
Simply Exponential Approximation of the Permanent of
Positive Semidefinite Matrices

Nima Anari

Simons Institute
UC Berkeley

anari@berkeley.edu

Leonid Gurvits

Computer Science
City College of New York
gurvits@cs.ccny.cuny.edu

Shayan Oveis Gharan

Computer Science
University of Washington

shayan@cs.washington.edu

Amin Saberi

MS&E
Stanford University
saberi@stanford.edu

Abstract—We design a deterministic polynomial time cn

approximation algorithm for the permanent of positive semidef-
inite matrices where c = eγ+1 � 4.84. We write a natural
convex relaxation and show that its optimum solution gives a
cn approximation of the permanent. We further show that
this factor is asymptotically tight by constructing a family
of positive semidefinite matrices. We also show that our
result implies an approximate version of the permanent-on-
top conjecture, which was recently refuted in its original form;
we show that the permanent is within a cn factor of the top
eigenvalue of the Schur power matrix.

Keywords-permanent; positive semidefinite; permanent-on-
top; approximation algorithm; semidefinite program; im-
manant;

I. INTRODUCTION

Given a matrix A ∈ C
n×n, its permanent is defined as

per(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i),

where Sn is the set of permutations on {1, . . . , n}. There is

a very rich body of work on permanent of matrices and its

algebraic properties, see [1] for a recent survey on several

theorems and open problems in this area.

The problem has been also studied from the point of view

of computational complexity. Valiant [2] showed that it is

#P-complete to compute the permanent of {0, 1}-matrices.

Aaronson [3] gave a new proof of the #P-hardness, using

the model of linear optical quantum computing. In addition,

he showed that it is #P-hard to compute the sign of per(A),
essentially ruling out a multiplicative approximation. Grier

and Schaeffer [4] extended Aaronson’s proof and proved

#P-hardness of computing the permanent of real orthogonal

matrices. They also showed by a simple polynomial interpo-

lation argument that it is #P-hard to compute the permanent

of PSD matrices.

Given a general matrix A ∈ R
n×n, Gurvits [5] designed a

randomized algorithm that in time O(n2/ε2) approximates

per(A) within ±|A|n additive error, where |A| is the largest

singular value of A. Chakhmakhchyan, Cerf, and Garcia-

Patron [6] improve on Gurvits’s algorithm if the matrix

A is PSD and its eigenvalues satisfy a certain smoothness

property.

If all entries of A are nonnegative then per(A) ≥ 0 by

definition. In particular, if A ∈ {0, 1}n×n, then per(A) is

equal to the number of perfect matchings of the bipartite

graph associated with A. Jerrum, Sinclair, and Vigoda [7],

in a breakthrough, obtained a fully polynomial time ran-

domized approximation scheme (FPRAS) for the permanent

of matrices with nonnegative entries. In other words, they

designed a randomized algorithm that for any given ε > 0,

outputs a 1 + ε multiplicative approximation of the perma-

nent, in time polynomial in n and 1/ε. On the other hand,

among deterministic polynomial time algorithms, the best

known result is due to Gurvits and Samorodnitsky [8], who

showed that the permanent of nonnegative matrices can be

approximated within a factor of 2n.

The focus of this paper is on the permanent of PSD

matrices, which has received significant attention in the last

decade because of its close connection to quantum optics.

In particular, permanent of PSD matrices describe output

probabilities of a boson sampling experiment in which the

input is a tensor product of thermal states. They form the

generating function of the quantum linear optical distribution

[4].

It turns out that the permanent is a monotone function

with respect to the Loewner order on the cone of PSD

matrices and therefore the permanent of every PSD matrix

is nonnegative (see corollaries 2 and 3). This fact is a priori

not obvious considering that a PSD matrix can have negative

entries. Since the permanent is nonnegative, unlike general

matrices, there is no difficulty in computing the sign. So, it

may be possible to design a polynomial time approximation

scheme for the permanent of PSD matrices. This question

has been posted as an open problem in several sources [9],

[4]. Our main result can be seen as a first step along this

line.

To this date, not much is known about multiplicative

approximation of the permanent of PSD matrices. To the

best of our knowledge, the only previous result is the work

of Marcus [10] which shows that the product of the diagonal

entries of a PSD matrix gives an n! approximation of the
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permanent. For any PSD matrix A ∈ R
n×n,

n∏
i=1

Ai,i ≤ per(A) ≤ n!
n∏

i=1

Ai,i.

This approximation can be slightly improved using Lieb’s

permanent inequality [11]. Using this inequality one can

show that per(A) can be approximated to within a factor

of n!/m!n/m in time 2O(m+logn) for any desired m.

In this paper we design a cn deterministic approximation

algorithm for computing the permanent of PSD matrices,

where c > 0 is a universal constant. Prior to our paper, no

efficient algorithm (deterministic, randomized, or quantum)

was known for simply exponential approximation of the

permanent of general positive semidefinite matrices.

Theorem 1. There is a deterministic polynomial time algo-
rithm that for any given PSD matrix A returns a number
rel(A) such that

rel(A) ≥ per(A) ≥ c−n rel(A)

where c = eγ+1 and γ is Euler’s constant.

Our result uses a semidefinite relaxation. Because of the

aforementioned monotonicity of the permanent with respect

to the positive semidefinite order, a natural way to upper

bound the permanent of a hermitian PSD matrix A ∈ C
n×n

is to find another matrix D � A whose permanent is easy

to compute, and to use per(D) as the upper bound. For

example if D � A is a diagonal matrix, then

per(D) = D11D22 . . . Dnn

gives an easy-to-compute upper bound on per(A). This

motivates the following natural relaxation for the permanent

of PSD matrices.

Definition 1. For an n× n hermitian PSD matrix A define

rel(A) := inf{per(D) : D is diagonal and D � A}. (1)

Our main result is to prove that rel(A) also lower bounds

per(A) up to a multiplicative factor. Additionally, we show

that rel(A) can be efficiently computed using convex pro-

gramming, thus giving a polynomial-time approximation

algorithm for per(A).
Connection to the Permanent-On-Top Conjecture: As a

byproduct of our main result we prove an approximate

version of the permanent-on-top conjecture, originally for-

mulated by Soules [12]. For an overview of the history of

this conjecture, see, e.g., [13].

