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Abstract—In this work, we revisit the problem
of uniformity testing of discrete probability distribu-
tions. A fundamental problem in distribution testing,
testing uniformity over a known domain has been
addressed over a significant line of works, and is by
now fully understood.
The complexity of deciding whether an unknown

distribution is uniform over its unknown (and arbi-
trary) support, however, is much less clear. Yet, this
task arises as soon as no prior knowledge on the
domain is available, or whenever the samples orig-
inate from an unknown and unstructured universe.
In this work, we introduce and study this generalized
uniformity testing question, and establish nearly tight
upper and lower bound showing that – quite surpris-
ingly – its sample complexity significantly differs from
the known-domain case. Moreover, our algorithm is
intrinsically adaptive, in contrast to the overwhelming
majority of known distribution testing algorithms.

Keywords-property testing; distribution testing;
uniformity; adaptivity; probability distributions

I. Introduction
Property testing, as introduced in the seminal works

of [1], [2], is the analysis and study of ultra-efficient and
randomized decision algorithms, which must answer a
promise problem yet cannot afford to query their whole
input. A very successful and prolific area of theoretical
computer science, property testing also gave rise to
several subfields, notably that of distribution testing,
where the input consists of independent samples from
a probability distribution, and one must now verify if
the underlying unknown distribution satisfies a given
property of interest (cf. [3]–[7] for surveys on property
and distribution testing).
One of the earliest and most studied questions in

distribution testing is that of uniformity testing, where,
given independent samples from an arbitrary probability
distribution p on a discrete domain Ω, one has to decide
whether (i) p is uniform on Ω, or (ii) p is “far” (i.e.,
at total variation distance at least ε) from the uniform
distribution on Ω. Arguably the most natural distribution
testing problem, testing uniformity is also one of the most
fundamental; algorithms for uniformity testing end up
being crucial building blocks in many other distribution

testing algorithms [8]–[10]. Fully understanding the
sample complexity of the problem, as well as the possible
trade-offs it entails, thus prompted a significant line of
research.
Starting with the work of Goldreich and Ron [11]

(which considered it in the context of testing expansion of
graphs), uniformity testing was studied and analyzed in
a series of work [8], [12]–[16], which culminated with the
tight sample complexity bound of Θ

(√
n/ε2

)
for testing

uniformity on a discrete domain of size n. (Moreover, the
corresponding algorithms are also efficient, running in
time linear in the number of samples they take.)

Given this state of affairs, testing uniformity of discrete
distributions appears to be fully settled; however, as often
is the case, the devil is in the detail. Specifically, all the
aforementioned results address the case where the domain
Ω is explicitly known, and the task is to find out whether
p is the uniform distribution on this domain. Yet, in
many cases, samples (or data points) are drawn from the
underlying distribution without such prior knowledge,
and the relevant question is whether p is uniform on its
support – which is unknown, of arbitrary size, and can
be completely unstructured.1
In this work, we focus on this latter question: in

particular, we do not assume any a priori knowledge
on the domain Ω, besides its being discrete. Our goal
is then the following: given independent samples from
an arbitrary probability distribution p on Ω, we must
distinguish between the case (i) p is uniform on some
subset of Ω, and (ii) p is far from every such uniform
distribution. As we shall see, this is not merely a
technicality: this new task is provably harder than the
case where Ω is known. Indeed, this difference intuitively
stems from the uncertainty on where the support of p
lies, which prevents any reduction to the simple, known-
domain case.
Furthermore, one crucial feature of the problem is

that it intrinsically calls for adaptive algorithms. This
is in sharp contrast to the overwhelming majority of

1In particular, one cannot, without loss of generality, assume
that the support is the set of consecutive integers {1, . . . , n}.
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distribution testing algorithms, which (essentially) draw
a prespecified number of samples all at once, before
processing them and outputting a verdict. This is because,
in our case, an algorithm is provided only with the
proximity parameter ε ∈ (0, 1], and has no upper bound
on the domain size n nor on any other parameter of the
problem. Therefore, it must keep on taking samples until
it has “extracted” enough information – and is confident
enough that it can stop and output an answer. (In this
sense, our setting is closer in spirit to the line of work
pioneered in Statistics by Ingster [17], [18] than to the
“instance-optimal” setting of Valiant and Valiant [13],
[19], as in the latter the algorithm is still provided with
a massive parameter in the form of the full description
of a reference probability distribution.)

A. Our Results
Given a discrete, possibly unbounded domain Ω, we

let CU denote the set of all probability distributions that
are supported and uniform on some subset of Ω, that is

CU
def= { uS : S ⊆ Ω }

where, for a given set S ⊆ Ω, uS denote the uniform
distribution on S. In what follows, we write dTV(p, q)
for the total variation distance between two distributions
p, q on Ω.

Theorem I.1. There exists an algorithm which, given
sample access to an arbitrary distribution p over some
unknown discrete domain Ω, as well as parameter ε ∈
(0, 1], satisfies the following.

1) If p ∈ CU , then the algorithm outputs accept with
probability at least 2/3;

2) if dTV(p, CU ) > ε, then the algorithm outputs reject
with probability at least 2/3.

