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Abstract—We study approximation algorithms for
scheduling problems with the objective of minimizing total
weighted completion time, under identical and related
machine models with job precedence constraints. We give
algorithms that improve upon many previous 15 to 20-
year-old state-of-art results. A major theme in these results
is the use of time-indexed linear programming relaxations.
These are natural relaxations for their respective prob-
lems, but surprisingly are not studied in the literature.

We also consider the scheduling problem of minimizing
total weighted completion time on unrelated machines.
The recent breakthrough result of [Bansal-Srinivasan-
Svensson, STOC 2016] gave a (1.5− c)-approximation for
the problem, based on some lift-and-project SDP relax-
ation. Our main result is that a (1.5−c)-approximation can
also be achieved using a natural and considerably simpler
time-indexed LP relaxation for the problem. We hope this
relaxation can provide new insights into the problem.

Keywords-approximation algorithms, scheduling, time-
indexed, weighted completion time

I. INTRODUCTION

Scheduling jobs to minimize total weighted comple-

tion time is a well-studied topic in scheduling theory,

operations research and approximation algorithms. A

systematic study of this objective under many different

machine models (e.g, identical, related and unrelated

machine models, job shop scheduling, precedence con-

straints, preemptions) was started in late 1990s and since

then it has led to great progress on many fundamental

scheduling problems.

In spite of these impressive results, the approxima-

bility of many problems is still poorly understood.

Many of the state-of-art results that were developed

in late 1990s or early 2000s have not been improved

since then. Continuing the recent surge of interest on

the total weighted completion time objective [1], [2],

[3], we give improved approximation algorithms for

many scheduling problems under this objective. The

machine models we study in this paper include identical

machine model with job precedence constraints, with

uniform and non-uniform job sizes, related machine

model with job precedence constraints and unrelated

machine model.

A major theme in our results is the use of time-

indexed linear programming relaxations. Given the time

aspect of scheduling problems, they are natural relax-

ations for their respective problems. However, to the

best of our knowledge, many of these relaxations were

not studied in the literature and thus their power in

deriving improved approximation ratios was not well-

understood. Compared to other types of relaxations,

solutions to these relaxations give fractional scheduling

of jobs on machines. Many of our improved results were

obtained by using the fractional scheduling to identify

the loose analysis in previous results.

A. Definitions of Problems and Our Results

We now formally describe the problems we study in

the paper and state our results. In all of these problems,

we have a set J of n jobs, a set M of m machines, each

job j ∈ J has a weight wj ∈ Z>0, and the objective to

minimize is
∑

j∈J wjCj , where Cj is the completion

time of the job j. We consider non-preemptive schedules

only. So, a job must be processed on a machine without

interruption. For simplicity, this global setting will not

be repeated when we define problems.

Scheduling on Identical Machines with Job Prece-
dence Constraints: In this problem, each job j ∈ J has

a processing time (or size) pj ∈ Z>0. The m machines

are identical; each job j must be scheduled on one of

the m machines non-preemptively; namely, j must be

processed during a time interval of length pj on some

machine. The completion time of j is then the right

endpoint of this interval. Each machine at any time

can only process at most one job. Moreover, there are

precedence constraints given by a partial order “≺”,

where a constraint j ≺ j′ requires that job j′ can

only start after job j is completed. Using the popular
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three-field notation introduced by Graham et al. [4], this

problem is described as P
∣∣prec∣∣∑j wjCj .

For the related problem P |prec|Cmax, i.e, the prob-

lem with the same setting but with the makespan

objective, the seminal work of Graham [5] gives a 2-

approximation algorithm, based on a simple machine-

driven list-scheduling algorithm. In the algorithm, the

schedule is constructed in real-time. As time goes, each

idle machine shall pick any available job to process

(a job is available if it is not scheduled but all its

predecessors are completed.), if such a job exists;

otherwise, it remains idle until some job becomes

available. On the negative side, Lenstra and Rinnooy

Kan [6] proved a (4/3− ε)-hardness of approximation

for P |prec|Cmax. Under some stronger version of the

Unique Game Conjecture (UGC) introduced by Bansal

and Khot [7], Svensson [8] showed that P |prec|Cmax

is hard to approximate within a factor of 2− ε for any

ε > 0.

With precedence constraints, the weighted completion

time objective is more general than makespan: one

can create a dummy job of size 0 and weight 1 that

must be processed after all jobs in J , which have

weight 0. Thus, the above negative results carry over to

P
∣∣prec∣∣∑j wjCj . Indeed, Bansal and Khot [7] showed

that the problem with even one machine is already hard

to approximate within a factor of 2 − ε, under their

stronger version of UGC. However, no better hardness

results are known for P
∣∣prec∣∣∑j wjCj , compared to

those for P |prec|Cmax.

On the positive side, by combining the list-scheduling

algorithm of Graham [5] with a convex programming

relaxation for P
∣∣prec∣∣∑j wjCj , Hall et al. [9] gave a

7-approximation for P
∣∣prec∣∣∑j wjCj . For the special

case 1|prec|∑j wjCj of the problem where there is

only 1 machine, Hall et al. [9] gave a 2-approximation,

which matches the (2 − ε)-hardness assuming the

stronger version of UGC due to [7]. Later, Munier,

Queyranne and Schulz ([10], [11]) gave the current best

4-approximation algorithm for P
∣∣prec∣∣∑j wjCj , using

a convex programming relaxation similar to that in Hall

et al. [9] and in Charkrabarti et al. [12]. The convex pro-

gramming gives a completion time vector (Cj)j∈J , and

the algorithm of [10] runs a job-driven list-scheduling

algorithm using the order of jobs determined by the

values Cj − pj/2. In the algorithm, we schedule jobs

j one by one, according to the non-increasing order of

Cj−pj/2; at any iteration, we schedule j at an interval

(C̃j − pj , C̃j ] with the minimum C̃j , subject to the

precedence constraints and the m-machine constraint.

It has been a long-standing open problem to improve

this factor of 4 (see the discussion after Open Problem

9 in [13]).

Munier, Queyranne and Schulz [10] also considered

an important special case of the problem, denoted as

P
∣∣prec, pj = 1

∣∣∑
j wjCj , in which all jobs have size

pj = 1. They showed that the approximation ratio of

their algorithm becomes 3 for the special case, which

has not been improved since then. On the negative side,

the 2−ε strong UGC-hardness result of Bansal and Khot

also applies to this special case.

