
A Time-Space Lower Bound for a Large Class of Learning Problems

Ran Raz

Department of Computer Science, Princeton University
Email: ran.raz.mail@gmail.com

Abstract—We prove a general memory-samples lower
bound that applies for a large class of learning problems
and shows that for every problem in that class, any
learning algorithm requires either a memory of quadratic
size or an exponential number of samples.

Our result is stated in terms of the norm of the matrix
that corresponds to the learning problem. Let X , A be two
finite sets. A matrix M : A × X → {−1, 1} corresponds
to the following learning problem: An unknown element
x ∈ X was chosen uniformly at random. A learner tries
to learn x from a stream of samples, (a1, b1), (a2, b2) . . .,
where for every i, ai ∈ A is chosen uniformly at random
and bi = M(ai, x).

Let σmax be the largest singular value of M and
note that always σmax ≤ |A| 12 · |X| 12 . We show that if
σmax ≤ |A|

1
2 · |X| 12−ε, then any learning algorithm for the

corresponding learning problem requires either a memory
of size at least Ω

(
(εn)2

)
or at least 2Ω(εn) samples, where

n = log2 |X|.
As a special case, this gives a new proof for the memory-

samples lower bound for parity learning [14].

I. INTRODUCTION

Several recent works studied the resources needed

for learning, under memory constraints. The study was

initiated by [17], [19], followed by several additional

works (see in particular [14], [20], [9]). While the main

motivation for studying this problem comes from learn-

ing theory, the problem is also relevant to computational

complexity and cryptography [14], [20], [9].

Steinhardt, Valiant and Wager conjectured that any

algorithm for learning parities of size n requires either

a memory of size Ω(n2) or an exponential number

of samples. The conjecture was proven in [14]. In

particular, this shows for the first time a learning

problem that is infeasible under super-linear memory

constraints. Building on [14], it was proved in [9]

that even if the parity is known to be of sparsity

�, parity learning remains infeasible under memory

constraints that are super-linear in n, as long as

� ≥ ω(log n/ log log n). Consequently, learning linear-

size DNF Formulas, linear-size Decision Trees and

logarithmic-size Juntas were all proved to be infeasible

under super-linear memory constraints (by reductions

from learning sparse parities) [9].

Our Results: In this work, we present a new tech-

nique for proving infeasibility of learning under super-

linear memory constraints. The technique seems very

general. In particular, our main result applies for a large

class of learning problems and shows that for every

problem in that class, any learning algorithm requires

either a memory of quadratic size or an exponential

number of samples.

Let X , A be two finite sets of size larger than 1

(where X represents the concept-class that we are trying

to learn and A represents the set of possible samples).

Let M : A × X → {−1, 1} be a matrix. The

matrix M represents the following learning problem:

An unknown element x ∈ X was chosen uniformly

at random. A learner tries to learn x from a stream of

samples, (a1, b1), (a2, b2) . . ., where for every i, ai ∈ A
is chosen uniformly at random and bi =M(ai, x).

Denote by σmax(M) the largest singular value of M .

Since the entries of M are in {−1, 1}, it is always the

case that

σmax(M) ≤ |A|
1
2 · |X|

1
2 .

Our main result, restated as Theorem 1, shows that if

σmax(M) ≤ |A|
1
2 · |X|

1
2−ε

(where ε > 0 is not necessarily a constant), then

any learning algorithm for the learning problem rep-

resented by M requires either a memory of size at

least Ω
(
(εn)2

)
or at least 2Ω(εn) samples, where n =

log2 |X|.
For example, in the problem of parity learning, |A| =

|X| = 2n, and M = H is Hadamard matrix. Hadamard

matrix satisfies

σmax(H) = |A|
1
2 ≤ |A|

1
2 · |X|

1
2−ε,

where ε = 1
2 . Thus, as a special case of our main

result, we obtain a new proof for the memory-samples

lower bound for parity learning [14] (with a completely

different set of techniques and slightly better constants).

Our result holds even if the learner has an exponen-

tially small success probability (of 2−Ω(εn)).
We note that since it is always the case that

σmax(M) ≥ max
{
|A|

1
2 , |X|

1
2

}
, we have that εn is

at most 1
2 ·min {log |A|, log |X|}, and hence the bound

on the memory in our main result, Ω
(
(εn)2

)
, is at most

Ω
(
min

{
(log |A|)2, (log |X|)2

})
.

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.73

732



As in [14], [9], we model the learning algorithm

by a branching program. A branching program is the

strongest and most general model to use in this context.

Roughly speaking, the model allows a learner with infi-

nite computational power, and bounds only the memory

size of the learner and the number of samples used.

Our results are stated for a learner that learns x
exactly. Nevertheless, it is not hard to see that in many

interesting cases, the results hold also for weak learning,

where the learner only needs to output a concept that

approximates the correct one. This is true because if a

learner is able to output a function that approximates a

column of the matrix, the learner may as well output

the column that approximates that function the best.

The learner can compute the column that approximates

that function the best because our lower bounds hold

for a learner with an infinite computational power. If

that column corresponds to the correct x (even with

exponentially small success probability of 2−Ω(εn)), our

results can be applied. In particular, this is the case for

parity learning and for cases where the columns of the

matrix are almost orthogonal.

Motivation and Discussion: Many previous works

studied the resources needed for learning, under certain

information, communication or memory constraints (see

in particular [17], [19], [14], [20], [9] and the many

references given there). A main message of some of

these works is that for some learning problems, access

to a relatively large memory is crucial. In other words,

in some cases, learning is infeasible, due to memory

constraints.

From the point of view of human learning, such

results may help to explain the importance of memory in

cognitive processes. From the point of view of machine

learning, these results imply that a large class of learn-

ing algorithms cannot learn certain concept classes. In

particular, this applies to any bounded-memory learn-

ing algorithm that considers the samples one by one.

In addition, these works are related to computational

complexity and have applications in cryptography.

