
Distributed PCP Theorems for Hardness of
Approximation in P

(Extended Abstract)

Amir Abboud
Stanford University

Computer Science Department

Palo Alto, CA, USA

abboud@cs.stanford.edu

Aviad Rubinstein
UC Berkeley

EECS

Berkeley, CA, USA

aviad@eecs.berkeley.edu

Ryan Williams
MIT

CSAIL and EECS

Cambridge, MA, USA

rrw@mit.edu

Abstract—We present a new distributed model of
probabilistically checkable proofs (PCP). A satisfying
assignment x ∈ {0, 1}n to a CNF formula φ is shared
between two parties, where Alice knows x1, . . . , xn/2,
Bob knows xn/2+1, . . . , xn, and both parties know φ.
The goal is to have Alice and Bob jointly write a
PCP that x satisfies φ, while exchanging little or no
information. Unfortunately, this model as-is does not
allow for nontrivial query complexity. Instead, we focus
on a non-deterministic variant, where the players are
helped by Merlin, a third party who knows all of x.

Using our framework, we obtain, for the first time,
PCP-like reductions from the Strong Exponential Time
Hypothesis (SETH) to approximation problems in P. In
particular, under SETH we show that there are no truly-
subquadratic approximation algorithms for Maximum
Inner Product over {0, 1}-vectors, LCS Closest Pair
over permutations, Approximate Partial Match, Ap-
proximate Regular Expression Matching, and Diameter
in Product Metric. All our inapproximability factors are
nearly-tight. In particular, for the first three problems
we obtain nearly-polynomial factors of 2(logn)1−o(1)

;
only (1+o(1))-factor lower bounds (under SETH) were
known before.

As an additional feature of our reduction, we obtain
new SETH lower bounds for the exact “monochro-
matic” Closest Pair problem in the Euclidean, Man-
hattan, and Hamming metrics.

Index Terms—fine-grained complexity; similarity
search; strong exponential-time hypothesis; closest pair;
longest common subsequence; inapproximability

I. INTRODUCTION

Fine-Grained Complexity classifies the time com-

plexity of fundamental problems under popular con-

jectures, the most productive of which has been the

Strong Exponential Time Hypothesis1 (SETH). The

list of “SETH-Hard” problems is long, including cen-

tral problems in pattern matching and bioinformatics

1SETH is a pessimistic version of P �= NP, stating that for every
ε > 0 there is a k such that k-SAT cannot be solved in O((2−ε)n)
time.

[1], [2], [3], graph algorithms [4], [5], dynamic data

structures [6], parameterized complexity and exact

algorithms [7], [8], [9], computational geometry [10],

time-series analysis [11], [12], and even economics

[13] (a longer list can be found in [14]).

For most problems in the above references, there

are natural and meaningful approximate versions,

and for most of them the time complexity is wide

open (a notable exception is [4]). Perhaps the most

important and challenging open question in the field

of Fine-Grained Complexity is whether a framework

for hardness of approximation in P is possible. To

appreciate the gaps in our knowledge regarding in-

approximability, consider the following fundamental

problem from the realms of similarity search and

statistics, of finding the most correlated pair in a

dataset.

Definition I.1 (The MAX INNER PRODUCT Prob-

lem (MAX-IP)). Given a set of N binary vectors

in {0, 1}d, return a pair that maximizes the inner

product.

Thinking of the vectors as subsets of [d], this

MAX-IP problem asks to find the pair with largest

overlap, a natural similarity measure. A naı̈ve algo-

rithm solves the problem in O(N2d) time, and one of

the most-cited fine-grained results is a SETH lower

bound for this problem.2 Assuming SETH, we cannot

solve MAX-IP (exactly) in N2−ε ·2o(d) time, for any

ε > 0 [15].

This lower bound is hardly pleasing when one

2As a matter of fact, the lower bound is only for the bichromatic
version of the problem, where we are given two sets of vector
and want to find the best pair, one from each list. This distinction
between monochromatic and bichromatic not so important for now,
and we will only address it in Section I-B1.
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of the most vibrant areas of Algorithms3 is con-

cerned with designing approximate but near-linear
time solutions for such similarity search problems.

For example, the original motivation of the celebrated

MinHash algorithm was to solve the indexing version

of this problem [16], [17], and one of the first im-

plementations was at the core of the AltaVista search

engine. The problem has important applications all

across Computer Science, most notably in Machine

Learning, databases, and information retrieval, e.g.

[18], [19], [20], [21], [22], [23], [24], [25], [26], [27],

[28], [29], [30], [31], [32], [33], [34].
MAX-IP seems to be more challenging than

closely related problems where similarity is defined

as small Euclidean distance rather than large in-

ner product. For the latter, we can get near-linear

O(N1+ε) time algorithms, for all ε > 0, at the cost

of some constant f(ε) error that depends on ε [18],

[19], [23], [25]. In contrast, for MAX-IP, even for a

moderately subquadratic running time of O(N2−ε),
all known algorithms suffer from polynomial Ng(ε)

approximation factors.
Meanwhile, the SETH lower bound for MAX-IP

was only slightly improved by Ahle, Pagh, Razen-

shteyn, and Silvestri [31] to rule out 1 + o(1) ap-

proximations, leaving a huge gap between the not-

even-1.001 lower bound and the polynomial upper

bound.