The permanent-on-top conjecture was motivated by an

inequality between the permanent and the determinant of

PSD matrices, first proved by Schur [14]. This inequality

simply states that per(A) ≥ det(A) for any A � 0.

In fact, Schur proved a more general statement involving

immanants: For any A � 0,

immχ(A) ≥ det(A).

Here immχ is the immanant with respect to the character χ,

which generalizes the notions of permanent and determinant.

For any character χ of the symmetric group Sn, the function

immχ is defined as

immχ(A) =
∑
σ∈Sn

χ(σ)
n∏

i=1

Ai,σ(i).

For more detailed definitions, see, e.g. [13]. It is easy to

see that we get the permanent when χ is the constant

1 character and we get the determinant when χ is the

alternating character, i.e., the sign of permutations.

Schur’s inequality shows that the determinant is the mini-

mum amongst all immanants of a PSD matrix. This inspired

Lieb’s permanent dominance conjecture [11], which states

that the permanent is the maximum amongst all immanants:

per(A) ≥ immχ(A).

To this date, the permanent dominance conjecture remains

open.

The immanants of a matrix and their corresponding char-

acters form eigenvalue/eigenvector pairs for the so-called

Schur power matrix, which we define next. For a matrix

A ∈ C
n×n, define the Schur power of A, which we denote

by A⊗n
Sn,Sn

, as the following n! × n! matrix: Let the rows

and columns be indexed by Sn, and let the entry at row σ
and column τ be simply

n∏
i=1

Aσ(i),τ(i).

Note that the Schur power of A is a submatrix of A⊗n which

justifies the notation A⊗n
Sn,Sn

.

It is not hard to verify that any character χ of Sn,

viewed as an n!-dimensional vector, is an eigenvector of

A⊗n
Sn,Sn

with eigenvalue immχ(A). In fact Schur proved the

stronger statement that det(A) is the smallest eigenvalue of

this matrix. Motivated by this fact, Soules strengthened the

permanent dominance conjecture to the following:

Conjecture 1 (Permanent-On-Top [12]). For any A � 0,
the maximum eigenvalue of A⊗n

Sn,Sn
is equal to per(A):

‖A⊗n
Sn,Sn

‖ = per(A).

This conjecture would have implied the permanent domi-

nance conjecture. Unfortunately the permanent-on-top con-

jecture was recently refuted [15]. We, on the other hand, in

section V, prove the following theorem, which can be seen

as an approximate form of the permanent-on-top conjecture.

Theorem 2. For any PSD matrix A ∈ C
n×n, the multi-

plicative gap between the maximum eigenvalue of A⊗n
Sn,Sn

and per(A) can be at most cn where c = eγ+1:

‖A⊗n
Sn,Sn

‖ ≤ cn per(A).
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This implies an approximate version of the permanent

dominance conjecture as well.

Corollary 1. For any PSD matrix A ∈ C
n×n and any

character χ of Sn we have

immχ(A) ≤ cn per(A).

We remark that in light of the fact that the permanent-

on-top conjecture is false, one cannot hope to show much

stronger results than theorem 2.

Claim 1. There exists a universal constant ĉ > 1 such that
for infinitely many n we have a PSD matrix A ∈ C

n×n with

‖A⊗n
Sn,Sn

‖ ≥ ĉn per(A).

We prove theorem 2 and claim 1 in section V.

II. PRELIMINARIES

We denote the set {1, . . . , n} by [n]. We use Sn to denote

the set of permutations on [n].

A. Linear Algebra

We identify vectors v ∈ C
n with n × 1 matrices. For a

matrix A ∈ C
n×m we let A† ∈ C

m×n denote its conjugate

transpose; in other words (A†)ij = Aji. A matrix A ∈ C
n×n

is called hermitian iff A = A†. A hermitian matrix A is

called positive semidefinite (PSD) iff v†Av ≥ 0 for all v ∈
C

n. We let � denote the usual Loewner order on hermitian

matrices, i.e., A � B iff A−B is PSD. For a vector v ∈ C
n,

we let diag(v) ∈ C
n×n denote the diagonal matrix with

coordinates of v as its main diagonal, i.e.,

diag(v) :=

⎡
⎢⎢⎢⎣
v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...

0 0 . . . vn

⎤
⎥⎥⎥⎦ .

For matrices A ∈ C
n×m and B ∈ C

p×q we let A⊗B denote

the Kronecker product, i.e., the following block matrix:

A⊗B :=

⎡
⎢⎣A11B . . . A1mB

...
. . .

...

An1B . . . AnmB

⎤
⎥⎦ .

For a matrix A and n ≥ 0, we define A⊗n as
n︷ ︸︸ ︷

A⊗A⊗ · · · ⊗A. The Kronecker product respects the

Loewner order on hermitian PSD matrices:

Fact 1. If A � B � 0 and C � D � 0, then A ⊗ C �
B ⊗D � 0.

B. Standard Complex Normal Distribution

We say that a complex-valued random variable g =
Re(g) + i Im(g) is distributed according to a standard

complex normal, which we denote by g ∼ CN (0, 1),
iff (Re(g), Im(g)) ∼ N (0, 12I). The probability density

function (over C 	 R
2) for this distribution is given by

1

π
e−(Re(g)2+Im(g)2) =

1

π
e−|g|

2

.

Fact 2. If g ∼ CN (0, 1), then for integers n,m ≥ 0 we
have

E[gngm] =

{
0 if n 
= m,

n! if n = m.

Proof: The distribution of g is circularly symmetric,

i.e. for u ∈ C with |u| = 1, we have ug ∼ CN (0, 1). This

means that

E[gngm] = E[(ug)n(ug)m] = un−m
E[gngm].

Therefore, unless n−m = 0, we have E[gngm] = 0. When

m = n, we have gngm = |g|2n. If we let r = |g| ∈ R≥0,

then the probability density function of r is given by

2πr 1
π e
−r2 = 2re−r2 . Therefore we have

E[|g|2n] =
∫ ∞

0

r2n · 2re−r2dr

= −r2n · e−r2
∣∣∣∞
0
+

∫ ∞

0

2nr2n−1 · e−r2dr

= n

∫ ∞

0

r2n−2 · 2re−r2dr = n · E[|g|2n−2],

where we used integration by parts. We can finally derive

E[|g|2n] = n · E[|g|2n−2] = n(n− 1) · E[|g|2n−4] = . . .

