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Abstract—Ground states of local Hamiltonians can
be generally highly entangled: any quantum circuit
that generates them, even approximately, must be
sufficiently deep to allow coupling (entanglement)
between any pair of qubits. Until now this property
was not known to be “robust” - the marginals of
such states to a subset of the qubits containing all
but a small constant fraction of them may be only
locally entangled, and hence approximable by shallow
quantum circuits. In this work we construct a family
of 16-local Hamiltonians for which any marginal of a
ground state to a fraction at least 1−10−8 of the qubits
must be globally entangled.

This provides evidence that quantum entanglement
is not very fragile, and perhaps our intuition about its
instability is an artifact of considering local Hamilto-
nians which are not only local but spatially local. For-
mally, it provides positive evidence for two wide-open
conjectures in condensed-matter physics and quantum
complexity theory which are the qLDPC conjecture,
positing the existence of “good” quantum LDPC codes,
and the NLTS conjecture [1] positing the existence of
local Hamiltonians in which any low-energy state is
highly entangled.

Our Hamiltonian is based on applying the hyper-
graph product by Tillich-Zémor [2] to the repetition
code with checks from an expander graph. A key
tool in our proof is a new lower bound on the
vertex expansion of the output of low-depth quantum
circuits, which may be of independent interest.

Keywords-NLTS, PCP, robust codes, high-
dimensional expander

I. INTRODUCTION

Quantum entanglement is the phenomenon by
which distant particles are correlated in a way
that cannot be replicated by correlated classical
probability distributions. Despite nearly 70 years
of research into this phenomenon it is far from
understood. That said, quantum entanglement is
considered to be the source of the possible speed-
up compared with classical problems. Hence, in
the context of building a quantum computer, its

“supremacy” is achievable only if we can maintain
and control entanglement. However, in practice,
scalable quantum computers have been hard to
build because large entangled states are often frag-
ile and hard to maintain.

One way of quantifying entanglement which
relates to standard notions of complexity classes
is circuit depth:
Definition 1 (Depth-d Trivial States). We say that
an n-qubit state ρ is depth-d trivial if it can be prepared
by applying a depth-d quantum circuit comprised of d
layers of tensor-products of 2-local quantum gates, to
|0〉⊗N (for some N ≥ n) and tracing out N −n qubits.

(Variants of this definition state that ρ cannot
even be approximated in this way.) We say that a
family of states on n qubits is non-trivial or (highly
entangled) if they are not d-trivial for any d = O(1)
- i.e. to generate this family of states, the circuit
depths must diverge with the number of qubits.
An important threshold is d ∼ log(n) as a depth
of d ≥ log(n) allows potentially each qubit to be
entangled with any other qubit.

The characterization of the amount of entan-
glement in a quantum state via the depth of the
circuit required to (approximately) generate it has
been used extensively in literature in the context of
quantum complexity theory [1], [3] and to classify
quantum phases of matter in condensed matter
theory [4]. In particular, a pair of quantum states
is said to belong to the same quantum phase of
matter if one can transform one to the other using
a quantum circuit of bounded depth [4].

In all of these studies the quantum states under
consideration are 0-eigenstates, or ground states,
of local Hamiltonians:

Definition 2 (k-Local Hamiltonians). A local Hamil-
tonian is a positive-semidefinite (PSD) matrix 0 � H �
I that can be written as a sum H =

∑
iHi where
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Hi � 0, and Hi = hi ⊗ I , where hi � 0 is a PSD
operator on C

2⊗k.

For simplicity we mostly consider Hamiltoni-
ans that are frustration-free, meaning that there
its minimum eigenvalue is 0, corresponding to
a 0-eigenstate of H (the “ground state”) that is
a simultaneous 0-eigenstate of each Hi. Ground
states are physically relevant because at low tem-
peratures the system will naturally reach a state
which is close to the ground state. One can also
think of local Hamiltonians as the quantum analog
of classical constraint satisfaction problems, where
quantum states play the role of assignments to the
variables. Under this analogy, ground states are
satisfying assignments of the quantum CSP’s (e.g.
local Hamiltonians).

Inspired by the NLTS conjecture due to Freed-
man and Hastings [1] and quantum error cor-
rection we introduce a notion of robustness that
measures the robustness of the circuit depth of a
ground state according to its similarity of states to
ground states:

Definition 3. Ground-state impostors
Let H be a k-local Hamiltonian. A quantum state
ρ is said to be an ε-impostor for H , if there exists
a set S ⊆ [n], |S| ≥ (1 − ε)n and a ground state
σ (i.e. satisfying tr[Hσ] = λmin(H)) such that
ρS = σS .

One can then relate to an infinite family of local
Hamiltonians H = {Hn}n∈N and an infinite family
of states F = {ρn}n∈N , and say that F is an ε-
impostor for H if ρn is an ε-impostor for Hn for
all sufficiently large n.

Using this definition, we say that a local Hamilto-
nian has no low-error trivial states (NLETS) if it is
hard to generate not just the ground-state, but all
states that ”look” as ground-states:

Definition 4. No Low-Error Trivial States
(NLETS) Let k > 1 be some integer and {Hn}n∈N
be a family of k-local Hamiltonians. {Hn}n∈N is
NLETS if there exists a constant ε > 0 such that
any ε-impostor family F = {ρn}n∈N of {Hn}n∈N
is non-trivial.

In the context of classical constraint satisfaction an
implication of the PCP theorem is that there exists

a constant ε > 0 and a family of instances of CSP
such that any ε-impostor of these CSP’s is NP-hard
to find (though generating it is very easy, as it is
just a bit string). Previously known local quantum
Hamiltonians are not NLETS for any constant ε >
0. This is partly because most physically-realizable
local Hamiltonians are defined with respect to a d-
regular grid for small values of d, and hence cannot
be NLETS, almost trivially. 1

It is easy to check that even quantum codes
embedded in low-dimensions, such as the well-
known toric code [5] have a circuit lower bound
for “typical” impostor states sampled by applying
uniformly random error with some constant prob-
ability ε > 0 to each qubit. However, this property
is crucially different than NLETS as it amounts
to an average-case robustness and not worst-case
robustness.