Our work is the first to give a general criteria that

applies for a large class of learning problems and shows

infeasibility of learning under super-linear memory con-

straints. Our result is stated in terms of the operator

norm (equivalently, the largest singular value) of the

corresponding matrix. It resembles known general lower

bounds for distributional communication complexity

(see [11], Chapter 4, for a survey), unbounded-error

communication complexity [5], [18], [16] and SQ-

learning [7], [1], [10], [4].

There are known techniques to bound the operator

norm of a matrix. For example, one can show that any

matrix with low discrepancy has small operator norm.

Thus, we obtain a memory-samples lower bound for the

corresponding learning problem for every matrix with

low discrepancy. This, in turn, relates our result once

again to communication complexity, as the discrepancy

method is one of the best-known general techniques for

proving communication-complexity lower bounds.

Related Work: Independently of our work,

Moshkovitz and Moshkovitz proved that if the

matrix M has a (sufficiently strong) mixing property

then any learning algorithm for the corresponding

learning problem requires either a memory of size at

least 1.25 · n or at least 2Ω(n) samples [12].

For matrices M such that

σmax(M) ≤ |A|
1
2 · |X|

1
2−ε,

their result implies that any learning algorithm for

the corresponding learning problem requires either a

memory of size at least (5ε− 1.25) ·n or at least 2Ω(n)

samples. (Since ε ≤ 0.5, we have that (5ε− 1.25) is at

most 1.25).

Subsequent Work: Subsequent to the first appearance

of our work [15], Moshkovitz and Moshkovitz [13]

improved their initial result [12], and obtained a theorem

that is very similar to ours. (Their result is stated in

terms of a combinatorial mixing property, rather than

matrix norm. The two notions are closely related (see

in particular Corollary 5.1 and Note 5.1 in [2])).

In [6], Garg, Raz and Tal build on the current work

and show that if k, �, r are such that any submatrix of

M of at least 2−k · |A| rows and at least 2−� · |X|
columns, has a bias of at most 2−r, then any learning

algorithm for the learning problem corresponding to

M requires either a memory of size at least Ω (k · �),
or at least 2Ω(r) samples. In particular, this shows

that for a large class of learning problems, any learn-

ing algorithm requires either a memory of size at

least Ω ((log |X|) · (log |A|)) or an exponential number

of samples, achieving a tight Ω ((log |X|) · (log |A|))
lower bound on the size of the memory, rather than

a bound of Ω
(
min

{
(log |X|)2, (log |A|)2

})
obtained

in the current work. Moreover, the result implies all

previous memory-samples lower bounds, as well as a

number of new applications [6].

Independently of [6], Beame, Oveis Gharan and Yang

also build on our current work and give a combinatorial

property of a matrix M , that holds for a large class

of matrices and implies that any learning algorithm for

the corresponding learning problem requires either a

memory of size Ω ((log |X|) · (log |A|)) or an exponen-

tial number of samples (when |A| ≤ |X|) [3]. Their

property is based on a measure of how matrices amplify

the 2-norms of probability distributions that is more

refined than the 2-norms of these matrices. They give

several applications of their results.

733



The proofs of the main results in both of these

works [6], [3] use, and build on, the techniques pre-

sented here.

II. PRELIMINARIES

Denote by UX : X → R
+ the uniform distribution

over X .

For a random variable Z and an event E, we denote

by PZ the distribution of the random variables Z, and

we denote by PZ|E the distribution of the random

variable Z conditioned on the event E.

Viewing a Learning Problem as a Matrix: Let X , A
be two finite sets of size larger than 1. Let n = log2 |X|.

Let M : A×X → {−1, 1} be a matrix. The matrix M
corresponds to the following learning problem: There is

an unknown element x ∈ X that was chosen uniformly

at random. A learner tries to learn x from samples

(a, b), where a ∈ A is chosen uniformly at random and

b =M(a, x). That is, the learning algorithm is given a

stream of samples, (a1, b1), (a2, b2) . . ., where each at
is uniformly distributed and for every t, bt =M(at, x).

Norms: For a function f : X → R, denote by

‖f‖2 the �2 norm of f , with respect to the uniform

distribution over X , that is:

‖f‖2 =
(

E
x∈RX

[
f(x)2

])1/2

.

For a function f : A → R, denote by ‖f‖2 the �2
norm of f , with respect to the uniform distribution over

A, that is:

‖f‖2 =
(

E
a∈RA

[
f(a)2

])1/2

.

The induced matrix norm on M : A×X → {−1, 1}
is defined by

‖M‖2 = sup
f �=0

‖Mf‖2
‖f‖2

.

We note that

‖M‖2 =
√
|X|
|A| · σmax(M),

where σmax(M) denotes the largest singular value of

M , and the factor
√
|X|
|A| comes because in our definition

of the �2 norm of functions f : X → R and f : A→ R

we use expectation rather than (the more common) sum.

While ‖M‖2 and σmax(M) are equal, up to a nor-

malization factor, it will be more convenient for us to

work with ‖M‖2.

Branching Program for a Learning Problem: In

the following definition, we model the learner for the

learning problem that corresponds to the matrix M , by

a branching program.

Definition II.1. Branching Program for a Learning
Problem: A branching program of length m and width
d, for learning, is a directed (multi) graph with vertices
arranged in m+1 layers containing at most d vertices
each. In the first layer, that we think of as layer 0, there
is only one vertex, called the start vertex. A vertex of
outdegree 0 is called a leaf. All vertices in the last layer
are leaves (but there may be additional leaves). Every
non-leaf vertex in the program has 2|A| outgoing edges,
labeled by elements (a, b) ∈ A× {−1, 1}, with exactly
one edge labeled by each such (a, b), and all these edges
going into vertices in the next layer. Each leaf v in the
program is labeled by an element x̃(v) ∈ X , that we
think of as the output of the program on that leaf.

Computation-Path: The samples
(a1, b1), . . . , (am, bm) ∈ A × {−1, 1} that are
given as input, define a computation-path in the
branching program, by starting from the start vertex
and following at step t the edge labeled by (at, bt),
until reaching a leaf. The program outputs the label
x̃(v) of the leaf v reached by the computation-path.

