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Abstract—In the communication problem UR (uni-
versal relation) [25], Alice and Bob respectively receive
x, y ∈ {0, 1}n with the promise that x �= y. The last
player to receive a message must output an index i such
that xi �= yi. We prove that the randomized one-way
communication complexity of this problem in the public
coin model is exactly Θ(min{n, log(1/δ) log2( n

log(1/δ)
)})

for failure probability δ. Our lower bound holds even
if promised support(y) ⊂ support(x). As a corollary,
we obtain optimal lower bounds for �p-sampling in strict
turnstile streams for 0 ≤ p < 2, as well as for the problem
of finding duplicates in a stream. Our lower bounds do
not need to use large weights, and hold even if promised
x ∈ {0, 1}n at all points in the stream.

We give two different proofs of our main result. The
first proof demonstrates that any algorithm A solving
sampling problems in turnstile streams in low memory
can be used to encode subsets of [n] of certain sizes
into a number of bits below the information theoretic
minimum. Our encoder makes adaptive queries to A
throughout its execution, but done carefully so as to
not violate correctness. This is accomplished by injecting
random noise into the encoder’s interactions with A,
which is loosely motivated by techniques in differential
privacy. Our correctness analysis involves understanding
the ability of A to correctly answer adaptive queries
which have positive but bounded mutual information with
A’s internal randomness, and may be of independent
interest in the newly emerging area of adaptive data
analysis with a theoretical computer science lens. Our
second proof is via a novel randomized reduction from
Augmented Indexing [30] which needs to interact with A
adaptively. To handle the adaptivity we identify certain
likely interaction patterns and union bound over them to
guarantee correct interaction on all of them. To guarantee
correctness, it is important that the interaction hides some

This paper is a merger of [33], and of work of Kapralov, Woodruff,
and Yahyazadeh.

of its randomness from A in the reduction.

Keywords—streaming, lower bounds, �p-sampling

I. INTRODUCTION

In turnstile �0-sampling, a vector z ∈ Rn starts as
the zero vector and receives coordinate-wise updates
of the form “zi ← zi + Δ” for Δ ∈ {−M,−M +
1, . . . ,M}. During a query, one must return a uniformly
random element from support(z) = {i : zi �= 0}.
The problem was first defined in [15], where a data
structure (or “sketch”) solving it was used to estimate
the Euclidean minimum spanning tree, and to pro-
vide ε-approximations of a point set in a geometric
space. Sketches for �0-sampling were also used to
solve various dynamic graph streaming problems in
[1] and since then have been crucially used in almost
all known dynamic graph streaming algorithms1, such
as for: connectivity, k-connectivity, bipartiteness, and
minimum spanning tree [1], subgraph counting, mini-
mum cut, and cut-sparsifier and spanner computation
[2], spectral sparsifiers [3], maximal matching [10],
maximum matching [1], [8], [27], [6], [9], [5], vertex
cover [10], [9], hitting set, b-matching, disjoint paths,
k-colorable subgraph, and several other problems [9],
densest subgraph [7], [29], [13], vertex and hyperedge
connectivity [18], and graph degeneracy [14]. For an
introduction to the power of �0-sketches in designing
dynamic graph stream algorithms, see [28, Section 3].
Such sketches have also been used outside streaming,
such as in distributed algorithms [19], [34] and data
structures for dynamic connectivity [24], [37], [16].

Given the rising importance of �0-sampling in algo-
rithm design, a clear task is to understand the exact

1The spectral sparsification algorithm of [22] is a notable exception.
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reference problem distribution k > 1? δ = o(1)?
[15] Euclidean minimum spanning tree �0 yes

[1] connectivity2 any yes

[1] k-connectivity2 any yes

[1] bipartiteness2 any yes
[1] minimum spanning tree any yes
[2] subgraph counting �0 yes
[2] minimum cut any yes
[2] cut sparsifiers any yes
[2] spanners any yes yes
[2] spectral sparsifiers any yes

[10] maximal matching �0 yes yes
[8] maximum matching (unweighted) �0 yes

maximum matching (weighted) �0 yes yes
[27] maximum matching any yes yes
[6] maximum matching �0 yes
[5] maximum matching �0 yes
[9] maximum matching �0 yes

vertex cover
hitting set
b-matching

disjoint paths
k-colorable subgraph

[7] densest subgraph �0 yes
[29] densest subgraph �0 yes yes
[13] densest subgraph �0 yes
[18] vertex connectivity any yes

hyperedge connectivity
[14] graph degeneracy �0 yes

Fig. 1. Guarantees needed by various works using samplers as subroutines. The last two columns indicate whether the work needs to use a
sampler that returns k samples at a time when queried for some k > 1, or for some subconstant failure probability δ even to achieve failure
probability 1/3 in the main application. The “distribution” column indicates the output distribution needed from the sampler for the application
(“any” means a support-finding subroutine is sufficient, i.e., it suffices for a query to return any index i for which zi �= 0).

complexity of this problem. The work [20] gave an
Ω(log2 n)-bit space lower bound for data structures
which solve even the case M = 1 and which fail with
constant probability δ (meaning query responses are δ-
close to the uniform in support(z)). They also gave
an upper bound for M ≤ poly(n) with failure prob-
ability δ, which in fact gave min{‖z‖0,Θ(log(1/δ))}
uniform samples from the support of z, using space
O(log2 n log(1/δ)) (here ‖z‖0 denotes | support(z)|).
Thus we say their data structure actually solves the
harder problem of �0-samplingk for k = Θ(log(1/δ))
with failure probability δ, where in �0-samplingk the
goal is to recover min{‖z‖0, k} uniformly random
elements, without replacement, from support(z). The
upper and lower bounds in [20] thus match up to a
constant factor for k = 1 and δ a constant. We note
though in many settings, even if the final application
desires constant failure probability, �0-samplingk with
either failure probability o(1) or k > 1 (or both) is
needed as a subroutine (see Figure 1).

Universal relation. The work of [20] obtains its
lower bound for �0-sampling (and some other problems)
via reductions from universal relation (UR). This prob-
lem was defined in [25] and arose in connection with
the work [26] on circuit depth lower bounds. In this
problem, Alice and Bob are given x, y ∈ {0, 1}n with
the promise x �= y. The players must then agree on
any index i with xi �= yi (in the variant we study, we
are satisfied if only one of the players determines such
an i). The deterministic communication complexity of
UR is nearly completely understood, with upper and
lower bounds that match up to an additive 3 bits, even
if one imposes an upper bound on the number of rounds
of communication [35]. Henceforth we also consider
a generalized problem URk, where the output must
be min{k, ‖x − y‖0} distinct indices on which x, y
differ. We also use UR⊂,UR⊂k to denote the variants
when promised support(y) ⊂ support(x), and also
Bob knows ‖x‖0. Clearly UR,URk can only be harder
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than UR⊂,UR⊂k , respectively.

