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Abstract—Brandão and Svore [1] recently gave quantum
algorithms for approximately solving semidefinite programs,
which in some regimes are faster than the best-possible classical
algorithms in terms of the dimension n of the problem and
the number m of constraints, but worse in terms of various
other parameters. In this paper we improve their algorithms
in several ways, getting better dependence on those other pa-
rameters. To this end we develop new techniques for quantum
algorithms, for instance a general way to efficiently implement
smooth functions of sparse Hamiltonians, and a generalized
minimum-finding procedure.

We also show limits on this approach to quantum SDP-
solvers, for instance for combinatorial optimizations problems
that have a lot of symmetry. Finally, we prove some general
lower bounds showing that in the worst case, the complexity
of every quantum LP-solver (and hence also SDP-solver) has
to scale linearly with mn when m is approximately n, which is
the same as classical.

Keywords-Quantum algorithms, Semidefinite programs, Lin-
ear programs, Lower bounds

I. INTRODUCTION

A. Semidefinite programs

In the last decades, particularly since the work of

Grötschel, Lovász, and Schrijver [2], semidefinite programs
(SDPs) have become an important tool for designing efficient

optimization and approximation algorithms. SDPs generalize

and strengthen the better-known linear programs (LPs), but

(like LPs) they are still efficiently solvable. The basic form

of an SDP is the following:

max Tr(CX) (1)

s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0,

where [m] := {1, . . . ,m}. The input to the problem

consists of Hermitian n × n matrices C,A1, . . . , Am and

reals b1, . . . , bm. For normalization purposes we assume

‖C‖ , ‖Aj‖ ≤ 1. The number of constraints is m (we do

not count the standard X � 0 constraint for this). The

variable X of this SDP is an n×n positive semidefinite (psd)

matrix. LPs are the case where all matrices are diagonal.

A famous example is the algorithm of Goemans and

Williamson [3] for approximating the size of a maximum

cut in a graph G = ([n], E): the maximum, over all subsets

S of vertices, of the number of edges between S and its

complement S̄. Computing MAXCUT(G) exactly is NP-

hard. It corresponds to the following integer program

max
1

2

∑
{i,j}∈E

(1− vivj)

s.t. vj ∈ {+1,−1} for all j ∈ [n],

using the fact that (1−vivj)/2 = 1 if vi and vj are different

signs, and (1 − vivj)/2 = 0 if they are the same. We

can relax this integer program by replacing the signs vj by

unit vectors, and replacing the product vivj in the objective

function by the dot product vTi vj . We can implicitly optimize

over such vectors (of unspecified dimension) by explicitly

optimizing over an n × n psd matrix X whose diagonal

entries are 1. This X is the Gram matrix of the vectors

v1, . . . , vn, so Xij = vTi vj . The resulting SDP is

max
1

2

∑
{i,j}∈E

(1−Xij) (2)

s.t. Tr(EjjX) = 1 for all j ∈ [n],

X � 0,

where Ejj is the n×n matrix that has a 1 at the (j, j)-entry,

and 0s elsewhere. This SDP is a relaxation of a maximization

problem, so it may overshoot the correct value, but Goemans

and Williamson showed that an optimal solution to the SDP

can be rounded to a cut in G whose size is within a factor ≈
0.878 of MAXCUT(G) (which is optimal under the Unique

Games Conjecture [4]). This SDP can be massaged into the

form of (1) by replacing the equality Tr(EjjX) = 1 by

inequality Tr(EjjX) ≤ 1 (so m = n) and letting C be a

properly normalized version of the Laplacian of G.

B. Classical solvers for LPs and SDPs
Ever since Dantzig’s development of the simplex algo-

rithm for solving LPs in the 1940s [5], much work has gone

into finding faster solvers, first for LPs and then also for

SDPs. The simplex algorithm for LPs (with some reasonable

pivot rule) is usually fast in practice, but has worst-case

exponential runtime. Ellipsoid methods and interior-point

methods solve LPs and SDPs in polynomial time; they will

typically approximate the optimal value to arbitrary preci-

sion. The best known general SDP-solvers [6] approximate

the optimal value OPT with additive error ε in complexity

O(m(m2 + nω +mns) polylog(m,n,R, 1/ε)),
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where ω ∈ [2, 2.373) is the (still unknown) matrix multipli-

cation exponent; s is the sparsity: the maximal number of

non-zero entries per row of the input matrices; and R is an

upper bound on the trace of an optimal X .1 The assumption

here is that the rows and columns of the matrices of SDP (1)

can be accessed as adjacency lists: we can query, say, the

�th non-zero entry of the kth row of Aj in constant time.

Arora and Kale [7] gave an alternative way to approximate

OPT, using a matrix version of the “multiplicative weights

update” method.2 In Section II-A we will describe their

framework in more detail, but in order to describe our result

we will start with an overly simplified sketch here. The

algorithm goes back and forth between candidate solutions

to the primal SDP and to the corresponding dual SDP, whose

variables are non-negative reals y1, . . . , ym:

min bT y (3)

s.t.

m∑
j=1

yjAj − C � 0,

y ≥ 0.

Under assumptions that will be satisfied everywhere here,

strong duality applies: the primal SDP (1) and dual SDP (3)

will have the same optimal value OPT. The algorithm does

a binary search for OPT by trying different guesses α for it.

Suppose we have fixed some α, and want to find out whether

α is bigger or smaller than OPT. Start with some candidate

solution X(1) for the primal, for example a multiple of the

identity matrix (X(1) has to be psd but need not be a feasible
solution to the primal). X(1) induces the following polytope:

Pε(X
(1)) := {y ∈ Rm : y ≥ 0, bT y ≤ α,

Tr

⎛⎝( m∑
j=1

yjAj − C
)
X(1)

⎞⎠ ≥ −ε}.
Think of this polytope as a relaxation of the feasible region

of the dual SDP with the extra constraint that OPT ≤ α:

instead of requiring that
∑

j yjAj − C is psd, we merely

require its inner product with the particular psd matrix X(1)

is not too negative. The algorithm then calls an “oracle” that

provides a y(1) ∈ Pε(X
(1)), or outputs “fail” if P0(X

(1)) is

empty (how to efficiently implement such an oracle depends

on the application). In the “fail” case we know there is

no dual-feasible y with objective value ≤ α, so we can

increase our guess α for OPT, and restart. In case the oracle

produced a y(1), this is used to define a Hermitian matrix

H(1) and a new candidate solution X(2) for the primal,

1See Lee, Sidford, and Wong [6, Section 10.2 of arXiv version 2], and
note that our m,n are their n,m, their S is our mns, and their M is
our R. The bounds for other SDP-solvers that we state later also include
another parameter r; the assumptions of [6, Theorem 45 of arXiv version 2]
imply r ≤ mR in their setting, so r is absorbed in their polylog factor.

2See also [8] for a subsequent survey; the same algorithm was indepen-
dently discovered around the same time in learning theory [9], [10].

which is proportional to e−H(1)

. Then the oracle for the

polytope Pε(X
(2)) induced by this X(2) is called to produce

a candidate y(2) ∈ Pε(X
(2)) for the dual (or “fail”), this is

used to define H(2) and X(3) proportional to e−H(2)

, etc.