Open Question 1. Is there an O(N1+ε)-time algo-
rithm for computing an f(ε)-approximation to MAX

INNER PRODUCT over binary vectors?

This is just one of the many significant open

questions that highlight our inability to prove hard-

ness of approximation in P, and pour cold water on

the excitement from the successes of Fine-Grained

Complexity. It is natural to try to adapt tools from the

NP-Hardness-of-approximation framework (namely,

the celebrated PCP Theorem) to P. Unfortunately,

when starting from SETH, almost everything in the

existing theory of PCPs breaks down. Whether PCP-

like theorems for Fine-Grained Complexity are pos-

sible, and what they could look like, are fascinating

open questions.
Our main result is the first SETH-based PCP-

like theorem, from which several strong hardness

of approximation in P results follow. We identify a

canonical problem that is hard to approximate, and

further gadget-reductions allow us to prove SETH-

based inapproximability results for basic problems

such as Subset Queries, Closest Pair under the

Longest Common Subsequence similarity measure,

3In SODA’17, two entire sessions were dedicated to algorithms
for similarity search.

and Furthest Pair (Diameter) in product metrics. In

particular, assuming SETH, we negatively resolve

Open Question 1 in a very strong way, proving an

almost tight lower bound for MAX-IP.

A. PCP-like Theorems for Fine-Grained Complexity

The following meta-structure is common to most

SETH-based reductions: given a CNF ϕ, construct

N = O
(
2

n
2

)
gadgets, one for each assignment to

the first/last n/2 variables, and embed those gadgets

into some problem A. The embedding is designed so

that if A can be solved in O
(
N2−ε

)
= O

(
2(1−

ε
2 )n

)
time, a satisfying assignment for ϕ can be efficiently

recovered from the solution, contradicting SETH.

The most obvious barrier to proving fine-grained

hardness of approximation is the lack of an appropri-

ate PCP theorem. Given a 3-SAT formula ϕ, testing

that an assignment x ∈ {0, 1}n satisfies ϕ requires

reading all n bits of x. The PCP Theorem [35],

[36], shows how to transform x ∈ {0, 1}n into a

PCP (probabilistically checkable proof) π = π (ϕ, x),
which can be tested by a probabilistic verifier who

only reads a few bits from π. This is the starting

point for almost all proofs of NP-hardness of approx-

imation. The main obstacle in using PCPs for fine-

grained hardness of approximation is that all known

PCPs incur a blowup in the size proof: π (ϕ, x)
requires n′ � n bits. The most efficient known

PCP, due to Dinur [37], incurs a polylogarithmic

blowup (n′ = n · polylog(n)), and obtaining a PCP

with a constant blowup is a major open problem

(e.g. [38], [39]). However, note that even if we had

a fantastic PCP with only n′ = 10n, a reduction of

size N ′ = 2
n′
2 = 25n does not imply any hardness

at all. Our goal is to overcome this barrier:

Open Question 2. Is there a PCP-like theorem for
fine-grained complexity?

Distributed PCPs

Our starting point is that of error-correcting codes,

a fundamental building block of PCPs. Suppose that

Alice and Bob want to encode a message m =
(α;β) ∈ {0, 1}n in a distributed fashion. Neither

Alice nor Bob knows the entire message: Alice

knows the first half (α ∈ {0, 1}n
2 ), and Bob knows

the second half (β ∈ {0, 1}n
2 ). Alice can locally

compute an encoding E′ (α) of her half, and Bob

locally computes an encoding E′ (β) of his. Then

the concatenation of the Alice’s and Bob’s strings,

E (m) = (E′ (α) ;E′ (β)), is an error-correcting

encoding of m.
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Now let us return to distributed PCPs. Alice

and Bob share a k-SAT4 formula ϕ. Alice has an

assignment α ∈ {0, 1}n
2 to the first half of the

variables, and Bob has an assignment β ∈ {0, 1}n
2

to the second half. We want a protocol where Alice

locally computes a string π′ (α) ∈ {0, 1}n′ , Bob

locally computes π′ (β) ∈ {0, 1}n′ , and together

π (α;β) = (π′ (α) , π′ (β)) is a valid probabilistically

checkable proof that x = (α, β) satisfies ϕ. That is,

a probabilistic verifier can read a constant number of

bits from (π′ (α) , π′ (β)) and decide (with success

probability at least 2/3) whether (α, β) satisfies ϕ.