= n! · E[|g|0] = n!.

Fact 3. If g ∼ CN (0, 1), then

E[ln(|g|2)] = −γ,
where γ is Euler’s constant.

Proof: Note that |g|2 = Re(g)2 + Im(g)2 =
1
2 (2Re(g)

2+2 Im(g)2). Since (Re(g), Im(g)) ∼ N (0, 12I),
the random variable 2Re(g)2 + 2 Im(g)2 is distributed

according to a χ2-distribution with 2 degrees of freedom,

which is identical to a Γ(1, 2) distribution [16]. Therefore

we have

E[ln(2|g|2)] = ψ(1) + ln(2),

where ψ is the digamma function [16]. This implies that

E[ln(|g|2)] = ψ(1), and the latter is equal to −γ [17].

We say that a random vector v ∈ C
n is distributed

according to a standard complex normal, which we denote

by v ∼ CN (0, I), iff v1, . . . , vn are independent standard

complex normals.
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Fact 4. If v ∼ CN (0, I), and u ∈ C
n is a unit vector, i.e.,

|u|2 = u†u = 1, then u†v ∼ CN (0, 1).
Proof: Note that (Re(u†v), Im(u†v)) are linear combi-

nations of the real and imaginary parts of v; as such, this

2-dimensional vector is distributed according to N (μ,Σ) for

some μ ∈ R
2 and Σ ∈ R

2×2.

The distribution of u†v is circularly symmetric; i.e., if

φ ∈ C is such that |φ| = 1, then φu†v is distributed the same

way as u†v. This is true because φu†v = u†(φv), and φv
has the same distribution as v. Being circularly symmetric

implies that μ = 0 and Σ = cI for some constant c. On the

other hand, we have

2c = E[|u†v|2] = E[u†vv†u] = u†E[vv†]u

= u†Iu = |u|2 = 1.

Therefore (Re(u†v), Im(u†v)) ∼ N (0, 12I) or in other

words, u†v ∼ CN (0, 1).
C. Permanent and Loewner Order

For a matrix A ∈ C
n×n, its permanent is defined as

per(A) :=
∑
σ∈Sn

n∏
i=1

Ai,σ(i).

Permanent is a monotone function on the space of PSD

matrices w.r.t. the Loewner order. For completeness we

sketch the proof given in [1] here.

Lemma 1. For any matrix M ∈ C
n×n, there is a vector

1Sn
∈ C

nn

such that

per(M) :=
1

n!
1†Sn

M⊗n1Sn
.

Proof: The vector 1Sn ∈ C
nn

is constructed in the

following way: Index each of the nn coordinates by σ ∈ [n]n
in the usual way (so that the indices respect the Kronecker

product); we can think of σ as a function from [n] to

[n]. Then let the σ-th coordinate of 1Sn
be 1 iff σ is a

permutation on [n], and let it be 0 otherwise. Then, for a

matrix M we have

1†Sn
M⊗n1Sn

=
∑
σ∈Sn

∑
σ′∈Sn

n∏
i=1

Mσ(i),σ′(i)

=
∑
σ∈Sn

per(M) = n! · per(M).

Corollary 2. If A,B ∈ C
n×n are hermitian and A � B �

0, then
per(A) ≥ per(B).

Proof: The statement of the lemma follows, because

A � B � 0 implies that A⊗n � B⊗n � 0 by fact 1. So, by

lemma 1,

per(A) =
1

n!
1†Sn

A⊗n1Sn
≥ 1

n!
1†Sn

B⊗n1Sn
= per(B)

as desired.

Corollary 3. For any hermitian PSD matrix A ∈ C
n×n,

per(A) ≥ 0.

Proof: This follows from corollary 2 by setting B = 0.

There is another way to show nonnegativity of the per-

manent over the PSD cone with the help of the complex

normal distribution. For a vector v ∈ C
n define

|v|Π :=

√√√√ n∏
i=1

|vi|2 ≥ 0.

Then with the help of |·|Π we can express the permanent of

a PSD matrix as an expectation of a nonnegative value.

Lemma 2. Let U ∈ C
d×n be arbitrary and let x ∈ C

d

be a random vector distributed according to the standard
complex normal CN (0, I). Then

per(U †U) = Ex∼CN (0,I)[|U†x|2Π].
Lemma 2 is a sepcial case of the relationship between

the so-called G-norm and the quantum permanent shown in

[18]. In particular if the rows of U are u†1, . . . , u
†
d, then

|U†x|2Π = |det(
d∑

i=1

xi diag(ui))|2,

and therefore Ex[|U†x|2Π] is the same as the G-norm

of the polynomial det(
∑d

i=1 xi diag(ui)). In [18] this is

shown to be equal to the quantum permanent of the

linear operator with Choi form given by the matrices

diag(u1), . . . , diag(ud). It can be further shown that in this

special case, the quantum permanent reduces to per(U †U).
For exact definitions and further details see [18].

For the sake of completeness, we give a self-contained

proof of lemma 2 below.

Proof of lemma 2: We will use the fact that the expres-

sion |U†x|2Π is a polynomial in x1, . . . , xd and x1, . . . , xd;

therefore we can evaluate its expectation with the help of

fact 2. We have

|U†x|2Π = |
n∏

i=1

d∑
j=1

Ujixj |2

If we define

p(x) :=

n∏
i=1

d∑
j=1

Ujixj ,

then |U†x|2Π = p(x)p(x). Note that p(x) is a polynomial in

terms of x1, . . . , xd. We can expand p(x) as follows:

p(x) =
∑

σ:[n]→[d]

n∏
i=1

Uσ(i),ixσ(i),
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where the sum is taken over all nd functions σ : [n]→ [d].
For a function σ : [n]→ [d], let sig(σ) be (k1, . . . , kd) ∈ Z

d

where kj is the number of i ∈ [n] such that σ(i) = j. Then

we can alternatively write

p(x) =
∑

k1+···+kd=n
k1,...,kd≥0

⎛
⎜⎜⎝xk1

1 . . . xkd

d

∑
σ:[n]→[d]

sig(σ)=(k1,...,kd)

n∏
i=1

Uσ(i),i

⎞
⎟⎟⎠ .