Hence, to date, there are no known constructions
of local Hamiltonians that are NLETS, i.e. require
that any state that appears like a ground-state,
must be highly entangled. In fact, the existence
of such Hamiltonians is a necessary condition for
a number of important conjectures in quantum
complexity theory, namely the quantum PCP con-
jecture [6], the quantum LDPC conjecture, NLTS
conjecture [1], and the qLTC conjecture [7], since
the multitude of these conjectures hinge essentially
on the ability to maintain global entanglement us-
ing a set of local constraints, in a way that is robust
against a constant-fraction violation of these local
constraints.

Our main contribution in this work is to es-
tablish the existence of NLETS Hamiltonians by
providing an explicit construction of an infinite
family of such Hamiltonians:

Theorem 5. Explicit NLETS
There exists constants ε = 10−8, a, b > 0 and an
explicit infinite family of Hamiltonians {Hn}n, each
of the form:

Hn =
1

m

m∑
i=1

I + Pi
2

, (1)

for Pi equal to ±1 times a tensor product of Pauli
matrices on 16 qubits and identity elsewhere. These
Hamiltonians have the property that
• There exists a state |φn〉 such that Hn|φn〉 = 0.

1This, by choosing states that are tensor-product of states,
that each satisfy a small disjoint box from the grid. Analogously,
a CSP defined on a d-regular grid can be approximated in P
for any ε > 0.
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• For any ε-impostor ρn for Hn and any quantum
circuit Un of depth at most d = b · log(n), we have

‖ρn − Un
∣∣0⊗n〉 〈0⊗n∣∣U†n‖1 > n−a. (2)

A. Outline of the Construction
Our construction is a local Hamiltonian on n

qubits for which any ε-impostor, for some constant
ε > 0 must be highly entangled - indeed it must
entangle a number of qubits that is nΩ(1). Since
local Hamiltonians such as the toric code embed-
ded on low-dimensional grids are not NLETS, a
key to this construction is to use an expanding
geometry. This approach was taken also recently
in the construction of quantum codes from high-
dimensional manifolds [8]. Our local Hamiltonian
can be seen as a “toric code” which instead of
being a certain (hyper-)graph product of two 1-
dimensional cycles, is the product of two expander
graphs. The graph product we refer to is a variant
of the Homological product [9] which was ele-
gantly characterized by Tillich and Zémor [2], lead-
ing to improved quantum error-correcting codes.

By specifying a toric-code type quantum error-
correcting code whose underlying topology is a
robust local topology (albeit not spatially local) we
are able to show the existence of robust entangle-
ment. This implies that our intuition that quantum
entanglement is fragile may be no more than an
artifact of considering local Hamiltonian systems
that are spatially local.

B. Proof outline
To show a robust circuit lower bound for impos-

tors of our expander-based toric code we define a
“complexity witness”, i.e. a simple-to-verify prop-
erty that can prove a state is nontrivial. Suppose
we measure a trivial state in a product basis and
thereby obtain some probability distribution p over
F
n
2 . Our complexity witness is the fact that p should

have high vertex expansion, meaning that any
S ⊂ F

n
2 with p(S) ≤ 1/2 should have an Ω(1)

fraction of its mass on points near its boundary.
In particular, let δ�(S) ⊆ F

n
2 denote the points

within Hamming distance � of the boundary of S
(see Section V for precise definition). Then the p-
weighted vertex expansion is defined to be

h�(p) := min
S,0<p(S)≤ 1

2

p(δ�(S))

p(S)
. (3)

It is well known that the uniform measure on F
n
2 ,

or indeed any product measure, has good expan-
sion properties (as we will quantify in Section V).

It is not hard to see this is also true for the output
of low-depth classical circuits. We extend this to
quantum circuits, by using Chebyshev polynomi-
als in a way inspired by [10], [11].

Theorem 6. Let N ≥ n > 0 be some integers, and
|ψ〉 = U |0N 〉 for U a circuit of depth d. Let p be the
probability distribution that results from measuring the
first n qubits in the computational basis; i.e.

p(x) =
∑

y∈{0,1}N−n

| 〈x, y|ψ〉 |2. (4)

Then for any � ≥ α
√
n21.5d ≥ 1 with α ≤ 1, we have:

h�(p) ≥ α2/8 (5)

We refer to non-expanding distributions as “ap-
proximately partitioned”; meaning that we can
identify two well separated subsets S0, S1 each
with large probability measure. A prototypical ex-
ample of a state giving rise to an approximately
partitioned distribution is the so-called “cat-state”
(|0n〉+ |1n〉)/√2. However, the cat state is not the
unique ground state of any local Hamiltonian [12],
so it is not a good candidate for an NLETS system.
Another possibility is the uniform distribution of
any (classical) code with large minimal distance,
since it is also approximately partitioned. How-
ever, simply using the check operators of a classical
code is insufficient since any product string state
corresponding to a single code-word would pass
this test, but is obviously a trivial state.

An example of a state which is both approxi-
mately partitioned and locally checkable is a state
of a quantum error correcting code (QECC) with
low-weight generators. QECCs protect quantum
information by encoding a given Hilbert space
into a larger Hilbert space in a non-local fashion,
so they are natural candidates for creating robust
forms of entanglement. We will show in Section VI
the “warm-up” result that Hamiltonians corre-
sponding to a special subclass of QECCs (namely
CSS codes) have no zero-energy trivial states. ( This
claim was previously shown in [13], [14] but we
present the proof using similar tools to the later
proof of our main result.) Since we consider only
local Hamiltonians then it is necessary to restrict
to codes with low-weight check operators, also
known as LPDC (low-density parity-check) codes.

Finally, in section VIII we show that for the
hypergraph product of two expander graphs, the
resulting code has the property that such com-
plexity witnesses can be produced not only for
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the ground state but for any ε-impostor, even for
constant ε > 0. Essentially, we leverage the robust
connectivity of the expander graph under taking
sub-graphs to prove that any such impostor is
approximately partitioned as a distribution when
measured in some tensor-product basis.