More than twenty years after its initial introduction
in connection with circuit depth lower bounds, Jowhari
et al. in [20] demonstrated the relevance of UR in the
randomized one-way communication model for obtain-
ing space lower bounds for certain streaming problems,
such as various sampling problems and finding dupli-
cates in streams. In the one-way version, Bob simply
needs to find such an index i after a single message
from Alice, and we only charge Alice’s single mes-

sage’s length as the communication cost. If R→,pub
δ (f)

denotes the randomized one-way communication com-
plexity of f in the public coin model with failure
probability δ, [20] showed that the space complexity
of FindDuplicate(n) with failure probability δ is at

least R→,pub
7
8+

δ
8

(UR). In FindDuplicate(n), one is given

a length-(n + 1) stream of integers in [n], and the
algorithm must output some element i ∈ [n] which ap-
peared at least twice in the stream (note that at least one
such element must exist, by the pigeonhole principle).
The work [20] then showed a reduction demonstrating
that any solution to �0-sampling with failure probability
δ in turnstile streams immediately implies a solution
to FindDuplicate(n) with failure probability at most
(1 + δ)/2 in the same space (and thus the space must

be at least R→,pub
15
16+

δ
16

(UR)). The same result is shown

for �p-sampling for any p > 0, in which the output
index should equal i with probability |xi|p/(

∑
j |xj |p),

and a similar result is shown even if the distribution
on i only has to be close to this �p-distribution in
variational distance (namely, the distance should be
bounded away from 1). It is then shown in [20] that

R→,pub
δ (UR) = Ω(log2 n) for any δ bounded away

from 1. The approach used though does not provide an
improved lower bound for δ → 0.

Seemingly unnoticed in [20], we first point out here
that the lower bound proof for UR in that work actually
proves the same lower bound for the promise problem
UR⊂. This observation has several advantages. First, it
makes the reductions to the streaming problems trivial
(they were already quite simple when reducing from
UR, but now they are even simpler). Second, a simple
reduction from UR⊂ to sampling problems provides
space lower bounds even in the strict turnstile model,

2[1] describes these algorithms as only needing δ a constant, but for
a different definition of support-finding: when the data structure fails,
it should output Fail instead of behaving arbitrarily. They then cite
[20] as providing the sampler they use, but unfortunately [20] does not
solve this variant of this problem. This issue can be avoided by using
[20] with δ < 1/poly(n) so that with high probability no failures
occur throughout their algorithm, very slightly worsening their final
space bound in the main application by a lgn factor. Alternatively,
one could use another variant of sampling which we define in the
full version [23] and which can be solved via a minor modification
of [20], which allows retaining the bounds of [1] for connectivity,
k-connectivity, and bipartiteness testing.

and even for the simpler support-finding streaming
problem for which when queried is allowed to return
any element of support(z), without any requirement on
the distribution of the index output. Both of these differ-
ences are important for the meaningfulness of the lower
bound. This is because in dynamic graph streaming ap-
plications, typically z is indexed by

(
n
2

)
for some graph

on n vertices, and ze is the number of copies of edge
e in some underlying multigraph. Edges then are not
deleted unless they had previously been inserted, thus
only requiring correctness for strict turnstile streams.
Also, for every single application mentioned in the first
paragraph of Section I (except for the two applications
in [15]), the known algorithmic solutions which we cited
as using �0-sampling as a subroutine actually only need
a subroutine for the easier support-finding problem.
Finally, third and most relevant to our current work’s
main focus, the straightforward reductions from UR⊂

to the streaming problems we are considering here do
not suffer any increase in failure probability, allowing us

to transfer lower bounds on R→,pub
δ (UR⊂) for small

δ to lower bounds on various streaming problems for
small δ. The work [20] could not provide lower bounds
for the streaming problems considered there in terms of
δ for small δ.

We now show simple reductions from UR⊂ to
FindDuplicate(n) and from UR⊂k to support-findingk.
In support-findingk we must report min{k, ‖z‖0} ele-
ments in support(z). In the claims below, δ is the fail-
ure probability for the considered streaming problem.

Claim 1. Any one-pass streaming algorithm for
FindDuplicate(n) must use R→,pub

δ (UR⊂) space.

Proof: We reduce from UR⊂. Suppose there
were a space-S algorithm A for FindDuplicate(n).
Alice creates a stream consisting of all elements of
support(x) and runs A on those elements, then sends
the memory contents of A to Bob. Bob then continues
running A on n+1−‖x‖0 arbitrarily chosen elements
of [n]\ support(y). Then there must be a duplicate in
the resulting concatenated stream, i satisfies xi �= yi iff
i is a duplicate.

The two claims below have similarly simple proofs,
which are provided in the full version.

Claim 2. Any one-pass streaming algorithm for
support-findingk in the strict turnstile model must use
R→,pub

δ (UR⊂k ) bits of space, even if promised that
z ∈ {0, 1}n at all points in the stream.

Claim 3. Any one-pass streaming algorithm for �p-
sampling for any p ≥ 0 in the strict turnstile model
must use R→,pub

δ (UR⊂k ) bits of space, even if promised
z ∈ {0, 1}n at all points in the stream.

477



The reductions above thus raise the question: what

is the asymptotic behavior of R→,pub
δ (UR⊂k )?

Our main contribution: We prove for any δ
bounded away from 1 and k ∈ [n], R→,pub

δ (UR⊂k ) =
Θ(min{n, t log2(n/t)}) where t = max{k, log(1/δ)}.
Given known upper bounds in [20], our lower bounds
are optimal for FindDuplicate(n), support-finding, and
�p-sampling for any 0 ≤ p < 2 for nearly the full

range of n, δ (namely, for δ > 2−n.99

). Also given an
upper bound of [20], our lower bound is optimal for �0-
samplingk for nearly the full range of parameters n, k, δ
(namely, for t < n.99). Previously no lower bounds were
known in terms of δ (or k). Our main theorem:

Theorem 1. For any δ bounded away from 1 and 1 ≤
k ≤ n, R→,pub

δ (UR⊂k ) = Θ(min{n, t log2(n/t)}).

We give two different proofs of Theorem 1 (in Sec-
tions III and IV). Our upper bound is also new, though
follows by minor modifications of the upper bound in
[20] and thus we describe it in the full version [23].
The previous upper bound was O(min{n, t log2 n}).
We also mention here that it is known that the upper
bound for both URk and �0-samplingk in two rounds
(respectively, two passes) is only O(t log n) [20]. Thus,
one cannot hope to extend our new lower bound to two
or more passes, since it simply is not true.

