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Abstract—Dynamic programming is a basic, and one
of the most systematic techniques for developing poly-
nomial time algorithms with overwhelming applications.
However, it often suffers from having high running time
and space complexity due to (a) maintaining a table of
solutions for a large number of sub-instances, and (b)
combining/comparing these solutions to successively solve
larger sub-instances. In this paper, we consider a canonical
cubic time and quadratic space dynamic programming,
and show how improvements in both its time and space
uses are possible. As a result, we obtain fast small-space
approximation algorithms for the fundamental problems
of context free grammar recognition (the basic computer
science problem of parsing), the language edit distance
(a significant generalization of string edit distance and
parsing), and RNA folding (a classical problem in bioinfor-
matics). For these problems, ours are the first algorithms
that break the cubic-time barrier of any combinatorial
algorithm, and quadratic-space barrier of “any” algorithm
significantly improving upon their long-standing space
and time complexities. Our technique applies to many
other problems as well including string edit distance
computation, and finding longest increasing subsequence.

Our improvements come from directly grinding the
dynamic programming and looking through the lens of
language edit distance which generalizes both context free
grammar recognition, and RNA folding. From known
conditional lower bound results, neither of these problems
can have an exact combinatorial algorithm (one that
does not use fast matrix multiplication) running in truly
subcubic time. Moreover, for language edit distance such
an algorithm cannot exist even when nontrivial multiplica-
tive approximation is allowed. We overcome this hurdle
by designing an additive-approximation algorithm that
for any parameter k > 0, uses O(nk log n) space and
O(n2k log n) time and provides an additive O(n

k
log n)-

approximation. In particular, in Õ(n)1 space and Õ(n2)
time it can solve deterministically whether a string belongs
to a context free grammar, or ε-far from it for any constant
ε > 0. We also improve the above results to obtain an
algorithm that outputs an ε · n-additive approximation to
the above problems with space complexity O(n2/3 log n).
The space complexity remains sublinear in n, as long as
ε = o(n−

1
4 ). Moreover, we provide the first MapReduce

and streaming algorithms for them with multiple passes
and sublinear space complexity.

I. INTRODUCTION

Dynamic programming (DP) is one of the most

systematic approaches for developing exact polynomial

time algorithms. It implements a recursive procedure,

but stores the result from each computed subproblem

in a table that can be accessed over and over, often

leading to a dramatic improvement from exponential to

polynomial running time. Still, maintaining and access-

ing the entire DP table can be costly both in terms of

time and space. Therefore, DP based approaches often

have high degree of polynomial time complexity, and

have high space requirements. Many techniques such as

the Four-Russians method have been developed in the

literature to make dynamic programming fast [23], [36],

[52]. Unfortunately, their speed-up gains have mostly

been restricted to only poly-logarithmic factors. On the

other hand, if we allow for an approximate answer, a

major improvement in running time as well as space

usage may be possible.

With this motivation, in this paper we explore a

canonical cubic-time and quadratic-space DP, and show

how major improvements both in space and time are

possible if approximation is allowed by reducing the

number of subinstances for which a solution must be

stored, and by reducing the number of subinstances

that must be consulted to solve larger instances. This

leads to new or improved results for many fundamental

problems including context free grammar recognition,

the language edit distance, and RNA folding.

Context Free Grammar Recognition & Language
Edit Distance. Context free grammar recognition is a

basic computer science question that given a context

free grammar (CFG) G and a string σ of length n
over alphabet Σ, solves the core parsing problem, that

is it determines whether σ belongs to the language

L(G) generated by G. The canonical Cocke-Younger-

Kasami (CYK) algorithm (developed in 1960’s) and

1Õ(n) implies O(npoly logn).
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Earley’s parser (developed in 1968-70) [24] use dy-

namic programming that runs in O(n3) time and re-

quires O(n2) space. The first improvement over these

O(n3) running time came in the breakthrough result

of L. Valiant. In his dissertation thesis, Valiant showed

how to use many fast boolean matrix multiplications

to design a CFG recognition algorithm in O(nω) time

[50], where ω = 2.373 is the fast matrix multiplica-

tion exponent [19], [51]. Despite its vast theoretical

significance, use of fast matrix multiplication limits

the practicality of Valiant’s approach, and is mostly

outperformed by cubic time “combinatorial” algorithms

based on dynamic programming. While the pursuit

for efficient parsing algorithms continued to grow for

various special classes of grammars [7], [18], [43],

[45], two remarkable conditional lower bound results,

one by Lee [34], and the other, a relatively recent

one, by Abboud, Backurs and V. Williams [1] show

that for general context free grammars, neither it is

possible to improve beyond Valiant’s algorithm, nor it

is possible to develop any combinatorial algorithm for

CFG recognition that runs in truly subcubic time

A problem that significantly generalizes CFG recog-

nition is the language edit distance (LED) [2], [38].

Given a grammar G and a string σ of length n over an

alphabet Σ, the language edit distance finds the mini-

mum number of insertions, deletions, and substitutions

required to convert σ into a member of L(G). That is,

while CFG recognition checks for membership, LED

finds the actual distance. It also significantly generalizes

the string edit distance computation. Introduced by Aho

and Peterson in 1972 [2], for over forty years an O(n3)
dynamic programming algorithm for LED had the best

known running time. Relatively recently, an (1 + ε)-
multiplicative approximation algorithm for LED has

been developed that runs in Õ(n
ω

ε4 ) time [48]. It is

only in the last year that an exact subcubic algorithm

for LED has been found with O(n2.8244) running time

[13]. A fast combinatorial algorithm for LED will have

huge impact due to its vast number of applications in

multiple domains [21], [22], [26], [30], [37], [44], [46],

[52], [53], as well as its close connection to many

fundamental graph problems [48]. However, the algo-

rithms of [13], [48] use fast matrix multiplication, and

arguably so, since without fast matrix multiplication, the

2For simplicity of exposition, we will consider the grammar size
|G| to be constant, and will not explicitly mention the dependency of
|G| on space and time.

3Lee’s reduction is from boolean matrix multiplication under the
assumption that the dependency on grammar size is linear. Abboud et
al.’s hardness result is based on the conjectured hardness of k-clique
and works even for constant size grammars.

lower bound for parsing implies there cannot even exist

any nontrivial multiplicative approximation algorithm

for LED that runs in subcubic time.

