
Fine-Grained Complexity of Analyzing Compressed Data:
Quantifying Improvements over Decompress-And-Solve

Amir Abboud

Computer Science Department
Stanford University
Palo Alto, CA, USA

abboud@cs.stanford.edu

Karl Bringmann

Max Planck Institute for Informatics
Saarland Informatics Campus

Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Arturs Backurs

EECS
MIT

Cambridge, MA, USA
backurs@mit.edu

Marvin Künnemann

Max Planck Institute for Informatics
Saarland Informatics Campus

Saarbrücken, Germany
marvin@mpi-inf.mpg.de

Abstract—Can we analyze data without decompressing it?
As our data keeps growing, understanding the time complexity
of problems on compressed inputs, rather than in convenient
uncompressed forms, becomes more and more relevant. Sup-
pose we are given a compression of size n of data that
originally has size N , and we want to solve a problem with time
complexity T (·). The naı̈ve strategy of “decompress-and-solve”
gives time T (N), whereas “the gold standard” is time T (n):
to analyze the compression as efficiently as if the original data
was small.

We restrict our attention to data in the form of a string (text,
files, genomes, etc.) and study the most ubiquitous tasks. While
the challenge might seem to depend heavily on the specific
compression scheme, most methods of practical relevance
(Lempel-Ziv-family, dictionary methods, and others) can be
unified under the elegant notion of Grammar-Compressions. A
vast literature, across many disciplines, established this as an
influential notion for Algorithm design.

We introduce a direly needed framework for proving (condi-
tional) lower bounds in this field, allowing us to assess whether
decompress-and-solve can be improved, and by how much. Our
main results are:
• The O(nN

√
logN/n) bound for LCS and the

O(min{N logN,nM}) bound for Pattern Matching with
Wildcards are optimal up to No(1) factors, under the
Strong Exponential Time Hypothesis. (Here, M denotes
the uncompressed length of the compressed pattern.)

• Decompress-and-solve is essentially optimal for Context-
Free Grammar Parsing and RNA Folding, under the k-
Clique conjecture.

• We give an algorithm showing that decompress-and-solve
is not optimal for Disjointness.

Keywords-grammar-compression; fine-grained complexity

I. INTRODUCTION

Computer Science is often called the science of processing

digital data. A central goal of theoretical CS is to understand

the time complexity of the tasks we want to perform on

data. Data compression has been one of the most important

notions in CS and Information Theory for decades, and it

is increasingly relevant in our current age of “Big Data”

where it is hard to think of reasons why not to compress our

data: smaller data can be stored more efficiently, transmitting

it takes less resources such as energy and bandwidth, and

perhaps it can even be processed faster. Since nowadays and

for years to come nearly all of our data comes in compressed

form, a central question becomes:

What is the time complexity of analyzing compressed data?

Say we have a piece of data of size N given in a

compressed form of size n. For a problem with time com-

plexity T (·), the naı̈ve strategy of “decompress and solve”

takes Θ(T (N)) time, while the “gold standard” is O(T (n))
time: we want to solve the problem on the compression

as efficiently as if the original data was small. To provide

meaningful statements we need to decide on three things:

What type of data is it? What problem do we want to solve?

Which compression scheme is being used?

For the first two questions, the focus of this paper will

be on the most basic setting. We consider data that comes

as strings, i.e. sequences of symbols such as text, computer

code, genomes, and so on. And we study natural and basic

questions one could ask about strings such as Pattern Match-

ing, Language Membership, Longest Common Subsequence,

Parsing, and Disjointness.

For the third question, we restrict our attention to lossless
compression and, even then, there are multiple natural

settings that we do not find to be the most relevant. We

could consider Kolmogorov complexity, giving us the best

possible compression of our data: assume that a string T
is given by a short bitstring K(T ) which is a pair of

Turing machine M and input x such that running M on
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x outputs T , i.e. K(T ) = 〈M,x〉 such that M(x) = T .

The issue with Kolmogorov-compressions is that none of

our data comes in this form, for two good reasons: First,

it is computationally intractable to compute K(T ) given

T , not even approximately. And second, analyzing arbitrary

Turing machines without just running them is an infamously

hopeless task. Thus, while studying the time complexity

of analyzing Kolmogorov-compressed strings is natural, it

might not be the most relevant for computer science ap-

plications. Another option is to consider the mathematically

simplest forms of compression such as Run-Length Encoding
(RLE): we compress x consecutive letters σ into σx, so

the compression has the form 0x11x20x3 · · · 1x� , and we

only need n = O(� · logN) bits to describe the potentially

exponentially longer string of length N . This compression is

at the other extreme of the spectrum: it is trivial to compute

and easy to analyze, but it is far less “compressing” than

popular schemes like Lempel-Ziv-compressions.

Instead, we consider what has proven to be one of the

most influential kinds of compression for Algorithm design,

namely Grammar-Compressions, a notion that has all the

right properties. First, it is mathematically elegant and quite

fun to reason about for theoreticians (as evidenced by the

many pages of our paper). Second, it is equivalent [50] up

to low order terms (moderate constants and log factors) to

popular schemes like the Lempel-Ziv-family (LZ77, LZ78,

LZW, etc.) [39], [64], [59], Byte-Pair Encoding [54], dic-

tionary methods, and others [45], [41]. These compressions

are used in ubiquitous applications such as the built-in Unix

utility compress, zip, GIF, PNG, and even in PDF. Third,

it is generic and likely to capture compression schemes that

will be engineered in the future (after all, there is a whole

industry on the topic and the quest might never be over).

Fourth, we can compute the optimal such compression (up

to log factors) in linear time [50], [20], [35]. And last but not

least, ingenious algorithmic techniques have shown that it

is possible to computationally analyze grammar-compressed

data, beating the “decompress and solve” bound for many

important problems.

A grammar compression of a string X is simply a context-

free grammar, whose language is exactly {X}, that is, the

only string the grammar can produce is X . For the purposes

of this paper, it is enough to focus on a restricted form of

grammars, known as Straight Line Programs (SLP). An SLP

is defined over some alphabet Σ, say {0, 1}, and it is a set of

replacement rules (or productions) of a very simple form: a

rule is either a symbol in Σ or it is the concatenation of two

previous rules (under some fixed ordering of the rules). The

last replacement rule is the sequence defined by the SLP.

