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Abstract—We consider the Similarity Sketching problem:
Given a universe rus “ t0, . . . , u ´ 1u we want a random
function S mapping subsets A Ď rus into vectors SpAq of
size t, such that similarity is preserved. More precisely: Given
sets A,B Ď rus, define Xi “ rSpAqris “ SpBqriss and
X “ ř

iPrtsXi. We want to have ErXs “ t ¨ JpA,Bq, where
JpA,Bq “ |A X B|{|A Y B| and furthermore to have strong
concentration guarantees (i.e. Chernoff-style bounds) for X .
This is a fundamental problem which has found numerous
applications in data mining, large-scale classification, computer
vision, similarity search, etc. via the classic MinHash algorithm.
The vectors SpAq are also called sketches.

The seminal tˆMinHash algorithm uses t random hash func-
tions h1, . . . , ht, and stores pminaPA h1pAq, . . . ,minaPA htpAqq
as the sketch of A. The main drawback of MinHash is, however,
its Opt ¨ |A|q running time, and finding a sketch with similar
properties and faster running time has been the subject of
several papers. Addressing this, Li et al. [NIPS’12] introduced
one permutation hashing (OPH), which creates a sketch of size
t in Opt`|A|q time, but with the drawback that possibly some
of the t entries are “empty” when |A| “ Optq. One could argue
that sketching is not necessary in this case, however the desire
in most applications is to have one sketching procedure that
works for sets of all sizes. Therefore, filling out these empty
entries is the subject of several follow-up papers initiated by
Shrivastava and Li [ICML’14]. However, these “densification”
schemes fail to provide good concentration bounds exactly in
the case |A| “ Optq, where they are needed.

In this paper we present a new sketch which obtains
essentially the best of both worlds. That is, a fast Opt log t`|A|q
expected running time while getting the same strong concen-
tration bounds as MinHash. Our new sketch can be seen as a
mix between sampling with replacement and sampling without
replacement. We demonstrate the power of our new sketch
by considering popular applications in large-scale classification
with linear SVM as introduced by Li et al. [NIPS’11] as well
as approximate similarity search using the LSH framework of
Indyk and Motwani [STOC’98]. In particular, for the j1, j2-
approximate similarity search problem on a collection of n
sets we obtain a data-structure with space usage Opn1`ρ `
ř

APC |A|q and Opnρ log n` |Q|q expected time for querying a
set Q compared to a Opnρ log n ¨ |Q|q expected query time of
the classic result of Indyk and Motwani.

Keywords-hashing; similarity sketch; sketching; Jaccard sim-
ilarity; LSH; locality-sensitive hashing

I. INTRODUCTION

In this paper we consider the following problem which

we call the similarity sketching problem. Given a large

universe rus “ t0, . . . , u ´ 1u and positive integer t we

want a random function S mapping subsets A Ď rus
into vectors (which we will call sketches) SpAq of size

t, such that similarity is preserved. More precisely, given

sets A,B Ď rus, define Xi “ rSpAqris “ SpBqriss for

each i P rts, where SpAqris denotes the ith entry of the

vector SpAq and rxs is the Iverson bracket notation with

rxs “ 1 when x is true and 0 otherwise. Let X “ ř

iPrtsXi,

then we want ErXs “ t ¨ JpA,Bq, where JpA,Bq “
|A X B|{|A Y B| is the Jaccard similarity of A and B.

That is, the sketches can be used to estimate JpA,Bq by

doing a pair-wise comparison of the entries. We will call

this the alignment property of the similarity sketch. Finally,

we want to have Chernoff-style concentration bounds on

the value of X . The standard solution to this problem is

tˆMinHash algorithm1. The algorithm works as follows:

Let h0, . . . , ht´1 : rus Ñ r0, 1s be random hash functions

and define SpAq “ pminaPA h0paq, . . . ,minaPA ht´1paqq.
This corresponds to sampling t elements from A with

replacement and thus has all the above desired properties.

MinHash was originally introduced by Broder et al. [5],

[6] for the AltaVista search engine and has since been used

as a standard tool in many applications including duplicate

detection [6], [9], all-pairs similarity [4], large-scale learn-

ing [14], computer vision [17], and similarity search [11].

The main motivation for hashing-based approaches to these

problems is the continuing increases in dimensionality of

modern datasets. Weinberger et al. [23] considered sets from

a universe of size 16 trillion (u « 1013) and Tong [22]

considered sets with u « 109. Furthermore, when working

with text, input is often represented by w-shingles (i.e. w
contiguous words) with w ě 5. This further increases the

dimension from, say roughly 105 common english words to

u « 105w.
The main drawback of MinHash is, however, the Opt¨|A|q

running time. For practical applications, where the data is

ultra high dimensional, this sketch creation time is often a

bottleneck. As an example, [14] suggests using t “ 500 and

[12] suggests using t “ 4000. Several papers have therefore

been concerned with finding a similarity sketch with equal

power and faster running time.