For (k1, . . . , kd) 
= (k′1, . . . , k
′
d), by fact 2 we have

Ex[x
k1
1 . . . xkd

d x
k′1
1 . . . x

k′d
d ] = 0. Therefore we can write

Ex[p(x)p(x)] =
∑

k1+···+kd=n
k1,...,kd≥0

⎛
⎜⎜⎝k1! . . . kd! ∑

σ:[n]→[d]
sig(σ)=(k1,...,kd)

∑
σ′:[n]→[d]

sig(σ′)=(k1,...,kd)

n∏
i=1

Uσ(i),iUσ′(i),i

⎞
⎟⎟⎟⎠ ,

where we used that E[xk1
1 . . . xkd

d x
k1
1 . . . xkd

d ] = k1! . . . kd!
by fact 2. Note that when sig(σ) = sig(σ′), there is a

permutation π ∈ Sn such that σ′ = σ ◦ π. In fact if

sig(σ) = sig(σ′) = (k1, . . . , kd), then the number of π ∈ Sn

for which σ′ = σ◦π is exactly equal to k1! . . . kd!. Therefore

we can rewrite the above sum as

Ex[p(x)p(x)] =
∑

σ:[n]→[d]

∑
π∈Sn

n∏
i=1

Uσ(i),iUσ(π(i)),i

=
∑
π∈Sn

∑
σ[n]→[d]

n∏
i=1

(U†)i,σ(i)Uσ(i),π−1(i)

=
∑
π∈Sn

n∏
i=1

d∑
j=1

(U†)i,jUj,π−1(i)

=
∑
π∈Sn

n∏
i=1

(U†U)i,π−1(i) = per(U †U).

III. APPROXIMATION OF PERMANENT ON THE PSD

CONE

In this section we prove theorem 1. Recall the definition

of rel(A) from definition 1. Our first step is to prove that

for every n× n hermitian PSD matrix A � 0:

cn per(A) ≥ rel(A), (2)

where c = eγ+1.

We will prove a stronger statement. We find a vector v ∈
C

n such that A � vv†. By corollary 2, per(A) ≥ per(vv†).
So eq. (2) is implied by the following:

Theorem 3. For a hermitian PSD matrix A ∈ C
n×n, there

exists v ∈ C
n such that A � vv† and

cn per(vv†) ≥ rel(A),

where c = eγ+1.

Note that the above shows that for every hermitian PSD

matrix A ∈ C
n×n, there exists a diagonal matrix D and a

rank 1 matrix vv† such that

D � A � vv†,

and per(D) ≤ cn per(vv†) for c = eγ+1. Thus per(A) is

sandwiched between per(D) and per(vv†), two quantities

that differ by at most a simply exponential factor.

It is also worth noting that there is no additional loss

in approximating per(A) by the permanent of a rank one

matrix. In section IV, we will show that the constant eγ+1

is not only asymptotically tight in theorem 3, but also in

eq. (2).

Another interesting corollary of theorem 3 is that that

instead of rel(A) we can use per(vv†) as an approximation

of per(A), with the same en(γ+1) approximation factor:

sup{per(vv†) : v ∈ C
n and A � vv†}. (3)

Moreover, per(vv†) is easily computable.

Fact 5. For a vector v ∈ C
n, we have per(vv†) = n! ·∏n

i=1|vi|2.

Proof: For any permutation σ ∈ Sn we have

n∏
i=1

(vv†)i,σ(i) =
n∏

i=1

vivσ(i) =

n∏
i=1

vi ·
n∏

i=1

vi =

n∏
i=1

|vi|2.

Since per(vv†) is the sum of the above quantity for all σ ∈
Sn, we get that per(vv†) = n! ·∏n

i=1|vi|2.

Even though per(vv†) has a closed form, we do not have

an efficient way of computing the sup in eq. (3), whereas, as

we show in section III-B, rel(A) can be computed efficiently.

The next section is dedicated to proving theorem 3. To

finish up the proof of theorem 1 we need to design an

algorithm to compute rel(A) for a given PSD matrix A.

Theorem 4. There is an algorithm that outputs an en(γ+1)-
approximation of per(A) for any hermitian PSD A ∈ C

n×n

in time poly(n + 〈A〉), where 〈A〉 represents the bit com-
plexity of A.

We will prove the above theorem in section III-B. Theo-

rems 3 and 4 together complete the proof of theorem 1. In

section IV we show that the constant c = eγ+1 in eq. (2) is

asymptotically tight.
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A. Proof of the Main Result

In order to prove theorem 3, we use a seemingly unrelated

quantity about distributions on unit vectors {u ∈ C
d : |u|2 =

u†u = 1}. Let us define this quantity below.

Definition 2. For a discrete distribution U supported on the
sphere {u ∈ C

d : |u|2 = u†u = 1}, define

f(U) := sup
x∈span(U)

{
eEu∼U [ln(|u†x|2)]

Eu∼U [|u†x|2]

}
,

where span(U) is the span of the support of U , i.e., the set
of vectors for which the denominator is nonzero.

We will prove theorem 3 by showing that there exists

v ∈ C
n such that A � vv† and

per(vv†) ≥ n!

nn
f(U)n · rel(A),

where U is an appropriately constructed distribution on unit

vectors. The expression n!/nn is lower bounded by e−n.

Thus if we show that f(U) ≥ e−γ , the above inequality

would imply the multiplicative factor of en(γ+1) desired in

theorem 3.

To gain some intuition about f(U), note that by Jensen’s

inequality, applied to the concave function ln, it is easy to

see that f(U) ≤ 1:

eEu∼U [ln(|u†x|2)]

Eu∼U [|u†x|2] ≤
eln(Eu∼U [|u†x|2])

Eu∼U [|u†x|2] = 1.

On the other hand, we will show that for all U , f(U) ≥ e−γ .

Proposition 1. For all discrete distributions U supported on
the sphere {u ∈ C

d : |u|2 = u†u = 1},
f(U) ≥ e−γ .

This universal lower bound is independent of the dimen-

sion d or the size of the support of U . We defer the proof

of proposition 1 to the end of this section. It is worth

mentioning that the sup in the definition of f(U) can be

replaced by max, since an appropriate power of f(U) can

be written as the sup of a rational function with no poles,

over the unit sphere.