It is significant to note that if distributed PCPs
can be constructed, then very strong reductions
for fine-grained hardness of approximation follow,

completely overcoming the barrier for fine-grained

PCPs outlined above. The reason is that we can

still construct N = O
(
2

n
2

)
gadgets, one for each

half assignment α, β ∈ {0, 1}n
2 , where the gad-

get for α also encodes π′ (α). The blowup of the

PCP only affects the size of each gadget, which is

negligible compared to the number of gadgets. In

fact, this technique would be so powerful, that we

could reduce SETH to problems like approximate �2-

Nearest Neighbor, where the existing sub-quadratic

approximation algorithms (e.g. [25]) would falsify

SETH!

Alas, distributed PCPs are unconditionally impos-
sible (even for 2-SAT) by a simple reduction from

Set Disjointness:

Theorem I.2 (Reingold [40]; informal). Distributed
PCPs are impossible.

Proof (sketch). Consider the 2-SAT formula ϕ �∧n/2
i=1 (¬αi ∨ ¬βi). This ϕ is satisfied by assignment

(α;β) iff the vectors α, β ∈ {0, 1}n
2 are disjoint. If

a PCP verifier can decide whether (α;β) satisfies ϕ
by a constant number of queries to (π′ (α) , π′ (β)),
then Alice and Bob can simulate the PCP verifier

to decide whether their vectors are disjoint, while

communicating only a constant number of bits (the

values read by the PCP verifier). This contradicts the

randomized communication complexity lower bounds

of Ω(n) for set disjointness [41], [42], [43].

Note that the proof shows that even distributed

PCPs with o(n) queries are impossible.

Distributed and non-deterministic PCPs: As noted

above, set disjointness is very hard for randomized

communication, and hard even for non-deterministic

4In the formulation of SETH, k is a “sufficiently large constant”.
However, for the purposes of our discussion here it suffices to think
of k = 3.

communication [44]. But Aaronson and Wigder-

son [45] showed that set disjointness does have

Õ (
√
n) Merlin-Arthur (MA) communication com-

plexity. In particular, they construct a simple protocol

where the standard Bob and an untrusted Merlin (who

can see both sets of Alice and Bob) each send Alice

a message of length Õ (
√
n). If the sets are disjoint,

Merlin can convince Alice to accept; if they are not,

Alice will reject with high probability regardless of

Merlin’s message.

Our second main insight in this paper is this: for

problems where the reduction from SETH allows for

an efficient OR gadget, we can enumerate over all

possible messages from Merlin and Bob5. Thus we

incur only a subexponential blowup6 in the reduction

size,while overcoming the communication barrier.

Indeed, the construction in our PCP-like theorem can

be interpreted as implementing a variant of Aaronson

and Wigderson’s MA communication protocol. The

resulting PCP construction is distributed (in the sense

described above) and non-deterministic (in the sense

that Alice receives sublinear advice from Merlin).

It can be instructive to view our distributed PCP

model as a 4-party (computationally-efficient) com-

munication problem. Merlin wants to convince Alice,

Bob, and Veronica (the verifier) that Alice and Bob

jointly hold a satisfying assignment to a publicly-

known formula. Merlin sees everything except the

outcome of random coin tosses, but he can only send

o(n) bits to only Alice. Alice and Bob each know

half of the (allegedly) satisfying assignment, and each

of them must (deterministically) send a (possibly

longer) message to Veronica. Finally, Veronica tosses

coins and is restricted to reading only o(n) bits from

Alice’s and Bob’s messages, after which she must

output Accept/Reject.

Patrascu and Williams [7] asked whether it is pos-

sible to use Aaronson and Wigderson’s MA protocol

for Set Disjointness to obtain better algorithms for

satisfiability. Taking an optimistic twist, our results

in this paper may suggest this is indeed possible:

if any of several important and simple problems

admit efficient approximation algorithms, then faster

algorithms for (exact) satisfiability may be obtained

via Aaronson and Wigderson’s MA protocol.

B. Our results

Our distributed and non-deterministic PCP theorem

is formalized and proved in the full version. Since our

5In fact, enumerating over Merlin’s possible messages turns out
to be easy to implement in the reductions; the main bottleneck is
the communication with Bob.

6Subexponential in n (the number of k-SAT variables), which
implies subpolynomial in N ≈ 2n/2.
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main interest is proving hardness-of-approximation

results, we abstract the prover-verifier formulation

by reducing our PCP to an Orthogonal-Vectors-like

problem which we call PCP-VECTORS (see below).

PCP-VECTORS turns out to be an excellent starting

point for many results, yielding easy reductions for

fundamental problems and giving essentially tight

inapproximability bounds. We begin with the descrip-

tion of PCP-VECTORS, and then exhibit what we

think are the most interesting applications.

a) PCP-Vectors: We introduce an intermediate

problem which we call PCP VECTORS. The purpose

of introducing this problem is to abstract out the

prover-verifier formulation before proving hardness

of approximation in P, very much like NP-hardness

of approximation reductions start from gap-3-SAT or

LABEL COVER.

