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Abstract—We study planted problems—finding hid-

den structures in random noisy inputs—through the

lens of the sum-of-squares semidefinite programming

hierarchy (SoS). This family of powerful semidefinite

programs has recently yielded many new algorithms

for planted problems, often achieving the best known

polynomial-time guarantees in terms of accuracy of re-

covered solutions and robustness to noise. One theme

in recent work is the design of spectral algorithms

which match the guarantees of SoS algorithms for

planted problems. Classical spectral algorithms are

often unable to accomplish this: the twist in these new

spectral algorithms is the use of spectral structure of

matrices whose entries are low-degree polynomials of

the input variables.

We prove that for a wide class of planted prob-

lems, including refuting random constraint satisfac-

tion problems, tensor and sparse PCA, densest-k-

subgraph, community detection in stochastic block

models, planted clique, and others, eigenvalues of

degree-d matrix polynomials are as powerful as SoS

semidefinite programs of degree d. For such problems

it is therefore always possible to match the guarantees

of SoS without solving a large semidefinite program.

Using related ideas on SoS algorithms and low-

degree matrix polynomials (and inspired by re-

cent work on SoS and the planted clique problem

[BHK+16]), we prove a new SoS lower bound for the

tensor PCA problem.

Keywords-sum of squares, semidefinite program-

ming, average-case algorithms, average-case hardness,

spectral algorithms

I. Introduction

Recent years have seen a surge of progress

in algorithm design via the sum-of-squares (SoS)

semidefinite programming hierarchy. Initiated by

the work of [BBH+12], who showed that polyno-

mial time algorithms in the hierarchy solve all

known integrality gap instances for Unique Games

and related problems, a steady stream of works

have developed efficient algorithms for both worst-

case [BKS14], [BKS15], [BKS17], [BGG+16] and

average-case problems [HSS15], [GM15], [BM16],

[RRS16], [BGL16], [MSS16a], [PS17]. The insights

from these works extend beyond individual algo-

rithms to characterizations of broad classes of al-

gorithmic techniques. In addition, for a large class

of problems (including constraint satisfaction), the

family of SoS semidefinite programs is now known

to be as powerful as any semidefinite program

(SDP) [LRS15].

In this paper we focus on recent progress in

using Sum of Squares algorithms to solve average-

case, and especially planted problems—problems

that ask for the recovery of a planted signal
perturbed by random noise. Key examples are

finding solutions of random constraint satisfac-

tion problems (CSPs) with planted assignments

[RRS16] and finding planted optima of random

polynomials over the n-dimensional unit sphere
[RRS16], [BGL16]. The latter formulation captures

a wide range of unsupervised learning problems,

and has led to many unsupervised learning al-

gorithms with the best-known polynomial time

guarantees [BKS15], [BKS14], [MSS16b], [HSS15],

[PS17], [BGG+16].

In many cases, classical algorithms for such

planted problems are spectral algorithms—i.e., us-
ing the top eigenvector of a natural matrix associ-
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ated with the problem input to recover a planted

solution. The canonical algorithms for the planted
clique [AKS98], principal components analysis (PCA)
[Pea01], and tensor decomposition (which is inti-

mately connected to optimizaton of polynomials

on the unit sphere) [Har70] are all based on this

general scheme. In all of these cases, the algorithm

employs the top eigenvector of a matrix which is

either given as input (the adjacency matrix, for

planted clique), or is a simple function of the input

(the empirical covariance, for PCA).

Recent works have shown that one can often

improve upon these basic spectral methods us-

ing SoS, yielding better accuracy and robustness

guarantees against noise in recovering planted so-

lutions. Furthermore, for worst case problems—as

opposed to the average-case planted problems we

consider here—semidefinite programs are strictly

more powerful than spectral algorithms.1 A priori
one might therefore expect that these new SoS

guarantees for planted problems would not be

achievable via spectral algorithms. But curiously

enough, in numerous cases these stronger guar-

antees for planted problems can be achieved by

spectral methods! The twist is that the entries of

these matrices are low-degree polynomials in the

input to the algorithm . The result is a new family

of low-degree spectral algorithms with guarantees

matching SoS but requriring only eigenvector com-

putations instead of general semidefinite program-

ming [HSSS16], [RRS16], [AOW15a].

This leads to the following question which is

the main focus of this work. Are SoS algorithms
equivalent to low-degree spectral methods for planted
problems?
We answer this question affirmatively for a

wide class of distinguishing problems which in-

cludes refuting random CSPs, tensor and sparse

PCA, densest-k-subgraph, community detection in
stochastic block models, planted clique, and more.