1https://en.wikipedia.org/wiki/MinHash
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Bachrach and Porat [3] suggested a more efficient way

of maintaining t MinHash values with t different hash

functions. They use t different polynomial hash functions

that are related, yet pairwise independent, so that they can

systematically maintain the MinHash for all t polynomials in

Oplog tq time per element of A. There are two issues with

this approach: It is specialized to work with polynomials

and MinHash is known to have constant bias unless the

polynomials considered have super-constant degree [15], and

this bias does not decay with independent repetitions. Also,

because the experiments are only pairwise independent, the

concentration is only limited by Chebyshev’s inequality and

thus nowhere near the Chernoff bounds we want for many

applications.

Another direction introduced by Li et al. [13] is one
permutation hashing (OPH) which works by hashing the

elements of A into t buckets and performing a MinHash

in each bucket using the same hash function. While this

procedure gives Opt ` |A|q sketch creation time it also

may create empty buckets and thus only obtains a sketch

with t1 ď t entries when |A| “ opt log tq. One may argue

that sketching is not even needed in this case. However, a

common goal in applications of similarity sketching is to

have one sketching procedure which works for all set size

– eg. one data structure that works for an entire data set of

different sizes in the case of approximate similarity search.

It is thus very desirable that the similarity sketch works well

independently of the size of the input set.

Motivated by this, several follow-up papers [20], [19],

[18] have tried to give different schemes for filling out the

empty entries of the OPH sketch (“densifying” the sketch).

These papers all consider different ways of copying from

the full entries of the sketch into the empty ones. Due

to this approach, however, these densification schemes all

fail to give good concentration guarantees when |A| is

small, which is exactly the cases in which OPH gives many

empty bins and densification is needed. This is because of

the fundamental problem that unfortunate collisions in the

first round cannot be resolved in the second round when

copying from the full bins. To understand this consider

the following extreme example: Let A be a set with two

elements. Then with probability 1{t these two elements end

in the same bin, and after copying the entire densified sketch

ends up consisting of just one element. This leads to very

poor similarity estimation. This behaviour is illustrated with

experiments in Figure 1. Furthermore, the state-of-the-art

densification scheme of Shrivastava [18] has an expected

running time of Op|A| ` t2{|A|q and thus potentially takes

Opt2q time when |A| is small.

A. Our contribution

In this paper we obtain a sketch which essentially obtains

the best of both worlds. That is, strong concentration guar-

antees for similarity estimation as well as a fast expected

Figure 1. Experimental evaluation of similarity estimation of the sets
A “ t1, 2u and B “ t2, 3u with different similarity sketches and t “
128. Each experiment is repeated 10000 times and the y-axis reports the
frequency of each estimate. The green line indicates the actual similarity.
The two methods based on OPH do not give as strong concentration as the
others. Note that for the method of Shrivastava [18] has several estimates
of similarity zero, which never occurs with MinHash or our method. The
poor concentration is because each set has a probability of 1{t to be a
single-element sketch. Our new method outperforms MinHash as it has an
element of “without replacement”.

sketch creation time of Opt log t`|A|q. Our new sketch can

be seen as a mixture between sampling with and without

replacement and in many cases outperforms MinHash. An

example of this can be seen in the toy example of Figure 1,

where the “without replacement”-part of our sketch gives

better concentration compared to MinHash. Our sketch can

be directly employed in any place where tˆMinHash is

currently employed to improve the running time. In this

paper we focus on two popular applications, which are large-

scale learning with linear SVM and approximate similarity

search with LSH. We describe these applications in more

detail below.

Another strength of our new sketch is that it can be

implemented using just one mixed tabulation hash function

(introduced by Dahlgaard et al. [8]) which can be evaluated

in Op1q time.

Theorem 1. Let rus “ t0, 1, 2, . . . , u´ 1u be a set of keys
and let t be a positive integer. There exists an algorithm
that given a set A Ď rus in expected time O p|A| ` t log tq
creates a size-t vector vpAq of non-negative real numbers
with the following properties. For two sets A,B Ď rus it
holds that vpAYBqi “ min tvpAqi, vpBqiu for each index
i P rts. For i P rts let Xi “ 1 if vpAqi “ vpBqi and 0
otherwise and let X “ 1

t

ř

iPrtsXi. Then ErXs “ J where
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J “ JpA,Bq and for δ ą 0 it holds that:

PrrX ě Jp1` δqs ď
ˆ

eδ

p1` δq1`δ

˙t

,

PrrX ď Jp1´ δqs ď
ˆ

e´δ

p1´ δq1´δ

˙t

.

We also present a way to compute our sketch in a

streaming context with essentially the same running time.
Large-scale learning: Li et al. [14] considered using

similarity sketching for applications in large-scale linear

learning. In particular they showed how to naturally integrate

MinHash into linear SVM and logistic regression to avoid

computations on extremely large data points. The idea is

as follows: For each input set A, they create a tˆMinHash

similarity sketch and truncate each value in the sketch to

b bits (called b-bit minwise hashing). They then create a

vector of size 2b ¨t by concatenating the indicator vectors (of

size 2b) for each entry in the b-bit similarity sketch. By the

alignment property of the similarity sketch it follows that

the Jaccard similarity of two sets can be estimated as the

dot-product of the two corresponding size-2bt vectors (with
a bias depending on b). This is exactly the property needed

by a linear SVM in order to perform efficient classification.