Surprisingly, the average of y(1), y(2), . . . converges to a

nearly-dual-feasible solution. Let R be an upper bound on

the trace of an optimal X of the primal, r be an upper bound

on the sum of entries of an optimal y for the dual, and w∗ be

the “width” of the oracle for a certain SDP: the maximum

of
∥∥∥∑m

j=1 yjAj − C
∥∥∥ over all psd matrices X and all

vectors y that the oracle may output for the corresponding

polytope Pε(X). In general we will not know the width

of an oracle exactly, but only an upper bound w ≥ w∗,
that may depend on the SDP; this is, however, enough for

the Arora-Kale framework. Lemma 4 in Section II-A will

show that without loss of generality we may assume the

oracle returns a y such that ‖y‖1 ≤ r. Because we assumed

‖Aj‖ , ‖C‖ ≤ 1, we then have w∗ ≤ r+1 as an easy width-

bound. General properties of the multiplicative weights

update method guarantee that after T = Õ(w2R2/ε2)
iterations3, if no oracle call yielded “fail”, then the vector
1
T

∑T
t=1 y

(t) is close to dual-feasible and satisfies bT y ≤ α.

This vector can then be turned into a dual-feasible solution

by tweaking its first coordinate, certifying that OPT ≤ α+ε,
and we can decrease our guess α for OPT accordingly.

The framework of Arora and Kale is really a meta-

algorithm, because it does not specify how to implement

the oracle. They themselves provide oracles that are opti-

mized for special cases, which allows them to give a very

low width-bound for these specific SDPs. For example for

the MAXCUT SDP, they obtain a solver with near-linear

runtime in the number of edges of the graph. They also

observed that the algorithm can be made more efficient by

not explicitly calculating the matrix X(t) in each iteration:

the algorithm can still be made to work if instead of

providing the oracle with X(t), we feed it good estimates of

Tr(AjX
(t)) and Tr(CX(t)). Arora and Kale do not describe

oracles for general SDPs, but one can get a general classical

SDP-solver in their framework with complexity

Õ
(
nms

(
Rr

ε

)4

+ ns

(
Rr

ε

)7
)
. (4)

Compared to the complexity of the SDP-solver of [6],

this has much worse dependence on R and ε, but better

dependence on m and n. Using the Arora-Kale framework is

thus preferable over standard SDP-solvers for the case where

Rr is small compared to mn, and a rough approximation to

OPT (say, small constant ε) is good enough.

C. Quantum SDP-solvers: the Brandão-Svore algorithm

Given the speed-ups that quantum computers give over

classical computers for various problems [11], [12], [13],

3The ˜O(·) notation hides polylogarithmic factors in all parameters.
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[14], [15], it is natural to ask whether quantum computers

can solve LPs and SDPs more efficiently as well. Very little

was known about this, until recently Brandão and Svore [1]

discovered quantum algorithms that significantly outperform

classical SDP-solvers in certain regimes. Because of the

general importance of quickly solving LPs and SDPs, and

the limited number of quantum algorithms known, this is a

very interesting development.

The key idea of the Brandão-Svore algorithm is to take

the Arora-Kale approach and to replace two of its steps by

more efficient quantum subroutines. First, given the vectors

y(1), . . . , y(t−1), it turns out one can use “Gibbs sampling”

to prepare the new primal candidate X(t) ∝ e−H(t−1)

as
a log(n)-qubit quantum state ρ(t) := X(t)/Tr(X(t)) in

much less time than needed to compute X(t) as an n × n
matrix. Second, one can implement the oracle for Pε(X

(t))
based on a number of copies of ρ(t), using those copies

to estimate Tr(Ajρ
(t)) and Tr(AjX

(t)) when needed (note

that Tr(Aρ) is the expectation value of operator A for

the quantum state ρ). This is based on something called

“Jaynes’s principle”, and requires fewer estimations of the

Tr (Ajρ) quantities. The resulting oracle is weaker than what

is used classically, in the sense that it outputs a sample

j ∼ yj/ ‖y‖1 rather than the whole vector y. However, such

sampling still suffices to make the algorithm work (it also

means we can assume the vector y(t) to be quite sparse).

Using these ideas, Brandão and Svore obtain a quantum

SDP-solver of complexity

Õ(
√
mns2R32/δ18),

with multiplicative error 1±δ for the special case where bj ≥
1 for all j ∈ [m], and OPT ≥ 1 (the latter assumption allows

them to convert additive error ε to multiplicative error δ) [1,

Corollary 5 in arXiv version 4]. They describe a reduction to

transform a general SDP of the form (1) to this special case,

but that reduction significantly worsens the dependence of

the complexity on the parameters R, r, and δ.

Compared to the runtime (4) of our general instantiation

of the original Arora-Kale framework, there are quadratic

improvements in both m and n, corresponding to the two

quantum modifications made to Arora-Kale. However, the

dependence on R, r, s, and 1/ε is much worse than in (4).

This quantum algorithm thus provides a speed-up only in

regimes where R, r, s, 1/ε are fairly small compared to mn
(finding good examples of such SDPs is an open problem).

D. Our results

In this paper we present two sets of results: improvements

to the Brandão-Svore algorithm, and better lower bounds

for the complexity of quantum LP-solvers (and hence for

quantum SDP-solvers as well).

1) Improved quantum SDP-solver: Our quantum SDP-

solver, like the Brandão-Svore algorithm, works by quantiz-

ing some aspects of the Arora-Kale algorithm. However, the

way we quantize is different and faster than theirs.

First, we give a more efficient procedure to estimate the

quantities Tr(Ajρ
(t)) required by the oracle. Instead of first

preparing some copies of a Gibbs state ρ(t) ∝ e−H(t−1)

as a mixed state, we coherently prepare a purification of

ρ(t), which can then be used to estimate Tr(Ajρ
(t)) more

efficiently using amplitude-estimation techniques. Also, our

purified Gibbs sampler has logarithmic dependence on the

error, which is exponentially better than the Gibbs sampler

of Poulin and Wocjan [16] that Brandão and Svore invoke.

Chowdhury and Somma [17] also gave a Gibbs sampler with

logarithmic error-dependence, but assuming query access to

the entries of
√
H rather than H itself.

Second, we have a different implementation of the oracle,

without using Gibbs sampling or Jaynes’s principle (though,

as mentioned above, we still use purified Gibbs sampling for

approximating the Tr(Aρ) quantities). We observe that the

vector y(t) can be made very sparse: two non-zero entries

suffice.4 We then show how we can efficiently find such a 2-

sparse vector (rather than merely sampling from it) using two

applications of the well-known quantum minimum-finding

algorithm of Dürr and Høyer [18].

These modifications both simplify and speed up the quan-

tum SDP-solver, resulting in complexity

Õ(
√
mns2(Rr/ε)8).

The dependence on m, n, and s is the same as in Brandão-

Svore, but our dependence on R, r, and 1/ε is substantially

better. Note that each of the three parameters R, r, and

1/ε now occurs with the same 8th power in the complexity.

This is no coincidence: as we show in our full version [19,

Appendix E], these three parameters can all be traded for one

another, in the sense that we can massage the SDP to make

each one of them small at the expense of making the others

proportionally bigger. These trade-offs suggest we should

actually think of Rr/ε as one parameter of the primal-dual

pair of SDPs, not three separate parameters. For the special

case of LPs we can improve to

Õ(
√
mn(Rr/ε)5).