C. Discussion and Open Questions
We have established a first example where a lo-

cally defined, though not spatially local, quantum
system gives rise to a robust form of quantum
entanglement. Not only is its ground state highly
entangled in a rigorous sense of the circuit lower
bound, but this lower bound carries over for any
quantum state that resembles a ground state on
most qubits.

As stated above, this condition is necessary, for
example for the quantum LDPC (qLDPC) conjec-
ture. This conjecture posits the existence of quan-
tum codes with local checks, linear minimal dis-
tance and non-zero rate. To see why NLETS is
necessary for qLDPC suppose that C is such a
qLDPC on n qubits, and it has minimal distance
δminn. Thus if we remove an arbitrary δminn/2
qubits then we are left with a code with distance
≥ δminn/2. By Proposition 24 the resulting states
are nontrivial.

In addition, NLETS is a necessary condition for
the NLTS conjecture [1]. This conjecture posits the
existence of local Hamiltonians for which any low-
energy state is non-trivial - i.e. any |ψ〉 such that
tr(H|ψ〉〈ψ|) < εm (where m is the number of local
terms) is not d-trivial for all d = O(1). To see why
NLETS is necessary for NLTS it is sufficient to ob-
serve that under a very mild regularity condition
on the Hamiltonian, a quantum state that is an ε
impostor of a local Hamiltonian H is in particular
a low-energy state of H , with energy at most Kε
for some constant K.

Thus, in this respect, our work makes progress
on these two important conjectures, and hence also
establishes a new necessary condition for the qPCP
conjecture. That said, our robustness results imply
that quantum entanglement is robust, but does not
show that useful quantum entanglement is robust.
Showing a robust version of entanglement that is
computationally useful is analogous to proving an
adversarial version of the fault-tolerant threshold
theorem for BQP.

Beyond quantum complexity, we believe that
our idea of using vertex expansion as an entan-
glement witness could have further applications.

II. PRELIMINARY FACTS AND DEFINITIONS

A. Quantum codes and local Hamiltonians
Definition 7. Pauli operators

X =

(
0 1
1 0

)
and Z =

(
1 0
0 −1

)
(6)

For e ∈ F
n
2 , define Xe = Xe1 ⊗ Xe2 ⊗ · · · ⊗ Xen ,

i.e. the tensor product of X operators in each position
where ei = 1; similarly define Ze =

⊗
i Z

ei .

Definition 8. CSS code
A [[n, k, d]] quantum CSS (Calderbank-Shor-Steane)
code on n qubits is a subspace C ⊆ H = (C2)⊗n of
n qubits. It is defined by a pair of linear subspaces of
Sx, Sz ⊆ F

n
2 such that Sx ⊥ Sz . It is thus denoted

C = C(Sx, Sz). Explicitly the subspace is given by

C(Sx, Sz) = Span

{
1√|Sx|

∑
x∈Sx

|z + x〉 : z ∈ S⊥z
}
.

(7)

The code has k = log(|S⊥x /Sz|) logical qubits and
distance d = minw∈S⊥x −Sz,S⊥z −Sx

|w|.
The spaces of logical X,Z operators are

respectively defined by the quotient spaces
S⊥z /Sx, S

⊥
x /Sz . The logical X,Z operators that per-

form non-identity operations (also known as non-
trivial logical operators) are given by S⊥z −Sx,S⊥x −
Sz , respectively.

Definition 9. The Hamiltonian of a CSS code
Suppose C = C(Sx, Sz) is a CSS code and Hx, Hz are
subsets of Fn2 that generate Sx, Sz . Then we can define
a Hamiltonian H(C), whose terms correspond to the
generators of the CSS code in the following way.

H(C) = 1

2|Hx|
∑
e∈Hx

I +Xe

2
+

1

2|Hz|
∑
e∈Hz

I + Ze

2
. (8)

Observe that the CSS condition Sx ⊥ Sz implies
that the terms of H(C) all commute. Thus the
ground subspace of H(C) is precisely the code-
space C. Moreover, if the generating sets Hx, Hz

contain only terms with weight ≤ k then the cor-
responding Hamiltonian H(C) is a k-local Hamil-
tonian.

B. Locally Testable Codes
Definition 10. Classical locally testable code
A code C ⊆ F

n
2 is said to be locally testable with

soundness ρ and query q, if there exists a set of q-local
check terms {C1, . . . , Cm}, such that

Probi∼U [m] [Ci(w) = 1] ≥ ρ · dist(w,C)
n

.
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In particular w ∈ C iff Ci(w) = 0 for all i.

We now present a slight re-wording of the defi-
nition of LTC which would be useful later on:

Fact 11. The words of a residual LTC cluster
around the original code
Let C be a locally testable code with parameter ρ. Any
word w that violates a fraction at most ε of the checks
of C is at fractional distance at most ε/ρ from C.

C. Expander Graphs

The term “expander” (or more precisely “edge
expander”) refers to the fact that for a not-too-large
subsets S of vertices a large fraction of the edges
incident upon S leave S. (Later we also discuss
vertex expansion.) Define the Cheeger constant of
a graph G to be

h(G) = min
S⊆[n],0<|S|≤n/2

|∂(S)|
|S| , (9)

where ∂(S) is the set of edges with one point in S
and one in V − S.

Definition 12. Expander Graphs A family of d-
regular graphs {Gn}n is said to be expanding, if there
exists a number h > 0 such that h(Gn) ≥ h for all
sufficiently large n.

In the full paper [15] we explain the standard
fact that for any constant c > 0 infinite families
{Gn} of expander graphs exist with h(Gn) ≥ c and
with degree upper-bounded by a constant depend-
ing only on c. We will specifically need h(Gn) ≥ 3
which can be achieved by 14-regular graphs, as we
explain in [15] using standard arguments.

Expander graphs of bounded-degree give rise
naturally to locally testable codes (LTCs) as follows.
Given an expander graph G = (V,E) we define
the following code C(G). It is the repetition code
on |V | bits, with equality constraints of the form
xi ⊕ xj = 0 for all (i, j) ∈ E. One can easily check
that this code C(G) is locally testable with query
size q = 2 and soundness ρ = 2h(G)/d.