In the absence of a subcubic combinatorial exact

algorithm, it is natural to ask whether one can use

approximation to design faster algorithms. The apparent

inapproximability result of LED questions the viability

of this approach. Similar in flavor, Alon, Krivelevich,

Newman and Szegedy initiated the study of approximate

membership checking of formal languages [4] where

one wants to distinguish fast if σ ∈ L(G), or ε-far

from it (that is the language edit distance of σ with

respect to G is at least εn) . While efficient testers are

known for regular languages [4], the complex structure

of context free grammars make designing a tester for

CFG membership checking highly challenging. It is

only for simple classes of grammars such as Dyck (the

language of well-balanced parenthesis for which parsing

time is linear), better testers are known [42]. In general,

though very basic in appeal, it is unclear whether one

can beat the parsing time to check approximate mem-

bership in languages. In this paper, we make significant

progress towards this question. Using our recipe, the so

called amnesic dynamic programming, we design the

first combinatorial algorithms for these problems that

beat the parsing time. This improvement came after

more than four decades through developing additive

approximation. Note that by a t-additive approximation,

we mean a solution that is within ±t away from the

optimal.

Theorem 1. Given a parameter k ≥ 1, there exists an
algorithm which for any grammar G = (N ,Σ,P, S)
and σ ∈ Σ∗, |σ| = n, computes an O(nk log n)-additive
approximation for LED in time O(n2k log n) and space
O(nk log n).

For example, in Õ(n2.5) time we get a combinatorial

algorithm for LED that estimates the distance within√
n-additive error. By substituting k = O( logn

ε ), we

get the following direct corollary for an approximate

CFG recognizer.

Corollary 1. There exists an algorithm which for any
grammar G and σ ∈ Σ∗, |σ| = n, can distin-
guish between whether σ ∈ L(G) or ε-far from it
in O(n2 log2 n) time and O(n log2 n) space for any
constant ε > 0.

RNA Folding. We now describe another problem that

is central in bioinformatics for which our algorithm

also leads to significant improvement. RNA folding

introduced by Nussinov and Jacobson in 1980 [40] is

296



the following optimization problem. Let Σ be a set

of letters and let Σ′ = {c′ | c ∈ Σ} be the set of

“matching” letters, such that for every letter c ∈ Σ the

pair c, c′ matches. Given a sequence of n letters over

Σ∪Σ′, the RNA folding problem asks for the maximum

number of non-crossing pairs {i, j} such that the ith
and jth letter in the sequence match. In particular, if

letters in positions i and j are paired and if letters in

positions k and l are paired, and i < k then either

they are nested, i.e., i < k < l < j or they are non-

intersecting, i.e., i < j < k < l. (In nature, there

are 4 types of nucleotides in an RNA molecule, with

matching pairs A,U and C,G, i.e., |Σ| = 2). There

exists a simple O(n3) dynamic programming to obtain

the optimal folding with polylogarithmic improvements

[52], and a trivial linear-time approximation algorithm

that selects the subsequence on a single letter which

maximizes the matching to get an 1
|Σ| -approximation.

When fast matrix multiplication is allowed, [13] also

implies an exact O(n2.8244)-time algorithm for RNA

folding, and using the (1 + ε)-approximation for LED

[48], an additive εn-approximation in O(n
ω

ε4 ) time can

be obtained.

We can rephrase RNA folding as follows. We are

given a CFG with productions S → SS | ε and

S → xSx′ | x′Sx for any x ∈ Σ with matching x′ ∈ Σ′.
The goal is to find a maximum size subsequence of σ
that is in L(G), that is we want to perform minimum

number of insertions and deletions of symbols on a

given string σ that will generate a string consistent with

the above grammar. This is essentially a maximization

version of LED where only insertions and deletions (and

no substitutions) are allowed. Since, our Theorem 1

holds for just insertions and deletions, we not only

get the first combinatorial algorithm with nontrivial

approximation guarantees running in subcubic time,

but also a significant improvement over [48] for RNA

folding.

Corollary 2. There exists an algorithm for RNA folding
that gives an O(nk log n) additive approximation for
RNA sequences of length n, running in O(n2k log n)
time and requiring O(nk log n) space.

Space Complexity & Other Models of Computation:
Note that the space requirements in Theorem 1, Corol-

lary 1 and 2 are O(nk log n). Previously, for all known

algorithms of LED, CFG recognizer, and RNA folding

(except for the trivial 1
|Σ| -approximation algorithm, and

for the extreme special cases like string edit distance),

irrespective of whether they were exact or approximate,

and used fast matrix multiplication or not, the space

requirement was O(n2) [2], [13], [38], [48], [50], [52].

This is a major bottleneck for large data. We provide the

first approximation algorithm that breaks this barrier.

In fact, we show again by our recipe of amnesic

dynamic programming, how to maintain an approximate

DP solution in sublinear space. Therefore, the space

complexity of DP is not a bottleneck for these problems.

In particular, we prove the following theorem.

Theorem 2. Given two parameters γ and q such that
γ >

√
q ≥ 1, there exist efficient algorithms for LED,

RNA folding, and approximate CFG recognizer that use
space O(max (n

2

q , γ2 logn√
q )) and achieve an additive

approximation of O(
n
√
q logn

γ ).

For any ε < 1, setting γ =
√
q logn

ε , we get an

εn-additive approximation for LED in space Õ(n
2/3

ε4/3
)

by setting q = ε4/3n4/3. Therefore, as long as ε =
o(n−1/4) (or the additive approximation is n3/4+δ for

some δ > 0), the space requirement is sublinear. For

the special case of linear grammars, this bound can

be further improved to give sublinear space algorithm

with additive error n1/2+δ . As shown in [25], string edit

distance computation can be reduced to computing LED

over a linear grammar of constant size. Thus our result

also implies similar space vs approximation trade-offs

for computing string edit distance.

Theorem 3. Given two parameters γ and q such that
γ ≥ √

q ≥ 1, there exists an efficient algorithm
for LED for linear grammar and string edit distance
computation on constant alphabet size that uses space
O(max (n

2

q , γ)) and achieves an additive approxima-
tion of O(nγ

√
q).

We note that this saving in space comes at a cost

of increasing time, and we do not yet know how to

combine results of Theorem 1 and Theorem 2 to obtain

simultaneously sublinear space and subcubic time.

