
Polylogarithmic approximation for minimum planarization (almost)

Ken-ichi Kawarabayashi

National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku

Tokyo, Japan
Email: k keniti@nii.ac.jp

Anastasios Sidiropoulos

Department of Computer Science
University of Illinois at Chicago

Chicago, USA
Email: sidiropo@uic.edu

Abstract—In the minimum planarization problem, given some
n-vertex graph, the goal is to find a set of vertices of minimum
cardinality whose removal leaves a planar graph. This is a
fundamental problem in topological graph theory. We present a
logO(1) n-approximation algorithm for this problem on general
graphs with running time nO(logn/ log logn). We also obtain
a O(nε)-approximation with running time nO(1/ε) for any
arbitrarily small constant ε > 0. Prior to our work, no
non-trivial algorithm was known for this problem on general
graphs, and the best known result even on graphs of bounded
degree was a nΩ(1)-approximation [1].

As an immediate corollary, we also obtain improved ap-
proximation algorithms for the crossing number problem on
graphs of bounded degree. Specifically, we obtain O(n1/2+ε)-
approximation and n1/2 logO(1) n-approximation algorithms in
time nO(1/ε) and nO(logn/ log logn) respectively. The previ-
ously best-known result was a polynomial-time n9/10 logO(1) n-
approximation algorithm [2].

Our algorithm introduces several new tools including an
efficient grid-minor construction for apex graphs, and a new
method for computing irrelevant vertices. Analogues of these
tools were previously available only for exact algorithms. Our
work gives efficient implementations of these ideas in the setting
of approximation algorithms, which could be of independent
interest.

Keywords-minimum planarization; approximation algo-
rithm; polylogarithmic approximation; quasi-polynomial time

I. INTRODUCTION

In the minimum planarization problem, given a graph G,

the goal is to find a set of vertices of minimum cardinality

whose removal leaves a planar graph. This is a fundamental

problem in topological graph theory, which been extensively

studied over the past 40 years. It generalizes planarity, and

has connections to several other problems, such as crossing

number and Euler genus. The problem is known to be fixed-

parameter tractable [3]–[5], but very little is known about its

approximability.

A. Our contribution

Prior to our work, no non-trivial approximation algorithm

for minimum planarization was known for general graphs.

The only prior result was a nΩ(1)-approximation for graphs

of bounded degree [1]. We present the first non-trivial ap-

proximation algorithms for this problem on general graphs.

Our main results can be summarized as follows:

Theorem 1.1: There exists a O(log32 n)-approximation

algorithm for the minimum vertex planarization problem

with running time nO(logn/ log logn).

Theorem 1.2: For any arbitrarily small constant ε >
0, there exists a O(nε)-approximation algorithm for the

minimum vertex planarization problem with running time

nO(1/ε).

Applications to crossing number: The crossing number
of a graph G, denoted cr(G), is the minimum number of

crossings in any drawing of G into the plane (see [2]). Prior

to our work, the best-known approximation for the crossing

number of bounded-degree graphs was due to Chuzhoy [2].

Given a bounded-degree graph, her algorithm computes a

drawing with (cr(G))10 logO(1) n crossings, which implies

a n9/10 logO(1) n-approximation. We now explain how our

result on minimum planarization implies an improved ap-

proximation algorithm for crossing number on bounded-

degree graphs. It is easy to show that for any graph G,

mvp(G) ≤ cr(G), simply by removing one endpoint of one

edge involved in each crossing in some optimal drawing.

Thus, using our α-approximation algorithm for minimum

planarization, we can compute a planarizing set of size at

most α · cr(G). Thus, in graphs of maximum degree Δ,

we can compute some F ⊂ E(G), with |F | ≤ αΔcr(G),
such that G \ F is planar. Chimani and Hlinený [6] (see

also [7]) have given a polynomial-time algorithm which

given some graph G and some F ⊂ E(G), such that

G \ F is planar, computes a drawing of G with at most

O(Δ3 · |F | · cr(G) + Δ3 · |F |2) crossings. Combining

this with our result we immediately obtain an algorithm

with running time nO(logn/ log logn), which given a graph

G of bounded degree, computes a drawing of G with at

most (cr(G))2 logO(1) n crossings. Similarly, we obtain an

algorithm with running time nO(1/ε), which given a graph

G of bounded degree, computes a drawing of G with at

most (cr(G))2nε logO(1) n crossings, for any fixed ε > 0.

Combining this with existing approximation algorithms for

crossing number of graphs of bounded degree that are based

on balanced separators, we obtain the following (see [2] for

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.77

779

details).

Theorem 1.3: There exists a n1/2 logO(1) n-

approximation algorithm for the crossing number of graphs

of bounded degree, with running time nO(logn/ log logn).

Furthermore there exists a n1/2+ε-approximation algorithm

for the crossing number of graphs of bounded degree, with

running time nO(1/ε), for any fixed ε > 0.

B. Related work

In the F-deletion problem, the goal is to compute a

minimum vertex set S in an input graph G such that G−S is

F-minor-free. Characterizing graph properties for which the

corresponding vertex deletion problem can be approximated

within a constant factor or a polylogarithmic factor is a

long standing open problem in approximation algorithms

[8], [9]. In spite of a long history of research, we are still

far from resolving the status of this problem. Constant-factor

approximation algorithms for the vertex Cover problem (i.e.,

F = C3) are known since 1970s [10], [11].

Yannakakis [12] showed that approximating the minimum

vertex set that needs to be deleted in order to obtain

a connected graph with some property P within factor

n1−ε is NP-hard, for a very broad class of properties (see

[12]). There was not much progress on approximability/non-

approximability of vertex deletion problems until quite

recently. Fomin et al. [13] showed that for every graph

property P expressible by a finite set of forbidden minors

F containing at least one planar graph, the vertex deletion

problem for property P admits a constant factor approxi-

mation algorithm. They explicitly mentioned that the most

interesting case is when F contains a non-planar graph

(they said that perhaps the most interesting case is when

F = {K3,3,K5}), because there is no poly-logarithmic

factor approximation algorithm so far. Indeed, the planar

graph case and the non-planar case for the family F may be

quite different, as the graph minor theory suggests. The main

result of this paper almost settles the most interesting case.

We believe that our techniques can lead to further results on

approximation algorithms for minor-free properties.

II. HIGH LEVEL DESCRIPTION OF THE ALGORITHM

We now give a brief overview of our approach and

highlight some of the main challenges. Our approximation

algorithm is inspired by fixed-parameter algorithms for the

minimum planarization problem, where one assumes that the

size of the optimum planarizing set is some fixed constant

k (see [3]–[5]).