In this paper we require a slightly more robust
version of this fact where we allow the adversarial
removal of a small fraction of the vertices and
edges.

Definition 13. Maximal-connected residual graph
Let G = (V,E), and subsets Vε ⊆ V,Eε ⊆ E. A
connected residual graph of G w.r.t. these sets is a
graph G′ = (V ′, E′) where V ′ ⊆ Vε, E

′ ⊆ Eε such
that G′ = (V ′, E′) is connected. A maximal-connected

residual graph Gε is a connected residual graph of
maximal size |V ′|.

In the full paper [15, Cor 17] we prove

Proposition 14. Consider the maximal connected
residual graph Gε above. For all d ≥ 14, and w ∈ F

V ′
2

we have the following holds:

620ε ≤ |w|
|V ′| ≤

1

2
⇒ |∂Gε

w| ≥ 3|w|. (10)

III. LOCAL HAMILTONIANS WITH
APPROXIMATION-ROBUST ENTANGLEMENT

Our main result will be stated in terms of hard-
to-approximate classical probability distributions
as follows. Recall that QNC1 is the set of languages
computable in quantum bounded-error log depth.
We will use the term to describe classical distribu-
tions that can be approximately simulated with a
quantum log-depth circuit.

Definition 15. QNC1-hard distribution
A family of distributions {Dn} on n bits is said to
be QNC1-hard if there exist constants a, c > 0 such
that for sufficiently large n any n-qubit depth-c · log(n)
trivial state ρn satisfies

‖Dn − diag(ρn)‖1 = Ω(n−a). (11)

Here diag(ρ) can be thought of as the proba-
bility distribution resulting from measuring ρ in
the computational basis. Next, we define quantum
states as QNC1-hard if the classical distribution
induced by their measurement is hard to simulate
quantumly:

Definition 16. QNC1-hard quantum states
A family of n-qubit quantum states F = {ρn}n
is said to be QNC1-hard if for some tensor product
measurement the output distribution is QNC1-hard.

Now, we can define local Hamiltonians as QNC1-
hard if their ground states are QNC1-hard:

Definition 17. QNC1-hard local Hamiltonian
A family of local Hamiltonians {Hn}n is said to be
QNC1-hard if any family of states F = {ρn}n, with
ρn ∈ ker(Hn) is QNC1-hard.

As the final step we define a robust version
thereof where we ask that even ground-state im-
postors are hard:

Definition 18. QNC1-robust local Hamiltonian
A family of local Hamiltonians {Hn} is QNC1-robust
if there exists ε > 0 such that any family F = {ρn}n,
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where ρn is an ε-impostor of Hn for all sufficiently large
n, is QNC1-hard.

Using these definitions our main result (Theo-
rem 5) states that there exists a family of O(1)-
local Hamiltonians that is QNC1-robust. Most of
the remainder of the paper is devoted to the proof
of this result (Theorem 5). In Section V we will
prove that the probability distributions resulting
from low-depth circuits cannot be approximately
partitioned.

Then we will show that the distribution resulting
from measuring quantum code-states can be ap-
proximately partitioned. The canonical example of
such a partition is the cat state, as we mentioned in
the introduction, and indeed it is well known that
the cat state cannot be prepared in sub-logarithmic
depth. In Section VI we will prove a “warm-up” re-
sult showing that any Hamiltonian corresponding
to a CSS code with n

1
2+Ω(1) distance is QNC1-hard,

although they may generally not be QNC1-robust.

IV. THE UNCERTAINTY LEMMA AND NOISY
QUANTUM CODE-STATES

We next present a version of the classic uncer-
tainty principle [16] that implies that if two logical
operators of a CSS codes anti-commute any state
must have a high uncertainty (i.e. variance) in at
least one of these operators. This “sum” version is
due to Hoffman and Takeuchi [17].

Lemma 19. Let |ψ〉 be a quantum state, and A,B
Hermitian observables satisfying AB + BA = 0 and
A2 = B2 = I . Define

ΔA2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.
Then

ΔA2 +ΔB2 ≥ 1. (12)

See [15] for the proof.
Next, we require a simple fact that any CSS code

has a pair of bases, one for each of the kernels
S⊥x , S

⊥
z . The proof can be found for example in

[18].

Fact 20. Anti-commuting logical operators
Let C be a [[n, k, d]]-CSS code: C = C(Sx, Sz). There
exist sets

Bx = {bx1 , . . . , bxk} ⊂ S⊥z (13a)

Bz = {bz1, . . . , bzk} ⊂ S⊥x (13b)

such that {bxi + Sx}i∈[k] and {bzi + Sz}i∈[k] are bases
for S⊥z and S⊥x respectively and

〈bxi , bzj 〉 = δi,j . (14)

Readers acquainted with quantum codes should
think of {Xbxi } and {Zbzi } as logical X and Z
operators.

One useful property of CSS codes is that the
value of the logical operators can be read off from
measuring each qubit individually. If we measure a
code state of C(Sx, Sz) in the Z (resp. X) basis then
the outcomes will always lie in S⊥z (resp. S⊥x ). The
+1/−1 eigenvalues of the first logical Z operator
Zb

z
1 correspond to the outcomes S⊥z ∩ (bz1)

⊥ and
bx1 + S⊥z ∩ (bz1)

⊥ when measuring each qubit in the
Z basis. Observe also that S⊥z ∩(bz1)⊥ = (Sz∪bz1)⊥ =
Sx + Span(Bx − bx1). Let us define accordingly the
sets

CZ0 = (Sz ∪ bz1)⊥ CZ1 = bx1 + CZ0 (15a)

CX0 = (Sx ∪ bx1)⊥ CX1 = bz1 + CX0 (15b)

The sets CZ0 , C
Z
1 (resp. CX0 , C

X
1 ) partition S⊥z

(resp. S⊥x ). Let DZψ (resp. DXψ ) denote the distri-
bution on F

n
2 induced by measuring |ψ〉 in the

tensor Z basis (resp. the tensor X basis), and define
〈M〉 := 〈ψ|M |ψ〉 for any operator M . The above
discussion implies that if |ψ〉 ∈ C then〈

Zb
z
1

〉
= DZψ (CZ0 )−DZψ (CZ1 ) (16a)〈

Xbx1

〉
= DXψ (CX0 )−DXψ (CX1 ) (16b)

Next we argue that uncertainty in the logical op-
erators translates into uncertainty of measurement
outcomes in either the X or Z product basis.

