
Approximating the Held-Karp Bound for Metric TSP in Nearly-Linear Time

Chandra Chekuri Kent Quanrud

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL
{chekuri,quanrud2}@illinois.edu

Abstract—We give a nearly linear-time randomized approx-
imation scheme for the Held-Karp bound [22] for Metric-TSP.
Formally, given an undirected edge-weighted graph G = (V, E)
on m edges and ε > 0, the algorithm outputs in O(m log4 n/ε2)
time, with high probability, a (1 + ε)-approximation to the
Held-Karp bound on the Metric-TSP instance induced by the
shortest path metric on G. The algorithm can also be used to
output a corresponding solution to the Subtour Elimination LP.
We substantially improve upon the O(m2 log2(m)/ε2) running
time achieved previously by Garg and Khandekar.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) is a central

problem in discrete and combinatorial optimization, and has

inspired fundamental advances in optimization, mathemati-

cal programming and theoretical computer science. Cook’s

recent book [11] gives an introduction to the problem, its

history, and general appeal. See also Gutin and Punnen

[21], Applegate, Bixby, Chvatal, and Cook [4], and Lawler,

Lenstra, Rinnooy-Kan, and Shmoys [29] for book-length

treatments of TSP and its variants.

Formally, the input to TSP is a graph G = (V, E)
equipped with positive edge costs c : E → R>0. The goal is

to find a minimum cost Hamiltonian cycle in G. In this paper

we focus on TSP in undirected graphs. Checking whether

a given graph has a Hamiltonian cycle is a classical NP-

Complete decision problem, and hence TSP is not only NP-

Hard but also inapproximable. For this theoretical reason,

as well as many practical applications, a special case of

TSP called Metric-TSP is extensively studied. In Metric-
TSP, G is a complete graph Kn and c obeys the triangle

inequality cuv ≤ cuw+cwv for all u, v, w ∈ V . An alternative

interpretation of Metric-TSP is to find a minimum-cost tour
of an edge-weighted graph G; where a tour is a closed walk

that visits all the vertices. In other words, Metric-TSP is

a relaxation of TSP in which a vertex can be visited more

than once. The graph-based view of Metric-TSP allows one

to specify the metric on V implicitly and sparsely.
Unlike TSP, which is inapproximable, Metric-TSP ad-

mits a constant factor approximation. The classical algorithm

of Christofides [10] yields a 3/2-approximation. On the

other hand it is known that Metric-TSP is APX-Hard

and hence does not admit a PTAS (Lampis [28] showed

that there is no 185
184 -approximation unless P = NP ). An

outstanding open problem is to improve the bound of 3/2. A
well-known conjecture states that the worst-case integrality

gap of the Subtour-Elimination LP formulated by Dantzig,

Fulkerson, and Johnson [12] is 4/3 (see [17]). There has

been exciting recent progress on this conjecture and several

related problems; we refer the reader to an excellent survey

by Vygen [37]. The Subtour Elimination LP for TSP is

described below and models the choice to take an edge e ∈ E
with a variable ye ∈ [0, 1]. In the following, let C(U) (resp.

C(v)) denotes the set of edges crossing the set of vertices

U ⊆ V (resp. the vertex v ∈ V).

SE(G, c) = min 〈c, y〉
s.t.

∑
e∈C(v) ye = 2 for all v ∈ V,∑
e∈C(U) ye ≥ 2 for all ∅ � U � V,

and ye ∈ [0, 1] for all e ∈ E .

The first set of constraints require each vertex to be incident

to exactly two edges (in the integral setting); these are re-

ferred to as degree constraints. The second set of constraints

force connectivity, hence the name “subtour elimination”.

The LP provides a lower bound for TSP, and in order to

apply it to an instance of Metric-TSP defined by G, one

needs to apply it to the metric completion of G.
A problem closely related to Metric-TSP is the 2-

edge-connected spanning subgraph problem (2ECSS). In

2ECSS the input is an edge-weighted graph (G = (V, E), c),
and the goal is to find a minimum cost subgraph of G that

is 2-edge-connected. We focus on the simpler version where

an edge is allowed to be used more than once. A natural LP

relaxation for 2ECSS is the following.

2ECSS(G, c) = min〈c, y〉
s. t.

∑
e∈C

ye ≥ 2 ∀C ∈ C

and ye ≥ 0 ∀e ∈ E

We have a variable ye for each edge e ∈ E , and constraints

which ensure that each cut has at least two edges crossing it.

The dual LP below corresponds to a maximum packing of

cuts into the edge costs. In the following, let C ⊆ 2E denote

the family of all cuts in G.
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2ECSSD(G, c) = max 2〈1, x〉
s. t.

∑
C�e

xC ≤ ce ∀e ∈ E

and xC ≥ 0 ∀C ∈ C
Cunningham (see [30]) and Goemans and Bertsimas [18]

observed that for any edge-weighted graph (G, c), the op-

timum value of the Subtour Elimination LP for the metric

completion of (G, c) coincides with the optimum value of

the 2ECSS LP for (G, c). The advantage of this connection

is twofold. First, the 2ECSS relaxation is a pure covering

LP, and its dual is a pure packing LP. Second, the 2ECSS
formulation works directly with the underlying graph (G, c)
instead of the metric completion.

On the importance of solving the Subtour-LP: The sub-

tour elimination LP is extensively studied in mathematical

programming both for its application to TSP as well as the

many techniques its study has spawned. It is a canonical

example in many books and courses on linear and integer

programming. The seminal paper of Dantzig, Fulkerson and

Johnson proposed the cutting plane method based on this LP

as a way to solve TSP exactly. Applegate, Bixby, Chvátal,

and Cook [3] demonstrated the power of this methodology

by solving TSP on extremely large real world instances; the

resulting code named Concorde is well-known [4]. The im-

portance of solving the subtour elimination LP to optimality

has been recognized since the early days of computing. The

Ellipsoid method can be used to solve the LP in polynomial

time since the separation oracle required is the global mincut

problem, but is not practical. One can also write polynomial-

sized extended formulations using flow variables, but the

number of variables and constraints is cubic in n. Held and

Karp [22] provided an alternative lower bound for TSP
via the notion of one-trees. They showed, via Lagrangian

duality, that their lower bound coincides with the one given

by SE(G, c). The advantage of the Held-Karp bound is

that it can be computed via a simple iterative procedure

relying on minimum spanning tree computations. In practice,

this iterative procedure provides good estimates for the

lower bound. However, there is no known polynomial-time

implementation with guarantees on the convergence rate to

the optimal value.

In the rest of the paper we focus on Metric-TSP. For the

sake of brevity, we refer to the Held-Karp bound for the

metric completion of (G, c) as simply the Held-Karp bound

for (G, c). How fast can one compute the Held-Karp bound

for a given instance? Is there a strongly polynomial-time or

a combinatorial algorithm for this problem? These questions

have been raised implicitly and are also explicitly pointed

out, for instance, in [6] and [18]. A fast algorithm has several

applications ranging from approximation algorithms to exact

algorithms for TSP.