A. Overview of previous fixed-parameter algorithms.

The known fixed-parameter algorithms for minimum pla-

narization work as follows: If the treewidth of the input

graph G is large enough (say, kc, for some constant c > 0),

then one can efficiently compute a large grid minor H in

G (that is, a minor of G that is isomorphic to some grid).

A subgraph J of G is called flat if it admits some planar

drawing with outer face F , such that all edges between J
and G \ J have one endpoint in F . If some vertex v ∈ H
is surrounded by a flat subgrid of H of size Ω(k), then

it is irrelevant; this means that by removing v, we do not

change any optimal solution. Thus, if such an irrelevant

vertex v exists, we recurse on G \ {v}, and return the

optimum solution found. We define the face cover of some

set of vertices U to be the minimum number of faces of

H that are needed to cover U . If there exists some vertex

u such that the neighborhood of u has face cover of size

Ω(k), then u is universal; that is, removing u decreases

the size of some optimum planarizing set by 1. Thus, if

such a universal vertex u exists, we recurse on G \ {u},
and return the optimum solution found, together with u.

If the grid H is large enough, then we can always find

either an irrelevant or a universal vertex. Thus, by repeatedly

removing such vertices, we arrive at a graph of bounded

treewidth, where the problem can be solved using standard

dynamic programming techniques.

B. Obtaining an approximation algorithm.

We now discuss the main challenges towards extend-

ing the above approach to the approximate setting. In

order to simplify the exposition, we discuss the logO(1)-

approximation algorithm. The nε-approximation is essen-

tially identical, after changing some parameters.

1. The small treewidth case. In the above fixed-

parameter algorithms, the problem is eventually reduced to

the bounded-treewidth case. That is, one has to solve the

problem on a graph of treewidth f(k), for some function f .

Since the optimum k is assumed to be constant, this can be

done in polynomial time (in fact, linear time). However, in

our setting, k can be as large as Ω(n), and thus this approach

is not applicable. Instead, we try to find some small balanced

vertex separator S. If the treewidth is at most k logO(1) n,

then we can find some separator of size k logO(1) n. In this

case, we recurse on all non-planar connected components of

G \ S, and we add S to the final solution. It can be shown

that |S| can be charged to the optimum solution, so that the

total increase in the cost of the solution is k logO(1).

2. The large treewidth case. We say that a graph is k-
apex if it can be made planar by the removal of at most k
vertices. Since any planar graph of treewidth t contains a

grid minor of size Ω(t)×Ω(t), it easily follows that any k-

apex graph of treewidth t > ck, for some universal constant

c > 0, also contains a grid minor of size Ω(t) × Ω(t). To

see that, first delete some planarizing set of size k, and

then find a grid minor in the resulting planar graph, which

has treewidth at least t − k. However, even thought it is

trivial to prove the existence of such a large grid minor,

computing it in polynomial time when k is not fixed turns

out to be a significant challenge. We remark that it is known

how to compute a grid minor of size Ω(k) × Ω(k) when

780

t = Ω(k2) [1], [14], and this is enough to obtain a kO(1)-

approximation algorithm. However, in order to obtain a

logO(1) n-approximation, we need to find a grid minor when

t = k logO(1) n.

3. Doubly-well-linked sets. The first main technical

contribution of this work is an algorithm for computing a

large grid minor in k-apex graphs, when k is not fixed.

Suppose that the treewidth of G is t > 2k. As a first step,

we compute some separation (U,U ′) of order t logO(1) n
(that is, some U,U ′ ⊂ V (G) with V (G) = U ∪ U ′ and

|U ∩U ′| = t logO(1) n), and some Y ⊆ U ∩U ′ such that Y
is well-linked in both sides of the separation. Intuitively, for a

set Y to be well-linked in some graph G′ means that G′ does

not have any sparse cuts, w.r.t. Y ; in other words, contracting

G′ into Y results in an “expander-like” graph (see Section

III for a formal definition). We refer to such a set Y as

doubly-well-linked. We remark that the notion of doubly-

well-linked set considered here is similar to, and inspired

by, the well-linked bipartitions introduced by Chuzhoy [2]

in her work on the crossing number problem. It is well-

known that in any graph, such a separation can be found

so that Y is well-linked in at least one of the two sides.

However, as we explain below, we need Y to be well-linked

in both sides of the separation.

4. From a doubly-well-linked set to a grid minor. There

are several algorithms for computing large grid minors in

planar graphs [15], [16]. A key ingredient in these algorithms

is the duality between cuts and cycles in embedded planar

graphs. That is, any cut of a planar graph corresponds to a

collection of cycles in its dual. The algorithms for the planar

case exploit this duality by first computing a well-linked set

Z, and then finding some disk D in the plane, that contains

Z and has a large fraction of Z on its boundary. Then, one

can find two sets of paths P and Q, with endpoints on the

boundary of D, such that every path in P intersects every

path in Q. By planarity, this yields a grid minor. In our

case we cannot apply this idea since we don’t have a planar

drawing of the graph (indeed, this is precisely what we

want to compute). However, it turns out that, intuitively, any

doubly-well-linked set Y behaves as a Jordan curve. That

is, if we remove any optimal solution from G (that is, any

planarizing set of minimum cardinality), then there exists

a planar drawing of G[U] such that most of the vertices

in Y are close to the outer face. Since Y is well-linked

in G[U], we can route in G[U], with low congestion, a

multicommodity flow that routes a unit demand between

every pair of vertices in Y . We then sample c paths from

this flow, for some sufficiently large constant c > 0. The

fact that the congestion is low, can be used to deduce that

the resulting paths will avoid all vertices in some optimal

solution, with some constant probability. Thus, the union of

the sampled paths admits a planar drawing. Furthermore,

since Y is doubly-well-linked, we can show that, with some

constant probability, the union of the sampled paths can

be drawn so that their endpoints are all in the outer face.

We thus use the union of the sampled paths to construct a

skeleton graph. Specifically, we find a suitable subgraph of

G which does not intersect some optimal solution. We then

sample t/ logO(1) n more paths from the flow, and partition

them into two sets P and Q, depending on the structure of

their intersection with the skeleton graph. Conditioned on

the event that the skeleton graph does not intersect some

optimal solution, we can find sets of paths P and Q such

that every path in P intersects every path in Q.

5. Computing a partially triangulated grid minor.
Having computed a large grid minor H , we wish to use

H to find either universal or irrelevant vertices. To that

end, we need to ensure that there are no edges between

different faces of H . We first compute some X ⊂ V (G),
such that G \ X can be contracted into some grid H ′ of

size t/ logO(1) n × t/ logO(1) n, where H ′ is obtained by

“eliminating” some rows and columns on H .