For example, we can compress the sequence 01011 with the

rules S1 → 0; S2 → 1; S3 → S1 S2; S4 → S3 S3; S5 →
S4 S2 and S5 corresponds to the sequence 01011. For some

strings this can give an exponential compression. A more

formal definition and a figure are given in Section II.

To learn more about the remarkable success of grammar-

compressions, we refer the reader to the surveys [61], [38],

[26], [53], [28], [49], [51], [42], [52]. As a side remark,

one of the exciting developments in this context was the

surprising observation that a “compress and solve” strategy

could actually lead to theoretically new algorithms for some

problems, e.g. [46], [36].

Thus, we focus on what we find the most important

interpretation of the central question above:

What is the time complexity of basic problems on
grammar-compressed strings?

A. Previous Work

As a motivating example, consider the Longest Com-

mon Subsequence (LCS) problem. Given two uncom-

pressed strings of length N we can find the length of the

longest common (not necessarily contiguous) subsequence

in O(N2) time using dynamic programming, and there

are almost-matching N2−o(1) conditional lower bounds [2],

[15], [3]. Throughout the paper we mostly ignore log fac-

tors, and so we think of LCS as a problem with Θ̃(N2)
time complexity (on uncompressed data). Now, assume our

sequences are given in compressed form of size n. A natural

setting to keep in mind is where n ≈ N1/2. How much time

do we need to solve LCS on these compressed strings? The

naı̈ve upper bound gives O(N2) and the gold standard is

O(n2) ≈ O(N), so which is it?

Besides being a very basic question, LCS and the closely

related Edit Distance are a popular theoretical modeling of

sequence alignment problems that are of great importance in

Bioinformatics1. Thus, this is a relatively faithful modeling

of the question whether “compress-and-solve” can speed

up genome analysis tasks, a question which has received

extensive attention throughout the years [30], [45], [41],

[29], [28].

A long line of work [16], [43], [6], [7], [23], [55],

[56], [31] has shown that we can do much better than

O(N2). The current best algorithm has the curious runtime

O(nN
√
logN/n) [27] which is tantalizingly close to a con-

jectured bound of O(nN) from the seminal paper of Lifshits

[40]. In our candidate setting of n ≈ N1/2, this is Õ(N1.5).
This is major speedup over the Ω(N2) decompress-and-

solve bound, but is still far away from the gold standard

of O(n2) which in this case would be O(N). Can we do

better? For example, an O(n2 · N0.1) bound could lead to

major real-world improvements.

While there is a huge literature on the topic, both from

the Algorithms community and from applied areas, in addi-

tion to the potential for real-world impact, studying these

questions has not become a mainstream topic in the top

algorithms conferences. In one of the only STOC/FOCS

1The heuristic algorithm BLAST for a generalized version of the problem
has received sixty-thousand citations.
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papers on the topic, Charikar et al. [20] write “In short,
the smallest grammar problem has been considered by many
authors in many disciplines for many reasons over a span of
decades. Given this level of interest, it is remarkable that the
problem has not attracted greater attention in the general
algorithms community.”

We believe that one key reason for this is the lack of

a relevant complexity theory and tools for proving lower
bounds, leaving a confusing state of the art in which it is

hard to distinguish algorithms providing fundamental new

insights from ad hoc solutions. Most importantly, previous

work has not given us the tools to know, when we encounter

a data analysis problem in the real-world, what kind of

upper bound we should expect. Instead, researchers have

been proving P vs. NP-hard results, classifying problems into

ones solvable in poly(n, logN) time and ones that probably

require time NΩ(1). In fact, even LCS is NP-hard [40]. This

means that even if we have a compression of very small size

n = O(logN) then we cannot solve LCS in poly(n) time,

unless P = NP. Dozens of such negative results have been

proven (see [42]), and it has long been clear that almost any

task of interest is “NP-hard”, including the basic poly(N)
time solvable problems we discuss in this paper. However,

this is hardly relevant to the questions we ask since it does

not address the possibility of highly desirable bounds such

as n2 ·N0.1. What we would really like to know is whether

the bound should be poly(n) ·Nε, or poly(n) ·N , or even

higher: could it be that decompress-and-solve is impossible

to beat for some problems?

B. Our Work

In this work, we introduce a framework for showing lower

bounds on the time complexity of problems on grammar-

compressed strings. Our lower bounds are based on popular

conjectures from Hardness in P and Fine-Grained Complex-

ity. This is perhaps surprising since the problems we con-

sider are technically NP-hard. Our new complexity theoretic

study of this field leads to three exciting developments: First,

we resolve the exact time complexity up to No(1) factors

of some of the most classical problems such as LCS on
compressed data. Second, we discover problems that cannot
be solved faster than the decompress-and-solve bound by

any Nε factor. Third, we fail at proving tight lower bounds

for some classical problems, which hints to us that known

algorithms might be suboptimal. Indeed, in this paper we

also find new algorithms for fundamental problems. We hope

that our work will inspire increased interest in this important

topic.

Longest Common Subsequence: Our first result is a res-

olution of the time complexity of LCS on compressed data,

up to No(1) factors, under the Strong Exponential Time Hy-

pothesis2 (SETH). We complement the O(nN
√
logN/n)

upper bound of Gawrychowski [27] with an (nN)1−o(1)

lower bound.

Theorem I.1. Assuming SETH, there is no (nN)1−ε-time
algorithm for LCS for any ε > 0. This even holds restricted
to instances with n = Θ(Nαn) for any 0 < αn < 1, and an
alphabet of constant size.

Thus, in the natural setting n ≈ N1/2 from above, we

should indeed be content with the Õ(N1.5) upper bound

since we will not be able to get much closer to the gold

standard, unless SETH fails. Assuming SETH, our result

confirms the conjecture of Lifshits, up to No(1) factors.

One way to view this result is as an Instance Optimality
result for LCS. The exact complexity of LCS on two strings

is precisely proportional to the product of the decompressed

size N and the instance-inherent measure n of how com-

pressible they are.