MapReduce and Streaming. To get Theorem 2, we do

not need to assume random access to the input string. In

fact, using sublinear number of sequential passes suffice.

We show with only O(ε8/3n2/3) passes over the input, it

is possible to obtain the same space and approximation

bound. This gives a sublinear-pass streaming algorithm

for LED, RNA folding and approximate CFG mem-

bership using sublinear space. Previously streaming

algorithms were known only for recognition problem of

Dyck languages [35] and when very simple edits were

allowed on it [31].

Our algorithm can also be efficiently implemented

in the popular MapReduce setting [27], [33], thereby
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providing the first parallel algorithms for these prob-

lems. In particular, the algorithm requires O(ε4/3n1/3)

machines each with Õ(n
2/3

ε4/3
) space, and O(ε4/3n1/3)

rounds. With Õ(n1−δ) space per machine, the number

of rounds decreases to O(nδ) to maintain the same

approximate solution.

Further Applications. Our algorithms are extremely

simple and deterministic. We envision many further

applications of this method. For example, using Theo-

rem 1, we can get a single-pass deterministic streaming

algorithm for the longest increasing subsequence (LIS)

(and hence for distance to monotonicty: n − LIS)

with a half-page analysis of it which shows an εn-

additive approximation for LIS can be maintained in

O( logn
ε ) space. The previously known algorithm of

[49] was randomized, and had a space requirement of

O( log
2 n
ε ) for the same approximation factor. A deter-

ministic algorithm was designed in [39] that obtains

an (1 + ε)-multiplicative approximation algorithm for

distance to monotonicity which also implies an εn-

additive approximation but with O( log
2 n

ε2 ) space.

Theorem 4. There exists a deterministic algorithm for
LIS that uses O( logn

ε ) space and computes an εn-
additive approximation of LIS.

From our multi-pass streaming algorithm using The-

orem 2, a simple one-pass streaming algorithm for edit

distance in the asymmetric setting falls off directly [5],

[49]. In the asymmetric streaming model, we have full

random access to one of the strings and streaming access

to the other. Here the bounds are slightly suboptimal

compared to [49], though we believe the analysis can

be made tighter for this special case.

Theorem 5. There exists a deterministic one pass
streaming algorithm for computing string edit distance
in the asymmetric setting that uses O(

√
n
ε ) space and

returns an εn-additive approximation of the string edit
distance.

We believe our technique will find wide-applicability

to directly improve dynamic programming algorithms

either in time, or in space, or both. As immediate appli-

cations of our method, one can explore the large number

of sequence problems considered in [16], the popular

word-wrap problem, the classical optimal binary search

tree problem [28] etc. Many high-dimensional problems

which exhibit certain smoothness in their solution to

subproblems are all amenable to our method. Since the

algorithms are based on forgetting to maintain/use some

of the states of a typical DP algorithm, we call this an

amnesic dynamic programming approach.

A. Techniques.

A context-free grammar (grammar for short) is a 4-

tuple G = (N ,Σ,P, S) where N and Σ are finite

disjoint collection of nonterminals and terminals respec-

tively. P is the set of productions of the form A → α
where A ∈ N and α ∈ (N ∪ Σ)∗. S is a distinguished

symbol in N known as the start symbol.

For two strings α, β ∈ (N ∪ Σ)∗, we say α directly

derives β, written as α ⇒ β, if one can write α =
α1Aα2 and β = α1γα2 such that A→ γ ∈ P . Thus, β
is a result of applying the production A→ γ to α. L(G)
is the context-free language generated by grammar G,

i.e., L(G) = {w ∈ Σ∗ | S �
=⇒ w}, where

�
=⇒ implies that

w can be derived from S using one or more production

rules.

A grammar G is said to be in Chomsky Normal Form

(CNF), if every production in P is of the form A →
BC or A → x where A,B,C ∈ N and x ∈ Σ. In

addition, CNF allows to have S → ε for producing

empty string. It is well-known that every context free

grammar can be represented in CNF. We thus consider

our grammar G to be in Chomsky Normal Form, but

when developing algorithms, we allow some additional

types of productions such as we allow A → ε to be

in P for any non-terminal A ∈ N . We always assume

ε ∈ L(G) to keep LED bounded.

The canonical CYK algorithm which [2] builds upon

for LED creates a two-dimensional n× n DP table T ,

where T (i, j), i ≤ j, stores parsing information for

the substring σiσi+1...σj , abbreviated as σ(i : j). To

obtain T (i, j), it checks the parsing information for

σ(i : 
), and σ(
 + 1, j) for every 
 ∈ [i, j − 1].
For example, if a non-terminal B derives σ(i : 
),
and non-terminal C derives σ(
 + 1, j), and there is

a production A → BC ∈ P , then A can derive

σ(i : j). These intermediate points 
 are referred to

as “break-points”. LED in addition maintains the cost

of derivation, and adds them accordingly. This results

in an O(n3) time algorithm as the DP fills an O(n2)
sized table, and filling each table entry requires looking

for O(n) subproblems.

As a first step, we would like to reduce the complexity

of DP by considering only a subset of entries according

to some probability distribution. Here our main source

of inspiration are the works of [49] and [20]. In [20],

Gopalan, Jayram, Krauthgamer and Kumar use a time-

varying synopsis of a dynamic programming table to

estimate the number of inversions in a stream in “small”

space for approximate distance to monotonicity and LIS.

The approximation bound was later improved upon by

Saks and Seshadhri to give any arbitrary εn additive
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approximation [49]. Since, these are one-dimensional

problems, that is they maintain a one-dimensional DP

table, say s[1], s[2]...., s[n], when computing s[t], t can

be viewed as time. The algorithms of [20], [49] use

a complex probability distribution to sample from these

entries that becomes sparse with time. It results in a ran-

domized algorithm that improves the space complexity

to O(log2 n) when allowing additive approximation.

The problem that we have in hand is significantly

more complex. First, the notion of time is not so

clear when maintaining a two-dimensional DP table.

Moreover both [20], [49] are tailored towards saving

space, and use a complicated probability distribution

that is hard to analyze for the complex problem of LED.

They do not provide any improvement on running time

than what was previously known for LIS [3], [17]. One

may be tempted to sample according to substring length

as DP computes the entries in that order to obtain a time-

varying sequence. We analyze such schemes in [25]

for special classes of grammars using their additional

structures, but for general LED such sampling schemes

provide no nontrivial guarantees.