A. Related work

The question of whether �0-sampling is possible in
low memory in turnstile streams was first asked in [12],
[15]. The work [15] applied �0-sampling as a subroutine
in approximating the cost of the Euclidean minimum
spanning tree of a subset S of a discrete geometric
space subject to insertions and deletions. The algorithm
given there used space O(log3 n) bits to achieve failure
probability 1/poly(n) (though it is likely that the space
could be improved to O(log2 n log log n) with a worse
failure probability, by replacing a subroutine used there
with a more recent �0-estimation algorithm of [21]).
As mentioned, the currently best known upper bound
solves �0-samplingk using O(t log2 n) bits [20], which
Theorem 1 shows is tight.

For �p-sampling, conditioned on not failing, the
data structure should output i with probability (1 ±
ε)|xi|p/‖x‖pp. The first work to realize its importance
came even earlier than for �0-sampling: [11] showed
that an �2-sampler using small memory would lead to
a nearly space-optimal streaming algorithm for multi-
plicatively estimating ‖x‖3 in the turnstile model, but
did not know how to implement such a data structure.
The first implementation was given in [31], achieving
space poly(ε−1 log n) with δ = 1/poly(n). . For
1 ≤ p ≤ 2 the space was improved to O(ε−p log3 n)
bits for constant δ [4]. In [20] this bound was improved

to O(ε−max{1,p} log(1/δ) log2 n) bits for failure prob-
ability δ when 0 < p < 2 and p �= 1. For p = 1 the
space bound achieved by [20] was a log(1/ε) factor
worse: O(ε−1 log(1/ε) log(1/δ) log2 n) bits.

For finding a duplicate item in a stream, the question
of whether a space-efficient randomized algorithm exists
was asked in [32], [36]. The question was positively
resolved in [17], which gave an O(log3 n)-space al-
gorithm with constant failure probability. An improved
algorithm was given in [20], using O(log(1/δ) log2 n)
bits of space for failure probability δ.

II. OVERVIEW OF TECHNIQUES

We now describe our two proofs of Theorem 1.
For the upper bound, [20] achieved O(t log2 n), but
in the full version [23] we show that slight modifica-
tions to their approach yield O(min{n, t log2(n/t)}).
Our main contribution is in proving an improved
lower bound. Assume t < cn for some sufficiently
small constant c (since otherwise we already obtain
an Ω(n) lower bound). In both our lower bound
proofs in this regime, the proof is split into two parts:

we show R→,pub
δ (UR⊂) = Ω(log 1

δ log
2 n

log 1
δ

) and

R→,pub
.99 (UR⊂k ) = Ω(k log2 n

k ) separately. We give an
overview the former here, which is the more technically
challenging half. Our two proofs of the latter are in the
full version.

A. Lower bound proof via encoding subsets and an
adaptivity lemma

Our first proof of the lower bound on

R→,pub
δ (UR⊂) is via an encoding argument. Fix

m. A randomized encoder is given a set S ⊂ [n]
with |S| = m and must output an encoding ENC(S).
A decoder, who shares public randomness with the
encoder, must then be able to recover S given only
ENC(S). We consider such schemes in which the
decoder must succeed with probability 1, and the
encoding length is a random variable. Any such
encoding must use Ω(log(nm)) = Ω(m log n

m ) bits in
expectation for some S.

There is a natural, but sub-optimal approach to
using a public-coin one-way protocol P for UR⊂ to
devise such an encoding/decoding scheme. The encoder
pretends to be Alice with input x being the indicator
set of S, then lets ENC(S) be the message M that
Alice would have sent to Bob. The decoder attempts to
recover S by iteratively pretending to be Bob m times,
initially pretending to have input y = 0 ∈ {0, 1}n, then
iteratively adding elements found in S to y’s support.
Henceforth let 1T ∈ {0, 1}n denote the indicator vector
of a set T ⊂ [n].
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Algorithm 1 Simple Decoder.

1: procedure DEC(M )
2: T ← ∅
3: for r = 1, . . . ,m do
4: Let i be Bob’s output upon receiving mes-

sage M from Alice when Bob’s input is 1T

5: T ← T ∪ {i}
6: end for
7: return T
8: end procedure

One might hope to say that if the original failure
probability were δ < 1/m, then by a union bound, with
constant probability every iteration succeeds in finding
a new element of S (or one could even first apply
some error-correction to x so that the decoder could
recover S even if only a constant fraction of iterations
succeeded). The problem with such thinking though is
that this decoder chooses y’s adaptively! To be specific,
P being a correct protocol means

∀x, y ∈ {0, 1}n, P
s
(P is correct on inputs x, y) ≥ 1−δ,

(1)
where s is the public random string that both Alice and
Bob have access to. The issue is that even in the second
iteration (when r = 2), Bob’s “input” 1T depends on s,
since T depends on the outcome of the first iteration!
Thus the guarantee of (1) does not apply.

One way around the above issue is to realize that
as long as every iteration succeeds, T is always a
subset of S. Thus it suffices for the following event
E to occur: ∀T ⊂ S, P is correct on inputs 1S ,1T .
Then Ps(¬E) ≤ 2mδ by a union bound, which is at
most 1/2 for m = 
log2(1/δ)� − 1. We have thus just

shown that R→,pub
δ (UR⊂) = Ω(min{n, log(nm)}) =

Ω(min{n, log 1
δ log

n
log(1/δ)}).

Our improvement is as follows. Our new decoder
again iteratively tries to recover elements of S as before.
We will give up though on having m iterations and
hoping for all (or even most) of them to succeed.
Instead, we will only have R = Θ(log 1

δ log
n

log 1
δ

)

iterations, and our aim is for the decoder to succeed
in finding a new element in S for at least a constant
fraction of these R iterations. Simplifying things for a
moment, let us pretend for now that all R iterations do
succeed in finding a new element. ENC(S) will then
be Alice’s message M , together with the set B ⊂ S
of size m − R not recovered during the R rounds,
explicitly written using �log

(
n
|B|

)
� bits. If the decoder

can then recover these R remaining elements, this then
implies the decoder has recovered S, and thus we must
have |M | = Ω(log

(
n
m

)
− log

(
n
|B|

)
) = Ω(R log n

m ). The

decoder proceeds as follows. Just as before, initially the
decoder starts with T = ∅ and lets i be the output of

Bob on 1T and adds it to T . Then in iteration r, before
proceeding to the next iteration, the decoder randomly
picks some elements from B and adds them into T , so
that the number of elements left to be uncovered is some
fixed number nr. These extra elements being added to
T should be viewed as “random noise” to mask infor-
mation about the random string s used by P , an idea
very loosely inspired by ideas in differential privacy.
For intuition, as an example suppose the iteration r = 1
succeeds in finding some i ∈ S. If the decoder were
then to add i to T , as well as ≈ m/2 random elements
from B to T , then the resulting T reveals only ≈ 1 bit
of information about i (and hence about s). This is as
opposed to the logm bits T could have revealed if the
masking were not performed. Thus the next query in
round r = 2, although correlated with s, has very weak
correlation after masking and we thus might hope for it
to succeed. This intuition is captured in the following
lemma, which we prove in the full version:

Lemma 1. Consider f : {0, 1}b × {0, 1}q → {0, 1}
and X ∈ {0, 1}b uniformly random. If ∀y ∈
{0, 1}q, P(f(X, y) = 1) ≤ δ where 0 < δ < 1, then
for any random variable Y supported on {0, 1}q ,

P(f(X,Y ) = 1) ≤ I(X;Y ) +H2(δ)

log 1
δ

, (2)

where I(X;Y ) is the mutual information between X
and Y , and H2 is the binary entropy function.