RNA Folding and CFG Parsing: Next, we turn our

attention to two other fundamental problems: Context-Free

Grammar Recognition (aka Parsing) and RNA Folding. Pars-

ing is the core computer science problem in which we want

to decide whether a given string (e.g. computer code) can be

derived from a given grammar (e.g. the grammar of a pro-

gramming language). Having the ability to efficiently parse

a compressed file is certainly desirable. In RNA Folding we

are given a string over some alphabet (e.g. {A,C,G, T})
with a fixed pairing between its symbols (e.g. A−T match

and C−G match), and the goal is to compute the maximum

number of non-crossing arcs between matching letters that

one can draw above the string (which corresponds to the

minimum energy folding in two dimensions). RNA Folding

is one of the most central problems in bioinformatics, and as

we have discussed above, the ability to analyze compressed

data is important in this field. How fast can we solve these

problems?

Given an uncompressed string of size N , classical dy-

namic programming algorithms, such as the CYK parser

[22], [63], [37], solve RNA Folding in O(N3) time and Pars-

ing in O(N3 · g) time if the grammar has size g. Wikipedia

lists twenty-four parsing algorithms designed throughout

the years, all of which take cubic time in the worst case.

A theoretical breakthrough of Leslie Valiant [58] in 1975

showed that there are truly sub-cubic O(gNω) parsing

algorithms, where ω < 2.38 is the fast matrix multiplication

(FMM) exponent. However, Valiant’s algorithm has not been

used in practice due the inefficiency of FMM algorithms, and

obtaining a combinatorial3 sub-cubic time algorithm would

2SETH is the pessimistic version of P �= NP, stating that we cannot
solve k-SAT in O((2− ε)n) time, for some ε > 0 independent of and for
all constant k [33], [17].

3For the purposes of this paper, “combinatorial” should be interpreted as
any practically efficient algorithm that does not suffer from the issues of
FMM such as large constants and inefficient memory usage.
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be of major interest. Alas, it was recently proved [1] that

any improvement over these bounds implies breakthrough

k-Clique algorithms: either finding such a combinatorial

subcubic algorithm or getting any O(Nω−ε) time algorithm,

for any ε > 0, would refute the k-Clique Conjecture4. The

situation for RNA is even more interesting since Valiant’s

sub-cubic algorithm does not generalize to this case. Under

the k-Clique conjecture, the same lower bounds still apply

[1], [19], implying that any improvement will have to use

FMM. Indeed, an O(N2.82) algorithm using FMM was

recently achieved [13].
Cubic time is a real bottleneck when analyzing large

genomic data. One would hope that if we are able to

compress the data down to size n we could solve problems

like RNA Folding and Parsing in time that is much faster

than the N3 lower bounds (to simplify the discussion we

focus on combinatorial algorithms), such as n3 · No(1) or

at least n1.5N1.5, in certain analogy the LCS case. No

such algorithms were found to date, and we provide an

explanation: Decompress-and-solve cannot be beaten for

Parsing and (essentially) for RNA Folding, under the k-

Clique Conjecture. For both problems we prove a conditional

lower bound of Nω−o(1) for any kind of algorithm, and

N3−o(1) for combinatorial algorithms, even restricted to

n = O(Nε) for any ε > 0.

Theorem I.2. Assuming the k-Clique conjecture, there is
no O(Nω−ε) time algorithm for CFG Recognition or RNA
Folding for any ε > 0. Assuming the combinatorial k-
Clique conjecture, there is no combinatorial O(N3−ε) time
algorithm for CFG Recognition or RNA Folding for any
ε > 0. These results hold even restricted to instances with
n = O(Nε), and, for CFG Recognition, for a grammar size
of |Γ| = O(logN).

Approximate Pattern Matching: We continue our quest

for quantifying the possible improvements over decompress-

and-solve for basic problems. Consider the following com-

pressed versions of important primitives in text analysis

known as Approximate Pattern Matching problems. In all

these problems we assume that we are given a compressed

text T of size n (and decompressed size N ), and a com-

pressed pattern P of size m (and decompressed size M ),

both over some constant size alphabet.

• Pattern Matching with Wildcards: In this problem,

the strings contain wildcard symbols that can be re-

placed by any letter, and our goal is to decide if P
appears in T .

• Substring Hamming Distance: Compute the smallest

Hamming distance of any substring of T to P .

And a problem that generalizes both is:

4Given a graph on n nodes, the k-Clique conjecture [1] is in fact two
independent conjectures: The first one states that we cannot solve k-clique
in O(n(1−ε)·ωk/3), for any ε > 0. The second one states that we cannot
solve k-Clique combinatorially in O(n(1−ε)k) time, for any ε > 0.

• Generalized Pattern Matching: Given some cost

function on pairs of alphabet symbols, find the sub-

string T ′ of T minimizing the total cost of all pairs

(T ′[i], P [i]).
The above problems have been extensively studied both

in the uncompressed (see [21]) and in the compressed [40],

[11], [25] settings. All three problems can be solved in time

O(min{N logN,nM}) (see the full version of this paper).

Note that this bound beats the decompress-and-solve bound

when the pattern is small, but can we avoid decompressing

the pattern? We show a completely tight SETH-based lower

bound of min{N,nM}1−o(1) for all three problems, even

for constant size alphabets and in all settings where the

parameters are polynomially related.

Theorem I.3. Assuming SETH, Substring Hamming Dis-
tance and Pattern Matching with Wildcards over alphabet
{0, 1} (plus wildcards ∗) take time min{N,nM}1−o(1).
This holds even restricted to instances with n = Θ(Nαn),
M = Θ(NαM ) and m = Θ(Nαm) for any 0 < αn < 1 and
0 < αm ≤ αM ≤ 1.

Language Membership: Consider the compressed ver-

sion of the most basic language membership problems.

Assume we are given a compressed string T (again, from

size N to n).

• DFA Acceptance: Given T and a DFA F with q states,

decide whether F accepts T .

• NFA Acceptance: Given T and a NFA F with q states,

decide whether F accepts T .

Classic algorithms solve the DFA Acceptance problem in

time O(min{nq,N + q}) [47], [32], and we prove a match-

ing SETH-based lower bound of min{nq,N + q}1−o(1).

Theorem I.4. Assuming SETH, there is no algorithm for
DFA Acceptance in time O(min{nq,N}1−ε) for any ε > 0.
This holds even restricted to instances with constant alpha-
bet size, N = Θ(nαN ) and q = Θ(nαq ) for any αN > 1
and αq > 0.

