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Abstract—We show that high dimensional expanders imply
derandomized direct product tests, with a number of subsets
that is linear in the size of the universe.

Direct product tests belong to a family of tests called agree-
ment tests that are important components in PCP constructions
and include, for example, low degree tests such as line vs. line
and plane vs. plane.

For a generic hypergraph, we introduce the notion of
agreement expansion, which captures the usefulness of the
hypergraph for an agreement test. We show that explicit
bounded degree agreement expanders exist, based on Ramanu-
jan complexes.

to Oded Goldreich, with love and admiration, on the occasion
of his 60th birthday
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I. INTRODUCTION

This paper shows that derandomized direct product tests

can be obtained from high dimensional expanders. Direct

product tests fit into a more general family of tests called

agreement tests which include low degree agreement tests

such as the plane vs. plane [RS97] and line vs. line test

[AS97], and were first abstracted by Goldreich and Safra in

[GS97]. These are important components in the construction

of nearly all probabilistically checkable proofs (PCPs) and

capture a certain local to global behavior.

PCPs and agreement tests: In all efficient PCP con-

structions we break a proof into small pieces, use inefficient

PCPs (i.e. PCP encodings that incur a large blowup) to

encode each small piece, and then through an agreement
test put the pieces back together. The agreement test is

needed because given the collection of encoded pieces, there

is no guarantee that the different pieces come from the same

underlying global proof, i.e. that the proofs of each piece can

be “put back together again”. The PCP system must ensure

this through agreement testing: take two pieces that have

some overlap, and check that they agree. For this idea to

work we must be able to pass from good pairwise (local)

agreement to consistency with a single global proof.

That is, the scheme should have two features,

1) “Sampling property”: the collection of subsets X =
{s ⊂ [n]} should be a good sampler, so that any set

of μn elements are seen by almost all sets s ∈ X with

the correct proportion (i.e. each s should see roughly

μ|s| elements). We want the subsets in X to be small,

and we want the number of subsets to be not too large.

2) “Agreement expansion”: There should be an agree-

ment test for X . An agreement test is a distribution

over say pairs of subsets such that, roughly speaking,

if a given collection has high pairwise agreement on

average, then it is close to being consistent with some

global string.

We initiate a study of the following general question:

which collections of subsets X satisfy the two above prop-

erties? We formulate this as a type of high dimensional

expansion of X which we term agreement expansion, and

show a construction of such an X that has only O(n)
subsets.

A. Agreement Expansion - definition and main theorem

Let [n] be a ground set and let X(d) be a collection of

subsets of [n] which, for concreteness, can be the set of all

d-dimensional faces of a simplicial complex X on n vertices.

A local assignment is a collection f = {fs} of local

functions fs ∈ {0, 1}s, one per subset s ∈ X(d). To be clear,

fs specifies a 0/1 value for each x ∈ s. It has no information

about elements x �∈ s so it is “local”. A local assignment is

called global if there is a global function g : [n] → {0, 1}
such that

∀s ∈ X, fs ≡ g|s
We denote by Global = Global(X(d)) the set of global

assignments over X(d).
An agreement-check for a pair of subsets s1, s2 checks

whether their local functions agree, denoted fs1 ∼ fs2 .

Formally,

fs1 ∼ fs2 ⇔ ∀x ∈ s1 ∩ s2, fs1(x) = fs2(x).

It is easy to see that any local assignment that is global

passes all agreement checks. The converse is also true: a

local assignment that passes all agreement checks must be

global.

An agreement test is specified by giving a distribution D
over pairs of subsets s1, s2. We define the agreement of a
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local assignment to be the probability of agreement,

agreeD(f)
.
= Pr

s1,s2∼D
[fs1 ∼ fs2 ] .