Our positive answer to this question implies that a

light-weight algorithm—computing the top eigen-

value of a single matrix whose entries are low-

degree polynomials in the input—can recover the

1For example, consider the contrast between the SDP algo-

rithm for Max-Cut of Goemans and Williamson, [GW94], and

the spectral algorithm of Trevisan [Tre09]; or the SDP-based

algorithms for coloring worst-case 3-colorable graphs [KT17]

relative to the best spectral methods [AK97] which only work

for random inputs.

performance guarantees of an often bulky semidef-

inite programming relaxation. This is related to the

recent work of Fan and Montanari [FM16] who

showed that for some planted problems on sparse

random graphs, a class of simple procedures called

as local algorithms performs as well as semidefinite
programming relaxations.

A. SoS and spectral algorithms for robust inference

Many planted problems have several formula-

tions: search, in which the goal is to recover a

planted solution, refutation, in which the goal is
to certify that no planted solution is present, and

distinguishing, where the goal is to determine with
good probability whether an instance contains a

planted solution or not. Often an algorithm for

one version can be parlayed into algorithms for the

others, but distinguishing problems are often the

easiest, and we focus on them here.

A distinguishing problem is specified by two

distributions on instances: a planted distribution

supported on instances with a hidden structure,

and a uniform distribution, where samples w.h.p.

contain no hidden structure. Given an instance

drawn with equal probability from the planted or

the uniform distribution, the goal is to determine

with probability greater than 1
2 whether or not the

instance comes from the planted distribution. For

example:

Planted clique Uniform distribution: G(n , 12 ), the
Erdős-Renyi distribution, which w.h.p. contains no

clique of size ω(log n). Planted distribution: The

uniform distribution on graphs containing a nε-
size clique, for some ε > 0. (The problem gets

harder as ε gets smaller, since the distance between
the distributions shrinks.)

Planted 3xor Uniform distribution: a 3xor

instance on n variables and m > n equations

xi x j xk � ai jk , where all the triples (i , j, k) and
the signs ai jk ∈ {±1} are sampled uniformly and
independently. No assignment to x will satisfy

more than a 0.51-fraction of the equations, w.h.p.
Planted distribution: The same, except the signs

ai jk are sampled to correlate with bi b j bk for a

randomly chosen bi ∈ {±1}, so that the assignment
x � b satisfies a 0.9-fraction of the equations. (The
problem gets easier as m/n gets larger, and the

contradictions in the uniform case become more

locally apparent.)
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We now formally define a family of distinguish-

ing problems, in order to give our main theorem.

Let I be a set of instances corresponding to a

product space (for concreteness one may think of

I to be the set of graphs on n vertices, indexed

by {0, 1}(n
2), although the theorem applies more

broadly). Let ν, our uniform distrbution, be a

product distribution on I.

With some decision problem P in mind (e.g.

does G contain a clique of size � nε?), let X be

a set of solutions to P; again for concreteness one
may think of X as being associated with cliques

in a graph, so that X ⊂ {0, 1}n is the set of all

indicator vectors on at least nε vertices.
For each solution x ∈ X, let μ|x be the uniform

distribution over instances I ∈ I that contain x.
For example, in the context of planted clique, if x
is a clique on vertices 1, . . . , nε, then μ|x would be
the uniform distribution on graphs containing the

clique 1, . . . , nε. We define the planted distribution
μ to be the uniform mixture over μx , μ � Ux∼Xμ|x .
The following is our main theorem on the equiv-

alence of sum of squares algorithms for distin-

guishing problems and spectral algorithms em-

ploying low-degree matrix polynomials.

Theorem (Informal). Let N, n ∈ N , and let A ,B
be sets of real numbers. Let I be a family of instances
over AN , and let P be a decision problem over I with
X � Bn the set of possible solutions to P over I. Let
{� j(x , I)} be a system of nO(d) polynomials of degree
at most d in the variables x and constant degree in the
variables I that encodes P, so that

• for I ∼ν I, with high probability the system is
unsatisfiable and admits a degree-d SoS refutation,
and

• for I ∼μ I, with high probability the system is
satisfiable by some solution x ∈ X, and x remains
feasible even if all but an n−0.01-fraction of the
coordinates of I are re-randomized according to
ν.

Then there exists a matrix whose entries are degree-

O(d) polynomials Q : I → �( n
�d)×( n

�d) such that

�
I∼ν

�
λ+max(Q(I))� � 1, while �

I∼μ
�
λ+max(Q(I))� � n10d ,

where λ+max denotes the maximum non-negative eigen-
value.

The condition that a solution x remain feasible
if all but a fraction of the coordinates of I ∼ μ|x are

re-randomized should be interpreted as a noise-

robustness condition. To see an example, in the

context of planted clique, suppose we start with

a planted distribution over graphs with a clique x
of size nε+0.01. If a random subset of n0.99 vertices
are chosen, and all edges not entirely contained

in that subset are re-randomized according to the

G(n , 1/2) distribution, then with high probability
at least nε of the vertices in x remain in a clique,
and so x remains feasible for the problem P: G has

a clique of size � nε?