In this paper, we improve the long-standing approx-

imation ratios of 4 and 3 for P
∣∣prec∣∣∑j wjCj and

P
∣∣prec, pj = 1

∣∣∑
j wjCj due to Munier, Queyranne

and Schulz [10], [11]:

Theorem 1. There is a 2 + 2 ln 2 + ε < (3.387 + ε)-
approximation algorithm for P

∣∣prec∣∣∑j wjCj , for ev-
ery ε > 0.

Theorem 2. There is a 1+
√
2 < 2.415-approximation

algorithm for P
∣∣prec, pj = 1

∣∣∑
j wjCj .

Scheduling on Related Machines with Job Prece-
dence Constraints: Then we consider the scheduling

problem on related machines. We have all the input

parameters in the problem P |prec|∑j wjCj . Addition-

ally, each machine i ∈ M is given a speed si > 0
and the time of processing job j on machine i is pj/si
(so the m machines are not identical any more). A

job j must be scheduled on some machine i during an

interval of length pj/si. Using the three-field notation,

the problem is described as Q|prec|∑j wjCj .

Chudak and Shmoys [14] gave the current best

O(logm) approximation algorithm for the problem,

improving upon the previous O(
√
m)-approximation

due to Jaffe [15]. Using a general framework of Hall et

al. [9] and Queyranne and Sviridenko [16], that converts

an algorithm for a scheduling problem with makespan

objective to an algorithm for the correspondent prob-

lem with weighted completion time objective, Chudak

and Shmoys reduced the problem Q|prec|∑j wjCj to

Q|prec|Cmax. In their algorithm for Q|prec|Cmax, we

partition the machines into groups, each containing ma-

chines of similar speeds. By solving an LP relaxation,

we assign each job to a group of machines. Then we

can run a generalization of the Graham’s machine-

driven list scheduling problem, that respect the job-to-

group assignment. The O(logm)-factor comes from the

number O(logm) of machine groups.

On the negative side, all the hardness results for

P |prec|Cmax carry over to both Q|prec|Cmax and

Q|prec|∑j wjCj . Recently Bazzi and Norouzi-Fard

[17] showed that assuming the hardness of some op-
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timization problem on k-partite graphs, both problems

are hard to be approximated within any constant.

In this paper, we give a slightly better approximation

ratio than O(logm) due to Chudak and Shmoys [14],

for both Q|prec|Cmax and Q|prec|∑j wjCj :

Theorem 3. There are O(logm/ log logm)-
approximation algorithms for both Q|prec|Cmax

and Q|prec|∑j wjCj .

Scheduling on Unrelated Machines: Finally, we

consider the classic scheduling problem to minimize

total weighted completion time on unrelated machines

(without precedence constraints). In this problem we are

given a number pi,j ∈ Z>0 for every i ∈ M, j ∈ J ,

indicating the time needed to process job j on machine

i. This problem is denoted as R||∑j wjCj .

For this problem, there are many classic 3/2-

approximation algorithms, based on a weak time-

indexed LP relaxation [18] and a convex-programming

relaxation ([19], [20]). These algorithms are all based

on independent rounding. Solving some LP (or convex

programming) relaxation gives yi,j values, where each

yi,j indicates the fraction of job j that is assigned to

machine i. Then the algorithms randomly and inde-

pendently assign each job j to a machine i, according

to the distribution {yi,j}i. Under this job-to-machine

assignment, the optimum scheduling can be found by

applying the Smith rule on individual machines.

Improving the 3/2-approximation ratio had been a

long-standing open problem (see Open Problem 8 in

[13]). The difficulty of improving the ratio comes

from the fact that any independent rounding algorithm

can not give a better than a 3/2-approximation for

R||∑j wjCj , as shown by Bansal, Srinivasan and

Svensson [1]. This lower bound is irrespective of the

relaxation used: even if the fractional solution is already

a convex combination of optimum integral schedules,

independent rounding can only give a 3/2-guarantee.

To overcome this barrier, [1] introduced a novel de-

pendence rounding scheme, which guarantees some

strong negative correlation between events that jobs are

assigned to the same machine i. Combining this with

their lifted SDP relaxation for the problem, Bansal,

Srinivasan and Svensson gave a (3/2−c)-approximation

algorithm for the problem R||∑j wjCj , where c =
1/(108 × 20000). This solves the long-standing open

problem in the affirmative.

Besides the slightly improved approximation ratio,

our main contribution for this problem is that the

(1.5−c)-approximation ratio can also be achieved using

the following natural time-indexed LP relaxation:

min
∑
j

wj

∑
i,s

xi,j,s(s+ pi,j) s.t. (LPR||wC)

∑
i,s

xi,j,s = 1 ∀j (1)

∑
j,s∈(t−pi,j ,t]

xi,j,s ≤ 1 ∀i, t (2)

xi,j,s = 0 ∀i, j, s > T − pi,j (3)

xi,j,s ≥ 0 ∀i, j, s (4)

In the above LP, T is a trivial upper bound on

the makespan of any reasonable schedule (T =∑
j maxi:pi,j �=∞ pi,j suffices). i, j, s and t are restricted

to elements in M,J, {0, 1, 2, · · · , T−1} and [T ] respec-

tively. xi,j,s indicates whether job j is processed on ma-

chine i with starting time s. The objective to minimize

is the weighted completion time
∑

j wj

∑
i,s xi,j,s(s+

pi,j). Constraint (1) requires every job j to be sched-

uled. Constraint (2) says that on every machine i at

any time point t, only one job is being processed.

Constraint (3) says that if job j is scheduled on i, then it

can not be started after T −pi,j . Constraint (4) requires

all variables to be nonnegative.

Theorem 4. The LP relaxation (LPR||wC) for
R||∑j wjCj has an integrality gap of at most 1.5− c,
where c = 1

6000 . Moreover, there is an algorithm that,
given a valid fractional solution x to (LPR||wC), outputs
a random valid schedule with expected cost at most
(1.5−c)

∑
j wj

∑
i,s xi,j,s(s+pi,j), in time polynomial

in the number of non-zero variables of x.1

The above algorithm leads to a (1.5 − c)-
approximation for R||∑j wjCj immediately if T is

polynomially bounded. The case when T is super-

polynomial will be handled in the full version of the

paper.