Plotkin, Shmoys, and Tardos [33], in their influential paper

on fast approximation schemes for packing and covering

LPs via Lagrangian relaxation methods, showed that a (1+
ε)-approximation for the Held-Karp bound for Metric-TSP
can be computed in O

(
n4 log6 n/ε2

)
randomized time. They

relied on an algorithm for computing the global minimum

cut1. Subsequently, Garg and Khandekar obtained a (1+ ε)-
approximation in O(m2 log2 m/ε2) time and they relied on

algorithms for minimum-cost branchings (see [26]).
The main result: We obtain a near-linear running time

for a (1+ε)-approximation, substantially improving the best

previously known running time bound.

Theorem 1. Let G = (V, E) be an undirected graph with
|E| = m edges and |V| = n vertices, and positive edge
weights c : E → R>0. For any fixed ε > 0, there exists a
randomized algorithm that computes a (1+ε)-approximation
to the Held-Karp lower bound for the Metric-TSP instance
on (G, c) in O(m log4 n/ε2) time. The algorithm succeeds
with high probability.

The algorithm in the preceding theorem can be modified

to return a (1 + ε)-approximate solution to the 2ECSS LP

within the same asymptotic time bound. For fixed ε, the

running time we achieve is asymptotically faster than the

time to compute or even write down the metric completion

of (G, c). Our algorithm can be applied to low-dimensional

geometric point sets to obtain a running-time that is near-

linearly in the number of points.

In typical approximation algorithms that rely on math-

ematical programming relaxations, the bottleneck for the

running time is solving the relaxation. Surprisingly, for al-

gorithms solving Metric-TSP via the Held-Karp bound, the

bottleneck is no longer solving the relaxation (albeit we only

find a (1 + ε)-approximation and do not guarantee a basic

feasible solution). We mention that the recent approaches

towards the 4/3 conjecture for Metric-TSP are based on

variations of the classical Christofides heuristic (see [37]).

The starting point is a near-optimal feasible solution x to

the 2ECSS LP on (G, c). Using a well-known fact that

a scaled version of x lies in the spanning tree polytope

of G, one generates one or more (random) spanning trees

T of G. The tree T is then augmented to a tour via a

min-cost matching M on its odd degree nodes. Genova

and Williamson [16] recently evaluated some of these Best-
of-Many Christofides’ algorithms and demonstrated their

effectiveness. A key step in this scheme, apart from solving

the LP, is to decompose a given point y in the spanning

tree polytope of G into a convex combination of spanning

trees. Our recent work [7] shows how to achieve a (1− ε)-
approximation for this task in near-linear time; the algorithm

implicitly stores the decomposition in near-linear space.

1Their scheme can in fact be implemented in randomized
O(m2 log4 m/ε2) time using subsequent developments in minimum
cut algorithms and width reduction techniques.
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One remaining bottleneck to achieve an overall near-linear

running time is to compute an approximate min-cost perfect

matching on the odd-degree nodes of a given spanning tree

T .

A. Integrated design of the algorithm

Our algorithm is based on the multiplicative weight update

framework (MWU), and like Plotkin, Shmoys, and Tardos

[33], we approximate the pure packing LP 2ECSSD. Each

iteration requires an oracle for computing the global min-

imum cut in an undirected graph. A single minimum cut

computation takes randomized near-linear-time via the algo-

rithm of [25], and the MWU framework requires Ω̃(m/ε2)
iterations. Suprisingly, the whole algorithm can be imple-

mented to run in roughly the same time as that required to

compute one global mincut.

While the full algorithm is fairly involved, the high-level

design is directed by some ideas developed in recent work by

the authors [7] that is inspired by earlier work of Mądry [31]

and Young [39]. We accelerate MWU-based algorithms for

some implicit packing problems with the careful interplay

of two data structures. The first data structure maintains a

minimum cost object of interest (here the global minimum

cut) by (partially) dynamic techniques, rather than recom-

pute the object from scratch in every iteration. The second

data structure applies the multiplicative weight update in a

lazy fashion that can be amortized efficiently against the

weights of the constraints. The two data structures need to

be appropriately meshed to obtain faster running times, and

this meshing depends very much on the problem specifics

as well as the details of the dynamic data structures.

While we do inherit some basic ideas and techniques from

this framework, the problem here is more sophisticated than

those considered in [7]. The first component in this paper

is a fast dynamic data structure for maintaining a (1 + ε)-
approximate global minimum cut of a weighted graph whose

edge weights are only increasing. We achieve an amortized

poly-logarithmic update time by a careful adaptation of

the randomized near-linear-time minimum cut algorithm of

Karger [25] that relies on approximate tree packings. This

data structure is developed with careful consideration of the

MWU framework; for example, we only need to compute

an approximate tree packing Õ
(
1/ε2

)
times (rather than in

every iteration) because of the monotonicity of the weight

updates and standard upper bounds on the total growth of

the edge weights.

The second technical ingredient is a data structure for

applying a multiplicative weight update to each edge in the

approximately minimum cuts selected in each iteration. The

basic difficulty here is that we cannot afford to touch each

edge in the cut. While this task suggests a lazy weight update

similar to [7], these techniques require a compact represen-

tation of the minimum cuts. It appears difficult to develop in

isolation a data structure that can apply multiplicative weight

updates along any (approximately) minimum cut. However,

additional nice properties of the cuts generated by the first

dynamic data structure enable a clean interaction with lazy

weight updates. We develop an efficient data structure for

weight updates that is fundamentally inextricable from the

data structure generating the approximately minimum cuts.

Remark 2. If we extract the data structure for minimum cuts

from the MWU framework, then we obtain the following.

Given an edge-weighted G graph on m
edges there is a dynamic data structure for
the weighted incremental maintenance of a
(1 + ε)-approximate global minimum cut that
updates and queries in constant time plus
O(m polylog(n) log(W1/W0)/ε) total amortized
time, where W0 is the weight of the minimum cut
of the initial graph and W1 is the weight of the
minimum cut of the final graph (after all updates).
Here, updates in the weighted incremental setting
consist of an edge e and a positive increment
α to its weight. The edges of the approximate
minimum cut can be reported in constant time
per edge reported.

However, a data structure for dynamic maintenance of min-

imum cuts is not sufficient on its own, as there are several

subtleties to be handled both appropriately and efficiently.

For instance, Thorup [35] developed a randomized fully-
dynamic data structure for global mincut with a worst-case

update time of Õ(
√
n). Besides the slower update time, this

data structure assumes a model and use case that clashes

with the MWU framework at two basic points. First, the

data structure does not provide access to the edges of the

mincut in an implicit fashion that allows the edge weights to

be updated efficiently, and updating each of the edges of the

minimum cut individually leads to quadratic running times.

Second, the randomization in the data structure assumes an

oblivious adversary, which is not suitable for our purposes

where the queries of the MWU algorithm to the data

structure are adaptive.

B. Related Work

There has been a surge of interest in faster approxi-

mation algorithms for classical problems in combinatorial

optimization including flows, cuts, matchings and linear

programming to name a few. These are motivated by not

only theoretical considerations and techniques but also prac-

tical applications with very large data sizes. Many of these

are based on the interplay between discrete and continuous

techniques and there have been several breakthroughs, too

many to list here. Our work adds to the list of basic problems

that admit a near-linear-time approximation scheme.