As the linear SVM performs classification using a single dot-

product the classification time then becomes Op2bt` t ¨ |A|q
when using tˆMinHash. Using our new similarity sketch we

immediately improve this to Opp2b ` log tq ¨ t` |A|q which
removes a major bottleneck (see [13]).
We note that it is crucial to this application that the

similarity sketch satisfies the alignment property as also

noted by Li et al. [13], as the similarity estimation can

otherwise not be implemented with a dot-product.
Speeding up LSH: One of the most popular applications

of the MinHash algorithm is the approximate similarity
search problem. Here, we are given a collection, C, of n
sets from some universe rus as well as two parameters 0 ď
j2 ă j1 ď 1. The task is to pre-process C such that given a

query set Q Ď rus we can efficiently return a set A P C with

JpA,Qq ě j2 if there exists some B P C with JpB,Qq ě j1.
It is common to assume that j1, j2 are constants and we

do the same in this paper. To address this problem, Indyk

and Motwani [11] introduced the Locality Sensitive Hashing
(LSH) framework. For parameters L,K, they created L
different KˆMinHash sketches, S0pAq, . . . , SL´1pAq for

each set A P C. A query is then answered by computing

L different KˆMinHash sketches S0pQq, . . . , SL´1pQq for
Q and for each i P rLs comparing Q to each set A P C
with SipAq “ SipQq. This gives a total space usage

of OpL ¨ n ` ř

APC |A|q and an expected query time of

OpL ¨K ¨ |Q|q. By carefully choosing L and K they obtain

a space usage of Opn1`ρ `ř

APC |A|q and expected query

time of Op|Q| ¨ nρ log nq, where ρ “ logp1{j1q{ logp1{j2q.
Following this seminal work it has become practice to

evaluate algorithms in terms of their ρ-value, and several

papers are concerned with reducing this value (see e.g. [1],

[2], [7]) using increasingly sophisticated methods based on

eg. data-dependant hashing as in [1], [2]. Using the LSH

framework of [11] the query time is dominated by two parts:

1) The data structure returns OpLq expected “false positives”
which have to be filtered out in roughly OpL ¨ |Q|q time,

and 2) we have to compute OpL ¨ Kq hash values for the

similarity sketches giving OpL ¨ K ¨ |Q|q time when using

MinHash. One way to remove this multiplicative dependance

on Q is by using an “intermediate” similarity sketch of size

Oplog3 nq and generating the similarity sketches of the LSH

structure by sampling directly from this vector. This gives

an expected query time of OppL ` |Q|q ¨ log3 nq. This is

still very time consuming when |Q| and n are large, and

thus removing the multiplicative dependance on |Q| without
introducing a large polylogarithmic factor was the main

motivation behind studying OPH densification schemes [19],

[20], [18]. However, as mentioned earlier, these densification

schemes do not give the concentration bounds necessary for

the LSH analysis to work.

In this paper we address the above issue, speeding up

the query time of the LSH framework. Building upon ideas

from Henzinger and Thorup [10] and using the similarity

sketch from this paper we give a method that filters out false

positives of 1) above in expected constant time, however,

the main work lies in dealing with 2). To improve this part

we show that we can use our new similarity sketch as an

intermediate vector and sample from this in a clever way to

build the LSH table in OpL ¨K ` |Q|q time thus improving

the total query time to OpL ¨K ` |Q|q “ Opnρ log n` |Q|q
expected time.

B. Related work

An alternative to tˆMinHash sketching is the bottom-t
sketches described in [5], [21]. The idea is to use the t
smallest hash values of a set A instead, applying just one

hash function. However, similar to OPH this does not give

us a sketch of size t when |A| is small. Furthermore, the

estimation procedure becomes more complicated and the

sketches do not satisfy the alignment property, which is

necessary for many applications (see Section I-A above).

A recent advance in approximate similarity search by

Christiani and Pagh [7] is the ChosenPath method, which

obtains a ρ-value better than the one obtained with LSH

and MinHash. However, the authors consider a different

similarity measure called Braun-Blanquet similarity, and in

order to obtain their result for Jaccard similarity they have

to convert between the two. They therefore assume that the

input sets all have the same size, �, and the authors suggest2

using an �ˆMinHash sketch as preprocessing to obtain this.

When � is large this pre-processing step is a bottleneck that

can be sped up with out new similarity sketch.

2Personal communication
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C. Notation
For a real number x and an integer k we define xk “

xpx´ 1qpx´ 2q . . . px´ k` 1q. For an expression P we let

rP s denote the variable that is 1 if P is true and 0 otherwise.

For a non-negative integer n we let rns denote the set rns “
t0, 1, 2, . . . , n´ 1u.