Here we consider the following idea. When com-

puting for T (i, j), we divide the interval [i, j] into

O(k log n) subintervals of almost geometrically increas-

ing size maintaining certain subset property once from

i, and once from j. Roughly speaking, we consider the

subintervals [i, i+ k− 1], [i+ k, i+2k− 1], [i+2k, i+
4k−1] and so on. Similarly, we consider the subintervals

[j, j−k+1], [j−k, j−2k+1], [j−2k, j−4k+1] and

so on. Then we start selecting points 
 ∈ [i, j− 1] such

that if 
 lies in a short subinterval it is selected/sampled

more vigorously. For example, if 
 is in a subinterval

of length 2tk, then it is sampled with probability 1
2t .

Thus the sampling becomes sparse in the middle. We

compute all T (i, j), but instead of combining T (i, 
)
and T (
 + 1, j) for all 
 ∈ [i, j − 1], we consider 

only if it is selected. Moreover this process of selecting

a sample of break-points can be done deterministically.

The intuition behind the algorithm is as follows. Sup-

pose, an optimal algorithm always uses the break-point

i+	(i−j)/2
 when computing LED for σ(i : j). Then,

the corresponding parse tree will have O(log n) height.

Thus even if we allow an additive error of 	(i− j)/k

while computing LED for σ(i : j), we still get an

overall O(nk log n)-additive approximation. However, if

the optimal algorithm always uses the break-point i+1
when considering σ(i : j), then we cannot allow our

algorithm to have an additive error of 	(i − j)/k
.
We must follow the optimal algorithm very closely

here by selecting more break-points. This leads to the

desired improvement in running time for approximating

LED, RNA folding and CFG recognition. Moreover, by

treating i = 0, and only sampling from j, we also get

a deterministic algorithm for LIS with O(log n) space

complexity as opposed to the randomized O(log2 n)
algorithm of [49]. Moreover, we show at any time

the DP needs to maintain only O(nk log n) entries to

get an O(n logn
k )-additive approximation for LED, thus

improving the space.

We would like to further reduce the space usage

to sublinear in n. To do so, naturally, we would like

to consider only a subset of entries from T , and

then use our approximate computation only for these

selected entries. Here, we consider the simplest possible

sampling scheme–choose O(n
2

q ) entries randomly and

uniformly for a given parameter q. The randomization

is in fact not required, and the points can be chosen de-

terministically maintaining the desired property. When

computing for T (i, j), where (i, j) is sampled, if we

would like to combine T (i, 
) and T (
 + 1, j), but

one or both of them are not selected, then we move to

their nearest sampled points and use them instead. This

simple recipe does not quite work by itself. We need

to incorporate some on-the-fly computation to allow

for dense sampling of break-points near i and j as

in the time-efficient algorithm. In some more details,

if the break-point 
 is “close” to i (same for j) and

T (i, 
) is not selected, then we compute T (i, 
) on

the fly using our time-efficient algorithm. This gives

our desired space bound of Theorem 2. Handling the

propagation of error through recursive calls becomes

quite intricate at this point. As mentioned, this also

gives an efficient MapReduce and multi-pass streaming

algorithms for the problems.

B. Further Related Work

For the special case of string edit distance computa-

tion, extensive work has been done that improves on the

O(n2) running time of the dynamic programming and

returns approximate solution [5], [6], [10], [11], [15],

[32], [41]. When the optimum distance is small, inter-

esting streaming algorithms have also been developed

[12], [14]. For Dyck language edit distance problem,

[47] gives a linear time multiplicative polylogarithmic

approximation improving on the O(n3) running time

of the dynamic programming. Again, when distance

is small, exact algorithms with better running times

can be obtained [9]. For general LED, the only known

multiplicative approximation bound is from [48]. Prior

to this work, there existed no combinatorial algorithm

that beats the time or space complexity of the classical

dynamic programming. Recently, in [25], we developed
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faster combinatorial algorithms for special classes of

context free grammars, specifically for the ultralinear

grammars. However, they do not provide any nontrivial

guarantees for arbitrary context free languages. Regard-

ing lower bounds, Backurs and Indyk showed the exact

computation of string edit distance is not possible in

truly subquadratic time unless the strong exponential

time hypothesis is false [8]. For RNA folding and LED,

the best known lower bound is Ω(nω) for exact com-

putation [1]. Moreover, [1] rules out any combinatorial

exact algorithm in truly subcubic time.

Note. Due to space limitation, this extended abstract

only contains our result pertaining to Theorem 1. The

remaining results and the missing proofs are available

in the full version.

II. PRELIMINARIES

Definition 1 (Language Edit Distance (Aho & Peter-

son’72 [2])). Given a grammar G = (N ,Σ,P, S) and
σ ∈ Σ∗, the language edit distance between G and σ
is defined as

dG(G, σ) = min
z:∈L(G)

ded(σ, z)

where ded is the standard edit distance (insertion, dele-
tion and substitution) between σ and z. If this minimum
is attained by considering z ∈ L(G), then z serves as
a witness for dG(G, σ).

A t-additive approximation for language edit distance
with t ≥ 0 returns an estimate d̂G(G, σ) such that
dG(G, σ) ≤ d̂G(G, σ) ≤ dG(G, σ) + t.

Dynamic Programming For Language Edit Dis-
tance (LED).: We now describe the dynamic program-

ming algorithm from [2] for computing LED optimally

in O(n3) time and O(n2) space. For simplicity of expo-

sition, we consider grammar size, |G| = |P|+ |N |+ |Σ|
to be constant, and do not explicitly discuss the depen-

dency on grammar size in runtime or space complexity.

The first step in the algorithm of [2] is to add

error-producing rules to create an augmented grammar

G′ = (N ′,Σ,P ′, S) that allow editing the input string

by paying an appropriate cost. We use slightly simpler

rules as in [13], [48] by violating CNF slightly. Let

s(Z → α) represent the score/cost for applying the

production Z → α. The score of all original rules are 0.

For every a ∈ Σ, we add a new non-terminal Xa → a
with a score of s(Xa → a) = 0.

Substitution. To allow for substitution of symbols, we

add for every a, b ∈ Σ, a �= b, Xb
a → b with a score of

1 with a new non-terminal Xb
a.