Let us now prove theorem 3, assuming correctness of

proposition 1.

Proof of theorem 3: Let us break down the proof into

a series of claims, and then prove them one by one.

Claim 2. The infimum in eq. (1) is achieved by some
diagonal matrix D̂ = D̂(A). In other words there exists
a diagonal matrix D̂ � A such that per(D̂) = rel(A).

Claim 3. We may assume without loss of generality that
D̂ = I .

Claim 4. The first-order optimality condition of D̂ implies
that there exists a correlation matrix B ∈ C

n×n, i.e., a

hermitian PSD matrix with 1s on its main diagonal, such
that AB = B.

We may use the Cholesky decomposition to write B =
U†U where U ∈ C

d×n for d = rank(B).

Claim 5. For any x ∈ C
d the vector v = U†x/|U †x|

satisfies
A � vv†.

Naturally we may want to choose x so as to maximize

per(vv†).

Claim 6. We have

sup
x∈Cd

{per(vv†)} = n!

nn
f(U)n,

where U is the uniform distribution on the columns of U .

And now the statement of theorem 3 follows, because

rel(A) = per(D̂) = 1 when D̂ = I; we have found v ∈ C
n

such that A � vv† and

en(γ+1) per(vv†) ≥ nn

n!
f(U)−n per(vv†) ≥ 1 = rel(A).

We remark that these claims can be understood as ana-

logues to the classical Van der Waerden conjecture. Claim 4

provides us with the correlation matrix B. Claim 5 and

claim 6 can be thought of as providing a lower bound for

the permanent of the orthogonal projector onto the image

of B. This is analogous to the Van der Waerden conjecture

which provides a lower bound of n!/nn for the permanent

of doubly stochastic matrices. Here, claim 5, claim 6, and

proposition 1 prove that the permanent of the orthogonal

projector onto the image of any correlation matrix is at least

n!

nn
e−nγ .

Let us now prove the claims one by one.

Proof of claim 2: We divide the proof into two cases.

First assume that Aii > 0 for all i ∈ [n]. Let λ ≥ 0 be

larger than the maximum eigenvalue of A. Then λI � A.

This proves that rel(A) ≤ λn. Note that D � A implies

Dii ≥ Aii for all i ∈ [n]. If any entry Dii of D satisfies

Dii >
λnAii∏n
j=1Ajj

,

then

per(D) >
λnAii∏n
j=1Ajj

∏
j 	=i

Ajj = λn.

This effectively eliminates such a D as a candidate for the

inf in eq. (1). Therefore we may take inf of per(D) over the

set of all diagonal matrices D which in addition to D � A
satisfy

Dii ≤ λnAii∏n
j=1Ajj
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for all i ∈ [n]. This is a compact set, and per(D) is a

continuous function. Therefore the inf is achieved by some

matrix D̂.

For the second case, assume that Aii = 0 for some i.
Then since A is PSD, the i-th row and the i-th column of A
are both zero. Let λ be larger than the largest eigenvalue of

A. Define D̂ by D̂ii = 0 and D̂jj = λ for j 
= i. It is easy

to see that D̂ � A and per(D̂) = 0. Therefore rel(A) = 0
and it is achieved at D̂.

Proof of claim 3: First note that without loss of

generality we may assume D̂(A) � 0, since otherwise

rel(A) = 0 and the conclusion of theorem 3 is trivial.

Now let λ ∈ R
n
>0 be an arbitrary positive vector and

define Tλ : C
n×n → C

n×n by

Tλ(M) = diag(λ)M diag(λ).

Note that Tλ respects the Loewner order and maps diagonal

matrices to diagonal matrices. It is one-to-one and surjective

on the space of diagonal matrices. The matrix Tλ(M) is

obtained from M by multiplying column i by λi for i ∈ [n]
and then row i by λi for i ∈ [n]. Therefore

per(Tλ(M)) = λ21 . . . λ
2
n per(M).

This implies that

λ21 . . . λ
2
n rel(A)

= inf{λ21 . . . λ2n per(D) : D diagonal and D � A}
= inf{per(Tλ(D)) : Tλ(D) diagonal and Tλ(D) � Tλ(A)}
= rel(Tλ(A)).

It is also easy to see that the above also implies D̂(Tλ(A)) =

Tλ(D̂(A)). In particular if λ is set so that λi = 1/
√
D̂ii,

then D̂(Tλ(A)) = I . So we can replace A by Tλ(A) and

continue the proof of theorem 3 to find v ∈ C
n satisfying

Tλ(A) � vv†,

and cn per(vv†) ≥ rel(Tλ(A)) = 1 with c = eγ+1. Let

w = diag(λ)−1v. Then Tλ(ww
†) = vv†. This implies that

A � ww†,

and

cn per(ww†) =
1

λ21 . . . λ
2
n

cn per(vv†)

≥ 1

λ21 . . . λ
2
n

rel(Tλ(A)) = rel(A).

Proof of claim 4: We use the first-order optimality

condition of per(D) at D = I . Let us see how per(I +X)
compares to per(I) where X is a diagonal matrix. If X is

small enough per(I +X) 	 1+ tr(X). More precisely, we

have

d

dt
per(I + tX)

∣∣∣∣
t=0

=
d

dt

n∏
i=1

(1 + tXii)

∣∣∣∣∣
t=0

=
n∑

i=1

Xii = tr(X).

If I + X � A then I + tX � A for all t ∈ [0, 1]. If

tr(X) < 0, then for small enough t, per(I + tX) < per(I)
which contradicts the fact that D̂(A) = I . This implies that

the optimal solution of the following SDP is 0:

minX tr(X)
subject to I +X � A

Xij = 0 ∀i 
= j

The dual of this SDP has the variable B � 0, corresponding

to the constraint I +X � A:

maxB,μij
tr((A− I)B)

subject to Bii = 1 ∀i
B � 0

Because of strong duality, the optimum of this SDP is 0. The

optimal B satisfies B � 0 and Bii = 1 for i ∈ [n], i.e., B is

a correlation matrix. We also have tr((I − A)B) = 0. But

since I−A � 0 and B � 0, this implies that (I−A)B = 0
or in other words AB = B.

