
Distributed Exact Weighted All-Pairs Shortest Paths in Õ(n5/4) Rounds

Chien-Chung Huang

CNRS, École Normale Supérieure
France

Danupon Nanongkai

KTH Royal Institute of Technology
Sweden

Thatchaphol Saranurak

KTH Royal Institute of Technology
Sweden

Abstract—We study computing all-pairs shortest paths
(APSP) on distributed networks (the CONGEST model). The
goal is for every node in the (weighted) network to know
the distance from every other node using communication. The
problem admits (1+o(1))-approximation Õ(n)-time algorithms
[2], [3], which are matched with Ω̃(n)-time lower bounds [3],
[4], [5]1. No ω(n) lower bound or o(m) upper bound were
known for exact computation.

In this paper, we present an Õ(n5/4)-time randomized (Las
Vegas) algorithm for exact weighted APSP; this provides the
first improvement over the naive O(m)-time algorithm when
the network is not so sparse. Our result also holds for the
case where edge weights are asymmetric (a.k.a. the directed
case where communication is bidirectional). Our techniques
also yield an Õ(n3/4k1/2 + n)-time algorithm for the k-
source shortest paths problem where we want every node to
know distances from k sources; this improves Elkin’s recent
bound [6] when k = ω̃(n1/4).

We achieve the above results by developing distributed
algorithms on top of the classic scaling technique, which
we believe is used for the first time for distributed shortest
paths computation. One new algorithm which might be of an
independent interest is for the reversed r-sink shortest paths
problem, where we want every of r sinks to know its distances
from all other nodes, given that every node already knows its
distance to every sink. We show an Õ(n

√
r)-time algorithm

for this problem. Another new algorithm is called short range
extension, where we show that in Õ(n

√
h) time the knowledge

about distances can be “extended” for additional h hops. For
this, we use weight rounding to introduce small additive errors
which can be later fixed.

Remark: Independently from our result, Elkin recently ob-

served in [6] that the same techniques from an earlier version

of the same paper (https://arxiv.org/abs/1703.01939v1) led to

an O(n5/3 log2/3 n)-time algorithm.
Keywords-distributed graph algorithms; all-pairs shortest

paths; exact distributed algorithms;

I. INTRODUCTION

Distributed Graph Algorithms. Among fundamental que-

stions in distributed computing is how fast a network can

compute its own topological properties, such as minimum

spanning tree, shortest paths, minimum cut and maximum

The full version of this paper is available as [1] at https://arxiv.org/abs/
1708.03903.

1Θ̃, Õ and Ω̃ hide polylogarithmic factors. Note that the lower bounds
also hold even in the unweighted case and in the weighted case with
polynomial approximation ratios.

flow. This question has been extensively studied in the so-

called CONGEST model [7] (e.g. [6], [8], [9], [3], [4], [10],

[11], [12], [13]). In this model (see Section II for details), a

network is modeled by a weighted n-node m-edge graph G.

Each node represents a processor with unique ID and infinite

computational power that initially only knows its adjacent

edges and their weights. Nodes must communicate with each

other in rounds to discover network properties, where in each

round each node can send a message of size O(log n) to each

neighbor. The time complexity is measured as the number

of rounds needed to finish the task. It is usually expressed

in terms of n, m, and D, where D is the diameter of the

network when edge weights are omitted. Throughout we use

Θ̃, Õ and Ω̃ to hide polylogarithmic factors in n.

Note that the whole network can be aggregated to a

single node in O(m) time. Thus any graph problem can be

trivially solved within O(m) time. A fundamental question

is whether this bound can be beaten, and if so, what is

the best possible time complexity for solving a particular

graph problem. This question has been studied for several

decades, marked by a celebrated O(n log n)-time algorithm

for the minimum spanning tree (MST) problem by Gallager

et al. [14]. This result was gradually improved and settled

with Θ̃(
√
n+D) upper and lower bounds [12], [13], [15],

[16], [17], [18].2

Approximation vs. Exact Algorithms. Besides MST, al-

most no other problems were known to admit an o(m)-time

distributed algorithm when we require the solution to be

exact. More than a decade ago, a lot of attention has turned

to distributed approximation, where we allow algorithms

to return approximate solutions (e.g. [20]). This relaxation

has led to a rapid progress in recent years. For example,

SSSP, minimum cut, and maximum flow can be (1+ o(1))-
approximated in Õ(

√
n + D) time [9], [21], [3], [22],

[23], [24]3, and all-pairs shortest paths can be (1 + o(1))-
approximated in Õ(n) time [2], [3]; moreover, these bounds

are essentially tight up to polylogarithmic factors [10], [11],

[12], [25]. Given that approximating many graph properties

are essentially solved, it is natural to turn back to exact

algorithms. A fundamental question is:

2See also [8], [19] for recent results.
3For the maximum flow algorithm, there is an extra no(1) term in the

time complexity.

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.24

168

Are approximation distributed algorithms more
powerful than the exact ones?

So far, we only have an answer to the MST problem: due to

the lower bound of Das Sarma et al. [10] (building on [11],

[12], [25]), any poly(n)-approximation algorithm requires

Ω̃(
√
n + D) rounds; thus, approximation does not help.

For most other problems, however, answering the above

question still seems to be beyond current techniques: On the

one hand, we are not aware of any lower bound technique

that can distinguish distributed (1 + o(1))-approximation

from exact algorithms for the above problems. On the other

hand, for most of these problems we do not even know any

non-trivial (e.g. o(m)-time) exact algorithm. (One exception

that we are aware of is SSSP where the classic Bellman-

Ford algorithm [26], [27] takes O(n) time. This bound was

recently (in STOC’17) improved by Elkin [6].)

All-Pairs Shortest Paths (APSP). Motivated by the above

question, in this paper we attempt to reduce the gap between

the upper and lower bounds for solving APSP exactly. The

goal of the APSP problem is for every node to know the dis-

tances from every other node.4 Besides being a fundamental

problem on its own, this problem is a key component in,

e.g., routing tables constructions [4], [2].
Nanongkai [3] and Lenzen and Patt-Shamir [4], [2] pre-

sented (1 + o(1))-approximation Õ(n)-time algorithms, as

well as an Ω̃(n) lower bound which holds even when

D = O(1), when the network is unweighted, and against

randomized algorithms.5 Very recently, Censor-Hillel et al.

[29] improved the lower bound to Ω(n). The same lower

bound obviously holds for the exact case. Neither an ω(n)
lower bound nor an o(m)-time algorithm was known, except

for some special cases; a notable one is the unweighted case

where there are O(n)-time algorithms [30], [31], [32].

Results. Our main result is an Õ(n5/4)-time exact APSP

algorithm. Our algorithm is randomized Las Vegas: the

output is always correct, and the time guarantee holds both in

expectation and with high probability6. This result provides

the first improvement over the naive O(m)-time algorithm

when the network is not so sparse, and significantly reducing

the gap between upper and lower bounds.
Our algorithm also works with the same guarantees when

edge weights are asymmetric, a.k.a. the directed case. In

4This problem is sometimes referred to as name-independent routing
schemes. See, e.g. [4], [2] for discussions and results on another variant
called name-dependent routing schemes which is not considered in this
paper.

5In fact, the lower bound holds even for poly(n)-approximation algo-
rithms when the network is weighted and for (polylog(n))-approximation
algorithms when the network is unweighted. The same lower bound
also holds even for the easier problem of approximating the network
diameter [5]. In particular, for the weighted case, the lower bound holds
even for poly(n)-approximation algorithms. For the unweighted case, the
lower bound holds even for (3/2−ε)-approximating the diameter, and even
for sparse networks [28].

6We say that an event holds with high probability (w.h.p.) if it holds
with probability at least 1− 1/nc, where c is an arbitrarily large constant.

this case, an edge between nodes u and v can be viewed as

two directed edges, one from u to v and another from v to

u. These two edges might have different weights, and the

weight can be set to infinity. (Note, however, that the infinite

weight is not really necessary as it can be replaced by a

large poly(n) weight.) We emphasize that the underlying

network is undirected so neither edge direction or weight

affect the communication. While the previous (1 + o(1))-
approximation Õ(n)-time algorithms for APSP also work for

this case [3], [2], in general it is less understood than the un-

directed case. For example, while there are tight (1+ o(1))-
approximation Õ(

√
n + D)-time algorithms for SSSP [9],

[21] in the undirected case, the best known algorithms for the

directed case are the (1+o(1))-approximation Õ(
√
nD+D)-

time one [3] and the Õ(
√
nD1/4 + D)-time algorithm for

the special case called single-source reachability [33].