II. FAST SIMILARITY SKETCHING

In this section we present our new sketching algorithm,

which takes a set A Ď rus as input and produces a sketch

SpA, tq of size t. When t is clear from the context we may

write just SpAq.
Our new similarity sketch is simple to describe: Let

h0, . . . , h2t´1 be random hash functions such that for i P rts
we have hi : rus Ñ rtsˆri, i`1q and for i P tt, . . . , 2t´1u
we have hi : rus Ñ ti ´ tu ˆ ri, i ` 1q. For each hash

function hi we say that the output is split into a bin, bi,
and a value, vi. That is, for i P r2ts and a P rus we have

hipaq “ pbipaq, vipaqq, where bipaq and vipaq are restricted

as described above. In particular, for i P tt, . . . , 2t´ 1u we
have bipaq “ i´ t. We may then define the jth entry of the

sketch SpAq as follows:
SpAqrjs “ mintvipaq | a P A, i P r2ts, bipaq “ ju . (1)

In particular, the hash functions ht, . . . , h2t´1 ensure that

each entry of SpAq is well-defined. Let i be the minimum

index such that each bin is assigned an element using only

h0, . . . , hi. Then, since since we have vipaq ă vjpbq for any
a, b P rus and 0 ď i ă j ă 2t it follows that our sketch

can be computed using only the hash functions h0, . . . , hi,

which allows for the efficient implementation defined in the

algorithm of Figure 2. In this case we say that i is the

maximum hash index.

Input: A, t, h0, . . . , h2t´1

Output: The sketch SpA, tq
1: S Ð8t

2: cÐ 0
3: for i P r2ts do
4: for a P A do
5: b, v Ð hipaq
6: if Srbs “ 8 then
7: cÐ c` 1
8: end if
9: Srbs Ð minpSrbs, vq
10: end for
11: if c “ t then
12: return S
13: end if
14: end for

Figure 2. The Fill-Sketch procedure

We will start our analysis of SpAq by bounding the

running time of Figure 2.

Lemma 1. Let A Ď rus be some set and let t be a
positive integer. Then the expected running time of Figure 2
is Opt log t` |A|q.

Proof: We split the proof into two cases:

1) If |A| ď 2 log t we have a trivial upper bound of Opt ¨
|A|q “ Opt log tq.

2) Otherwise, |A| ą 2 log t. Fix i P rts to be the smallest

value in such that |A| ¨ i ą 2 ¨ t log t. Then the

probability of a given bin being empty after evaluating

h0, . . . , hi´1 is at most

p1´ 1{tq|A|¨i ď p1´ 1{tq2¨t log t ď 1{t2 .

It follows that the probability of any bin being empty

is at most 1{t and thus the expected running time is

Op|A| ¨ i` |A|¨t
t q “ Opt log t` |A|q.

Next, we will prove several properties of the sketch. The

first is an observation that the sketch of the union of two

sets can be computed solely from the sketches of the two

sets.

Fact 1. Let A,B be two sets and let t be a positive integer.
Then

SpAYB, tqris “ minpSpA, tqris, SpB, tqrisq .
The main technical lemma regarding the sketch is

Lemma 2 below. Loosely speaking, the lemma bounds the

kth moment of the sketch when estimating set similarity.

We will use this lemma to show that we get an unbiased

estimator as well as Chernoff-style concentration bounds.

Lemma 2. Let A,B be sets with Jacard similarity
JpA,Bq “ J and let t be a positive integer. For each i P rts
let Xi “ rSpA, tqris “ SpB, tqriss. Let I Ď rts be a set of
k indices. Then:

E

«

ź

iPI
Xi

ff

ď Jk ,

and if tJ ě k ´ 1 then:

E

«

ź

iPI
Xi

ff

ě ptJqk
tk

.

Proof: Recall the definition of the hash functions

hi “ pbi, viq. Define T “ pT0, T1, . . . , T2t´1q in the

following way. Let T0 “ b0 pAYBq and for i ě 1
let Ti “ bi pAYBq z pT0 Y . . .Y Ti´1q. Assume in the

following that T is fixed. It clearly suffices to prove this

theorem for all possible choices of T . Let n “ |AYB|,
then nJ “ |AXB|.

We will prove the claim when the set I is chosen

uniformly at random among the subsets of rts of size k.
Because of symmetry this will suffice. More specifically
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let I “ tz0, z1, . . . , zk´1u where zi is chosen uniformly

at random from rtsz tz0, z1, . . . , zi´1u.
Let i P rks. Fix z0, z1, . . . , zi´1 and assume that Xz0 “

. . . “ Xvzi´1 “ 1. Let p be the probability that Xzi “
1 conditioned on these assumptions. We will estimate p.
Let I 1 “ tz0, . . . , zi´1u. The probability that zi P Tj is

then
|Tj |´|TjXI1|

t´i . Conditioned on zi P Tj the probability

that Xzi “ 1 is exactly
nJ´|TjXI1|
n´|TjXI1| . So the probability that

Xzi “ 1 is:

p “
ÿ

jPr2ts

|Tj | ´ |Tj X I 1|
t´ i

¨ nJ ´ |Tj X I 1|
n´ |Tj X I 1| .

We note that

J ě nJ ´ |Tj X I 1|
n´ |Tj X I 1| ě

|Tj |J ´ |Tj X I 1|
|Tj | ´ |Tj X I 1| ,

and inserting these estimates gives that:

J “
ÿ

jPr2ts

|Tj | ´ |Tj X I 1|
t´ i

¨ J

ě p

ě
ÿ

jPr2ts

|Tj | ´ |Tj X I 1|
t´ i

¨ |Tj |J ´ |Tj X I 1|
|Tj | ´ |Tj X I 1|

“ tJ ´ i

t´ i
.