In another direction there has been exciting work on

approximation algorithms for TSP and its variants including

Metric-TSP, Graphic-TSP, Asymmetric-TSP, TSP-Path
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to name a few. Several new algorithms, techniques, connec-

tions and problems have arisen out of this work. Instead of

recapping the many results we refer the reader to the survey

[37]. Our result adds to this literature and suggests that

one can obtain not only improved approximation but also

much faster approximations than what was believed possible.

As we already mentioned, some other ingredients in the

rounding of a solution such as decomposing a fractional

point in a spanning tree polytope into convex combination

of spanning trees can also be sped up using some of the

ideas in our prior work.

In terms of techniques, our work falls within the broad

framework of improved implementations of iterative algo-

rithms. Our recent work showed that MWU based algo-

rithms, especially for implicit packing and covering prob-

lems, have the potential to be substantially improved by

taking advantage of data structures. The key, as we described

already, is to combine multiple data structures together

while exploiting the flexibility of the MWU framework.

Although not a particularly novel idea (see the work of

Mądry [31] for applications to multicommodity flow and

the work of Agarwal and Pan [1] for geometric covering

problems), our work demonstrates concrete and interesting

problems to highlight the sufficient conditions under which

this is possible. Lagrangian-relaxation based approximation

schemes for solving special classes of linear programs

have been studied for several decades with a systematic

investigation started in Plotkin, Shmoys, and Tardos [33]

and Grigoriadis and Khachiyan [20] following earlier work

on multicommodity flows. Since then there have been many

ideas, refinements and applications. We refer the reader

to [27, 39, 9] for some recent papers on MWU-based

algorithms which supply further pointers, and to the survey

[5] for the broader applicability of MWU in theoretical

computer science. Accelerated gradient descent methods

have recently resulted in fast randomized near-linear-time

algorithms for explicit fractional packing and covering LPs;

these algorithms improved the dependence of the running

time on ε to 1/ε from 1/ε2. See [2] and [38].

Our work here builds extensively on Karger’s randomized

nearly-linear-time mincut algorithm [25]. As mentioned al-

ready, we adapt his algorithm to a partially dynamic setting

informed by the MWU framework. [35] also builds on

Karger’s tree packing ideas to develop a fully dynamic

mincut algorithm. Thorup’s algorithm is rather involved and

is slower than what we are able to achieve for the partial

dynamic setting; he achieves an update time of Õ(
√
n) while

we achieve polylogarithmic time. There are other obstacles

to integrating his ideas and data structure to the needs of the

MWU framework as we already remarked. For unweighted

incremental mincut, Goranci, Henzinger, and Thorup [19]

recently developed a deterministic data structure with a poly-

logarithmic amortized update time.

Some of the data structures in this paper rely on Euler

held-karp-1(G = (V, E),c,ε)
x← 0C, w ← 1/c, t← 0, η ← ε/ lnm
while t < 1
C ← argmin

C∈C
w(C) // min-cut

y ← 〈w, c〉
w(C)

· 1C , γ ← min
e∈C

ce,δ ← εγ

η
, x← x+ δy

for all e ∈ C
we ← we exp(δη/ce) = we exp(εγ/ce)

t← t+ δ
return x

Figure 1. An exact (and slow) implementation of the MWU framework
applied to packing cuts.

tour representations of spanning trees. The Euler tour repre-

sentation imposes a particular linear order on the vertices by

which the edges of the underlying graph can be interpreted

as intervals. The Euler tour representation was introduced by

Tarjan and Vishkin [34] and has seen applications in other

dynamic data structures, such as the work by Henzinger and

King [23] among others.

Organization: Our main result is a combination of some

high-level ideas and several data structures, and the im-

plementation details take up considerable space. Section II

gives a high-level overview of a first MWU-based algo-

rithm, highlighting some important properties of the MWU

framework that arise in more sophisticated arguments later.

Section III summarizes the key properties of tree packings

that underlie Karger’s mincut algorithm, and explains their

use in our MWU algorithm via the notion of epochs. Section

IV describes an efficient subroutine, via appropriate data

structures, to find all approximate mincuts (in the partial

dynamic setting) induced by the spanning trees of a tree

packing. Section V describes the data structure that imple-

ment the weights of the edges in a lazy fashion, building

on Euler tours of spanning trees, range trees, and some of

our prior work. In Section VI, we outline a formal proof

of Theorem 1. Due to space constraints, many details and

figures have been omitted. We encourage the reader to read

the full version of the paper [8] instead.

II. MWU BASED ALGORITHM AND OVERVIEW

Given an edge-weighted graph (G = (V, E), c) our goal

is to find a (1 − ε)-approximation to the optimal value

of the LP 2ECSSD. We later describe how to obtain an

approximate solution to the primal LP 2ECSS. Note that

the LP is a packing LP of the form max〈1, x〉 : Ax ≤ c with

an exponential number of variables corresponding to the

cuts, but only m non-trivial constraints corresponding to the

edges. The MWU framework can be used to obtain a (1−ε)-
approximation for fractional packing. Here we pack cuts

into the edge capacities c, which MWU reduces to finding

global minimum cuts, as follows. The framework starts with

an empty solution x = 0C and maintains edge weights

w : E → R≥0, initialized to 1/c and non-decreasing over

the course of the algorithm. Each iteration, the framework
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finds the minimum cut C = argminC′∈C w(C
′) w/r/t w,

where w(C ′) def
=

∑
e∈C′ we denotes the total weight of a cut.

The framework adds a fraction of C to the solution x, and
updates the weight of every edge in the cut in a multiplicative

fashion such that the weight of an edge is exponential in its

load x(e)/c(e). The weight updates steer the algorithm away

from reusing highly loaded edges. The MWU framework

guarantees that the output x will have objective value

〈1, x〉 ≥ OPT while satisfying
∑

C�e xC ≤ (1+O(ε))ce for

every edge e. Scaling down x by a (1+O(ε))-factor gives a

(1−O(ε))-approximation satisfying all packing constraints.

An actual implementation of the above high-level idea

needs to specify the step size in each iteration and the precise

weight-update. The non-uniform increments idea of Garg

and Könemann [15] gives rise to a width-independent bound

on the number of iterations, namely O(m logm/ε2) in our

setting. Our algorithms follow the specific notation and

scheme of Chekuri et al. [9], which tracks the algorithm’s

progress by a “time” variable t from 0 to 1 increasing in non-

uniform steps. A step of size δ in an iteration corresponds

to adding δβ1C to the current solution x where 1C is the

characteristic vector of the mincut C found in the iteration,

and β = 〈w, c〉/w(C) greedily takes as much of the cut as

can fit in the budget 〈w, c〉. The process is controlled by

a parameter η, which when set to O(lnm/ε) balances the

width-independent running time with a (1−ε)-approximation

factor.

Both the correctness and the number of iterations are

derived by a careful analysis of the edge weights w. We

review the argument that bounds the number of iterations.

At the beginning of the algorithm, when every edge e has

weight we = 1/ce, we have 〈w, c〉 = m. The weights

monotonically increase, and standard proofs show that this

inner product is bounded above by 〈w, c〉 ≤ Õ
(
mO(1/ε)

)
.