6. Computing a semi-universal set. The next main

technical challenge in our algorithm is the computation

of universal vertices. In the fixed-parameter algorithms de-

scribed above, in order to compute a universal vertex, one

needs a grid of size at least Ω(k2). However, in our case, we

only have a grid of size k/ logO(1) n × k/ logO(1) n. Thus,

we cannot always find a universal vertex. We overcome

this obstacle by introducing the notion of a semi-universal
vertex: We say that a set A of vertices is semi-universal

if deleting A from G decreases the cost of the optimum

by at least (2/3)|A|. We can prove that if the size of the

neighborhood of X in H ′ is at least k logΩ(1) n, then we

can find some A ⊆ X that is semi-universal. Intuitively, the

algorithm finds some A ⊆ X that behaves as an expander:

for every A′ ⊆ A, the size of the face cover of A′ is at least

|A|/ logO(1) n.

7. Computing an irrelevant vertex. The next technical

difficulty is computing an irrelevant vertex, when the size

of the neighborhood of X in H ′ is at most k logO(1) n.

As in the computation of universal vertices, this is a fairly

easy task when the treewidth is at least t = Ω(k2).
However, here we can only find a grid minor of size

k logO(1) n × k logO(1) n. We overcome this difficulty as

follows: We first partition the grid minor into subgrids, in

a fashion similar to a quad-tree decomposition: There are

O(log n) partitions of H ′, each into subgrids of size 2i×2i,
for all i ∈ {0, . . . , log n}. Then, for each subgrid in this

collection of partitions, we compute an upper estimate on

its planarization number: If the number of vertices of G in

this subgrid is at least n/ log n, then we set the estimate to

be k, and otherwise we recursive approximate its minimum

planarization number. Finally, we add to this estimate the

number of neighbors of X in this subgrid. We say that some

subgrid of H ′ of size 2i×2i is active if its upper estimate is

at least 2i/c, for some constant c > 0. Since the size of the

neighborhood of X is small, we can show that there exists

781

some v ∈ V (H ′) that lies outsize all active subgrids; we

can then show that v must be irrelevant.

8. Embedding into a higher genus surface. Given the

above algorithms for computing grid minors, semi-universal

vertices, and irrelevant vertices, the algorithm proceeds as

follows. We iteratively compute one of the following (1) a

small balanced separator, (2) a semi-universal set, or (3) a

set of irrelevant vertices. We refer to such a sequence of

reductions as a pruning sequence. The graph obtained at

the end of some pruning sequence is planar. Let X ′ be the

set of vertices removed in Cases (1) and (2), throughout

the pruning sequence. We have |X ′| ≤ k logO(1) n. We

say that the cost of the pruning sequence is |X ′|. However,

the number of irrelevant vertices removed can be as large

as Ω(n). We need to add these vertices to the planar

drawing of the resulting graph. It turns out that this is not

always possible. The reason is that the irrelevant vertices

removed are only guaranteed to be irrelevant w.r.t. any

optimal planarizing set; in contrast, the set X ′ does not form

an optimal planarizing set (indeed, we remove k logO(1) n
vertices). We overcome this obstacle using a technique that

was first introduced in [1]: When deleting a set of irrelevant

vertices, we add a grid of width 3, referred to as a frame,

around the “hole” that is created. The point of adding this

grid is that we can inductively add the irrelevant vertices

back to the graph as follows: If X ′ does not intersect the

frame, then we can simply add the irrelevant vertices back to

the graph without violating planarity. Otherwise, if the frame

intersets m vertices from X ′, then we can extend the current

drawing to the irrelevant vertices corresponding to that frame

by adding at most � handles or antihandles. This leads to an

embedding into a new non-planar surface. Repeating this

process over all frames, we obtain an embedding of G \X ′

into some surface of Euler genus k logO(1).

9. The final alorithm. The last remaining step is to

compute a planarizing set for G \X ′. It turns out that this

can be done by exploiting the embedding of G\X ′ into the

surface S of Euler genus g = k logO(1) n, that was computed

above. Using tools from the theory of graphs of surfaces,

we show that we can decrease the Euler genus of S by one,

while deleting at most O((1+k/g) log n) vertices. Repeating

this process g times, we obtain a planar graph after deleting

a set X ′′ of at most O(g log n+k log2 n) vertices. The final

output of the algorithm is X ′ ∪X ′′, which is a planarizing

set for G of size k logO(1).

C. Organization

The rest of the paper is organized as follows. Section

III introduces some basic definitions and results that are

used throughout the paper. Section IV presents the main

algorithm, by putting together the main ingredients of our

approach. Section V presents our algorithm for computing a

doulby-well-linked set. Section VI introduces the notion of a

pseudogrid, which are used to construct grid minors. Section

VII presents the algorithm for computing a grid minor.

Section VIII gives the algorithm for contracting the graph

into a partially triangulated grid, with a small number of

apices. Section IX shows how to compute a semi-universal

set, given a partially-triangulated grid contraction, such that

the apex set has a large neighborhood. Section X shows how

to compute irrelevant vertices, for the case where the apex

set of the partially triangulated grid contraction has a small

neighborhood. Section XI shows how, given an algorithm

for computing irrelevant vertices, we can compute a patch.

Section XII combines the above algorithms for computing

grid minors, semi-universal vertex sets, and patches, to

obtain an algorithm for computing a pruning sequence of

low cost. Due to lack of space, the algorithm which given a

pruning sequence of low cost, computes an embedding into

a surface of low Euler genus, as well as the algorithm for

planarizing a graph embedded into some non-planar surface,

are deferred to the full version1.

III. DEFINITIONS AND PRELIMINARIES

This section provides some basic notations needed in this

paper.

Graph notation: Let G be a graph and X ⊆ V (G). We

use dG to denote the shortest path metric on G. For any v ∈
V (G) we write dG(X, v) = dG(v,X) = minu∈X dG(v, u).
For any r ≥ 0 we define NG(X, r) = {v ∈ V (G) :
dG(v,X) ≤ r}. For a simple path P and u, v ∈ V (P)
we denote by P [u, v] the subpath of P between u and

v. We define the (r × �) grid to be the Cartesian product

Pr × P�, where Pi denote the path with i vertices. Let H
be the (r × �)-grid. For each v ∈ V (H) we denote by

row(v) ∈ {1, . . . , r} and by col(v) ∈ {1, . . . , �} the indexes

of the row and column of v respectively. We denote by ∂H
the boundary cycle of H . Every face in H other than ∂H
is a cycle of length 4. We say that some graph H ′ is the

partially triangulated (r× �)-grid if H ′ is obtained from H
by adding for every face F of H , with F 	= ∂H , at most

one diagonal edge.