For the NFA problem, the classic algorithms give

O(min{nqω, Nq2}) [44], [47], [32]. For combinato-

rial algorithms, we prove a matching lower bound of

min{nq3, Nq2}1−o(1), under the (combinatorial) k-Clique

conjecture.

Theorem I.5. Assuming the combinatorial k-Clique con-
jecture, there is no combinatorial algorithm for NFA Accep-
tance in time O(min{nq3, Nq2}1−ε) for any ε > 0. This
holds even restricted to instances with constant alphabet
size, n = Θ(qαn) and N = Θ(qαN ) for any αN ≥ αn > 0.

Disjointness, Hamming Distance, and Subsequence:
Could it be that for other, even more basic problems the

decompress-and-solve bound cannot be beaten? One candi-

date might be Disjointness, the canonical hard problem in

Communication Complexity.
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• Disjointness: Given two equal-length bit-strings, is

there a coordinate in which both are 1?

The following two natural problems are at least as hard

as Disjointness (for a proof, see the full version).

• Hamming Distance: Compute the Hamming Distance

of two strings.

• Subsequence: Decide if a pattern of length M is a

subsequence of a text of length N .

Note that all these problems can be solved trivially in

O(N) time if our strings are uncompressed. Could it be

that we cannot solve them without decompressing our data?

We are not aware of any known algorithms solving any of

these problems in O(N1−ε) time, for any ε > 0, even when

our strings are compressed into size n = O(Nα) for some

small constant α > 0. The only exceptions are the known

Õ(M) time algorithms [24], [18], [55], [62], [57], [10] for

the Subsequence problem, which beat the decompress-and-

solve bound when the pattern is significantly smaller than

the text. However, in the case M = Θ(N) no improvements

seem to be known.

We summarize our attempts at proving a matching lower

bound. For combinatorial algorithms and a certain parameter

setting, we obtain a N1−o(1) lower bound for the Subse-

quence problem under the combinatorial k-Clique conjec-

ture.

Theorem I.6. The Subsequence problem has no combina-
torial O(N1−ε) time algorithm for any ε > 0 in the setting
N = Θ(M) = Θ(n2) = Θ(m2) and |Σ| = O(Nε),
assuming the combinatorial k-Clique conjecture.

Under the Strong k-SUM Conjecture5 we are able to prove

an N1/3−o(1) for Disjointness even when n = O(Nε) for

any ε > 0.

Theorem I.7. Let k ≥ 1 be an integer. Consider the Dis-
jointness problem with N = M = Θ(n3k+1) = Θ(m3k+1).
Solving the Disjointness problem in this setting requires
N

1
3+

2
9k+3−o(1) time assuming the Strong (2k + 1)-SUM

conjecture.

The same lower bounds follow for Hamming Distance and

Subsequence by the following reductions.

Theorem I.8. The Disjointness problem can be reduced
to the Subsequence problem and the Hamming Distance
problem. These reductions lose at most constant factors in
the length of compressed and decompressed sequences.

The gap from the O(N) upper bound is still large.

Motivated by our inability to prove tight lower bounds

for these basic problems, despite seemingly having the

right framework, we have turned our attention to upper

bounds. In particular, we obtain the first improvement over

5The conjecture that, given a set of n integers bounded by n�k/2�,
finding k integers that sum to zero requires time n�k/2�−o(1).

the decompress-and-solve bound for Disjointness, Hamming

Distance, and Subsequence. Our algorithms solve all these

problems in O(n1.410 ·N0.593) time.

Theorem I.9. The Subsequence problem and the Hamming
Distance problem can be solved in time

Õ
(
max(m,n)2−1/ log2(2ϕ) ·N1/ log2(2ϕ)

)
= Õ

(
max(m,n)1.409... ·N0.592...

)
,

where ϕ = 1+
√
5

2 is the golden ratio.

The same result for the Disjointness problem follows

from Theorem I.8. As a side result, we also design a

very simple algorithm for the Subsequence problem with

O((n|Σ|+M) logN) runtime (provided in the full version),

which is comparable to the known but more involved algo-

rithms [10].

One of the biggest benefits of having complexity theoretic

results is that algorithm designers know what to focus on.

We believe that these upper bounds can be improved further

and suggest it as an interesting open question: What is the
time complexity of computing Disjointness on two grammar-
compressed strings?

C. Technical Overview

From a technical perspective, our paper is most related

to the conditional lower bounds for sequence similarity

measures on strings and curves that have been shown in

recent years, specifically, the SETH-based lower bounds for

edit distance [8], longest common subsequence [2], [15],

Fréchet distance [12], and others [4], [9], [14], [48].

These results all proceed as follows. Let φ be a given

k-SAT instance on ñ variables and clauses C1, . . . , Cm̃.

We can assume that m̃ = O(ñ) by the Sparsification

Lemma [34]. Split the ñ variables into two halves X1 and X2

of size ñ/2. Enumerate all assignments α1, . . . , α2ñ/2 of the

variables in X1. For any assignment αi and any clause C�,

denote by sat(αi, C�) whether αi satisfies C�, i.e., whether

some variable in X1 appears in C� (negated or unnegated)

and is set by αi so that C� is satisfied. Similarly, consider

the assignments β1, . . . , β2ñ/2 of X2. By construction, we

can solve the k-SAT instance φ by testing whether there

are αi, βj such that sat(αi, C�) ∨ sat(βj , C�) holds for all

� ∈ [m̃]. Making use of this fact, all previous conditional

lower bounds for sequence similarity measures essentially

construct the following natural sequence:

W = sat(α1, C1) . . . sat(α1, Cm̃)

. . . sat(α2n/2 , C1) . . . sat(α2n/2 , Cm̃)

= ©
i∈[2ñ/2]

©
�∈[m̃]

sat(αi, C�).

One typical variation of this string is to replace the

bits {0, 1}, indicating whether sat(αi, C�) holds, by two

short strings {B(0), B(1)}. Other typical variations are

196



to add appropriate padding strings around the substrings

©�∈[m̃] sat(αi, C�) or around the whole sequence W . These

paddings typically only depend on n and m̃. Constructing a

second sequence W ′ with αi replaced by βi, one can then

try to emulate the search for the half-assignments αi, βj by a

similarity measure on W,W ′. All previous reductions follow

this recipe, and thus construct a sequence like W .