B. SoS and information-computation gaps

Computational complexity of planted problems

has become a rich area of study. The goal is to

understand which planted problems admit effi-

cient (polynomial time) algorithms, and to study

the information-computation gap phenomenon: many
problems have noisy regimes in which planted

structures can be found by inefficient algorithms,

but (conjecturally) not by polynomial time algo-

rithms. One example is the planted clique problem,
where the goal find a large clique in a sample from

the uniform distribution over graphs containing a

clique of size nε for a small constant ε > 0. While
the problem is solvable for any ε > 0 by a brute-
force algorithm requiring nΩ(log n) time, polynomial
time algorithms are conjectured to require ε � 1

2 .

A common strategy to provide evidence for such

a gap is to prove that powerful classes of efficient

algorithms are unable to solve the planted problem

in the (conjecturally) hard regime. SoS algorithms

are particularly attractive targets for such lower

bounds because of their broad applicability and

strong guarantees.

In a recent work, Barak et al. [BHK+16] show an

SoS lower bound for the planted clique problem,

demonstrating that when ε < 1
2 , SoS algorithms

require nΩ(log n) time to solve planted clique. In-
triguingly, they show that in the case of planted

clique that SoS algorithms requiring ≈ nd time

can distinguish planted from random graphs only

when there is a scalar-valued degree ≈ d · log n
polynomial p(A) : �n×n → � (here A is the

adjacency matrix of a graph) with

�
G(n ,1/2)

p(A) � 0

�
planted

p(A) � nΩ(1) ·
(
�

G(n ,1/2)
p(A)

)1/2
.
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That is, such a polynomial p has much larger

expectation in under the planted distribution than

its standard deviation in uniform distribution. (The

choice of nΩ(1) is somewhat arbitrary, and could
be replaced with Ω(1) or nΩ(d) with small changes
in the parameters.) By showing that as long as

ε < 1
2 any such polynomial p must have degree

Ω(log n)2, they rule out efficient SoS algorithms
when ε < 1

2 . Interestingly, this matches the spectral

distinguishing threshold—the spectral algorithm

of [AKS98] is known to work when ε � 1
2 .

This stronger characterization of SoS for the

planted clique problem, in terms of scalar dis-

tinguishing algorithms rather than spectral distin-
guishing algorihtms, may at first seem insignif-

icant. To see why the scalar characterization is

more powerful, we point out that if the degree-

d moments of the planted and uniform distribu-

tions are known, determining the optimal scalar

distinguishing polynomial is easy: given a planted

distribution μ and a random distribution ν over
instances I, one just solves a linear algebra prob-
lem in the nd log n coefficients of p to maximize the
expectation over μ relative to ν:

max
p
�
I∼μ

[p2(I)] s .t . �
I∼ν

[p2(I)] � 1 .

It is not difficult to show that the optimal solution

to the above program has a simple form: it is the

projection of the relative density of ν with respect to
μ projected to the degree-d log n polynomials. So
given a pair of distributions μ, ν, in nO(d log n) time,
it is possible to determine whether there exists

a degree-d log n scalar distinguishing polynomial.

Answering the same question about the existence

of a spectral distinguisher is more complex, and

to the best of our knowledge cannot be done

efficiently.

Given this powerful theorem for the case of the

planted clique problem, one may be tempted to

conjecture that this stronger, scalar distinguisher
characterization of the SoS algorithm applies more

broadly than just to the planted clique problem,

and perhaps as broadly as Theorem I-A. If this

conjecture is true, given a pair of distributions ν
and μ with known moments, we would be able to
efficiently determine whether polynomial-time SoS

distinguishing algorithms exist!

Conjecture I.1. In the setting of Theorem I-A, the

conclusion may be replaced with the conclusion that
there exists a scalar-valued polynomial p : I → � of
degree O(d · log n) so that

�
uniform

p(I) � 0 and �
planted

p(I) � nΩ(1)
(
�

uniform
p(I)2

)1/2

To illustrate the power of this conjecture, in the

beginning of Section ?? we give a short and self-

contained explanation of how this predicts, via

simple linear algebra, our nΩ(1)-degree SoS lower
bound for tensor PCA. As evidence for the conjec-

ture, we verify this prediction by proving such a

lower bound unconditionally.

C. Lower bounds for Tensor PCA

The second main result of this paper is a strong

exponential lower bound on the sum-of-squares

method (specifically, against 2no(1)
time or no(1) de-

gree algorithms) for the tensor principle component
analysis problem introduced by [RM14].