Moreover, the algorithm takes O
(

1
ε6‖p‖3

)
samples in ex-

pectation and is efficient (in the number of samples taken).

We note that if indeed p is uniform, i.e., p = uS for
some S ⊆ Ω, then, for constant ε, the above complexity
becomes O

(
|S|2/3 )

– to be compared to the Θ
(√

|S|
)

sample complexity of testing whether p = uS for a
fixed S. Our next result shows that this is not an artifact
of our algorithm; namely, such a dependence is necessary,
and testing the class of uniform distributions is strictly
harder than testing any specific uniform distribution.

Theorem I.2. Fix any (non-uniform) distribution q
over Ω, and let ε

def= dTV(q, CU ) be its distance to CU .
Then, given sample access to a distribution p on Ω,
distinguishing with high constant probability between (i)
p is equal to q up to a permutation of the domain and
(ii) p ∈ CU , requires Ω

(
1

‖q‖3

)
samples. In particular, an

algorithm that tests membership in CU with high probability

and for any proximity parameter ε′ ≤ ε requires this many
samples.

It is worth discussing the above statement in detail, as
its interpretation can be slightly confusing. Specifically,
it does not state that testing identity to any fixed, known
distribution p requires Ω(1/‖p‖3) (indeed, by the results
of [13], [19], such a statement would be false). What is
stated is essentially that, even given the full description
of p, it is hard to distinguish between p and a uniform
distribution, after relabeling of the elements of the domain.
Since the class of uniform distributions is invariant by
such permutations, the last part of the theorem follows.

B. Overview and Techniques
The key intuition and driving idea of both our upper

and lower bounds is the observation that, by very
definition of the problem, there is no structure nor
ordering of the domain to leverage. That is, the class of
uniform distributions over Ω is a “symmetric property”
(broadly speaking, the actual labeling of the elements
of the domain is irrelevant), and the domain itself can
and should be thought of as a set of arbitrary points
with no algebraic structure. Given this state of affairs,
an algorithm should not be able to do much more than
counting collisions, that is the number of pairs, or triples,
or more generally k-tuples of samples which happen to
“hit” the same domain element.

Equivalently, these collision counts correspond to the
moments (that is, �p-norms) of the distribution; following
a line of works on symmetric properties of distributions (
[11], [20]–[22], to cite a few), we thus need to, and can only,
focus on estimating these moments. To relate this to our
property CU , we first need a simple connection between
�p norms and uniformity of a distribution. However,
while getting an exact characterization is not difficult
(Lemma II.2), we are interested in a robust character-
ization, in order to derive a correspondence between
approximate equality between �p norms and distance
to uniformity. This is what we obtain in Lemma III.4:
roughly speaking, if ‖p‖42 ≈ ‖p‖33 then p must be close
to a uniform distribution on 1/‖p‖22 elements.

This in turn allows us to design and analyze a simple
and clean testing algorithm, which works in two stages:
(i) estimate ‖p‖22 to sufficient accuracy; (ii) using this
estimate, take enough samples to estimate ‖p‖33 as well;
and accept if and only if ‖p‖42 ≈ ‖p‖33.
Turning to the lower bound, the idea is once again

to only use the available information: namely, if all that
should matter are the �p-norms of the distribution, then
two distributions with similar low-order norms should
be hard to distinguish; so it would suffice to come up
with a pair of uniform and far-from-uniform distributions
pyes, pno with similar moments to establish our lower
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bound. Fortunately, this intuition – already present
in [20] – was formalized and developed in an earlier
work of Paul Valiant [21], which we thus can leverage
for our purpose. Given this “Wishful Thinking Theorem”
(see Theorem II.1), what remains is to upper bound the
discrepancy of the moments of our two candidate distribu-
tions pyes, pno to show that some specific quantity is very
small. Luckily, this last step also can be derived from the
aforementioned robust characterization, Lemma III.4.

C. Organization
After recalling some useful notation and results in Sec-

tion II, we establish our upper bound (Theorem I.1)
in Section III. Section IV is then dedicated to the proof
of our lower bound, Theorem I.2.

II. Preliminaries
A. Definitions and notation

All throughout this paper, we write Δ(Ω) for the set of
discrete probability distributions over domain Ω, i.e. the
set of all real-valued functions p : Ω → [0, 1] such that∑

x∈Ω p(x) = 1. Considering a probability distribution
as the vector of its probability mass function (pmf), we
write ‖p‖r for its �r-norm, for any r ∈ [1, ∞]. A property
of distributions over Ω is then a subset P ⊆ Δ(Ω),
comprising all distributions that have the property.
As standard in distribution testing, we will measure

the distance between two distributions p1, p2 on Ω by
their total variation distance

dTV(p1, p2)
def= 1

2‖p1 − p2‖1 = max
S⊆Ω

(p1(S) − p2(S))

which takes value in [0, 1]. (This metric is sometimes
referred to as statistical distance). Given a property P
and a distribution p ⊆ Δ(Ω), we then write dTV(p, P) def=
infq∈P dTV(p, q) for the distance of p to P.
Finally, recall that a testing algorithm for a fixed

property P is a randomized algorithm T which takes
as input a proximity parameter ε ∈ (0, 1], and is
granted access to independent samples from an unknown
distribution p:
1) if p ∈ P, the algorithm outputs accept with

probability at least 2/3;
2) if dTV(p, p′) ≥ ε for every p′ ∈ P, it outputs reject

with probability at least 2/3.
That is, T must accept if the unknown distribution has
the property, and reject if it is ε-far from having it. The
sample complexity of the algorithm is the number of
samples it draws from the distribution in the worst case.