Definition I.3 (PCP-VECTORS). The input to this

problem consists of two sets of vectors A ⊂ ΣL×K

and B ⊂ ΣL, The goal is to find vectors a ∈ A and

b ∈ B that maximize

s (a, b) � Pr
�∈L

[ ∨
k∈K

(a�,k = b�)

]
. (1)

Theorem I.4. Let ε > 0 be any constant, and let
(A,B) be an instance of PCP-VECTORS with N
vectors and parameters |L|, |K|, |Σ| = No(1).Then,
assuming SETH, O

(
N2−ε

)
-time algorithms cannot

distinguish between:
• (Completeness) there exist a∗, b∗ such that

s (a∗, b∗) = 1; and
• (Soundness) for every a ∈ A, b ∈ B, we have

s (a, b) ≤ 1/2(logN)1−o(1)

.

We also have a symmetric variant of PCP-

VECTORS (which we call SYMMETRIC PCP-

VECTORS), where the vectors come from one set.

There is some tradeoff between the properties of the

two variants: In PCP-VECTORS, we can afford to

assume additional structure on the hard instances,

which supports reductions to structured problems

like SUBSET QUERY and REGULAR EXPRESSION.

In contrast, having one set of vectors in SYMMET-

RIC PCP-VECTORS simplifies reductions to Closest

Pair problems with one set, like MAX IP and LCS

CLOSEST PAIR.

Definition I.5 (SYMMETRIC PCP-VECTORS). The

input to this problem consists of a single set of

vectors U ⊂ ΣL×K .The goal is to find a pair of

vectors u∗, v∗ ∈ U (where u∗ �= v∗) that maximize

s (u, v) � Pr
�∈L

[ ∨
k∈K

(u�,k = v�,k)

]
. (2)

Theorem I.6. Let ε > 0 be any constant, and let U
be an instance of SYMMETRIC PCP-VECTORS with
N vectors and parameters |L|, |K|, |Σ| = No(1).
Then, assuming SETH, O

(
N2−ε

)
-time algorithms

cannot distinguish between:
• (Completeness) there exist u∗ �= v∗ ∈ U such

that s (u∗, v∗) = 1; and
• (Soundness) for every u, v ∈ U we have

s (u, v) ≤ 1/2(logN)1−o(1)

.
Furthermore, we have the guarantee that for every
� ∈ L, there is at most one k ∈ K such that u�,k =
v�,k

7.

b) Max Inner Product: Our first application is

a strong resolution of Open Question 1, under SETH.

Not only is an O(1)-factor approximation impossible

in O(N1+ε) time, but we must pay a near-polynomial

2(logN)1−o(1)

approximation factor if we do not spend

nearly-quadratic N2−o(1) time!

Theorem I.7. Assuming SETH, for all ε > 0,
every O(N2−ε) time algorithm for MAX INNER

PRODUCT on N vectors from {0, 1}d with dimension
d = No(1) must have approximation factor at least
2(logN)1−o(1)

.

Improving our lower bound even to some Nε

factor would refute SETH via the known MAX-IP

algorithms (see e.g. [31]). Using a standard trick,

Theorem I.7 also applies to the harder (but more

useful) search version widely known as MIPS.

Corollary I.8. Assuming SETH, for all ε > 0,
no algorithm can preprocess a set of N vectors
p1, . . . , pN ∈ D ⊆ {0, 1}d in polynomial time, and
subsequently given a query vector q ∈ {0, 1}d can
distinguish in O(N1−ε) time between the cases:
• (Completeness) there is a pi ∈ D such that
〈pi, q〉 ≥ s; and

• (Soundness) for all pi ∈ D, 〈pi, q〉 ≤
s/2(logN)1−o(1)

,
even when d = No(1) and the similarity threshold
s ∈ [d] is fixed for all queries q.

Except for the (1 + o(1))-factor lower bound [31]

which transfers to MIPS as well, the only lower

bounds known were either for specific techniques

[46], [47], [48], [24], or were in the cell-probe model

but only ruled out extremely efficient queries [49],

[50], [51], [52], [53], [54].

An important version of MAX-IP is when the

vectors are in {−1, 1}d rather than {0, 1}d. This

7Notice that for the asymmetric variant PCP-VECTORS, this is
true without loss of generalitysince all a�,k are compared to the
same b�.
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version is closely related to other famous problems

such as the light bulb problem and the problem

of learning parity with noise (see the reductions in

[28]). Negative coordinates often imply trivial results

for multiplicative hardness of approximation: it is

possible to shift a tiny gap of k vs. k + 1 to a large

multiplicative gap of 0 vs 1 by adding k coordinates

with −1 contribution. In the natural version where

we search for a pair with maximum inner product

in absolute value, this trick does not quite work.