Fix some x ∈ {0, 1}n. One should imagine here that
f(X, y) is 1 iff P fails when Alice has input x and Bob
has input y in a UR⊂ instance, and the public random
string is X = s. Then the lemma states that if y = Y
is not arbitrary, but rather random (and correlated with
X), then the failure probability of the protocol is still
bounded as long as the mutual information between X
and Y is bounded. It is also not hard to see that this
lemma is sharp up to small additive terms. Consider the
case x, y ∈ [n], and f(x, y) = 1 iff x = y. Then if X
is uniform, for all y we have P(f(X, y) = 1) = 1/n.
Now consider the case where Y is random and equal to
X with probability t/ log n and is uniform in [n] with
probability 1− t/ log n. Then in expectation Y reveals
t bits of X , so that I(X;Y ) = t. It is also not hard to
see that P(f(X,Y ) = 1) ≈ t/ log n+ 1/n.

In light of the strategy stated so far and Lemma 1,
the path forward is clear: at each iteration r, we should
add enough random masking elements to T to keep the
mutual information between T and all previously added
elements below, say, 1

2 log
1
δ . Then we expect a constant

fraction of iterations to succeed. The encoder knows
which iterations do not succeed since it shares public
randomness with the decoder (and can thus simulate
it), so it can simply tell the decoder which rounds are
the failed ones, then explicitly include in M correct
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new elements of S for the decoder to use in the place
of Bob’s wrong output in those rounds. A calculation
shows that if one adds a (1 − 1/K) ≈ 2−1/K fraction
of the remaining items in S to T after drawing one
more support element from Bob, the mutual information
between the next query to Bob and the randomness
used by P will be O(K) (see Lemma 5). Thus we
do this for K a sufficiently small constant times log 1

δ .
We will then have nr ≈ (1 − 1/K)rm. Note that we
cannot continue in this way once nr < K (since the
number of “random noise” elements we inject should
at least be one). Thus we are forced to stop after R =
Θ(K log(m/K)) = Θ(log 1

δ log
n

log 1
δ

) iterations. We

then set m =
√
n log(1/δ), so that R→,pub

δ (UR⊂) =
Ω(|R| log n

m ) = Ω(min{n, log 1
δ log

2 n
log 1

δ

}) as desired.

The argument for lower bounding R→,pub
δ (UR⊂k )

is a bit simpler, and in particular does not rely on
Lemma 1. It can be found in the full version.

As mentioned above, our lower bounds use protocols
for UR⊂ and UR⊂k to establish protocols for encoding
subsets of some fixed size m of [n]. These encoders
always consist of some message M that Alice would
have sent in a UR⊂ or UR⊂k protocol, together with
a random subset B ⊂ S (using �log2 |B|�+ �log

(
n
|B|

)
�

bits, to represent both |B| and the set B itself). Here
|B| is a random variable. These encoders are thus Las
Vegas: the length of the encoding is a random variable,
but the encoder/decoder always succeed in compressing
and recovering the subset. The final lower bounds then
come from the following simple lemma, which follows
from the source coding theorem.

Lemma 2. Let s denote the number of bits used by the
UR⊂ or UR⊂k protocol, and let s′ denote the expected
number of bits to represent B. Then (1 + s + s′) ≥
log(nm). In particular, s ≥ log(nm)− s′ − 1.

Section III provides our first proof that

R→,pub
δ (UR⊂) = Ω(min{n, log2( n

log(1/δ) ) log
1
δ }).

We extend our results in the full version to UR⊂k
for k ≥ 1, proving a lower bound of Ω(k log2(n/k))
communication even for constant failure probability.

B. Lower bound proof via reduction from AugIndexN

Our second lower bound proof for UR⊂ is via
a randomized reduction from AugIndexN [30]. In
this problem, Charlie receives z ∈ {0, 1}N and Diane
receives j∗ ∈ [N ] together with zj for j = j∗ +
1, . . . , N , and Diane must output zj∗ . It is shown in

[30] that R→,pub
δ (AugIndexN ) = Ω(N) for any

δ bounded away from 1/2. In our reduction, N =
Θ(log(1/δ) log2 n

log(1/δ) ).

For UR⊂, we can also think of the problem as
Alice being given S ⊆ [n] and Bob being given
T � S, and Bob must output some element of S\T .
In AugIndexN , Charlie views his input as L =
Θ(log n

log(1/δ) ) blocks of bits of nearly equal size, where

the ith block represents a subset Si of [ui] in some
collection Sui,m of sets, for some carefully chosen
universe sizes ui per block. Here Sui,m is a collection
of subsets of [ui] of size m of maximal size such any
two sets in the collection have intersection size strictly
less than m/2. Furthermore, Diane’s index j∗ is in some
particular block of bits corresponding to some set Si∗ ,
and Diane also knows Si for i > j.

Now we explain the reduction. We assume some
protocol P for UR⊂, and we give a protocol P ′
for AugIndexN . First, we define the universe A =⋃L

i=1({i} × [ui] × [100i]), which has size n. Charlie

then defines S =
⋃L

i=1({i} × Si × [100i]). Charlie
and Diane use public randomness to define a uniformly
random permutation π on [n]. Charlie can compute
π(S). Also, since Diane knows Si for i > i∗, she can

define T =
⋃L

i=i∗+1({i} × Si × [100i]) and compute
π(T ). Then π(S) and π(T ) are the inputs to Alice and
Bob in the protocol P for UR⊂. Charlie sends Diane
the message that Alice would have sent Bob in P if
her input had been π(S), and Diane simulates Bob to
recover an element in π(S)\π(T ). Importantly, Alice
and Bob do not know anything about π at this point
other than that π(S) = S and π(T ) = T . Thus, the
protocol P for UR⊂, if it succeeds, outputs an arbitrary
element j ∈ π(S)\π(T ), which is a deterministic
function of the labels of elements in π(S) and π(T )
and the randomness R that Alice and Bob share, which
is independent from the randomness in π. Since π is
still a uniformly random map conditioned on π(S) = S
and π(t) = t for each t ∈ T , and j ∈ π(S)\π(T ), it
follows that π−1(t) is a uniformly random element of
S\T . After receiving π−1(j), if (i, a, r) = π−1(j), then
Charlie and Diane reveal the pairs ((i, a, z), π((i, a, z)))
for each z ∈ [100i] to Alice and Bob and Bob updates
his set π(T ) to include π(i, a, z) for each z ∈ [100i].
One can show that at each step in this process, if
Alice and Bob succeed in outputting an arbitrary item
j from π(S) \ π(T ), then this is a uniformly random
item from π(S) \ π(T ). The fact that this item is
uniformly random is crucial for arguing the number of
computation paths of the protocol of Alice and Bob is
o(1/δ) with good probability, over π, so that one can
argue (see below) that with good probability on every
such computation path Alice and Bob succeed on that
path, over their randomness R. Although the idea of
using a random permutation appeared in [20] to show
that any public coin UR protocol can be made into one
in which a uniformly random element of S\T is output,
here we must use this idea adaptively, slowly revealing
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information about π and arguing that this property is
maintained for each of Bob’s successive queries.