B. Useful results from previous work
We will heavily rely, for our lower bound, on the “Wish-

ful Thinking Theorem” due to Paul Valiant [21], which
applies to testing symmetric properties of distributions

(that is, properties that are invariant under relabeling of
the domain, as CU happens to be). Intuitively, this theo-
rem ensures that “if the low-degree moments (�p norms)
of two distributions match, then these distributions (up
to relabeling) are hard to distinguish.”

Theorem II.1 (Wishful Thinking Theorem [21, Theo-
rem 4.10], restated). Given a positive integer k and two
distributions pyes, pno, it is impossible to test in k samples
any symmetric property that holds for pyes and does not
hold for pno, provided that following conditions hold:

• ‖pyes‖∞, ‖pno‖∞ ≤ 1
500k ;

• letting myes, mno be the k-based moments of pyes, pno

(defined below),
∞∑

j=2

|myes(j) − mno(j)|√
1 + max(myes(j), mno(j))

<
1
24 ,

where myes(j) def= kj‖pyes‖j
j , mno(j) def= kj‖pno‖j

j, for
j ≥ 0.

(We observe that we only reproduced here one of the
three sufficient conditions given in the original, more
general theorem; as this will be the only one we need.)

C. Some structural results
We here state and establish some simple yet useful

results. The first relates uniformity of a distribution to
the �p-norms of its probability mass function, while the
second provides inequalities between these norms.

Lemma II.2. Let p ∈ Δ(Ω). Then, ‖p‖42 = ‖p‖33 if and
only if p ∈ CU .

Proof: If p ∈ CU , it is immediate to see that ‖p‖42 =
‖p‖33. We thus consider the converse implication. By the
Cauchy–Schwarz inequality,

‖p‖22 =
∑
i∈Ω

p2i ≤
(∑

i∈Ω

(
p3/2

i

)2)1/2 (∑
i∈Ω

(
p1/2

i

)2)1/2

=
(∑

i∈Ω
p3i

)1/2 (∑
i∈Ω

pi

)1/2

= ‖p‖3/2
3 · 1

with equality if, and only if, (p3/2
i )i∈Ω and (p1/2

i )i∈Ω are
linearly dependent. Thus, ‖p‖42 = ‖p‖33 implies that there
exist non-zero α, β ∈ R such that αp3/2

i = βp1/2
i for all

i ∈ Ω, or equivalently that pi ∈ {0, β
α } for all i ∈ Ω.

This, in turn, implies that p is uniform on a subset of α
β

elements.

Fact II.3. For any vector x ∈ R
N such that ‖x‖1 < ∞,

we have
‖x‖2(j−1)

2 ≤ ‖x‖j−2
1 ‖x‖j

j ,
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for all j ≥ 2. In particular, for any distribution p ∈ Δ(Ω),
we have ‖p‖2(j−1)

2 ≤ ‖p‖j
j for all j ≥ 2 (and, thus, for

instance, ‖p‖42 ≤ ‖p‖33).
Proof: The inequality is trivially true for j = 2,

and, so, we henceforth assume j ≥ 3. Let x ∈ R
N be

such a vector: we wish to show that
(∑∞

i=0 x2i
)j−1 ≤

(
∑∞

i=0 |xi|)j−2 (∑∞
i=0 |xi|j

)
, or equivalently

∑∞
i=0 x2i ≤

(
∑∞

i=0 |xi|)
j−2
j−1

(∑∞
i=0 |xi|j

) 1
j−1 . Set p′ def= j−1

j−2 , and q′ def=
j − 1 so that p′, q′ ≥ 1 with 1

p′ + 1
q′ = 1. Observing that

|xi|2 = |xi|
j−2
j−1 |xi|

j
j−1 , we then apply Hölder’s inequality:

∞∑
i=0

|xi|2 =
∞∑

i=0
|xi|

1
p′ |xi|

j

q′

≤
( ∞∑

i=0
|xi|

p′
p′

) 1
p′ ( ∞∑

i=0
|xi|

jq′
q′

) 1
q′

=
( ∞∑

i=0
|xi|

) j−2
j−1

( ∞∑
i=0

|xi|j
) 1

j−1

concluding the proof.
III. The Upper Bound

Our algorithm for testing uniformity first estimates the
�2 norm of the input distribution and uses this estimate
to obtain a surrogate value for the size of the support set
for the distribution. In the case the input distribution
is a uniform distribution, the �2 norm estimate indeed
provides a good approximation to the size of the support
set. Our algorithm for the �2 norm estimation is presented
in the following section, followed by our algorithm for
testing uniformity.
A. Estimating the �2 norm of a distribution
In this section, we present an algorithm that, given

independent samples from a distribution p over N,
estimates ‖p‖22. Note that a similar result was presented
in Batu et al. [23] in the case when the size of the domain
is bounded and known to the algorithm. Furthermore, an
algorithm based on the same ideas have been presented by
Batu et al. [24] to estimate the entropy of a distribution
that is uniform on a subset of its domain. The algorithm
is presented below in Algorithm 1.