Still, Ahle et al. [31] exploit such cancellations to

get a strong hardness of approximation result using

an interesting application of Chebychev embeddings.

The authors had expected that a different approach

must be taken to prove constant factor hardness for

the {0, 1} case. Interestingly, since it is easy to reduce

{0, 1} to {−1, 1}8, our reduction also improves their

lower bound for the {−1, 1} case from 2Ω̃(
√
logN) to

the almost-tight 2(logN)1−o(1)

. This also implies an

N1−o(1)-time lower bound for queries in the indexing

version of the problem.

c) Subset Queries: A seemingly easier spe-

cial case of MAX-IP which has received extensive

attention is the Subset Query problem [55], [56],

[57], [58] which is known to be equivalent to the

classical Partial Match problem, for which the first

non-trivial algorithms appeared in Ronald Rivest’s

PhD thesis [59], [60]. Since our goal is to prove lower

bounds, we consider its offline or batch version (and

the lower bound will transfer to the data structure

version):

Given a collection of (text) sets

T1, . . . , TN ⊆ [d] and a collection of

(pattern) sets P1, . . . , PN ⊆ [d], is there a

set Pi that is contained in a set Tj?

In the c-approximate case, we want to distinguish

between the case of exact containment, and the case

where no Tj can cover more than a c-fraction of any

Pi. We prove that even this very simple problem must

pay a 2(logN)1−o(1)

approximation factor if it is to

be solved in truly-subquadratic time. Again, the only

previous lower bound factor was (1 + o(1)), which

follows from [31].

Theorem I.9. Assuming SETH, for any ε > 0, given
two sets D,P of N subsets of a universe [d] where
d = No(1) and all sets P ∈ P have size k, no
O(N2−ε) time algorithm can distinguish between the
cases:

• (Completeness) there are P ∈ P , D ∈ D such
that P ⊆ D; and

8E.g. map each 0 to a random string in {±1}d, and map each
1 to the string 1d.

• (Soundness) for all P ∈ P, D ∈ D we have
|D ∩ P | ≤ k/2(logN)1−o(1)

.

d) Longest Common Subsequence Closest Pair:
Efficient approximation algorithms have the potential

for major impact in sequence alignment problems,

the standard similarity measure between genomes

and biological data. One of the most cited scien-

tific papers of all time studies BLAST, a heuristic
algorithm for sequence alignment that often returns

grossly sub-optimal solutions9 but always runs in

near-linear time, in contrast to the best-known worst-

case quadratic-time algorithms. For theoreticians, to

get the most insight into these similarity measures,

it is common to think of them as Longest Com-

mon Subsequence (LCS) or Edit Distance. The LCS

CLOSEST PAIR problem is:

Given a (data) set of N strings and a

(query) set of N strings, all of which have

length m� N , find a pair, one from each

set, that have the maximum length common

subsequence (noncontiguous).

The search version and the Edit Distance version

are defined analogously. Good algorithms for these

problems would be highly relevant for bioinformatics.

The known gaps between upper and lower bounds

are huge. A series of breakthroughs [61], [62],

[63], [64], [65], [66] led to “good” approxima-

tion algorithms for Edit Distance: the closest pair

version can be solved in near-linear time with a

2O(
√
logm log logm) approximation. Meanwhile, LCS

resisted all these attacks, and to our knowledge, no

non-trivial algorithms are known. On the complexity

side, only a (1 + o(1))-approximation factor lower

bound is known for LCS [11], [12], [67], and getting

a 1.001 approximation in near-linear time is not

known to have any consequences. For certain algo-

rithmic techniques like metric embeddings there are

nearly logarithmic lower bounds for Edit-Distance,

but even under such restrictions the gaps are large

[68], [69], [70], [71], [72].

Perhaps our most surprising result is a separation
between these two classical similarity measures. Al-

though there is no formal equivalence between the

two, they have appeared to have the same complexity

no matter what the model and setting are. We prove

that LCS Closest Pair is much harder to approximate

than Edit Distance.

Theorem I.10. Assuming SETH, there is no(
2(logN)1−o(1)

)
-approximation algorithm for LCS

9Note that many of its sixty-thousand citations are by other
algorithms achieving better results (on certain datasets).
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CLOSEST PAIR on N permutations of length m =
No(1) in time O

(
N2−ε

)
, for all ε > 0.