Is W compressible?: For our purposes we need to

construct compressible strings. Considering the entropy, the

string W is very well compressible, since it only depends

on the Õ(ñ) input bits of the sparse k-SAT instance φ.

This entropy Õ(ñ) is extremely small compared to the

length O(ñ2ñ/2) of W . However, considering grammar-

compression, the sequence W is a bad representation,

since W is not generated by any SLP of size o(2ñ/2/ñ)
in general! To see this, first observe that all substrings

©�∈[m̃] sat(αi, C�) of W can potentially be different, mean-

ing that W can have 2ñ/2 different substrings of length

m̃. This happens e.g. if for each variable xi ∈ X there

is a clause Ci consisting only of xi (which makes the k-

SAT instance trivial, but shows that W may have many

different substrings in general). Second, observe that for

any SLP T consisting of n non-terminals S1 . . . Sn and

for any length L ≥ 1 the generated string eval(T ) has at

most n · L different substrings of length L. Indeed, a rule

Si → S�Sr can only create a new substring, that is not

already contained in eval(S�) or eval(Sr), if this substring

overlaps the boundary between eval(S�) and eval(Sr) in

eval(Si). Hence, the rule Si → S�Sr can contribute at most

L new substrings of length L, amounting to at most nL
different substrings overall. Combining these two facts, with

L = m̃ = O(ñ), we see that W in general has no SLP of

size o(2ñ/2/ñ).

Hence, the standard approach to conditional lower bounds

for sequence similarity measures fails in the compressed

setting, and it might seem like (SETH-based) conditional

lower bounds are not applicable here.

A compressible sequence T : On the contrary, we show

that by simply inverting the ordering we obtain a very well

compressible string:

T = sat(α1, C1) . . . sat(α2n/2 , C1)

. . . sat(α1, Cm̃) . . . sat(α2n/2 , Cm̃)

= ©
�∈[m̃]

©
i∈[2ñ/2]

sat(αi, C�).

The difference between W and T might seem negligible,

but it greatly changes the game of emulating k-SAT by a

sequence similarity measure: In W we are looking for a

local structure (a small substring) that “fits together” with

a local structure in a different string W ′. In T we have to

ensure the choice of a consistent offset Δ ∈ [n] and “read”

the symbols T [Δ], T [Δ + 2ñ/2], . . . , T [Δ + (m̃ − 1)2ñ/2],
which seems much more complicated.

T is compressible to an SLP T of size O(ñ2), which

is much smaller than the Ω(2ñ/2/ñ) bound for W . Indeed,

consider a substring ©i∈[2ñ/2] sat(αi, C�). We may assume

that no variable appears more than once in C�. Consider the

following SLP rules, for 1 ≤ i ≤ ñ/2,

A0 → 1,

Ai → Ai−1Ai−1,

S0 → 0,

Si →

⎧⎪⎨
⎪⎩
Si−1Ai−1 if xi appears in C�

Ai−1Si−1 if ¬xi appears in C�

Si−1Si−1 otherwise

We clearly have eval(Ai) = 12
i

. Moreover, if ¬xi appears

in C�, then for xi = 0, no matter what we choose for

x1, . . . , xi−1, we have sat(αj , C�) = 1, and thus we may

write Ai−1. For xi = 1 we note that the value sat(αj , C�)
only depends on the remaining variables x1, . . . , xi−1, and

thus we may write Si−1. Along these lines, one can check

that eval(Sñ/2) = ©i∈[2ñ/2] sat(αi, C�). Creating such an

SLP for each � ∈ [m̃] and constructing their concatenation,

we obtain an SLP of size O(m̃ñ) = O(ñ2) generating T .

Example Lower Bound: Pattern Matching with Wild-
cards: In the remainder of this section, we present an

easy example for a conditional lower bound on compressed

strings, namely for the problem Pattern Matching with

Wildcards. Here we consider an alphabet Σ and we say that

symbols σ, σ′ ∈ Σ ∪ {∗} match if σ = ∗ or σ′ = ∗ or

σ = σ′. We say that two equal-length strings X,Y (over

alphabet Σ ∪ {∗}) match if X[i] and Y [i] match for all

i. Given a text T of length N and a pattern P of length

M ≤ N , the task is to decide whether P matches some

length-M substring of T .

Let φ be a k-SAT instance as above, but this time let

α1, . . . , α2ñ be all the assignments of the ñ variables in φ.

We define the text T and pattern P by

T = ©
�∈[m̃]

©
i∈[2ñ]

sat(αi, C�) P = 1(∗2ñ−11)m̃−1.

Note that P matches some substring of T if and only if there

is an offset Δ ∈ [2ñ] such that T [Δ] = T [Δ + 2ñ] = . . . =
T [Δ + (m̃ − 1)2ñ] = 1, which happens if and only if αΔ

is a satisfying assignment of φ. Hence, we constructed an

equivalent instance of Pattern Matching with Wildcards.

Analogously to above, one can show that T is generated

by an SLP T of size n = O(ñ2) that can be computed in

time O(ñ2). Similarly, it is easy to see that P is generated

by an SLP P of size O(ñ) that can be computed in time

O(ñ). Hence, the reduction runs in time O(ñ2). We stress

that we define strings T, P of exponential length in ñ, but in

the reduction we never explicitly write down any such string,

but we simply construct compressed representations. Since

the resulting strings have length O(2ññ), any O(N1−ε) time

algorithm for Pattern Matching with Wildcards would imply

an algorithm for k-SAT in time O(2(1−ε)ñpoly(ñ)), contra-

dicting the Strong Exponential Time Hypothesis (SETH).
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Note that this conditional lower bound of N1−o(1) holds

even for strings compressible to size polylog(N).

In Section III we analyze Pattern Matching with Wildcards

in more detail and show that the optimal running time,

conditional on SETH, is min{N,nM}1±o(1), and this holds

for all settings of the text length N , the compressed text size

n, the pattern length M , and the compressed pattern size m.

In Pattern Matching with Wildcards, we got a consistent

choice of an offset Δ for free. It is much more complicated

to achieve this for other problems such as Longest Common

Subsequence, CFG Parsing, or RNA Folding. This overview

summarized the main technical contributions of this paper,

but left out many problem-specific tricks that can be found

in the subsequent proofs, and that we think will find more

applications for analyzing problems on compressed strings.