Like in Brandão-Svore, our quantum oracle produces very

sparse vectors y, in our case even of sparsity 2. This means

that after T iterations, the final ε-optimal dual-feasible vector

(which is a slightly tweaked version of the average of the T
y-vectors produced in the T iterations) has only O(T ) non-

zero entries. Such sparse vectors have some advantages, for

example they take much less space to store than arbitrary

4Independently of us, Ben David, Eldar, Garg, Kothari, Natarajan, and
Wright (at MIT), and separately Ambainis observed that in the special case
where all bi are at least 1, the oracle can even be made 1-sparse, and the
one entry can be found using one Grover search over m points (in both
cases personal communication 2017). The same happens implicitly in our
Section II-C in this case. In general, two non-zero entries are necessary.
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y ∈ Rm. In fact, to get a sublinear running time in terms

of m, this is necessary. However, this sparsity of the algo-

rithm’s output also points to a weakness of these methods:

if every ε-optimal dual-feasible vector y has many non-zero

entries, then the number of iterations needs to be large. For

example, if every ε-optimal dual-feasible vector y has Ω(m)
non-zero entries, then these methods require T = Ω(m)
iterations before they can reach an ε-optimal dual-feasible

vector. Since T = O
(

R2r2

ε2 ln(n)
)

this would imply that

Rr
ε = Ω(

√
m/ ln(n)), and hence many classical SDP-

solvers would have a better complexity than our quantum

SDP-solver. As we show in Section III, this will actually be

the case for families of SDPs that have a lot of symmetry.

2) Tools that may be of more general interest: Along the

way to our improved SDP-solver, we developed some new

techniques that may be of independent interest.

Implementing smooth functions of a given Hamiltonian:
We develop a general technique to apply a function f(H)
of a sparse Hamiltonian H to a given state |φ〉 (Theorem 8).

Roughly speaking, what this means is that we want a unitary

circuit that maps |0〉|φ〉 to |0〉f(H)|φ〉+ |1〉|∗〉. If need be,

we can then combine this with amplitude amplification to

boost the |0〉f(H)|φ〉 part of the state. If the function f :
R → C can be approximated well by a low-degree Fourier

series, then our preparation will be efficient in the sense of

using few queries to H and few other gates. The novelty of

our approach is that we construct a good Fourier series from

a polynomial that approximates f (for example a truncated

Taylor series for f ). Our Theorem 8 can be easily applied

to various smooth functions without using involved integral

approximations, unlike previous works.

Here we mostly care about the functions f(x) = e−x

and f(x) =
√
x; the first is used for generating purified

Gibbs states, and together these two functions are used for

estimating quantities like Tr(Aρ). However, our techniques

apply much more generally. For example, they also simplify

the analysis of the improved linear-systems solver of Childs

et al. [20], where the relevant function is f(x) = 1/x. As in

their work, the Linear Combination of Unitaries technique

of Childs et al. [21], [22], [23] is a crucial tool for us.

A generalized minimum-finding algorithm: Dürr and

Høyer [18] showed how to find the minimal value of a func-

tion f : [N ]→ R using O(
√
N) queries to f , by repeatedly

using Grover search to find smaller and smaller elements of

the range of f . In [19, Theorem 49] we construct a more

general minimum-finding procedure, which roughly does the

following. Suppose we have a unitary U which prepares

a quantum state U |0〉 =
∑N

k=1 |ψk〉|xk〉. Our procedure

can find the minimum value xk∗ among the xk’s that have

support in the second register, using roughly O(1/ ‖ψk∗‖)
applications of U and U−1. Upon finding the minimal

value k∗, the procedure actually outputs the state |ψk∗〉|xk∗〉.
This immediately gives the Dürr-Høyer result as a special

case if we take U to produce U |0〉 = 1√
N

∑N
k=1 |k〉|f(k)〉.

Unlike Dürr-Høyer, we need not assume direct query access

to the individual values f(k).
More interestingly for us, for a given n-dimensional

Hamiltonian H , if we combine our minimum-finder with

phase estimation using unitary U = eiH on one half of a

maximally entangled state, then we obtain an algorithm for

estimating the smallest eigenvalue of H (and preparing its

ground state) using roughly O(
√
n) applications of phase

estimation with U . A similar result on approximating the

smallest eigenvalue of a Hamiltonian was already shown by

Poulin and Wocjan [24], but we improve on their analysis

to be able to apply it as a subroutine in our procedure to

estimate Tr(Ajρ).
3) Lower bounds: What about lower bounds for quantum

SDP-solvers? Brandão and Svore already proved that a

quantum SDP-solver has to make Ω(
√
n+

√
m) queries to

the input matrices, for some SDPs. Their lower bound is for

a family of SDPs where s,R, r, 1/ε are all constant, and is

by reduction from a search problem.

In this paper we prove lower bounds that are quantitatively

stronger in m and n, but for SDPs with non-constant R
and r. The key idea is to consider a Boolean function F
on N = abc input bits that is the composition of an a-

bit majority function with a b-bit OR function with a c-bit

majority function. The known quantum query complexities

of majority and OR, combined with composition properties

of the adversary lower bound, imply that every quantum

algorithm that computes this functions requires Ω(a
√
bc)

queries. We define a family of LPs, with constant 1/ε but

non-constant r and R (we could massage this to make

R or r constant, but not Rr/ε), such that constant-error

approximation of OPT computes F . Choosing a, b, and c
appropriately, this implies a lower bound of

Ω
(√

max{n,m} (min{n,m})3/2
)

queries to the entries of the input matrices for quantum LP-

solvers. Since LPs are SDPs with sparsity s = 1, we get

the same lower bound for quantum SDP-solvers. If m and

n are of the same order, this lower bound is Ω(mn), the

same scaling with mn as the classical general instantiation

of Arora-Kale (4). In particular, this shows that we cannot

have an O(
√
mn) upper bound without simultaneously

having polynomial dependence on Rr/ε. The construction

of our lower bound implies that for the case m ≈ n, this

polynomial dependence has to be at least (Rr/ε)1/4.

II. AN IMPROVED QUANTUM SDP-SOLVER

Here we describe our quantum SDP-solver. In Sec-

tion II-A we describe the framework designed by Arora and

Kale for solving semidefinite programs. As in the recent

work by Brandão and Svore, we use this framework to

design an efficient quantum algorithm for solving SDPs. In

particular, we show that the key subroutine needed in the
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Arora-Kale framework can be implemented efficiently on a

quantum computer. Our implementation uses different tech-

niques than the quantum algorithm of Brandão and Svore,

allowing us to obtain a faster algorithm. The techniques

required for this are developed in Sections II-B and II-C. In

Section II-D we put everything together to prove the main

theorem of this section, Theorem 13. See [19, Section 2] for

proofs omitted from this section due to space constraints.
Notation/Assumptions: We use log to denote the log-