The edge weight increases are carefully calibrated so that at

least one edge increases by a (1 + ε)-multiplicative factor

in each iteration. As the upper bound on 〈w, c〉 is an upper

bound on wece for any edge e, and the initial weight of

an edge e is 1/ce, an edge weight we can increase by a

(1 + ε)-factor at most log(1+ε)

(
mO(1/ε)

)
= O

(
log(m)/ε2

)
times. Charging each iteration to an edge weight increased

by a (1 + ε)-factor, the algorithm terminates in Õ
(
m/ε2

)
iterations.

A direct implementation of the MWU framework, held-
karp-1, is given in Fig. 1. Each iteration requires the

minimum global cut w/r/t the edge weights w, which can be

found in Õ(m) time (with high probability) by the random-

ized algorithm of Karger [25]. Calling Karger’s algorithm in

each iteration gives a quadratic running time of Õ
(
m2/ε2

)
.

Approximation in the framework

The MWU framework is robust to approximation, and we

exploit this slack at two points in particular.

held-karp-2(G = (V, E),c,ε)
x← 0C, w ← 1/c, t← 0, η ← ε/ lnm
λ← size of minimum cut w/r/t edge weights w
while t < 1
while (a) t < 1 and

(b) ∃ cut C ∈ C s.t. w(c) ≤ (1 + ε)λ

y ← 〈w, c〉
w(C)

· 1C , γ ← min
e∈C

ce, δ ← εγ

η
, x← x+ δy

for all e ∈ C, we ← exp(δη/ce) · we = exp(εγ/ce) · we

t← t+ δ
λ← (1 + ε)λ // start new epoch

return x

Figure 2. A second implementation of the MWU framework applied
to packing cuts that divides the iterations into epochs and seeks only
approximately minimum cuts at each iteration.

Approximate mincuts: First, we only look for cuts that

are within a (1 + O(ε))-approximate factor of the true

minimum cut. To this end, we maintain a target cut value

λ > 0, and maintain the invariant that there are no cuts of

value strictly less than λ. We then look for cuts of value

≤ (1 + O(ε))λ until we are sure that there are no more

cuts of value ≤ (1 + ε)λ. When we have certified that

there are no cuts of value ≤ (1 + ε)λ, we increase λ to

(1+ε)λ, and repeat. Each stretch of iterations with the same

target value λ is called an epoch. Epochs were used by [13]

for approximating fractional multicommodity flow. We show

that all the approximately minimum cuts in a single epoch

can be processed in Õ(m) total time (plus some amortized

work bounded by other techniques). If κ is the weight of the

initial minimum cut (when w = 1/c), then the minimum

cut size increases monotonically from κ to Õ
(
m1/εκ

)
. If

the first target cut value is λ = κ, then there are only

O(lnm/ε2) epochs over the course of the entire algorithm.

Lazy weight updates: Even if we can concisely identify

the approximate minimum cuts quickly, there is still the

matter of updating the weights of all the edges in the cut

quickly. A cut can have Ω(m) edges, and updating m edge

weights in each of Õ
(
m/ε2

)
iterations leads to a Õ

(
m2/ε2

)
running time. Instead of visiting each edge of the cut, we

have a subroutine that simulates the weight increase to all

the edges in the cut, but only does work for each edge

whose (true) weight increases by a full (1+ε)-multiplicative

power. That is, for each edge e, we do work proportional

(up to log factors) to the number of times we increases

to the next integer power of (1 + ε). By the previous

discussion on weights, the number of such large updates

is at most O(logm/ε2) per edge. This amortized efficiency

comes at the expense of approximating the (true) weight

of each edge to a (1 +O(ε))-multiplicative factor. Happily,

an approximate minimum cut on approximate edge weights

is still an approximate minimum cut to the true weights,

so these approximations are tolerable. In [7] we isolated a

specific lazy-weight scheme from Young [39] into a data

structure with a clean interface that we build upon here.
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A. Obtaining a primal solution

Our MWU algorithm computes a (1 − ε)-approximate

solution to 2ECSSD. Recall that the algorithm maintains

a weight w(e) for each edge e. Standard arguments show

that one can recover from the evolving weights a (1 + ε)-
approximate solution to the LP 2ECSS (which is the dual

of 2ECCSD). A sketch is provided in the appendix of the

full version [8].

III. TREE PACKINGS AND EPOCHS

Karger [25] gave a randomized algorithm that finds the

global minimum cut in a weighted and undirected graph with

high probability in Õ(m) time. Treating Karger’s algorithm

as a black box in every iteration leads to a quadratic

running time of Õ
(
m2/ε2

)
, so we open it up and adjust

the techniques to our setting.

Tree packings: Karger [25] departs from previous algo-

rithms for minimum cut with an approach based on packing

spanning trees. Let G = (V, E) be an undirected graph with

positive edge weights w : E → R>0, and let T ⊆ 2E

denote the family of spanning trees in G. A tree packing
is a nonnegatively weighted collection of spanning trees,

p : T → R≥0, such that for any edge e, the total weight

of trees containing e is at most ce (i.e.,
∑

T�e p(T ) ≤ ce).
Classical work of Tutte [36] and Nash-Williams [32] gives

an exact characterization for the value of a maximum tree

packing in a graph, which as an easy corollary implies it

is at least half of the value of a mincut. If C ∈ C is a

minimum cut and p is a maximum packing, then a tree

T ∈ T selected randomly in proportion to its weight in

the packing will share ≤ 2 edges with C in expectation. By

Markov’s inequality, T has strictly less than 3 edges in C
with constant probability.

For a fixed spanning tree T , a one-cut in G induced by

an edge e ∈ T is the cut C(X) where X is the vertex set

of one of the components of T − e. A two-cut induced by

two edges e1, e2 ∈ T is the following. Let X,Y, Z be the

vertex sets of the three components of T − {e1, e2} where

X is only incident to e1 and Z is only incident to e2 and

Y is incident to both e1, e2. Then the two-cut induced by

e1, e2 is C(Y ) = C(X ∪ Z). Thus, if T is a spanning tree

sampled from a maximum tree packing, and C is a minimum

cut, then C is either a one-cut or a two-cut with constant

probability.

The probabilistic argument extends immediately to (1 +
ζ)-approximate mincuts and (1− ζ)-approximate tree pack-

ings for ζ > 0 sufficiently small. For constant ζ > 0,
a (1 − ζ)-approximate tree-packing can be computed in

Õ(m) time, either by applying Õ(κm)-time tree packing

algorithms [14, 33] to a randomly sparsified graph [24],

or directly and deterministically in Õ(m) time by a recent

algorithm of Chekuri and Quanrud [7].

Another consequence of Karger [25] is that for ζ < 1/2,
the number of (1 + ζ)-approximate minimum cuts is at

most n2. By the union bound, if we select O(log n) trees at

random from an approximately maximum tree packing, then

with high probability every (1 + ζ)-approximate minimum

cut is induced by one or two edges in one of the selected

trees. In summary, we have the following.

Theorem 3 (25). Let G = (V, E) be an undirected graph
with edge capacities c : E → R>0, let δ ∈ (0, 1), and let
ε ∈ (0, 1/2). One can generate, in O

(
m+ n log3 n

)
time,

h = O(log(n/δ)) spanning trees T1, T2, . . . , Th such that
with probability ≥ 1−δ, every (1+ε)-approximate minimum
cut C has |C ∩ Ti| ≤ 2 for some tree Ti.