Due to geometrically increasing repetitions of items
for increasing i, a uniformly random element in S\T is
roughly 100 times more likely to correspond to an item
in Si∗ than in Si for i < i∗. Thus if Diane simulates
Bob to recover a random element in S\T , it is most
likely to recover an element j of Si∗ . She can then tell
Bob to include π(j) and its 100i

∗
redundant copies to

π(T ) and iterate.

There are several obstacles to overcome to make this
work. First, iterating means using P adaptively, which
was the same issue that arose in Section II-A. Second,
a constant fraction of the time (1/100), we expect to
obtain an element not in Si∗ , but rather from some Si

for i < i∗. If this happened too often, then Diane would
need to execute many queries to recover a sufficiently
large number of elements from Si∗ in order to solve
AugIndexN . This would then require a union bound
over too many possible computation paths, which would
not be possible as Alice likely would fail on one of
them (over the choice of R). However, since the random
permutation argument above ensures that at each step
we receive a uniformly random item from the current set
S\T , if we continue for m iterations, we can argue that
with large probability, our sequence of inputs T over
the iterations with which Diane invokes Bob’s output
are all likely to come from a family T of size at most
2O(m). Here we need to carefully construct this family
to contain a smaller number of sets from levels i for
which i∗− i is larger so that the overall number of sets
is small. Given this, we can union bound over all such
T , for total failure probability δ|T | � 1. Furthermore,
we can also argue that after m iterations, it is likely that
we have recovered at least m/2 of the elements from
Si∗ , which is enough to uniquely identify Si∗ ∈ Sui,m

by the limited intersection property of Sui,m.

III. LOWER BOUNDS VIA THE ADAPTIVITY LEMMA

Consider a protocol P for UR⊂ with failure prob-
ability δ, operating in the one-way public coin model.
When Alice’s input is x and Bob’s is y, Alice sends
Alice(x) to Bob, and Bob outputs Bob(Alice(x), y),
which with probability at least 1−δ is in support(x−y).
As mentioned in Section II, we use P as a subroutine
in a scheme for encoding/decoding elements of

(
[n]
m

)
for

m = 

√
n log(1/δ)�. We assume log 1

δ ≤ n/64, since
for larger n we have an Ω(n) lower bound.

1) Encoding/decoding scheme: We now describe our
encoding/decoding scheme (ENC,DEC) for elements

in
(
[n]
m

)
, which uses P in a black-box way. The param-

eters shared by ENC and DEC are given in Algorithm 2.

As discussed in Section II, on input S ∈
(
[n]
m

)
, ENC

computes M ← Alice(1S) as part of its output. ENC

also outputs a subset B ⊆ S computed as follows.
Initially B = S and S0 = S. ENC proceeds in
R rounds. In round r ∈ [R], ENC computes sr ←
Bob(M,1S\Sr−1

). Let b ∈ {0, 1}R be such that br
records whether Bob succeeds in round r. ENC also
outputs b. If sr ∈ Sr−1, i.e. Bob(M,1S\Sr−1

) succeeds,
ENC sets br = 1 and removes sr from B (since the
decoder can recover sr from the UR⊂-protocol, ENC
does not need to include it in B); otherwise ENC sets
br = 0. At the end of round r, ENC picks a uniformly

random set Sr in
(
Sr−1\{sr}

nr

)
. In particular, ENC uses

its shared randomness with DEC to generate Sr in such
a way that ENC,DEC agree on the sets Sr (DEC will
actually iteratively construct Cr = S\Sr). We present
ENC in Algorithm 3.

The decoding process is symmetric. Let C0 = ∅
and A = ∅. DEC proceeds in R rounds. On round
r ∈ [R], DEC obtains sr ∈ S\Cr−1 by invoking
Bob(M,1Cr−1

). By construction of Cr−1 (to be de-
scribed later), it is guaranteed that Sr−1 = S\Cr−1.
Therefore, DEC recovers exactly the same sr as ENC.
DEC initially assigns Cr ← Cr−1. If br = 1, DEC adds
sr to both A and Cr. At the end of round r, DEC inserts
many random items from B into Cr so that Cr = S\Sr.
DEC can achieve this because of the shared random
permutation π when constructing Sr. In the end, DEC
outputs B ∪A. We present DEC in Algorithm 4.

Algorithm 2 Variables shared by encoder ENC and
decoder DEC.

1: m← 

√
n log 1

δ �
2: K ← 
 1

16 log
1
δ �

3: R← 
K log(m/4K)�
4: for r = 0, . . . , R do
5: nr ← 
m · 2−

r
K �

� |Sr| = nr, and ∀r nr − nr+1 ≥ 2

6: end for
7: π is a random permutation on [n]

� Used to generate Sr and Cr

2) Analysis: We have two random objects in our
encoding/decoding scheme: (1) the random source used
by P , denoted by X , and (2) the random permutation
π. These are independent.

First, we can prove that DEC(ENC(S)) = S. That
is, for any fixing of the randomness in X and π, DEC
will always decode S successfully. It is because ENC
and DEC share X and π, so that DEC essentially
simulates ENC. We formally prove this by induction
in Lemma 3.

Now our goal is to prove that by using the
UR⊂-protocol, the number of bits that ENC saves
in expectation over the naive �log(nm)�-bit encoding is
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Algorithm 3 Encoder ENC.

1: procedure ENC(S)
2: M ← Alice(1S)
3: A← ∅ � the set DEC recovers just from M
4: S0 ← S

� at end of round r, DEC still needs to recover Sr

5: for r = 1, . . . , R do
6: sr ← Bob(M,1S\Sr−1

)

� sr
?∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then
� i.e. if sr is a valid sample

9: br ← 1

� b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}
11: Sr ← Sr\{sr}
12: else
13: br ← 0
14: end if
15: Remove |Sr| − nr elements from Sr with

smallest πa’s among a ∈ Sr � now |Sr| = nr

16: end for
17: return (M , S\A, b)
18: end procedure

Ω(log 1
δ log

2 n
log(1/δ) ) bits. Intuitively, it is equivalent

to prove the number of elements that ENC saves is
Ω(log 1

δ log
n

log(1/δ) ). We formalize this in Lemma 4.