arithm in base 2. We denote the all-zero matrix and vec-

tor by 0. Throughout we assume each element of the

input matrices can be represented by a bitstring of size

poly(log n, logm). We use s as the sparsity of the input

matrices, that is, the maximum number of non-zero entries

in a row (or column) of any of the matrices C,A1, . . . , Am

is s. Recall that for normalization purposes we assume

‖A1‖ , . . . , ‖Am‖ , ‖C‖ ≤ 1. We furthermore assume that

A1 = I and b1 = R, that is, the trace of primal-feasible so-

lutions is bounded by R (and hence also the trace of primal-

optimal solutions is bounded by R). The analogous quantity

for the dual SDP (3), an upper bound on
∑m

j=1 yj for an

optimal dual solution y, will be denoted by r. However,

we do not add the constraint
∑

j yj ≤ r to the dual. We

will assume r ≥ 1. For r to be well-defined we have to

make the explicit assumption that the optimal solution in

the dual is attained. In Section III it will be necessary to

work with the best possible upper bounds: we let R∗ be

the smallest trace of an optimal solution to SDP (1), and

we let r∗ be the smallest �1-norm of an optimal solution to

the dual. These quantities are well-defined; both the primal

and dual optimum are attained: the dual optimum is attained

by assumption, and due to the assumption A1 = I , the dual

SDP is strictly feasible, hence the optimum in (1) is attained.
Unless specified otherwise, we always consider additive

error. In particular, an ε-optimal solution to an SDP will be

a feasible solution whose value is within error ε of OPT.
Input oracles: We assume sparse black-box access to

the elements of the matrices C,A1, . . . , Am defined in the

following way: for input (j, �) ∈ [n]× [s] we can query the

location and value of the �th non-zero entry in the jth row

of the matrix M . Specifically, as described in [23], for each

M ∈ {A1, . . . , Am, C} we assume access to an oracle OI
M ,

which serves the purpose of sparse access. OI
M calculates

the index : [n] × [s] → [n] function, which for input (j, �)
gives the column index of the �th non-zero element in the jth
row. We assume this oracle computes the index “in place”:

OI
M |j, �〉 = |j, index(j, �)〉. (5)

(In the degenerate case where the jth row has fewer than �
non-zero entries, index(j, �) is defined to be � together with

some special symbol.) Also assume we can apply (OI
M )−1.

We also need another oracle OM , returning a bitstring

representation of Mji for any j, i ∈ [n]:

OM |j, i, z〉 = |j, i, z ⊕Mji〉. (6)

This slightly unusual “in place” setup is not too demanding.

In particular, if instead we had an oracle that computed the

non-zero entries of a row in order, then we could implement

both OI
M and its inverse using log(s) queries (we can

compute � from j and index(j, �) using binary search) [23].

Computational model: As our computational model,

we assume a slight relaxation of the usual quantum circuit

model: a classical control system that can run quantum

subroutines. We limit the classical control system so that

its number of operations is at most a polylogarithmic factor

bigger than the gate complexity of the quantum subroutines,

i.e., if the quantum subroutines use C gates, then the clas-

sical control may use at most O(C polylog(C)) operations.

When we talk about gate complexity, we count the number

of two-qubit quantum gates needed for implementation of

the quantum subroutines. Additionally, we assume for sim-

plicity that there exists a unit-cost QRAM gate that allows

us to store and retrieve qubits in a memory, by means of a

swap of two registers indexed by another register:

QRAM : |i, x, r1, . . . , rK〉
�→ |i, ri, r1, . . . , ri−1, x, ri+1, . . . , rK〉,

where the registers r1, . . . , rK are only accessible through

this gate. The QRAM gate can be seen as a quantum

analogue of pointers in classical computing. The reason we

need QRAM is that we need a data structure that allows

efficient access to the non-zero entries of a sum of sparse

matrices; for the special case of LPs it is not needed.

A. The Arora-Kale framework for solving SDPs

In this section we give a short introduction to the Arora-

Kale framework for solving semidefinite programs. We refer

to [7], [8] for a more detailed description and omitted proofs.

The key building block is the Matrix Multiplicative

Weights (MMW) algorithm. This can be seen as a strategy

for you in the following game between you and an adversary.

There is a number of rounds T . In each round you present a

density matrix ρ to an adversary, the adversary replies with

a loss matrix M satisfying ‖M‖ ≤ 1. After each round you

have to pay Tr (Mρ). Your objective is to pay as little as

possible. The MMW algorithm is a strategy for you (i.e., an

update rule for ρ), that allows you to lose not too much, in

a sense that is made precise by the following theorem.

Theorem 1 ([7, Theorem 3.1]). For every adversary, the se-
quence ρ(1), . . . , ρ(T ) of density matrices constructed using
the Matrix Multiplicative Weights Algorithm satisfies

T∑
t=1

Tr
(
M (t)ρ(t)

)
≤λmin

(
T∑

t=1

M (t)

)

+ η
T∑

t=1

Tr
(
(M (t))2ρ(t)

)
+

ln(n)

η
.
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Arora and Kale use the MMW algorithm to construct

an SDP-solver. For that, they construct an adversary who

promises to satisfy an additional condition: in each round t,
the adversary returns a matrix M (t) whose trace inner

product with the density matrix ρ(t) is non-negative. The

above theorem shows that then, after T rounds, the av-

erage of the adversary’s responses satisfies the stronger

condition that its smallest eigenvalue is not too negative:

λmin

(
1
T

∑T
t=1M

(t)
)
≥ −η − ln(n)

ηT . More explicitly, the

MMW algorithm is used to build a vector y ≥ 0 such that

1

T

T∑
t=1

M (t) ∝
m∑
j=1

yjAj − C

and bT y ≤ α. That is, the smallest eigenvalue of the

matrix
∑m

j=1 yjAj − C is only slightly below zero and y’s

objective value is at most α. Since A1 = I , increasing

the first coordinate of y makes the smallest eigenvalue of∑
j yjAj − C bigger, so that this matrix becomes psd and

hence dual-feasible. By the above we know how much the

minimum eigenvalue has to be shifted, and with the right

choice of parameters it can be shown that this gives a dual-

feasible vector y that satisfies bT y ≤ α + ε. In order to

present the algorithm formally, we require some definitions.

Given a candidate solution X � 0 for the primal prob-

lem (1) and a parameter ε ≥ 0, define the polytope

Pε(X) := {y ∈ Rm : y ≥ 0, bT y ≤ α,

Tr

⎛⎝( m∑
j=1

yjAj − C
)
X

⎞⎠ ≥ −ε}.
The Arora-Kale framework for solving SDPs uses the

MMW algorithm, where the role of the adversary is taken

by an ε-approximate oracle, whose requirements are given

in Algorithm 1 below. Much of the work in the Arora-Kale

framework lies in implementing this.

Input An n× n psd matrix X , a parameter ε, and the

input matrices and reals of (3).

Output Either the Oracleε returns a vector y from the

polytope Pε(X) or it outputs “fail”. It may only output

fail if P0(X) = ∅.

Algorithm 1. Requirements for an ε-approximate Oracleε

As we will see later, the runtime of the Arora-Kale frame-

work depends on a property of the oracle called the width:

Definition 2 (Width of Oracleε). The width of Oracleε for
an SDP is the smallest w∗ ≥ 0 such that for every primal
candidate X � 0, the vector y returned by Oracleε satisfies∥∥∥∑m

j=1 yjAj − C
∥∥∥ ≤ w∗.

In practice, the width of an oracle is not always known.

However, it suffices to work with an upper bound w ≥ w∗:
as we can see in Meta-Algorithm 2, the purpose of the width

is to rescale the matrix M (t) in such a way that it forms a

valid response for the adversary in the MMW algorithm.