Proposition 21. Uncertainty for code-states in at
least one basis
Let (Sx, Sz) be a CSS code with Bx,Bz as in Fact 20.
Let |ψ〉 be a quantum code-state, and DX

ψ , D
Z
ψ be the

distribution of the measurement of |ψ〉 in the Pauli-X
or Pauli-Z basis, respectively. Then at least one of the
following equations must hold:

DZ
ψ (C

Z
0 ) ∈

[
1

2
− 1

2
√
2
,
1

2
+

1

2
√
2

]
(17a)

DX
ψ (CX0 ) ∈

[
1

2
− 1

2
√
2
,
1

2
+

1

2
√
2

]
(17b)

Since DP
ψ (C

P
0 )+DP

ψ (C
P
1 ) = 1 for P = X,Z we could

equivalently state (17) in terms of CZ1 and CX1 .
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Proof: According to Lemma 19 any state |ψ〉
will have

1 ≤ (ΔXbx1 )2 + (ΔZb
z
1 )2 = 2−

〈
Xbx1

〉2

−
〈
Zb

z
1

〉2

.

and therefore either | 〈Xbx1
〉 | or | 〈Zbz1〉 | must be

≤ 1/
√
2. Assume w.l.o.g. (since the other case is

similar) that ∣∣∣〈Zbz1〉∣∣∣ ≤ 1/
√
2. (18)

The result now follows from (16).

In this paper, we will mostly consider noisy
code-states, and not actual code-states. We will
want to argue that even noisy code-states have an
uncertainty property w.r.t. the original logical op-
erators. To do we will define partitions (analogous
to Voronoi cells in geometry) which correspond
to maximum-likelihood decoding of measurement
outcomes in the X and Z bases.

Proposition 22. Generalized uncertainty for uni-
tary decoding
Let C = (Sx, Sz) be a [[n, k, d]]-CSS code and
CZ0 , C

Z
1 , C

X
0 , C

X
1 are defined as in (15). Let Ex, Ez be

some set of errors that satisfies:

C̃Z0 := CZ0 + Ez (19a)

C̃Z1 := CZ1 + Ez (19b)

C̃Z0 ∩ C̃Z1 = ∅ (19c)

and similarly this holds for the sets C̃X0 , C̃X1 , defined
in the same way w.r.t. Ex. Suppose further that

supp(DZ
ψ ) ⊆ C̃Z0 ∪ C̃Z1 and supp(DX

ψ ) ⊆ C̃X0 ∪ C̃X1
Then there exists a constant c0 > 0.07 such that

(DZ
ψ (C̃

Z
0 ) ≥ c0 and DZ

ψ (C̃
Z
1 ) ≥ c0) or

(DX
ψ (C̃X0 ) ≥ c0 and DX

ψ (C̃X1 ) ≥ c0). (20)

V. VERTEX EXPANSION BOUNDS FOR LOW-DEPTH
CIRCUITS

As stated above, a central notion of this paper
(following Lovett and Viola [19]) is that distribu-
tions over codewords of good codes look very
different from the outputs of low-depth circuits.
We will see in this section that these can be dis-
tinguished by comparing the different values of
vertex expansion that they induce on a particular
graph.

Consider F
n
2 to be the vertices of a graph with

an edge between all pairs x, y with dist(x, y) ≤ �. If

� = 1 then this is the usual hypercube, but we will
be interested in � ≈ √

n. For a set S ⊆ F
n
2 define

δ�(S) to be the boundary of S , meaning points in
S connected by an edge to a point in Sc := F

n
2 −S,

along with points in Sc connected to a point in S.
In other words

δ�(S) = {x ∈ S : ∃y ∈ Sc, |x− y| ≤ �}
∪ {x ∈ Sc : ∃y ∈ S, |x− y| ≤ �}. (21)

Let p be a probability distribution over F
n
2 . The p-

weighted vertex expansion is defined to be

h�(p) := min
S,0<p(S)≤ 1

2

p(δ�(S))

p(S)
. (22)

In this section we argue that the outputs of
low-depth circuits have high vertex expansion for
� = Ω(

√
n). To get intuition for this, we consider

first the case of the uniform distribution over F
n
2 .

Here Harper’s Theorem [20] implies that h�(U [Fn2 ])
is Ω(1) when � = Ω(

√
n).

This can be extended to the case when p is the
output of a classical depth-d circuit C : {0, 1}m �→
F
n
2 which accepts m uniformly random input bits

and has fan-in, fan-out both ≤ 2. In this case each
output bit depends on at most 2d bits. Let S ⊂ F

n
2 ,

T = C−1(S) ⊆ {0, 1}m, and p = U [Fm2 ]. Since
the output can depend on at most n2d bits of the
input, we can assume without loss of generality
that n ≤ m ≤ n2d, or if d is constant then
m = Θ(n). By Harper’s Theorem, since p(T ) ≤ 1/2,
and by assumptionx is drawn uniformly from T ,
then with probability Ω(1) there exists a z with
|z| ≤ √

m and x + z ∈ T c. Now we can use the
assumption that the circuit is low depth to argue
that

dist(C(x), C(x+ z)) ≤ |z|2d ≤ √m2d ≤ √n21.5d. (23)

Since C(x) ∈ S and C(x+ z) ∈ Sc this implies that
C(x) ∈ δ�(S) with � =

√
n21.5d. We conclude that

h�(p) = Ω(1).
The main result of this section is that a similar

bound also holds for the output of low-depth
quantum circuits, as we have stated earlier in The-
orem 6.