Notice that our theorem holds even under the

restriction that the sequences are permutations. This

is significant: in the “global” version of the problem

where we want to compute the LCS between two long

strings of length n, one can get the exact solution

in near-linear time if the strings are permutations

(the problem becomes the famous Longest Increas-

ing Subsequence), while on arbitrary strings there

is an N2−o(1) time lower bound from SETH. The

special case of permutations has received consider-

able attention due to connections to preference lists,

applications to biology, and also as a test-case for

various techniques. In 2001, Cormode, Muthukrish-

nan, and Sahinalp [73] gave an O(log d)-approximate

nearest neighbor data structure for Edit Distance on

permutations with No(1) time queries (improved to

O(log logm) in [74]), and raised the question of

getting similar results for LCS. Our result gives a

strong negative answer under SETH, showing that

LCS CLOSEST PAIR suffers from near-polynomial

approximation factors when the query time is truly

sublinear.

e) Regular Expression Matching: Given two

sets of strings of length m, a simple hashing-based

approach lets us decide in near-linear time if there

is a pair of Hamming distance 0 (equal strings), or

whether all pairs have distance at least 1. A harder

version of this problem, which appears in many

important applications, is when one of the sets of

strings is described by a regular expression:

Given a regular expression R of size N
and a set S of N strings of length m, can

we distinguish between the case that some

string in S is matched by R, and the case

that every string in S is far in Hamming

distance10 from every string in L(R) (the

language defined by R)?

This is a basic approximate version of the classical

regular expression matching problem that has been

attacked from various angles throughout five decades,

e.g. [75], [76], [77], [78], [79], [80], [81], [82], [83],

[3], [84]. Surprisingly, we show that this problem is

essentially as hard as it gets: even if there is an exact

match, it is hard to find any pair with Hamming

distance (1 − ε) · m, for any ε > 0. For the case

of binary alphabets, we show that even if an exact

match exists (a pair of distance 0), it is hard to

find a pair of distance ( 12 − ε) · m, for any ε > 0.

Our lower bounds also rule out interesting algorithms

10In our hard instances, all the strings in L(R) will be of length
m, so Hamming distance is well defined.

for the harder setting of Nearest-Neighbor queries:

Preprocess a regular expression so that given a string,

we can find a string in the language of the expression

that is approximately-the-closest one to our query

string. The formal statement and definitions of regular

expressions are given in the full version.

Theorem I.11 (informal). Assuming SETH, no
O(N2−ε)-time algorithm can, given a regular expres-
sion R of size N and a set S of N strings of length
m = No(1), distinguish between the two cases:

• (Completeness) some string in S is in L(R)
• (Soundness) all strings in S have Hamming

distance (1 − o(1)) · m (or, ( 12 − o(1)) · m if
the alphabet is binary) from all strings in L(R).

f) Diameter in Product Metrics: The diameter
(or furthest pair) problem has been well-studied in

a variety of metrics (e.g. graph metrics [85], [4],

[86]). There is a trivial 2-approximation in near-linear

time (return the largest distance from an arbitrary

point), and for arbitrary metrics (to which we get

query access) there is a lower bound stating that

a quadratic number of queries is required to get a

(2− δ)-approximation [87]. For �2-metric, there is a

sequence of improved subquadratic-time approxima-

tion algorithms [88], [89], [90], [91], [92], [93]. The

natural generalization to the �p-metric for arbitrary p
is, to the best of our knowledge, wide open.

While we come short of resolving the complexity

of approximating the diameter for �p-metrics, we

prove a tight inapproximability result for the slightly

more general problem for the product of �p metrics.

Given a collection of metric spaces Mi = 〈Xi,Δi〉,
their f -product metric is defined as

Δ
(
(x1, . . . , xk), (y1, . . . , yk)

)

� f
(
Δ1(x1, y1), . . . ,Δk(xk, yk)

)
.

In particular, we are concerned with the �2-product

of �∞-spaces, whose metric is defined as:

Δ2,∞(x, y) �

√√√√ d2∑
i=1

(
d∞
max
j=2

{∣∣∣xi,j − yi,j

∣∣∣})2

. (3)

(This is a special case of the more general

Δ2,∞,1(·, ·) product metric, studied by [74].)

Product metrics (or cascaded norms) are useful

for aggregating different types of data [94], [95],

[96], [97]. They also received significant attention

from the algorithms community because they allow

rich embeddings, yet are amenable to algorithmic

techniques (e.g. [95], [93], [98], [74], [72], [66]).
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Theorem I.12 (Diameter). Assuming SETH, there
are no (2 − δ)-approximation algorithms for
PRODUCT-METRIC DIAMETER in time O

(
N2−ε

)
,

for any constants ε, δ > 0.

1) Closest Pair vs. “Bichromatic” Closest Pair:
The main results in this paper extend known

hardness-in-P results to also rule out efficient ap-

proximation algorithms. An additional feature of our

reduction is that it does not suffer from the following

caveat, common to almost all previous work. Going

back to the MAX-IP problem, for example, the

known hardness results of [15], [31] hold only for

the “bichromatic” variant of the problem: given sets

of vectors A,B, the algorithm must find a pair a ∈ A
and b ∈ B that maximizes a · b. In contrast, our

results hold both for the bichromatic variant and the

“monochromatic” variant, where given a single set

U , one must find a pair x, y ∈ U (s.t. x �= y) that

maximizes x · y.11 For the latter variant, even in the

exact setting (no approximation allowed), it was open

whether there is a SETH-based lower bound.