Problem I.2 (Tensor PCA). Given an order-k tensor
in (�n)⊗k , determine whether it comes from:

• Uniform Distribution: each entry of the ten-

sor sampled independently from N(0, 1).
• Planted Distribution: a spiked tensor, T �

λ · v⊗k + G where v is sampled uniformly

from �n−1, and where G is a random tensor

with each entry sampled independently from

N(0, 1).
Here, v can be thought of as “signal” sur-

rounded by random gaussian noise. The parameter

λ can be thought of as controlling the strength of
the signal. In particular, as λ grows, we expect the
distinguishing problem above to get easier.

Tensor PCA (we restrict to the special case of

k � 3 for this discussion for simplicity) is a natural

generalization of the PCA problem in machine

learning: given a n × n matrix M, distinguish

between the case where every entry of M is in-

dependently drawn from the standard gaussian

distribution N(0, 1) and the case when M is drawn

from a distritbution as above with an added rank

1 shift λvv� in a uniformly random direction v. A
natural and well-studied distinguisher here is the

largest singular value/spectral norm of the input

matrix. Equivalently, it is the maximizer of the

degree two polynomial 〈x ,Mx〉 in x ∈ �n−1.
A natural generalization of the above distin-

guisher for tensor PCA is the maximum of the
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degree 3 polynomial 〈T, x⊗3〉 over the unit sphere
- or equivalently, the (symmetric) injective tensor

norm of T. This maximum can be shown to be

much larger in case of the planted distribution so

long as λ 	 √
n. Tensor PCA can thus be thought

of as an instance of the problem of optimizing a

random polynomial over the unit sphere.

While the PCA problem—maximizing a degree-

2 polynomial over the unit sphere—has efficient al-

gorithms, the corresponding problem for 3-tensors

is NP-hard, even to approximate [HL09], [BBH+12],

so it is often studied in an average-case context and

known algorithms show efficiently computable re-

laxations for the associated degree 3 polynomial

optimization problem. Sum-of-Squares method is

a natural algorithm in this context and yields state

of the art algorithms for the problem. Specifi-

cally, polynomial-time SoS algorithm is known to

recover the vector v and whenever λ 	 n3/4

[HSS15]. A major open question in this direction

is to understand the complexity of the problem

for λ � n3/4−ε. Algorithms (captured by SoS) are
known which run in 2nO(ε)

time [RRS16], [BGG+16].

We show the following theorem which shows

that the sub-exponential algorithm above is in fact

nearly optimal for SoS algorithm.

Theorem I.3. For a tensor T, let

SoSd(T) � max
�̃

�̃[〈T, x⊗k〉]
where the maximum is taken over degree d pseudoex-
pectations �̃ satisfying {‖x‖2 � 1}.2 For every small
enough constant ε > 0, if T ∈ �n×n×n has iid Gaussian
or {±1} entries, SoSd(T) � nk/4−ε with probability
1 − o(1), for every d � nc·ε for some universal c > 0.

In particular for third order tensors (i.e k � 3),

since degree nΩ(ε) SoS is unable to certify that a
random 3-tensor has maximum value much less

than n3/4−ε, this SoS relaxation cannot be used to
distinguish the planted and random distributions

above when λ � n3/4−ε.3
Our proof of Theorem I.3 generalizes and ab-

stracts out the machinery developed in the recent

work on proving a tight lower bound for planted

2For definitions of pseudoexpectations and related matters,

see the survey [BS14].

3In fact, our proof for this theorem will show somewhat more:

that a large family of constraints—any valid constraint which

is itself a low-degree polynomial of T—could be added to this
convex relaxation and the lower bound would still obtain.

clique problem [BHK+16]. In order to demonstrate

the power of Conjecture I.1 by observing that

it implies the precise thresholds obtained in the

theorem above.

D. Related work

By now, there’s a large body of work that es-

tablishes lower bounds on SoS SDP for various

average case problems. Beginning with the work

of Grigoriev [Gri01a], a long line work have estab-

lished tight lower bounds for random constraint

satisfaction problems [Sch08], [BCK15], [KMOW17]

and planted clique [MPW15], [DM15], [HKP15],

[RS15], [BHK+16]. The recent SoS lower bound

for planted clique of [BHK+16] was particularly

influential to this work, setting the stage for our

main line of inquiry. We also draw attention to

previous work on lower bounds for the tensor

PCA and sparse PCA problems in the degree-4 SoS

relaxation [HSS15], [MW15]—our paper improves

on this and extends our understanding of lower

bounds for tensor and sparse PCA to any degree.

Tensor principle component analysis was intro-

duced by Montanari and Richard [RM14] who

indentified information theoretic threshold for re-

covery of the planted component and analyzed the

maximum likelihood estimator for the problem.