The following theorem shows the correctness of the

Arora-Kale primal-dual meta-algorithm for solving SDPs,

stated in Meta-Algorithm 2:

Theorem 3 ([7, Theorem 4.7]). Given an SDP of the
form (1) with input matrices A1 = I, A2, . . . , Am and C
having operator norm at most 1, and input reals b1 =
R, b2, . . . , bm. If Meta-Algorithm 2 does not output “fail” in
any of the rounds, then the returned vector y is feasible for
the dual (3) with objective value at most α+ε. If Oracleε/3

outputs “fail” in the t-th round then a suitably scaled version
of X(t) is primal-feasible with objective value at least α.

The SDP-solver uses T =
⌈
9w2R2 ln(n)

ε2

⌉
iterations. Each

iteration has several steps. The most expensive two steps

are computing the matrix exponential of the matrix −ηH(t)

and the application of the oracle. Note that the only purpose

of computing the matrix exponential is to allow the oracle

to compute the values Tr (AjX) for all j and Tr (CX),
since the polytope Pε(X) depends on X only through those

values. To obtain faster algorithms it is important to note,

as was done already by Arora and Kale, that the primal-

dual algorithm also works if we provide a (more accurate)

oracle with approximations of Tr (AjX). In fact, it will be

convenient to work with Tr (Ajρ) = Tr (AjX) /Tr (X). To

be more precise, given a list of reals a1, . . . , am, c and a

parameter θ ≥ 0, such that |aj − Tr (Ajρ) | ≤ θ for all j,
and |c− Tr (Cρ) | ≤ θ, define the polytope

P̃(a, c′) := {y ∈ Rm : y ≥ 0, bT y ≤ α,
m∑
j=1

yj ≤ r,

m∑
j=1

ajyj ≥ c′},

where for convenience we denote a = (a1, . . . , am) and

c′ := c−(r+1)θ. Notice that P̃ also contains a new type of

constraint:
∑

j yj ≤ r. Recall that r is defined as a positive

real such that there exists an optimal solution y to SDP (3)

with ‖y‖1 ≤ r. Hence, using that P0(X) is a relaxation of

the feasible region of the dual (with bound α on the objective

value), we may restrict our oracle to return only such y:

P0(X) �= ∅ ⇒ P0(X) ∩ {y ∈ Rm :
m∑
j=1

yj ≤ r} �= ∅.

Due to this restriction and the assumption on the norms of

the input matrices, an oracle that always returns a vector

with �1-norm ≤ r, automatically has a width w∗ ≤ r + 1.
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Input The input matrices and reals of SDP (1) and trace

bound R. The current guess α of the optimal value of

the dual (3). An additive error tolerance ε > 0. An ε
3 -

approximate oracle Oracleε/3 as in Algorithm 1 with

width-bound w.

Output Either “Lower” and a vector y ∈ Rm
+ feasible

for (3) with bT y ≤ α+ ε, or “Higher” and a symmetric

n × n matrix X that, when scaled suitably, is primal-

feasible with objective value at least α.

T :=
⌈
9w2R2 ln(n)

ε2

⌉
.

η :=
√

ln(n)
T .

ρ(1) := I/n
for t = 1, . . . , T do

Run Oracleε/3 with X(t) = Rρ(t).
if Oracleε/3 outputs “fail” then

return “Higher” and a description of X(t).

end if
Let y(t) be the vector generated by Oracleε/3.

Set M (t) = 1
w

(∑m
j=1 y

(t)
j Aj − C

)
.

Define H(t) = H(t−1) +M (t) =
∑t

τ=1M
(τ).

Update the state matrix:

ρ(t+1) := exp
(−ηH(t)

)
/Tr
(
exp

(−ηH(t)
))

.

end for
If Oracleε/3 does not output “fail” in any of the T
rounds, then output the dual solution y = ε

Re1 +
1
T

∑T
t=1 y

(t) where e1 = (1, 0, . . . , 0) ∈ Rm.

Meta-Algorithm 2. Primal-Dual Algorithm for solving SDPs

The following shows that an oracle that always returns

a vector y ∈ P̃(a, c′) if one exists, is a 4Rrθ-approximate

oracle as defined in Algorithm 1.

Lemma 4. Let a1, . . . , am and c be θ-approximations of
Tr (A1ρ) , . . . ,Tr (Amρ) and Tr (Cρ), respectively, where
X = Rρ. Then the following holds:

P0(X) ∩ {y ∈ Rm :
m∑
j=1

yj ≤ r} ⊆ P̃(a, c′) ⊆ P4Rrθ(X).

We have now seen the Arora-Kale framework for solving

SDPs. To obtain a quantum SDP-solver it remains to provide

a quantum oracle subroutine. By the above discussion it suf-

fices to set θ = ε/(12Rr) and to use an oracle that is based

on θ-approximations of Tr (Aρ) (for A ∈ {A1, . . . , Am, C}),
since with that choice of θ we have P4Rrθ(X) = Pε/3(X).
In the next section, we first give a quantum algorithm for ap-

proximating Tr (Aρ) efficiently. In Section II-C, we provide

an oracle using those estimates based on a simple geometric

idea. In Section II-D we conclude with an overview of the

runtime of our quantum SDP-solver.

B. Approximating Tr (Aρ)

In this section we give an efficient quantum algorithm to

approximate quantities of the form Tr (Aρ). We are going

to work with Hermitian matrices A,H ∈ Cn×n, such that

ρ is the Gibbs state e−H/Tr
(
e−H

)
. Note the analogy with

quantum physics: in physics terminology Tr (Aρ) is simply

called the “expectation value of observable A” for a quantum

system in a thermal state corresponding to H .

The general approach is to separately estimate Tr
(
Ae−H

)
and Tr

(
e−H

)
, and then to use the ratio of these as an

approximation of Tr (Aρ) = Tr
(
Ae−H

)
/Tr
(
e−H

)
. Both

estimations are obtained using state preparation to prepare a

pure state with a flag, such that the probability that the flag

is 0 is proportional to the quantity we want to estimate. We

then use amplitude estimation to estimate that probability.

As we will show in Lemma 5, it suffices to construct a

unitary UA,H which, if applied to the state |0 . . . 0〉, gives a

probability
Tr((I+A/2)e−H)

4n of measurement outcome 0 for

the first qubit. That is:

‖(〈0| ⊗ I)UA,H |0 . . . 0〉‖2 =
Tr
(
(I + A

2 )e
−H
)

4n
.

(To clarify the notation: if |ψ〉 is a 2-register state, then

(〈0| ⊗ I)|ψ〉 is the (unnormalized) state in the 2nd register

that results from projecting on |0〉 in the 1st register.)

In practice we will not be able to construct such a UA,H

exactly, instead we will construct a ŨA,H that yields a

sufficiently close approximation of the correct probability.

Lemma 5. Suppose we are given the positive numbers z ≤
Tr
(
e−H

)
, θ ∈ (0, 1], and unitary circuits Ũ0,H and ŨA,H

(with ‖A‖ ≤ 1), each acting on at most q qubits, such that
for each A′ ∈ {0, A} we have∣∣∣∣∣∣
∥∥∥(〈0| ⊗ I)ŨA′,H |0 . . . 0〉

∥∥∥2 − Tr
(
(I + A′

2 )e−H
)

4n

∣∣∣∣∣∣ ≤ θz

144n

Then there is a procedure that gives an additive θ-
approximation of Tr (Aρ) with high probability, using
O ( 1θ√n

z

)
applications of ŨA,H , Ũ0,H and their inverses,

and O ( qθ√n
z

)
additional gates.