An agreement theorem shows that if f is a local assign-

ment with agreeD(f) > 1 − ε then f is 1 − O(ε) close

to a global assignment. Such a theorem relates two ways

of measuring the closeness of f to being global: the actual

distance dist(f,Global) and the distance we observe when

looking at the “boundary”, namely the checks that fail. The

latter we denote by disagreeD(f)
.
= 1 − agreeD(f). This

gives rise to the following definition of agreement expansion
of X and D as a type of “Rayleigh quotient”,

Υ(X,D) = inf
f

disagreeD(f)
dist(f,Global(X))

, (1)

where the infimum is over all possible non-global assign-

ments f . A lower bound on Υ implies that when the

disagreement is small then the distance to global is also

small. This means that the test “works” in that it provides a

good approximation to the actual distance of f from being

global. We are now ready to provide the formal definition

of an agreement expander,

Definition I.1 (Agreement expander). A d-dimensional

complex X is a c-agreement-expander if its underlying

graph1 is connected and if there exists a distribution D such

that

Υ(X,D) ≥ c.

In other words, for every f = {fs}s∈X(d), if

agreeD(f) ≥ 1− ε,

then there is g : X(0)→ {0, 1} such that

Pr
s
[fs = g|s] ≥ 1− ε/c.

The “in other words” part of the definition is a statement

that is the bread and butter of property testing: if a test

passes with probability at least 1 − ε then the object is

1 − ε′ to the property. Thus, proving that a certain pair

(X,D) is an agreement expander is equivalent to showing

that the property Global(X) is testable with D as the test

distribution.

For a d + 1 dimensional complex, there is one arguably

most natural distribution D↑ over pairs of subsets in X(d),
which we shall call the one-up distribution. It is the distribu-

tion obtained by choosing a random d+1 dimensional face r,

and then two random d-faces in it s1, s2 ⊂ r independently.

(The name is explained from the point of view of s1: we

move “one-dimension-up” towards r and then to s2).

1The graph underlying a complex has an edge between u and v whenever
they belong to a common face.

Definition I.2 (One-up agreement-expander). A d + 1-

dimensional complex X is a c-one-up agreement-expander
if its underlying graph is connected and if

Υ(X,D↑) ≥ c · 1
d

In other words, for every f = {fs}s∈X(d), if agreeD↑(f) ≥
1− ε/d, then there is a global g : X(0)→ {0, 1} such that

Pr
s
[fs = g|s] ≥ 1− ε/c.

For the one-up distribution D↑ the factor 1
d is necessary

as can be seen from its presence also in the complete d-

dimensional complex on n vertices (whose d-faces are all

d+ 1 element subsets of the vertices). We prove,

Theorem I.3 (Main). There exists a constant c > 0 and an
explicit infinite family of bounded degree complexes that are
c-agreement expanders, and c-one-up agreement expanders.

This theorem implies a very strong derandomization of

direct product tests. Previously, the only known agreement

test with comparable parameters was known for the complete

d-dimensional complex [DS14] which has ≈ nd+1 subsets.

In comparison, the construction here has only Od(n) subsets.

There are some known derandomizations of direct product

tests [GS97], [IKW09] (but none have a linear number of

subsets) which we discuss later in the introduction.

B. Agreement expansion from high dimensional expanders

Our main theorem shows that high dimensional expansion

implies agreement expansion. We begin by introducing high

dimensional expanders.

High dimensional expansion of simplicial complexes:
A d-dimensional simplicial complex X is a hypergraph on

n vertices such that for every hyperedge s that belongs

to the hypergraph, all of its subsets also belong to the

hypergraph. Hyperedges of a simplicial complex are also

called faces, and the dimension of a face is one less than

its cardinality. Simplicial complexes are viewed as higher

dimensional analogs of graphs. It is standard to denote the

vertices of the complex by X(0), the edges by X(1) and in

general X(i) is the collection of i-dimensional faces, which

are subsets of cardinality i+1. The following two definitions

are important,

• The graph underlying a complex is simply the graph

obtained by keeping only the vertices and the edges of

the complex.