Success Probability: The success probability of the
program is the probability that x̃ = x, where x̃ is the
element that the program outputs, and the probability
is over x, a1, . . . , am (where x is uniformly distributed
over X and a1, . . . , am are uniformly distributed over
A, and for every t, bt =M(at, x)).

III. OVERVIEW OF THE PROOF

Let B be a branching program for the learning

problem that corresponds to the matrix M . Assume for

a contradiction that B is of a relatively small length and

a relatively small width.

We define the truncated-path, T , to be the same as

the computation-path of B, except that it sometimes

stops before reaching a leaf. Roughly speaking, T stops

before reaching a leaf if certain “bad” events, that make

the analysis difficult, occur. Nevertheless, we show that

the probability that T stops before reaching a leaf is

negligible, so we can think of T as almost identical to

the computation-path.

For a vertex v of B, we denote by Ev the event

that T reaches the vertex v. For simplicity, we denote

by Pr(v) = Pr(Ev) the probability for Ev (where the

probability is over x, a1, . . . , am), and we denote by

Px|v = Px|Ev
the distribution of the random variable x

conditioned on the event Ev . Similarly, for an edge e
of the branching program B, let Ee be the event that

T traverses the edge e. Denote, Pr(e) = Pr(Ee), and

Px|e = Px|Ee
.

734



A vertex v of B is called significant if
∥∥Px|v

∥∥
2

is non-negligible. Roughly speaking, this means that

conditioning on the event that T reaches the vertex

v, a non-negligible amount of information is known

about x. In order to guess x with a non-negligible

success probability, T must reach a significant vertex.

Lemma IV.1 shows that the probability that T reaches

any significant vertex is negligible, and thus the main

result follows.

To prove Lemma IV.1, we show that for every fixed

significant vertex s, the probability that T reaches s is

extremely small (smaller than one over the number of

vertices in B). Hence, we can use a union bound to

prove the lemma.

The proof that the probability that T reaches s is

extremely small is the main part of our proof. To that

end, we introduce the following functions to measure

the progress made by the branching program towards

reaching s.

Let Li be the set of vertices v in layer-i of B, such

that Pr(v) > 0. Let Γi be the set of edges e from layer-

(i− 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉n,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉n,

where 〈·, ·〉 denotes inner product. We think of Zi,Z ′i as

measuring the progress made by the branching program,

towards reaching a state with distribution similar to

Px|s.

We show that each Zi may only be negligibly larger

than Zi−1. Hence, Zi is negligible for every i. On

the other hand, if s is in layer-i then Zi is at least

Pr(s) · 〈Px|s,Px|s〉n. Thus, Pr(s) · 〈Px|s,Px|s〉n must

be negligible. Since s is significant, 〈Px|s,Px|s〉 is non-

negligible and hence Pr(s) must be negligible.

The proof that Zi may only be negligibly larger than

Zi−1 is done in two steps: Claim IV.12 shows by a

simple convexity argument that Zi ≤ Z ′i . The hard part,

that is done in Claim IV.10 and Claim IV.11, is to prove

that Z ′i may only be negligibly larger than Zi−1.

For this proof, we define for every vertex v, the set of

edges Γout(v) that are going out of v, such that Pr(e) >
0. Claim IV.10 shows that for every vertex v,∑

e∈Γout(v)

Pr(e) · 〈Px|e,Px|s〉n

may only be negligibly higher than

Pr(v) · 〈Px|v,Px|s〉n.

For the proof of Claim IV.10, which is the hardest

proof in the paper, we consider the function Px|v ·Px|s.

We first show how to bound
∥∥Px|v · Px|s

∥∥
2
. We then

consider two cases: If
∥∥Px|v · Px|s

∥∥
1

is negligible, then

〈Px|v,Px|s〉n is negligible and doesn’t contribute much,

and we show that for every e ∈ Γout(v), 〈Px|e,Px|s〉n
is also negligible and doesn’t contribute much. If∥∥Px|v · Px|s

∥∥
1

is non-negligible, we use the bound on∥∥Px|v · Px|s
∥∥
2

and the bound on ‖M‖2 to show that for

almost all edges e ∈ Γout(v), we have that 〈Px|e,Px|s〉n
is very close to 〈Px|v,Px|s〉n. Only an exponentially

small fraction of edges are “bad” and give a significantly

larger 〈Px|e,Px|s〉n.

The reason that in the definitions of Zi and Z ′i we

raised 〈Px|v,Px|s〉 and 〈Px|e,Px|s〉 to the power of n is

that this is the largest power for which the contribution

of the “bad” edges is still small (as their fraction is

exponentially small).

This outline oversimplifies many details. Let us

briefly mention two of them. First, it is not so easy to

bound
∥∥Px|v · Px|s

∥∥
2
. We do that by bounding

∥∥Px|s
∥∥
2

and
∥∥Px|v

∥∥
∞. In order to bound

∥∥Px|s
∥∥
2
, we force T

to stop whenever it reaches a significant vertex (and

thus we are able to bound
∥∥Px|v

∥∥
2

for every vertex

reached by T ). In order to bound
∥∥Px|v

∥∥
∞, we force

T to stop whenever Px|v(x) is large, which allows us

to consider only the “bounded” part of Px|v . (This is

related to the technique of flattening a distribution that

was used in [8]). Second, some edges are so “bad”

that their contribution to Z ′i is huge so they cannot be

ignored. We force T to stop before traversing any such

edge. (This is related to an idea that was used in [9] of

analyzing separately paths that traverse “bad” edges).

We show that the total probability that T stops before

reaching a leaf is negligible.

IV. MAIN RESULT

Theorem 1. Let X , A be two finite sets. Let n =
log2 |X|. Let M : A×X → {−1, 1} be a matrix, such
that ‖M‖2 ≤ 2γn (where γ < 1 is not necessarily a
constant, but (1− γ) · n→∞ (when n→∞)).