The work of [HSS15] began the effort to analyze

the sum of squares method for the problem and

showed that it yields an efficient algorithm for

recovering the planted component with strength

ω̃(n3/4). They also established that this threshold
is tight for the sum of squares relaxation of degree

4. Following this, Hopkins et al. [HSSS16] showed

how to extract a linear time spectral algorithm

from the above analysis. Tomioka and Suzuki de-

rived tight information theoretic thresholds for

detecting planted components by establishing tight

bounds on the injective tensor norm of random

tensors [TS14]. Finally, very recently, Raghavendra

et. al. and Bhattiprolu et. al. independently showed

sub-exponential time algorithms for tensor pca

[RRS16], [BGL16]. Their algorithms are spectral

and are captured by the sum of squares method.

As alluded to above, many prior works ex-

plore the connection between SoS relaxations and

spectral algorithms, beginning with the work

of [BBH+12] and including the followup works

[HSS15], [AOW15b], [BM16] (plus many more).
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Of particular interest are the papers [HSSS16],

[MS16b], which use the SoS algorithms to obtain

fast spectral algorithms, in some cases running in
time linear in the input size (smaller even than the

number of variables in the associated SoS SDP).

In light of our Theorem I-A, it is particularly

interesting to note cases in which the known

SoS lower bounds matching the known spec-

tral algorithms—these problems include planted

clique (upper bound: [AKS98], lower bound:4

[BHK+16]), strong refutations for random CSPs

(upper bound:5 [AOW15b], [RRS16], lower bounds:

[Gri01b], [Sch08], [KMOW17]), and tensor princi-

pal components analysis (upper bound: [HSS15],

[RRS16], [BGG+16], lower bound: this paper).

We also remark that our work applies to several

previously-considered distinguishing and average-

case problems within the sum-of-squares algorith-

mic framework: block models [MS16a] , densest-

k-subgraph [BCC+10]; for each of these problems,

we have by Theorem I-A an equivalence between

efficient sum-of-squares algorithms and efficient

spectral algorithms, and it remains to establish

exactly what the tradeoff is between efficiency of

the algorithm and the difficulty of distinguishing,

or the strength of the noise.

Notation.: For two matrices A, B, let 〈A, B〉 def�
Tr(AB). Let ‖A‖Fr denote the Frobenius norm, and

‖A‖ its spectral norm. For matrix valued functions
A, B over I and a distribution ν over I ∼ I,

we will denote 〈A, B〉ν � �I∼ν〈A(I), B(I)〉 and by
‖A‖Fr,ν

def
� (�I∼ν〈A(I),A(I)〉)1/2.

For a vector of formal variables x � (x1 , . . . , xn),
we use x�d to denote the vector consisting of all

monomials of degree at most d in these variables.
Furthermore, let us denote X�d def

� (x�d)(x�d)T .

Organization.: The remainder of this proceed-
ings version is devoted to stating formally and

sketching parts of the proof of Theorem I-A. We

defer the full proof, as well as the proof of Theo-

rem I.3, to the full version of this paper.

4SDP lower bounds for the planted clique problem were

known for smaller degrees of sum-of-squares relaxations and

for other SDP relaxations before; see the references therein for

details.

5There is a long line of work on algorithms for refuting

random CSPs, and 3SAT in particular; the listed papers contain

additional references.

II. Distinguishing Problems and Robust Inference

In this section, we set up the formal framework

within which we will prove our main result.

Uniform vs. Planted Distinguishing Problems: We
begin by describing a class of distinguishing prob-
lems. For A a set of real numbers, we will use

I � AN denote a space of instances indexed by

N variables—for the sake of concreteness, it will

be useful to think of I as {0, 1}N ; for example, we

could have N �
�n
2

�
andI as the set of all graphs on

n vertices. However, the results that we will show
here continue to hold in other contexts, where the

space of all instances is �N or [q]N .

Definition II.1 (Uniform Distinguishing Problem).

Suppose that I is the space of all instances, and

suppose we have two distributions over I, a prod-

uct distribution ν (the “uniform” distribution), and
an arbitrary distribution μ (the “planted” distribu-
tion).

In a uniform distinguishing problem, we are given
an instance I ∈ I which is sampled with probabil-

ity 1
2 from ν and with probability

1
2 from μ, and the

goal is to determine with probability greater than
1
2 + ε which distribution I was sampled from, for

any constant ε > 0.

Polynomial Systems: In the uniform distinguish-

ing problems that we are interested in, the planted

distribution μ will be a distribution over instances
that obtain a large value for some optimization

problem of interest (i.e. the max clique problem).

We define polynomial systems in order to formally

capture optimization problems.

Program II.2 (Polynomial System). Let A ,B be

sets of real numbers, let n ,N ∈ �, and let I � AN

be a space of instances and X ⊆ Bn be a space of

solutions. A polynomial system is a set of polynomial

equalities

� j(x ,I) � 0 ∀j ∈ [m],
where {� j}m

j�1 are polynomials in the program vari-
ables {xi}i∈[n], representing x ∈ X, and in the

instance variables {Ij} j∈[N], representing I ∈ I. We

define degprog(� j) to be the degree of � j in the

program variables, and deginst(� j) to be the degree
of � j in the instance variables.