• The link of a face s ∈ X(i) in the complex, for i <
d − 1, is itself a complex that is the neighborhood of

s, formally defined as

Xs = {t \ s | s ⊂ t ∈ X} .
In recent years several distinct notions of high dimen-

sional expansion (of simplicial complexes) have been ex-

plored. Coboundary expansion, introduced by Linial and
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Meshulam [LM06] and by Gromov [Gro10], is an ex-

tension of graph expansion to higher dimensions, from

a cohomological perspective. A relaxation of the notion

of coboundary expansion which is called cosystolic ex-

pansion was introduced by [EK16]. Cosystolic expansion

was shown [KKL14], [DKW16] to imply the topologi-

cal overlapping property defined by Gromov [Gro10]. In

[KM17] a combinatorial “random-walk” type of expansion

was defined. This notion is concerned with the convergence

speed of high dimensional random walks to the stationary

distribution. Our work is most related to the notion stud-

ied in [KM17], since we essentially prove that agreement

expansion is implied by high order random walks with

optimal convergence rate. The work of [KM17] showed that

high order random walks in Ramanujan complexes converge

rapidly to their stationary distribution, and in this work we

derive optimal bounds on the convergence rate.

Marvelous Ramanujan Complexes: Much of the work

on high dimensional expanders is motivated by the ex-

istence of the Ramanujan complexes whose properties

seem to be nearly impossible. More than ten years ago

Lubotzky, Samuels, and Vishne [LSV05b] constructed

higher-dimensional analogs to the celebrated LPS Ramanu-

jan expander graphs [LPS88]. The LPS graphs come from

quotients of the infinite tree. In the algebraic world there

is a higher dimensional version of the infinite tree called

the Bruhat-Tits building. This lead [LSV05b] to study quo-

tients of this infinite object as a generalization of [LPS88]

(both [LPS88] and [LSV05b] rely on deep number theoretic

theorems establishing the Ramanujan conjectures for GL2

by Drinfeld and for GLd by L. Lafforgue). In [LSV05b]

the authors describe an explicit construction of a family of

quotients and show that they are simplicial complexes with

uniformly bounded degree (i.e. every vertex participates in

a bounded number of faces) that look locally exactly like

the infinite building.

The technical tools for reasoning about their construction

are representation theoretic, and the local similarity to the

infinite building. A typical argument would first analyze

what’s going on in the infinite building and then proceed to

prove that the same holds for the quotient. Thus the infinite

building is used as a “model” for understanding the quotient.

In contrast, we use the complete complex as a model. The

advantage is that the complete complex is a finite and simple

combinatorial object that is easier to analyze than is the

infinite building.

Previous works on the Ramanujan complex [KKL14],

[EK16] developed a combinatorial property called there λ-

skeleton expansion that these complexes enjoy, and that is

much easier to reason about. The power of this property is

that on one hand it is easy to understand combinatorially,

and on the other hand it is powerful enough to imply

interesting results. It is also quite baffling in that except

for the [LSV05b] construction there seems to be ‘no way’

to satisfy the property.

Indeed this property was shown by [KKL14], [EK16] to

imply co-systolic expansion which implies the topological

overlapping property. Additionally in [KM17] it was shown

that for a complex with the λ-skeleton expansion property it

holds that all its high order random walks converge rapidly

to their stationary distribution.

In this work we continue this approach of trying to capture

a simple combinatorial property of simplicial complexes and

using that in order to understand further properties of the

complex. We introduce an arguably cleaner variant of the

λ-skeleton expansion which we term λ-HD expansion.

Definition I.4 (λ-HD expander). A d dimensional simplicial

complex is a λ-HD expander if for every i < d − 1 and

every s ∈ X(i), the underlying graph of the link Xs

is a λ-spectral expander graph, namely its second largest

normalized eigenvalue is bounded in absolute value by λ.