Note that ENC also needs to output b (i.e., whether
the Bob succeeds on R rounds), which takes R bits.
By our setting of parameters, we can afford the loss
of R bits. Thus it is sufficient to prove E |B| = |S| −
Ω(log 1

δ log
n

log(1/δ) ).

We have |S| − |B| = ∑R
r=1 br. In Lemma 1, we

prove the probability that Bob fails on round r is upper

bounded by
I(X;Sr−1)+1

log 1
δ

, where I(X;Sr−1) is the

mutual information between X and Sr−1. Furthermore,
we will show in Lemma 5 that I(X;Sr−1) is upper
bounded by O(K). By our setting of parameters, we
have E br = Ω(1) and thus E(|S| − |B|) = Ω(R) =
Ω(log 1

δ log
n

log(1/δ) ).

Lemma 3. DEC(ENC(S)) = S.

Proof: We claim that for r = 0, . . . , R, {Sr, Cr}
is a partition of S (Sr is defined in Algorithm 3, and
Cr in Algorithm 4). We prove the claim by induction
on r. Our base case is r = 0, for which the claim holds
since S0 = S, C0 = ∅.

Assume the claim holds for r − 1 (1 ≤ r ≤ R),
and we consider round r. On round r, by induction

Algorithm 4 Decoder DEC.

1: procedure DEC(M , B, b)

� M is Alice(1S)

� b ∈ {0, 1}R indicates rounds in which Bob
succeeds
� B contains all elements of S that DEC doesn’t
recover via M

2: A← ∅
� the subset of S DEC recovers just from M

3: C0 ← ∅ � subset of S we have built up so far
4: for r = 1, . . . , R do

� each iteration tries to recover 1 element via M

5: Cr ← Cr−1

6: if br = 1 then
� this means Bob succeeds in round r

7: sr ← Bob(M,1Cr−1
)

� Invariant: Cr = S\Sr (Sr is defined in ENC)

8: A← A ∪ {sr}
9: Cr ← Cr ∪ {sr}

10: end if
11: Insert m − nr − |Cr| items into Cr with

smallest πa’s among a ∈ B\Cr

� Random masking “Differential Privacy” step.
Still nr elements left to recover.

12: end for
13: return B ∪A
14: end procedure

S\Sr−1 = Cr−1, the index sr obtained by both ENC
and DEC are the same. Initially Sr = Sr−1 and Cr =
Cr−1, and so {Sr, Cr} is a partition of S. If sr is a
valid sample (i.e. sr ∈ Sr−1), then br = 1, and ENC
removes sr from Sr and in the meanwhile DEC inserts
sr into Cr, so that {Sr, Cr} remains a partition of S.
Next, ENC repeats removing the a from Sr with the
smallest πa value until |Sr| = nr. Symmetrically, DEC
repeats inserting the a into Cr with the smallest πa value
among a ∈ B\Cr, until |Cr| = |S| − nr. In the end
we have |Sr| + |Cr| = |S|, so ENC and DEC execute
repetition the same number of times. Moreover, we can
prove that during the same iteration of this repeated
insertion, the element removed from Sr is exactly the
same element inserted to Cr. This is because in the
beginning of a repetition {Sr, Cr} is a partition of S.
We have B\Cr ⊆ S\Cr = Sr. Let a∗ denote a ∈ Sr

that minimizes πa. Then a∗ ∈ B\Cr ⊆ Sr (since a∗

will be removed from Sr, it has no chance to be included
in S in ENC, so that B contains a∗), and πa∗ is also
the smallest among {πa : a ∈ B\Cr}. Thus both ENC
and DEC will take a∗ (for ENC, to remove from Sr,
and for DEC, to insert into Cr). Therefore, {Sr, Cr}
remains a partition of S.
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Given the fact that {Sr, Cr} is a partition of S, the
sr are the same in ENC and DEC. Furthermore, A =
{sr : br = 1, r = 1, . . . , R} are the same in ENC and
DEC. We know A ⊆ S. Since ENC outputs S\A, and
DEC outputs (S\A)∪A, we have DEC(ENC(S)) = S.

The proof of the following lemma appears in the full
version.

Lemma 4. Let W ∈ N be a random variable with W ≤
m and EW ≤ m − d. Then E(log

(
n
m

)
− log

(
n
W

)
) ≥

d log( n
m − 1).

Lemma 1 (restated). Consider f : {0, 1}b × {0, 1}q →
{0, 1} and X ∈ {0, 1}b uniformly random. If ∀y ∈
{0, 1}q, P(f(X, y) = 1) ≤ δ where 0 < δ < 1, then
for any r.v. Y supported on {0, 1}q ,

P(f(X,Y ) = 1) ≤ I(X;Y ) +H2(δ)

log 1
δ

,

where I(X;Y ) is the mutual information between X
and Y , and H2 is the binary entropy function.

Proof: It is equivalent to prove I(X;Y ) ≥
E(f(X,Y )) · log 1

δ − H2(δ). By definition of mu-
tual entropy I(X;Y ) = H(X) − H(X|Y ), where
H(X) = b and we must show H(X|Y ) ≤ H2(δ) +
(1 − E(f(X,Y ))) · b + E(f(X,Y )) · (b − log 1

δ ) =
b+H2(δ)− E(f(X,Y )) · log 1

δ .

The upper bound for H(X|Y ) is obtained by consid-
ering the following one-way communication problem:
Alice knows both X and Y while Bob only knows
Y , and Alice must send a single message to Bob so
that Bob can recover X . The expected message length
in an optimal protocol is exactly H(X|Y ). Thus, any
protocol gives an upper bound for H(X|Y ), and we
simply take the following protocol: Alice prepends a 1
bit to her message iff f(X,Y ) = 1 (taking H2(δ) bits
in expectation). Then if f(X,Y ) = 0, Alice sends X
directly (taking b bits). Otherwise, when f(X,Y ) = 1,
Alice sends the index of X in {x|f(x, Y ) = 1} (taking
log(δ2b) = b− log 1

δ bits).

Corollary 1. Let X denote the random source used by
the UR⊂-protocol with failure probability at most δ. If
S is a fixed set and T ⊂ S, P(Bob(Alice(1S),1T ) �∈
S\T ) ≤ I(X;T )+H2(δ)

log 1
δ

.

Lemma 5. I(X;Sr) ≤ 6K, for r = 1, . . . , R.

Proof: Note that I(X;Sr) = H(Sr) − H(Sr|X).
Since |Sr| = nr and Sr ⊆ S, H(Sr) ≤ log

(
m
nr

)
.