For some graph G, and some X ⊆ V (G) such that G\X
is planar, we say that X is planarizing (for G). We denote

by mvp(G) the minimum vertex planarization number of G,

i.e.

mvp(G) = min{|X| : X ⊆ V (G) is planarizing for G}.
We remark that deciding whether mvp(G) = 0 is precisely

the problem of deciding whether G is planar, which can be

solved in linear time [17].

Minors and contractions: A graph H obtained via a

sequence of zero or more edge contractions on a graph G is

called a contraction of G. Unless stated otherwise, we will

replace a set of parallel edges in a contraction of a graph

by a single edge. The induced mapping V (H) → 2V (G) is

1A full version of this paper is available at http://sidiropoulos.org

782

called the contraction mapping (w.r.t. H and G). Similarly,

we say that H is a minor of G if it can be obtained via a

sequence of zero or more edge contractions, edge deletions,

and vertex deletions, performed on G. The induced mapping

V (H) → 2V (G) is called the minor mapping (w.r.t. H and

G). For any X ⊆ V (G) we also write μ(X) =
⋃

v∈X μ(v).
For any v ∈ V (G) we will abuse notation slightly and write

μ−1(v) to denote the unique vertex v′ ∈ H with v ∈ μ(v′).
Treewidth, pathwidth, and grid minors: A tree decom-

position of a graph G is a pair (T,R), where T is a tree and

R is a family {Rt | t ∈ V (T)} of vertex sets Rt ⊆ V (G),
such that the following two properties hold:

(W1)
⋃

t∈V (T) Rt = V (G), and every edge of G has both

ends in some Rt.

(W2) If t, t′, t′′ ∈ V (T) and t′ lies on the path in T between

t and t′′, then Rt ∩Rt′′ ⊆ Rt′ .

The width of a tree decomposition (T,R) is max{|Rt| |
t ∈ V (T)} − 1, and the treewidth of G is defined as the

minimum width taken over all tree decompositions of G.

If T is a path, then we can define the pathwidth of G as

the minimum width taken over all path decompositions of

G. We use tw(G) and pw(G) to denote the treewidth and

pathwidth of G respectively.
Well-linked sets: Our proof needs to handle a graph of

large tree-width. It is well-known that such a graph must

have a “highly-connected” subset, which is often referred to

as “well-linked”.
Definition 3.1 (Cut-linked set): Let G be a graph, let

X ⊆ V (G) and α > 0. We say that X is α-cut-linked
(in G), iff for any partition of V (G) into {A,B}, we have

|E(A,B)| ≥ α ·min{|A ∩X|, |B ∩X|}.
Graph on surfaces: A drawing of a graph G into a

surface S is a mapping φ that sends every vertex v ∈ V (G)
into a point φ(v) ∈ S and every edge into a simple curve

connecting its endpoints, so that the images of different

edges are allowed to intersect only at their endpoints. The

Euler genus of a surface S, denoted by eg(S), is defined

to be 2 − χ(S), where χ(S) is the Euler characteristic of

S . This parameter coincides with the usual notion of genus,

except that it is twice as large if the surface is orientable.

For a graph G, the Euler genus of G, denoted by eg(G), is

defined to be the minimum Euler genus of a surface S, such

that G can be embedded into S.
Sparsest-cut and the multi-commodity flow-cut gap:

Definition 3.2 (Sparsest Cut): Consider a graph G =
(V,E). The sparsity of a cut (S, S) equals

φ(S) =
E(S, S)

min{|S|, |S|}
where S = V − S and E(S, S) is the number of cut edges,

that is, the number of edges from S to S. The Sparsest
Cut problem asks to find a cut (S, S) with smallest possible

sparsity φ(S).

Let α ∈ (0, 1). For a graph G, we say that some X ⊆
V (G) is a α-balanced vertex separator if every connected

component of G \ X contains at most α|V (G)| vertices.

We also say that some F ⊆ E(G) is a α-balanced edge
separator if every connected component of G \ F contains

at most α|V (G)| vertices. The following is the well-known

for approximating the sparsest cut. The uniform sparsest-
cut means the sparsest-cut problem with uniform weight on

every edge.

Randomization: Some of the algorithms presented in

this paper are randomized. In order to simplify notation, we

say that an algorithm succeeds with high probability when

the failure probability is at most n−c. When the target run-

ning time is polynomial, we need c to be some sufficiently

large constant. Similarly, when the target running time is

nO(logn/ log logn), we need c = Ω(log n/ log log n). Both

guarantees can be achieved by repeating some algorithm that

succeeds with constant probability, either at most O(log n)
or O(log2 n/ log logn) times respectively.

IV. THE MAIN ALGORITHM

In this Section we present the main algorithm for ap-

proximating minimum planarization. We first introduce some

definitions. Intuitively, a patch is a small irrelevant subgraph,

that is contained inside some disk in any optimal solution.

The framing of a patch is a new graph, that does not

contain the interior of the patch, and instead contains grid

of constant width attached to the boundary of the patch.

Computing a framing in this manner will allow us to

extend an approximate solution to the whole graph via an

embedding into a higher genus surface.

Definition 4.1 (Patch): Let G be a graph, let Γ ⊆ G, and

let C ⊆ Γ be a cycle. Suppose that there exists a planar

drawing of Γ having C as the outer face. Then we say that

the ordered pair (Γ, C) is a patch (of G).

Definition 4.2 (Framing): Let G be a graph and let (Γ, C)
be a patch of G. Suppose that V (C) = {v00 , . . . , v0t−1},
and E(C) = {{v00 , v01}, . . . , {v0t−2, v

0
t−1}, {v0t−1, v

0
0}}. Let

Gframed be the graph with V (Gframed) = (V (G) \ (V (Γ) \
V (G))) ∪ ⋃t−1

i=1

⋃3
j=1{vji }, where v0, . . . , v

′
t−1 are new

vertices, and E(Gframed) = (E(G) \ (E(Γ) \ E(C))) ∪(⋃t−1
i=0

⋃2
j=0{{vji , vj+1

i }, {vji , vji+1mod t}}
)

. We refer to the

graph Gframed as the (Γ, C)-framing of G (see Figure 1 for

an example).

Using the above definitions, we can now define the

concept of a pruning sequence. Intuitively, this consists of

a sequence of operations that inductively simplify the graph

until it becomes planar.