B. Our Techniques

A key technique in many of our results is the use of

time-indexed LP relaxations. For the identical machine

setting, we have variables xj,t indicating whether job j
is scheduled in the time-interval (t− pj , t]; we can vi-

sualize xj,t as a rectangle of height xj,t with horizontal

span (t− pj , t]. With this visualization, it is straightfor-

ward to express the objective function, and formulate

the machine-capacity constraints and the precedence

constraints. For the unrelated machine model, the LP

we use is (LPR||wC). (We used starting points to index

1We assume x is given as a sequence of (i, j, s, xi,j,s)-tuples with
non-zero xi,j,s.
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intervals, as opposed to ending points; this is only for

the simplicity of describing the algorithm.) Each xi,j,s

can be viewed as a rectangle of height xi,j,s on machine

i with horizontal span (s, s+ pi,j ]. The rectangle struc-

tures allow us to recover the previous state-of-art results,

and furthermore to derive the improved approximation

results by identifying the loose parts in these algorithms

and analysis.

P |prec|∑j wjCj: Let us first consider the

scheduling problem on identical machines with job

precedence constraints. The 4-approximation algorithm

of Munier, Queyranne, and Schulz [10], [11] used a

convex programming that only contains the completion

time variables {Cj}j∈J . After obtaining the vector C,

we run the job-driven list scheduling algorithm, by

considering jobs j in increasing order of Cj − pj/2. To

analyze the expected completion time of j∗ in the output

schedule, focus on the schedule S constructed by the

algorithm at the time j∗ was inserted. Then, we consider

the total length of busy and idle slots in S before the

completion of j∗ separately. The length of busy slots can

be bounded by 2Cj∗ , using the m-machine constraint.

The length of idle slots can also be bounded by 2Cj∗ , by

identifying a chain of jobs that resulted in the idle slots.

More generally, they showed that if jobs are considered

in increasing order of Cj − (1 − θ)pj for θ ∈ [0, 1/2]
in the list scheduling algorithm, the factor for idle slots

can be improved to 1/(1 − θ) but the factor for busy

slots will be increased to 1/θ. Thus, θ = 1/2 gives the

best trade-off.

The rectangle structure allows us to exam the tight-

ness of the above factors more closely: though the

1/θ factor for busy slots is tight for every individual

θ ∈ [0, 1/2], it can not be tight for every such θ.

Roughly speaking, the 1/θ factor is tight for a job j∗

only when j∗ has small pj∗ , and all the other jobs j
considered before j∗ in the list scheduling algorithm has

large pj and Cj − θpj is just smaller than Cj∗ − θpj∗ .

However in this case, if we decrease θ slightly, these

jobs j will be considered after j∗ and thus the bound

can not be tight for all θ ∈ [0, 1/2]. We show that

even if we choose θ uniformly at random from [0, 1/2],
the factor for busy time slots remains 2, as opposed

to
∫ 1/2

θ=0
2
θdθ = ∞. On the other hand, this decreases

the factor for idle slots to
∫ 1/2

θ=0
2

1−θdθ = 2 ln 2, thus

improving the approximation factor to 2 + 2 ln 2. The

idea of choosing a random point for each job j and using

them to decide the order in the list-scheduling algorithm

has been studied before under the name “α-points” [21],

[9], [22], [23]. The novelty of our result is the use of

the rectangle structure to relate different θ values. In

contrast, solutions to the convex programming of [10]

and the weak time-indexed LP relaxation of [18] lack

such a structure.
P |prec, pj = 1|∑j wjCj: When jobs have uni-

form length, the approximation ratio of the algorithm

of [10] improves to 3. In this case, the θ parameter in

the above algorithm becomes useless since all jobs have

the same length. Taking the advantage of the uniform

job length, the factor for idle time slots improves 1,

while the factor for busy slots remains 2. This gives an

approximation factor of 3 for the special case.
To improve the factor of 3, we use another random-

ized procedure to decide the order of jobs in the list

scheduling algorithm. For every θ ∈ [0, 1], let Mθ
j be

the first time when we scheduled θ fraction of job j
in the fractional solution. Then we randomly choose

θ ∈ [0, 1] and consider jobs the increasing order of

Mθ
j in the list-scheduling algorithm. This algorithm can

recover the factor of 1 for total length of idle slots and

2 for total length of busy slots.
We again use the rectangle structure to discover the

loose part in the analysis. With uniform job size, the idle

slots before a job j are caused only by the precedence

constraints: if the total length of idle slots before the

completion time of j is a, then there is a precedence-

chain of a jobs ending at j; in other words, j is at

depth at least a in the precedence graph. In order for

the factor 1 for idle slots to be tight, we need to have

a ≈ Cj . We show that if this happens, the factor for

busy time slots shall be much better than 2. Roughly

speaking, the factor of 2 for busy time slots is tight

only if j is scheduled evenly among [0, 2Cj ]. However,

if j is at depth-a in the dependence graph, it can not

be scheduled before time a ≈ Cj with any positive

fraction. A quantification of this argument allows us to

derive the improved approximation ratio 1+
√
2 for this

special case.
Q|prec|∑j wjCj: Our O(logm/ log logm)-

approximation for related machine scheduling is a

simple one. As mentioned earlier, by losing a constant

factor in the approximation ratio, we can convert

the problem of minimizing the weighted completion

time to that of minimizing the makespan, i.e, the

problem Q|prec|Cmax. To minimize the makespan,

the algorithm of Chudak and Shmoys [14] partitions

machines into O(logm) groups according to their

speeds. Based on their LP solution, we assign each

job j to a group of machines. Then we run the

machine-driven list-scheduling algorithm, subject to

the precedence constraint, and the constraint that each

job can only be scheduled to a machine in its assigned

group. The final approximation ratio is the sum of two
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factors: one from grouping machines with different

speeds into the same group, which is O(1) in [14],

and the other from the number of different groups,

which is O(logm) in [14]. To improve the ratio, we

make the speed difference between machines in the

same group as large as Θ(logm/ log logm), so that

we only have O(logm/ log logm) groups. Then, both

factors become O(logm/ log logm), leading to an

O(logm/ log logm)-approximation for the problem.

One remark is that in the algorithm of [14], the

machines in the same group can be assumed to have

the same speed, since their original speeds only differ

by a factor of 2. In our algorithm, we have to keep the

original speeds of machines, to avoid a multiplication

of the two factors in the approximation ratio.

R||∑j wjCj: Then we sketch how we use our

time-indexed LP to recover the (1.5− c)-approximation

of [1] (with much better constant c), for the schedul-

ing problem on unrelated machines to minimize total

weighted completion time, namely R||∑j wjCj .