II. PRELIMINARIES

Here we give general preliminaries on strings, straight-line

programs, and hardness assumptions. For a positive integer

n we let [n] = {1, . . . , n}, while for a proposition A we let

[A] be 1 if A is true and 0 otherwise.

Strings: Let Σ be a finite alphabet. In most parts of

this paper we assume that |Σ| = O(1), but in exceptional

cases we allow the alphabet to grow with the input size. For a

string T over alphabet Σ, we write |T | for its length, T [i] for

its i-th symbol, and T [i..j] for the substring from position

i to position j. For two strings T, T ′ we write T ◦T ′, or

simply T T ′, for their concatenation. For k ≥ 1 we let T k :=
©k

i=1 T .

Straight-Line Programs (SLPs): An SLP T is a set of

non-terminals S1, . . . , Sn, each equipped with a rule of the

form (1) Si → σ for some σ ∈ Σ or (2) Si → S�(i), Sr(i)

with �(i), r(i) < i. The string T generated by SLP T is

recursively defined as follows. For a rule Si → σ we let

eval(Si) := σ, and for a rule Si → S�(i), Sr(i) we let

eval(Si) := eval(S�(i)) ◦ eval(Sr(i)). Then T = eval(T ) :=
eval(Sn) is the string generated by SLP T . Note that an

SLP is a context-free grammar describing a unique string;

so T is a grammar-compressed representation of T . We call

|T | = n the size of T . See Figure 1 for the depiction of an

SLP; in particular note the difference between the directed
acyclic graph that is the compressed representation T and

the parse tree that we obtain by decompressing T to a tree

whose leaves spell the decompressed text T .

Observation II.1. For any string T and k ≥ 1, there is an
SLP of size O(|T |+ log k) generating the string T k.

In all problems considered in this paper, the input contains

a text T given by a grammar-compressed representation T ,

such that T = eval(T ). We always denote by N = |T | the

length of the text and by n = |T | the size of its represen-

tation. Sometimes we are additionally given a pattern P by

a grammar-compressed representation P , and we denote the

pattern length by M = |P | and its representation size by

m = |P|.

A. Hardness Assumptions

The Strong Exponential Time Hypothesis (SETH) was

introduced by Impagliazzo, Paturi, and Zane [34] and as-

serts that the central NP-hard satisfiability problem has no

algorithms that are much faster than exhaustive search.

Conjecture II.2 (SETH). There is no ε > 0 such that for
all k ≥ 3, k-SAT on n variables can be solved in time
O(2(1−ε)n).

Effectively all known SETH-based lower bounds for

polynomial-time problems use reductions via the Orthogonal
Vectors problem (OV): Given sets A, B ⊆ {0, 1}d of size

|A| = A, |B| = B, determine whether there exist vectors

a ∈ A, b ∈ B with
∑d

i=1 a[i] · b[i] = 0. Simple algorithms

solve OV in time O(2d(A+B)) and O(dAB). For A = B
and d = c(A) logA the fastest known algorithm runs in time

A2−1/O(log c(A)) [5], which is only slightly subquadratic for

d� logA. This has led to the following conjecture, which

follows from SETH [60].

Conjecture II.3 (OV). For any ε > 0 and β > 0, on
instances with B = Θ(Aβ) OV has no O(A1+β−εpoly(d))
time algorithm.

It is known that if this conjecture holds for some β > 0
then it holds for all β > 0, see e.g. [15].

More generally, for k ≥ 2 we say that a tuple (a1, . . . , ak)
with ai ∈ {0, 1}d is orthogonal if for all � ∈ [d] there

exists an i ∈ [k] such that ai[�] = 0. In the k-OV problem

we are given a set A ⊆ {0, 1}d of size A and want to

determine whether there is an orthogonal tuple (a1, . . . , ak)
with ai ∈ A. The fastest known algorithm for k-OV is to run

an easy reduction to OV and then solve OV. The following

conjecture follows from SETH.

Conjecture II.4 (k-OV). For any ε > 0 and k ≥ 2, k-OV
is not in time O(Ak−εpoly(d)).

For details on the k-Clique and (Strong) k-SUM conjec-

ture see the full version.

III. APPROXIMATE PATTERN MATCHING AND

SUBSTRING HAMMING DISTANCE

We study the following generalization of pattern match-

ing.

Problem III.1 (Generalized Pattern Matching). Given a text
T of length N by an SLP T of size n, a pattern P of
length M by an SLP P of size m, both over some alphabet
Σ, and given a cost function cost : Σ × Σ → N, compute
min0≤i≤N−M

∑M
j=1 cost(P [j], T [i+ j]), i.e., the minimum

total cost of any alignment.
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S1 → 0
S2 → 1
S3 → S1 S2

S4 → S3 S2

S5 → S3 S1

S6 → S5 S4

(a)

S6

S5

S3

S1

0

S2

1

S1

0

S4

S3

S1

0

S2

1

S2

1

(b)
0

1

S1

S2

S3

S4

S5

S6

(c)

Figure 1: (a) An SLP generating the sequence 010011. (b) The corresponding parse tree. (c) The acyclic graph corresponding

to the SLP.

In other words, we want to compute the length-M sub-

string T ′ of T minimizing the total cost of aligned symbols

in P and T ′. This problem has two important special

cases: (1) We obtain Substring Hamming Distance when

cost(σ, σ′) = [σ �= σ′] for any σ, σ′ ∈ Σ. (2) We obtain

Pattern Matching with Wildcards when T is over alphabet

Σ and P is over alphabet Σ ∪ {∗}, we have cost(∗, σ) = 0
for any σ ∈ Σ and cost(σ, σ′) = [σ �= σ′] for any σ, σ′ ∈ Σ,

and the task is to decide whether the minimum total cost of

any alignment is 0.

In this section, for all three problems we show an upper

bound of O(min{|Σ|N logN,nM}) and a SETH-based

lower bound of min{N,nM}1−o(1). This yields a tight

bound in case of constant alphabet size, as the lower bound

constructs constant-alphabet strings. We leave it as an open

problem to get tight bounds for larger alphabet size.

Note that it suffices to prove the upper bound for Gener-

alized Pattern Matching and the lower bound for the special

cases Substring Hamming Distance and Pattern Matching

with Wildcards. The following upper bound follows from

standard arguments and is proven in the full version.