Karger [25] finds the minimum cut by checking, for each

tree Ti, the minimum cut in G obtained by removing one

or two edges from Ti in Õ(m) time. (The details of this

subroutine are reviewed in the following section.) Since

there are O(log n) trees, this amounts to a near-linear-time

algorithm. Whereas Karger’s algorithm finds one minimum

cut, we need to find many minimum cuts. Moreover, each

time we find one minimum cut, the edge weights on that

cut increase and so the underlying graph changes. We are

faced with the challenge of outputting Õ
(
m/ε2

)
cuts from

a dynamically changing graph that in particular adapts to

each cut output, all in roughly the same amount of time as

a single execution of Karger’s algorithm.

Epochs: We divide the problem into O(logm/ε2) epochs.
Recall that at the start of an epoch we have a target value

λ > 0 and are guaranteed that there are no cuts with value

strictly less than λ. Our goal is to repeatedly output cuts with

value ≤ (1+O(ε))λ or certify that there are no cuts of value

strictly less than (1 + ε)λ, in Õ(m) time. (The reason we

output a cut with value ≤ (1 +O(ε))λ is because the edge

weights are maintained only approximately.) Each epoch is

(conceptually) structured as follows.

• At the start of the epoch we invoke Theorem 3 to

find h = O(log(n/ε)) trees T1, . . . , Th such that with

probability 1 − poly(ε/n), every (1 + ε)-approximate

mincut of G with respect to the weights at the start of

the epoch is a one-cut or two-cut of some tree Ti.

• Let C1, C2, . . . , Cr be an arbitrary enumeration of one

and two-cuts induced by the trees.

• For each such cut Cj in the order, if the current weight
of Cj is ≤ (1+O(ε))λ output it to the MWU algorithm

and update weights per the MWU framework (weights

only increase). Reuse Cj as long as its current weight

is ≤ (1 +O(ε))λ.

Since weights of cuts only increase, and we consider every

one and two-cut of the trees we obtain the following lemma.

Lemma 4. Let w : E → R>0 be the weights at the start
of the epoch and suppose mincut of G with respect to w is
≥ λ; and suppose the trees T1, . . . , Th have the property
that every (1 + ε)-approximate mincut is induced by a one
or two-edge cut of one of the trees. Let w′ : E → R>0 be
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held-karp-3(G = (V, E),c,ε)
x← 0C, w ← 1/c, t← 0, η ← ε/ lnm
λ← size of minimum cut w/r/t edge weights w
while t < 1
p← O(log(n/ε)) spanning trees per Theorem 3
for each tree T ∈ p
let CT ⊆ C be 1- and 2-cuts of T
while (a) t < 1 and

(b) ∃ cut C ∈ CT s.t. w(C) < (1 + ε)λ

y ← 〈w, c〉
w(C)

· C, γ ← min
e∈C

ce,δ ← εγ

η
, x← x+ δy

for all e ∈ C, we ← exp(εγ/ce) · we

t← t+ δ
λ← (1 + ε)λ // start new epoch

return x

Figure 3. A third implementation of the MWU framework applied to
packing cuts that samples a tree packing once at the beginning of each
epoch and searches for approximately minimum cuts induced by one or
two edges in the sampled trees.

the weights at the end of an epoch. Then, the mincut with
respect to weights w′ is ≥ (1 + ε)λ.

Within an epoch, we must consider all cuts induced by

1 or 2 edges in Õ(1) spanning trees. We have complete

flexibility in the order we consider them. For an efficient

implementation we process the trees one at a time. For

each tree T , we need to repeatedly output cuts with value

≤ (1 + O(ε))λ or certify that there are no cuts of value

strictly less than (1 + ε)λ induced by one or two edges of

T . Although the underlying graph changes, we do not have

to reconsider the same tree again because the cut values are

non-decreasing. If each tree can be processed in Õ(m) time,

then an entire epoch can be processed in Õ(m) time and the

entire algorithm will run in Õ
(
m/ε2

)
time. In Fig. 3, we

revise the algorithm to invoke Theorem 3 once per epoch

and use the trees to look for approximately minimum cuts,

while abstracting out the search for approximately minimum

cuts in each tree.

IV. CUTS INDUCED BY A TREE

Let T ∈ T be a rooted spanning tree of G, and let λ > 0
be a fixed value such that the minimum cut value w/r/t w is

≥ λ. We want to list cuts C ∈ C induced by 1 or 2 edges

in T with weight w(C) ≤ (1 + ε)λ, in any order, but with

a twist: each time we select one cut C, we increment the

weight of every edge in C, and these increments must be

reflected in all subsequent cuts. We are allowed to output

cuts of value ≤ (1 + O(ε))λ. When we finish processing

T , we must be confident that there are no 1-cuts or 2-cuts

C ∈ CT induced by T with weight w(C) ≤ (1 + ε)λ.
The algorithmic challenge here is twofold. First, we need

to find a good 1-cut or 2-cut in T quickly. Second, once a

good cut is found, we have to increment the weights of

all edges in the cut. Either operation, if implemented in

time proportional to the number of edges in the cut, can

take O(m) time in the worst case. To achieve a nearly-

linear running time, both operations must be implemented

in polylogarithmic amortized time.

In this section we focus on finding the cuts, and assume

that we can update the edge weights along any 1 or 2-cut

efficiently via the lazy-inc-cuts data structure. Since

the weights are dynamically changing, we need to describe

how the algorithm finding small 1-cuts and 2-cut in T
interacts with the lazy-inc-cuts data structure.

Interacting with the lazy weight update data structure:
The primary function of the lazy-inc-cuts data struc-

ture is inc-cut, which takes as input one or two edges in

T , and simulates a weight update along the corresponding

1-cut or 2-cut. inc-cut returns a list of weight increments

(ei, δi), where each ei is an edge and δi > 0 is a positive

increment that we actually apply to the underlying graph. If

we let we denote the “true weight” of an edge e implied

by a sequence of weight increments along cuts, and w̃e

the sum of δ increments for e returned by inc-cut, then
the lazy-inc-cuts data structure maintains the invariant

that w̃e ≤ we ≤ (1+ρε)w̃e, where ρ is a fixed constant that

we can adjust. In particular, a cut of weight ≤ (1+ε)λ w/r/t

the approximated edge weights retains weight ≤ (1+O(ε))λ
in the true underlying graph. Each increment (e, δ) returned

by inc-cut reflects a (1 + Ω(ε/ log2 n))-multiplicative

increase to we. As the weight of an edge is bounded above

by Õ
(
m1/ε

)
, the subroutine returns an increment for a fixed

edge e at most O
(
log3 n/ε2

)
times total over the entire

algorithm.

A second routine, flush(), returns a list of increments

that captures all residual weight increments not accounted

for in previous calls to inc-cut and flush. The incre-

ments returned by flush() may not be very large, but

restores w̃e = we for all e. Formally, we will refer to the

following.