This definition is nice in that the graphs underlying each

link are expanding in the most convenient way, namely

spectrally. Previous work used a different and more subtle

definition (namely, the λ-skeleton expansion) because the

LSV complexes are not λ-linik expanders: they only have

“one sided” spectral expansion. This is because the links of

LSV complexes are d-partite, which means that even though

all eigenvalues are at most some small λ, there is a negative
eigenvalue with magnitude 1/d. We observe however that it

is easy to derive λ-HD expanders from LSV complexes by

taking an appropriately small-dimensional skeleton. Relying

on the work of [LSV05b], [EK16] we prove

Lemma I.5 (λ-HD expanders exist). For every λ > 0 and
every d ∈ N there exists an explicit infinite family of bounded
degree d-dimensional complexes which are λ-HD expanders.

We remark that for d > 1 we know of only one

way to obtain such complexes, and in particular there is

no known random construction that is a λ-HD expander,

even for d = 2. In contrast, for d = 1 they are in abundance.

Returning to agreement expansion: We show that every

λ-HD expander has a lower-dimensional skeleton that is

an agreement expander. Recall that the k-skeleton of a

d-dimensional complex X is the k-dimensional complex

obtained by keeping only faces of X of dimensions at most

k.

Theorem I.6 (λ-HD expanders give agreement expanders).
There is some constant c > 0 such that for every 1 < d ∈ N

and every d2-dimensional complex that is a λ-HD expander,
its k-skeleton for k ≤ d is a k-dimensional complex that is
a c-agreement expander.

Our main theorem, Theorem I.3, is an immediate corollary

of Lemma I.5 and Theorem I.6. Thus, the bulk of this paper

is devoted to proving Theorem I.6.
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C. Technical results on the way to proving the criterion for
agreement expansion

Our proof of Theorem I.6 has two main components. First,

we analyze high order random walks on a λ-HD expander,

namely walks that move from k-face to k-face if they

belong together to a (k+ t)-face (see Section III for precise

definitions). We show that these walks are strongly mixing

in the sense that their spectral behavior is just like that of

the analogous random walks on the complete complex, up

to an error term bounded by λ.

The second component is a proof of agreement expansion

that proceeds by reduction to the agreement expansion of the

complete complex. The reduction crucially uses the strong

mixing of the high order random walks: we essentially prove

that strong mixing of high order random walks suffices for

inheriting the agreement expansion of the complete complex.

1) Optimal high order random walks from decreasing
differences: The key to our proof is an analysis of random

walks that move from k-face to k-face if they belong

together to a k + 1 face.

Theorem I.7 (Spectral gap of one-up random walk). Let X
be a d-dimensional λ-HD expander. For any k < d consider
the random walk distribution D↑ that moves from a k-face s1
to a random k+1 face r ⊃ s1, and then to a random k-face
s2 ⊂ r. Let Ak,k+1 be its transition matrix. Then the second
largest eigenvalue of Ak,k+1 is at most 1− 1

k+1 +O(kλ).

If X is the complete complex, then it is not hard to see

that the second largest eigenvalue is 1 − 1
k+1 − on(1). So

this theorem is “best possible” in the sense that the loss

in comparison to the complete complex is negligible. This

random walk was analyzed also in [KM17] who proved

that the second largest eigenvalue is at most 1 − O(1/k2).
However, we will see below that for our application this

bound is insufficient and it is crucial to have the spectral

gap close to that of the complete complex.

Our proof of Theorem I.7 introduces a method of decreas-

ing differences. We study the variance of a random walk

simultaneously in multiple dimensions. It is easy to see that

the variance decreases as we go down in dimension, but in

fact a stronger property holds. If we look at the difference

between the variance of successive dimensions, this differ-

ence itself turns out to be (λ-approximately) decreasing as

the dimension decreases from k to 0.