Insertion. To allow for insertion of symbols, we add

the following rules with a new non-terminal I for every

a ∈ Σ and for every non-terminal X ∈ P

I → XaI(score = 1) | IXa(score = 1) | ε(score = 0),

X → XI(score = 0) | IX(score = 0)

Deletion. To allow for deletion of symbols, we add for

every production of the form X → a ∈ P , X → ε with

a score of 1. We also add S → ε with a score of 0 to

allow ε ∈ L(G).

Theorem 6 ( [2], [48]). Given a string σ ∈ Σ∗ and
G = (N ,Σ,P, S), dG(G, σ) equals d if and only if σ
can be parsed using G′ with a minimum total score of
d, where the score of a parsing is defined as the sum of
the scores of the productions used in the parsing.

Before describing the full dynamic programming,

we need one more step that allows for a sequence of

deletions. Define null(A) to be the minimum cost of

deriving A
∗
=⇒ ε in G′ if such a derivation is possible

and ∞ otherwise. That is, whenever A
∗
=⇒ ε, null(A)

gives the length of the shortest string in Σ∗ derivable

from A. The next theorem from [29] (see (B)) shows

computing null(A) is easy.

Theorem 7 ( [29]). For any CFG G = (N ,Σ,P, S),
the set of values {null(A) |A ∈ N} can be computed
in O(|N ||P| log(|N |)) time.

Let Null be a list of {(X,null(X)) s.t. X ∈
N and null(X) ≤ n}, that is it contains all non-

terminals that can derive ε within at most n edits and

the corresponding scores. The size of Null is at most

|N |. We now create a list Delete(A) for every non-

terminal A iteratively. On the first iteration, we add

(A, 0) to Delete(A). On the ith iteration, for every entry

(X, a) ∈ Delete(A), and every entry (Y, b) ∈ Null, if

there exists Z → XY or Z → Y X in P ′ such that

a+b+s(Z → XY ) ≤ n, then we add (Z, a+b+s(Z →
XY )) to Delete(A) if it already does not contain an

entry with non-terminal Z or if the entry with Z has

a higher score (in that case we replace it). We stop

when no new entry is added in an iteration. Since, the

score lies in [0, n] and every non-terminal can appear

in Delete(A) at most once with each distinct score,

and |Null| ≤ |G′|, we need O(npoly(|G′|)) time to

construct Delete(A) . Hence for all non-terminals, this

list can be constructed in time O(npoly(|G′|)). The size

of Delete(A) at the end is bounded by |G′| for every

A ∈ N .

Lemma 1. (X, c) is in Delete(A) if and only if X ∗
=⇒ A

with a minimum score of c, where A⇒ A with a score
of 0.
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Exact Dynamic Programming: The dynamic pro-

gramming from [2] creates an n × n table T where

|σ| = n. Each entry in T will be a list of (X, c) pairs

where X ∈ N and c ∈ Z
+ such that (X, c) ∈ T (i, j),

1 ≤ i ≤ j ≤ n, if and only if the substring

σ(i : j) = σiσi+1...σj can be derived from X with a

minimum total score of c in G′. To get LED, we check

T (1, n) and report the score corresponding to S.

Initialization. For all i = 1, 2, .., n, include in T (i, i)
all non-terminals X such that X → a ∈ P ′ with a score

s(X → a) (assume σi = σ(i : i) = a), along with

all (Y, b) such that (Y, b − s(X → a)) ∈ Delete(X).
If any non-terminal appears multiple times, we only

maintain its occurrence once with the minimum score.

Note that computing T (i, i) requires time O(|G′|). For

all T (i, j), i �= j initialize it with an empty list. Note

that, at this point, T (i, i) contains (X, c) if and only if

X
∗
=⇒ σi with a minimum score of c.

Recurrence. We assume we have computed T (i, j) for

all i, j, i ≤ j such that (j − i + 1) = t, that is for all

t length substrings. And, T (i, j) contain (X, c) if and

only if X
∗
=⇒ σ(i : j) with a score of c.

Now to compute T (i, j + 1), consider for every 
,

 = i, i+1, .., j, T (i, 
) and T (
+1, j+1). If (X, a) ∈
T (i, 
) and (Y, b) ∈ T (
 + 1, j + 1), and there exists

a production of the form Z → XY in G′ with a score

of s(Z → XY ), create (Z, a + b + s(Z → XY )) and

include (Z, a + b + s(Z → XY )) to T (i, j + 1) if

it does not already contain an entry with non-terminal

Z, or if the entry with non-terminal Z in T (i, j + 1)
has a score > a + b + s(Z → XY ); in the later case

replace it with the newly created entry. Next, for every

(X, a) now in T (i, j + 1) include all (Y, b) (if already

there does not exist any entry in T (i, j + 1) with non-

terminal Y and score lower than b, and b ≤ n.) such

that (Y, b−a) ∈ Delete(X). Now, T (i, j+1) contains

(X, c) if and only if X
∗
=⇒ σ(i : j+1) with a minimum

score of c.

Theorem 8 ( [2]). Given G and σ ∈ Σ∗, |σ| = n, if
(S, c) ∈ T (1, n) then dG(G, σ) = c and computing it
requires time O(n3) and space O(n2).

III. FAST ADDITIVE APPROXIMATION FOR LED &

RNA FOLDING

In this section, we prove Theorem 1 that provides an

O(n2k log n) time algorithm for LED with O(nk log n)
space and additive error O(nk log n). This is the first

combinatorial result for LED after 1972 that gets

nontrivial approximation in truly subcubic time. As a

corollary (Corollary 1) of Theorem 1, we can check

approximate membership in CFG in quadratic time and

linear-space. Moreover, we get the first combinatorial

approximation for RNA folding (Corollary 2) which

improves over the known bounds even using fast matrix

multiplication [48] significantly.

Recall from Section II that T (i, j) denotes the solu-

tion computed by the exact dynamic programming for

LED on substring σ(i : j). While computing T (i, j),
the exact algorithm considers every 
 = i, i+1, .., j−1
and combines the results from the already computed

T (i, l) and T (l + 1, j) to obtain T (i, j). We refer to

these 
 ∈ [i, j − 1] as break-points. In the following,

T1(i, j) will denote the approximated answer for LED

on substring σ(i : j). While computing, T1(i, j), instead

of considering all break-points 
 ∈ [i, j − 1], we will

select deterministically a small set of break-points in

Break(i, j) ⊆ {i, i + 1, .., j − 1} and only consider


 ∈ Break(i, j). Everything else will remain the same.