Our techniques also yield an improved algorithm for the

k-source shortest paths (k-SSP) problem. In this problem,

some nodes are marked as source nodes initially (each

node knows whether it is marked or not). The goal is for

every node to know its distance from every source node.

We let k denote the number of source nodes. We show

a randomized Las-Vegas Õ(n3/4k1/2 + n)-time algorithm.

(Observe that our APSP algorithm is simply a special case

when k = n.) Prior to our work, approximation algorithms

and the unweighted case were often considered for this

problem (e.g. [34], [31], [35], [36]). The only non-trivial

exact algorithm known earlier was the algorithm of Elkin [6].

The performance of such algorithm compared to ours is as

follows. (We ignore the polylogarithmic terms below for

simplicity. For a more precise time guarantee, see [6].)

1) When D = O(k
√
n) and k = O(

√
n), Elkin’s

algorithm takes Õ(n5/6k2/3) time. In this case our

algorithm is faster when k = ω̃(n1/4).
2) When k = Ω(

√
n), Elkin’s algorithm takes Õ(n2/3k)

time. In this case our algorithm is faster when k =
ω̃(n1/3).

To conclude, our k-SSP algorithm is faster whenever k =
ω̃(n1/4).

Remarks.
1. The time guarantees of our algorithms depend on the

number of bits needed to represent edge weights. This is

typically polylog(n) since edge weights are usually assumed

to be positive integers bounded from above by poly(n);
see Section II-A. This is the main drawback of the scaling

technique that our algorithm heavily relies on (see below).

The guarantees of other distributed algorithms we discussed,

including Elkin’s algorithm [6], do not have this dependency.

2. Throughout the paper we only show that the output is

correct with high probability, but in O(n) time we can check

the correctness as follows. First, every node lets its neighbors

know about its distances from other nodes (this takes O(n)
time). Then, every node checks if it can improve its distance

169

from any node using the distance knowledge from neighbors.

If the answer is “no” for every node, then the computed

distance is correct. If some node answers “yes”, it can

broadcast its answer to all other nodes in O(n) time.

3. Independently from our result, Elkin recently observed

in [6] that the same techniques from an earlier version of

the same paper (https://arxiv.org/abs/1703.01939v1) led to

an O(n5/3 log2/3 n)-time algorithm for APSP on undirected

networks. Also very recently, Censor-Hillel et al. [29] sho-

wed that the standard Alice-Bob framework is incapable

of providing a super-linear lower bound for exact weighted

APSP, and raised the complexity of APSP as “an intriguing

open question”. They also showed an Ω̃(n2) lower bound for

exactly solving some NP-hard problems, such as minimum

vertex cover, maximum independent set and graph coloring.

This implies a huge separation between approximation and

exact algorithms, since some of these problems can be

solved approximately in O(polylog(n)) time.

A. Overview of Algorithms and Techniques.

Our algorithms are built on the scaling technique. This is

a classic technique heavily studied in the sequential setting

(e.g. [37], [38], [39]). As far as we know this is the first time

it is used for shortest paths computation in the distributed

setting. This technique (see Section III for details) allows us

to assume that the distance between any two nodes is O(n)
(i.e., the so-called weighted diameter is O(n)). The main

challenge here is that edge weight can be zero (but cannot be

negative); without the zero weight, there are already many

Õ(n)-time exact algorithms available (e.g. [30], [3]). Our

algorithms consist of two main subroutines developed for

this case, which might be of independent interest. We discuss

these subroutines below. To avoid the discussion being too

complicated, readers may assume throughout the discussion

that the input network has symmetric edge weight. Note

however that in reality we have to deal with the asymmetric

weights even if the original weight is symmetric. Additio-

nally, we assume for simplicity that every pair of nodes has

a unique shortest path.

1. Short-range extension. The first subroutine is called short-
range-extension. For simplicity, let us first consider a special

case called short-range problem. In this problem we are

given a parameter h. The goal is for every node v to

know the distance from every node u such that the shortest

uv-path has at most h edges. Previously, this task can

be achieved in Õ(nh) time by running the Bellman-Ford

algorithm for h rounds from every node. By exploiting

special properties obtained from the scaling technique, we

develop an Õ(n
√
h)-time algorithm for this problem. The

main idea is as follows. First we increase the zero weight

to a small positive weight Δ = 1/
√
h. By a breadth-

first-search (BFS) algorithm, we can solve APSP in the

new network (with positive weights) in Õ(n/Δ) time. This

solution gives an upper bound to the APSP problem on the

original network (with zero weights). Since we are interested

in only shortest paths with at most h edges, it can be argued

that the upper bound obtained has an additive error of hΔ;

i.e. it is only hΔ higher than the actual distance. We fix

this additive error by running the Bellman-Ford algorithm

for hΔ rounds from every node.

The short-range algorithm above can be generalized to the

following short-range-extension problem. We are given an

integer h, and initially some nodes in the network already

know distances to some other nodes. For any nodes u and v,

let (u = x0, x1, x2, . . . , xk = v) be the shortest uv-path. We

say that (u, v) is h-nearly realized if at least one node among

xk, xk−1, . . . , xk−h knows its distance from u. (Note that

the fact that (u, v) is h-nearly realized does not necessarily

imply that (v, u) is also h-nearly realized.) At the end of

our algorithm we want to make node v know the distance

from u, for every nodes u and v such that (u, v) is h-nearly

realized initially. Observe that the short-range problem is the

special case where initially node u knows distances from no

other nodes. By modifying the short-range algorithm, we

can show that this problem can be solved in Õ(n
√
h) time

as well.

2. Reversed r-sink shortest paths. The second subroutine

is called reversed r-sink shortest paths. Initially, we assume

that every node v knows the distance from v to r sink nodes.

The goal is for every sink to know the its distance from every

node. A naive solution is for every node v to broadcast to

the whole network the distance from v to every sink. This

takes O(nr) time since there are O(nr) distance information

to broadcast. In this paper, we develop an Õ(n
√
r)-time

algorithm for this task.

The main idea is for every node v to route the distance

from v to every sink t through the shortest vt-path. If there

is a node x that is contained in more than n
√
r shortest paths

(thus there will be too much information going through x),

we will call x a bottleneck node. We can bound the number

of bottleneck nodes to O(
√
r) by a standard argument –

we charge each bottleneck node to n
√
r distinct shortest

paths among nr of them. Now, for every shortest vt-path that

does not contain a bottleneck node, we route the distance

from node v and sink t as originally planned. This takes

Õ(n
√
r) time since there is Õ(n

√
r) bits of information

going through each node. For shortest vt-paths that contain

bottleneck nodes, we do the following. For every bottleneck

node c, we make every node know their distances from

and to c by running the Bellman-Ford algorithm starting

at c. Then every node broadcasts to the whole network its

distance to and from every bottleneck node. Since there are√
r bottleneck nodes, this takes O(n

√
r) time in total. It is

not hard to show that every sink t knows the distance from

every node v after this step.

Putting things together. Finally, we sketch how all tools

170

are put together. First we run the short-range algorithm

with parameter h =
√
n. Then we sample Õ(

√
n) nodes

uniformly at random called centers so that every h-hop

path contains a center with high probability. Each center

c broadcasts to the whole network its distances to some

centers that it learns from the short-range algorithms. At

this point, every node knows its distance to every center.

We invoke the reversed r-sink shortest paths algorithm with

centers as sink nodes (so r = Õ(
√
n)), so that every

center knows its distance from every node. At this point,

it is not hard to prove that every pair of nodes is h-

nearly realized. So, we finish by invoking the short-range-

extension algorithm with parameter h =
√
n. The total time

is Õ(n
√
r + n

√
h) = Õ(n5/4).

To extend the above idea to the k-source shortest paths

problem, we need slight modifications here and there; in

particular, (i) we modify the short-range extension and

reversed r-sink shortest paths algorithms to deal with k
source nodes, and (ii) we treat the sampled centers as source

nodes since we need to know the distances from and to them.

II. PRELIMINARIES

A. The Model

In a nutshell, we consider the standard CONGEST model,

except that instead of an undirected graph the underlying

graph is modeled by a bidirected graph, i.e. a directed graph

in which the reverse of every edge is also an edge. This

is because we have to deal with asymmetric edge weight

(even when the initial network has symmetric weights).

Additionally, for simplicity we assume that nodes IDs are

in the range of {0, 1, . . . , n − 1}. (This assumption can be

achieved in O(n) time.)

More precisely, we model a network by a bidirected
unweighted n-node m-edge graph G, where nodes model

the processors and edges model the bounded-bandwidth
links between the processors. Let V (G) and E(G) denote

the set of nodes and (directed) edges of G, respectively.