Algorithm 1 Estimating the �2 norm of a distribution
from samples

1: procedure Estimate-�2-norm(p, ε)
2: k ← � C

ε4 
 � C = 6500
3: Keep taking samples from p until k 2-collisions

are observed.
4: Let m be the number of samples taken.
5: return k

(m
2 )

6: end procedure

Lemma III.1. Algorithm Estimate-�2-norm, given
independent samples from a distribution p over N and
0 < ε < 1

2 , outputs a value γ such that

(1 − ε) · ‖p‖22 ≤ γ ≤ (1 + ε) · ‖p‖22, (1)

with probability at least 3/4. Whenever the algorithm
produces an estimate satisfying (1) above, the number of
samples taken by the algorithm is Θ( 1

ε2‖p‖2
). Moreover,

the algorithm takes O( 1
ε2‖p‖2

) samples in expectation.

Proof: Let M be the random variable that denotes
the number of samples that were taken by the algorithm
until k pairwise collisions are observed. We will show that,
with constant probability, M is close to its expected value
nearly

√
k/‖p‖2.

Consider a set of m samples from p. For 1 ≤ i <
j ≤ m, let Xij be an indicator random variable de-
noting a collision between ith and jth samples. Let
Sm =

∑
1≤i<j≤m Xij be the total number of collisions

among the samples.
For any i < j, E[Xij ] = ‖p‖22. Therefore, E[Sm] =(

m
2
)

· ‖p‖22. We will also need an upper bound on the
variance Var[Sm] to show that the k collisions are not
observed too early or too late.

E
[
S2m

]
= E

[( ∑
i<j

Xij

)( ∑
i′<j′

Xi′j′
)]

=
∑
i<j

i′<j′

E[XijXi′j′ ].

The terms of the last summation above can be grouped
according to the cardinality of the set {i, j, i′, j′}.

• If |{i, j, i′, j′}| = 2, then E[XijXi′j′ ] = E[Xij ] =
‖p‖22. There are

(
m
2
)
such terms.

• If |{i, j, i′, j′}| = 3, then E[XijXi′j′ ] = E[XijXij′ ] =
‖p‖33. There are 6

(
m
3
)
such terms.

• If |{i, j, i′, j′}| = 4, then E[XijXi′j′ ] =
E[Xij ]E[Xi′j′ ] = ‖p‖42. There are 6

(
m
4
)

such
terms.

Hence, we can bound the variance of Sm as follows.

Var[Sm] = E[S2m] − E[Sm]2

=
(

m

2

)
· ‖p‖22 + 6

(
m

3

)
· ‖p‖33

+ 6
(

m

4

)
· ‖p‖42 −

((
m

2

)
· ‖p‖22

)2

=
(

m

2

)
· ‖p‖22 + 2m · ‖p‖33

+ (m3 − 3m2) · (‖p‖33 − ‖p‖42)

≤
(

m

2

)
· ‖p‖22 + m3 · ‖p‖32,

where the inequality arises from ‖p‖3 ≤ ‖p‖2.
The probability that the output of the algorithm is less

than (1−ε)·‖p‖22 (that is, an underestimation) is bounded
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from above by the probability of the random variable M
taking a value m such that (1− ε)

(
m
2
)

· ‖p‖22 > k. Analo-
gously, the probability of an overestimation is bounded
above by the probability of the random variable M taking
a value m such that (1 + ε)

(
m
2
)

· ‖p‖22 < k.
Let m be the smallest integer such that (1 + ε)

(
m
2
)

·
‖p‖22 ≥ k, so that (1 + ε)

(
m−1
2

)
· ‖p‖22 < k. Then, letting

Eover denote the event of an overestimation,

Pr[Eover] = Pr[M < m]
= Pr[∃� ≤ m − 1, S� ≥ k] = Pr [Sm−1 ≥ k]

= Pr
[
Sm−1 − E[Sm−1] ≥ k −

(
m − 1

2

)
‖p‖22

]

≤ Pr
[
|Sm−1 − E[Sm−1]| > ε

(
m − 1

2

)
‖p‖22

]

≤ Var[Sm−1](
ε
(

m−1
2

)
‖p‖22

)2 (Chebyshev’s inequality)

≤
(

m−1
2

)
‖p‖22 + (m − 1)3‖p‖32
ε2

(
m−1
2

)2‖p‖42

≤ 1
ε2

(
1(

m−1
2

)
‖p‖22

+ 9
(m − 1)‖p‖2

)

= 1
ε2

(
m

m − 2
1(

m
2
)
‖p‖22

+ m

m − 1
9

m‖p‖2

)

≤ 1
ε2

(
10
8

1(
m
2
)
‖p‖22

+ 10
9

9
m‖p‖2

)

(m ≥
√
2k + 1 ≥ 10, or Pr[Sm−1 ≥ k] = 0.)