The choice of Break(i, j) depends on a parameter

k ≥ 1, which in turn dictates the running time and the

approximation factor. Let �x�jk indicates the nearest

index ≥ x that is a multiple of jk. Similarly, 	x
jk
indicates the nearest index ≤ x that is a multiple of jk.

We call an interval [start, end] valid if start ≤ end.

Our approximate DP algorithm is given in Figure 1.

Observation 1. For all i, j ≤ n, each interval Lt

and Rt′ constructed by Approximate-DP 1 for t ∈
[0, τL(i, j)] and t′ ∈ [0, τR(i, j)] are valid.

Proof: Clearly L0 is valid. Consider Lt = [�i +
2t−1k�2t−1·k, �i+2tk�2t·k−1] for any t ∈ [0, τL(i, j)].
We have �i+ 2t−1k�2t−1·k ≤ i+ 2t−1k+ 2t−1k− 1 =
i+ 2tk − 1 ≤ �i+ 2tk�2t·k − 1. Hence, Lt is valid.

Similarly, R0 is valid. We have 	j − 2t−1k
2t−1·k ≥
j−2t−1k−(2t−1k−1) = j−2tk+1 ≥ 	j−2tk
2t·k+1.

Hence Rt is valid.

Observation 2. For every σ(i : j), T1(i : j) contains
(I, j − i+ 1).

Proof: If j = i, that is for length 1 substrings, we

have (Xσ(i), 0) ∈ T1(i, i) and (I, 0) ∈ Null. Then since

we have productions I → IXσ(i) (or I → Xσ(i)I),

(I, 1) ∈ Delete(Xσ(i)). Thus, (I, 1) ∈ T 1(i, i). Sup-

pose the claim is true for all substrings of length r− 1,

and now consider a substring of length r, σ(i, i+r−1).
We know i + 1 ∈ Break(i, i + r − 1) as k ≥ 1, and

T1(i+ 1, i+ r − 1) contains (I, r − 1). Now using the

production I → Xσ(i)I , we see (I, r) ∈ T1(i, i+r−1).

A. Proof of Theorem 1.

Lemma 2. Approximate-DP 1 has a running time of
O(n2k log n

k ).
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Figure 1: Algorithm: Approximate-DP1

Proof: There are O(nk) substrings of length at

most k; for each of which Approximate-DP 1 requires

O(k) time to compute its solution. Hence, running

time for step 1 is O(nk2). For a substring σ(i : j)
of length (j − i + 1) ∈ (k ∗ 2η, k ∗ 2η+1], η =
O(log (n/k)), we have τ(i, j) = η + 1. The length

of Lt, t = 0, 1, ..., τL(i, j) (similarly for Rt with

t = 0, 1, ..., τR(i, j)) is at most 2t−1k + 2tk < 2t+1k.

While computing T1(i, j), the number of break-points

sampled from each Lt and similarly from each Rt is

at most 4k. Thus |Break(i, j)| ≤ 8(η + 1)k. Hence,

computing each T1(i, j) with (j − i + 1) > k requires

time O(k log n
k ). Therefore, the overall time complexity

is dominated by this step and is O(n2k log n
k ).

We would also need the following result which will

be useful for our analysis.

Lemma 3. For any σ(i, j) and σ(i′, j′) such that i′ ≥ i
and j′ ≤ j, if p is a break-point considered by T1(i, j)
and p ∈ [i′, j′ − 1], then p is also a break-point
considered by T1(i′, j′).

Proof: Note that for any σ(i, j) the interval Lt(i, j)
has a starting point that is a multiple of 2t−1, except

for t = 0. In Lt(i, j), T1 selects every 2t−1th break-

point starting from the interval start-point. Thus, while

in Lt(i, j), all break-points that are multiples of 2t−1

are selected. Now consider σ(i′, j′) which is a substring

of σ(i, j). Let p be a break-point selected by σ(i, j).
Suppose p ∈ [i′, j′−1] and also p ∈ Lt(i, j) for some t
when it is selected. Then p ∈ Lt′(i

′, j′) for some t′ ≤ t.
If t = 0, then t′ = 0 as well and p is in Break(i′, j′).
Else, since p is a multiple of 2t−1, it is also a multiple

of 2t
′−1, therefore again p ∈ Break(i′, j′).

If p ∈ Rt(i, j) for some t when it is selected, again

following the construction of Rt and the selected points,

p is a multiple of 2t−1, and p ∈ Rt′(i
′, j′) for some

t′ ≤ t, and it gets selected in Rt′(i
′, j′).

Corollary 3. If p is a break-point considered by T1(i, j)
such that p ∈ [i+1, j− 2], then p is also a break-point
considered by both T1(i+ 1, j) and T1(i, j − 1).

T (i, j) and similarly T1(i, j) implicitly maintain the

entire parsing information for substring σ(i, j) to obtain

the minimum cost parse tree starting with every non-

terminal. Let us use P ∗Z(i, j) to designate the parse

tree obtained from T (i, j) for Z
∗
=⇒ σ(i : j) and

cost(P ∗Z(i, j)) be the total cost of the deriving it.

Similarly, P 1
Z(i, j) and cost(P 1

Z(i, j)) denote the parse
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tree and its cost obtained from T1(i, j) for Z
∗
=⇒ σ(i : j).

To show how these parse trees are constructed, we need

to consider the following cases.

Case 0. We include (Z, c) in T (i, j) where Z pro-

duces a terminal, then Z is the root node of the parse

tree which is also a leaf node.

Case 1. We include (Z, c) in T (i, j) by combining

(X, a) ∈ T (i, l) and (Y, b) ∈ T (l + 1, j), l ∈ [i, j − 1],
then Z is the root node of the parse tree. We proceed

creating its left child starting with (X, a) ∈ T (i, l) and

right child starting with (Y, b) ∈ T (l + 1, j).

Case 2. We include (Z, c) in T (i, j) by combining

(X, a) ∈ T (i, j) and some (Y, null(Y )) that is (Z, c−
a − null(Y ) + s(Z → XY )) ∈ Delete(X), then we

create a vertex Z, associate X and Y as its two children

and proceed with expanding (X, a) ∈ T (i, j). We

continue until we reach at a vertex (Z ′, c′) in T (i, j) by

combining (X ′, a′) ∈ T (i, l) and (Y ′, b′) ∈ T (l+1, j),
l ∈ [i, j−1]. The entire subtree starting with Z (root of

that subtree) and ending at Z ′ becomes the designated

root node of the parse tree. To differentiate between the

“node” of this subtree from node of the parse tree, we

refer to them as vertices. We proceed creating its left

child starting with (X ′, a′) ∈ T (i, l) and right child

starting with (Y ′, b′) ∈ T (l + 1, j).