The processors (henceforth, nodes) are assumed to have

unique IDs in the range of {0, 1, . . . , n − 1} and infinite

computational power. (Note again that typically nodes’ IDs

are assumed to be in the range of {1, . . . , poly(n)}. But in

O(n) time the range can be reduced to {0, 1, . . . , n − 1}.)
Each node has limited topological knowledge; in particular,

it only knows the IDs of its neighbors and knows no
other topological information (e.g., whether its neighbors

are linked by an edge or not). Nodes may also accept some

additional inputs as specified by the problem at hand.

For the case of graph problems, the additional input is

edge weights. Let w : E(G) → {1, 2, . . . , poly(n)} be

the edge weight assignment.7 We refer to network G with

7Note that it might be natural to include ∞ as a possible edge weight.
But this is not necessary since it can be replaced by a large weight of value
poly(n).

weight assignment w as the weighted network, denoted by

G(w). The weight w(u, v) of each edge (u, v) is known

only to u and v. As commonly done in the literature, we

will assume that the maximum weight is poly(n); so, each

edge weight can be sent through an edge (link) in one

round. We refer to the weight function as symmetric, or

sometimes undirected, if for every (directed) edge (u, v),
w(u, v) = w(v, u). Otherwise, it is called asymmetric, or

sometimes directed. We note again that the symmetric case

is the typical case considered in the literature, but we have

to deal with the asymmetric case in our algorithm.

We measure the performance of algorithms by its run-

ning time, defined as the worst-case number of rounds of

distributed communication. At the beginning of each round,

all nodes wake up simultaneously. Each node u then sends

an arbitrary message of O(log n) bits through each edge

(u, v), and the message will arrive at node v at the end of the

round. We assume that nodes always know the number of the

current round. In this paper, the running time is analyzed in

terms of the number of nodes (n). Since n can be computed

in O(D) time, where D is the diameter of G, we will assume

that every node knows n.

B. Problems and Notations

For every nodes s and t in a weighted network G(w), let

dw(s, t) be the distance from s to t in G(w). Note that if

w is asymmetric then it might be the case that dw(s, t) �=
dw(t, s). Let P ∗w(s, t) be the shortest path from s to t in

G(w); if there are more than one such path, we let P ∗w(s, t)
be the one with the least number of edges (if there are still

more than one, break tie arbitrarily). We refer to P ∗w(s, t) as

the shortest st-path.

The goal of the all-pairs shortest paths (APSP) problem

is for every node t to know dw(s, t) for every node s. In the

case of k-source shortest paths (k-SSP) problem, there is a

set S of k source nodes (every node knows whether it is

in S or not). The goal is for every node t to know dw(s, t)
for every source s ∈ S. When k = 1, the problem is called

single-source shortest paths (SSSP).

We say that an event holds with high probability (w.h.p.)

if it holds with probability at least 1− 1/nc, where c is an

arbitrarily large constant.

C. Basic Distributed Algorithms

The Bellman-Ford Algorithm. We note the following

algorithm for SSSP on network G(w), known as Bellman-
Ford [26], [27]. Let s be the source node. For any node t, let

dtw(s, t) denote the knowledge of t about dw(s, t). Initially,

dtw(s, t) = ∞ for every node t, except that dsw(s, s) = 0.

The algorithm proceeds as follows.

(i) In round 0, every node t sends dtw(s, t) to all its

neighbors.

171

(ii) When a node t receives the message about dxw(s, x)
from its neighbors x, it uses the new information to

decrease the value of dtw(s, t).
(iii) If dtw(s, t) decreases, then node t sends the new value

of dtw(s, t) to all its neighbors.

(iv) Repeat (ii) and (iii) for n rounds.

Clearly, the above algorithm takes O(n) rounds. More-

over, it can be proved that when the algorithm terminates

dtw(s, t) = dw(s, t); i.e. t knows dw(s, t).

Scheduling of Distributed Algorithms. Consider k dis-

tributed algorithms A1, A2 . . . , Ak. Let dilation be such

that each algorithm Ai finishes in dilation rounds if it

runs individually. Let congestion be such that there are

at most congestion messages, each of size O(log n), sent

through each edge (counted over all rounds), when we run all

algorithms together. We note the following result of Ghaffari

[40]:

Theorem 1 ([40]). There is a distributed algorithm that
can execute A1, A2 . . . , Ak altogether in O(dilation +
congestion · log n) time.

Broadcasting. We need to follow fact following from basic

upcasting and downcasting techniques [7]. (The statement is

from [30].)

Lemma 2. Suppose each v ∈ V holds kv ≥ 0 messages of
O(log n) bits each, for a total of K =

∑
v∈V kv messages.

Then all nodes in the network can receive these K messages
within O(K +D) rounds.

D. Sampling the Centers

In the beginning of each iteration, a special node (with

ID 0) chooses a subset of centers uniformly random and

broadcasts this information (their IDs) to all other nodes.

Here we use a lemma of Ullman and Yannakakis [41,

Lemma 2.2].

Lemma 3 ([41]). If we choose z distinct nodes uniformly at
random from an n-node graph, then the probability that a gi-
ven (acyclic) path has a sequence of more than (cn log n)/z
nodes, none of which is distinguished, is, for sufficiently
large n, bounded above by 2−αc for some positive α.

The special node chooses
√
n polylog(n) centers at

random and broadcasts this information (the broadcasting

can be done in O(
√
n polylog(n) + D) = O(n) rounds).

Then the following lemma is a direct consequence of the

previous one.

Lemma 4. Let w be any non-negative weight function. For
any nodes s and t, let P ∗w(s, t) be the shortest st-path in
G(w) as defined in Section II-B. Then, with high probability,
every P ∗w(s, t) can be decomposed into a set of subpaths
P0 = (s = u0, . . . , u1), P1 = (u1, . . . , u2), . . ., Pk−1 =
(uk−1, . . . , uk = t), where

• the ui are centers for 1 ≤ i ≤ k − 1.
• each subpath has at most

√
n− 1 edges.

III. THE SCALING FRAMEWORK

Let w̄ denote the given (possibly asymmetric) weight

function of the input graph G. We want every node t to

know the distances from other nodes s to itself with respect

to w̄. We emphasize that every edge (u, v) is directed, i.e.,

(u, v) is an ordered pair. We need the following definitions:

Definition 5. Let β be the integer such that 2β−1 ≤
max(u,v)∈E(G) w̄(u, v) < 2β . For any 0 ≤ i ≤ β and edge
(u, v), let wi(u, v) =

⌊
w̄(u, v)/2β−i

⌋
. That is, wi(u, v) is

the number represented by the first i most significant bits of
w̄(u, v) (when we treat the β-th bit as the most significant
one). Let bi(u, v) ∈ {0, 1} be the i-th bit in the binary
representation of w̄(u, v), i.e., w̄(u, v) =

∑β−1
i=0 bi(u, v)2

i.

Note that β = O(log n) because the weights of edges

in G are polynomial. For any edge (u, v), w0(u, v) =
0, wβ(u, v) = w̄(u, v), and wi+1(u, v) = 2wi(u, v) +
bβ−i(u, v) for 0 < i < β. For each i, we can treat wi

and bi as a weight function.

Definition 6. For any (asymmetric) weight function ŵ, we
denote by duŵ(s, t) the knowledge of the node u about
dŵ(s, t), i.e., the distance from s to t with respective the
weight ŵ.

The algorithm will runs in β iterations. At the i-th itera-

tion, we assume that for every node t knows the distances

from all other nodes s to itself with respect to the weight

wi−1, i.e. dtwi−1
(s, t) = dwi−1

(s, t) for all s and t. The goal

is to use this information to so that at the end of the iteration

the knowledge of the distances with respect to wi, i.e. we

have dtwi
(s, t) = dwi(s, t) for all s and t. Note that the

assumption about the knowledge holds in the very beginning

when i = 1, because dtw0
(s, t) = dw0

(s, t) = 0 for all s and

t by Definition 5.

For convenience, throughout the paper, we fix the iteration

i. We denote the weight functions w := wi, w
′ := wi+1 and

b := bβ−i. That is, we have w′(u, v) = 2w(u, v) + b(u, v)
for every edge (u, v). In the beginning, we have dtw(s, t) =
dw(s, t) and we want to have dtw′(s, t) = dw′(s, t) at the

end.

A. Upper Bounding the Distances

As dw′(s, t) can be a large polynomial for some s, t, we

can avoid this by working with a set of reduced weights rs
defined as follows.

Definition 7. For any node s and edge e = (u, v), let

rs(u, v) = 2dw(s, u) + w′(u, v)− 2dw(s, v). (1)

172

We note that rw is an asymmetric weight function even if

w and w′ are symmetric. The next lemma states some useful

properties of rs:

Lemma 8. Let rs be defined as in Definition 7. Then the
following holds.