Lemma 5. Let G = (V, E) be an undirected graph with
positive edge capacities c : E → R>0 and positive edge
weights w : E → R>0, and T a rooted spanning tree in
G. Consider an instance of lazy-inc-cuts(G,c,w,T)
over a sequence of calls to inc-cut and flush. For
each edge e, let we be the “true” weight of edge e if
the MWU framework were followed exactly, and let w̃e be
the approximate weight implied by the weight increments
returned by calls to inc-cut and flush.
(a) After each call to inc-cut, we have w̃e ≤ we ≤ (1 +

O(ε))w̃e for all edges e ∈ E .
(b) After each call to flush, we have w̃e = we.
(c) Each call to inc-cut takes O(log2 n+ I), where I is

the total number of weight increments returned by inc-
cut.

(d) Each call to flush takes O(m log2 n) time and returns
at most m weight increments.

(e) Each increment (e, δ) returned by inc-cut satisfies
δ ≥ Ω

(
(ε/ log2 n)we

)
.

The implementation details and analysis of lazy-inc-

795



held-karp-4(G = (V, E),c,ε)
x← 0C, w ← 1E, t← 0, η ← ε/ lnm
λ← size of minimum cut w/r/t edge weights w
while t < 1
p← O(log(n/ε)) spanning trees per Theorem 3
for each tree T ∈ p
lic← lazy-inc-cuts.init(G,c,T)
let CT ⊆ C be the 1- and 2-cuts of T
while (a) t < 1 and until

(b) there are no cuts C ∈ CT
s.t. w(C) < (1 + ε)λ

find C ∈ CT w/ w(e) < (1 +O(ε))λ

y ←
( 〈w, c〉
w(C)

)
· C, γ ← min

e∈C
ce, δ ← εγ

η
, x← x+ δy,

Δ← lic.inc-cut(C)
for each (e, δ) ∈ Δ, we ← we + δ
t← t+ δ

Δ← lic.flush()
for each (e, δ) ∈ Δ, we ← we + δ

return x

Figure 4. A fourth implementation of the MWU framework applied to the
Held-Karp relaxation, that integrates the lazy-inc-cuts data structure
into the subroutine that processes each tree.

cuts are given afterwards in Section V. An enhanced sketch

of the algorithm so far, integrating the lazy-inc-cuts
data structure but abstracting out the search for small 1- and

2-cuts, is given in Fig. 4. In this section, we assume Lemma

5 and prove the following.

Lemma 6. Let T be a rooted spanning tree and λ > 0 a
target cut value. One can repeatedly output 1-cuts and 2-
cuts C ∈ CT induced by T of weight w(C) ≤ (1 + O(ε))λ
and increment the corresponding edge weights (per the
MWU framework) until certifying that there are no 1-
cuts or 2-cuts C ∈ CT of value w(C) ≤ (1 + ε)λ
in O

(
m log2 n+K log2 n+ I log n

)
time, where K is the

number of 1-cuts and 2-cuts of value ≤ (1 +O(ε))λ output
and I is the total number of weight increments returned by
the lazy-inc-cuts data structure.

The proof of Lemma 6 is omitted due to space constraints.

The proof carefully integrates Karger’s dynamic program-

ming approach with the lazy-inc-cuts data structure

and is given in the full version [8].

V. MULTIPLICATIVE WEIGHT UPDATES ALONG CUTS

We address the remaining issue of implementing the

lazy-inc-cuts data structure for a fixed and rooted

spanning tree T , per Lemma 5. Recall that the MWU frame-

work takes a cut C ∈ C, computes the smallest capacity

γ = argmine∈C ce in the cut, and increases the weight of

each cut-edge e ∈ C by a multiplicative factor of exp(εγ/ce)
(see Fig. 1). A subtle point is that the techniques of Section

IV identify approximate min-cuts without explicitly listing

the edges in the cut. A 1-cut C(D(s)) is simply identified

by the root s of the down-set D(s), and likewise 2-cuts of

the form C(D(s) ∪D(t)) (when s ‖ t) and C(D(t) \D(s))
(when s < t) can be described by the two nodes s and t. In

particular, an approximate min-cut C is identified without

paying for the number of edges O(|C|).
While incrementing weights along a cut appears difficult

to execute both quickly and exactly, we have already mas-

saged the setting to be substantially easier. First, we can

afford to approximate the edge weights we by a small mul-

tiplicative error. Second, we are not incrementing weights

along any cut, but just the 1-cuts and 2-cuts of a fixed

rooted spanning tree T . We have already seen in Section

IV that restricting ourselves to 1-cuts and 2-cuts allows

us to (basically) apply dynamic programming to find small

cuts, and also allows us to use dynamic trees to efficiently

update and scan various values in the aggregate. Here too

we will see that 1-cuts and 2-cuts are simple enough to be

represented efficiently in standard data structures.

Lemma 7. Let T be a fixed rooted spanning tree of an
undirected graph G = (V, E) with |E| = m edges and
|V| = n vertices. In O

(
m log2 n

)
time, one can construct a

collection of nonempty cuts DT ⊆ 2E such that
(i) every edge e ∈ E appears in at most O(log2 n) cuts

D ∈ DT , and
(ii) every 1-cut or 2-cut C ∈ CT (described succinctly by

at most 2 roots of subtrees) can be decomposed into
the disjoint union C = D1�· · ·�D� of � = O(log2 n)
cuts D1, . . . , D� ∈ DT in O(log2 n) time.

By building the collection D ∈ DT once for a tree T ,

Lemma 7 reduces the problem of incrementing along any

1-cut or 2-cut C ∈ CT to incrementing along a “canonical”

cut D ∈ DT known a priori. This is important because

multiplicative weight updates can be applied to a static
set relatively efficiently by known techniques [39, 7]. It is

also important that cuts in DT are sparse, in the sense that∑
D∈DT

|D| = O
(
m log2 n

)
, as this sum factors directly

into the running time guarantees. We first prove Lemma

7 in Section V-A, and then in Section V-B we show how

to combine amortized data structures for each D ∈ DT to

increment along any 1-cut or 2-cut C ∈ CT .

A. Canonical cuts

Let T be a fixed and rooted tree on n vertices V , and fix

an Euler tour on a bidirected copy of T that replaces each

edge of T with arcs in both directions, starting from the

root. For each vertex v, we create two symbols: v− means

we enter the subtree Tv rooted at v, and v+ means we leave

the subtree v. Let V± = {v−, v+ : v ∈ V(T )} denote the

whole collection of these 2n symbols. The Euler tour enters

and leaves each subtree exactly once in a fixed order. Tracing

the Euler tree induces a unique total ordering on V±.
The Euler order on the vertices endows a sort of geometry

to the edges. Each edge e = (u, v) (with u− < v−) can be

thought of as an interval [u−, v−]. A downset D(s) cuts e
iff u− ≤ s− ≤ v− ≤ s+ or s− ≤ u− ≤ s+ ≤ v−; that is,
iff |{u−, v−} ∩ [s−, s+]| = 1. Alternatively, D(s) cuts e iff
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|[u−, v−] ∩ {s−, s+}| = 1. These observations suggest that

this is not a problem about graphs, but about intervals, and

perhaps a problem suited for range trees.