≤
(∗)

1
ε2

(
10
8
1 + ε

k
+ 10

√
1 + ε√
2k

)

≤ 10
ε2

(
1
4k

+ 1√
k

)

≤ 5ε2

2C
+ 10√

C
≤ 5

2C
+ 10√

C

<
1
8

for C ≥ 6500, where (∗) follows from the choice of m.
To upper bound the probability of underestimation,

take m to be largest integer such that (1−ε)
(

m
2
)
·‖p‖22 ≤ k

(so that (1 − ε)
(

m+1
2

)
· ‖p‖22 > k, i.e. (1 − ε)m+1

m−1
(

m
2
)

·
‖p‖22 > k).2 Then, letting Eunder denote the event of an

2In particular, this implies
(

m+1
2

)
> k, from which m >

√
2k +

1 � 1
ε2 .

underestimation,

Pr[Eunder] = Pr[M > m] = Pr[∀� ≤ m, S� < k]
= Pr [Sm < k] = Pr [E[Sm] − Sm > E[Sm] − k]

≤ Pr
[
E[Sm] − Sm >

(
1 − (1 − ε)m + 1

m − 1

)(
m

2

)
‖p‖22

]

= Pr
[
E[Sm] − Sm >

εm − 1
m − 1

(
m

2

)
‖p‖22

]
(Note that εm > 1)

≤
(

m − 1
εm − 1

)2 Var[Sm]((
m
2
)
‖p‖22

)2
≤

(
2
ε

)2 Var[Sm]((
m
2
)
‖p‖22

)2
≤ 4

(
m
2
)
‖p‖22 + m3‖p‖32
ε2

(
m
2
)2‖p‖42

≤ 4
ε2

( 1(
m
2
)
‖p‖22

+ 9
m‖p‖2

)

≤ 4
ε2

(12
10

1(
m
2
)
‖p‖22

+ 11
10

9
m‖p‖2

)
(m ≥

√
2k + 1 ≥ 10.)

≤
(∗)

6
ε2

(
1 − ε

k
+

√
1 − ε√
2k

)
≤ 6

ε2

(
1
k
+ 1√

2k

)

≤ 6ε2

C
+ 6√

2C
≤ 6

C
+ 6√

2C

<
1
8

for C ≥ 1250, where (∗) follows from the choice of m.
By the union bound, overestimation or underestimation

happens with probability at most 1/4. Finally, in the
event that we have a good estimation, we have that the
number m of samples satisfy

k

(1 + ε) · ‖p‖22
≤

(
m

2

)
≤ k

(1 − ε) · ‖p‖22
.

Therefore, we have that m = Θ(
√

k/‖p‖2) = Θ(1/(ε2 ·
‖p‖2)).

To bound the expected number of samples, we consider
two cases (recall that the asymptotics here are taken,
unless specified otherwise, while viewing p as a sequence
of distributions (p(n))n≥0 and letting n → ∞):

• if ‖p‖∞ = Ω(‖p‖2) (i.e., ‖p‖∞ = Θ(‖p‖2)), then we
denote by i∞ the element such that pi∞ = ‖p‖∞.
It follows from properties of the negative binomial
distribution that the expected number M∞ of draws
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necessary to see � = Θ(
√

k) different draws of i∞
(and thus k =

(
�
2
)
collisions) is Θ(

√
k/‖p‖∞), so

that E[M ] ≤ E[M∞] = O( 1
ε2‖p‖∞

).
• on the other hand, if ‖p‖∞ = o(‖p‖2), then we can
apply Theorem 4 of [25] (see also [26]) to get that
E[M ] ∼n→∞ Ck

‖p‖2
, where Ck =

(k− 1
2

k−1
)√

π
2 ∼k→∞√

2k. Recalling that k = Θ(1/ε4), we obtain E[M ] =
Θ( 1

ε2‖p‖2
), as claimed.

Note that the sample complexity of Algo-
rithm Estimate-�2-norm is tight for near-uniform
distributions (at least, in terms of dependency on ‖p‖2).
Consider a distribution p on n elements with probability
values in {(1 − δ)/n, (1 + δ)/n} for some small δ. Even
though ‖p‖2 can have sufficiently high ‖p‖2 and should
be distinguished from the uniform distribution on n
elements, there will be no repetition in the sample until
Ω(

√
n) = Ω(1/‖p‖2) samples are taken. The following

lemma generalizes this argument.

Lemma III.2. For any distribution p and ε ∈ (0, 1/3),
estimation of ‖p‖22 within a multiplicative factor of (1+ε)
requires Ω(1/(

√
ε‖p‖2)) samples from p.

Proof: Take any distribution p. We first consider the
case ε ≥ ‖p‖22. Fix any element c ∈ N such that p(c) = 0
(we can assume for simplicity one exists; otherwise, since
we can find, for any η > 0, c ∈ N such that p(c) < η, we
can repeat the argument below for an arbitrarily small
η), and let γ

def= ‖p‖2+
√
3ε+(1+3ε)‖p‖2

2
1+‖p‖2

2
. Then, we define

the distribution q on N as the mixture

q def= (1 − γ‖p‖2)p + γ‖p‖21{c}

which satisfies dTV(p, q) = γ‖p‖2, and

‖q‖22 = (1 − γ‖p‖2)2‖p‖22 + γ2‖p‖22
= ((1 − γ‖p‖2)2 + γ2)‖p‖22 = (1 + 3ε)‖p‖22

the last equality from our choice of γ. Since ε < 1,
any algorithm that estimates the squared �2 norm of
an unknown distribution can be used to distinguish
between p and q. However, from the very definition
of total variation distance, distinguishing between p and
q requires Ω(1/dTV(p, q)) samples. Since

γ ≤ ‖p‖2 +
√
3ε + 2‖p‖22 ≤ (1 +

√
5)

√
ε

(as ‖p‖22 ≤ ε) we get a lower bound of Ω
(

1√
ε‖p‖2

)
.