The dependence rounding procedure of [1] is the

key component leading to a better than 1.5 approxi-

mation for R||∑j wjCj . It takes as input a grouping

scheme: for each machine i, the jobs are partitioned

into groups with total fractional assignment on i being

at most 1. The jobs in the same group for i will have

strong negative correlation towards being assigned to

i. To apply the theorem, they first solve the lift-and-

project SDP relaxation for the problem, and construct

a grouping scheme based on the optimum solution to

the SDP relaxation. For each machine i, the grouping

algorithm will put jobs with similar Smith-ratios in the

same group, as the 1.5-approximation ratio is caused by

conflicts between these jobs. With the strong negative

correlation, the approximation ratio can be improved to

(1.5− c) for a tiny constant c = 1/(108× 20000).

We show that the natural time-indexed relaxation

(LPR||wC) for the problem suffices to give a (1.5− c)-
approximation. To apply the dependence rounding pro-

cedure, we need to construct a grouping for every

machine i. In our recovered 1.5-approximation algo-

rithm for the problem using (LPR||wC), the expected

completion time of j is at most
∑

i,s xi,j,s(s+1.5pi,j),
i.e, the average starting time of j plus 1.5 times the

average length of j in the LP solution. This suggests

that a job j is bad only when its average starting time

is very small compared to its average length in the

LP solution. Thus, for each machine i, the bad jobs

are those with a large weight of scheduling intervals

near the beginning of the time horizon. If these bad

intervals for two bad jobs j and j′ have large overlap,

then they are likely to be put into the same group for

i. To achieve this, we construct a set of disjoint basic

blocks {(2a, 2a+1] : a ≥ −2} in the time horizon. A bad

job will be assigned to a random basic block contained

in its scheduling interval and two bad jobs assigned to

the same basic block will likely to be grouped together.

Besides the improved approximation ratio, we believe

the use of (LPR||wC) will shed light on getting an

approximation ratio for the problem that is considerably

better than 1.5, as it is simpler than the lift-and-project

SDP of [1]. Another useful property of our algorithm is

that the rounding procedure is oblivious to the weights

of the jobs; this may be useful when we consider some

variants of the problem.

Finally, we remark that Theorems 1, 2 and 3 can be

easily extended to handle job arrival times. However, to

deliver the key ideas more efficiently, we chose not to

consider arrival times.

C. Other Related Work

There is a vast literature on approximating algorithms

for scheduling problems to minimize the total weighted

completion time. Here we only discuss the ones that are

most relevant to our results; we refer readers to [24]

for a more comprehensive overview. When there are

no precedence constraints, the problems of minimizing

total weighted completion time on identical and re-

lated machines (P ||∑j wjCj and Q||∑j wjCj) admit

PTASes ([25], [26]). For the problem of scheduling

jobs on unrelated machines with job arrival times to

minimize weighted completion time (R|rj |
∑

j wjCj),

many classic results give 2-approximation algorithms

([19], [18], [27]); recently Im and Li [2] gave a 1.8687-

approximation for the problem, solving a long-standing

open problem. Skutella [3] gave a
√
e/(
√
e − 1) ≈

2.542-approximation algorithm for the single-machine

scheduling problem with precedence constraints and job

release times, improving upon the previous e ≈ 2.718-

approximation [28].

Makespan is an objective closely related to weighted

completion time. As we mentioned, for P |prec|Cmax,

the Graham’s list scheduling algorithm gives a 2-

approximation, which is the best possible under a

stronger version of UGC [7], [8]. For the special case

of the problem Pm|prec, pj = 1|Cmax where there are

constant number of machines and all jobs have unit size,

the recent breakthrough result of Levey and Rothvoss

[29] gave a (1 + ε)-approximation with running time

exp
(
exp

(
Om,ε(log

2 log n)
))

, via the LP hierarchy of

the natural LP relaxation for the problem. On the nega-

tive side, it is not even known whether Pm|prec, pj =
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1|Cmax is NP-hard or not. For the problem R||Cmax,

i.e, the scheduling of jobs on unrelated machines to

minimize the makespan, the classic result of Lenstra,

Shmoys and Tardos [30] gives a 2-approximation, which

remains the best algorithm for the problem. Some efforts

have been put on a special case of the problem, where

each job j has a size pj and pi,j ∈ {pj ,∞} for

every i ∈M (the model is called restricted assignment

model.) [31], [32], [33], [34].

Organization: The proofs of Theorems 1 to 3 are

given in Sections II to IV respectively. Due to the space

limit, the proof of Theorem 4 is deferred to the full

version of the paper. Throughout this paper, we assume

the weights, lengths of jobs are integers. Let T be

the maximum makespan of any “reasonable” schedule.

For problems P
∣∣prec∣∣∑j wjCj and R||∑j wjCj , we

assume T is polynomial in n. By losing a 1+ε factor in

the approximation ratio, we can handle the case where T
is super-polynomial. This and the other omitted proofs

can be found in the full version of the paper.

II. SCHEDULING ON IDENTICAL MACHINES WITH

JOB PRECEDENCE CONSTRAINTS

In this section we give our (2 + 2 ln 2 +
ε)-approximation for the problem of scheduling

precedence-constrained jobs on identical machines,

namely P |prec|∑j wjCj . We solve (LPP|prec|wC) and

run the job-driven list-scheduling algorithm of [10] with

a random order of jobs.

A. Time-Indexed LP Relaxation for P |prec|∑j wjCj

In the identical machine setting, we do not need

to specify which machine each job is assigned to; it

suffices to specify a scheduling interval (t − pj , t] for

every job j. A folklore result says that a set of intervals

can be scheduled on m machines if and only if their

congestion is at most m: i.e, the number of intervals

covering any time point is at most m. Given such a set of

intervals, there is a simple greedy algorithm to produce

the assignment of intervals to machines. Thus, in our

LP relaxation and in the list-scheduling algorithm, we

focus on finding a set of intervals with congestion at

most m.

We use (LPP|prec|wC) for both P
∣∣prec∣∣∑j wjCj and

P
∣∣prec, pj = 1

∣∣∑
j wjCj . Let T =

∑
j pj be a

trivial upper bound on the makespan of any reasonable

schedule. In the LP relaxation, we have a variable xj,t

indicating whether job j is scheduled in (t− pj , t], for

every j ∈ J and t ∈ [T ]. Throughout this and the next

section, t and t′ are restricted to be integers in [T ], and

j, j′ and j∗ are restricted to be jobs in J .

min
∑
j

wj

∑
t

xj,tt s.t. (LPP|prec|wC)

∑
t

xj,t = 1 ∀j (5)

∑
j,t∈[t′,t′+pj)

xj,t ≤ m ∀t′ (6)

∑
t<t′+pj′

xj′,t ≤
∑
t<t′

xj,t ∀j, j′, t′ : j ≺ j′ (7)

xj,t = 0 ∀j, t < pj (8)

xj,t ≥ 0 ∀j, t (9)

The objective function is
∑

j wj

∑
t xj,tt, i.e, the

total weighted completion time over all jobs. Con-

straint (5) requires every job j to be scheduled. Con-

straint (6) requires that at every time point t′, at most

m jobs are being processed. Constraint (7) requires that

for every j ≺ j′ and t′, j′ completes before t′ + pj′
only if j completes before time t′. A job j can not

complete before pj (Constraint (8)) and all variables

are non-negative (Constraint (9)).