Definition 4.3 (Pruning sequence): Let G be a graph. Let

G = (G0, A0), . . . , (G�, A�) be a sequence satisfying the

following properties:

(1) For all i ∈ {0, . . . , �}, Gi is a graph. Moreover

G0 = G and G� is planar.

783

Figure 1. A patch (Γ, C) in a graph G, where the shaded area contains the graph Γ, and the cycle C is drawn in bold (left), and the (Γ, C)-framing of
G (right).

(2) For all i ∈ {1, . . . , �}, exactly one the following

holds:

(2.1) Ai−1 ⊂ V (Gi−1) and Gi = Gi−1 \
Ai−1. We say that i− 1 is a deletion step
(of G).

(2.2) Ai−1 = (Γi−1, Ci−1), where

(Γi−1, Ci−1) is a patch in Gi−1, and Gi

is the (Γi−1, Ci−1)-framing of Gi−1. We

say that i− 1 is a framing step (of G).

We also let A� = ∅.
We say that G is a pruning sequence (for G). We also define

the cost of G to be

cost(G) =
∑

i∈{0,...,�−1}:i is a deletion step

|Ai|

The next Lemma shows how to compute a pruning

sequence of low cost. We remark that the algorithm for

computing a pruning sequence calls recursively the whole

approximation algorithm on graphs of smaller size. By

controlling the size of these subgraphs, we obtain a trade-off

between the running time and the approximation guarantee.

We remark that this is the main technical contribution of

this paper. The proof of the next Lemma uses several other

results, and spans the majority of the rest of the paper.

Lemma 4.4 (Computing a pruning sequence): Let G be

an n-vertex graph, and let ρ > 0. Suppose that there exists

an algorithm Approx which for all n′ ∈ N, with n′ < n,

given an n′-vertex graph G′, outputs some S′ ⊂ V (G′),
such that G′ \ S′ is planar, with |S′| ≤ αapprox · mvp(G′),
for some αapprox ≥ 2ρ, in time Tapprox(n

′), where Tapprox :
N → N is increasing and convex. Then the algorithm

Pruning(G) returns some pruning sequence for G of cost at

most O(mvp(G)
√
αapprox log

15 n). Moreover Tpruning(n) ≤
nO(1) + Tpruning(n, k) log n, and Tpruning(n, k) ≤ nO(1) +
max{Tpruning(n/4)+Tpruning(3n/4), Tapprox(n/ρ)2ρ log n+
Tpruning(n − 1, k)}, where Tpruning(n) and Tpruning(n, k)
denote the worst-case running time of Pruning(G) and

Pruning(G, k) respectively on a graph of n vertices.

The next Lemma shows that given a pruning sequence of

low cost, we can efficiently compute an embedding into a

surface of low Euler genus, after deleting a small number

of vertices.

Lemma 4.5 (Embedding into a higher genus surface):
Let G be a graph and let G be a pruning sequence for G.

Then there exists a polynomial-time algorithm which given

G and G outputs some X ⊆ V (G), with |X| ≤ cost(G),
and an embedding of G \ X into some surface of Euler

genus O(cost(G)).
The next Lemma gives an efficient algorithm for planariz-

ing a graph embedded into some surface of low Euler genus.

Lemma 4.6 (Planarizing a surface-embedded graph):
Let G be a graph, and let φ be an embedding of G
into some surface of Euler genus g > 0. Then there

exists a polynomial-time algorithm which given G
and φ, outputs some planarizing set X for G, with

|X| = O(g log n+mvp(G) log2 n).
We are now ready to present our main results.

Theorem 4.7: Let ρ > 0, and αapprox =
max{2ρ,O(log32 n)}. Then there exists a αapprox-

approximation algorithm for the minimum

vertex planarization problem with running time

Tapprox(n) ≤ nO(1) + max{Tapprox(n/4) +
Tapprox(3n/4), Tapprox(n/ρ)2ρ log n+ Tapprox(n− 1)}.

Proof: Let ρ > 0 be the parameter from Lemma 4.4,

with αapprox ≥ 2ρ. Using the algorithm from Lemma 4.4

we compute a pruning sequence F of G with cost(G) =
O(mvp(G)

√
αapprox log

15 n). Using the algorithm from

Lemma 4.5, in polynomial time, we compute some X1 ⊂
V (G), with |X1| ≤ cost(G) ≤ O(mvp(G)

√
αapprox log

15 n),
and an embedding φ of G \X1 into some surface of genus

g = O(mvp(G)
√
αapprox log

15 n). Using the algorithm from

Lemma 4.6 we compute some X2 ⊂ V (G) \ X1, such

that G \ (X1 ∪ X2) is planar, with |X2| = O(g log n +
mvp(G \ X1) log

2 n) = O(g log n + mvp(G) log2 n) =
O(mvp(G)

√
αapprox log

16 n). It follows that X = X1 ∪X2

is a planarizing set of G, with |X| = |X1| + |X2| =
O(mvp(G)

√
αapprox log

16 n). Thus the resulting approxima-

tion factor is at most αapprox = max{2ρ,O(log32 n)}.
The total running time is dominated by the running

time of the algorithm from Lemma 4.4. Thus we

784

have Tapprox(n) ≤ nO(1) + max{Tpruning(n/4) +
Tpruning(3n/4), Tapprox(n/ρ)2ρ log n + Tpruning(n −
1, n − 1)} ≤ nO(1) + max{Tpruning(n/4) +
Tpruning(3n/4), Tapprox(n/ρ)2ρ log n + Tpruning(n −
1)} ≤ nO(1) + max{Tapprox(n/4) +
Tapprox(3n/4), Tapprox(n/ρ)2ρ log n + Tapprox(n − 1)},
which concludes the proof.

By Theorem 4.7, we easily obtain the following results.

Proof of Theorem 1.1: It follows from Theorem 4.7 by

setting ρ = log n.

Proof of Theorem 1.2: It follows from Theorem 4.7 by

setting ρ = nε.

V. COMPUTING A DOUBLY CUT-LINKED SET

In this Section we show that when the treewidth is

sufficiently large, we can efficiently compute a separation

(U,U ′), and some large Y ⊆ U ∩ U ′, such that Y is well-

linked on both sides of the separation. This result will form

the basis for our algorithm for computing a grid minor in

the subsequent Sections. Due to lack of space, its proof is

deferred to the full version.

Lemma 5.1 (Computing a doubly-cut-linked set): Let G
be a n-vertex k-apex graph of treewidth t > 2k. Then there

exists a polynomial-time algorithm which computes some

separation (U,U ′) of G of order at most O(t log3/2 n) and

some Y ⊆ U ∩U ′ with |Y | = Ω(t/ log9/2 n) such that Y is

Ω
(

1
log13/2 n

)
-cut-linked in both G[U] and G[U ′]. Moreover

let GU be the graph obtained from G[U] by removing all

edges in G[U ∩ U ′], that is GU = G[U] \ E(G[U ∩ U ′]).
Then Y is also Ω

(
1

log13/2 n

)
-cut-linked in GU .