Notice the 1/
√
z ≥ 1/

√
Tr (e−H) factor in the complex-

ity statement of this lemma. To make sure this factor is not

too large, we would like to ensure Tr
(
e−H

)
= Ω(1). This

can be achieved by substituting H+ = H−λmin(H)I , where

λmin(H) is the smallest eigenvalue of H . It is easy to verify

that this will not change the value Tr
(
Ae−H/Tr

(
e−H

))
.

Below we show how to compute λmin(H) (Section II-B1)

and how to apply ŨA,H (Section II-B2).5 Using the results

5The state-preparation will be the hardest part, because we need not
know the diagonalizing bases for A and H , and A and H may not be
simultaneously diagonalizable. In the special case where all matrices are
diagonal (i.e., the case of LP-solving), we do know these bases, making
the proofs simpler and the complexity bounds better.
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from those sections we get the following:

Theorem 6. Let A,H ∈ Cn×n be Hermitian matrices such
that ‖A‖ ≤ 1 and ‖H‖ ≤ K for a known bound K ∈ R+.
Assume A is s-sparse and H is d-sparse with s ≤ d. We
can compute an additive θ-approximation of

Tr (Aρ) =
Ae−H

Tr (e−H)

using Õ
(√

ndK
θ

)
queries (to A and H) and other gates.

Proof: Start by computing an estimate λ̃min of

λmin(H), up to additive error ε = 1/2 using Lemma 7

(below). Define H+ := H− (λ̃min−3/2)I , so that I � H+

but 2I ⊀ H+. Applying Lemma 9 (below) and then

Lemma 5 to A,H+ with z = e−2 gives the bound.

1) Computing minimum eigenvalues: As mentioned in

Section I-D2, we developed new techniques that gener-

alize minimum-finding. The lemma below applies these

techniques to the problem of finding the minimum eigen-

value of a Hamiltonian H . Poulin and Wocjan [24] gave a

similar complexity for minimum-eigenvalue estimation, but

we improve on their analysis to fit our framework better.

We assume sparse oracle access to the Hamiltonian H as

described in Section II, and count queries to these oracles.

Lemma 7. If H=
∑n

j=1Ej |φj〉〈φj |, with eigenvalues E1 ≤
E2 ≤ . . . ≤ En, satisfies ‖H‖ ≤ K, ε ≤ K/2, and H is
given in d-sparse oracle form, then we can compute an E
such that with probability ≥ 2/3, |E1 − E| ≤ ε, using

O
(
Kd
√
n

ε
polylog

(
Kn

ε

))
queries and gates.

2) Applying smooth functions of Hamiltionians: To con-

struct a circuit for ŨA,H , the basic idea is that we first

prepare a maximally entangled state
∑n

i=1 |i〉|i〉/
√
n, and

then apply the (norm-decreasing) maps e−H/2 and

√
I+A/2

4
to the first register, so that we end up with a state(

n∑
i=1

(√
I +A/2

4
e−H/2|i〉

)
|i〉/√n

)
|0〉+ |φ〉|1〉.

One can verify that the probability of measuring the flag 0 is

indeed Tr
(

I+A/2
4n e−H

)
. These two norm-decreasing maps

both correspond to smooth functions. Instead of providing a

circuit for each of them separately, we give a general result:

Theorem 8 (Implementing a smooth function of a Hamil-

tonian). Let x0 ∈ R and r > 0 be such that f(x0 +
x) =

∑∞
�=0 a�x

� for all x ∈ [−r, r]. Suppose B > 0
and δ ∈ (0, r] are such that

∑∞
�=0(r + δ)�|a�| ≤ B. If

H ∈ Cn×n is a Hermitian matrix such that ‖H − x0I‖ ≤
r, and ε ∈ (

0, 12
]
, then we can implement a unitary

Ũ such that
∥∥∥(〈0| ⊗ I)Ũ(|0〉 ⊗ I)− f(H)

B

∥∥∥ ≤ ε, using

O ( rδ log (r/(δε)) log (1/ε)) gates and a single use of a

circuit that can do controlled simulation of H (with error
≤ ε/2 in operator norm) for up to O( rδ log(1/ε)) time-steps
each of duration O(1/r).

If ‖H‖ ≤ K, H is d-sparse and is accessed via ora-
cles (5)-(6), and r = O(K), then (based on the Hamiltonian
simulation of [23]) this Ũ can be implemented using

O
(
Kd

δ
log

(
K

δε

)
log

(
1

ε

))
queries and

O
(
Kd

δ
log

(
K

δε

)
log

(
1

ε

)[
log(n)+log

5
2

(
K

δε

)])
gates.

Applying to f(x) = e−x/2 and f(x) =
√
1 + x/2 gives:

Lemma 9. Let A,H ∈ Cn×n be Hermitian matrices such
that ‖A‖ ≤ 1 and I � H � KI for a known K ∈ R+.
Assume A is s-sparse and H is d-sparse with s ≤ d. For
every μ > 0, there exists a unitary ŨA,H such that∣∣∣∣∣∥∥∥(〈0| ⊗ I)ŨA,H |0 . . . 0〉

∥∥∥2 − Tr

(
I + A

2

4n
e−H

)∣∣∣∣∣ ≤ μ

that uses Õ (Kd) queries (to A and H) and other gates.

C. An efficient 2-sparse oracle

In this section we describe our quantum oracle. Remember

that aj is an additive θ-approximation to Tr (Ajρ), c is a θ-

approximation to Tr (Cρ) and c′ = c − rθ − θ. Due to the

results from the last section we may now assume access to an

oracle Oa that computes the entries aj of a = (a1, . . . , am).
Our goal is now to find a y ∈ P̃(a, c′), i.e., a y such that

bT y ≤ α

aT y ≥ c′

‖y‖1 ≤ r

y ≥ 0

If α ≥ 0 and c′ ≤ 0, then y = 0 is a solution. If not, then

write y = Nq with N = ‖y‖1 > 0 and hence ‖q‖1 = 1. So

we want an N and q such that

bT q ≤ α/N (7)

aT q ≥ c′/N
‖q‖1 = 1

q ≥ 0

0 < N ≤ r

We can now view q ∈ Rm
+ as the coefficients of a convex

combination of the points pi = (bi, ai) in the plane. We

want such a combination that lies to the upper left of gN =
(α/N, c′/N) for some 0 < N ≤ r. Let GN denote the

upper-left quadrant of the plane starting at gN .

Lemma 10. If there is a y ∈ P̃(a, c′), then there is a 2-
sparse y′ ∈ P̃(a, c′) such that ‖y‖1 = ‖y′‖1.
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This shows that we can restrict our search to 2-sparse y.

Let G =
⋃

N∈(0,r] GN . We want to find two points pj , pk
such that their convex combination lies in G, since this

implies that a scaled version of their convex combination

gives a y ∈ P̃(a, c′) and ‖y‖1 ≤ r.

Lemma 11. There is an oracle that returns a 2-sparse
vector y ∈ P̃(a, c′), if one exists, using one search and
two minimizations over the m points pj = (bj , aj).

Proof sketch: The algorithm is as follows:

1) Check if α ≥ 0 and c′ ≤ 0. If so, output y = 0.

2) Check if ∃i : pi ∈ G. If so, let q = ei and N = c′
ai

.