For any constant c′ < 1
3 , there exists a (sufficiently

small) constant ε′ > 0, such that the following holds:
Let c = c′ · (1− γ)2, and let ε = ε′ · (1− γ). Let B be
a branching program of length at most 2εn and width
at most 2cn

2

for the learning problem that corresponds
to the matrix M . Then, the success probability of B is
at most O(2−εn).

Remark:: We note that it is always the case that

‖M‖2 ≤ 2n, and that the condition ‖M‖2 ≤ 2γn is

equivalent to σmax(M) ≤ |A|
1
2 · |X|

1
2−ε, where ε =

1− γ.

Proof:
Let 0 < δ′ < 1

3 and 0 < β′ < 2 be constants (to

be optimized later on), such that, β′ + 6δ′ < 2. Let

735



ε′ > 0 be a sufficiently small constant (chosen to be

sufficiently small after δ′, β′ were chosen). In particular,

we will assume that 10ε′ < 2− β′ − 6δ′. Let

δ = δ′ · (1− γ),

β = β′ · (1− γ),

ε = ε′ · (1− γ).

Thus,

10ε < 2 · (1− γ)− β − 6δ.

Let B be a branching program of length m = 2εn and

width d = 2cn
2

for the learning problem that corre-

sponds to the matrix M . We will show that the success

probability of B is at most O(2−εn). We will assume

that n is sufficiently large (chosen to be sufficiently large

after δ′, β′, ε′ were chosen). This is justified because we

only need to prove that the success probability of B is

at most O(2−εn) (so n can be assumed to be sufficiently

large because of the big O).

A. The Truncated-Path and Additional Definitions and
Notation

We will define the truncated-path, T , to be the same

as the computation-path of B, except that it sometimes

stops before reaching a leaf. Formally, we define T ,

together with several other definitions and notations, by

induction on the layers of the branching program B.

Assume that we already defined the truncated-path T ,

up to layer-i of B. For a vertex v in layer-i of B, let Ev

be the event that T reaches the vertex v. For simplicity,

we denote by Pr(v) = Pr(Ev) the probability for Ev

(where the probability is over x, a1, . . . , am), and we

denote by Px|v = Px|Ev
the distribution of the random

variable x conditioned on the event Ev .

There will be three cases in which the truncated-path

T stops on a non-leaf v:

1) If v is a, so called, significant vertex, where the

�2 norm of Px|v is non-negligible. (Intuitively,

this means that conditioned on the event that T
reaches v, a non-negligible amount of information

is known about x).

2) If Px|v(x) is non-negligible. (Intuitively, this means

that conditioned on the event that T reaches v, the

correct element x could have been guessed with a

non-negligible probability).

3) If (M · Px|v)(ai+1) is non-negligible. (Intuitively,

this means that T is about to traverse a “bad” edge,

which is traversed with a non-negligibly higher or

lower probability than other edges).

Next, we describe these three cases more formally.

Significant Vertices: We say that a vertex v in layer-i
of B is significant if∥∥Px|v

∥∥
2
> 2δn · 2−n.

(Recall that |X| = 2n and hence
∥∥Px|v

∥∥
2

is always at

least 2−n).

Significant Values: Even if v is not significant, Px|v
may have relatively large values. For a vertex v in layer-

i of B, denote by Sig(v) the set of all x′ ∈ X , such

that,

Px|v(x′) > 22(δ+ε)·n · 2−n.

Bad Edges: For a vertex v in layer-i of B, denote by

Bad(v) the set of all α ∈ A, such that,∣∣(M · Px|v)(α)
∣∣ ≥ 2(δ+γ+ε)·n · 2−n.

(Intuitively,
∣∣(M · Px|v)(α)

∣∣ is the advantage in predict-

ing M(α, x) on the known row α and the unknown

column x).

The Truncated-Path T : We define T by induction on

the layers of the branching program B. Assume that we

already defined T until it reaches a vertex v in layer-i
of B. The path T stops on v if (at least) one of the

following occurs:

1) v is significant.

2) x ∈ Sig(v).
3) ai+1 ∈ Bad(v).
4) v is a leaf.

Otherwise, T proceeds by following the edge labeled

by (ai+1, bi+1) (same as the computational-path).

B. Proof of Theorem 1

Since T follows the computation-path of B, except

that it sometimes stops before reaching a leaf, the

success probability of B is bounded (from above) by

the probability that T stops before reaching a leaf, plus

the probability that T reaches a leaf v and x̃(v) = x.

The main lemma needed for the proof of Theorem 1

is Lemma IV.1 that shows that the probability that T
reaches a significant vertex is at most O(2−εn).

Lemma IV.1. The probability that T reaches a signif-
icant vertex is at most O(2−εn).

Lemma IV.1 is proved in Section IV-C. We will now

show how the proof of Theorem 1 follows from that

lemma.

Lemma IV.1 shows that the probability that T stops

on a non-leaf vertex, because of the first reason (i.e.,

that the vertex is significant), is small. The next two

lemmas imply that the probabilities that T stops on a

non-leaf vertex, because of the second and third reasons,

are also small.

736



Claim IV.2. If v is a non-significant vertex of B then

Pr
x
[x ∈ Sig(v) | Ev] ≤ 2−2εn.

Proof: Since v is not significant,

E
x′∼Px|v

[
Px|v(x′)

]
=

∑
x′∈X

[
Px|v(x′)2

]
=

2n · E
x′∈RX

[
Px|v(x′)2

]
≤ 22δn · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x′) > 22εn · 22δn · 2−n

]
≤ 2−2εn.

Since conditioned on Ev , the distribution of x is Px|v ,

we obtain

Pr
x
[x ∈ Sig(v) | Ev] =

Pr
x

[(
Px|v(x) > 22εn · 22δn · 2−n

) ∣∣Ev

]
≤ 2−2εn.

Claim IV.3. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−2εn.

Proof: Since v is not significant,

E
α∈RA

[
|(M · Px|v)(α)|2

]
=

∥∥M · Px|v
∥∥2
2

≤ ‖M‖22 ·
∥∥Px|v

∥∥2
2
≤ 22γn · 22δn · 2−2n.