The above Lemma is used in the algorithm for computing

a grid minor, which is deferred to the full version.

VI. PSEUDOGRIDS

In this section we introduce the concept of a pseudogrid,

which will be used in the construction of a grid minor.

Definition 6.1 (Pseudogrid): Let P , Q be families of

paths in some graph. Suppose that all paths in P are

vertex disjoint and all paths in Q are vertex disjoint. Sup-

pose further that for all P ∈ P and Q ∈ Q we have

V (P)∩V (Q) 	= ∅. Then we say that (P,Q) is a pseudogrid.

Definition 6.2 (Compatibility): Let Q be a collection of

vertex-disjoint paths and let P be a directed path in some

graph. Suppose that P intersects all paths in Q. We define

σ−P (Q) (resp. σ+
P (Q)) to be the total ordering of Q induced

by P as follows: we traverse P and we order the paths in Q
according to the first (resp. last) time they are visited. We

say that P is compatible with Q if σ−P (Q) = σ+
P (Q). If P is

compatible with Q then we also write σP (Q) = σ−P (Q) =
σ+
P (Q).
Definition 6.3 (Combed pseudogrids): Let (P,Q) be a

pseudogrid. Suppose that all P ∈ P are compatible with

Q and all Q ∈ Q are compatible with P . Suppose further

that for all P, P ′ ∈ P we have σP (Q) = σP ′(Q) and for

all Q,Q′ ∈ Q we have σQ(P) = σQ′(P). Then we say that

(P,Q) is combed.

VII. COMPUTING A GRID MINOR

In this section, we present one of the key procedures

used by our algorithm. Namely, we give an algorithm for

computing a grid minor in graphs of large treewidth. Our

result is summarized in the following Corollary. Due to lack

of space, its proof is deferred in the full version.

Corollary 7.1: There exists a randomized polynomial-

time algorithm which given a graph G and k, t ∈ N,

with t > α′k log6 n, for some universal constant α′ > 0,

terminates with one of the following outcomes, with high

probability:

(1) Correctly decides that mvp(G) > k.

(2) Outputs some 3/4-separator S of G with |S| =
O(t log13/2 n).

(3) Outputs some combed pseudogrid (P,Q) in G, with

|P| = |Q| = r, for some r = Ω(t/ log4 n).

VIII. COMPUTING A PARTIALLY TRIANGULATED GRID

CONTRACTION WITH A FEW APICES

In this section, we shall construct a partially triangulated

grid contraction, after deleting a small set of vertices. The

main results is summarized in the following.

Lemma 8.1: There exists a randomized polynomial-time

algorithm, which given some graph G, some k ∈ N, and

some simple combed pseudogrid (P,Q) in G, with |P| =
|Q| = r, where r ≥ ck log n, for some universal constant

c > 0, terminates with one of the following outcomes, with

high probability:

(1) Correctly decides that mvp(G) > k.

(2) Outputs some A ⊂ V (G), with |A| = O(k log n),
some (r′′ × r′′)-partially triangulated grid W ′′, for some

r′′ ≥ r/8, and some contraction mapping ξ′ : V (W ′′) →
2V (G\A).

Due to lack of space, the proof is deferred to the full

version.

IX. COMPUTING SEMI-UNIVERSAL VERTEX SETS

In this Section we present our algorithm for computing

semi-universal vertex sets.

Definition 9.1 (Semi-universality): Let G be a graph and

let Y ⊂ V (G). We say that Y is semi-universal (w.r.t. G) if

for all S ⊆ V (G), with |S| = mvp(G), such that G \ S is

planar, we have

|Y ∩ S| ≥ (2/3) · |Y |.
The following summarizes the main result of this section.

Lemma 9.2 (Computing a semi-universal set): Let G be

a graph, and let k ∈ N. Let X ⊂ V (G), and let

μ : V (H) → 2V (G)\X be a contraction of G \ X ,

where H is the (r× r)-partially triangulated grid, for some

785

r > 0. Let μ′ : V (H ′) → 2V (G) be the contraction of

G induced by μ, where V (H ′) = V (H) ∪ X , and μ′ is

the identity on X . Let L = |NH′(X)| = |{v ∈ V (H) :
dH(v, ∂H) ≥ 3 and NG(X) ∩ μ′(v) 	= ∅}|. Suppose that

L > (144|X| + 1296k)cFHL log
3/2 n. Then there exists a

polynomial-time algorithm which given G, X , H , and μ,

computes some non-empty Y ⊆ X , satisfying the following

property: If mvp(G) ≤ k, then Y is semi-universal (w.r.t. G).

Due to lack of space, the proof is deferred to the full

version.

X. COMPUTING IRRELEVANT VERTEX SETS

In this Section we present our result for computing

irrelevant vertices. For some v ∈ V (G), we say that v is

irrelevant if for any X ⊂ V (G), with |X| = mvp(G), such

that G \ X is planar, we have v /∈ X . Similarly, we say

that some U ⊂ V (G) is irrelevant if for all v ∈ V (G), v is

irrelevant. The main result of this Section is summarized in

the following.

Lemma 10.1 (Computing an irrelevant subgrid): Let G
be an n-vertex graph, and let k ∈ N, and let ρ > 0.

Let X ⊂ V (G), with |X| ≤ ck log n, for some universal

constant c > 0. Let H be the (r × r)-partially triangulated

grid, for some r ≥ c′ · (log7/2 n) · √αapprox · k, for some

universal constant c′ > 0. Suppose that H is a contraction

of G \X , with contraction mapping μ : V (H)→ 2V (G\X).

Let μ′ : V (H ′) → 2V (G) be the contraction of G in-

duced by μ, where V (H ′) = V (H) ∪ X , and μ′ is the

identity on X . Let L = |NH′(X)| = |{v ∈ V (H) :
dH(v, ∂H) ≥ 3 and NG(X) ∩ μ′(v) 	= ∅}|. Suppose that

L ≤ (144|X|+1296k)cFHL log
3/2 n, Suppose that there ex-

ists an algorithm Approx which for all n′ ∈ N, with n′ < n,

given an n′-vertex graph G′, outputs some S′ ⊂ V (G′), such

that G′\S′ is planar, with |S′| ≤ αapprox ·mvp(G′), for some

αapprox ≥ 2ρ, in time Tapprox(n
′), where Tapprox : N → N

is increasing and convex. Then, there exists an algorithm

Irrelevant which given G, k,X, μ,H , and L, terminates with

one of the following outcomes:

(1) Correctly decides that mvp(G) > k.