3) Find pj , pk so that the line segment pjpk goes

through G. This gives coefficients q of a convex

combination that can be scaled by N = c′
aT q

to get y.

An example of G, when α, c′ > 0, is drawn in Figure 3. In

general G is always the intersection of at most 2 halfspaces,

hence steps 1-2 of the algorithm are easy to perform when

given access to the coordinates of the points pj .

It remains to consider step 3. Denote the two edges of G
by L1 and L2. Furthermore, let �j and �k be the lines from

(α/r, c′/r) to pj and pk. Looking at Figure 4, it is clear

that the line pjpk intersects with G if and only if ∠�jL1 +
∠L1L2+∠L2�k ≤ π. In particular, if any choice of j and k
will cause pjpk to intersect with G, then so will the choice

that minimizes ∠�jL1 + ∠L1L2 + ∠L2�k. Clearly we can

minimize this expression by separately minimizing ∠�jL1

and ∠L2�k. Hence one search and two minimizations using

the coordinates of the pj suffice to implement the oracle.

Figure 3. The region G in light blue. The borders of two quadrants GN

have been drawn by thick dashed blue lines. The red dot at the beginning
of the arrow is the point (α/r, c′/r).

Corollary 12. There is a quantum algorithm that returns a
vector y ∈ P̃(a, c′), if one exists, using O(

√
m) calls to the

subroutine for the entries of a, and Õ (
√
m) other gates.

D. Total runtime

We can now add our quantum trace calculators and the

oracle to the classical Arora-Kale framework.

L2

L1

pj

pk

∠L2�k

∠L1L2

∠�jL1
(α/r, c′/r)

Figure 4. Illustration of G with the points pj , pk and the angles
∠�jL1,∠L1L2,∠L2�k drawn in. Clearly the line pjpk only crosses G
when the total angle is less than π.

Theorem 13. Instantiating Meta-Algorithm 2 using the trace
calculation algorithm from Section II-B and the oracle from
Section II-C (with width-bound w := r + 1), and using this
to do a binary search for OPT ∈ [−R,R] (using different
guesses α for OPT), gives a quantum algorithm for solving
SDPs of the form (1), which (with high probability) produces
a feasible solution y to the dual program that is optimal up
to an additive error ε, using

Õ
(
√
nms2

(
Rr

ε

)8)
queries (to the input matrices) and other gates.

Proof: Using our implementations of the different

building blocks, it remains to calculate what the total com-

plexity will be when they are used together.

Cost of the oracle for H(t): The first problem in each

iteration is to obtain access to an oracle for H(t). In each

iteration the oracle will produce a y(t) that is at most 2-

sparse, and hence in the (t+ 1)th iteration, H(t) is a linear

combination of 2t of the Aj matrices, and the C matrix.

We can write down a sparse representation of the coef-

ficients of the linear combination that gives H(t) in each

iteration by adding the new terms coming from y(t). This

will clearly not take longer than Õ (T ), since there are only

a constant number of terms to add. As we will see, this term

will not dominate the complexity of the full algorithm.

Using such a sparse representation of the coefficients, one

query to a sparse representation of H(t) will cost Õ (st)
queries to the input matrices, and Õ (st) other gates.

Cost of the oracle for Tr (Ajρ): In each iteration M (t)

is made to have operator norm at most 1. This means that∥∥∥−ηH(t)
∥∥∥ ≤ η

t∑
τ=1

∥∥∥M (τ)
∥∥∥ ≤ ηt.
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Furthermore we know that H(t) is at most d := s(2t + 1)-
sparse. Calculating Tr (Ajρ) for one index j up to an

additive error of θ := ε/(12Rr) can be done using the

algorithm from Theorem 6. This will take

Õ
(√

n
‖H‖ d
θ

)
= Õ

(√
ns
ηt2Rr

ε

)
queries to the oracle for H(t) and the same number of other

gates. Since each query to H(t) takes Õ (st) queries to the

input matrices, this means that

Õ
(√

ns2
ηt3Rr

ε

)
queries to the input matrices will be made, and the same

number of other gates, for each approximation of a Tr (Ajρ)
(and similarly for approximating Tr (Cρ)).

Total cost of one iteration: Corollary 12 tells us that

we will use Õ (
√
m) calculations of Tr (Ajρ), and the same

number of other gates, to calculate a classical description of

a 2-sparse y(t). This brings the total cost of one iteration to

Õ
(√

nms2
ηt3Rr

ε

)
queries (to the input matrices) and other gates.

Total quantum runtime for SDPs: Since w ≤ r+1 we

can set T = Õ
(

R2r2

ε2

)
. With η =

√
ln(n)
T , summing over

all iterations in one run of the algorithm gives total cost

Õ
(√

nms2
ηT 4Rr

ε

)
= Õ

(
√
nms2

(
Rr

ε

)8)
queries (to the input matrices) and other gates.

We want to stress again that our solver is meant to work

for all SDPs. In particular, it does not use the structure of a

specific SDP. As we show in the next section, every oracle

that works for all SDPs must have large width. To obtain

quantum speedups for a specific class of SDPs, it will be

necessary to develop oracles tuned to that problem. We view

this as an important direction for future work. Recall from

the introduction that Arora and Kale also obtain fast classical

algorithms for problems such as MAXCUT by doing exactly

that: they develop specialized oracles for those problems.

III. DOWNSIDE OF THIS METHOD: GENERAL ORACLES

ARE RESTRICTIVE

In this section we give two examples illustrating the

limitations of a method that uses sparse or general oracles,

i.e., ones that are not optimized for the properties of specific

SDPs. To illustrate the problem with sparse oracles we

consider the classical LP problem (s, t)-maxflow-mincut.

Next, we will show that general oracles are bad for solving

the Goemans-Williamson SDP relaxation for MAXCUT.

A. Sparse oracles are restrictive for (s, t)-maxflow-mincut

Given a graph G = (V,E) and two vertices s, t ∈ V , the

(s, t)-maxflow-mincut problem is to compute the maximum

flow that can be sent through G, starting at s and ending at t.
Equivalently, one can compute the minimum cut of G with

s and t on different sides of the cut. We consider a simple

instance of this problem: the union of two complete graphs

each of size z+1, where s is in one sub-graph and t in the

other. The other vertices will be labeled by {1, 2, . . . , 2z}.
Every partition of the label-set over the two halves gives a

unique mincut of value 0 (namely the one which separates

the two complete graphs), and every other partition cuts at

least z edges. Hence a z/2-approximate mincut must be the

unique mincut. Since every partition of the 2z labels over

the two halves is a different problem instance, there are
(
2z
z

)
instances that each require a different unique output.

Now assume we have a family of LPs, one for each

problem instance, with the following two properties:

1) There is a function f such that for a z/2-approximate

dual solution y to one of the LPs, f(y) = S ⊆ V
is a z/2-approximate mincut for the corresponding

instance.

2) The LPs corresponding to the different permutations

of the labels only differ by permutations of their

constraints and variables.

The first condition states that a dual solution is enough to

find a mincut. The second condition states that the LPs treat

all points equally (except s and t). Both these conditions

hold for the standard (s, t)-maxflow-mincut LP.

A direct consequence of these conditions is that the
(
2z
z

)
dual solutions for the LPs are all just permutations of

each other. However, they all need to be different since

their image under f (the corresponding mincut) has to be

different. A k-sparse vector in Rm can have k different

non-zero entries and hence the number of possible unique

permutations of that vector is at most(
m

k

)
k! =

m!