Lemma III.2. Generalized Pattern Matching can be solved
in time O(min{|Σ|N logN,nM}).

It remains to prove the SETH-based lower bound of

min{N,nM}1−o(1) for Substring Hamming Distance and

Pattern Matching with Wildcards.

Recall the intuition given in Section I-C. We aim to make

it more formal, however, to increase clarity of presentation

and the generality of the result, we do not reduce directly

from SAT but from k-OV. We start by designing a text T
that enumerates all combinations of k vectors in a given k-

OV instance, while still being well compressible. As usual,

we consider k as a constant.

Lemma III.3. Consider a k-OV instance A =
{a1, . . . , aA} ⊆ {0, 1}d. Let b ∈ {0, 1}d be an additional
vector, and let S(0), S(1) be strings of length γ (S(i) is

a sequence that represents an entry that is equal to i). We
define the tuplified representation as follows:

V = tuplify
(
A, k, b, S(0), S(1)

)
:=

d

©
�=1

©
i1,...,ik∈[A]

S
(
b[�] · ai1 [�] · · · aik [�]

)
,

where the second © goes over all tuples (i1, . . . , ik) ∈ [A]k
in lexicographic order. This representation satisfies the fol-
lowing properties.

1) We can compute, in linear time in the output size, an
SLP V generating V of size O(dA+ γ) or, when given
SLPs S(0),S(1) generating S(0), S(1), of size O(dA+
|S(0)|+ |S(1)|).

2) Write V = ©dAk

i=1 Vi with Vi ∈ {S(0), S(1)}. Then
there exist i1, . . . , ik ∈ [A] such that (b, ai1 , . . . , aik) is
orthogonal if and only if there is an offset 1 ≤ Δ ≤ Ak

such that

VΔ = VΔ+Ak = . . . = VΔ+(d−1)Ak = S(0).

Proof: For the second property, note that by definition

VΔ, VΔ+Ak , . . . , VΔ+(d−1)Ak are all equal to S(0) for Δ ∈
[Ak] if and only if the Δ-th tuple (i1, . . . , ik) ∈ [A]k in the

lexicographic ordering of [A]k satisfies

b[�] · ai1 [�] · · · aik [�] = 0 for all � ∈ [d].
This condition is equivalent to (b, ai1 , . . . , aik) being an

orthogonal pair, so the claim follows.

It remains to construct a short SLP V generating V .

We construct non-terminals PS(0), PS(1) with eval(PS(i)) =
S(i) by an SLP of size γS = O(γ) as in Observation II.1,

or of size γS = O(|S(0)| + |S(1)|) by using given SLPs

S(0),S(1). We can extend this, using Observation II.1, to a

slightly larger SLP of size O(logA+ γS) that includes, for

every 1 ≤ j ≤ k, a non-terminal P j
S(0) with eval(P j

S(0)) =

S(0)A
j

.

The crucial observation is the following: for any tuple

(i1, . . . , ik) ∈ [A]k, let p�(i1, . . . , ik) = ai1 [�] · · · aik [�].
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Then for any � ∈ [d], j ∈ [k] and (i1, . . . , ij) ∈ [A]j , we

have that aij [�] = 0 implies p�(i1, . . . , ij , i
′
j+1, . . . , i

′
k) = 0

for all (i′j+1, . . . , i
′
k) ∈ [A]k−j . We now define the final

SLP using the starting non-terminal S0 and the following

productions

S0 → Test1 . . .Testd

Test� →
{
P k
S(0) if b[�] = 0

List
(1)
� otherwise

� ∈ [d],

List
(j)
� → ©

i∈[A]

{
P k−j
S(0) if ai[�] = 0,

List
(j+1)
� otherwise

� ∈ [d], j ∈ [k],

List
(k+1)
� → PS(1).

It is straight-forward to verify that eval(S0) = V . Note that

the size of this SLP, i.e., the total number of non-terminals

on the right hand side of the above rules, is bounded by

O(γS+dA). Moreover, the SLP can be constructed in linear

time in its size.

After this preparation, we can prove the lower bound of

Theorem I.3 for Pattern Matching with Wildcards.

Theorem III.4. Assuming the k-OV conjecture, Pattern
Matching with Wildcards over alphabet {0, 1} (plus wild-
cards ∗) takes time min{N,nM}1−o(1). This holds even re-
stricted to instances with n = Θ(Nαn), M = Θ(NαM ) and
m = Θ(Nαm) for any 0 < αn < 1 and 0 < αm ≤ αM ≤ 1.

Before we prove Theorem III.4, let us sketch the main

idea by providing a simple N1−o(1)-time conditional lower

bound in the setting n,m = O(Nε) and N = Θ(M).
Let A ⊆ {0, 1}d of size A be an arbitrary k-OV instance

with k > 1/ε, and assume for simplicity d ≤ Ao(1).

Using Lemma III.3 on A, k, S(0) = 0, S(1) = 1 and

b = (1, . . . , 1) ∈ {0, 1}d, we compute an SLP T for

T = tuplify(A, k, b, S(0), S(1)).
We define the pattern P as

P = 0(∗Ak−10)d−1.

Note that Pattern Matching with Wildcards on instance

T, P checks whether for some offset Δ we have T [Δ] =
T [Δ + Ak] = . . . = T [Δ + (d − 1)Ak] = 0. Hence, by

Lemma III.3, pattern P matches T if and only if there is an

orthogonal tuple (a1, . . . , ak) ∈ Ak, showing correctness of

the reduction.

Note that we have N = Θ(M) = Θ(dAk). By

Lemma III.3, T has an SLP of size O(dA), and by Observa-

tion II.1, P has an SLP of size O(d logA). By d ≤ Ao(1) and

k > 1/ε, we are indeed in the setting n,m = O(Nε) and

N = Θ(M). An O(N1−ε) algorithm for Pattern Matching

with Wildcards would now imply an O(Ak(1−ε)poly(d)) for

k-OV, contradicting the k-OV conjecture.

We now give the slightly more involved general construc-

tion.