We solve (LPP|prec|wC) to obtain x ∈ [0, 1]J×[T ]. Let

Cj =
∑

t xj,tt be the completion time of j in the LP

solution. Thus, the value of the LP is
∑

j wjCj . For

every θ ∈ [0, 1/2], we define Mθ
j = Cj−(1−θ)pj . Our

algorithm is simply the following: choose θ uniformly

at random from (0, 1/2], and output the schedule re-

turned by job-driven-list-scheduling(Mθ) (described in

Algorithm 1).

Algorithm 1 job-driven-list-scheduling(M)

Input: a vector M ∈ R
J
≥0 used to decide the order of

scheduling, s.t. if j ≺ j′, then Mj < Mj′

Output: starting and completion time vectors S̃, C̃ ∈
R

J
≥0

1: for every j ∈ J in non-decreasing order of Mj ,

breaking ties arbitrarily

2: let t← maxj′≺j C̃j′ , or t← 0 if {j′ ≺ j} = ∅
3: find the minimum s ≥ t such that we can

schedule j in interval (s, s+pj ], without increasing

the congestion of the schedule to m+ 1
4: S̃j ← s, C̃j ← s+pj , and schedule j in (S̃j , C̃j ]

5: return (S̃, C̃)

We first make a simple observation regarding the C
vector, which follows from the constraints in the LP.

Claim 5. For every pair of jobs j, j′ such that j ≺ j′,
we have Cj + pj′ ≤ Cj′ .
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Indeed, our analysis does not use the full power

of Constraint (7), except for the above claim which

is implied by the constraint. Thus, we could simply

use Cj + pj′ ≤ Cj′ (along with the definitions of

Cj’s) to replace Constraint (7) in the LP. However,

in the algorithm for the problem with unit job lengths

(described in Section III), we do need Constraint (7). To

have a unified LP for both problems, we chose to use

Constraint (7). Our algorithm does not use x-variables,

but we need them in the analysis.

B. Analysis

Our analysis is very similar to that in [10]. We fix a

job j∗ from now on and we shall upper bound
E[C̃j∗ ]
Cj∗

.

Notice that once j∗ is scheduled by the algorithm, C̃j∗ is

determined and will not be changed later. Thus, we call

the schedule at the moment the algorithm just scheduled

j∗ the final schedule.

We can then define idle and busy points and slots

w.r.t this final schedule. We say a time point τ ∈ (0, T ]
is busy if the congestion of the intervals at τ is m in the

schedule (in other words, all the m machines are being

used at τ in the schedule); we say τ is idle otherwise.

We say a left-open-right-closed interval (or slot) (τ, τ ′]
(it is possible that τ = τ ′, in which case the interval is

empty) is idle (busy, resp.) if all time points in (τ, τ ′]
are idle (busy, resp.).

Then we analyze the total length of busy and idle time

slots before C̃j∗ respectively, w.r.t the final schedule.

For a specific θ ∈ (0, 1/2], the techniques in [10]

can bound the total length of idle slots by
Cj∗
1−θ and

the total length of busy slots by
Cj∗
θ . Thus choosing

θ = 1/2 gives the best 4-approximation, which is the

best using this analysis. Our improvement comes from

the bound on the total length of busy time slots. We

show that the expected length of busy slots before C̃j∗

is at most 2Cj∗ , which is much better than the bound

Eθ∼R(0,1/2]
Cj∗
θ = ∞ given by directly applying the

bound for every θ. We remark that the
Cj∗
θ bound for

each individual θ is tight and thus can not be improved;

our improvement comes from considering all possible

θ’s together.

Bounding the Expected Length of Idle Slots: We

first bound the total length of idle slots before C̃j∗ , the

completion time of job j∗ in the schedule produced by

the algorithm. Lemma 6 and 7 are established in [10]

and their proofs can be found in the full version of the

paper for completeness.

Lemma 6. Let j ∈ J be a job in the final schedule with
S̃j > 0. Then we can find a job j′ such that

• either j′ ≺ j and (C̃j′ , S̃j ] is busy,
• or Mj′ ≤Mj , Sj′ < Sj and (Sj′ , S̃j ] is busy.

Applying Lemma 6 repeatedly, we can identify a

chain of jobs whose scheduling intervals cover all the

idle slots before C̃j∗ , which can be used to bound the

total length of these slots. This leads to the following

lemma from [10]:

Lemma 7. The total length of idle time slots before C̃j∗

is at most Cj∗
1−θ .

Thus, the expected length of idle slots before C̃j∗ ,

over all choices of θ, is at most∫ 1/2

θ=0

Cj∗

1− θ
2dθ =

(
2 ln

1

1− θ

∣∣∣1/2
θ=0

)
Cj∗ = (2 ln 2)Cj∗ .

(10)

Bounding the Expected Length of Busy Slots:
We now proceed to bound the total length of busy

slots before C̃j∗ . This is the key to our improved

approximation ratio. For every θ ∈ [0, 1/2], let Jθ =
{j : Mθ

j ≤ C̃j∗}. Thus, if θ < θ′, we have Jθ ⊇ Jθ′ .

For every θ ∈ [0, 1/2] and j ∈ J0, define θj =
sup {θ ∈ [0, 1/2] : j ∈ Jθ}; this is well-defined since

j ∈ J0. For any subset J ′ ⊆ J of jobs, we define

p(J ′) =
∑

j∈J ′ pj to be the total length of all jobs in

J ′.

Lemma 8. For a fixed θ ∈ (0, 1/2], the total length of
busy slots before C̃j∗ is at most 1

mp(Jθ).

Proof: The total length of busy time slots in

(0, C̃j∗ ] is at most 1
m times the total length of jobs

scheduled so far, which is at most

1

m

∑
j∈J:Mθ

j≤Mθ
j∗

pj ≤ 1

m

∑
j∈J:Mθ

j≤Cj∗

pj =
1

m
p(Jθ).