So conditioned on Xz0 “ . . . “ Xzi´1
“ 1 we conclude

that the probability that Xzi “ 1 is between J and tJ´i
t´i .

This implies that that the expected value of
ś

iPrksXzi is at

most Jk and at least
ptJqk
tk

where the lower bound holds if

all terms in the product are non-negative, i.e. if tJ ě k´ 1.

As a corollary we immediately get that the estimator is

unbiased.

Lemma 3. Let A,B be sets with Jaccard similarity
JpA,Bq “ J and let t be a positive integer. Let Xi “
rSpA, tqris “ SpB, tqriss and let X “ ř

iPrtsXi. Then
ErXs “ tJ .

Proof: This follows directly by applying Lemma 2 with

k “ 1.
We also get Chernoff-style concentration bounds as fol-

lows.

Lemma 4. Let A,B be sets with Jaccard similarity
JpA,Bq “ J and let t be a positive integer. Let Xi “
rSpA, tqris “ SpB, tqriss and let X “ ř

iPrtsXi. Then for
δ ą 0

PrrX ě Jp1` δqs ď
ˆ

eδ

p1` δq1`δ

˙t

,

PrrX ď Jp1´ δqs ď
ˆ

e´δ

p1´ δq1´δ

˙t

.

Proof: The upper bound follows from Lemma 2 and

[16, Corollary 1] since Chernoff bounds are derived by

bounding E
“

eλX
‰

for some λ ą 0.
The lower bounds follows from considering Y “ ř

iPrts Yi

where Yi “ 1 ´ Xi and Y “ t ´ X . Since Yi “ rSpA Y
B, tqris “ SppAYBqzpAXBq, tqriss we can use the same

argument as for the upper bound, see [16, Page 4].

Practical implementation: In Figure 2 we used 2t hash
functions to implement our new similarity sketch. We now

briefly describe how to avoid this requirement by instead

using just one Mixed Tabulation hash function as introduced

by Dahlgaard et al. [8]. We do not present the entire details,

but refer instead to the theorems of [8] which can be used

directly in a black-box fashion.

In tabulation-based hashing we view each key, x P rus,
as a vector px0, . . . , xc´1q of c characters, where each

xi P ru1{cs, and u1{c is called the alphabet size. Consider
now the following change to Figure 2: Let h be a mixed

tabulation function with alphabet size at least δ ¨ t log n for

some sufficiently large constant δ, and change Line 5 to

be b, v Ð hpi, a0, . . . , ac´1q instead. We now consider two

cases:

‚ If |A| ď pδ´1q ¨t log n it follows from [8, Theorem 1],

that the keys of t0, . . . , iu ˆA all hash independently,

where i is an integer chosen similarly as in Lemma 1,

and both correctness and running time follows imme-

diately from the lemmas above.

‚ If |A| ą pδ ´ 1q ¨ t log n all bins are filled out using

i “ 0. In this case both correctness and running time

follows immediately from [8, Theorem 2].

A. Separation

It can be useful to check if the Jaccard similarity of two

sets are above a certain threshold or not, without having

to actually calculate the Jaccard similarity. Specifically, we

assume that we are given two sets A and B and want to

determine if JpA,Bq ě γ. Intuitively, this should be easy

if JpA,Bq is either much larger or much smaller than γ
and difficult when JpA,Bq « γ. Inspired by Henzinger

and Thorup [10] we consider the following algorithm for

doing so: We let t ě r be positive integers and let

Xi “ rSpA, tqris “ SpB, tqriss for i P rts. We now run

a for loop with an index i going from r to t. At each step

we check if
ř

jăi Xj ď i ¨ γ ` 3
?
i2. If so the algorithm

terminates and returns false. If no such i is found the

algorithm returns true. See Figure 3 for pseudo-code.

Assume that we use Figure 3 with Xi “ rSpA, tqris “
SpB, tqriss. In Lemma 5 we show how the algorithm be-

haves when JpA,Bq ě γ ` δ and JpA,Bq ď γ ´ δ
respectively. Furthermore, if we only count the running time

of the algorithm in case the algorithm returns false the

expected used time is Oprq. If JpA,Bq ě γ ` δ, δ is a

constant and r is a sufficiently large constant (depending on

δ) then the algorithm returns true with constant probability.
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Input: t, pX0, X1, . . . , Xt´1q, r, γ
Output: true or false
1: S “ 0
2: for i “ 1, 2, . . . , t do
3: S “ S `Xi´1

4: if i ě r and S ď i ¨ γ ` 3
?
i2 then

5: return false
6: end if
7: end for
8: return true

Figure 3. The Separate procedure.

If JpA,Bq ď γ ´ δ and δ is a constant then the algorithm

returns true with probability exponentially small in t.

Lemma 5. Let t ě r be integers and γ, δ, p P r0, 1s. Let
X0, X1, . . . , Xt´1 be independent variables with values in
r0, 1s such that ErXis “ p for every i P rts. Assume that we
run Figure 3 with parameters pt, pX0, . . . , Xt´1q, γ, rq.

Let τ be the number of iterations of the for loop during the
algorithm, and let τF “ τ if the algorithm returns false
and let τF “ 0 otherwise. Then ErτF s “ Oprq.