(m− k)! ≤ mk.

Hence, using
(
2z
z

) ≥ 22z

2
√
z

, we find the following lower bound

on the sparsity of near-optimal dual solutions

k ≥ log
(
2z
z

)
logm

≥ z

logm
.

If the dual solution needs to have at least z/ log(m) non-

zero entries, and the oracle outputs only a constant number

of entries in each iteration, then the Arora-Kale framework

with that oracle needs T = Ω(z/ log(m)) iterations to build

such a dual solution. Since T = O(R2w2 ln(n)/ε2), this in

turn implies that Rw/ε cannot be small.

Similar symmetry-based arguments can be made for more

general classes of LPs and SDPs.
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B. General width-bounds are restrictive for MAXCUT

One problem in using the Arora-Kale framework as a

general SDP-solver, is that it is hard to give a good upper

bound on the width w of the oracle. Here we used w ≤ r+1
as an upper bound, where r is an upper bound on the smallest

�1-norm r∗ among all optimal solutions y to the dual. In

general we cannot use a better upper bound on w: in our

full version [19, Lemma 21] we show that for every n ≥ 4,

m ≥ 4, s ≥ 1, R∗ > 0, r∗ > 0, and ε ≤ 1/2, there is

an SDP with these parameters for which every oracle has

width w ≥ 1
2r
∗. This shows that every SDP-solver in the

Arora-Kale framework which uses a general oracle that only

considers those parameters (including our SDP-solver and

the one of Brandão and Svore), will have a bad performance

on every SDP with a large r∗ parameter.

It turns out that r∗ can grow linearly in n and m for many

natural classes of SDPs. A simple example comes from

the Goemans-Williamson SDP for approximating MAXCUT

(see the introduction). Start with a graph G(1), and let G(t)

be the graph corresponding to t disjoint copies of G(1). From

the form of SDP (2), it is clear that the SDP corresponding to

G(t) has the structure of the SDP corresponding to G(1), but

copied t times. In particular this implies that the �1-norm of a

dual solution for the G(t)-SDP is r∗(t) ≥ tr∗(1). Since n and

m are linear in t, we have r∗ = Ω(n) = Ω(m). This kind

of argument can be generalized to other SDP formulations

that have similar “combinable” structures.

IV. LOWER BOUNDS ON QUANTUM QUERY COMPLEXITY

In the full version of this paper [19, Section 4], we

show that every LP-solver (and hence every SDP-solver)

that can distinguish two optimal values with high probability

needs Ω
(√

max{n,m} (min{n,m})3/2
)

quantum queries

in the worst case. This general statement can be shown via

reduction from the MAJa-ORb-MAJc function, which is the

composition of an a-bit majority function with a b-bit OR

function with a c-bit majority function.

Due to space constraints, here we will only give a simpler

proof for the special case n = m.

Theorem 14. For every integer k, there exists an LP with
n = m = 2k, such that calculating (with success probability
≥ 2/3) the optimal value up to an additive error ε = 1/3
takes at least Ω(k2) = Ω(nm) queries to the input matrices.

Proof: It is known that Ω(k2) quantum queries are

necessary to compute (with success probability ≥ 2/3) the

majority function on input Z ∈ {0, 1}k×k [25]. Computing

this is equivalent to approximating the Hamming weight

|Z| = ∑k
i=1

∑k
j=1 Zij within additive error ε = 1/3. We

claim that the optimal value of the following LP equals |Z|:

max
k∑

i=1

wi

s.t.

[
Ik −Z
0 Ik

] [
w
v

]
≤
[
0
1

]
0 ≤ v, w

where Ik is the k × k identity matrix. This claim directly

implies the theorem, since n = m = 2k.
To prove the claim, note that every wi-variable only

appears in one constraint of the form wi ≤
∑k

j=0 Zijvj .

Since wj is maximized, this constraint will be tight in

the optimum. Since all entries of Z are non-negative, this

implies that each vj will be maximized. The only upper

bound on the vj-variables is vj ≤ 1, which will hence be

tight in the optimum. Putting this together, we get

OPT =
k∑

i=1

wi =
k∑

i=1

k∑
j=1

Zijvj =
k∑

i=1

k∑
j=1

Zij = |Z|.

V. CONCLUSION

We gave better algorithms and lower bounds for quantum

SDP-solvers, improving upon recent work of Brandão and

Svore [1]. Here are a few directions for future work:

• Better upper bounds. The runtime of our algorithm,

like the earlier algorithm of Brandão and Svore, has

better dependence on m and n than the best classical

SDP-solvers, but worse dependence on s and on Rr/ε.
It may be possible to improve the dependence on s to

linear and/or the dependence on Rr/ε to less than our

current 8th power.

• Applications of our algorithm. As mentioned, both

our and Brandão-Svore’s quantum SDP-solvers only

improve upon the best classical algorithms for a specific

regime of parameters, namely where mn � Rr/ε.
Unfortunately, we don’t know particularly interesting

problems in combinatorial optimization in this regime.

As shown in Section III, many natural SDP formula-

tions will not fall into this regime. However, it would be

interesting to find useful SDPs for which our algorithm

gives a significant speed-up.

• New algorithms. As in the work by Arora and Kale,

it might be more promising to look at oracles (now

quantum) that are designed for specific SDPs. Such

oracles could build on the techniques developed here,

or develop totally new techniques. It might also be

possible to speed up other classical SDP-solvers, for

example those based on interior-point methods.

• Better lower bounds. Our lower bounds are probably

not optimal, particularly for the case where m and n
are not of the same order. The most interesting case

would be to get lower bounds that are simultaneously

tight in the parameters m, n, s, and Rr/ε.
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[18] C. Dürr and P. Høyer, “A quantum algorithm for finding the
minimum,” 18 Jul 1996, quant-ph/9607014.

[19] J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf,
“Quantum SDP-solvers: Better upper and lower bounds,”
2017, arxiv:1705.01843.

[20] A. M. Childs, R. Kothari, and R. D. Somma, “Quantum linear
systems algorithm with exponentially improved dependence
on precision,” 7 November 2015, arxiv:1511.02306.

[21] A. M. Childs and N. Wiebe, “Hamiltonian simulation using
linear combinations of unitary operations,” Quantum Infor-
mation and Computation, vol. 12, no. 11-12, pp. 901–924,
2012, arXiv:1202.5822.

[22] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, “Simulating Hamiltonian dynamics with a truncated
Taylor series,” Physical Review Letters, vol. 114, p. 090502,
2015, arXiv:1412.4687.

[23] D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian
simulation with nearly optimal dependence on all parame-
ters,” Proceedings of 56th IEEE FOCS, pp. 792–809, 2015,
arxiv:1501.01715.

[24] D. Poulin and P. Wocjan, “Preparing ground states of quan-
tum many-body systems on a quantum computer,” Physical
Review Letters, vol. 102, p. 130503, 2009, arXiv:0809.2705.

[25] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf,
“Quantum lower bounds by polynomials,” Journal of the
ACM, vol. 48, no. 4, pp. 778–797, 2001, earlier version in
FOCS’98. quant-ph/9802049.

[26] S. Kimmel, “Quantum adversary (upper) bound,” Chicago
Journal of Theoretical Computer Science, 2013.

414