(i) For any edge e = (u, v), rs(u, v) ≥ 0.
(ii) For any nodes s and t, drs(s, t) ≤ n− 1.

(iii) For any nodes s and t, dw′(s, t) = 2dw(s, t)+drs(s, t).
In fact, any path is a shortest st-path in G(w′) if and
only if it is a shortest st-path in G(rs).

Proof: For (i), observe that rs(u, v) = 2dw(s, u) +
w′(u, v)−2dw(s, v) ≥ 2dw(s, u)+2w(u, v)−2dw(s, v) ≥ 0,

where the last inequality follows from the triangle inequality.

For (ii), first notice that

rs(P) = w′(P)− 2dw(s, t), for any st-path P . (2)

The above inequality follows easily from definition. Let

P = (s = v0, v1, . . . , t = vk), for some k ≤ n− 1. Then,

rs(P) =
k−1∑
j=0

rs(vj , vj+1)

=

k−1∑
j=0

2dw(s, vj) + w′(vj , vj+1)− 2dw(s, vj+1)

= (
k−1∑
j=0

w′(vj , vj+1))− 2dw(s, vk)

= w′(P)− 2dw(s, t) .

Now assume that P is a shortest st-path in G(w). Then

drs(s, t) ≤ rs(P) ≤ w′(P)− 2dw(s, t)

= (
k−1∑
j=0

2w(vj , vj+1) + b(vj , vj+1))− 2dw(s, t)

= (
k−1∑
j=0

b(vj , vj+1)) + 2w(P)− 2dw(s, t)

=
k−1∑
j=0

b(vj , vj+1) ≤ n− 1.

Here the second inequality follows from (2), the fifth

equality from the assumption that P is a shortest path in

G(w) and the last inequality from the fact that k ≤ n − 1
and b(vj , vj+1) ∈ {0, 1}. This proves (ii).

Finally for (iii), let P = (s = v0, v1, . . . , t = vk) be a

shortest st-path in G(w′). Then

drs(s, t) ≤ rs(P) = w′(P)−2dw(s, t) = dw′(s, t)−2dw(s, t),

where the last equality holds as P is a shortest st-path in

G(w′). On the other hand, let P ′ = (s = v0, v1, . . . , t = vk′)
be a shortest path in G(rs). Then

dw′(s, t) ≤ w′(P ′) = rs(P
′)+2dw(s, t) = distrs(s, t)+2dw(s, t),

where the last equality holds because P ′ is a shortest path

in G(rs). The above two inequalities establish the first part

of (iii), while the second part follows from the first part.

Lemma 8(ii) implies that shortest path tree with a source

s, based on rs, has depth at most n. However, we cannot
construct such a tree using the standard BFS starting from s
in just O(n) rounds, the difficulty being that it can happen

that rs(u, v) = 0 for some edge (u, v). We also note that

Lemma 8(ii) does not imply that every edge in the shortest

paths has 0/1-weight.

IV. MAIN ALGORITHM

In this section, we show the main algorithm described

in Algorithm 1 which is the algorithm for one iteration in

the scaling framework from Section III. The setting is that

there are three weight functions w, w′ and b such that, for

every edge (u, v) of the input graph G, b(u, v) ∈ {0, 1} and

w′(u, v) = 2w(u, v) + b(u, v). In the beginning, we have

dtw(s, t) = dw(s, t) and we want that every node t knows

dw′(s, t) for every node s, i.e., dtw′(s, t) = dw′(s, t) at the

end of the algorithm.

For every pair of nodes s and t, recall that P ∗w′(s, t) is the

shortest st-path in G(w′); if there are more than one shortest

st-paths in G(w′), pick the one with the least number of

edges (if there are still more than one, break tie arbitrarily).

Let C be the set of centers decided in Step 1 of Algorithm 1.

Next, we define an important definition for our algorithm.

Let P ∗w′(s, t)|C denote the subpath of P ∗w′(s, t) from the

last center in C ∩ P to t. If there is no center in P , let

P ∗w′(s, t)|C = P ∗w′(s, t). Let |P ∗w′(s, t)| be the number of

edges in P ∗w′(s, t); similarly, |P ∗w′(s, t)|C| is the number of

edges in P ∗w′(s, t)|C.

Recall that by Lemma 8(iii), dw′(s, t) differs from

drs(s, t) by 2dw(s, t), which is known to t. So if every node

t knows that the distances w.r.t. rs from each node s, i.e.,

dtrs(s, t) = drs(s, t), then each node t can deduce the the

distances w.r.t. to w′ as well, i.e., dtw′(s, t) = dw′(s, t) for

all s.

We first explain the high-level ideas behind our algorithm.

In Algorithm 1, Step 1 is for sampling the centers. Step 2

is needed for the execution of Steps 3 and 6. Note that the

implementation details of Steps 3, 5 and 6 will be elaborated

in the subsequent sections.

Correctness: Let h =
√
n. For any nodes s and t, we

will argue that, after executing Steps 3 to 6, every node

t knows the distance w.r.t. w′ from s to t, i.e., dtw′(s, t) =
dw′(s, t). Let cs be the first node in the path P ∗w′(s, t)|C,

i.e. P ∗w′(cs, t) = P ∗w′(s, t)|C. From the definition, if there is

173

Algorithm 1: Main APSP Algorithm (for one iteration

in the scaling framework)

Input: A graph G and the weight functions w, w′, and b.
Every node t knows dw(s, t) for every node s, i.e.,
dtw(s, t) = dw(s, t). Let h =

√
n.

Output: Every node t knows dw′(s, t) for every node s, i.e.
dtw′(s, t) = dw′(s, t).

1 Node 0 randomly samples
√
npolylog(n) centers

(collectively denoted as C) and broadcast their IDs to all
other nodes. // This steps takes O(n) rounds.

2 Node t sends dw(s, t), for all nodes s, to its neighbors x in
G. The neighbor x internally uses this knowledge to
compute rs(x, t), for all nodes s, as defined in
Definition 7. // This steps takes O(n) rounds.

3 Apply the short-range algorithm (in Section IV-A) so that
every node s knows dsw′(s, t) ≥ dw′(s, t) for all nodes t,
and if |P ∗

w′(s, t)| ≤ h, dsw′(s, t) = dw′(s, t). // This
step takes Õ(n1.25) rounds.

4 All centers c ∈ C broadcast their knowledge of dcw′(c, c
′),

for all centers c′ ∈ C, to all other nodes in the network.
Every node s internally uses this knowledge to calculate
dsw′(s, c) = dw′(s, c) for all centers c ∈ C. // This
step takes Õ(n) rounds

5 Apply the reversed r-sink shortest paths algorithm (in
Section IV-C) with nodes in C as sinks so that every
center c ∈ C knows dcw′(s, c) = dw′(s, c) for all nodes s.
// This step takes Õ(n1.25) rounds.

6 Apply the short-range-extension algorithm (in Section IV-B)
so that every node t knows dtw′(s, t) ≥ dw′(s, t) for all
nodes s, and if |P ∗

w′(s, t)|C| ≤ h, dtw′(s, t) = dw′(s, t).
// This step takes Õ(n1.25) rounds.

no centers in P ∗w′(s, t) then cs = s and otherwise cs is the

last center appeared in the path P ∗w′(s, t) from s to t.
We claim that after Step 5, the node cs will know the

distance w.r.t. w′ from s to cs, i.e., dcsw′(s, cs) = dw′(s, cs). If

cs = s, this is trivial. Suppose cs �= s. Consider the shortest

path P ∗w′(s, cs) from s to cs. By Lemma 4, we can partition

P ∗w′(s, cs) into subpaths, say P0 = (u0 := s, . . . , u1), P1 =
(u1, . . . , u2), . . ., Pk−1 = (uk−1, . . . , uk := cs) so that each

subpath Pj has at most h− 1 edges for 0 ≤ j ≤ k− 1, and

the uj’s are centers for 1 ≤ j ≤ k − 1. As subpath Pj has

at most h− 1 edges, the short-range algorithm guarantees

in Lemma 13 that uj knows d
uj

w′(uj , uj+1) = dw′(uj , uj+1)
for 0 ≤ j ≤ k − 1 after Step 3 in Algorithm 1. In Step 4,

d
uj

w′(uj , uj+1), for 1 ≤ j ≤ k − 1, will broadcast and be

known to s. Therefore, after Step 4, the node s would be

able to calculate dw′(s, cs) and so dsw′(s, cs) = dw′(s, cs).
Then, by the guarantee from Lemma 20 of the reversed r-
sink shortest paths algorithm in Step 5, the knowledge is

“exchanged” and so cs knows dw′(s, cs), i.e. dcsw′(s, cs) =
dw′(s, cs).