If p ě γ`δ and r ě 8
δ3 the algorithm returns true with

probability at least

1´ e´δ2r{2

1´ e´δ2{2 . (2)

If p ď γ´ δ the algorithm returns true with probability
at most

e´2δ2t . (3)

Proof: See Section A.

B. Streaming

We note that the algorithm defined in Figure 2 does not

work in a streaming context, as it makes several passes

over the entire set. This is done to efficiently find the

maximum hash index. Recall, that the maximum hash index

is the smallest index, i, such that each bin is assigned an

element when restricting to h0, . . . , hi. For instance, when

n “ Ωpt log tq we expect the maximum hash index to be

Op1q. In a streaming setting, if we know what the maximum

hash index, i, is, we may simply construct our sketch by

computing h0paq, . . . , hipaq once a new element, a, is read
from the stream, updating the sketch accordingly. However,

it is impossible to know what the maximum hash index is

or even estimate it if we don’t know the elements that will

appear in the stream or even the number of elements. Thus

one may fear that we need to evaluate each of the 2t hash
functions for each element appearing in the stream giving

a total time of Opntq – no better than MinHash. Below

we describe how to alleviate this problem by finding the

maximum hash index for a prefix of the stream adaptively.

Let a1, . . . , an be the elements in the stream and let ipajq
be the maximum hash index for a1, . . . , aj . Clearly, if we
have the sketch for a1, . . . , aj´1 we can compute the sketch

for a1, . . . , aj using only h0, . . . , hipajq. Furthermore, once

we read aj from the stream and compute h0, . . . , hipajq we
can easily detect that ipajq is the maximum hash index of

a1, . . . , aj – e.g. by keeping a counter of bins whose smallest

value was assigned using each hi and updating this after

processing each element of the stream.

To analyze this proposed method, we first note that

Eripajqs ď
Q

t log t
j

U

, and thus the expected running time of

updating the sketch after reading each element is bounded

by

n
ÿ

j“1

Eripajqs ď
n
ÿ

j“1

R

t log t

j

V

ď t log t log n` n

“ Opt log2 t` nq .
We may augment this simple streaming algorithm with a

buffer of size b, where we read b elements at a time and

update the current sketch using the algorithm of Figure 2 on

the elements in the buffer. By doing this we get an expected

total running time of Opt log t log n
b `nq. As an example, if

we allow Optq space for the buffer (as for the sketch), this

gives a total running time of Opt log t log log t` nq.
III. SPEEDING UP LSH

We consider the approximate similarity search problem

with parameters 0 ă j2 ă j1 ă 1 on a collection, C, of n
sets from a large universe rus. We will create a data-structure

similar to the LSH structure as described in Section I-A with

parameters L and K. That is, for each set A P C (and query

Q) we will create L sketches S0pAq, . . . , SL´1pAq of size
K such that for any two sets A,B Ď rus and i P rLs we
have the following property:

‚ PrrSipAq “ SipBqs ď JpA,BqK .

‚ If JpA,Bq ě j1 then PrrSipAq “ SipBqs “
ΘpJpA,BqKq.

By setting K “
Q

logn
logp1{j2q

U

and L “ Pp1{j1qK
T

and using

the analysis of [11] this immediately gives us Opn1`ρ `
ř

APC |A|q space usage and Opnρ log n` T pnρ, log n, |Q|qq
expected query time, where T pL,K, zq is the time it takes to

create L sketches of size K for a set of size z. By providing

a more efficient way to compute the sketches SipAq we thus
obtain a faster query time.

In order to create the sketches S0pAq, . . . , SL´1pAq de-
scribed above we first create a LˆK table T such that for

each i P rLs and j P rKs we have T ri, js is a uniformly

random integer chosen from tj ¨ t{K, . . . , pj`1q ¨ t{K´1u,
where t is a parameter divisible by K to be chosen later.

The rows of the matrix are chosen independently. Each row
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is filled using a 2-independent source of randomness. Now

for a given A P rus (or Q) we do as follows:

1) Let SpAq be a size t similarity sketch of Section II.

2) For each i P rLs and j P rKs let SipAqrjs be

SpAqrT ri, jss.
It follows that the time needed to create

S0pAq, . . . , SL´1pAq for any A P rus is

OpLK ` t log t` |A|q. We let t “ K ¨
Q

1`K ¨
´

1
j1
´ 1

¯U

.

We start by bounding the number of “false positives”.

Lemma 6. Let A P C be such that JpA,Qq ď j2. Then for
any i P rLs the probability that SipAq “ SipQq is at most
1
n .