The key lemma for our improved approximation ratio

is an upper bound on the above quantity when θ is

uniformly selected from (0, 1/2]:

Lemma 9.
∫ 1/2

θ=0

p(Jθ)dθ ≤ mCj∗ .

Proof: Notice that we have∫ 1/2

θ=0

p(Jθ)dθ =

∫ 1/2

θ=0

∑
j∈J0

pj1j∈Jθ
dθ

=
∑
j∈J0

pj

∫ 1/2

θ=0

1j∈Jθ
dθ =

∑
j∈J0

θjpj .

Thus, it suffices to prove that
∑

j∈J0
θjpj ≤ mCj∗ .

To achieve this, we construct a set of axis-parallel
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rectangles. For each j ∈ J0 and t such that xj,t > 0, we

place a rectangle with height xj,t and horizontal span

(t−pj , t−pj+2θjpj ]. The total area of all the rectangles

for j is exactly 2θjpj . Notice that θj ≤ 1/2 and thus

(t− pj , t− pj + 2θjpj ] ⊆ (t− pj , t].
Notice that

∑
t xj,t(t−pj+θjpj) = Cj−(1−θj)pj =

M
θj
j ≤ Cj∗ ,

∑
t xj,t = 1, and t − pj + θjpj is the

mass center2 of the rectangle for (j, t). Thus, the mass

center of the union of all rectangles for j is at most

Cj∗ . This in turn implies that the mass center of the

union of all rectangles over all j ∈ J0 and t, is at

most Cj∗ . Notice that for every t ∈ (0, T ], the total

height of all rectangles covering t is at most m, by

Constraint (6), and the fact that (t−pj , t−pj+2θjpj ] ⊆
(t − pj , t] for every j ∈ J0 and t. Therefore, the total

area of rectangles for all j ∈ J0 and t is at most 2mCj∗

(otherwise, the mass center will be larger than Cj∗ ).

So, we have
∑

j∈J0
2θjpj ≤ 2mCj∗ , which finishes

the proof of the lemma.

Thus, by Lemma 8 and Lemma 9, the expected length

of busy time slots before C̃j∗ is at most∫ 1/2

θ=0

p(Jθ)

m
2dθ =

2

m

∫ 1/2

θ=0

p(Jθ)dθ ≤ 2Cj∗ . (11)

Thus, by Inequalities (10) and (11), we have

E

[
C̃j∗

]
≤ (2 ln 2)Cj∗ + 2Cj∗ = (2 + 2 ln 2)Cj∗ .

Thus, we have proved the 2 + 2 ln 2 + ε ≤ (3.387 +
ε)-approximation ratio for our algorithm, finishing the

proof of Theorem 1.

Remarks: One might wonder if choosing a ran-

dom θ from [0, θ∗] for a different θ∗ can improve the

approximation ratio. For θ∗ ≤ 1/2, the ratio we can

obtain is 1
θ∗ + 1

θ∗
∫ θ∗

θ=0
1

1−θdθ = 1
θ∗ + 1

θ∗ ln 1
θ∗ ; that is,

the first factor (for busy time slots) will be increased

to 1/θ∗ and the second factor (for idle time slots) will

be decreased to 1
θ∗ ln 1

θ∗ . This ratio is minimized when

θ∗ = 1/2. If θ∗ > 1/2, however, the first factor does

not improve to 1/θ∗, as the proof of Lemma 9 used the

fact that θj ≤ 1/2 for each j. Thus, using our analysis,

the best ratio we can get is 2 + 2 ln 2.

III. SCHEDULING UNIT-LENGTH JOBS ON

IDENTICAL MACHINES WITH JOB PRECEDENCE

CONSTRAINTS

In this section, we give our (1 +
√
2)-approximation

algorithm for P
∣∣prec, pj = 1

∣∣∑
j wjCj . Again, we

solve (LPP|prec|wC) to obtain x; define Cj =
∑

t xj,t

2Here, we use mass center for the horizontal coordinate of the
mass center, since we are not concerned with the vertical positions of
rectangles.

for every j ∈ J . For this special case, we define the

random M -vector differently. In particular, it depends

on the values of x variables. For every j ∈ J and

θ ∈ (0, 1], define Mθ
j to be the minimum t such that∑t

t′=1 xj,t′ ≥ θ. Notice that Cj =
∫ 1

θ=0
Mθ

j dθ. Our

algorithm for P
∣∣prec, pj = 1

∣∣∑
j wjCj chooses θ uni-

formly at random from (0, 1], and then call job-driven-

list-scheduling(Mθ) and output the returned schedule.
For every j ∈ J , we define aj to be the largest a

such that there exists a sequence of a jobs j1 ≺ j2 ≺
j3 ≺ · · · ≺ ja = j. Thus, aj is the “depth” of j in the

precedence graph.

Claim 10. For every j ∈ J and t < aj , we have xj,t =
0.

Again, we fix a job j∗ and focus on the schedule at

the moment the algorithm just scheduled j∗; we call this

schedule the final schedule. We shall bound E[C̃j∗ ]/Cj∗

(recall that C̃j∗ is the completion time of j∗ in the

schedule we output), by bounding the total length of

idle and busy slots in the final schedule before C̃j∗

separately. Recall that a time point is busy if all the

m machines are processing some jobs at that time, and

idle otherwise. The next lemma gives this bound for a

fixed θ. The first (resp. second) term on the right side

bounds the total length of busy (resp. idle) slots before

C̃j∗ . The clean bound aj∗ on the total length of idle

slots comes from the unit-job size property.

Lemma 11. C̃j∗ ≤ 1

m

∣∣∣ {j : Mθ
j ≤Mθ

j∗
} ∣∣∣+ aj∗ .

We shall use g(θ) = Mθ
j∗ for every θ ∈ (0, 1].

Notice that Cj∗ =
∫ 1

θ=0
g(θ)dθ. For simplicity, let

g(0) = limθ→0+ g(θ); so, g(0) will be the smallest t
such that xj∗,t > 0. By Claim 10, we have g(0) ≥ aj∗ .

For every j ∈ J and θ ∈ [0, 1], define hj(θ) :=

g(θ)∑
t=1

xj,t.