By Lemma 4, we also have that P ∗w′(cs, t) = P ∗w′(s, t)|C
has at most h − 1 edges. As dcsw′(s, cs) = dw′(s, cs), by

the guarantee of the short-range-extension algorithm by

Lemma 16, we have after Step 6 the node t knows the

distance dw′(s, t), i.e. dtw′(s, t) = dw′(s, t) and we are done.

Running Time: There are O(|C|) messages to be broadcas-

ted in Step 1, and O(|C|2) messages in Step 4. By Lemma 2,

this takes O(|C|2 + D) = Õ(n) in total. Step 2 easily

takes O(n) rounds (by Theorem 1 we have congestion = n
and dilation = 1). In the following three subsections, we

will show that Steps 3, 5 and 6 take Õ(n1.25) rounds each.

In particular, Lemmas 13 and 16 state that the short-range

algorithm in Step 3 and the short-range-extension algorithm

in Step 6 both take Õ(n
√
h). Lemma 20 states that the

reversed r-sink shortest paths algorithm in Step 5 takes

Õ(n
√|C|). In total, the running time in each iteration is

Õ(n1.25) rounds.

Theorem 9. At the end of Algorithm 1, with high probability,
for every node t, dtw′(s, t) = dw′(s, t) for all nodes s.
Furthermore, the algorithm takes Õ(n1.25) rounds.

A. Short-Range Algorithm

In this section we show how to implement Step 3 of

Algorithm 1 so that every node s knows dsw′(s, t) ≥ dw′(s, t)
for all nodes t, and if |P ∗w′(s, t)| ≤ h, dsw′(s, t) = dw′(s, t).

The main algorithm in this section is precisely described

in Algorithm 2. However, it yields a slightly different output:

after finishing, every node t knows dtw′(s, t) ≥ dw′(s, t) for

all nodes s, and if |P ∗w′(s, t)| ≤ h, dtw′(s, t) = dw′(s, t). As

they are completely symmetric, we can use Algorithm 2 as

an algorithm for Step 3 of Algorithm 1 just by switching the

direction of every edge in the graph. The reason for presen-

ting Algorithm 2 that does not give exactly what we want

for Step 3 of Algorithm 1 is that, later in Section IV-B, we

will extend Algorithm 2 and obtain the short-range-extension

algorithm. This formulation of Algorithm 2 simplifies the

modification a lot. From now on, we will call Algorithm 2

the short-range algorithm as well.

Recall that we mentioned earlier that some edges (u, v)
may have rs(u, v) = 0 and this poses difficulty. Our main

idea is to deal with a strictly positive weight function r′s,

defined as rs rounded up to the next multiple of Δ =
√
1/h.

More precisely,

Definition 10. Let Δ =
√
1/h. For every node s and every

edge (u, v), let

r′s(u, v) =

{
Δ if rs(u, v) = 0, and
Δ
rs(u, v)/Δ� otherwise.

Running Time: In Algorithm 2, Steps 1, 2 and 5 takes

no time. For a single source s, the BSF in Step 3 has

dilation = O((n + hΔ)/Δ) = O(n/Δ + h) rounds.

As in BSF each node sends messages only once and

we run the BSF in parallel from all nodes s, we have

congestion = O(n). By Theorem 1, we have that Step 3 ta-

kes Õ(dilation+congestion) = Õ(n/Δ+h+n) = Õ(n/Δ).
Step 4 is essentially the Bellman-Ford algorithm except the

following modifications:

174

Algorithm 2: Short-Range Algorithm

Input: Every node t knows dw′(s, t) and rs(t, x) for all
nodes s and all t’s neighbors x in G.

Output: For every pair of nodes s and t,
dtw′(s, t) ≥ dw′(s, t) and if |P ∗

w′(s, t)| ≤ h,
dtw′(s, t) = dw′(s, t).

1 For every edge (u, v) and all nodes s, both u and v
internally compute r′s(u, v) according to Definition 10.

2 For every node t, initially set dtr′s(s, t) =∞ for all nodes

s �= t and dtr′t
(t, t) = 0.

3 For every node s, compute SSSP tree from s up to depth
n+ hΔ in terms of r′s by implementing the following
BFS: each node t(�= s) updates dtr′s(s, t) according to the

message dxr′s(s, x) it receives from its neighbor x. If

dtr′s(s, t) ≤ n+ hΔ, then in round dtr′s(s, t)/Δ, the node

t sends dtr′s(s, t) to all its neighbors in G, if t did not
send any message in this step yet. // Note that we
count the number of rounds from 0.

4 Every node t sets dtrs(s, t) = dtr′s(s, t) for all nodes s. (Note

that dtrt(t, t) = 0.) Run the following algorithm (which is a
modification of the Bellman-Ford algorithm) for every node
s, in parallel:
(i) In round 0, every node t sends dtrs(s, t) to all its neighbors.

(ii) When a node t receives the message about dxrs(s, x) from
its neighbors x, it uses the new information to decrease the
value of dtrs(s, t) (as an upper estimate of dr′s(s, t)).

(iii) If dtrs(s, t) decreases and dtrs(s, t) ≥ dtr′s(s, t)− hΔ, then

the node t sends the new value of dtrs(s, t) to all its
neighbors.

(iv) Repeat (ii) and (iii) for h rounds.

5 Every node t calculates dtw′(s, t) = 2dw(s, t) + dtrs(s, t) for
all nodes s.

1) we start with dtrs(s, t) = dtr′s(s, t) instead of dtrs(s, t) =∞, and

2) a node t sends its updated value of dtrs(s, t) only when

dtrs(s, t) ≥ dtr′s(s, t)− hΔ (instead of sending it every

time dtrs(s, t) is decreased); see Step 4.(iii).

We run the modified Bellman-Ford algorithm for every node

s in parallel. This algorithm for a single source node s has

dilation = O(h) and congestion = O(hΔ) = O(
√
h) since

every node sends a message to its neighbors at most O(hΔ)
times (due to the second modification). By Theorem 1, paral-

lelizing n such algorithms takes Õ(h+ n · hΔ) = Õ(nhΔ)
rounds. Now it can be concluded that Algorithm 2 takes

Õ(n/Δ+ nhΔ) = Õ(n
√
h) rounds.

Correctness: Next, we show the correctness of Algorithm 2

using the following lemmas.

Lemma 11. After Step 3 of Algorithm 2, every node t
knows dtr′s(s, t) ≥ dr′s(s, t) for all nodes s and in particular
dtr′s(s, t) = dr′s(s, t) if dr′s(s, t) ≤ n+ hΔ.

Proof: The first part follows from the property of the

BFS. For the second part, first notice that Δ divides dr′s(s, t)
for all nodes s and t. By a straightforward induction, it can

be shown that by round
dr′s (s,t)

Δ , dtr′s(s, t) = dr′s(s, t), if

0 ≤ dr′s(s, t) ≤ n+ hΔ.

Lemma 12. After Step 4 of Algorithm 2, every node t
knows dtrs(s, t) ≥ drs(s, t) for all nodes s, furthermore,
if |P ∗w′(s, t)| ≤ h, then dtrs(s, t) = drs(s, t); in particular,
dtrs(s, t) is decreased to drs(s, t) in round |P ∗w′(s, t)| or
before.

Observe that the correctness of output of the algorithm

follows from this lemma, since in Step 5, every note t can

correctly compute dtw′(s, t) = dw′(s, t) if |P ∗w′(s, t)| ≤ h
and otherwise dtw′(s, t) ≥ dw′(s, t).

The intuition behind the proof is to show that dr′s(s, t)
(stored as dtr′s(s, t)) computed in Step 3 is not very far

from drs(s, t); i.e dr′s(s, t) − drs(s, t) ≤ hΔ. Intuitively,

this is because |P ∗w′(s, t)| ≤ h, and for each edge (u, v),
0 ≤ r′s(u, v) − rs(u, v) ≤ Δ. This allows us to modify the

Bellman-Ford algorithm in Step 4 to allow a node to speak

only when dtr′s(s)− dtrs(s, t) ≤ hΔ. See the full version for

the full proof.

By flipping the direction of edges in the graph, we can

conclude the result that is used in the main algorithm:

Lemma 13. After running Algorithm 2 on a graph where
the direction of each edge is flipped, every node s knows
dsrs(s, t) ≥ drs(s, t) for all nodes t, furthermore, if
|P ∗w′(s, t)| ≤ h, then dsrs(s, t) = drs(s, t). Moreover the
algorithm takes Õ(n

√
h) rounds.