(2) Outputs some (6 log n×6 logn)-partially triangulated

subgrid J of H , such that if mvp(G) ≤ k, then μ(V (J)) is

irrelevant.

Moreover, the running time of Irrelevant is at most

Tirrelevant(n) ≤ nO(1) + Tapprox(n/ρ)2ρ log n.

Due to lack of space, the proof is deferred to the full

version.

XI. PATCHES AND FRAMES

In this Section we use the algorithm for computing

irrelevant vertices to compute a patch that can be used in the

computation of a pruning sequence. A key desired property

is that the framing of the patch must be smaller than the

graph before the framing.

Lemma 11.1 (Computing a patch): Let

G,n, ρ, k,X, μ,H , and L be as in Lemma 10.1. Suppose

that there exists an algorithm Approx which for all n′ ∈ N,

with n′ < n, given an n′-vertex graph G′, outputs

some S′ ⊂ V (G′), such that G′ \ S′ is planar, with

|S′| ≤ αapprox · mvp(G′), for some αapprox ≥ 2ρ, in time

Tapprox(n
′), where Tapprox : N → N is increasing and

convex. Then, there exists an algorithm Patch, which given

G, k,X, μ,H , and L, terminates with one of the following

outcomes:

(1) Correctly decides that mvp(G) > k.

(2) Computes some patch (Γ, C) of G, satisfying the

following conditions: Let Gframed be the (Γ, C)-framing of

G. Then |V (Gframed)| < |V (G)|. Moreover, if mvp(G) ≤ k,

then mvp(Gframed) ≤ mvp(G).
Moreover, the running time of Patch is at most

Tpatch(n) ≤ nO(1) + Tapprox(n/ρ)2ρ log n.

Due to lack of space, the proof is deferred to the full

version.

XII. COMPUTING A PRUNING SEQUENCE

In the previous section, we find irrelevant vertices. This

allows us to define the following “pruning sequence” in our

algorithm.

The main result of this section is to compute a pruning

sequence, which will be presented in the next subsection.

A. The algorithm for computing a pruning sequence

We now describe an algorithm for computing a pruning

sequence for a given graph G. We give two algorithms:

Pruning and Pruning-Decision. The algorithm Pruning gets

as input some graph G and outputs a pruning sequence for

G. The algorithm Pruning-Decision gets as input some graph

G and some k ∈ N, and either returns nil, which indicates

the fact that mvp(G) > k, or outputs some pruning sequence

for G. The algorithm Pruning calls recursively algorithm

Pruning-Decision, and Pruning-Decision calls recursively

either itself or Pruning.

The algorithms use a parameter ρ > 0, which is as in

Lemmas 10.1 and 11.1. The parameter ρ which allows us

to obtain a trade-off between the approximation ratio and

the running time. In particular, the approximation ratio of

the final algorithm increases and the running time decreases

when ρ increases. We also use a parameter αapprox > 0
which denotes the target approximation factor.

The formal description of algorithm Pruning is as follows.

Algorithm Pruning(G):

Step 1: The main loop. We consider all values k =
1, 2, 4, . . . , 2i, . . . , n, which, intuitively, are used as “approx-

imate guesses” for mvp(G). For each such value of k, we

execute Pruning-Decision(G, k). If the execution returns nil
then repeat Step 1 for the next value of k. Otherwise, we

output the resulting pruning sequence found.

786

This completes the description of the algorithm Pruning.

We next give the formal description of the algorithm

Pruning-Decision.

Algorithm Pruning-Decision(G, k):

Step 1: Let t = c′′ · log15/2 n · √αapprox · k, for some

sufficiently large constant c′′ > 0 to be determined. We have

t > α′k log6 n, where α′ > 0 is the universal constant in

Corrolary 7.1. Using Corrolary 7.1, in polynomial time, we

obtain one of the following outcomes:

Case 1: We correctly decide that mvp(G) > k. In this

case, we return nil.
Case 2: Computing a small balanced separator.

We compute a 3/4-balanced separator S of G, with

|S| = O(t log13/2 n). In this case we partition G \ S
into two vertex-disjoint subgraphs G1 and G2 such that

there are no edges between V (G1) and V (G2), and with

|V (G1)| ≤ 3n/4, and |V (G2)| ≤ 3n/4. We recursively

call Pruning(G1) and Pruning(G2), and we obtain pruning

sequences G1 = (G1,0, A1,0), . . . (G1,�, A1,�) for G1, and

G2 = (G2,0, A2,0), . . . (G2,�′ , A2,�′) for G2. We output

G = (G1,0 ∪ G2,0, A1,0), . . . , (G1,� ∪ G2,0, A1,�), (G1,� ∪
G2,1, A2,0), . . . , (G1,� ∪ G2,�′ , A2,�′). Since G1,� and G2,�′

are planar graphs, it follows that G1,� ∪ G2,�′ is planar,

and thus G is a pruning sequence for G. If cost(G) >
c′′′k√αapprox log

15 n, for some sufficiently large constant

c′′′ > 0 to be specified, then we return nil, and otherwise

we return G.

Case 3: Computing a large grid minor. We compute

some combed pseudogrid (P,Q) in G, with |P| = |Q| = r,

for some r = Ω(t/ log4 n). Setting c′′ to be some sufficiently

large constant, we get that r ≥ ck log n, where c is the

universal constant from Lemma 8.1, and thus the conditions

of Lemma 8.1 are satisfied. Using Lemma 8.1, in polynomial

time, we obtain one of the following outcomes:

Case 3.1: We can correctly decide that mvp(G) > k. In

this case, we return nil.
Case 3.2: Computing a partially triangulated grid con-

traction with a few apices. We compute some X ⊂ V (G),
with |X| = O(k log n), some (r′× r′)-partially triangulated

grid H , for some r′ ≥ r/8, and some contraction mapping

μ : V (H) → 2V (G\X). Let μ′ : V (H ′) → 2V (G) be the

contraction mapping of G induced by μ, where V (H ′) =
V (H)∪X , and μ′ is the identity on X . Let L = |NH′(X)| =
|{v ∈ V (H) : dH(v, ∂H) ≥ 3 and NG(X) ∩ μ′(v)}|. We

consider the following two cases:

Case 3.2.1: Computing a semi-universal set. Suppose

that L > (144|X| + 1296k)cFHL log
3/2 n. Then using

Lemma 9.2 we can compute, in polynomial time, some

non-empty Y ⊆ X , such that if mvp(G) ≤ k, then Y is

semi-universal. We recursively call Pruning-Decision(G \
Y, k). If the recursive call returns nil then we re-

turn nil. Otherwise, we obtain a pruning sequence

(G0, A0), . . . , (G�, A�) for G \ Y . We define the pruning

sequence G = (G, Y), (G0, A0), . . . , (G�, A�) for G. If

cost(G) > c′′′k√αapprox log
15 n, for some sufficiently large

constant c′′′ > 0 to be specified, then we return nil, and

otherwise we return G.