Proof of Theorem III.4: For k ≥ 2, let A =
{a1, . . . , aA} be a k-OV instance in d dimensions, and

let k1, k2 ≥ 1 with k1 + k2 = k. We will construct

an equivalent instance of Pattern Matching with Wildcards

with N = O(dAk), M = O(dAk1), n = O(dAk2+1),
and m = O(d logA). Any O(min{N,nM}1−ε) algorithm

for Pattern Matching with Wildcards would then imply

an algorithm for k-OV in time O(A(k+1)(1−ε)poly(d)) =
O(Ak(1−ε/2)poly(d)) for k ≥ 2/ε, contradicting the k-OV

conjecture. Below we strengthen this statement to hold re-

stricted to instances with n = Θ(Nαn), M = Θ(NαM ) and

m = Θ(Nαm) for any 0 < αn < 1 and 0 < αm ≤ αM ≤ 1.

To give such a reduction, we define the text as

T = ©
(j1,...,jk2

)

∈[A]k2

1A
k1 ◦ tuplify(A, k1,min(aj1 , . . . , ajk2

), 0, 1),

where min(b1, . . . , b�) denotes the component-wise mini-

mum of b1, . . . , b�.
We define the pattern P as

P = 0(∗Ak1−10)d−1.

Correctness: Observe that P cannot overlap any

1A
k1

-block, since never more than Ak1 − 1 wildcards

are followed by a 0 in P . Thus, P matches T if

and only if there is a tuple (j1, . . . , jk2) ∈ [A]k2

such that P matches T ((j1, . . . , jk2)) :=
tuplify(A, k1,min(aj1 , . . . , ajk2

), 0, 1). By the

structure of the pattern, P matches any string

S if and only if there is an offset Δ such that

S[Δ] = S[Δ + Ak1 ] = · · · = S[Δ + (d − 1)Ak1 ] = 0.

Thus, by Lemma III.3, P matches T ((j1, . . . , jk2))
if and only if there are vectors a1, . . . , ak1 ∈ A
for which (a1, . . . , ak1

,min(aj1 , . . . , ajk2
)) is an

orthogonal tuple. The latter condition is equivalent to

(a1, . . . , ak1
, aj1 , . . . , ajk2

) being an orthogonal tuple.

Since k1 + k2 = k and T contains T ((j1, . . . , jk2)) for all

(j1, . . . , jk2) ∈ [A]k2 , this proves that P matches T if and

only if there is an orthogonal k-tuple in the instance A.

Size Bounds: Note that N = |T | = O(dAk). By

Lemma III.3 and Observation II.1, we can compute an

SLP T of size n = O(dAk2+1) generating T , in linear

time. Similarly, note that M = |P | = O(dAk1). By

Observation II.1, we can compute an SLP P of length

m = O(d logA) generating P , in linear time. This proves

the claimed bounds.

Strengthening the Statement: We now prove the lower

bound restricted to instances with n = Θ(Nαn), M =
Θ(NαM ) and m = Θ(Nαm) for any 0 < αn < 1
and 0 < αm ≤ αM ≤ 1. Let ε > 0 and set β :=
min{1, αM+αn}. We choose k1, k2 ≥ 1 such that k1+k2 =
k and k1 ≈ min{αM , 1 − αn}k/β and k2 ≈ αnk/β.

Note that k1, k2 are restricted to be integers, however,

for sufficiently large k depending only on ε, αM , αn, we
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can ensure k1 ≤ (1 + ε/4)min{αM , 1 − αn}k/β and

k2 + 1 ≤ (1 + ε/4)αnk/β. Note that for the dimension d
we can assume d ≤ A, since otherwise an O(Ak−εpoly(d))
algorithm clearly exists. In particular, for sufficiently large

k we have d ≤ A(ε/4)·min{αM ,αm,αn,1−αn}k/β . This yields

N = O(dAk) = O(A(1+ε/2)k/β),

M = O(dAk1) = O(A(1+ε/2)αMk/β),

n = O(dAk2+1) = O(A(1+ε/2)αnk/β),

m = O(d logA) = O(A(1+ε/2)αmk/β).

Standard padding6 of these four parameters allows us to

achieve equality, up to constant factors, in the above in-

equalities, which yields the desired n = Θ(Nαn), M =
Θ(NαM ) and m = Θ(Nαm). Any O(min{N,nM}1−ε)
algorithm for Pattern Matching with Wildcards in this

setting would now imply an algorithm for k-OV in

time O(min{A(1+ε/2)k/β , A(1+ε/2)(αM+αn)k/β}1−ε) =
O(A(1+ε/2)(1−ε)min{1,αM+αn}k/β) = O(A(1−ε/2)k), where

we used the definition of β and (1+ ε/2)(1− ε) ≤ 1− ε/2.

This contradicts the k-OV conjecture, finishing the proof.

We obtain the analogous result for Substring Hamming

Distance by a linear-time reduction from Pattern Matching

with Wildcards which is provided in the full version.

Theorem III.5. Assuming the k-OV conjecture, Substring
Hamming Distance on constant-size alphabet takes time
min{N,nM}1−o(1). This holds even restricted to instances
with n = Θ(Nαn), M = Θ(NαM ) and m = Θ(Nαm) for
any 0 < αn < 1 and 0 < αm ≤ αM ≤ 1.

IV. CONCLUSION

With this paper we started the fine-grained complexity of

analyzing compressed data, thus providing lower bound tools

for a practically highly relevant area. We focused on the most

basic problems on strings, leaving many other stringology

problems for future work. Besides strings, there is a large

literature on grammar-compressed other forms of data, e.g.

graphs. It would be interesting to apply our framework and

classify the important problems in these contexts as well.

Specifically, we leave the following open problems.

• Determine the optimal running time for the Disjoint-

ness, Hamming Distance, and Subsequence problems.

• Generalize our lower bound for LCS to Edit Distance.

• For NFA Acceptance we obtained tight bounds in case

of a potentially dense automaton with q states and up

to O(q2) transitions. Prove tight bounds for the case of

sparse automata with O(q) transitions.

• For large (i.e. superconstant) alphabet size, some

bounds given in this paper are not tight, most promi-

nently for Generalized Pattern Matching, Substring

6Add a prefix of wildcards to the pattern and a prefix of 1’s to the text,
and partially decompress the SLPs.

Hamming Distance, and Pattern Matching with Wild-

cards. Determine the optimal running time in this case.

• For all lower bounds presented in this paper, check

whether they can be improved to work for binary

strings.
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