Range trees on the Euler order: Let R be a balanced range

tree with V± at its leaves. As a balanced tree with 2n leaves,

R has O(n) nodes and height O(log n). Each range-node

a ∈ V(R) induces an interval Ia on V±, consisting of all

the elements of V± at the leaves of the subtree Ra rooted at

a. We call Ia a canonical interval of V± (induced by a), and
let I = {Ia : a ∈ V(R)} denote the collection of all O(n)
canonical intervals. Each element in V± appears in O(log n)
canonical intervals because the height of R is O(log n).
Moreover, every interval J on V± decomposes into the

disjoint union of O(log n) canonical intervals. The canonical

intervals I relate to the 1-cuts and 2-cuts CT induced by

T as follows. For any pair of disjoint canonical intervals

I1, I2 ∈ I, let C(I1, I2) = {(u, v) ∈ E : u ∈ I1, v ∈ I2} be

the set of edges with one endpoint in I1 and the other in I2.
We call C(I1, I2) a canonical cut induced by I1 and I2. We

claim that any 1-cut or 2-cut C ∈ CT decomposes into the

disjoint union of O(log2 n) canonical cuts.

Let C = C(D(s)) be the 1-cut induced by the downset of

a vertex s. The 1-cut C(D(s)) consists of all edges (u, v)
with one (tagged) endpoint u− in the interval [s−, s+] and
the other endpoint v− outside [s−, s+]. The interval [s−, s+]
decomposes to the disjoint union [s−, s+] =

⊔
I1∈I1 I1

of O(log n) canonical intervals I1 ⊆ I, and the com-

plement [r−, s−) ∪ (s+, r+] also decomposes to the dis-

joint union [r−, s−) ∪ (s+, r+] =
⊔

I2∈I2 I2 of O(log n)
canonical intervals I2 ⊆ I . Together, the disjoint union

C(D(s)) =
⊔

I1∈I1,I2∈I2 C(I1, I2) of canonical cuts over

the cross product (I1, I2) ∈ I1 × I2 decomposes the 1-

cut C(D(s)) into |I1| × |I2| = O(log2 n) canonical cuts.

Moreover, both decompositions I1 and I2 can be obtained

in O(log n) time. Any 2-cut decomposes similarly; see the

full version [8] for details.

Thus, any 1-cut or 2-cut C ∈ CT breaks down into to

the disjoint union of O(log2 n) canonical cuts. An edge e =
(u, v) appears in a canonical cut C(I1, I2) iff u ∈ I1 and v ∈
I2. As either end point u or v appears in O(log n) canonical
intervals, e appears in at most O(log2 n) canonical cuts.

In turn, there are at most O(m log2 n) nonempty canonical

cuts. The nonempty canonical cuts are easily constructed in

O(m log2 n) time by adding each edge to the O
(
log2 n

)
canonical cuts containing it. Taking DT to be this set of

nonempty canonical cuts gives Lemma 7.

B. Lazy weight increments

Lemma 7 identifies a relatively small set of canonical cuts

DT such that any 1-cut or 2-cut C ∈ CT is the disjoint union

of O
(
log2 n

)
canonical cuts D1, . . . , DO(log2 n) ∈ DT .

While we can now at least gather an implicit list of all the

edges of C in O
(
log2 n

)
time, it still appears necessary to

visit every edge e ∈ C to increment its weight. The chal-

lenge is particularly tricky because the multiplicative weight

updates are not uniform. However, for a fixed and static set,

recent techniques by Young [39] and Chekuri and Quanrud

[7] show how to approximately apply a multiplicative weight

update to the entire set in polylogarithmic amortized time. In

this section, we apply these techniques to each canonical cut

D ∈ DT and show how to combine their outputs carefully

to meet the claimed bounds of Lemma 5.

For every canonical cut D ∈ DT , we employ the

lazy-inc data structure of Chekuri and Quanrud [7]. The

lazy-incs data structure is an amortized data structure

that approximates a set of counters increasing concurrently

at different rates. For a fixed instance of lazy-incs for a

particular canonical cut D ∈ DT , we will have one counter

for each edge tracking the “additive part” ve = ln(we)/ε for

each edge e ∈ D. The rate of each counter e is stored as

rate(e), and in this setting is proportional to the inverse

of the capacity ce. The primary routine is inc(ρ), which

simulates a fractional increase on each counter proportional

to a single increment at the rate ρ. That is, each counter ve
increases by rate(e)/ρ.

The output of inc(ρ) is a list of increments {(e, δe)}
over some of the edges in D. The routine does not return

an increment (e, δe) unless δe is substantially large. This

allows us to charge off the work required to propagate

the increment (e, δe) to the rest of the algorithm to the

maximum weight of e. In exchange for reducing the number

of increments, the sum of returned increments for a fixed

edge e underestimates ve by a small additive factor. An

underestimate for ve = ln(we)/ε within an additive factor

of O(1) translates to an underestimate for we = exp(εve)
within a (1 +O(ε))-multiplicative factor, as desired.

Lemma 8 (7). Let e1, . . . , ek be k counters with rates
rate(e1) ≥ rate(e2) ≥ · · · ≥ rate(ek) in sorted
order.
(a) An instance of lazy-incs can be initialized in O(k)

time.
(b) Each inc runs in O(1) amortized time plus O(1) for

each increment returned.
(c) flush runs in O(k) time.
(d) For each counter ei, let vi be the true value of the

counter and let ṽi be the sum of increments for counter
i in the return values of inc and flush.

(i) After each call to inc, we have ṽi ≤ vi ≤ ṽi +
O(1) for each counter ei.

(ii) After each call to flush, we have ṽi = vi for
each counter ei.

We note that flush is not implemented in [7], but is

easy enough to execute by just reading off all the residual

increments in the data structure and resetting these values

to 0.

The application of lazy-incs to our problem bears

some resemblance to its application to packing intervals in
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[7], where the weights are also structured by range trees. We

first invoke Lemma 7 to generate the family of canonical

cuts DT . For each canonical cut D ∈ DT , by Lemma 8,

we instantiate an instance of lazy-incs where each edge

e ∈ D has rate rate(e) = log2 n/ce. We also compute,

for each canonical cut D ∈ DT , the minimum capacity

γD = mine∈D ce in the cut. These preprocessing steps take

O
(
m log2 n

)
time total.

We increment weights along a cut C ∈ CT as follows.

Lemma 7 divides C into the union of O(log2 n) disjoint

canonical cuts D′T ⊆ DT . The minimum capacity γ =
mine∈C ce is the minimum over the minimum capacities of

each canonical cut D ∈ D′T , which is precomputed. For

each canonical set D ∈ D′T , we call inc(log2 n/γ) on the

corresponding lazy-incs instance. For every increment

(e, δ) returned in lazy-incs, where e ∈ C and δ > 0
represents a increment to ve = ln(we)/ε, we increase ve
by an additive factor of δ/ log2 n, and multiply we by

exp
(
εδ/ log2 n

)
accordingly.

Fix an edge e ∈ E . The edge e is a member of O
(
log2 n

)
canonical cuts in DT , and receives its weight increments

from O(log2 n) instances of lazy-incs. The slight errors

from each instance of lazy-incs accumulate additively

(w/r/t ve = ln(we)/ε). Although each instance of lazy-
incs promises only a constant additive error in Lemma

8, we scaled up the rate of e from 1/ce to log2 n/ce and

divide the returned weight increments by a factor of log2 n.
The scaling reduces the error from each instance of lazy-
incs from an additive factor of O(1) to O(1/ log2 n).
Consequently, the sum of all O(log2 n) instances of lazy-
incs underestimates ve to an O(1) additive error w/r/t ve,
and underestimates we by at most a (1+O(ε))-multiplicative

factor, as desired.