Our proof is inspired by the use of Chebyshev
polynomials by Friedman and Tillich [10] to relate
the diameter of a graph to the spectral gap of its
adjacency matrix, as well as by [11] to show that
ground states of 1-d gapped Hamiltonians have
bounded entanglement.
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The idea of the proof is that the output of a
depth-d quantum circuit is also the ground state
of a 2d-local Hamiltonian with minimal non-zero
eigenvalue at least 1/n2d. Using a Chebyshev poly-
nomial of degree α

√
n2d (for 0 < α ≤ 1) this

minimal non-zero eigenvalue can be amplified to
Ω(α2) while blowing up the locality to at most
α
√
221.5d. If the ground state had low expansion

at this Hamming distance, then we could construct
an orthogonal state with only slightly higher en-
ergy, contradicting our known lower bound on the
gap. Details of this argument are in [15].

An easy corollary implies that outputs of low
depth circuits cannot have Ω(1) probability mass
in two sets with distance significantly larger than
O(
√
n21.5d).

Corollary 23. Suppose p is a probability distribu-
tion on {0, 1}n resulting from the output of a depth-
d quantum circuit and S1, S2 ⊂ {0, 1}n such that
p(S1), p(S2) ≥ μ. Then

d ≥ 2

3
log

(
μ · dist(S1, S2)

4
√
n

)
. (24)

VI. WARM-UP:
QUANTUM CSS CODE-STATES ARE QNC1-HARD

Circuit lower bounds for generating quantum
code states exactly can be readily derived from the
local indistinguishability property. In this section,
we show that our techniques can be used to derive
a robust version of this property, which is that
quantum CSS codes cannot be approximated by
bounded-depth quantum circuits, even up to con-
stant l2 error. This result was previously proven by
Bravyi, Hastings and Verstraete [21], but we redo it
with our methods since they will be used in similar
ways in the proof of our main result.

The claims in this section demonstrate our tech-
niques by improving the approximation bounds on
perfect code-states from 0 error to constant l2 error.
Notably, even such a hardness-of-approximation
claim is by no means robust, because we still
consider approximation of perfect ground states of
the code Hamiltonian. In other words, while a
code-state is QNC1-hard, not every ε-impostor of a
code-state is QNC1-hard (we return to ε-impostors
later). In fact, many constructions of quantum CSS
codes are known to be not QNC1-robust: i.e. one
can find ε-impostors of such codes that are trivial
- like in the case where the code is defined on a
regular d-dimensional grid for d = O(1).

Proposition 24. Code-states of quantum CSS codes
with large distance are QNC1-hard
Let C = [[n, k,Δmin]] be a quantum CSS code. Prepar-
ing any |ψ〉 ∈ C up to l2 error at most 0.14 requires
depth Ω(log(Δmin/

√
n)). In particular, if Δmin ≥

n1/2+Ω(1) then |ψ〉 is QNC1-hard.

Proof of Proposition 24: Let |ψ〉 be some code-
state of C. By Fact 20 above, one can find bases
Bx,Bz satisfying (14). Choose, say, the first pair
bx := bx1 ∈ Bx, bz := bz1 ∈ Bz .

Let C0 denote the linear space C0 = S⊥z ∩(bz)⊥ ⊂
Fn2 , and define the affine space C1 = C0 + bx. If
s0 ∈ C0, s1 ∈ C1 then s0 + s1 ∈ C1 ⊆ S⊥z − Sx,
implying that |s0 + s1| ≥ Δmin, and so

dist(C0, C1) ≥ Δmin. (25)

Let DZψ denote the distribution on F
n
2 induced

by measuring |ψ〉 in the tensor Z basis. Then by
Proposition 21 we either have

DZψ (C0) ≥ 1

2
− 1

2
√
2

and DZψ (C1) ≥ 1

2
− 1

2
√
2
, (26)

or a similar statement holds for measuring in the
X basis. WLOG assume that (26) holds. Thus DZψ
is approximately partitioned with measure at least
μ = 1

2 − 1
2
√
2

and distance Δmin. Hence, any
distribution p that is ε-close to DZψ for ε < μ is
(μ−ε,Δmin)-approximately partitioned. Therefore,
by Corollary 23 (and specifically (24)) producing
|ψ〉 to error ε requires depth

≥ 2

3
log

(
(μ− ε)Δmin

4
√
n

)
. (27)

Since μ ≥ 0.142 . . ., if we take ε = 0.14 then this
implies a depth lower bound of 2

3 log
Δmin√
n
− O(1).

If Δmin = n1/2+Ω(1) then this bound is Ω(logn) and
so |ψ〉 is QNC1-hard.

Implications for known quantum codes: Propo-
sition 24 provides a nontrivial quantum circuit
lower bound on the quantum LDPC codes due to
[22]. These codes are CSS codes and have distance
Ω(

√
nlog(n)) which corresponds to a circuit depth

lower bound of Ω(loglog(n)). Notably, our result
applies also for codes with just inverse polynomial
distance like the toric code:

Proposition 25. Let C = [[n, k,Δmin]] be a quantum
CSS code with Δmin ≥ nα for α > 0 and k ≥ 1. If
|ψ〉 ∈ C and ‖ρ − |ψ〉 〈ψ| ‖ ≤ n−1−β for β > 0 then
preparing ρ requires depth Ω(log(n)).

The proof can be found in [15].
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We note that other methods are known [13],
[14], [23] for showing that QECC ground states,
and even low-temperature thermal states of the 4-
d toric code [24], are nontrivial. Indeed our proof
can be viewed as a certain way of generalizing the
argument of [13].