We now turn to the case ε < ‖p‖22. The construction
will be similar, but setting γ

def= 3ε/‖p‖2, and spreading
the γ‖p‖2 = 3ε probability uniformly on m

def= 3ε
(1−3ε)‖p‖2

2elements c1, . . . , cm outside the support of p, instead of

just one. It is straightforward to check that in this case,
the distribution q we defined is such that

‖q‖22 = (1 − 3ε)2‖p‖22 +
9ε2

m
= (1 − 3ε)‖p‖22

so again, by the same argument, any algorithm which
can approximate ‖p‖22 to 1 + ε can be used to distin-
guish between p and q, and thus requires Ω

(
1

γ‖p‖2

)
=

Ω
(

1√
ε‖p‖2

)
samples.

Remark III.3. We emphasize that the above theorem is
on an instance-by-instance basis, and applies to every
probability distribution p. In contrast, it is not hard
to see that for some distributions p, a lower bound of
Ω

(
1/(‖p‖2ε2)

)
holds: this follows from instance from [27,

Theorem 15]. This latter bound, however, cannot hold
for every probability distribution, as one can see e.g.
from a (trivial) distribution p supported on a single
element, for which �2-norm estimation can be done with
O(1/ε) = O(1/(‖p‖2ε) samples.

B. Testing Uniformity
In this section, we present our algorithm for testing uni-

formity of a distribution. We first give a brief overview of
the algorithm. The algorithm first estimates the �2 norm
of the input distribution and uses this value to obtain an
estimate on the support size of the distribution. Then, the
algorithm tries to distinguish a uniform distribution from
a distribution that is far from any uniform distribution
by using the number of 3-way collisions in a freshly taken
sample set. For two distributions with the same �2 norm,
where one is a uniform distribution and the other is far
from being uniform, the latter is expected to produce
more 3-way collisions in a large enough sample set. The
algorithm keeps taking samples up to a number based on
the support-size estimate and keeps track of the 3-way
collisions in the sample set to decide whether to accept
or reject the input distribution.
The following lemma formalizes the intuition that if

the �2 and the �3 norm of a distribution is close to those
of the uniform distribution on N elements, then the
distribution is close to being uniform.

Lemma III.4. Let p be a distribution over N and N ∈ N

such that
1 − ε

N
≤ ‖p‖22 ≤ 1 + ε

N

and
‖p‖33 ≤ 1 + δ

N2 ,

for some 0 < ε, δ < 0.04. Then, the distance of p to CU

can be upper bounded as

dTV(p, CU ) ≤ 9 3√
δ + 3ε.
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Proof: Note that the condition on the ‖p‖22 implies
that p “ought to be” distributed roughly uniformly
over N elements, or otherwise would deviate significantly
enough from uniformity to impact its �3 norm. The
condition on ‖p‖33 further strengthens how evenly p is
distributed, ensuring that this latter case cannot happen.
Below we formalize this intuition and, in particular, use
the conditions on the norms to upper bound the total
mass on the items that have probability significantly
larger than 1/N .
Let R be a random variable such that R takes value

pi with probability pi, for each element i in the support
set of p. Then, E[R] =

∑
i∈N

p2i = ‖p‖22, which implies
1 − ε

N
≤ E[R] ≤ 1 + ε

N

and

Var[R] = E[R2] − E[R]2

=
∑
i∈N

p3i − ‖p‖42

≤ 1 + δ

N2 − (1 − ε)2
N2

≤ δ + 2ε

N2 .

We now derive an upper bound on the �1 distance
dTV(p, CU ). We first obtain an upper bound on the
total weight of elements with probability significantly
above or below 1

N . Then, we can proceed to compare
the distribution p to a uniform distribution with support
size close to N .
First, we can bound the total probability mass α of

items i such that pi > 1+ 3√δ+3ε
N or pi < 1− 3√δ+3ε

N by
looking at the probability of a large deviation of R from
its expectation. In particular,

α = Pr
[(

R >
1 + 3

√
δ + 3ε

N

)
∨

(
R <

1 − 3
√

δ + 3ε

N

)]

≤ Pr
[
|R − E[R]| >

3
√

δ + 3ε − ε

N

]

≤ Pr
[
|R − E[R]| >

3
√

δ + 2ε

N

]

≤ Var[R] · N2

3
√
(δ + 2ε)2

≤ 3√
δ + 2ε

Note that the second inequality above follows from that
3
√

δ + 3ε − ε ≥ 3
√

δ + 2ε when δ + 2ε ≤ 3−3/2 ≤ 0.18, by
the concavity of the function f(x) = 3

√
x and f ′(x) ≥ 1

for x ≤ 3−3/2.
We now have established that a probability mass of at

least 1 − 3
√

δ + 2ε of p is placed on elements with indi-
vidual probabilities in the interval [1− 3√δ+3ε

N , 1+
3√δ+3ε
N ].