B. Short-Range-Extension Algorithm

In this section we show how to implement Step 6 of

Algorithm 1 with the algorithm called short-range-extension

algorithm. We are in the setting such that in the beginning,

every center c already knows dcw′(s, c) = dw′(s, c) for all

nodes s. By Lemma 4, this implies with high probability that

for every pair s and t, (s, t) is h-nearly realized. Indeed, let

P ∗w′(s, t) = (s = x0, x1, x2, . . . , xk = t) be the shortest

path from s to t with respect to w′. We have that there is

a center cs ∈ {xk, xk−1, . . . , xk−h} who knows its distance

from s to itself with high probability by Lemma 4. The goal

is that, at the end, every node t knows the distance dw′(s, t)
for all nodes s. Moreover, it suffices to show that, at the

end, every node t knows dtw′(s, t) ≥ dw′(s, t) for all nodes

s, and if |P ∗w′(s, t)|C| ≤ h, dtw′(s, t) = dw′(s, t).
The short-range-extension algorithm is a minor modifica-

tion of the short-range algorithm in Algorithm 2, with the

same running time and almost identical implementation. But,

in this setting, the centers have additional initial knowledge:

every center t already knows dw′(s, t) and hence drs(s, t)
for all nodes s, i.e., dtrs(s, t) = drs(s, t). The following

changes exploit this knowledge:

• For any node s, let Gs be the graph obtained from G by

adding imaginary edges into G: for every center t, there

is an additional edge (s, t) with weight drs(s, t). We

175

call Gs the s-augmented graph. We define the weight

function r′′s for Gs in the same way as how we define

the weight function r′s for G. That is, for each original

edge (u, v) in Gs, we set r′′s (u, v) = r′s(u, v), and, for

each imaginary edge (s, t) where t is a center, we set

r′′s (s, t) =

{
Δ if drs(s, t) = 0, and

Δ
drs(s, t)/Δ� otherwise.

Let dr′′s (u, v) denote the distance from u to v with

respect to r′′s in the s-augmented graph Gs.

• In Step 2, every pair of nodes s and t, initially set

dtr′′s (s, t) = ∞ and dtr′′s (t, t) = 0, unless t itself is a

center. In this case, let

dtr′′s (s, t) =

{
Δ if drs(s, t) = 0, and

Δ
drs(s, t)/Δ� otherwise.

This is possible because each center t already knows

drs(s, t) for all nodes s.

• In Step 3, for every node s, we compute the same SSSP

tree w.r.t. r′′s instead of r′s. Observe that, for every node

s, running the BFS with respect to r′′s is the same as

simulating Step 3 of the original short-range algorithm

in the s-augmented graph Gs.

• In the beginning of Step 4, every node t sets dtrs(s, t) =
dtr′′s (s, t) for all nodes s, unless t itself is a center. In

this case, dtrs(s, t) = drs(s, t). Moreover, we run this

step for h+ 1 rounds instead of h rounds.

The running time clearly does not asymptotically change,

and so this algorithm takes Õ(n
√
h) rounds. The next two

lemmas establish the correctness of the algorithm and they

are close parallels of Lemmas 11 and 12. See the full version

for their proofs.

Lemma 14. After Step 3 of the modified Algorithm 2, every
node t knows dtr′′s (s, t) ≥ dr′′s (s, t) for all nodes s, and in
particular, dtr′′s (s, t) = dr′′s (s, t) if dr′′s (s, t) ≤ n+ hΔ.

Lemma 15. After Step 4 of the modified Algorithm 2,
every node t knows dtrs(s, t) ≥ drs(s, t) for all nodes
s, furthermore, if |P ∗w′(s, t)|C| ≤ h, then dtrs(s, t) =
drs(s, t); in particular dtrs(s, t) decreases to drs(s, t) in
round |P ∗w′(s, t)|C|+ 1.

Note that the knowledge about drs(s, t) implies the kno-

wledge about dw′(s, t). So now we can conclude the lemma

that is used in the main algorithm:

Lemma 16. Suppose that every center c already knows
dcw′(s, c) = dw′(s, c) for all nodes s. After running the
modified Algorithm 2, every node t knows dtw′(s, t) ≥
dw′(s, t) for all nodes s, furthermore, if |P ∗w′(s, t)| ≤ h or
|P ∗w′(s, t)|C| ≤ h, then dtw′(s, t) = dw′(s, t). Furthermore,
the algorithm runs in Õ(n

√
h) rounds.

C. Reversed r-Sink Shortest Paths Algorithm

In this section, we assume that r special sink nodes

v1, . . . , vr are given and every node s knows dtw′(s, vi) =
dw′(s, vi) for all sink nodes vi. (Note that these r special

sinks correspond to the centers C in Algorithm 1.) We

present an Õ(n
√
r)-time algorithm so that each sink vi,

1 ≤ i ≤ r, acquires the knowledge dvi
w′(s, vi) = dw′(s, vi)

for all nodes s in the end. The algorithm is described in

Algorithm 3. Here, we write the t-sink shortest path tree to

mean the shortest path tree (w.r.t. w′) that has t as the sink.

Algorithm 3: Reversed r-Sink Shortest Paths Algorithm

Input: r sink nodes v1, · · · , vr . Every node s knows
dw′(s, vi) for all 1 ≤ i ≤ r, i.e.,
dsw′(s, vi) = dw′(s, vi)

Output: Each sink node vi knows dw′(s, vi) for all nodes s,
i.e., dvi

w′(s, vi) = dw′(s, vi)
1 Every node s sends dw′(s, vi), for each 1 ≤ i ≤ r, to all its

neighbors.
2 For each 1 ≤ i ≤ r and every node s, s uses the information

dw′(x, vi) from all its neighbors x to decide which
neighbor x∗ is its parent in the vi-sink shortest path tree.
The node s then informs x∗ that it is a child of x∗ in the
vi-sink shortest path tree.

3 Set B = ∅. // B is the set of bottleneck nodes.
4 For each 1 ≤ i ≤ r and every node s, s waits until it receives

the message #(i, xj) from all its children xj in the vi-sink
shortest path tree. If the node s �∈ B, let
#(i, s) = 1 +

∑
j #(i, xj); otherwise #(i, s) = 0. The

node s sends #(i, s) to its parent in the vi-sink shortest
path tree.

5 If any node s �∈ B ∪ {vi}ri=1 has
∑r

i=1 #(i, s) >
√
kn:

(i) s broadcasts its intent of becoming a new bottleneck.
(ii) Node 0 chooses one of the candidates (say the one with the

smallest ID) as the new bottleneck b and broadcasts its ID
to all nodes. Set B = B ∪ {b}.

(iii) Apply the Bellman-Ford algorithm to build the b-sink
shortest path tree and the b-source shortest path tree, so that
every node s knows dsw′(s, b) = dw′(s, b) and
dsw′(b, s) = dw′(b, s).

(iv) Every node s broadcasts dw′(s, b) to all nodes (in
particular, to all sinks), so that every sink vi knows
dvi
w′(s, b) = dw′(s, b) for all nodes s.

(v) Go back to Step 4.

6 For each 1 ≤ i ≤ r and each node s, dw′(s, vi) is relayed to
sink vi through the path P ∗

w′(s, vi) in the vi-sink shortest
path tree if P ∗

w′(s, vi) ∩B = ∅. That is, every node
x ∈ V \B sends dw′(x, vi) to its parent in the vi-sink
shortest path tree. When a node v ∈ V \B receives a
message dw′(x, vi), it sends such message to its parent in
the vi-sink shortest path tree.

7 Each sink vi, for 1 ≤ i ≤ r, computes dw′(s, vi) for all
nodes s.

Now, we explain the idea of Algorithm 3. By Steps 1

and 2, for every sink vi, each node s can decide which

neighbor x∗ is its parent in the vi-sink shortest path tree: if

d′w(s, vi) = w′(s, x∗) + d′w(x
∗, vi), then x∗ is the parent of

s. Also, every node s knows which neighbors are its children

176

because the children informed s in Step 2.

The basic idea is to propagate dw′(vi, t) for all node t
upwards to vi in the vi-sink shortest path tree (as done in

Step 5) until vi receives all the informations. However, a

brute-force implementation of this idea leads to O(nr) time

complexity, since some nodes may need to send out O(nr)
messages.

We overcome this issue by creating a set B of bottleneck
nodes (or just bottlenecks for short), which is empty initially.