Proof of claim 5: We have B = U †U with U ∈ C
d×n

and rank(B) = d. This implies that UU† ∈ C
d×d is

invertible. Now we have

BU†(UU†)−1x = U†UU†(UU†)−1x = U†x.

This together with AB = B implies that

AU†x = ABU †(UU†)−1x = BU†(UU†)−1x = U†x.

In other words, U †x is an eigenvector of A with eigenvalue

1. This means that v = U †x/|U †x| is also such an eigen-

vector. So Av = v and |v| = 1. We conclude that A � vv†.

Proof of claim 6: Let us compute per(vv†). By fact 5

we have

per(vv†) = n! ·
n∏

i=1

|vi|2.

Let the columns of U be u1, . . . , un ∈ C
d. Then vi =

u†ix/|U †x|, and note that |U †x|2 =
∑n

i=1|u†ix|2. We can

rewrite per(vv†) as

per(vv†) = n! ·
∏n

i=1|u†ix|2
(
∑n

i=1|u†ix|2)n

=
n!

nn
·
⎛
⎝ n

√∏n
i=1|u†ix|2

1
n

∑n
i=1|u†ix|2

⎞
⎠

n

.
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Now if we let U be the uniform distribution on u1, . . . , un,

we can rewrite the above as

per(vv†) =
n!

nn
·
(
exp(Eu∼U [ln(|u†x|2)])

Eu∼U [|u†x|2]
)n

Therefore

sup
x∈Cd

{per(vv†)} = n!

nn
f(U)n.

This concludes the proof of theorem 3.

It only remains to prove proposition 1.

Proof of proposition 1: Without loss of generality we

may assume that span(U) = C
d; if that is not the case, we

can identify span(U) with C
d′ for some d′ < d using a

unitary transformation and nothing changes.

Let x ∼ CN (0, I) be a d-dimensional standard complex

normal. Let

g(x) = exp(Eu∼U [ln(|u†x|2)]),
h(x) = Eu∼U [|u†x|2].

Then our goal is to prove that Px[g(x)/h(x) ≥ e−γ ] > 0 or

equivalently Px[g(x) − e−γh(x) ≥ 0] > 0. To this end, we

will prove that Ex[g(x)− e−γh(x)] ≥ 0, and the conclusion

follows.

By fact 4, for each fixed u in the support of U , u†x ∼
CN (0, 1). Therefore we have

Ex[h(x)] = ExEu[|u†x|2] = EuEx[|u†x|2] = Eu[1] = 1.

On the other hand by fact 3 we have

Ex[g(x)] = Ex[exp(Eu[ln(|u†x|2)])]
≥ exp(ExEu[ln(|u†x|2)])
= exp(EuEx[ln(|u†x|2)]) = exp(Eu[−γ]) = e−γ ,

where the inequality is an application of Jensen’s to the

convex function exp. Putting these together we get that

Ex[g(x)− e−γh(x)] ≥ e−γ − e−γ = 0 as desired.

B. Computing the Approximation

In this section we show how to approximately compute

rel(A). The main result of this section will be theorem 4.

The main ingredient of the proof is transforming rel(A) to

the objective of a convex program. The original optimization

problem that computes rel(A) is the following:

minD D11 . . . Dnn

subject to D � A
D is diagonal

The objective is not concave, even if we apply ln to it.

The trick is to change from the variables D11, . . . , Dnn to

D−1
11 , . . . , D

−1
nn . If we have the Cholesky decomposition A =

V †V for some V ∈ C
d×n, then D � A if and only if

I � V D−1V †.

So we can turn the optimization problem into the following

by identifying D−1 with diag(x).

minx∈Rn − ln(x1 . . . xn)
subject to I � V diag(x)V †

xi ≥ 0 ∀i
(4)

If the objective of the above program is OPT, then rel(A) =
eOPT. Note that − ln(x1 . . . xn) is convex over Rn

≥0, so the

above is a valid convex program.

Proof of theorem 4: We can detect whether rel(A) = 0
by checking whether any of A’s main diagonal entries are

0. See the proof of claim 2.

When all of the main diagonal entries of A are strictly

positive, similar to the proof of claim 2, we can determine

upper and lower bounds on the optimum xi. In particular if

λ is a number larger than the largest eigenvalue of A, for

the optimum xi we have

A−1
ii ≥ xi ≥

∏n
j=1Ajj

λnAii
.

Thus, we can restrict the domain of the convex program in

eq. (4) to a compact bounded domain. We can compute the

Cholesky decomposition of A and then use our favorite con-

vex programming technique, such as the ellipsoid method,

to find the optimum value of eq. (4) to within accuracy ε
in time poly(n + 〈A〉 + log(1/ε)). This gives us a 1 + ε
approximation of rel(A) which by eq. (2) is a (1 + ε)cn

approximation of per(A) for c = eγ+1.

As a final remark, we note that the approximation factor

en(γ+1) in eq. (2) can in fact be slightly strengthened to

nn

n!
enγ ,

if one carefully reviews the proof. The term nn/n! is at

most en, but the difference allows us to absorb 1 + ε into

the approximation factor for an appropriately chosen ε. This

allows us to state an ε-free result: We can find an en(γ+1)

approximation to per(A) in time poly(n+ 〈A〉).
IV. ASYMPTOTICALLY TIGHT EXAMPLES

In this section we show that the constant c = eγ+1 cannot

be replaced by anything smaller in eq. (2). In other words

we will construct n×n hermitian PSD matrices A such that

n

√
rel(A)

per(A)
→ eγ+1.

The construction will begin with a distribution U that is

uniform over n unit vectors u1, . . . , un ∈ C
d. We will later

show how we can construct U so that f(U) is arbitrarily

close to e−γ .

Lemma 3. For any ε > 0 there exists a distribution U that
is uniform over n unit vectors u1, . . . , un ∈ C

d for some n
and d that satisfies

f(U) ≤ e−γ + ε.
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We postpone the proof of lemma 3 to the end of this

section. For now we use it to show the following. The

following proposition together with lemma 3 show that eγ+1

cannot be improved in eq. (2).

Proposition 2. Given a distribution U that is uniform over
a finite number of unit vectors u1, . . . , un, we can construct
a sequence of matrices A1, A2, . . . of sizes n1 × n1, n2 ×
n2, . . . such that

nk

√
rel(Ak)

per(Ak)
→ ef(U)−1.