Remark II.3. For the sake of simplicity, the poly-
nomial system Program II.2 has no inequalities.
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Inequalities can be incorporated in to the program

by converting each inequality in to an equality with

an additional slack variable. Our main theorem

still holds, but for some minor modifications of the

proof, as outlined in the full version of this paper.

A polynomial system allows us to capture

problem-specific objective functions as well as

problem-specific constraints. For concreteness, con-

sider a quadtratic program which checks if a graph

on n vertices contains a clique of size k. We
can express this with the polynomial system over

program variables x ∈ �n and instance variables

I ∈ {0, 1}(n
2), where Ii j � 1 iff there is an edge

from i to j, as follows:{∑
i∈[n]xi − k � 0

}

∪ {xi(xi − 1) � 0}i∈[n]
∪ {(1 − Ii j)xi x j � 0}i , j∈([n]

2 ).

Planted Distributions: We will be concerned with
planted distributions of a particular form; first,

we fix a polynomial system of interest S �

{� j(x ,I)} j∈[m] and some set X ⊆ Bn of feasible

solutions for S, so that the program variables x
represent elements of X. Again, for concreteness,
if I is the set of graphs on n vertices, we can take
X ⊆ {0, 1}n to be the set of indicators for subsets

of at least nε vertices.
For each fixed x ∈ X, let μ|x denote the uniform

distribution over I ∈ I for which the polynomial

system {� j(x ,I)} j∈[m] is feasible. The planted dis-
tribution μ is given by taking the uniform mixture

over the μ|x , i.e., μ ∼ Ux∼X[μ|x].
SoS Relaxations: If we have a polynomial system

{� j} j∈[m] where degprog(� j) � 2d for every j ∈ [m],
then the degree-2d sum-of-squares SDP relaxation
for the polynomial system Program II.2 can be

written as,

Program II.4 (SoS Relaxation for Polynomial Sys-

tem). Let S � {� j(x ,I)} j∈[m] be a polynomial
system in instance variables I ∈ I and program

variables x ∈ X. If degprog(� j) � 2d for all j ∈ [m],
then an SoS relaxation for S is

〈Gj(I),X〉 � 0 ∀j ∈ [m]
X � 0

where X is an [n]�d × [n]�d matrix containing the

variables of the SDP and Gj : I → �[n]�d×[n]�d
are

matrices containing the coefficients of � j(x ,I) in x,
so that the constraint 〈Gj(I),X〉 � 0 encodes the

constraint � j(x ,I) � 0 in the SDP variables. Note

that the entries of Gj are polynomials of degree at

most deginst(� j) in the instance variables.
Sub-instances: Suppose that I � AN is a family

of instances; then given an instance I ∈ I and

a subset S ⊆ [N], let IS denote the sub-instance

consisting of coordinates within S. Further, for a
distribution Θ over subsets of [N], let IS ∼Θ I
denote a subinstance generated by sampling S ∼
Θ. Let I↓ denote the set of all sub-instances of an
instance I, and let I↓ denote the set of all sub-
instances of all instances.

Robust Inference: Our result will pertain to poly-
nomial systems that define planted distributions

whose solutions to sub-instances generalize to fea-

sible solutions over the entire instance. We call this

property “robust inference.”

Definition II.5. Let I � AN be a family of in-

stances, let Θ be a distribution over subsets of [N],
let S be a polynomial system as in Program II.2,

and let μ be a planted distribution over instances
feasible for S. Then the polynomial system S is

said to satisfy the robust inference property for proba-
bility distribution μ on I and subsampling distribution
Θ, if given a subsampling IS of an instance I from
μ, one can infer a setting of the program variables

x∗ that remains feasible to S for most settings of

IS.

Formally, there exists a map x : I↓ → �n such

that

�
I∼μ,S∼Θ,Ĩ∼ν|IS

[x(IS) is a feasible for S on IS ◦ Ĩ]

� 1 − ε(n , d)
for some negligible function ε(n , d). To specify

the error probability, we will say that polynomial

system is ε(n , d)-robustly inferable.

Main Theorem: We are now ready to state our

main theorem.

Theorem II.6. Suppose that S is a polynomial system
as defined in Program II.2, of degree at most 2d in the
program variables and degree at most k in the instance
variables. Let B > d · k ∈ � such that

1) The polynpomial system S is 1
n8B -robustly inferable

with respect to the planted distribution μ and the
sub-sampling distribution Θ.
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2) For I ∼ ν, the polynomial system S admits a
degree-d SoS refutation with numbers bounded by
nB with probability at least 1 − 1

n8B .