As a corollary, we obtain via known reductions12

exact hardness for monochromatic variants of other

problems. For example,

Corollary I.13 (Monochromatic Euclidean and Ham-

ming Closest Pair). Assuming SETH, there are no
O

(
N2−ε

)
-time exact algorithms for the (monochro-

matic) CLOSEST PAIR problem, with Euclidean,
Manhattan, or Hamming metrics, for any constant
ε > 0.

Note that in low dimensions, the monochromatic

version of Euclidean Closest Pair is known to admit

polynomially faster algorithms than the bichromatic

version [99]. Furthermore, [100] recently showed

that even in higher dimensions, hardness for the

monochromatic Euclidean CLOSEST PAIR cannot be

proven by reducing the bichromatic to the monochro-

matic.

C. Related work

For all the problems we consider, SETH lower

bounds for the exact (bichromatic) version are known.

See [15], [29] for the MAX-IP and SUBSET QUERIES

problems, [1], [11], [12], [101] for LCS CLOSEST

PAIR, [3], [84] for REGULAR EXPRESSION MATCH-

ING, and [15] for METRIC DIAMETER.

11In fact, our results hold for an even stronger variant: given
two sets A,B, we show that it is hard to distinguish between the
case where there is a pair a ∈ A and b ∈ B with a large inner
product, and the case where every pair x �= y ∈ (A ∪ B) has a
small inner product.

12In fact, via the “trivial” reduction that uses the exact same
instance.

Prior to our work, some hardness of approxima-

tion results were known using more problem-specific

techniques. For example, distinguishing whether the

diameter of a graph on O(n) edges is 2 or at least

3 in truly-subquadratic time refutes SETH [4], which

implies hardness for (3/2− ε) approximations. (This

is somewhat analogous to the NP-hardness of dis-

tinguishing 3-colorable graphs from graphs requiring

at least 4 colors, immediately giving hardness of

approximation for the chromatic number.) In most

cases, however, this fortunate situation does not oc-

cur. The only prior SETH-based hardness of ap-

proximation results proved with more approximation-

oriented techniques are by Ahle et al. [31] for MAX-

IP via clever embeddings of the vectors. As discussed

above, for the case of {0, 1}-valued vectors, their

inapproximability factor is still only 1 + o(1).

[67] show that, under certain complexity assump-

tions, deterministic algorithms cannot approximate

the Longest Common Subsequence (LCS) of two

strings to within 1 + o(1) in truly-subquadratic

time. They tackle a completely orthogonal obstacle

to proving SETH-based hardness of approximation:

for problems like LCS with two long strings, the

quality of approximation depends on the fraction of
assignments that satisfy a SAT instance. There is

a trivial algorithm for approximating this fraction:

sample assignments uniformly at random. See further

discussion on Open Question 4.

Recent works by Williams [102] (refuting the MA-

variant of SETH) and Ball et al. [103] also utilize

low-degree polynomials in the context of SETH

and related conjectures. Their polynomials are quite

different from ours: they sum over many possible

assignments, and are hard to evaluate (in contrast,

the polynomials used in our proof correspond to a

single assignment, and they are trivial to evaluate).

The main technical barrier to hardness of approx-

imation in P is the blowup incurred by standard

PCP constructions; in particular, we overcome it

with distributed constructions. There is also a known

construction of PCP with linear blowup for large (but

sublinear) query complexity [38] with non-uniform

verifiers; note however that merely obtaining lin-

ear blowup is not small enough for our purposes.

Different models of “non-traditional” PCPs, such as

interactive PCPs [104] and interactive oracle proofs

(IOP) [105], [106] have been considered and found

“positive” applications in cryptography (e.g. [107],

[108], [105]). In particular, [109] obtain a linear-size

IOP. It is an open question whether these interactive

variants can imply interesting hardness of approxima-

tion results [109]. (And it would be very interesting

if our distributed PCPs have any cryptographic appli-
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cations!)

After the first version of this paper became public,

it was brought to our attention that the term ”dis-

tributed PCP” has been used before in a different

context by Drucker [110]. In the simplest variant of

Drucker’s model, Alice and Bob want to compute

f(α, β) with minimal communication. They receive

a PCP that allegedly proves that f(α, β) = 1; Alice

and Bob each query the PCP at two random locations

and independently decide whether to accept or reject

the PCP. As with the interactive variants of PCP, we

don’t know of any implications of Drucker’s work

for hardness of approximation, but we think that this

is a fascinating research direction.