Proof: Our goal is to construct a PSD matrix A and

relate rel(A)/ per(A) to f(U). We will assume without loss

of generality that span{u1, . . . , un} = C
d; otherwise, we

use a unitary transformation to map u1, . . . , un onto a lower

dimensional space and f(U) would not change.
Consider the matrix U ∈ C

d×n whose columns are

u1, . . . , un. Note that rank(U) = d and U†U � 0 has 1s

on the main diaognal. In other words U†U is a correlation

matrix of rank d. Since rank(U) = d, the matrix UU † is

invertible and we can define

V := (UU†)−1/2U,

and

A := V †V = U†(UU†)−1U.

We will study rel(A) and per(A) and relate them to f(U).
As observed in the proof of claim 4, correlation matrices

can be used as optimality certificates for rel, albeit in that

context first order optimality was just a necessary condition.

We now make a formal claim by certifying that rel(A) = 1
using U†U as the certificate.

Claim 7. If A is constructed as above, then

rel(A) = rel(V †V ) = 1.

Proof: We clearly have I � U †(UU†)−1U = V †V .

This implies that rel(A) ≤ 1. Now consider a diagonal

matrix D � A = V †V . We need to show that per(D) ≥ 1.

Without loss of generality, by adding a small multiple of I
if necessary, we may assume that D � 0. Now D � V †V
implies that

I � V D−1V †,

which in turn implies

UU† = (UU †)1/2(UU†)1/2

� (UU†)1/2V D−1V †(UU†)1/2 = UD−1U †.

By taking the trace we get

tr(U †U) = tr(UU†) ≥ tr(UD−1U†) = tr(D−1U †U).

Since U†U has 1s on the diagonal and D is diagonal the

above becomes

n ≥
n∑

i=1

D−1
ii .

By using the AM-GM inequality we get

(D−1
11 . . . D

−1
nn)

1/n ≤
∑n

i=1D
−1
ii

n
≤ 1.

This means that per(D) = D11 . . . Dnn ≥ 1.

Next we study per(A). This is where the term f(U)
appears.

Claim 8. If A is constructed as above, then

per(A) ≤ n!

nn

(
n+ d− 1

d− 1

)
· f(U)n.

Before proving claim 8, let us show why it suffices to

finish the proof of proposition 2. By claim 7 and claim 8

we have

n

√
rel(A)

per(A)
≥ n

√
nn

n!
· n

√(
n+ d− 1

d− 1

)−1

· f(U)−1.

This is not quite the same as ef(U)−1 yet. However we

have one degree of freedom we have not used. Initially we

assumed U was a uniform distribution over n unit vectors.

But we might have as well assumed that it is a uniform

distribution over nk unit vectors for any integer k, by simply

repeating the vectors in the support of U . Therefore we may

make n as large as we would like without changing d or

f(U). As n→∞, by Stirling’s formula we have

n

√
nn

n!
→ e,

and by a simple bound for large enough n

n

√(
n+ d− 1

d− 1

)−1

≥ n
√
n−d → 1.

Therefore as n→∞ we have

n

√
rel(A)

per(A)
→ ef(U)−1.

It only remains to prove claim 8.

Proof of claim 8: We will use lemma 2 to write down

per(A) = per(V †V ). Let x ∈ C
d be distributed according to

a d-dimensional standard complex normal CN (0, I). Then

according to lemma 2 we have

per(A) = Ex∼CN (0,I)[|V †x|2Π].
Our goal is to use f(U) to bound |V †x|Π. According to the

definition of f(U), for the vector y = (UU †)−1/2x we have

n

√∏n
i=1|u†iy|2

1
n

∑n
i=1|u†iy|2

=
exp(Eu∼U [ln(|u†y|2)]

Eu∼U [|u†y|2] ≤ f(U).

Note that

u†iy = (U †y)i = (U †(UU†)−1/2x)i = (V †x)i.
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This means that
∏n

i=1|u†iy|2 = |V †x|2Π. We also have

n∑
i=1

|u†iy|2 = x†V V †x = x†(UU†)−1/2UU†(UU†)−1/2x

= x†x = |x|2.
Putting these together we get

|V †x|2Π ≤
(
f(U)|x|2

n

)n

=

(
f(U)
n

)n

|x|2n.

Let us now compute Ex[|x|2n]. We have

Ex[|x|2n] = Ex[
n∏

j=1

(
d∑

i=1

|xi|2)]

=
∑

k1,...,kd≥0
k1+···+kd=n

(
n

k1, . . . , kd

)
Ex[|x1|2k1 . . . |xd|2kd ].

According to fact 2, we have Ex[|x1|2k1 . . . |xd|2kd ] =
k1! . . . kd!. Therefore

Ex[|x|2n] =
∑

k1,...,kd≥0
k1+···+kd=n

(
n

k1, . . . , kd

)
k1! . . . kd!

=
∑

k1,...,kd≥0
k1+···+kd=n

n! = n!

(
n+ d− 1

d− 1

)
,

where in the last equality we used the fact the number

of ways to write n as a sum of d nonnegative integers is(
n+d−1
d−1

)
. We conclude by getting

per(A) ≤
(
f(U)
n

)n

Ex[|x|2n] = n!

nn

(
n+ d− 1

d− 1

)
f(U)n.

This finishes the proof of proposition 2.
Now we switch gears and construct the distribution U

promised by lemma 3.
Proof of lemma 3: The idea is to make U be close

to the uniform distribution on the sphere {u ∈ C
d : |u| =

1} for some large d. If we were allowed to pick U to be

uniform over the sphere, then intuitively all choices of x in

the definition of f(U) would yield the same value and we

would be able to argue about this common value using the

same tricks as in the proof of proposition 1. Instead we use

the uniform distribution on a large number of samples from

the sphere to serve as the proxy for the uniform distribution

on the sphere itself. We further need the dimension d to

grow, to make the uniform distribution on the sphere similar

to a (scaled) normal distribution. We now make these formal.
Let us fix some d and let S denote the uniform distribution

on the sphere {u ∈ C
d : |u| = 1}. For any fixed distance

ε we can cover the sphere by a finite number of balls

B(o1, ε), . . . , B(om, ε) where o1, . . . , om are unit vectors

and

B(o, ε) = {v ∈ C
d : |o− v| ≤ ε}.