Here is the main idea to lower bound H(Sr|X):
By definition of conditional entropy, H(Sr|X) =∑

x px ·H(Sr|X = x). We fix an arbitrary x. If we
can prove that for any T ⊆ S where |T | = nr,

P(Sr = T |X = x) ≤ p, then by definition of entropy
we have H(Sr|X = x) ≥ log 1

p . This is shown in the

full version for p = 26K/
(
m
nr

)
.

Theorem 2. R→,pub
δ (UR⊂) = Ω(log 1

δ log
2 n

log(1/δ) ),
given that 64 ≤ log 1

δ ≤ n
64 .

Proof: By Lemma 3, the success probability of
protocol (ENC,DEC) is 1. By Lemma 2, we have
s ≥ log(nm)−s′−1, where s′ = log n+R+E(log(n|B|)).

The size of B is |B| = |S| −∑R
r=1 br. By Corollary 1,

conditioned on S, P(br = 0) ≤ I(X;Sr−1)+1

log 1
δ

. By

Lemma 5, I(X;Sr−1) ≤ 6K (Note that when r = 1,
I(X;S0) = 0 ≤ 6K). Therefore, E(br) ≥ 1 − 6K+1

log 1
δ

.

By the setting of parameters (see Algorithm 2) we
have E(br) ≥ 39

64 . Therefore, E(|B|) ≤ |S| − 39
64R. By

Lemma 4, log(nm)−E(log(n|B|)) ≥ 39
64R · log( n

m − 1) ≥
1
2R log( n

log(1/δ) ). Furthermore, 1
6R log n

log(1/δ) ≥ R.

Thus we obtain s ≥ R
3 log n

log(1/δ) − (log n + 1) =

Ω(log 1
δ log

2 n
log(1/δ) ).

IV. LOWER BOUNDS PROOFS VIA AUGMENTED

INDEXING

Here we show another route to proving

R→,pub
δ (UR⊂k ) = Ω(min{n, t log2(n/t)} via reduction

from augmented indexing. We again separately prove

lower bounds for R→,pub
δ (UR⊂) and R→,pub

1
5

(UR⊂k ).
Both proofs make use of the following standard lemma.
The proof can be found in the full version [23].

Lemma 6. For any integers u ≥ 1 and 1 ≤ m ≤
u/(4e), there exists a collection Su,m ⊂

(
[u]
m

)
with

log |Su,m| = Θ(m log(u/m)) such that for all S �=
S′ ∈ Su,m, |S ∩ S′| < m/2.

Both our lower bounds (for UR⊂ and UR⊂k ) reduce
from augmented indexing (henceforth AugIndex) to
either UR⊂ with low failure probability, or UR⊂k with
constant failure probability, in the public coin one-
way model of communication. We remind the reader
of the setup for the AugIndexN problem. There
are two players, Charlie and Diane. Charlie receives
z ∈ {0, 1}N and Diane receives j∗ ∈ [N ] together
with zj∗+1, . . . , zN . Charlie must send a single message
to Diane such that Diane can then output zj∗ . The
following theorem is known.

Theorem 3. [30] R→,pub
1/3 (AugIndexN ) = Θ(N).

We show that if there is an s-bit communication
protocol P for UR⊂ on n-bit vectors with failure prob-
ability δ (or for URk with constant failure probability),
that implies the existence of an s-bit protocol P ′ for
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AugIndexN for some N = Θ(log 1
δ log

2 n
log 1

δ

) (or

N = Θ(k log2(n/k)) for URk). The lower bound on
s then follows from Theorem 3.

Set t = log 1
δ . In this section we assume t < n/(4e)

and show R→,pub
δ (UR⊂) = Ω(t log2(n/t)). This im-

plies a lower bound of Ω(min{n, t log2(n/t)}) for all
δ > 0 bounded away from 1.

As mentioned, we assume we have an s-bit protocol
P for UR⊂ with failure probability δ, with players
Alice and Bob.We use P to give an s-bit protocol P ′
for AugIndexN , which has players Charlie and Diane,
for N = Θ(t log2(n/t)).

Algorithm 5 Behavior of Diane in P ′ for UR⊂.

1: procedure Diane(M )

2: T ← ⋃L
i=i∗+1({i} × Si × [100i])

3: Ti∗ ← ∅
4: while |Ti∗ | < m

2 do
5: (i, a, r)← π−1(Bob(M,1π(T )))
6: T ← T ∪ ((i, a)× [100i])
7: if i = i∗ then
8: Ti∗ ← Ti∗ ∪ {a}
9: end if

10: end while
11: if there exists S ∈ Sui∗ ,m with Ti∗ ⊂ S then
12: return the unique such S
13: else
14: return Fail
15: end if
16: end procedure

The protocol P ′ operates as follows. Without loss
of generality we may assume that, using the nota-
tion of Lemma 6, |Su,m| is a power of 2 for u,m
as in the lemma statement. This is accomplished by
simply rounding |Su,m| down to the nearest power
of 2 by removing elements arbitrarily. Also, define
L = c log(n/t) for some sufficiently small constant
c ∈ (0, 1) to be determined later. Now, Charlie partitions
the bits of his input z ∈ {0, 1}N into L consecutive
sequences of bits such that the ith chunk of bits for
each i ∈ [L] can be viewed as specifying an element
Si ∈ Sui,m for ui =

n
100i·L and m = ct. Lemma 6 gives

log |Sui,m| = Θ(m log(ui/m)), which is Θ(t log(n/t))
for c < 1/14. Thus N = Θ(L · t log(n/t)) =
Θ(t log2(n/t)). Given these sets S1, . . . , SL, we now
discuss how Charlie generates a vector x ∈ {0, 1}n.
Charlie then simulates Alice on x to generate the
message Alice would have send to Bob in protocol P ,
then sends that same message to Diane.

To generate x ∈ {0, 1}n, assume Charlie and Diane

have sampled a bijection from A =
⋃L

i=1({i} × [ui]×

[100i]) to [n] uniformly at random. We denote this
bijection by π. This is possible since |A| = n. Then
Charlie defines x to be the indicator vector 1π(S), where

S =
⋃L

i=1({i}×Si× [100i]), then sends a message M
to Diane, equal to Alice’s message with input 1π(S).
This completes the description of Charlie’s behavior in
the protocol P ′.

We describe how Diane uses M to solve
AugIndexN . Diane’s input j∗ ∈ [N ] lies in some
chunk i∗ ∈ [L]. We now show how Diane can use P to
recover Si∗ with probability 2/3 (and thus in particular
recover zj∗ ). Since Diane knows zj for j > j∗, she
knows Si for i > i∗. She can then execute the following
algorithm.

In Algorithm 5 Diane is building up a subset Ti∗ of
Si∗ . Once |Ti∗ | ≥ |Si∗ |/2 = m/2, Diane can uniquely
recover Si∗ by the limited intersection property of Sui,m

guaranteed by Lemma 6. Until then, she uses P to
recover elements of S\T , which, as we now show, are
chosen uniformly at random from S \ T .