This is the total volume of job j scheduled in (0, g(θ)].
Thus, we have

∑
j∈J hj(θ) ≤ g(θ). Noticing that

Mθ
j ≤Mθ

j∗ if and only if hj(θ) ≥ θ. So, by Lemma 11,

we have C̃j∗ ≤ g(0)+ 1
m

∑
j∈J 1hj(θ)≥θ. Thus, we can

bound
E[C̃j∗ ]
Cj∗

by the superior of

g(0) + 1
m

∑
j∈J

∫ 1

θ=0
1hj(θ)≥θdθ∫ 1

θ=0
g(θ)dθ

(12)

subject to

• g : [0, 1] → [1,∞) is piecewise linear, left-

continuous and non-decreasing, (12.1)

• ∀j ∈ J , hj : [0, 1] → [0, 1] is piecewise linear,

left-continuous and non-decreasing, (12.2)
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•
∑
j∈J

hj(θ) ≤ mg(θ), ∀θ ∈ [0, 1]. (12.3)

To recover the 3-approximation ratio of [10], we

know that g(0)
/∫ 1

θ=0

g(θ)dθ ≤ 1; this corresponds

to the fact aj∗ ≤ C̃j∗ . It is not hard to show
1

m

∑
j∈J

∫ 1

θ=0

1hj(θ)≥θdθ
/(∫ 1

θ=0

g(θ)dθ

)
≤ 2. The

tight factor 2 can be achieved when hj(θ) = θ for

every j ∈ J and θ ∈ [0, 1] and g(θ) = nθ/m. This

corresponds to the following case: by the time θ-fraction

of job j∗ was completed, exactly θ faction of every job

j ∈ J was completed. However, the two bounds can

not be tight simultaneously: the first bound being tight

requires g to be a constant function, where the second

bound being tight requires g to be linear in θ. This is

where we obtain our improved approximation ratio.

Due to the page limit, we shall defer the proof

that (12) is at most 1 +
√
2 to the full version of

the paper. Here we only give the combination of g
and {hj}j∈J achieving the bound; the way we prove

the upper bound is by showing that this combination

is the worst possible. In the worst case, we have

hj(θ) = max {α, θ} for every θ ∈ [0, 1], where

α =
√
2 − 1. g(θ) = 1

m

∑
j∈J hj(θ) = n

m max {α, θ}
for every θ ∈ [0, 1]. In this case, the numerator of (12)

is g(0) + 1
m

∑
j∈J

∫ 1

θ=0
1hj(θ)≥θdθ = (α + 1) n

m ; the

denominator is
∫ 1

θ=0
g(θ)dθ = (1+α2)n

2m . Thus, (12) in

this case is α+1
(1+α2)/2 = 1 +

√
2.

IV. SCHEDULING ON RELATED MACHINES WITH

JOB PRECEDENCE CONSTRAINTS

In this section, we give our O(logm/ log logm)-
approximation for Q|prec|Cmax and Q|prec|∑j wjCj ,

proving Theorem 3. This slightly improves the previ-

ous best O(logm)-approximation, due to Chudak and

Shmoys [14]. Our improvement comes from a better

tradeoff between two contributing factors.

As in [14], we can convert the objective of mini-

mizing total weighted completion time to minimizing

makespan, losing a factor of 16. We now describe the

LP used in [14] and state the theorem for the reduction.

Throughout this section, i is restricted to machines in

M , and j and j′ are restricted to jobs in J .

min D (LPQ|prec|Cmax)

∑
i

xi,j = 1 ∀j (13)

pj
∑
i

xi,j

si
≤ Cj ∀j (14)

Cj + pj′
∑
i

xi,j′

si
≤ Cj′ ∀j, j′, j ≺ j′ (15)

1

si

∑
j

pjxi,j ≤ D ∀i (16)

Cj ≤ D ∀j (17)

xi,j , Cj ≥ 0 ∀j, i (18)

(LPQ|prec|Cmax) is a valid LP relaxation for

Q|prec|Cmax. In the LP, xi,j indicates whether

job j is scheduled on machine i. D is the makespan

of the schedule, and Cj is the completion time of j in

the schedule. Constraint (13) requires every job j to

be scheduled. Constraint (14) says that the completion

time of j is at least the processing time of j on the

machine it is assigned to. Constraint (15) says that if

j ≺ j′, then Cj′ is at least Cj plus the processing time

of j′ on the machine it is assigned to. Constraint (16)

says that the makespan D is at least the total processing

time of all jobs assigned to i, for every machine i.
Constraint (17) says that the makespan D is at least the

completion time of any job j. Constraint (18) requires

the x and C variables to be non-negative.

The value of (LPQ|prec|Cmax) provides a lower bound

on the makespan of any valid schedule. However, even

if we require each xi,j ∈ {0, 1}, the optimum so-

lution to the integer programming is not necessarily

a valid solution to the scheduling problem, since it

does not give a scheduling interval for each job j.

Nevertheless, we can use the LP relaxation to obtain our

O(logm/ log logm)-approximation for Q|prec|Cmax.

Using the following theorem from [14], we can extend

the result to Q|prec|∑j wjCj :

Theorem 12 ([14]). Suppose there is an efficient al-
gorithm A that can round a fractional solution to
(LPQ|prec|Cmax) to a valid solution to the correspon-
dent Q|prec|Cmax instance, losing only a factor of α.
Then there is a 16α-approximation for the problem
Q|prec|∑j wjCj .

Thus, from now on, we focus on the objective of

minimizing the makespan; our goal is to design an

efficient rounding algorithm as stated in Theorem 12

with α = O(logm/ log logm). We assume that m is

big enough. For the given instance of Q|prec|Cmax,

we shall first pre-processing the instance as in [14] so

that it contains only a small number of groups. In the
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first stage of the pre-processing step, we discard all the

machines whose speed is at most 1/m times the speed

of the fastest machine. Since there are m machines, the

total speed for discarded machines is at most the speed

of the fastest machine. In essence, the fastest machine

can do the work of all the discarded machines; this will

increase the makespan by a factor of 2. Formally, let

i∗ be the machine with the fastest speed. For every

discarded machine i and any job j such that xi,j > 0,

we shall increase xi∗,j by xi,j and change this xi,j to 0.

By scaling D by a factor of 2, the LP solution remains

feasible. To see this, notice that the modification to

the fractional solution can only decrease pj
∑

i
xi,j

si
for each j. The only constraint we need to check is

Constraint (16) for i = i∗. Since
∑

i discarded,j
pjxi,j

si∗
≤∑

i discarded,j
pjxi,j

msi
≤ ∑

i discarded
D
m ≤ D, moving the

scheduling of jobs from discarded machines to i∗ shall

only increase the processing time of jobs on i∗ by D.

Thus, we assume all machines have speed larger than

1/m times the speed of the fastest machine. By scaling

speeds of machines uniformly, we assume all machines

i have speed i ∈ [1,m), and |M | ≤ m.