Increasing the sensitivity of each lazy-incs data struc-

ture by a factor of log2 n means every increment (e, δ)
returned by inc may increase ve by as little as 1/ log2 n. An

additive increase in 1/ log2 n corresponds to a multiplicative

increase of exp
(
ε/ log2 n

)
in we, hence property (e) in

Lemma 5.

VI. PROOF OF THEOREM 1

In this section we combine the ingredients discussed so far

and outline the proof of Theorem 1. Let (G, c) be an Metric-
TSP instance and ε′ > 0 be the error parameter. We assume

without loss of generality that that ε′ is sufficiently small,

and in particular that ε′ < 1/2. We will also assume that ε′ >
1/n2 for otherwise one could use an exact algorithm and

achieve the desired time bound. This implies that log 1
ε′ =

O(log n). Note that it suffices to argue that the algorithm

outputs a (1 +O(ε))-approximation with high probability.

High-level MWU analysis: At a high-level, our algorithm

is a standard width-independent MWU algorithm for pure

packing problems with an α-approximate oracle, for α =
(1 + O(ε)). Our implementation follows the “time”-based

algorithm of Chekuri et al. [9]. An exact oracle in this setting

repeatedly solves the global minimum cut problem w/r/t the

edge weights w. To implement an α-approximate oracle,

every cut output needs to be an α-approximate minimum

cut.

To argue that we are indeed implementing an α-
approximate minimum cut oracle, let us identify the two

points at which we deviate from Karger’s minimum cut

algorithm [25], which would otherwise be an exact ora-

cle that succeeds with high probability. In both Karger’s

algorithm and our partially dynamic extension, we sample

enough spanning trees from an approximately maximum tree

packing to contain all (1 + O(ε))-approximate minimum

cuts as a 1-cut or 2-cut with probability 1 − poly(1/n) =
1 − poly(ε/n) (see Theorem 3). We will argue that all the

sampled tree packings succeed with high probability later

after establishing a basic correctness in the event that all the

sampled packings succeed.

Karger’s algorithm searches all the spanning trees for the

minimum 1-cut or 2-cut. We retrace the same search, except

we output any approximate minimum 1-cut or 2-cut found

in the search. More precisely, we maintain a target value λ
with the invariant that there are no cuts of value < λ, and
output any 1-cut or 2-cut with weight ≤ (1 + O(ε))λ at

that moment (see Lemma 6). Since λ is no more than the

true minimum cut w/r/t w at any point, any cut with weight

≤ (1+O(ε))λ is a (1+O(ε))-approximation to the current

minimum cut.

The second point of departure is that we do not work with

the “true” weights implied by the framework, but a close

approximation. By Lemma 5, the approximated weights

underestimate the true weights by at most a (1 + O(ε))-
multiplicative factor. In turn, we may underestimate the

value of a cut by at most a (1 + O(ε))-multiplicative

factor, but crucially any 1-cut or 2-cut will still have value

≤ (1 + O(ε))λ, for a slightly larger constant hidden in the

O(ε).

This establishes that the proposed algorithm in fact im-

plements an α-approximate oracle for α = 1 + O(ε) (with

high probability). The MWU framework guarantees that the

final packing of cuts output by the algorithm approximately

satisfies all the constraints with approximately optimal value,

as desired.

Probability of failure: We now consider the probability

of the algorithm failing. Randomization enters the algorithm

for two reasons. Initially, we invoke Karger’s randomized

minimum cut algorithm [25] to compute the value of the

minimum cut w/r/t the initial weights w = 1/c, in order to

set the first value of λ. Second, at the beginning of each

epoch, we randomly sample a subset of an approximately

maximum tree packing hoping that the sampled trees contain

every (1+O(ε))-approximate minimum cut as a 1-cut or 2-

cut in one of the sampled trees.

798



Karger [25] showed that the minimum cut algorithm fails

with probability at most poly(1/n). He also showed (see

Theorem 3) that each random sample of O(log(n/ε)) =
O(log n) spanning trees of an approximately maximum tree

packing (conducted at the beginning of an epoch) fails

to capture all (1 + ε)-approximate minimum cuts with

probability at most poly(1/n) = poly(ε/n). There are a

total of O
(
log n/ε2

)
epochs over the course of the algorithm.

By the union bound, the probability of either the initial

minimum cut or any random sample of spanning trees failing

is O
(
log n/ε2

)
· poly(ε/n) = poly(ε/n).

Running time: It remains to bound the running time of

the algorithm. The analysis is not entirely straightforward,

as some operations can be bounded directly, while others are

charged against various upper bounds given by the MWU

framework.
The algorithm initializes the edge weights in O(m) time,

and invokes Karger’s minimum cut algorithm [25] once

which runs in O
(
m log3 n

)
time. As established in Section

III, the remaining algorithm is divided into O
(
log(n)/ε2

)
epochs. Each epoch invokes Theorem 3 once to sample

O(log(n/ε)) = O(log n) spanning trees from an approx-

imate tree packing in O
(
m log3 n

)
time. We then invoke

Lemma 6 for each spanning tree in the sample. Over the

course of O
(
log(n)/ε2

)
epochs, each with O(log(n)) span-

ning trees, we invoke Lemma 6 at total of O
(
log2(n)/ε2

)
times.

Suppose we process a tree T , outputting K approx-

imately minimum cuts and making I full edge weight

increments. By Lemma 6, the total time to process

T is O
(
m log2 n+K log2 n+ I log n

)
. The first term,

O
(
m log2 n

)
, comes from following the tree-processing

subroutine of Karger [25]. Over a total O
(
log2(n)/ε2

)
trees, the total time spent mimicking Karger’s subroutine

is O
(
m log4(n)/ε2

)
.

The remaining terms of Lemma 6, depending on K and

I , are introduced by the MWU framework and can be

amortized against standard properties of the MWU frame-

work. The quantity K represents the number of approximate

minimum cuts output while processing a single tree T , and

the sum of all K across all trees is the total number of ap-

proximate minimum cuts output. Each such cut corresponds

to a single iteration, and the total number of iterations in the

MWU framework is O
(
m log(n)/ε2

)
. Thus, the sum of the

second term O
(
K log2 n

)
over all invocations of Lemma 6

is O
(
m log3(n)/ε2

)
.

The third term of Lemma 6, O(I log n) depends on

the number of increments I returned by the inc-cut
subroutine of the lazy-inc-cuts data structure. Each

increment (e, δ) returned by inc-cut increases we by

at least a (1 + Ω(ε/ log2 n))-multiplicative factor (i.e.,

δ ≥ Ω(εwe/ log
2 n)). The MWU framework shows that

a single edge can increase by a (1 + Ω(ε/ log n)) factor

at most O
(
log3(n)/ε2

)
times (see Section II). It follows

that the total number of edge increments, over all edges,

returned by lazy-inc-cuts is O
(
m log3(n)/ε2

)
. Thus,

the sum of the quantities O(I log n) over all invocations of

Lemma 6 is O
(
m log4(n)/ε2

)
. All told, the algorithm runs

in O
(
m log4(n)/ε2

)
= Õ

(
m/ε2

)
time total.
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