D. Discussion

In addition to resolving the fine-grained approxi-

mation complexity of several fundamental problems,

our work opens a hope to understanding more basic

questions in this area. We list a few that seem to

represent some of the most fundamental challenges,

as well as exciting applications.

a) LCS CLOSEST PAIR PROBLEM over {0, 1}:
The LCS CLOSEST PAIR PROBLEM is most interest-

ing in two regimes: permutations (which, by defini-

tion, require a large alphabet); and small alphabet,

most notably {0, 1}. For the regime of permutations,

we obtain nearly-polynomial hardness of approxima-

tion. For small alphabet Σ, per contra, there is a trivial

1/|Σ|-approximation algorithm in near-linear time:

pick a random σ ∈ Σ, and restrict all strings to their

σ-subset. Are there better approximation algorithms?

Our current hardness techniques are limited be-

cause this problem does not admit an approximation

preserving OR-gadget for a large OR. In particular

the 1/|Σ|-approximation algorithm outlined above

implies that we cannot combine much more than |Σ|
substrings in a clever way and expect the LCS to

correspond to just one substring.

Open Question 3. Is there a 1.1-approximation for
the LCS CLOSEST PAIR PROBLEM on binary inputs
running in O(n2−ε) time, for some ε > 0?

b) LCS PROBLEM (with two strings): Gadgets

constructed in a fashion similar to our proof of

Theorem I.10 can be combined together (along with

some additional gadgets) into two long strings A,B
of length m, in a way that yields a reduction from

SETH to computing the longest common subse-

quence (LCS) of (A,B), ruling out exact algorithms

in O(m2−ε) [11], [12]. However, in the instances

output by this reduction, approximating the value

of the LCS reduces to approximating the fraction
of assignments that satisfy the original formula; it

is easy to obtain a good additive approximation by

sampling random assignments. The recent work of

[67] mentioned above, uses complexity assumptions

on deterministic algorithms to tackle this issue, but

their ideas do not seem to generalize to randomized

algorithms.

Open Question 4. Is there a 1.1-approximation for
LCS running in O(n2−ε) time, for some ε > 0?
(Open for all alphabet sizes.)

c) Dynamic Maximum Matching: A holy grail

in dynamic graph algorithms is to maintain a (1 +
ε)-approximation for the Maximum Matching in a

dynamically changing graph, while only spending

amortized no(1) time on each update. Despite a lot of

attention in the past few years [111], [112], [113],

[114], [115], [116], [117], [118], [119], [120], current

algorithms are far from achieving this goal: one can

obtain a (1 + ε)-approximation by spending Ω(
√
m)

time per update, or one can get an 2-approximation

with Õ(1) time updates.

For exact algorithms, we know that no(1) update

times are impossible under popular conjectures [121],

[6], [122], [123], [124], such as 3-SUM13, Triangle

Detection14 and the related Online Matrix Vector

Multiplication15. From the viewpoint of PCP’s, this

question is particularly intriguing since it seems to

require hardness amplification for one of these other

conjectures. Unlike all the previously mentioned

problems, even the exact case of dynamic matching

is not known to be SETH-hard.

Open Question 5. Can one maintain an (1 + ε)-
approximate maximum matching dynamically, with
no(1) amortized update time?

New frameworks for hardness of approximation:
More fundamental than resolving any particular prob-

lem, our main contribution is a conceptually new

framework for proving hardness of approximation for

problems in P via distributed PCPs. In particular,

we were able to resolve several open problems while

relying on simple algebrization techniques from early

days of PCPs (e.g. [127] and reference therein). It is

plausible that our results can be improved by import-

ing into our framework more advanced techniques

13The 3-SUM Conjecture, from the pioneering work of [125],
states that we cannot find three numbers that sum to zero in a list
of n integers in O(n2−ε) time, for some ε > 0.

14The conjecture that no algorithm can find a triangle in a graph
on m edges in O(m4/3−ε) time, for some ε > 0, or even just
that O(m1+o(1)) algorithms are impossible [6].

15The conjecture that given a Boolean n × n matrix M and a
sequence of n vectors v1, . . . , vn ∈ {0, 1}n we cannot compute
the n products M · xi in an online fashion (output Mxi before
seeing xi+1) in a total of O(n3−ε) time [123]. See [126] for a
recent upper bound.
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from decades of work on PCPs — starting with

verifier composition [35], parallel repetition [128],

Fourier analysis [129], etc.
d) Hardness from other sublinear communica-

tion protocols for Set Disjointness: A key to our

results is an MA protocol for Set Disjointness with

sublinear communication, which trades off between

the size of Merlin’s message and the size of Alice

and Bob’s messages. There are other non-standard

communication models where Set Disjointness en-

joys a sublinear communication protocol, for example

quantum communication16 [130].

Open Question 6. Can other communication models
inspire new reductions (or algorithms) for standard
computational complexity?

e) Hardness of approximation from new models
of PCPs: This is the most open-ended question. For-

mulating a clean conjecture about distributed PCPs

was extremely useful for understanding the limita-

tions and possibilities of our framework — even

though our original conjecture turned out to be false.

Open Question 7. Formulate a simple and plausible
PCP-like conjecture that resolves any of the open
questions mentioned in this section.
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