Call this set F . Thus, we have that

(1 − 3
√

δ + 2ε)N
1 + 3

√
δ + 3ε

≤ |F | ≤ N

1 − 3
√

δ + 3ε
.

Now consider the uniform distribution uF on the set
F . Since dTV(p, CU ) ≤ dTV(p, uF ), it suffices to upper
bound the latter. Given that

1− 3√
δ + 3ε < 1− 3√

δ + 2ε < 1+ 3√
δ + 2ε <

1 − 3
√

δ + 3ε

1 − 3
√

δ + 2ε
,

for any i ∈ F , we have that

|pi − 1
|F | | ≤ 4 3

√
δ + 3ε

N
.

Finally, we can conclude that

dTV(p, uF ) = p(N \ F ) +
∑
i∈F

|pi − 1
|F | |

≤ 3√
δ + 2ε +

∑
i∈F

4 3
√

δ + 3ε

N

≤ 3√
δ + 2ε + 4 3

√
δ + 3ε

1 − 3
√

δ + 3ε

≤ 9 3√
δ + 3ε

establishing the lemma.
The algorithm for testing uniformity is presented below

in Algorithm 2.

Algorithm 2 Testing Uniformity
1: procedure Test-Uniformity(p, ε)
2: δ ← ε3/5832
3: N ← 1/Estimate-�2-norm(p, δ)
4: k ← �ε−18

5: Keep taking samples from p until you see k 3-way

collisions or reach M = 3
√
3(1 − 4δ)kN2/3

samples, whichever happens first.
6: if more than k 3-way collisions are observed in
7: the sample set then
8: return reject
9: else

10: return accept
11: end if
12: end procedure

Note that, for a uniform distribution, �2 norm esti-
mation will give a reliable estimate N for the support
size. Then, we will show that M = O(ε−6N2/3) samples
will be unlikely to produce more than k 3-way collision.
On the other hand, for a distribution that is far from a
uniform distribution, the support size estimation in the
algorithm will be an underestimation. In additions, the
�3 norm of such a distribution will be higher than that
of the uniform distribution with that estimated support
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size. As a result, the algorithm will observe more than
k 3-way collisions in the subsequent samples with high
probability as an evidence that the input distribution is
not uniform.

Theorem III.5. Algorithm Test-Uniformity, given
independent samples from a distribution p over N and
0 < ε < 1

2 , accepts if p ∈ CU and rejects p such that
Δ(p, CU ) ≥ ε, with probability at least 3/4. The sample
complexity of the algorithm is Θ(1/ε6‖p‖3).

Proof: In the proof, we will need simple distributional
properties of the number of 3-way collisions, analogous
to the arguments in the proof of Lemma III.1. Let Tm be
the total number of 3-way collisions in m samples from
a distribution p. Then, we have that

E[Tm] =
(

m

3

)
· ‖p‖33

and

Var[Tm] ≤ O
(

m3‖p‖33 + m4‖p‖43 + m5‖p‖53
)

.

For the completeness argument, take p = US for some
subset S of N. Then, by Lemma III.1, variable N from the
algorithm will be within (1 ∓ δ) of |S|, with probability
3/4. Then, the probability that the number of 3-way
collisions in m = M samples from p is more than k is

Pr [Tm > k] ≤ Pr
[
Tm − E[Tm] > k − (1 − 4δ)kN2 1

|S|2
]

≤ Pr
[
Tm − E[Tm] > k − (1 − 4δ)(1 + δ)2k

]
≤ Pr [Tm − E[Tm] > δk]
≤ δ−2k−2 · Var[Tm]
≤ O(ε−6k−2) · O(k5/3)

≤ 1
O(ε6k1/3)

≤ 1
8 .

Hence, with constant probability, there will be at most
k 3-way collisions in the samples from p and it will be
accepted. The sample and running time complexity is
then

Θ
(

1
ε6‖p‖2

+ ε−6N2/3
)

= Θ
(

1
ε6‖p‖2

+ 1
ε6‖p‖3

)

= Θ
(

1
ε6‖p‖3

)
.

Now, for the soundness argument, suppose that after
m = M samples, at most k 3-way collisions are observed.
We can then argue that, with some constant probability,
‖p‖33 is less than 1+5δ

N2 . If ‖p‖33 > 1+5δ
N2 , then

E[Tm] =
(

m

3

)
·‖p‖33 > (1−4δ)kN2 · 1 + 5δ

N2 ≥ (1+δ/2)k.

Then,

Pr[Tm ≤ k] = Pr[|Tm − E[Tm]| ≥ δk/2]

≤ 4Var[Tm]
δ2k2

≤ O

(
4k5/3N10/3(1 + 5δ)5/3

ε6k2N10/3

)

≤ O

(
1

ε16k2

)

≤ 1
4

Hence, we have that
1 − δ

N
≤ ‖p‖22 ≤ 1 + δ

N

and
‖p‖33 ≤ 1 + 5δ

N2 .