Hence, by Markov’s inequality,

Pr
α∈RA

[α ∈ Bad(v)] =

Pr
α∈RA

[∣∣(M · Px|v)(α)
∣∣ ≥ 2(δ+γ+ε)·n · 2−n

]
=

Pr
α∈RA

[∣∣(M · Px|v)(α)
∣∣2 ≥ 22εn · 22γn · 22δn · 2−2n

]
≤ 2−2εn.

The claim follows since ai+1 is uniformly distributed

over A.

We can now use Lemma IV.1, Claim IV.2 and

Claim IV.3 to prove that the probability that T stops

before reaching a leaf is at most O(2−εn). Lemma IV.1

shows that the probability that T reaches a significant

vertex and hence stops because of the first reason, is

at most O(2−εn). Assuming that T doesn’t reach any

significant vertex (in which case it would have stopped

because of the first reason), Claim IV.2 shows that in

each step, the probability that T stops because of the

second reason, is at most 2−2εn. Taking a union bound

over the m = 2εn steps, the total probability that T
stops because of the second reason, is at most 2−εn.

In the same way, assuming that T doesn’t reach any

significant vertex (in which case it would have stopped

because of the first reason), Claim IV.3 shows that in

each step, the probability that T stops because of the

third reason, is at most 2−2εn. Again, taking a union

bound over the 2εn steps, the total probability that T
stops because of the third reason, is at most 2−εn. Thus,

the total probability that T stops (for any reason) before

reaching a leaf is at most O(2−εn).
Recall that if T doesn’t stop before reaching a leaf,

it just follows the computation-path of B. Recall also

that by Lemma IV.1, the probability that T reaches

a significant leaf is at most O(2−εn). Thus, to bound

(from above) the success probability of B by O(2−εn),
it remains to bound the probability that T reaches a

non-significant leaf v and x̃(v) = x. Claim IV.4 shows

that for any non-significant leaf v, conditioned on the

event that T reaches v, the probability for x̃(v) = x is

at most 2−εn, which completes the proof of Theorem 1.

Claim IV.4. If v is a non-significant leaf of B then

Pr[x̃(v) = x | Ev] ≤ 2−εn.

Proof: Since v is not significant,

E
x′∈RX

[
Px|v(x′)2

]
≤ 22δn · 2−2n.

Hence, for every x′ ∈ X ,

Pr[x = x′ | Ev] = Px|v(x′) ≤ 2δn · 2−n/2

= 2
−n·

(
1
2−δ

)
< 2−εn

(since ε < 1
2 − δ). In particular,

Pr[x̃(v) = x | Ev] < 2−εn.

This completes the proof of Theorem 1.

C. Proof of Lemma IV.1

Proof: We need to prove that the probability that T
reaches any significant vertex is at most O(2−εn). Let s
be a significant vertex of B. We will bound from above

the probability that T reaches s, and then use a union

bound over all significant vertices of B. Interestingly,

the upper bound on the width of B is used only in the

union bound.

The Distributions Px|v and Px|e: Recall that for a

vertex v of B, we denote by Ev the event that T
reaches the vertex v. For simplicity, we denote by

Pr(v) = Pr(Ev) the probability for Ev (where the

probability is over x, a1, . . . , am), and we denote by

Px|v = Px|Ev
the distribution of the random variable x

conditioned on the event Ev .

Similarly, for an edge e of the branching program

B, let Ee be the event that T traverses the edge e.

Denote, Pr(e) = Pr(Ee) (where the probability is over

x, a1, . . . , am), and Px|e = Px|Ee
.

737



Claim IV.5. For any edge e = (v, u) of B, labeled by
(a, b), such that Pr(e) > 0, for any x′ ∈ X ,

Px|e(x′) =

0 if x′ ∈ Sig(v) or M(a, x′) 
= b
Px|v(x′) · c−1e if x′ 
∈ Sig(v) and M(a, x′) = b

where ce is a normalization factor that satisfies,

ce >
1
2 − 2 · 2−2εn.

Proof: Let e = (v, u) be an edge of B, labeled by

(a, b), and such that Pr(e) > 0. Since Pr(e) > 0, the

vertex v is not significant (as otherwise T always stops

on v and hence Pr(e) = 0). Also, since Pr(e) > 0, we

know that a 
∈ Bad(v) (as otherwise T never traverses e
and hence Pr(e) = 0).

If T reaches v, it traverses the edge e if and only if:

x 
∈ Sig(v) (as otherwise T stops on v) and M(a, x) =
b and ai+1 = a. Therefore, for any x′ ∈ X ,

Px|e(x′) =

0 if x′ ∈ Sig(v) or M(a, x′) 
= b
Px|v(x′) · c−1e if x′ 
∈ Sig(v) and M(a, x′) = b

where ce is a normalization factor, given by

ce =
∑

{x′ : x′ �∈Sig(v) ∧M(a,x′)=b}
Px|v(x′)

= Pr
x
[(x 
∈ Sig(v)) ∧ (M(a, x) = b) | Ev].

Since v is not significant, by Claim IV.2,

Pr
x
[x ∈ Sig(v) | Ev] ≤ 2−2εn.

Since a 
∈ Bad(v),∣∣∣Pr
x
[M(a, x) = 1 | Ev]− Pr

x
[M(a, x) = −1 | Ev]

∣∣∣
=

∣∣(M · Px|v)(a)
∣∣ ≤ 2(δ+γ+ε)·n · 2−n.

and hence

Pr
x
[M(a, x) 
= b | Ev] ≤ 1

2 + 2(δ+γ+ε)·n · 2−n.

Hence, by the union bound,

ce = Pr
x
[(x 
∈ Sig(v)) ∧ (M(a, x) = b) | Ev]

≥ 1
2 − 2(δ+γ+ε)·n · 2−n − 2−2εn > 1

2 − 2 · 2−2εn

(where the last inequality follows since 3ε < 1−δ−γ).

Bounding the Norm of Px|s: We will show that∥∥Px|s
∥∥
2

cannot be too large. Towards this, we will first

prove that for every edge e of B that is traversed by

T with probability larger than zero,
∥∥Px|e

∥∥
2

cannot be

too large.