2) Samplers from optimal high order random walks: One

can write the transition matrix Ak,k+1 of the one-up distri-

bution as Ak,k+1 = M†M , where M is the transition matrix

taking us from a k face to a random k+1 face that contains

it. This matrix is denoted Mk↗k+1 in Section III. It turns

out that the adjoint operator M† is the reverse transition

matrix, moving us from a k + 1 face to a random k face

contained in it. By multiplying these matrices for increasing

dimensions one after the other we get a description of the

t-step random walk: Ak,k+t = B†B where

B = Mk+t−1↗k+1Mk+t−2↗k+t−1 · · ·Mk↗k+1.

Once we have this description of B as a product of the

M ’s, the proof of the next theorem follows directly from the

previous one through a telescoping product of the eigenvalue

bounds.

Theorem I.8 (Spectral gap of t-up random walk). Let X
be a d-dimensional λ-HD expander. Consider the random
walk that moves from a k-face s1 to a random k + t face
r ⊃ s1, and then to a random k-face s2 ⊂ r. Let Ak,k+t be
the transition matrix of this random walk, then the second
largest eigenvalue of Ak,k+t is at most k+1

t+k+1 +O(tkλ).

Recall that we think of λ as arbitrarily small so this means

that the eigenvalue above is nearly k+1
t+k+1 . The fact that

k+1
t+k+1 can be arbitrarily small as t increases is crucial. If

t � k then λ(Ak,k+t) is small and this implies that the

bipartite graph whose left vertices are the k-faces and whose

right vertices are the (k + t)-faces is a good sampler. This

sampling property drives our proof of agreement expansion.

We remark that for the argument above to hold it is crucial

that we have a bound on the spectral gap of D↑ of at most

1 − O(1/k). The spectral gap proven in [KM17] which is

1 − O( 1
k2 ) only gives a constant bound on λ(Ak,k+t), and

not one that tends to zero as t→∞, and this is insufficient

for sampling.

3) Double Sampler: We wish to highlight the combinato-

rial object that we now have in our hands, and in particular

its strong double sampling property. Combining Theorem I.8

with Lemma I.5, we get the following theorem,

Theorem I.9 (Double sampler). For every 1 < k < d and
γ > 0, there is an infinite family of three-partite incidence
graphs {G(U, V,W,E)}n with three sets of vertices U =
[n], V ⊂ (

[n]
k

)
, and W ⊂ (

[n]
d

)
and non-negative weights on

the vertices such that there is an edge between x ∈ [n] and
s ∈ V iff x ∈ s, and there is an edge between s ∈ V and
r ∈W iff s ⊂ r, and such that the following properties hold
• |V | + |W | + |E| = O(n) where the constant depends

on k, d, γ.
• G has the following double expansion property,

λ(G(U, V ))2 ≤ 1/k+γ and λ(G(V,W ))2 ≤ k/d+γ
(2)

where G(U, V ) and G(V,W ) are the respective bi-
partite graphs and λ is the second largest normalized
singular value of the appropriate transition matrix.

We refer to (2) as a double sampling property because

if 1 � k � d then both spectral gaps are small and this

implies good sampling properties: every set V ′ ⊂ V is seen

with the correct proportion by almost all w ∈ W , and at

the same time, every set U ′ ⊂ U is seen with the correct

proportion by almost all v ∈ V . We know of no other way of
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obtaining such an incidence graph. In fact, it is interesting to

compare this to the complete and to the random construction:

• The complete construction is a construction as above

for which V =
(
[n]
k

)
and W =

(
[n]
d

)
. The complete

construction has the same spectral gap but |W | =(
n
d

)� Ω(n).
• Every random construction that is obtained by choosing

a sparsification parameter p and then leaving alive

edges or vertices with probability p, is easily seen to

fail to give these properties. For example, if we choose

to keep each r ∈ (
[n]
d

)
with probability O(n/

(
n
d

)
) so as

to leave a linear number of subsets in W , the induced

graph will be highly disconnected.

