)2
81

· ε ||Am −MK ||2F
|C ′j |

.

This ensures that the distribution stability condition is
satisfied.

Proof of Theorem VII.2: Given the optimal clustering
C∗ of A with clustering matrix X , Lemma VII.5 guar-
antees the existence of a clustering K with center matrix
MK such that ||Am−MK ||2F ≤ ||Am−XXTAm|| and
that C has constant distribution stability. If ||Am−MK ||2F
is not a constant factor approximation, we are already
done, as Local Search is guaranteed to find a constant
factor approximation. By Theorem IV.2, Local Search
with appropriate (but constant) neighborhood size will find
a clustering C ′ with cost at most (1+ε) times the cost of
K in (Am, F, || · ||2, k). Let Y be the clustering matrix of
C ′. We then have ||Am−Y Y TAm||2F + ||A−Am||2F ≤
(1+ ε)||Am−MK ||2F + ||A−Am||2F ≤ (1+ ε)2||Am−
XXTAm||2F + ||A−Am||2F ≤ (1+ε)3||A−XXTA||2F
due to Theorem VII.6. Rescaling ε completes the proof.
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