Claim IV.6. For any edge e of B, such that Pr(e) > 0,∥∥Px|e
∥∥
2
≤ 4 · 2δn · 2−n.

Proof: Let e = (v, u) be an edge of B, labeled by

(a, b), and such that Pr(e) > 0. Since Pr(e) > 0, the

vertex v is not significant (as otherwise T always stops

on v and hence Pr(e) = 0). Thus,∥∥Px|v
∥∥
2
≤ 2δn · 2−n.

By Claim IV.5, for any x′ ∈ X ,

Px|e(x′) =

0 if x′ ∈ Sig(v) or M(a, x′) 
= b
Px|v(x′) · c−1e if x′ 
∈ Sig(v) and M(a, x′) = b

where ce satisfies,

ce >
1
2 − 2 · 2−2εn > 1

4

(where the last inequality holds because we assume that

n is sufficiently large).
Thus,∥∥Px|e

∥∥
2
≤ c−1e ·

∥∥Px|v
∥∥
2
≤ 4 · 2δn · 2−n

Claim IV.7. ∥∥Px|s
∥∥
2
≤ 4 · 2δn · 2−n.

Proof: Let Γin(s) be the set of all edges e of B,

that are going into s, such that Pr(e) > 0. Note that∑
e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X ,

Px|s(x′) =
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′),

and hence by Jensen’s inequality,

Px|s(x′)2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′)2.

Summing over x′ ∈ X , we obtain,∥∥Px|s
∥∥2
2
≤

∑
e∈Γin(s)

Pr(e)
Pr(s) ·

∥∥Px|e
∥∥2
2
.

By Claim IV.6, for any e ∈ Γin(s),∥∥Px|e
∥∥2
2
≤

(
4 · 2δn · 2−n

)2
.

Hence, ∥∥Px|s
∥∥2
2
≤

(
4 · 2δn · 2−n

)2
.

738



Similarity to a Target Distribution: For two functions

f, g : X → R
+, define

〈f, g〉 = E
z∈RX

[f(z) · g(z)].

We think of 〈f, g〉 as a measure for the similarity

between a function f and a target function g. Typically

f, g will be distributions.

Claim IV.8.

〈Px|s,Px|s〉 > 22δn · 2−2n.
Proof: Since s is significant,

〈Px|s,Px|s〉 =
∥∥Px|s

∥∥2
2
> 22δn · 2−2n.

Claim IV.9.
〈UX ,Px|s〉 = 2−2n,

where UX is the uniform distribution over X .

Proof: Since Px|s is a distribution,

〈UX ,Px|s〉 = 2−2n ·
∑
z∈X

Px|s(z) = 2−2n.

Measuring the Progress: For i ∈ {0, . . . ,m}, let Li

be the set of vertices v in layer-i of B, such that Pr(v) >
0. For i ∈ {1, . . . ,m}, let Γi be the set of edges e from

layer-(i− 1) of B to layer-i of B, such that Pr(e) > 0.

Recall that β was fixed at the beginning of the proof of

Theorem 1. For i ∈ {0, . . . ,m}, let

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉βn.

For i ∈ {1, . . . ,m}, let

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉βn.

We think of Zi,Z ′i as measuring the progress made by

the branching program, towards reaching a state with

distribution similar to Px|s.

For a vertex v of B, let Γout(v) be the set of all edges

e of B, that are going out of v, such that Pr(e) > 0.

Note that ∑
e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since some-

times T stops on v).

The next four claims show that the progress made by

the branching program is slow.

Claim IV.10. For every vertex v of B, such that
Pr(v) > 0, ∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉βn ≤

〈Px|v,Px|s〉βn ·
(
1 + 2−1.9·εn

)
+

(
2−2n+2

)βn
.

Proof: If v is significant or v is a leaf, then T
always stops on v and hence Γout(v) is empty and thus

the left hand side is equal to zero and the right hand

side is positive, so the claim follows trivially. Thus, we

can assume that v is not significant and is not a leaf.

Define P : X → R
+ as follows. For any x′ ∈ X ,

P (x′) =
{

0 if x′ ∈ Sig(v)
Px|v(x′) if x′ 
∈ Sig(v)

Note that by the definition of Sig(v), for any x′ ∈ X ,

P (x′) ≤ 22(δ+ε)·n · 2−n. (1)

Define f : X → R
+ as follows. For any x′ ∈ X ,

f(x′) = P (x′) · Px|s(x′).

By Claim IV.7 and Equation (1),

‖f‖2 ≤ 22(δ+ε)·n · 2−n ·
∥∥Px|s

∥∥
2
≤

22(δ+ε)·n ·2−n ·4 ·2δn ·2−n = 2(3δ+2ε)·n+2 ·2−2n. (2)

By Claim IV.5, for any edge e ∈ Γout(v), labeled by

(a, b), for any x′ ∈ X ,

Px|e(x′) =
{

0 if M(a, x′) 
= b
P (x′) · c−1e if M(a, x′) = b

where ce satisfies,

ce >
1
2 − 2 · 2−2εn.

Therefore, for any edge e ∈ Γout(v), labeled by (a, b),
for any x′ ∈ X ,

Px|e(x′) · Px|s(x′) ={
0 if M(a, x′) 
= b

f(x′) · c−1e if M(a, x′) = b

and hence, denoting

F =
∑
x′∈X

f(x′),

we have

〈Px|e,Px|s〉 = E
x′∈RX

[Px|e(x′) · Px|s(x′)] =

c−1e ·2−n ·
∑

{x′:M(a,x′)=b}
f(x′) = c−1e ·2−n · F+b·(M ·f)(a)

2

≤ (2 · ce)−1 · 2−n · (F + |(M · f)(a)|)

< 2−n · (F + |(M · f)(a)|) ·
(
1 + 2−2εn+3

)
(3)

(where the last inequality holds by the bound that we

have on ce, because we assume that n is sufficiently

large).