Proof: Fix T ri, js and let vj “ T ri, js for all j P rKs.
Now define pXjqjPrts as in Lemma 2. Then SipAq “ SipQq
if and only if Xvj

“ 1 for all j P rKs, i.e. if śjPrKsXvj
“

1. By Lemma 2 this happens with probability at most

pJpA,QqqK ď jK2 ď 1{n.
Lemma 6 shows that for each i P rLs the expected number

of sets A P C with JpA,Qq ď j2 and SipAq “ SipQq is
at most |C| ¨ 1

n “ 1. Thus, the expected number of pairs

pi, Aq P rLs ˆ C with JpA,Qq ď j2 and SipAq “ SipQq is
at most L.
Let A0 P C be a set such that J “ JpA0, Qq ě j1. We

will give a lower bound on the probability that there exists

an index i P rLs such that SipA0q “ SipQq. For i P rLs
let Yi “ rSipA0q “ SipQqs and let Y “ ř

iPrLs Yi. Using

Lemma 2 and the same reasoning as in Lemma 6 we see

that ErYis ě pJtqK
tK

. Using this we get:

ErYis ě pJtqK
tK

ą
ˆ

tJ ´K

t´K

˙K

“ JK ¨
ˆ

1´ Kp1´ Jq
Jpt´Kq

˙K

.

By the definition of t we have that
Kp1´Jq
Jpt´Kq ď 1

K . Hence

ErYis ě JK ¨`1´ 1
K

˘K ě JK{4. As a consequence we get
that ErY s ě L ¨JK{4 ě L ¨ jK1 {4 ě 1

4 , i.e. that the expected

number of indices i P rLs such that SipA0q “ SipQq is Ωp1q.
However, this does not suffice that such an index exists with

constant probability. In order to prove this we will bound

E
“

Y 2
‰

and use the inequality PrrY ą 0s ě pErY sq2
ErY 2s , which

follows from Cauchy-Schwarz’s Inequality.

Lemma 7. Let i0, i1 P rLs be different indices. Then

ErYi0Yi1s ď J2K ¨
ˆ

1` Kp1´ Jq
Jt

˙K

.

Proof: The values pT ri, jsqpi,jqPti0,i1uˆrLs are all in-

dependent by definition. Let R be the set containing these

value, i.e.

R “ tT ri, js | pi, jq P ti0, i1u ˆ rLsu .
Define Xj “ rSpA0qrjs “ SpQqrjss as in Lemma 2 and fix

the value of R. Then by Lemma 2 ErYi0Yi1 | Rs ď J |R|. It
remains to understand |R|. For j P rKs let Zj “ rT ri0, js ‰
T ri1, jss. Then it is easy to see that |R| “ K `ř

jPrKs Zj ,

that pZjqjPrKs are independent and that PrrZj “ 1s “ 1 ´
K
t . Hence we can upper bound ErYi0Yi1s by

ErYi0Yi1s ď E

»

–JK
ź

jPrKs
JZj

fi

fl “ JK
ź

jPrKs
E
“

JZj
‰

.

Now

E
“

JZj
‰ “

ˆ

1´ K

t

˙

¨ J ` K

t
“ J ¨

ˆ

1` Kp1´ Jq
Jt

˙

,

and therefore ErYi0Yi1s ď J2K ¨
´

1` Kp1´Jq
Jt

¯K

.

By the definition of t we have 1 ` Kp1´Jq
Jt ď 1 ` 1

K ď
e1{K , and therefore Lemma 7 gives that ErYi0Yi1s ď eJ2K .

Hence:

ErY pY ´ 1qs “
ÿ

i0,i1PL,i0‰i1

ErYi0Yi1s

ď LpL´ 1q ¨ e ¨ J2K

ă L2 ¨ e ¨ J2K .

Since ErY s ď L ¨ JK we get that E
“

Y 2
‰ ď L ¨ JK `L2 ¨ e ¨

J2K . So the probability that Y ą 0 can be bounded below

as follows:

PrrY ą 0s ě pErY sq2
ErY 2s

ě pL ¨ JKq2{16
epL ¨ JKq2 ` pL ¨ JKq

“ 1

16pe` pL ¨ JKq´1q
ě 1

16pe` 1q
“ Ωp1q .

Avoiding false positives: We let M “
tpi, Aq P rLs ˆ C | SipAq “ SipQqu be the set of matches.

We have proved that for each A0 P C with JpA0, Qq ě j1
with probability Ωp1q there exists i P rLs such that

pi, A0q P M . Furthermore, we have proved that the

expected number of pairs pi, Aq PM with JpA,Qq ď j2 is

at most L. Naively, we could go through all the elements

in M until we find pi, Aq P M such that JpA,Qq ą j2
in Op|Q|q time per pair. The expected time would be

O pL ¨ |Q|q, since in expectation we would check ď L pairs

pi, Aq with JpQ,Aq ď j2.
In order to obtain a expected running time of O pL ¨ |Q|q

we do something different. We split it into two cases
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depending on whether |M | ě CL or |M | ď CL for

some sufficiently large constant C depending on j1, j2. We

can in OpLq time check if |M | ě CL. First assume that

|M | ě CL. Then we find a subset M 1 Ď M of size

|M 1| “ rCLs, which we can clearly do in OpLq time. Then

we sample a uniformly random pair pi, Aq PM 1 and check

if JpA,Qq ą j2. By Markov’s inequality the number of

pairs pi, Aq P M with JpA,Qq ď j2 is at most CL
2 with

probability ě 1´ 2
C , and in this case we find a set A with

JpA,Qq ě j2 with probability at least 1
2 . The time used in

this case is clearly OpL` |Q|q.
Now assume that |M | ď CL. We assume that we have

made a similarity sketch of size Θ plog nq for each set A P C
and Q - the running time and space usage for this is clearly

dominated by what is used for the sketch of size t. For each
pi, Aq P M we now use Figure 3 with γ “ j1`j2