Intuitively, these nodes are the bottlenecks of the above

propagation process. We will let them become a sort of “ad-

hoc” sinks, namely, if b ∈ B, we will let all nodes s know

dsw′(s, b) = dw′(s, b). Furthermore, for all 1 ≤ i ≤ r, the vi-
shortest path trees will be “pruned” from these bottlenecks

downwards in the following sense. In Step 4, a node s, if not

a bottleneck in B, aggregates the number of its descendants

(including s itself) in the vi-sink shortest path tree, for each

1 ≤ i ≤ r, and then informs its parent in the same tree. On

the other hand, if t is a bottleneck, it informs its parent in

the vi-sink shortest path trees, for all 1 ≤ i ≤ r, that it has

no descendants, i.e., it is a leaf. (this can be regarded as our

pruning the vi-sink shortest path trees from the bottlenecks

downwards).

In Step 5, if some nodes t, which are neither bottlenecks

nor the original sinks, have more than n
√
r descendants,

it declares itself as a potential candidate to become a new

bottleneck. The special node with ID 0 will then decide on a

unique node b to be the new bottleneck (so B = B∪{b}) and

broadcasts this decision. Then we build the b-sink shortest

path tree and b-source shortest path tree using the Bellman-

Ford algorithm so that all nodes s knows dsw′(s, b) =
dw′(s, b) and dsw′(b, s) = dw′(b, s). Then, all nodes s
forward dsw′(s, b) to the sinks (by broadcasting to the whole

network) so that every sink vi knows dvi
w′(s, b) = dw′(s, b).

This will be useful information for sinks. The same process

(Steps 4 and 5) continues until no more bottleneck is created.

Lemma 17. The number of bottlenecks is |B| = O(
√
r) and

so Steps 4 and 5 repeat O(
√
r) times.

Proof: Observe that originally the total number of nodes

in all vi-sink shortest path trees, for 1 ≤ i ≤ r, is nr. Each

time a new node becomes a bottleneck, all its descendants

(at least Ω(n
√
r) of them) are pruned from these trees. Thus,

we can create up to at most O(nr
n
√
r
) = O(

√
r) bottlenecks

and accordingly Steps 4 and 5 repeat the same number of

times.

When there is no more bottleneck to be created, Step 6

simply relays the information dw′(s, vi) to sink vi through

the vi-sink shortest path tree, for each 1 ≤ i ≤ r, as long as

1) s ∈ B is a bottleneck, or 2) s is not a bottleneck and the

path from s to vi in the vi-sink shortest path tree does not

contain a bottleneck, i.e. P ∗w′(s, vi) ∩ B = ∅. The last step

finishes the algorithm.

Lemma 18. In Step 7, each sink vi, for 1 ≤ i ≤ r, correctly
computes dw′(s, vi) for all nodes s, i.e., dvi

w′(s, vi) =
dw′(s, vi).

Proof: Consider the path P ∗w′(s, vi) from s to vi in the

vi-sink shortest path tree. There are two cases. First, if s ∈ B
or P ∗w′(s, vi)∩B = ∅, then, by Step 6, dw′(s, vi) is relayed

to vi and we are done. Second, if s is not a bottleneck and

there is a bottleneck b in P ∗w′(s, vi), then, by Step 5(iv),

dw′(s, b) is known to vi; i.e. dvi
w′(s, b) = dw′(s, b). Also, by

Step 5(iii), dvi
w′(b, vi) = dw′(b, vi) is known to vi. Therefore,

vi can use these pieces of information to correctly compute

dw′(s, vi) = dvi
w′(s, b) + dvi

w′(b, vi).
The lemma above concludes the correctness of Algo-

rithm 3. Now we analyze the running time.

Lemma 19. Algorithm 3 takes Õ(n
√
r) rounds.

Proof: We will use extensively Theorem 1 by analyzing

dilation and congestion in each step. In Steps 1 and 2, each

node only sends r messages to its neighbors. So dilation =
1 and congestion = r, and so this takes Õ(r) rounds. In

Step 4, for every sink vi, every node s sends a message

once along the vi-sink shortest path tree. As there can be

a path of n hops in the tree, dilation = n. Parallelizing the

processes for all sinks vi yields congestion = r. So this step

takes Õ(n+ r) = Õ(n).
Now, we analyze Step 5. In Step 5(i), at most n no-

des need to broadcast one message. By Lemma 2, this

takes O(n + D) = O(n) rounds. In Step 5(ii), only one

node broadcast a message and this takes O(D) rounds. In

Step 5(iii), running Bellman-Ford algorithm for finding the

b-sink shortest path tree, for one node b, takes O(n). In

Step 5(iv), every node broadcasts one messages and this

takes O(n+D) = O(n) rounds by Lemma 2.

By Lemma 17, Steps 4 and 5 repeat O(
√
r) times. In total,

this takes Õ(n
√
r) rounds. Next, in Step 6, the messages

are relayed in the shortest path trees, and so dilation = n.

Moreover, congestion = O(n
√
r) because all the nodes s

which are descendants of bottlenecks in any tree do not send

messages. So this step also takes O(n
√
r) rounds. Therefore,

the total number of rounds of the algorithm is O(n
√
r).

Finally, we conclude with the lemma that is used in the

main algorithms:

Lemma 20. Every node s knows dw′(s, vi) for all sinks
vi where 1 ≤ i ≤ r, i.e., dsw′(s, vi) = dw′(s, vi). Then,
running Algorithm 3, each sink node vi knows dw′(s, vi)
for all nodes s, i.e., dvi

w′(s, vi) = dw′(s, vi). Furthermore,
Algorithm 3 takes Õ(n

√
r) rounds.

V. k-SOURCE SHORTEST PATHS

In this section, we show how to extend the algorithms

presented in Section IV to solve the k-source shortest paths

(k-SSP) problem. Recall that in this problem we want every

node v to know its distance from every of k sources. We let

177

S be the set of sources. Initially, every node knows whether

it is a source or not.

We modify the APSP algorithm as follows. First, we pick

β sets of random centers8, where each set has size

ζ = min(k,
√
n) polylog(n).

Denoted these sets by C1, C2, . . . , Cβ . (Observe that this

step can be done in Õ(
√
n +D) time since there are only

Õ(
√
n) centers in total.) Now we run each iteration of the

scaling framework as in Section IV, except that in each

iteration we only compute shortest paths from only some

sources (instead of all nodes). In particular, the set of sources

at iteration i is Si = Ci+1∪Ci+2∪...∪Cβ∪S. Thus, we can

assume that every node knows its distance from all nodes

in Si−1 = Ci ∪ Ci+1 ∪ . . . ∪ Cβ ∪ S. We will use Ci as

a set of random centers in iteration i, in the same way we

use C in Algorithm 1. In this algorithm, we also need to

modify the short-range, reversed r-sink shortest paths, and

short-range-extension so that they can run faster when there

are only q sources, where q = |Si—. See the full version

for details.

q-Source Short-Range(-Extension) Algorithms. We round

up edge weights to multiples of Δ as done previously. Howe-

ver, we only run the BFS algorithm from q sources (the depth

is still n+hΔ). We also run the modification of the Bellman-

Ford algorithm with q-sources. By the same analysis as in

Sections IV-A and IV-B, the running time of the q-source

short-range and short-range-extension algorithms becomes

Õ(n/Δ+ h+ qhΔ) which is

Õ(
√

nqh)

when we set Δ =
√
n/qh.

Reversed q-Source r-Sink Shortest Paths. Due to the space

limit, we defer this part to the full version.

VI. OPEN PROBLEMS

The main question is whether distributed APSP can be

solved in Õ(n) time. Both super-linear lower bound or near-

linear upper bound will be a major result. Another related

problem is SSSP, where there is still a gap between the lower

bound of [10] and upper bound of [6]. In general, it is very

interesting to close the gap between approximation and exact

distributed algorithms. We found this question particular

interesting for exact maximum matching and minimum cut;

these problem admit an Ω̃(
√
n) lower bound while no non-

trivial upper bound is known (even an O(n) one). Note that

the existing Ω̃(
√
n) lower bound for minimum cut does

not hold for a natural special case of checking whether

the network has small, e.g. O(1), edge connectivity. Given

that small edge connectivity may indicate the network’s

8Recall the β is the number of bits needed to represent edge weight (see
Section III).

likeliness to fail, it is interesting to determine their time

complexity exactly. Currently there is a big jump from O(D)
time for checking edge connectivity of at most two [42], [43]

to Õ(
√
n) for higher values [22].

VII. ACKNOWLEDGEMENT

This project has received funding from the European

Research Council (ERC) under the European Union’s Ho-

rizon 2020 research and innovation programme under grant

agreement No 715672. Nanongkai and Saranurak were also

partially supported by the Swedish Research Council (Reg.

No. 2015-04659.) Nanongkai and Saranurak would like to

thank Rotem Oshman for comments on the preliminary

version of the result.