VII. THE HYPERGRAPH PRODUCT

A. General
In this section, we survey the hypergraph prod-

uct due to Tillich-Zémor [2]. We provide here
only the very basic definitions that are required to
prove our main theorem, and refer the reader to
the original paper [2] for an in-depth view. The
hypergraph-product code takes in two classical
codes defined by their Tanner constraint graphs
and generates a product of these codes as hyper-
graphs. Then it attaches a CSS code to the product
graph. Formally stated:

Definition 26. The Hypergraph Product
Let (V1, E1), (V2, E2) be two constraint hypergraphs
with corresponding edge-vertex incidence operators
∂1, ∂2 and codes C1 = ker ∂1, C2 = ker ∂2. Then
the Tillich-Zémor hypergraph product of these codes,
denoted by

C× = C1 ×TZ C2, (28)

is defined by the hypergraph product of the correspond-
ing graphs. Specifically, its Hilbert space is comprised
of qubits corresponding to

(V1 × V2) ∪ (E1 × E2) ,

and check matrices are

Hx =
(
∂1 ⊗ IV2

∣∣IE1 ⊗ ∂T2
)

Hz =
(
IV1 ⊗ ∂2

∣∣∂T1 ⊗ IE2

)
(29)

These matrices have rows indexed by qubits and
columns indexed by checks. The X constraints,
for example, are labeled by elements of E1 × V2,
with constraint (e1, v2) is connected to all elements
(u, v2) ∈ V1 × V2 for u ∈ ∂T e1 and also to all
elements (e1, f) ∈ E1 × E2 for f ∈ ∂v2. (Here
we view ∂T e1, ∂v2 equivalently both as vectors
in F

V1
2 ,FE2

2 respectively and as subsets of V1, E2.)
It follows from this definition that C× is a CSS
code C×(Sx, Sz), where as usual Sx = ImHx and
Sz = ImHz . For |V1| = n1, |V2| = n2, |E1| =
m1, |E2| = m2, the code C× is a quantum CSS code
on n1n2 + m1m2 qubits, with n1m2 + n2m1 local
checks. One can check that C× is determined only
by C1, C2 and not the specific choices of ∂1, ∂2, so
(28) is well defined.

X

E × E

V × vj

ek × E

(ek, vj)

V × V

X X X

X

Figure 1. An example of a check term (ek, vj) of Hx.
It is a parity check on all bits (vm, vj) in the j-th
column of V × V such that vm is examined by ek in
the original code C, and on all bits in the k-th row of
E × E that corresponds to checks incident on vj in C.
If we specialize to the case when C is the repetition
code with checks corresponding to a d-local graph (as
in Section VII-C) then each check examines two bits in
the V × V block and d bits in the E × E block.

We now state several useful facts on this con-
struction, which can all be found in [2]:

Fact 27. Basic Properties of the hypergraph prod-
uct [2]

1) If C1, C2 have locality parameters l1, l2, lT1 , lT2 , re-
spectively, (lTi is the maximum number of checks
incident upon any bit in code Ci) then C× has
locality parameter l1 + lT2 for Hx, and l2 + lT1 for
Hz .

2) δmin(C×) ≥ min
{
δmin(C1), δmin(C2), δmin(CT1 ), δmin(CT2 )

}
3) Let r(C) denote the number of qubits in a code C.

Then r(C×) = r(C1) · r(C2) + r(CT1 ) · r(CT2 ).

These logical operators of C× can assume very
complex forms, due in part, to the fact that the
rate of the code scales like r(C1) · r(C2). Hence, the
hypergraph product of codes with linear rate is
linear itself, i.e. scales like Ω(|V |2).

B. Column-wise logical operators

A particularly interesting subset of the logical
operators, which is a subgroup w.r.t. addition mod-
ulo F2, has a very succinct and useful form. We ex-
ploit the structure of this group to inherit, in some
sense, the classical property of local testability.

Fact 28. Group of logical operators isomorphic to
the original code
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For any x ∈ C1, and y /∈ C⊥2 , the word(
(x⊗ y)V1×V2

,0E1×E2

) ∈ S⊥x − Sz (30)

Similarly, for x /∈ C⊥1 , y ∈ C2,(
(x⊗ y)V1×V2

,0E1×E2

) ∈ S⊥z − Sx. (31)

One can also show that

(0V1×V2
, CT2 ⊗ (CT⊥1 )c) ⊂ S⊥x − Sz (32a)

(0V1×V2
, (CT⊥2 )c ⊗ CT1 ) ⊂ S⊥z − Sx (32b)

In particular, if C1, C2, CT1 , CT2 are linear codes in which
each bit appears at least once as 0 and once as 1 in some
non-zero word, then(

(C1 ⊗ F
V2
2 )V1×V2 ,0E1×E2

)
⊂ S⊥x − Sz (33a)(

(FV1
2 ⊗ C2)V1×V2 ,0E1×E2

)
⊂ S⊥z − Sx (33b)

The proof of this fact is straightforward and can
be found in [2].

C. The Hypergraph Product of a Connected Graph
Proposition 29. The hypergraph product of a con-
nected graph
Let G = (V,E) denote a d-regular connected graph on
n vertices. Let C = C(G) denote the repetition code on
n bits defined by treating the edges of G as equality
constraints. Let C×(G) denote the hypergraph product
of C ×TZ C. Then:

1) Denote |V | = n, |E| = m = dn/2, and so |V ×
V | = n2, |E×E| = d2n2/4, |V ×E| = |E×V | =
dn2/2. The number of qubits is N = (1+d2/4)n2

and the number of checks is dn2.
2) C× is a quantum code on the space of F

V×V
2 ⊕

F
E×E
2 = F

N
2 , constrained by the d+2-local checks

from the columns of {Hx, Hz}.
3) The following set of vectors, indexed by v ∈ V, e ∈

E, generates Sz ,

sz(v, e) = HT
z (v ⊗ e) = v ⊗ ∂T e+ ∂v ⊗ e (34)

Likewise Sx is generated by the vectors

sx(e, v) = HT
x (e⊗ v) = ∂T e⊗ v + e⊗ ∂v. (35)

4) dim(S⊥x /Sz) = 1+dim(CT )2. This follows from
Proposition 14 in [2].

5) The distance of the code is given by the minimum
of the distance of the code C and the transposed
code CT .

We can also specialize our characterization of
logical operators from Fact 28 to the repetition code
with 2-bit check operators.