Let D ∈ � be such that for any subset α ⊆ [N] with
|α| � D − 2dk,

�
S∼Θ[α ⊆ S] � 1

n8B

There exists a degree 2D matrix polynomial Q : I →
�[n]�d×[n]�d

such that,

�I∼μ[λ+max(Q(I))]
�I∼ν[λ+max(Q(I))] � nB/2

Remark II.7. Our argument implies a stronger result
that can be stated in terms of the eigenspaces of

the subsampling operator. Specifically, suppose we

define

Sε def�
{
α | �

S∼Θ{α ⊆ S} � ε
}

Then, the distinguishing polynomial

exhibited by Theorem II.6 satisfies

Q ∈ span{ monomials Iα |α ∈ Sε}. This refinement
can yield tighter bounds in cases where all

monomials of a certain degree are not equivalent

to each other. For example, in the Planted Clique

problem, each monomial consists of a subgraph

and the right measure of the degree of a sub-graph

is the number of vertices in it, as opposed to the

number of edges in it.

In the full version of this paper, we make the

routine verifications that the conditions of this the-

orem hold for a variety of distinguishing problems:

planted clique, refuting random CSPs, stochas-

tic block models, densest-k-subgraph, tensor PCA,
and sparse PCA. Now we will proceed to prove

the theorem.

III. Moment-Matching Pseudodistributions

We assume the setup from Section II: we have a

family of instances I � AN , a polynomial system

S � {� j(x ,I)} j∈[m] with a family of solutions X �

Bn , a “uniform” distribution ν which is a product
distribution over I, and a “planted” distribution

μ over I defied by the polynomial system S as

described in Section II.

The contrapositive of Theorem II.6 is that if

S is robustly inferable with respect to μ and a

distribution over sub-instances Θ, and if there is

no spectral algorithm for distinguishing μ and ν,
then with high probability there is no degree-d SoS

refutation for the polynomial system S (as defined
in Program II.4). To prove the theorem, we will use

duality to argue that if no spectral algorithm exists,

then there must exist an object which is in some

sense close to a feasible solution to the SoS SDP

relaxation.

Since each I in the support of μ is feasible for
S by definition, a natural starting point is the SoS

SDP solution for instances I ∼μ I. With this in

mind, we let Λ : I → (�[n]�d×[n]�d )+ be an arbitrary
function from the support of μ over I to PSD

matrices. In other words, we take

Λ(I) � μ̂(I) · M(I)
where μ̂ is the relative density of μ with respect
to ν, so that μ̂(I) � μ(I)/ν(I), and M is some

matrix valued function such that M(I) � 0 and

‖M(I)‖ � B for all I ∈ I. Our goal is to find

a PSD matrix-valued function P that matches the

low-degree moments of Λ in the variables I, while
being supported over most of I (rather than just

over the support of μ).
The function P : I → (�[n]�d×[n]�d )+ is given by

the following exponentially large convex program

over matrix-valued functions,

Program III.1 (Pseudodistribution Program).

min ‖P‖2Fr,ν (III.1)

s .t . 〈Q , P〉ν � 〈Q ,Λ′〉ν (III.2)

∀Q : I → �[n]�d×[n]�d
, deginst(Q) � D

(III.3)

P � 0
Λ′ � Λ + η · Id, 2−22

n

> η > 0 (III.4)

The constraint (III.3) fixes �Tr(P), and so the ob-
jective function (III.1) can be viewied as minimiz-

ing �Tr(P2), a proxy for the collision probability
of the distribution, which is a measure of entropy.

Remark III.2. We have perturbed Λ in (III.4) so that
we can easily show that strong duality holds in the

proof of Claim III.4. For the remainder of the paper

we ignore this perturbation, as we can accumulate

the resulting error terms and set η to be small
enough so that they can be neglected.

The dual of the above program will allow us

to relate the existence of an SoS refutation to the

existence of a spectral algorithm.
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Program III.3 (Low-Degree Distinguisher).

max 〈Λ,Q〉ν
s .t . Q : I → �[n]�d×[n]�d

, deginst(Q) � D

‖Q+‖2Fr,ν � 1,

where Q+ is the projection of Q to the PSD cone.

Claim III.4. Program III.3 is a manipulation of the

dual of Program III.1, so that if Program III.1 has

optimum c > 1, Program III.3 as optimum at least

Ω(√c).
Before we present the proof of the claim, we

summarize its central consequence in the following

theorem: if Program III.1 has a large objective value

(and therefore does not provide a feasible SoS

solution), then there is a spectral algorithm.