The proof of the following claim is deferred to the
full version.

Claim 4. For every protocol for Alice and Bob that
uses shared randomness with Bob’s behaviour given
by Bob(·), for every choice of shared random string
R of Alice and Bob, for every S, T ⊂ S, the following
conditions hold. If π is a uniformly random permutation,
the success or failure of Bob(M,1π(T )) is determined
by {π(j)}j∈T and the image π(S \ T ) of S \ T
under π. Conditioned on a choice of R, {π(j)}j∈T
and π(S \ T ) such that Bob(M,1π(T )) succeeds, one
has that π−1(Bob(M,1π(T ))) is a uniformly random
element of S \ T .

Fix any protocol B̃ob(M,1π(T )) (not necessarily
the one that Charlie and Diane use; see analysis of

the idealized process P̃ below). Now fix T together
with values of R, {π(j)}j∈T and π(S \ T ) such that

B̃ob(M,1π(T )) succeeds.

Elements in Sj , j < i∗, are unlikely to be
recovered. Given Claim 4, since the elements of
Sj appear with frequency 100j in S\T , they are

less likely to be returned by π−1(B̃ob(M,1π(T )))
for small j. Specifically, as long as |Si∗ ∩ Ti∗ | ≤
m/2, for any j < i∗ P(i = j|(R, {π(j)}j∈T , π(S \
T )) s.t. B̃ob(M,1π(T )) succeeds) ≤ m·100j

m
2 ·100i

∗ ≤ 2 ·
100−(i∗−j) ≤ 50−(i∗−j). Here again the probability is
over the choice of π|S\T : (S \ T ) → π(S \ T ) (recall
that we condition on the image π(S \ T ) under π, but
not on the actual mapping).

We now define the set T of typical intermediate
sets, which plays a crucial role in our analysis. Let Qi
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for i ∈ [L] denote {i} × Si × [100i]. Let T be the
collection of all T ⊂ S such that (1) Qi ⊂ T for all i >
i∗, and (2) for each i < i∗, |T ∩Qi| ≤ 100i ·m/4i

∗−i,
such that if T contains (i, a, b) for some a ∈ Si and
b ∈ [100i], then T contains (i, a)×[100i]. The following
claim is proven in the full version:

Claim 5. The set T as above satisifies |T | = 2O(m).

We will show that for most choices of π and shared
random string R Algorithm 5 (a) never leaves the set T
and (b) successfully terminates. Note that Algorithm 5
is a random process whose sample space is the product
of the set of all possible permutations π and shared
random strings R. As before, we denote this process by
P ′. It is useful for analysis purposes to define another

process P̃ , which is an idealized version of P ′. In
this process instead of running Bob(M,1π(T )) Alice

runs B̃ob(M,1π(T )), which is guaranteed to output an
element of π(S \T ) for every choice of T ⊂ S, shared
random string R, {π(j)}j∈T , and π(S \ T ). The proof
proceeds in three steps.

Step 1: proving that P̃ succeeds in recovering Ti∗

and never leaves T with high probability. Choose π
uniformly at random. By the upper bound on returning
an element of Si above, as long as |Si∗ ∩ Ti∗ | ≤ m/2,

the expected number of items recovered by B̃ob from
Si for i < i∗ in the first m iterations is at most
m/50i

∗−i. Thus the probability of recovering more
than m/4i

∗−i items from Si is at most (1/12)i
∗−i

by Markov’s inequality. Note that the probability is

over the choice of π only, as B̃ob is assumed to

succeed with probability 1 by definition of P̃ . Thus

P(P̃ leaves T ) ≤∑i∗−1
i=1 (1/12)

i∗−i
< 1/10. In partic-

ular this means that with probability at least 1 − 1/10
at most

∑
i<i∗ m/4i

∗−i < m/2 items from
⋃

i<i∗ Si

are recovered in the first m (or fewer, if the algorithm
terminates earlier) iterations. This also implies that with
probability at least 1 − 1/10 if the algorithm proceeds
for the entire m iterations, it recovers at least m/2
elements of Ti∗ and hence terminates. We thus get that

P̃ succeeds at least with probability 1− 1/10.

Step 2: coupling P̃ to P ′ on most of the proba-
bility space. For every T ⊂ S and every π let ET (π) be
the probabilistic event (over the choice of Bob’s random
string R) that Bob(M,1π(T )) succeeds in returning an
element in π(S\T ). Note that ET (π) is a subset of
the probability space of shared random strings R, and
depends on π. We let ET (π) := ∧T∈T ET (π) to simplify
notation. Using Claim 5 and the union bound we have
for every π PR(¬(ET (π))) ≤ δ · |T | ≤ 1/20 as long as
for m = c log(1/δ) for c a sufficiently small constant.

Now recall that B̃ob(M,1π(T )) is an idealized pro-
tocol, which is guaranteed to output an element of

π(S \ T ) for every choice of T ⊂ S, shared random
string R, {π(j)}j∈T , and π(S \ T ). We have just
shown that for every π the event ET (π) occurs with
probability at least 1−1/20 over the choice of R. Now

define B̃ob(M,1π(T )) as equal to Bob(M,1π(T )) for all
T ∈ T (the typical set of intermediate sets) and (π,R)

such that R ∈ ET (π), and extend B̃ob(M,1π(T )) to
return an arbitrary element of π(S \ T ) for remaining

tuples (T,R, π(T ), π(S \T )). Note that B̃ob defined in
this way is a deterministic function once T , R, π(T )
and π(S \ T ) are fixed. Note that with probability at
least 1 − 1/20 over the choice of π and R one has

Bob(M,1π(T )) = B̃ob(M,1π(T )) for all T ∈ T , as
required.

Step 3: arguing that P ′ succeeds with high
probability. Choose (π,R) uniformly at random. By
Step 2 we have that with probability at least 1− 1/20

over this choice Bob(M,1π(T )) = B̃ob(M,1π(T )) for
all T ∈ T . At the same time we have by Step 1
that with probability at least 1 − 1/10 over the choice

of π the idealized process P̃ succeeds in recovering
Ti∗ and never leaves T . Putting the two bounds to-
gether, we get that P ′ succeeds with probability at least
1−1/20−1/10 > 2/3, showing the following theorem.

Theorem 4. For any 0 < δ < 1/2 and integer
n ≥ 1 with log 1

δ < n/(4e), R→,pub
δ (UR⊂) ≥

R→,pub
1/3 (AugIndexN ) for N = Θ(log 1

δ log
2 n

log 1
δ

).

Corollary 2. For any 0 < δ < 1/2 and integer n ≥ 1,
R→,pub

δ (UR⊂) = Ω(min{n, log 1
δ log

2 n
log 1

δ

}).

In the full version [23] we use similar, but slightly

simpler, ideas to lower bound R→,pub
1
5

(UR⊂k ).
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