Let n be a large number and draw n random points

u1, . . . , un from S . We will let U be the uniform distribution

over u1, . . . , un. We would like to argue that f(U) is with

high probability close to f(S). Because the sphere was

covered by the balls around oi’s, for each unit vector x we

have |x− oi| ≤ ε for some i. This implies that

Eu∼U [ln(|u†x|2)] ≤ Eu∼U [ln((|u†oi|+ ε)2)],

Eu∼U [|u†x|2] ≥ Eu∼U [max(0, |u†oi| − ε)2].
On the other hand by the law of large numbers for each oi
we have with high probability as n→∞

Eu∼U [ln((|u†oi|+ ε)2)]→ Eu∼S [ln((|u†oi|+ ε)2)],

Eu∼U [max(0, |u†oi| − ε)2]→ Eu∼S [max(0, |u†oi| − ε)2].

Let us condition on the event that the LHS of the above are

sufficiently close to the RHS for all oi. This event happens

with high probability as n → ∞. Note that because of

symmetry, the RHS of the above are independent of the

choice of oi. Under this condition we have for all unit vectors

x

exp(Eu∼U [ln(|u†x|2)])
Eu∼U [|u†x|2] ≤ exp(Eu∼S [ln((|u†o|+ ε)2)])

Eu∼S [max(0, |u†o| − ε)2] +δ,

where o is any arbitrary vector and δ → 0 as n→∞. The

above bounds the LHS for unit vectors x. However note

that the LHS does not change if we scale x by any constant.

Therefore f(U) is bounded by the RHS. As we take the limit

with ε→ 0 and δ → 0 we get U with f(U) asymptotically

bounded by f(S).
Now it only remains to show that as the dimension d

grows f(S)→ e−γ . Let o be an arbitrary point with |o|2 = d
such as

√
de1 where e1 is the first element of the standard

basis. When u ∼ S is a random point on the sphere,

we would like to argue that u†o is almost distributed like

CN (0, 1). If this were the case we would have

f(S) =
exp(Eu[ln(|u†o|2)])

Eu[|u†o|2]
	 exp(Eg∼CN (0,1)[ln(|g|2)])

Eg∼CN (0,1)[|g|2] = e−γ ,

where in the last equality we used fact 3.

To make this approximation rigorous, let us generate the

random point u on the sphere by the following process:

We sample a standard d-dimensional complex normal v ∼
CN (0, I) and then we let u = v/|v|. We have u†o = v1

d
|v| .

Therefore

Eu[ln(|u†o|2)] = Ev[ln(|v1|2)] + 2 ln(d)− 2Ev[ln(|v|2)].
The random variable |v|2 is distributed according to a 1

2 -

scaled χ2-distribution with 2d degrees of freedom which is

the same as Γ(d, 1). We can therefore write

Ev[ln(|v|2)] = ψ(d) = ln(d− 1) + o(1),
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where ψ is the digamma function [16], [17]. We therefore

have Eu[ln(|u†o|2)] = −γ + o(1).
For Eu[|u†o|2] we observe that

Eu[|u†o|2] = d · Ev

[ |v1|2
|v|2

]
.

The random variables |vi|2/|v|2 are identically distributed

for different i. As such we have

Eu[|u†o|2] = d · Ev

[ |v1|2
|v|2

]

= Ev

[ |v1|2
|v|2

]
+ · · ·+ Ev

[ |vd|2
|v|2

]

= Ev

[ |v|2
|v|2

]
= 1.

Therefore

exp(Eu[ln(|u†o|2)])
Eu[|u†o|2] = e−γ+o(1).

This shows that f(S)→ e−γ as d→∞ and concludes the

proof.

V. APPROXIMATE PERMANENT-ON-TOP

In this section we first prove theorem 2. The proof follows

simply from the fact that the Schur power of a diagonal

matrix is a multiple of the identity matrix.

Proof of theorem 2: Let A � 0 be given and let D � A
be a diagonal matrix such that per(D) = rel(A). Because

D � A � 0, we have

D⊗n � A⊗n.

The Schur powers of A and D are submatrices of D⊗n and

A⊗n respectively. Therefore we have

D⊗n
Sn,Sn

� A⊗n
Sn,Sn

.

The matrix D⊗n is diagonal, and so is D⊗n
Sn,Sn

. The entry

on the diagonal corresponding to row and column σ ∈ Sn

is by definition

n∏
i=1

Dσ(i),σ(i) =
n∏

i=1

Dii = per(D),

which is independent of σ. This shows that D⊗n
Sn,Sn

=

per(D)I . Therefore A⊗n
Sn,Sn

� per(D)I which means that

‖A⊗n
Sn,Sn

‖ ≤ per(D) = rel(A) ≤ cn per(A).

Now we prove claim 1. This shows that in the worst

case there is at least an exponential gap between the largest

eigenvalue of the Schur power matrix and the permanent.

Proof of claim 1: We start with the counterexample

given in [15] of an m × m matrix B whose permanent

is not equal to the largest eigenvalue of its Schur power

matrix. We use standard tricks in order to construct larger

counterexamples, by building block diagonal matrices. We

let A = B ⊗ Ik where Ik is the k × k identity matrix for

some k and let n = mk. It is clear from the block diagonal

form of A that

per(A) = per(B)k.

It is also not hard to see that the Schur power of A can be

expressed in terms of the Schur power of B via the following

identity, up to a reindexing of the rows and columns:

A⊗n
Sn,Sn

= (B⊗m
Sm,Sm

)⊗k ⊗ I( mk
m,m,...,m)

.

It follows that

‖A⊗n
Sn,Sn

‖ = ‖B⊗m
Sm,Sm

‖k · 1( n
m,...,m) = ‖B⊗m

Sm,Sm
‖k

Now we have

‖A⊗n
Sn,Sn

‖
per(A)

=

(
‖B⊗m

Sm,Sm
‖

per(B)

)k

= ĉn,

where we let

ĉ =
m

√
‖B⊗m

Sm,Sm
‖

per(B)
> 1

be a universal constant.

We conclude with the following open question.

Problem 1. What is the smallest constant c∗ such that for
every A � 0 we have

‖A⊗n
Sn,Sn

‖ ≤ cn∗ per(A)?
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