Theorem III.5. Fix a function M : I → �[n]�d×[n]�d

+

be such that Id � M � 0. Let λ+max(·) be the
function that gives the largest non-negative eigenvalue
of a matrix. Suppose Λ � μ · M then the optimum of
Program III.1 is equal to opt > 1 only if there exists a
low-degree matrix polynomial Q such that,

�
I∼μ

[λ+max(Q(I))] � Ω(√opt/nd)
while,

�
I∼ν

[λ+max(Q(I))] � 1 .
Proof: By Claim III.4, if the value of Pro-

gram III.1 is opt > 1, then there is a polynomial Q
achieves a value of Ω(√opt) for the dual. It follows
that

�
I∼μ

[λ+max(Q(I))]

�
1

nd
�
I∼μ

[〈Id,Q(I))〉]

�
1

nd
〈Λ,Q〉ν

� Ω(√opt/nd),
while

�
I∼ν

[λ+max(Q(I))]
�

√
�
I∼ν

[λ+max(Q(I))2]

�
√
�
I∼ν

‖Q+(I)‖2Fr � 1.

It is interesting to note that the specific structure

of the PSD matrix valued function M plays no

role in the above argument—since M serves as a

proxy for monomials in the solution as represented

by the program variables x⊗d , it follows that the

choice of how to represent the planted solution is

not critical. Although seemingly counterintuitive,

this is natural because the property of being dis-

tinguishable by low-degre distinguishers or by SoS

SDP relaxations is a property of ν and μ.
We wrap up the section by presenting a proof

of the Claim III.4.

Proof of Claim III.4: We take the Lagrangian

dual of Program III.1. Our dual variables will be

some combination of low-degree matrix polynomi-

als, Q, and a PSD matrix A:

L(P,Q ,A) � ‖P‖2Fr,ν−〈Q , P−Λ′〉ν−〈A, P〉ν s.t. A � 0.
It is easy to verify that if P is not PSD, then A can

be chosen so that the value of L is ∞. Similarly if
there exists a low-degree polynomial upon which

P and Λ differ in expectation, Q can be chosen as

a multiple of that polynomial so that the value of

L is ∞.
Now, we argue that Slater’s conditions are met

for Program III.1, as P � Λ′ is strictly feasible. Thus
strong duality holds, and therefore

min
P

max
A�0,Q

L(P,Q ,A) � max
A�0,Q

min
P
L(P,Q ,A).

Taking the partial derivative of L(P,Q ,A) with
respect to P, we have

∂
∂P

L(P,Q ,A) � 2 · P − Q − A.

where the first derivative is in the space of func-

tions from I → �[n]�d×[n]�d
. By the convexity of L

as a function of P, it follows that if we set ∂∂PL � 0,

we will have the minimizer. Substituting, it follows

that

min
P

max
A�0,Q

L(P,Q ,A) (III.5)

� max
A�0,Q

1

4
‖A + Q‖2Fr,ν −

1

2
〈Q ,A + Q −Λ′〉ν (III.6)

− 1
2
〈A,A + Q〉ν

� max
A�0,Q

〈Q ,Λ′〉ν − 1
4
‖A + Q‖2Fr,ν (III.7)

Now it is clear that the maximizing choice of A is

to set A � −Q−, the negation of the negative-semi-
definite projection of Q. Thus (III.7) simplifies to

min
P

max
A�0,Q

L(P,Q ,A) (III.8)
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� max
Q

〈Q ,Λ′〉ν − 1
4
‖Q+‖2Fr,ν

� max
Q

〈Q ,Λ〉ν + η Trν(Q+) − 1
4
‖Q+‖2Fr,ν , (III.9)

where we have used the shorthand Trν(Q+) def
�

�I∼ν Tr(Q(I)+). Now suppose that the low-degree

matrix polynomial Q∗ achieves a right-hand-side
value of

〈Q∗ ,Λ〉ν + η · Trν(Q∗
+) − 1

4
‖Q∗

+‖2Fr,ν � c.

Consider Q′ � Q∗/‖Q∗
+‖Fr,ν . Clearly ‖Q′

+‖Fr,ν � 1.

Now, multiplying the above inequality through by

the scalar 1/‖Q∗
+‖Fr,ν , we have that

〈Q′,Λ〉ν � c
‖Q∗

+‖Fr,ν
− η · Trν(Q

∗
+)

‖Q∗
+‖Fr,ν

+
1

4
‖Q∗

+‖Fr,ν

�
c

‖Q∗
+‖Fr,ν

− η · nd
+
1

4
‖Q∗

+‖Fr,ν .

Therefore 〈Q′,Λ〉ν is at least Ω(c1/2), as if

‖Q∗
+‖Fr,ν �

√
c then the third term gives the lower

bound, and otherwise the first term gives the lower

bound.

Thus by substituting Q′, the square root of the
maximum of (III.9) within an additive ηnd lower-

bounds the maximum of the program

max 〈Q ,Λ〉ν
s .t . Q : I → �[n]�d×[n]�d

, deginst(Q) � D

‖Q+‖2Fr,ν � 1.

This concludes the proof.
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