In the second stage of the pre-processing step,

we partition the machines into groups, where each

group contains machines with similar speeds. Let γ =
logm/ log logm. Then group Mk contains machines

with speed in [γk−1, γk), where k = 1, 2, · · · ,K :=⌈
logγ m

⌉
= O(logm/ log logm). We remark that that

unlike [14], we can not round down the speed of each

machine i to the nearest power of γ. If we do so, we will

lose a factor of (logm/ log logm) and finally we can

only obtain an O((logm/ log logm)2)-approximation.

Instead, we keep the speeds of machines unchanged.

We now define some useful notations. For a subset

M ′ ⊆ M of machines, we define s(M ′) =
∑

i∈M ′ si
to be the total speed of machines in M ′; for M ′ ⊆ M
and j ∈ J , let xM ′,j =

∑
i∈M ′ xi,j be the total fraction

of job j assigned to machines in M ′.
For any job j, let �j be the largest integer � such

that
∑K

k=� xMk,j ≥ 1/2. That is, the largest � such that

at least 1/2 fraction of j is assigned to machines in

groups � to K. Then, let kj be the index k ∈ [�j ,K]
that maximizes s(Mk). That is, kj is the index of the

group in groups �j to K with the largest total speed.

Later in the machine-driven list scheduling algorithm,

we shall constrain that job j can only be assigned to

machines in group kj . The following claim says that

the time of processing j on any machine in Mkj
is not

too large, compared to processing time of j in the LP

solution.

Claim 13. For every j ∈ J , and any machine i ∈Mkj ,

we have
pj
si
≤ 2γ

∑
i′∈M

pjxi′,j

si′
.

Proof: Notice that

K∑
k=�j+1

xMk,j < 1/2 by our

definition of �j . Thus,

�j∑
k=1

xMk,j > 1/2. Then,

∑
i′∈M

xi′,j

si′
≥

∑
i′∈⋃�j

k=1 Mk

xi′,j

si′
≥ 1

2
· γ−�j . This is true

since
∑

i′∈⋃�j
k=1 Mk

xi′,j ≥ 1/2 and every i′ in the sum

has 1
si′
≥ γ−�j .

Since i is in group kj ≥ �j , i′ has speed at least

γ�j−1 and thus 1
si
≤ γ1−�j . Then the claim follows.

Claim 14.
∑
j∈J

pj
s(Mkj

)
≤ 2KD.

Proof: Focus on each job j ∈ J . Noticing that
K∑

k=�j

xMk,j ≥ 1/2, and kj is the index of the group

with the maximum total speed, we have

K∑
k=1

xMk,j

s(Mk)
≥

K∑
k=�j

xMk,j

s(Mk)
≥ 1

2s(Mkj )
.

Summing up the above inequality scaled by 2pj , over

jobs j, we have

∑
j∈J

pj
s(Mkj )

≤ 2
∑
j∈J

pj

K∑
k=1

xMk,j

s(Mk)

= 2
K∑

k=1

1

s(Mk)

∑
j∈J

pjxMk,j ≤ 2
K∑

k=1

D = 2KD.

To see the last inequality, we notice that
∑

j∈J pjxMk,j

is the total size of jobs assigned to group k, s(Mk) is

the total speed of all machines in Mk and D is the

makespan. Thus, we have
∑

j∈J pjxMk,j ≤ s(Mk)D.

Formally, Constraint (16) says
∑

j∈J pjxi,j ≤ siD for

every i ∈ Mk. Summing up the inequalities over all

i ∈Mk gives
∑

j∈J pjxMk,j ≤ s(Mk)D.

With the kj values, we can run the machine-driven

list-scheduling algorithm in [14]. The algorithm con-

structs the schedule in real time. Whenever a job com-

pletes (or at the beginning of the algorithm), for each

idle machine i, we attempt to schedule an unprocessed

job j on i subject to two constraints: (i) machine i can

only pick a job j if i ∈Mkj
and (ii) all the predecessors

of j are completed. If no such job j exists, machine

i remains idle until a new job is competed. We use
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S to denote this final schedule; Let ij ∈ Mkj
be the

machine that process j in the schedule constructed by

our algorithm.
The following simple observation is the key to prove

our O(logm/ log logm)-approximation. Similar obser-

vations were made and used implicitly in [14], and in

[5] for the problem on identical machines. However,

we think stating the observation in our way makes the

analysis cleaner and more intuitive. We say a time point

t is critical, if some job starts or ends at t. To avoid

ambiguity, we exclude these critical time points from

our analysis (we only have finite number of them). At

any non-critical time point t in the schedule, we say a

job j is minimal if all its predecessors are completed

but j itself is not completed yet.

Observation 15. At any non-critical time point t in S,
either all the minimal jobs j are being processed, or
there is a group k such that all machines in Mk are
busy.

Proof: All the minimum jobs at t are ready for

processing. If some such job j is not processed at t, it

must be the case that all machines in Mkj
are busy.

As time goes in S , we maintain the precedence graph

over J ′, the set of jobs that are not completed yet: we

have an edge from j ∈ J ′ to j′ ∈ J ′ if j ≺ j′. At

any time point, the weight of a job j is the time needed

to complete the rest of job j on ij , i.e, the size of the

unprocessed part of job j, divided by sij . If at t, all

minimum jobs are being processed, then the weights

of all minimal jobs are being decreased at a rate of 1.

Thus, the length of the longest path of in the precedence

graph is being decreased at a rate of 1. The total length

of the union of these time points is at most length of the

longest path in the precedence graph at time 0, which

is at most

max
H

∑
j∈H

pj
sij

≤ max
H

2γ
∑
j∈H

∑
i∈M

pjxi,j

si
≤ 2γD,

where H is over all precedence chains of jobs. The first

inequality is by Claim 13 and the second inequality is

by Constraints (15) and (17) in the LP.
If not all the minimal jobs are being processed at time

t, then there must be a group k such that all machines

in group k are busy, by Observation 15. The total length

of the union of all these points is at most∑
k

∑
j:kj=k pj

s(Mk)
=

∑
j∈J

pj
s(Mkj

)
≤ 2KD,

by Claim 14.
Thus, our schedule has makespan at most

2(γ + K)D = O(logm/ log logm)D, leading

to an O(logm/ log logm)-approximation for

Q|prec|Cmax. Combining this with Theorem 12,

we obtain an O(logm/ log logm)-approximation for

Q|prec|∑j wjCj , finishing the proof of Theorem 3.

Indeed, as shown in [14], this factor is tight if we use

(LPQ|prec|Cmax).
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