At every node of a parse tree, we maintain the

non-terminal corresponding to the root of the subtree

represented by that node, the production used to create

its two children and the cost for using that production

plus the cost to generate the subtree represented by

that node. If we expand the vertices that are created

by considering Delete() in Case 2, then every node

v in a parse tree has two children designated by vL
(left child) and vR (right child) unless it produces a

terminal (in which case it is a leaf node). Naturally,

each node of a parse tree generates a substring given

by the leaf nodes beneath it. w(v) denotes the length

of the substring generated by v with w(v) = 0 if it

generates ε. The total cost of a parse tree is the sum of

costs of all its nodes.

In a similar way, we can generate the parse tree

P 1
Z(i, j). It is useful to think while T (i, j) considers

all possible parse trees for σ(i, j) and selects the one

with minimum cost for every non-terminal, T1(i, j)
considers a subset of the parse trees restricted by the

choice of the break-points, and selects the one with

minimum cost from that subset, again for every non-

terminal. Consider Case 2 where (Z, c) and (Z ′, c′) are

in T (i, j). If (Z ′, c′1) ∈ T1(i, j), then we must also have

(Z, c′1 + [c− c′]) ∈ T1(i, j), and the exact same subtree

starting with Z and ending at Z ′ becomes the designated

root node for P 1
Z(i, j). Therefore, to relate the cost

of cost(P 1
Z(i, j)) and cost(P ∗Z(i, j)), it is enough to

relate the cost of cost(P 1
Z′(i, j)) and cost(P ∗Z′(i, j))

in this case and show whenever, T (i, j) maintains a

parse tree starting with a non-terminal Z ′ ∈ N , that is

P ∗Z′(i, j), T1(i, j) also maintains a parse tree P 1
Z′(i, j)

with a cost not significantly higher than cost(P ∗Z′(i, j)).
For simplicity of notation, we often drop the subscript

and use P ∗(i, j) and P 1(i, j) to denote the parse trees

respectively for T (i, j) and T1(i, j) starting with the

same non-terminal.

Lemma 4. For any σ(i, j) and σ(i′, j′) such that i′ ≥ i
and j′ ≤ j, cost(P 1(i′, j′)) ≤ cost(P 1(i, j))+|i′−i|+
|j′ − j|.

Proof: We exhibit a parse tree P ′(i′, j′) for σ(i′, j′)
which is within the subset of parse trees considered by

T1 and closely mimics P 1(i, j), and has the desired

cost. If the root of P 1(i, j) is v, create the root of

P ′(i′, j′) as v′ = v. Let vL produce σ(i, 
) and vR
produce σ(
 + 1, j). If 
 ∈ [i′, j′ − 1], then set v′L
as vL and v′R as vR. Proceed with both vL and vR.

Otherwise, 
 �∈ [i′, j′ − 1], then one of vL or vR
produces a substring of σ(i, i′ − 1) or σ(j′ + 1, j).
Say vL produces a substring in σ(i, i′ − 1) (the case

for vR producing a substring of σ(j′ + 1, j) is similar)

with a cost of cL, then vL can produce ε with a cost

of cL + η, where η is the length of the substring of

σ(i, i′ − 1) that it produces. We map v′R to vR and

v′L to ε(vL) where ε(vL) corresponds to a node that

starting with the same nonterminal as vL produces ε
with a cost of null(vL). Note that null(vL) ≤ cL + η.

We then just proceed with vR. At the end we have a

parse tree P ′(i′, j′) that generates σ(i′, j′) such that

for every non-leaf node with none of its two children

deriving ε, it contains a break-point in [i′, j′ − 1]
considered by P 1(i, j). Thus these break-points are

also considered by T1 while computing P 1(i′, j′) by

Lemma 3. Hence cost(P 1(i′, j′)) ≤ cost(P ′(i′, j′)).
But cost(P ′(i′, j′)) ≤ cost(P 1(i, j))+ |i′− i|+ |j′−j|.
Hence, cost(P 1(i′, j′)) ≤ cost(P 1(i, j))+|i′−i|+|j′−
j|.

Let us refer to a vertex v ∈ P ∗(i, j) (similarly in

P 1(i, j)) as internal, if it has two children and none

of them produces ε. Every non-leaf node in the parse

tree contains exactly one internal vertex (the vertex

Z in Case 1, and the leaf vertex Z ′ in Case 2). Let

Min(i, j) =
∑

v∈V ∗(i,j) min 	w(vL)
k 
, 	w(vR)

k 
 where

V ∗(i, j) are all the non-leaf nodes in the parse tree

P ∗(i, j).

Lemma 5. For all i, j, i ≤ j ∈ [1, n], there exists
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a parse tree P 1(i, j) maintained by T1(i, j) such that
cost(P 1(i, j)) ≤ cost(P ∗(i, j)) + 4 ·Min(i, j).

Proof: The proof is by induction on w(v), where

v generates the substring σ(i : j), that is w(v) = (j −
i+ 1).
Base case. When w(v) ≤ k, since T1(i, j) is computed

by exactly following T (i, j), P 1(v) is same as P ∗(v).
Hence cost(P 1(v)) = cost(P ∗(v)). Thus the base case

satisfies the claim.

Induction hypothesis. We assume that by the induction

hypothesis, the claim is true for all σ(i, j) such that

j − i+ 1 ≤ kt, t ≥ 1.

Induction. We now consider a substring σ(i, j) such

that j − i + 1 ∈ [kt + 1, k(t + 1)]. Suppose T (i, j)
considers the break-point 
 ∈ [i, j − 1] to generate

P ∗(i, j) using the production Z → XY , where X
generates σ(i, 
) and Y generates σ(
+ 1, j). If either

of X or Y generates a substring of length at most k,

then 
 ∈ Break(i, j), and we recursively consider the

child generating the larger substring until we reach at a

node where both its children generate substrings larger

than k.