By Lemma III.4, we have that p is within 9 3
√
8δ = ε of

CU .
For a distribution p that is ε-far from uniform, the

algorithm will stop after observing k 3-way collisions with
constant probability. Similar to the arguments above, this
will happen when the number m of samples satisfies(

m

3

)
· ‖p‖33 ≈ k.

Hence, the sample complexity of the algorithm in this
case is

Θ
(

1
ε6‖p‖2

+ ε−6N2/3
)

= Θ
(

1
ε6‖p‖2

+ 1
ε6‖p‖3

)

= Θ
(

1
ε6‖p‖3

)
.

IV. The Lower Bound
In this section, we prove our main lower bound, restated

below.

Theorem I.2. Fix any (non-uniform) distribution q
over Ω, and let ε

def= dTV(q, CU ) be its distance to CU .
Then, given sample access to a distribution p on Ω,
distinguishing with high constant probability between (i)
p is equal to q up to a permutation of the domain and
(ii) p ∈ CU , requires Ω

(
1

‖q‖3

)
samples. In particular, an

algorithm that tests membership in CU with high probability
and for any proximity parameter ε′ ≤ ε requires this many
samples.

Proof: Let q ∈ Δ(Ω) and ε ∈ (0, 1] be as in the
statement of the theorem. To argue that (a permutation
of) q is hard to distinguish from some u ∈ CU with few
samples (where “few” is a function of q and ε only), we
will rely on the Wishful Thinking Theorem of Valiant [21].
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Indeed, this theorem, broadly speaking, ensures that two
distributions with moments (nearly) matching are hard
to distinguish given only their fingerprints (equivalently,
that distinguishing between relabelings of q and relabel-
ings of u is hard). This will be enough to conclude, as
CU is a symmetric property.
Specifically, we define the two distributions pyes, pno

(respectively in CU and ε-far from it) as follows:
• pno is the “no-distribution” imposed to us – that is,

pno = q;
• pyes is a uniform distribution on a set S ⊆ Ω of
1/‖q‖22 elements.

(To see why this is a natural choice: the natural “yes-
distribution” to consider in order to fool an algorithm
is, by the Wishful Thinking Theorem, a distribution
that matches as many moments of pno = q as possible;
which, in our case, will mean matching the ‖·‖1, and
‖·‖2 moments. Note that we could try to approximately
match the third moment, ‖·‖3, as well, but that there is
no hope to match it perfectly: if we could do so with a
uniform distribution, this by Lemma II.2 would imply
that q was in CU to begin with.)
In what follows, in view of deriving our lower bound

we suppose that k‖q‖3 � 1. Let pyes be a uniform dis-
tribution on a subset of m

def= 1
‖q‖2

2
elements. Computing

the k-based moments of pyes is straightforward: for any
j ≥ 2, we have

myes(j) = kj

mj−1 = kj‖q‖2(j−1)
2 =

(
k‖q‖22

)j

‖q‖22

while, of course, mno(j) = kj‖q‖j
j . It follows that

Σ def=
∞∑

j=2

|myes(j) − mno(j)|√
1 + max(myes(j), mno(j))

=
∞∑

j=3

|myes(j) − mno(j)|√
1 + max(myes(j), mno(j))

=
∞∑

j=3
kj

∣∣∣‖q‖j
j − ‖q‖2(j−1)

2

∣∣∣√
1 + kj max(‖q‖2(j−1)

2 , ‖q‖j
j)

.

Now, we will use Fact II.3 to get rid of the absolute value;
as it enables us to rewrite our sum as

Σ =
∞∑

j=3
kj

‖q‖j
j − ‖q‖2(j−1)

2√
1 + kj‖q‖j

j

.

In order to handle this last expression, we can drop the

denominator, to get

Σ ≤
∞∑

j=3
kj

(
‖q‖j

j − ‖q‖2(j−1)
2

)

≤
∞∑

j=3
kj‖q‖j

j (†)

≤
∞∑

j=3
kj‖q‖j

3 (Monotonicity of �p norms)

= k3‖q‖33
1 − k‖q‖3

<
1
24

using our assumption that k‖q‖3 � 1.
This last bound will allow us to apply Theo-

rem II.1 and obtain the lower bound, provided that
‖pyes‖∞, ‖pno‖∞ ≤ 1

500k . But this last condition fol-
lows from observing that k max(‖pyes‖∞, ‖pno‖∞) ≤
k max(‖pyes‖3, ‖pno‖3) = k max(‖q‖3, ‖q‖4/3

2 ) ≤
k‖q‖3 � 1.
Remark IV.1. Although our lower bound does not directly
feature a dependence on the distance parameter ε (besides
applying to any ε′ ≤ ε), we conjecture that the right
dependence should be linear in 1/ε, i.e., Ω(1/(ε‖q‖3)).
(Indeed, while a square dependence on ε appears natural,
it cannot hold on an instance-by-instance basis for all
distributions, analogously to that of Lemma III.2: as one
could see by considering a degenerate distribution q with
1−ε probability weight on a single element, for which uni-
formity testing can be done with O(1/ε) = Ω(1/(ε‖q‖3))
samples.) Establishing this linear dependence with our
techniques, however, would require at the very least a
significant strengthening of the above chain of inequalities,
especially at step (†).
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