We will now consider two cases:

739



Case I: F ≤ 2−n: In this case, we bound |(M ·
f)(a)| ≤ F (since f is non-negative and the entries of

M are in {−1, 1}) and (1 + 2−2εn+3) < 2 (since we

assume that n is sufficiently large) and obtain for any

edge e ∈ Γout(v),

〈Px|e,Px|s〉 < 4 · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v) ≤ 1, Claim IV.10 follows, as the

left hand side of the claim is smaller than the second

term on the right hand side.

Case II: F ≥ 2−n: For every a ∈ A, define

t(a) =

(
(M · f)(a)

F

)2

.

By Equation (3),

〈Px|e,Px|s〉βn <

(
2−n · F

)βn ·(1 +√
t(a)

)βn

·
(
1 + 2−2εn+3

)βn
. (4)

Note that by the definitions of P and f ,

2−n · F = E
x′∈RX

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉.

Note also that for every a ∈ A, there is at most one

edge e(a,1) ∈ Γout(v), labeled by (a, 1), and at most

one edge e(a,−1) ∈ Γout(v), labeled by (a,−1), and

we have

Pr(e(a,1))

Pr(v) +
Pr(e(a,−1))

Pr(v) ≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by

the program is a. Thus, summing over all e ∈ Γout(v),
by Equation (4),∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉βn <

〈Px|v,Px|s〉βn · E
a∈RA

[(
1 +

√
t(a)

)βn
]

·
(
1 + 2−2εn+3

)βn
. (5)

It remains to bound

E
a∈RA

[(
1 +

√
t(a)

)βn
]
, (6)

where for every a ∈ A, 0 ≤ t(a) ≤ 1, under the

constraint

E
a∈RA

[t(a)] ≤ 2−(2−2γ−6δ−4ε)·n+4, (7)

which follows since, by Equation (2) and the assumption

F ≥ 2−n, we have

E
a∈RA

[t(a)] = E
a∈RA

[(
(M · f)(a)

F

)2
]
=
‖M · f‖22

F 2

≤ ‖M‖22 · ‖f‖
2
2

F 2
≤

(
2γn · 2(3δ+2ε)·n+2 · 2−2n

2−n

)2

= 2−(2−2γ−6δ−4ε)·n+4.

We will bound the expectation in Equation (6), by

splitting the expectation into two sums

E
a∈RA

[(
1 +

√
t(a)

)βn
]
=

1
|A| ·

∑
a : t(a)≤ 1

(βn−2)2

(
1 +

√
t(a)

)βn

+

1
|A| ·

∑
a : t(a)>

1
(βn−2)2

(
1 +

√
t(a)

)βn

. (8)

To bound the first sum in Equation (8), we note

that in the range 0 ≤ t ≤ 1
(βn−2)2 , the function

g(t) =
(
1 +

√
t
)βn

is concave (since its second deriva-

tive is negative). Hence, by Equation (7) and by the

monotonicity of g,

1
|A| ·

∑
a : t(a)≤ 1

(βn−2)2

(
1 +

√
t(a)

)βn

≤
(
1 +

√
2−(2−2γ−6δ−4ε)·n+4

)βn

=
(
1 + 2−(1−γ−3δ−2ε)·n+2

)βn

< 1 + 2−(1−γ−3δ−3ε)·n

< 1 + 2−2εn (9)

(where the last two inequalities hold because we assume

that n is sufficiently large and 5ε < 1− γ − 3δ).

To bound the second sum in Equation (8), we note

that by Equation (7) and Markov’s inequality,

Pr
a∈RA

[
t(a) > 1

(βn−2)2
]

≤ 2−(2−2γ−6δ−4ε)·n+4 · (βn− 2)2

< 2−(2−2γ−6δ−5ε)·n

(where the last inequality holds because we assume that

n is sufficiently large), and since for every a ∈ A, we

have t(a) ≤ 1,

1
|A| ·

∑
a : t(a)>

1
(βn−2)2

(
1 +

√
t(a)

)βn

< 2−(2−2γ−6δ−5ε)·n · 2βn

= 2−(2−2γ−β−6δ−5ε)·n

< 2−5εn (10)

740



(where the last inequality holds because 10ε < 2−2γ−
β − 6δ).

Substituting Equation (9) and Equation (10) into

Equation (8) and substituting this into Equation (5), we

obtain ∑
e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉βn

< 〈Px|v,Px|s〉βn ·
(
1 + 2−2εn+3

)βn+1
< 〈Px|v,Px|s〉βn ·

(
1 + 2−1.9·εn

)
(where the last inequality holds because we assume that

n is sufficiently large).

This completes the proof of Claim IV.10.

Claim IV.11. For every i ∈ {1, . . . ,m},

Z ′i ≤ Zi−1 ·
(
1 + 2−1.9·εn

)
+

(
2−2n+2

)βn
.

Proof: By Claim IV.10,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉βn

=
∑

v∈Li−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉βn

≤
∑

v∈Li−1

Pr(v)·

(
〈Px|v,Px|s〉βn ·

(
1 + 2−1.9·εn

)
+

(
2−2n+2

)βn)
= Zi−1 ·

(
1 + 2−1.9·εn

)
+

∑
v∈Li−1

Pr(v) ·
(
2−2n+2

)βn

≤ Zi−1 ·
(
1 + 2−1.9·εn

)
+

(
2−2n+2

)βn

Claim IV.12. For every i ∈ {1, . . . ,m},

Zi ≤ Z ′i.

Proof: For any v ∈ Li, let Γin(v) be the set of all

edges e ∈ Γi, that are going into v. Note that∑
e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ Li and

every x′ ∈ X ,

Px|v(x′) =
∑

e∈Γin(v)

Pr(e)
Pr(v) · Px|e(x′),

and hence

〈Px|v,Px|s〉 =
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉.

Thus, by Jensen’s inequality,

〈Px|v,Px|s〉βn ≤
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉βn.

Summing over all v ∈ Li, we get

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉βn

≤
∑
v∈Li

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉βn

=
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉βn = Z ′i.

Claim IV.13. For every i ∈ {1, . . . ,m},
Zi ≤ 22(β+ε)n · 2−2βn2

.

Proof: By Claim IV.9, Z0 = (2−2n)βn. By

Claim IV.11 and Claim IV.12, for every i ∈ {1, . . . ,m},
Zi ≤ Zi−1 ·

(
1 + 2−1.9·εn

)
+

(
2−2n+2

)βn
.

Hence, for every i ∈ {1, . . . ,m},
Zi ≤

(
2−2n+2

)βn ·m ·
(
1 + 2−1.9·εn

)m
.

Since m = 2εn,

Zi ≤ 2−2βn
2 · 22βn · 2εn · 2 ≤ 2−2βn

2 · 22(β+ε)n.

Proof of Lemma IV.1: We can now complete the proof

of Lemma IV.1. Assume that s is in layer-i of B. By

Claim IV.8,

Zi ≥ Pr(s) · 〈Px|s,Px|s〉βn > Pr(s) ·
(
22δn · 2−2n

)βn
= Pr(s) · 22δβn2 · 2−2βn2

.

On the other hand, by Claim IV.13,

Zi ≤ 22(β+ε)n · 2−2βn2

.

Thus,

Pr(s) ≤ 22(β+ε)n · 2−2δβn2

.

We will fix β′ to be any constant smaller than 1
and δ′ to be any constant smaller than 1

6 (note that the

requirement β′ + 6δ′ < 2 is satisfied and recall that

δ = δ′ · (1− γ) and β = β′ · (1− γ)), to obtain

Pr(s) ≤ 2−c̃·(1−γ)2·n2

,

for any constant c̃ < 1
3 (where we assumed that n is

sufficiently large).
Taking a union bound over at most 2εn · 2cn2

sig-

nificant vertices of B, we conclude that the probabil-

ity that T reaches any sifnificant vertex is at most

2−Ω((1−γ)2·n2) (as c < c′ · (1 − γ)2, where c′ is a

constant smaller than 1
3 ). Since we assume that n is

sufficiently large, 2−Ω((1−γ)2·n2) is certainly at most

2−εn.

741



ACKNOWLEDGMENT

Research supported by the Simons Collaboration on

Algorithms and Geometry and by the National Sci-

ence Foundation grants No. CCF-1412958 and CCF-

1714779.

REFERENCES

[1] Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson,
Michael J. Kearns, Yishay Mansour, Steven Rudich:
Weakly learning DNF and characterizing statistical query
learning using Fourier analysis. STOC 1994: 253-262

[2] Yonatan Bilu, Nathan Linial: Lifts, Discrepancy and
Nearly Optimal Spectral Gap. Combinatorica 26(5):
495-519 (2006)

[3] Paul Beame, Shayan Oveis Gharan, Xin Yang: Time-
Space Tradeoffs for Learning from Small Test Spaces:
Learning Low Degree Polynomial Functions. Electronic
Colloquium on Computational Complexity (ECCC) 24:
120 (2017)

[4] Vitaly Feldman: A complete characterization of statistical
query learning with applications to evolvability. J.
Comput. Syst. Sci. 78(5): 1444-1459 (2012)

[5] Jürgen Forster: A linear lower bound on the unbounded
error probabilistic communication complexity. J. Com-
put. Syst. Sci. 65(4): 612-625 (2002)

[6] Sumegha Garg, Ran Raz, Avishay Tal: Extractor-Based
Time-Space Lower Bounds for Learning. Electronic
Colloquium on Computational Complexity (ECCC) 24:
121 (2017)

[7] Michael J. Kearns: Efficient Noise-Tolerant Learning from
Statistical Queries. J. ACM 45(6): 983-1006 (1998)

[8] Gillat Kol, Ran Raz: Interactive channel capacity. STOC
2013: 715-724

[9] Gillat Kol, Ran Raz, Avishay Tal: Time-Space Hardness
of Learning Sparse Parities. STOC 2017: 1067-1080

[10] Adam R. Klivans, Alexander A. Sherstov: Unconditional
lower bounds for learning intersections of halfspaces.
Machine Learning 69(2-3): 97-114 (2007)

[11] Troy Lee, Adi Shraibman: Lower Bounds in Communica-
tion Complexity. Foundations and Trends in Theoretical
Computer Science 3(4): 263-398 (2009)

[12] Dana Moshkovitz, Michal Moshkovitz: Mixing Implies
Lower Bounds for Space Bounded Learning. Proceed-
ings of the 2017 Conference on Learning Theory, PMLR
65:1516-1566, 2017. Also in: Electronic Colloquium
on Computational Complexity (ECCC) 24: 17 (2017)

[13] Dana Moshkovitz, Michal Moshkovitz: Mixing Implies
Strong Lower Bounds for Space Bounded Learning.
Electronic Colloquium on Computational Complexity
(ECCC) 24: 116 (2017)

[14] Ran Raz: Fast Learning Requires Good Memory: A
Time-Space Lower Bound for Parity Learning. FOCS
2016: 266-275

[15] Ran Raz: A Time-Space Lower Bound for a Large Class
of Learning Problems. Electronic Colloquium on
Computational Complexity (ECCC) 24: 20 (2017)

[16] Alexander A. Razborov, Alexander A. Sherstov: The
Sign-Rank of AC0. SIAM J. Comput. 39(5): 1833-1855
(2010)

[17] Ohad Shamir: Fundamental Limits of Online and Dis-
tributed Algorithms for Statistical Learning and Estima-
tion. NIPS 2014: 163-171

[18] Alexander A. Sherstov: The unbounded-error communi-
cation complexity of symmetric functions. Combinatorica
31(5): 583-614 (2011)

[19] Jacob Steinhardt, Gregory Valiant, Stefan Wager: Mem-
ory, Communication, and Statistical Queries. COLT
2016: 1490-1516

[20] Gregory Valiant, Paul Valiant: Information Theoretically
Secure Databases. Electronic Colloquium on Compu-
tational Complexity (ECCC) 23: 78 (2016)

742