Case 3.2.2: Computing an irrelevant patch. Suppose

that L ≤ (144|X| + 1296k)cFHL log
3/2 n. By setting

c′′ to be a sufficiently large constant, we get that r′ ≥
c′(log7/2 n)√αapproxk, where c′ is the universal constant

from Lemma 11.1, and thus the conditions of Lemma

11.1 are satisfied. Using the algorithm from Lemma 11.1,

we obtain one of the following two outcomes: (i) We

either decide that mvp(G) > k; in this case, we go

to Step 1, and consider the next value for k. (ii) We

compute some patch (Γ, C) of G, satisfying the follow-

ing conditions: Let Gframed be the (Γ, C)-framing of G.

Then |V (Gframed)| < |V (G)|. Moreover, if mvp(G) ≤
k, then mvp(Gframed) ≤ mvp(G). We recursively call

Pruning-Decision(Gframed, k). If the recursive call returns

nil, then we return nil. Otherwise, we obtain a pruning

sequence (G0, A0), . . . , (G�, A�) for Gframed. We return the

pruning sequence G = (G, (Γ, C)), (G0, A0), . . . , (G�, A�)
for G.

This completes the description of the algorithm

Pruning-Decision. Due to lack of space, the analysis, given

as the proof of Lemma 4.4, is deferred to the full version.

ACKNOWLEDGMENT

Ken-ichi Kawarabayashi is supported by the JST ERATO

Kawarabayashi Large Graph Project. Anastasios Sidiropou-

los is supported by the NSF under grant CCF 1423230 and

award CAREER 1453472.

REFERENCES

[1] C. Chekuri and A. Sidiropoulos, “Approximation algorithms
for euler genus and related problems,” in Foundations of Com-
puter Science (FOCS), 2013 IEEE 54th Annual Symposium
on. IEEE, 2013, pp. 167–176.

[2] J. Chuzhoy, “An algorithm for the graph crossing number
problem,” in Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA,
USA, 6-8 June 2011, L. Fortnow and S. P. Vadhan,
Eds. ACM, 2011, pp. 303–312. [Online]. Available:
http://doi.acm.org/10.1145/1993636.1993678

[3] K. Kawarabayashi, “Planarity allowing few error vertices
in linear time,” in 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA. IEEE Computer
Society, 2009, pp. 639–648. [Online]. Available: http:
//dx.doi.org/10.1109/FOCS.2009.45

[4] D. Marx and I. Schlotter, “Obtaining a planar graph by
vertex deletion,” Algorithmica, vol. 62, no. 3-4, pp. 807–
822, 2012. [Online]. Available: http://dx.doi.org/10.1007/
s00453-010-9484-z

787

[5] B. M. P. Jansen, D. Lokshtanov, and S. Saurabh,
“A near-optimal planarization algorithm,” in Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, C. Chekuri, Ed. SIAM, 2014, pp.
1802–1811. [Online]. Available: http://dx.doi.org/10.1137/1.
9781611973402.130

[6] M. Chimani and P. Hlinený, “A tighter insertion-based
approximation of the crossing number,” J. Comb. Optim.,
vol. 33, no. 4, pp. 1183–1225, 2017. [Online]. Available:
http://dx.doi.org/10.1007/s10878-016-0030-z

[7] J. Chuzhoy, Y. Makarychev, and A. Sidiropoulos, “On graph
crossing number and edge planarization,” in Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, D. Randall, Ed.
SIAM, 2011, pp. 1050–1069. [Online]. Available: http:
//dx.doi.org/10.1137/1.9781611973082.80

[8] M. Yannakakis, “Some open problems in approximation,” in
Proceedings of the 2nd Italian Conference on Algorithms and
Complexity (CIAC 1994), vol. 778, 1994, pp. 33–39.

[9] C. Lund and M. Yannakakis, “The approximation of
maximum subgraph problems,” in Automata, Languages and
Programming, 20nd International Colloquium, ICALP93,
Lund, Sweden, July 5-9, 1993, Proceedings, ser.
Lecture Notes in Computer Science, A. Lingas,
R. G. Karlsson, and S. Carlsson, Eds., vol.
700. Springer, 1993, pp. 40–51. [Online]. Available:
http://dx.doi.org/10.1007/3-540-56939-1 60

[10] R. Bar-Yehuda and S. Even, “A linear-time approximation
algorithm for the weighted vertex cover problem,” J. Algo-
rithms, vol. 2, pp. 198–203, 1981.

[11] G. L. Nemhauser and L. E. Trotter, Jr., “Properties of vertex
packing and independence system polyhedra,” Math. Pro-
gramming, vol. 6, pp. 48–61, 1974.

[12] M. Yannakakis, “The effect of a connectivity requirement on
the complexity of maximum subgraph problems,” J. ACM,
vol. 26, pp. 618–630, 1979.

[13] F. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh, “Pla-
nar f-deletion: Approximation, kernelization and optimal fpt
algorithms,” in Foundations of Computer Science(FOCS’12),
2012, pp. 470–479.

[14] K. Kawarabayashi and A. Sidiropoulos, “Beyond the
euler characteristic: Approximating the genus of general
graphs,” in Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, R. A. Servedio and
R. Rubinfeld, Eds. ACM, 2015, pp. 675–682. [Online].
Available: http://doi.acm.org/10.1145/2746539.2746583

[15] C. Chekuri, S. Khanna, and F. B. Shepherd, “Edge-disjoint
paths in planar graphs,” in Foundations of Computer Science,
2004. Proceedings. 45th Annual IEEE Symposium on. IEEE,
2004, pp. 71–80.

[16] N. Robertson, P. D. Seymour, and R. Thomas, “Quickly
excluding a planar graph,” J. Comb. Theory, Ser. B, vol. 62,
no. 2, pp. 323–348, 1994.

[17] J. E. Hopcroft and R. E. Tarjan, “Efficient planarity testing,”
J. ACM, vol. 21, no. 4, pp. 549–568, 1974. [Online].
Available: http://doi.acm.org/10.1145/321850.321852

788