We overuse symbols to keep the notation simple, and

assume without loss of generality that both X and Y
generate substrings of length strictly larger than k. Also,

without loss of generality, let us assume that w(vL) ≤
w(vR) ≤ kt; the other case will be symmetric.

We have w(vL) = (
 − i + 1). Let k2a−1 + 1 ≤
w(vL) ≤ k2a for some a ≥ 1.

Let the nearest break-point to the left of 
 in

Break(i, j) while parsing σ(i : j) be 
′. Then it must

hold that |
− 
′| ≤ 2a−1 = 	w(vL)
k 
. So T1(i, j) checks

the possibility of combining T1(i : 
′) and T1(
′+1, j).
By induction hypothesis on vL and vR, we have

cost(P 1[i, 
]) ≤ cost(P ∗[i, 
]) + 4 ·Min(i, 
) and

cost(P 1[
+1, j]) ≤ cost(P ∗[
+1, j])+4·Min(
+1, j)

We would like to use parse trees that closely mimic

P 1[i, 
] to generate σ(i, 
′) and P 1(l+1, j) to generate

σ(
′ + 1, j) by paying minimum amount of additional

cost. That will give us the desired approximation.

Generating parse trees for σ(i, 
′) and σ(
′ + 1, j).
Suppose to generate P 1[i, 
], T (i, 
) considers break-

point 
1 ∈ [i, 
 − 1] to derive its left and right child

using non-terminals X1 and Y 1 respectively.

Claim 1. cost(P 1[i, 
′]) ≤ 2a−1 + cost(P 1[i, 
]).

Proof. Case 1. 
1 ∈ [i, 
′). Then T1(i, 
′) can use

P 1
X1 [i, 
1] to derive σ(i, 
1) and use P 1

Y 1 [
1 + 1, 
′] to

derive σ(i, l′) with a cost at most cost(P 1
Y 1 [
1+1, 
])+

|
−
′| from Lemma 4. Thus, cost(P 1[i, 
′]) ≤ |
−
′|+
cost(P 1[i, 
]) ≤ 2a−1 + cost(P 1[i, 
]).

Case 2. 
1 ≥ 
′. Then 
1 is not a valid break-

point to be considered for generating σ(i : 
′). But

P 1
Y 1 [
1+1, 
] can generate the empty string with a cost

of cost(P 1
Y 1 [
1+1, 
])+ |
1− 
|. Then (Y1, c1) ∈ Null

where c1 ≤ cost(P 1
Y 1 [
1 + 1, 
]) + |
1 − 
|. Moving to

P 1
X1

[i, 
1], if it considers the break-point 
2 to derive

its two children using non-terminals X2 and Y 2 which

is again ≥ 
′, then we can use P 1
Y 2 [
2 + 1, 
1] to

generate the empty string with a cost of cost(P 1
Y 2 [
2 +

1, 
1]) + |
2 − 
1|. We have (Y 2, c2) ∈ Null where

c2 ≤ cost(P 1
Y 2 [
2 + 1, 
1]) + |
2 − 
1|. Otherwise,


2 < 
′, then we use P 1
X2 [i, 
2] to generate σ(i, 
2)

and P 1
Y 2 [
2 + 1, 
′] to generate σ(
2 + 1, 
′) with

a cost of cost(P 1
Y 2 [
2 + 1, 
1]) + |
′ − 
1|. Thus,

cost(P 1
X1

(i, 
′)) ≤ cost(P 1
X1

(i, 
1)) + |
1 − 
′|. Finally,

this can be combined with (Y1, c1) via Delete(X1) to

generate the parse tree for σ(i, 
′) starting with the same

non-terminal as P 1[i, 
] with a total cost of at most

|
− 
′|+ cost(P 1[i, 
]). Continuing in this manner, we

again get,

cost(P 1[i, 
′]) ≤ |
− 
′|+ cost(P 1[i, 
])

≤ 2a−1 + cost(P 1[i, 
]).

Claim 2. cost(P 1[
′ + 1, j]) ≤ 2a + cost(P 1[
+ 1, j])

Proof. To generate P 1[
+ 1, j], suppose T1(
+ 1, j)
considers break-point 
R ∈ [
 + 1, j − 1] to derive its

two children. Then 
R must be ∈ [
′ + 1, j) always.

Consider, the nearest break-point to the right of 
 in

Break(i, j), denoted by 
′′. We can argue exactly as in

Claim 1 to get

cost(P 1
Y [


′′ + 1, j]) ≤ |
− 
′′|+ cost(P 1
Y [
+ 1, j]).

Since σ(
′+1, j) is a substring of σ(i, j), we have from

Lemma 3 that T1(
′ + 1, j) considers the break-point


′′. But, then T1 considers a parse tree for σ(
′ + 1, j)
that uses the production Y → IY at the root and has

I
∗
=⇒ σ(
′, 
′′) with a cost of |
′− 
′′| ≤ 2a−1 as its left

child and P 1
Y [


′′+1, j] as its right. Thus, cost(P 1[
′+
1, j]) ≤ 2a + cost(P 1[
+1, j]), since both |
− 
′′| and

|
′ − 
′′| are ≤ 2a−1.

Now, 4 · [Min(i, l) + Min(l + 1, j)] + 3 · 2a−1 <
4 ·Min(i, j), thus we have the total cost to be

cost(P 1[i, j]) ≤ cost(P ∗[i, j]) + 4 ·Min(i, j).

We now prove a structural lemma, which shows that

Min[i, j] ≤ (j − i+ 1)

k
log (j − i+ 1),
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giving the desired approximation.

Suppose we are given a rooted binary tree T with n
leaves. Each node v is assigned a weight w(v) which

corresponds to the number of leaves in the subtree

rooted at v. Let vL denote the left child of v and vR
denote the right child of v. We are interested in having

a bound on
∑

v:non-leaf∈T min (w(vL), w(vR)). For any

node v which has only one child or is a leaf, define

min (w(vL), w(vR)) = 0

Lemma 6. For any rooted binary tree T with n leaves
and weight w on nodes defined as above,

∑

v∈T
min (w(vL), w(vR)) ≤ n log n.

Combining Lemma 5 and Lemma 6, we get the

desired approximation factor of n
k log n. Lemma 2 guar-

antees a running time of O(n2k log n). However, the

space required is O(n2). In the full version, we show

the space usage can be further reduced to O(nk log n),
thus completing the proof of Theorem 1.
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