Proposition 30. Let C× = C × C = C×(G), where G
is a connected graph, and C(G) is the repetition code
constrained by parity checks corresponding to the edges
of G. There exists a spanning set Bz of S⊥x , and a
spanning set Bx of S⊥z , as follows:

Bz := {bz1} ∪ {e⊗ c}e∈E,c∈CT ∪ Sz (36a)
Bx := {bx1} ∪ {c⊗ e}e∈E,c∈CT ∪ Sx (36b)

where CT = ker ∂T denotes the linear span of all
indicator vectors of edges corresponding to cycles in G.

Proof: This follows from [2] as follows. From
the proof of Lemma 17 of [2] we have that bz1 and
e⊗c, for each c ∈ CT are in S⊥x −Sz . By Proposition
14 of [2] it follows that these words, with Sz , span
the entire S⊥x space. The argument for Bx is the
same.

1) Fractal Structure: Another important property
of the hypergraph product of a connected graph,
is that the hypergraph product exhibits a fractal
structure as follows:

Proposition 31. Let G = (V,E) be some graph, and let
C×(G) denote the hypergraph product of the repetition
code induced by equality constraints of E, with itself.
Let Vl ⊆ V,El ⊆ E denote some subsets. Then there
exists a graph G′ = (Vl, El∩Vl×Vl) such that C×(G′)
is supported on Vl × Vl ∪ El × El.

Proof: By definition, the checks of C× are the
Cartesian product E × V for Sx and V × E for
Sz . Define G′ = (V ′, E′) as in the statement of the
proposition, i.e. with E′ the set of edges in El that
have both endpoints in Vl. Hence E′ ⊆ E, V ′ ⊆ V ,
and so in particular E′×V ′∪V ′×E′ ⊆ E×V ∪V ×E.

D. The Hypergraph Product of an Expander Graph

In this section, we consider the hypergraph
product C×(G) = C(G) × C(G), where G is a d-
regular Ramanujan expander graph. We note that
while the minimal distance of C is exactly n, as
it is the repetition code, the minimal distance of
CT is much smaller, i.e. O(log(n)) - given by the
minimum length cycle in the expander graph.
Hence

δmin(C×) = min{δmin(C), δmin(CT )} =

min{O(n), O(log(n))} = O(log(n)).
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1) Comparison to the toric code: One can first
compare C×(G) to the toric code. The toric code
can be seen as the hypergraph product of the
repetition code, with equality constraints in a cycle,
i.e. x1 = x2, x2 = x3, . . . , xn = x1. (By contrast
our code has equality constraints xi = xj for
(i, j) running over the set of edges in an expander
graph.) It follows from the hypergraph product,
that the distance of such a code is precisely n (out
of n2 total qubits), which is larger than the O(logn)
minimum distance of our code. However, the toric
code also has low-error trivial states, since we can
delete an O(ε) fraction of constraints and leave it
disconnected into blocks of 1/ε2 qubits.

2) Localized Minimal Distance: As stated above
we have δmin(C×) = O(log(n)). However, not all
logical qubits are equally protected: we focus on
the logical qubit with distance n, meaning that all
elements of CZ1 and CX1 have weight ≥ n. It turns
out, that for this logical qubit, an even stronger
property is true: we will show that any element
of CZ1 or CX1 must have weight Ω(n) in some row
or column of V × V or E ×E. In other words, the
minimal distance of this logical qubit is manifested
locally:

Lemma 32. Locally-manifested minimal distance
Let C×(V ′ × V ′ ∪ E′ × E′) = C(G′) denote the
hypergraph product of a graph G′ = (V ′, E′), which
is a connected ε-residual graph of a Ramanujan graph
of degree d. If d ≥ 14 and ε ≤ 1

620d then

∀w ∈ CZ1
(
∃v ∈ V ′ |wV ′×v| ≥ 1

2
n′

or ∃e ∈ E′ |wE′×e| ≥ 3

8d
n′
)
. (37)

where n′ = |V ′|. Similarly,

∀w ∈ CX1
(
∃v ∈ V ′ |wv×V ′ | ≥ 1

2
n′

or ∃e ∈ E′ |we×E′ | ≥ 3

8d
n′
)
. (38)

VIII. EXPLICIT QNC1-ROBUST LOCAL
HAMILTONIANS

A. The construction
In this section, we show how to construct QNC1-

robust local Hamiltonians based on CSS codes. Let
G be an explicit family of 14-regular Ramanujan
graphs, as discussed in Section II-C. We define

C× = C(G). (39)

B. NLETS Theorem Statement

Theorem 33. NLETS
Let C(N)

× denote the hypergraph product above that is
defined on a space of N = (1 + d2/4)n2 qubits. The
family of local Hamiltonians

{
H

(
C(N)
×

)}
N

is NLETS

for d = 14 and ε = 10−8.

(Our proof applies to any d ≥ 14 and sufficiently
small ε > 0, which may depend on d.)
The proof (found in [15]) has 3 steps.

In the first part of the proof we show that any
quantum state |ψ〉 that is an ε-impostor of H(C×)
obeys, in fact, a more stringent constraint on a
subsystem of the full Hilbert space, which is the
uniform low-weight error condition: there exists
some large subset Vl ⊆ V and large subset El ⊆ E
such that for each v ∈ Vl at most an O(

√
ε) fraction

of the qubits V ×v have errors, and the same holds
for a large fraction of columns E × e, for e ∈ El.

A certain “fractal” property of the hypergraph
product of the repetition code defined by an
expander graph, allows us to argue that in-
side C× there exists a complete smaller product-
hypergraph of a connected sub-graph (V ′, E′) in-
duced by (Vl, El). Hence, we can reduce the prob-
lem of an ε-impostor to the hypergraph product
code of G to the problem of an ε-impostor to the
hypergraph product code of Gl, with the extra
condition of uniform low-weight error.

In the second part we show that this “uniform
low-weight error condition” implies that there ex-
ists a distance partition in either the X or Z basis.

In the third part, we finish the proof by using
the distance partition above to argue that the |ψ〉
has low vertex expansion in at least the X or Z
basis.
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