2 on this

sketch to separate JpA,Qq. We choose r to be a sufficiently

large constant. If the algorithm returns true we calculate

JpA,Qq and if it returns false we discard A. We note that

for any set A with JpA,Qq ď j2 the probability that we the

algorithm returns true is at most 1
n . Hence the expected

number of sets A P C with JpA,Qq ď j2 for which we

calculate JpA,Qq explicitly is at most Op1q. We conclude

that the running time is OpL ` |Q|q, since if we calculate

JpA,Qq for a set A with JpA,Qq ą j2 we can terminate

the algorithm and return A. Furthermore, if there exists a

set A0 P C with JpA0, Qq ě j1 the probability that the

algorithm returns true is Ωp1q since r is sufficiently large

and so there is probability Ωp1q of finding a set with Jaccard

similarity ą j2 in this case.

If there exists a set A0 with Jaccard similarity JpA0, Qq ě
j1 we conclude that the probability of finding a set A with

JpA,Qq ą j2 is therefore at least Ωp1q ´ 2
C . By choosing

C sufficiently large we ensure that Ωp1q ´ 2
C “ Ωp1q.

Summarizing we get the following theorem.

Theorem 2. Let 0 ă j2 ă j1 ă 1 be constants, and
let ρ “ logp1{j1q

logp1{j2q . Let U be a set of elements and let C
be collection of n sets from U . Then there exists a data
structure using space O

`

n1`ρ `ř

APC |A|
˘

and has query
time O pnρ log n` |Q|q such that: Given a set Q if there
exists a set A0 P C with JpA0, Qq ě j1, then with constant
probability the data structure returns a set A P C with
JpA0, Qq ą j2.

In order to improve the probability of Theorem 2 from

Ωp1q to 1´ 1{n we can repeat the experiment log n times.

Naively this would require log n different sketches of size

Θplog2 nq, but in the full version we show that it suffices

with a single sketch of size Θplog3 nq.
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APPENDIX

Proof: For i “ 0, 1, 2, . . . , n we let Xăi “ ř

jăi Xj .

First we prove the bound on the expected value of τF .
For j “ r, r ` 1, . . . , t let Tj “ j if the algorithm returns

false when i “ j in the loop and let Tj “ 0 otherwise. We

clearly have that τF “ r `řt
i“r Ti. Clearly

ř2r
i“r Ti ď 2r

by definition, and therefore

τF ď 3r `
t
ÿ

i“2r`1

Ti .

Now fix i ą 2r. If Ti “ i then we must have that Xăi ě
i ¨ γ ` 3

?
i2. Let j “ ti{2u. Since the algorithm did not stop

earlier we must also have Xăj ă j ¨ γ ` 3
a

j2. Hence we

have that:

ErTis ď i ¨min

$

&

%

Pr
”

Xăi ě i ¨ γ ` 3
?
i2
ı

,

Pr
”

Xăj ă j ¨ γ ` 3
a

j2
ı .

Let γ1 “ γ ` 1
2 ¨

´

1
3?i
` 1

3
?
j

¯

. If p ď γ1 then we see that if

Xăi ě i ¨ γ ` 3
?
i2 then:

Xăi ´ ErXăis ě i ¨ γ ` 3
?
i2 ´ iγ1 “ Ω

´

3
?
i2
¯

.

And by Hoeffding’s inequality we conclude that:

Pr
”

Xăi ´ ErXăis ě i ¨ γ ` 3
?
i2 ´ iγ1

ı

ď e´Ωp 3?iq .

If p ą γ1 we conclude in the same manner that

Pr
”

Xăj ă j ¨ γ ` 3
a

j2
ı

ď e´Ωp 3?iq. Hence we get that:

E

«

t
ÿ

i“2r

Ti

ff

ď
t
ÿ

i“2r

i ¨ e´Ωp 3?iq ď
ÿ

iě1

i ¨ e´Ωp 3?iq “ Op1q .

We conclude that ErτF s “ Oprq as desired.
We now assume that p ě γ ` δ and prove that (2) is a

lower bound on the probability that true is returned. By

a union bound and Hoeffding’s inequality we get that the

probability that false is returned is at most

t
ÿ

i“r

Pr
”

Xăi ď i ¨ γ ` 3
?
i2
ı

ď
t
ÿ

i“r

PrrXăi ď i ¨ pγ ` δ{2qs

ď
t
ÿ

i“r

PrrXăi ´ ErXăis ď ´i ¨ δ{2s

ď
t
ÿ

i“r

e´δ2i{2

ď
ÿ

iěr

e´δ2i “ e´δ2r{2

1´ e´δ2{2 ,

as desired.

Now assume that p ě γ ´ δ. We note that true is

only returned if Xăt ą t ¨ γ. By Hoeffding’s inequality

this happens with probability at most

Pr
”

Xăt ą t ¨ γ ` 3
?
t2
ı

ď PrrXăt ą t ¨ γs
ď PrrXăt ´ ErXăts ą t ¨ δs
ď e´2δ2t ,

showing that (3) holds.
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