REFERENCES

[1] C.-C. Huang, D. Nanongkai, and T. Saranurak, “Distributed
exact weighted all-pairs shortest paths in Õ(n5/4) rounds,”
CoRR, vol. abs/1708.03903, 2017. [Online]. Available:
http://arxiv.org/abs/1708.03903

[2] C. Lenzen and B. Patt-Shamir, “Fast partial distance es-
timation and applications,” in Symposium on Principles of
Distributed Computing (PODC), 2015, pp. 153–162.

[3] D. Nanongkai, “Distributed approximation algorithms for
weighted shortest paths,” in Symposium on Theory of Com-
puting (STOC), 2014, pp. 565–573.

[4] C. Lenzen and B. Patt-Shamir, “Fast routing table con-
struction using small messages,” in Symposium on Theory of
Computing (STOC), 2013, pp. 381–390.

[5] S. Frischknecht, S. Holzer, and R. Wattenhofer, “Networks
cannot compute their diameter in sublinear time,” in SODA,
2012, pp. 1150–1162.

[6] M. Elkin, “Distributed exact shortest paths in sublinear time,”
in Symposium on Theory of Computing, STOC, 2017.

[7] D. Peleg, Distributed Computing: A Locality-sensitive Ap-
proach. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2000.

[8] G. Pandurangan, P. Robinson, and M. Scquizzato, “A time-
and message-optimal distributed algorithm for minimum
spanning trees,” in Symposium on Theory of Computing,
STOC, 2017.

[9] M. Henzinger, S. Krinninger, and D. Nanongkai, “A deter-
ministic almost-tight distributed algorithm for approximating
single-source shortest paths,” in Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, 2016,
pp. 489–498.

[10] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai,
G. Pandurangan, D. Peleg, and R. Wattenhofer, “Distributed
verification and hardness of distributed approximation,” SIAM
Journal on Computing, vol. 41, no. 5, pp. 1235–1265, 2012,
announced at STOC’11.

[11] M. Elkin, “An unconditional lower bound on the time-
approximation trade-off for the distributed minimum spanning
tree problem,” SIAM Journal on Computing, vol. 36, no. 2,
pp. 433–456, 2006, announced at STOC’04.

178

[12] D. Peleg and V. Rubinovich, “A near-tight lower bound on the
time complexity of distributed minimum-weight spanning tree
construction,” SIAM Journal on Computing, vol. 30, no. 5, pp.
1427–1442, 2000, announced at FOCS’99.

[13] J. A. Garay, S. Kutten, and D. Peleg, “A sublinear time
distributed algorithm for minimum-weight spanning trees,”
SIAM Journal on Computing, vol. 27, no. 1, pp. 302–316,
1998, announced at FOCS’93.

[14] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed
algorithm for minimum-weight spanning trees,” ACM Trans.
Program. Lang. Syst., vol. 5, no. 1, pp. 66–77, 1983.

[15] S. Kutten and D. Peleg, “Fast distributed construction of small
k-dominating sets and applications,” Journal of Algorithms,
vol. 28, no. 1, pp. 40–66, 1998, announced at PODC’95.

[16] B. Awerbuch, “Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election and related
problems (detailed summary),” in Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, 1987, pp. 230–240.

[17] F. Y. L. Chin and H. F. Ting, “An almost linear time and
o(n log n + e) messages distributed algorithm for minimum-
weight spanning trees,” in 26th Annual Symposium on Foun-
dations of Computer Science, Portland, Oregon, USA, 21-23
October 1985, 1985, pp. 257–266.

[18] E. Gafni, “Improvements in the time complexity of two
message-optimal election algorithms,” in Proceedings of the
Fourth Annual ACM Symposium on Principles of Distributed
Computing, Minaki, Ontario, Canada, August 5-7, 1985,
1985, pp. 175–185.

[19] M. Elkin, “A simple deterministic distributed mst algorithm,
with near-optimal time and message complexities,” CoRR,
vol. abs/1703.02411, 2017. [Online]. Available: http://arxiv.
org/abs/1703.02411

[20] ——, “Distributed approximation: a survey,” SIGACT News,
vol. 35, no. 4, pp. 40–57, 2004.

[21] R. Becker, A. Karrenbauer, S. Krinninger, and C. Lenzen,
“Approximate undirected transshipment and shortest paths via
gradient descent,” CoRR, vol. abs/1607.05127, 2016.

[22] D. Nanongkai and H. Su, “Almost-tight distributed minimum
cut algorithms,” in International Symposium on Distributed
Computing (DISC), 2014, pp. 439–453.

[23] M. Ghaffari and F. Kuhn, “Distributed minimum cut approx-
imation,” in Symposium on Distributed Computing (DISC),
2013, pp. 1–15.

[24] M. Ghaffari, A. Karrenbauer, F. Kuhn, C. Lenzen, and B. Patt-
Shamir, “Near-optimal distributed maximum flow: Extended
abstract,” in Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC 2015, Donostia-
San Sebastián, Spain, July 21 - 23, 2015, 2015, pp. 81–90.

[25] L. Kor, A. Korman, and D. Peleg, “Tight bounds for dis-
tributed minimum-weight spanning tree verification,” Theory
of Computing Systems, vol. 53, no. 2, pp. 318–340, 2013,
announced at STACS’11.

[26] R. Bellman, “On a routing problem,” Quarterly of Applied
Mathematics, vol. 16, no. 1, pp. 87–90, 1958.

[27] L. R. Ford, “Network flow theory,” The Rand Corporation,
Tech. Rep. P-923, 1956.

[28] A. Abboud, K. Censor-Hillel, and S. Khoury, “Near-linear
lower bounds for distributed distance computations, even in
sparse networks,” in Distributed Computing - 30th Internatio-
nal Symposium, DISC 2016, Paris, France, September 27-29,

2016. Proceedings, 2016, pp. 29–42.

[29] K. Censor-Hillel, S. Khoury, and A. Paz, “Quadratic and near-
quadratic lower bounds for the CONGEST model,” in DISC,
2017.

[30] C. Lenzen and D. Peleg, “Efficient distributed source de-
tection with limited bandwidth,” in Symposium on Principles
of Distributed Computing (PODC), 2013, pp. 375–382.

[31] S. Holzer and R. Wattenhofer, “Optimal distributed all pairs
shortest paths and applications,” in Symposium on Principles
of Distributed Computing (PODC), 2012, pp. 355–364.

[32] D. Peleg, L. Roditty, and E. Tal, “Distributed algorithms for
network diameter and girth,” in ICALP (2), 2012, pp. 660–
672.

[33] M. Ghaffari and R. Udwani, “Brief announcement: Distribu-
ted single-source reachability,” in Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23,
2015, 2015, pp. 163–165.

[34] M. Elkin and O. Neiman, “Hopsets with constant hopbound,
and applications to approximate shortest paths,” FOCS, 2016.
[Online]. Available: http://arxiv.org/abs/1605.04538

[35] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Tal-
war, “Efficient distributed approximation algorithms via pro-
babilistic tree embeddings,” Distributed Computing, vol. 25,
no. 3, pp. 189–205, 2012, announced at PODC 2008.

[36] M. Elkin, “Computing almost shortest paths,” ACM Tran-
sactions on Algorithms, vol. 1, no. 2, pp. 283–323, 2005,
announced at PODC’01.

[37] A. V. Goldberg, “Scaling algorithms for the shortest paths
problem,” SIAM J. Comput., vol. 24, no. 3, pp. 494–504, 1995,
announced at SODA’93.

[38] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms
for network problems,” SIAM J. Comput., vol. 18, no. 5, pp.
1013–1036, 1989.

[39] H. N. Gabow, “Scaling algorithms for network problems,”
J. Comput. Syst. Sci., vol. 31, no. 2, pp. 148–168, 1985,
announced at FOCS’83.

[40] M. Ghaffari, “Near-optimal scheduling of distributed algo-
rithms,” in Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC 2015, Donostia-
San Sebastián, Spain, July 21 - 23, 2015, 2015, pp. 3–12.

[41] J. D. Ullman and M. Yannakakis, “High-probability parallel
transitive-closure algorithms,” SIAM Journal on Computing,
vol. 20, no. 1, pp. 100–125, 1991, announced at SPAA’90.

[42] R. Thurimella, “Sub-linear distributed algorithms for sparse
certificates and biconnected components,” Journal of Algo-
rithms, vol. 23, no. 1, pp. 160–179, 1997, announced at
PODC’95.

[43] D. Pritchard and R. Thurimella, “Fast computation of small
cuts via cycle space sampling,” ACM Transactions on Algo-
rithms, vol. 7, no. 4, pp. 46:1–46:30, 2011, announced at
ICALP’08.

179