4) Reduction to agreement expansion on the complete
complex, using the double sampler: Given a d dimen-

sional complex X we move to a lower dimensional skele-

ton X(k) consisting of all the k-faces of X , and prove

agreement expansion for X(k). Our proof capitalizes on

the fact that X(k) contains many copies of the complete

complex: one for every a ∈ X(d) consisting of all sets

{s ∈ X(k) | s ⊂ a}. (In fact X(k) can be viewed as a

“convex combination” of complete complexes). On each

complete sub-complex we can apply the agreement expan-

sion theorem of [DS14] to deduce that the sets s ⊂ a
must usually agree with one function ga : a → {0, 1}. We

crucially use the double sampling property as follows,

• Sampling from d-sets to k-sets is used to prove that for

many d-faces a ∈ X(d) we have high agreement inside

the complete sub-complex of sets contained in a.

• Sampling from k-sets to points is used to move from

distance ε between the global majority and ga on the

level of k sets, to a distance of ε/k on the level of

points. This shrinkage in distance allows us to deduce

that fs agrees with the majority for every x ∈ s.

D. Derandomized direct products and sums

The study of agreement tests continues a line of work

on direct product tests which are combinatorial analogs of

parallel repetition (a PCP transformation that obtains strong

gap amplification). Parallel repetition has a high cost in

terms of the blow up which is exactly analogous to the

fact that the complete complex on n vertices has ≈ nk

k-faces. This lead researchers to look for “derandomized

parallel repetition”, and unfortunately this has hit a wall in

that there are known limitations to generic derandomization

[FK95].

Nevertheless, in the world of direct product tests which

are the combinatorial analog of parallel repetition deran-

domization is not ruled out and [IKW09] have come up

with a derandomization for which they proved an agreement

testing theorem (i.e., in our terms, agreement expansion).

This construction was later used [DM11] for a bona fide PCP

construction. The difficulty in moving from an agreement

test to a PCP construction is in incorporating the arbitrary

PCP query structure into the test. In [DM11] this was

done by modifying the PCP itself to fit into the agreement

expander.

This raises the question of whether a PCP test can be made

to fit into the high dimensional expanders that we study here.

This would potentially allow using the agreement expansion

in a PCP construction. Whether or not this is possible is left

to future work, but in the meantime, in this work we show for

the first time a derandomized direct product test with a mere

linear number of subsets. We define, for every simplicial

complex X , the direct product encoding corresponding to X
(see Definition IV.2). Our main theorem can be rephrased as

a theorem about the two-query testability of this encoding,

see Lemma IV.3.

The direct product encoding has been used for hardness

amplification in settings outside of PCPs, and it is possible

that this derandomization would be useful there as well.

The direct sum encoding is very related to the direct

product one: for every subset s we replace fs by
∑

x∈s fs(x)
mod 2, i.e. we simply take the XOR of the bits. This

gives an encoding from n bits to |X(k)| bits, i.e. when

we map a function on the vertices to a “cochain” which

is a Boolean function on the k-faces. Concretely, we define

for every simplicial complex X , the direct sum encoding

corresponding to X (see Definition IV.1). When X(k) is

bounded-degree this encoding has “constant rate” since it

maps n bits to O(n) bits. We show in Lemma IV.4 that if

X(k) is an agreement expander then this encoding is testable

with the minimal number of 3 queries.

Distance amplification code: Note that this encoding

is far from an error correcting code because of its poor

relative distance, which is about k
n , but nevertheless it has

the interesting distance amplification property: the distance

between every two message strings w,w′ grows roughly k-

fold. This gives the first construction, to the best of our

knowledge, of a distance amplification code with constant

rate that is locally testable with a constant number of queries,

independent of k.

One can view the set {0, 1}n of possible functions on

the vertices as a code of distance 1/n that is transformed,

through the direct sum encoding, to a new code whose

distance is Ω(k/n). If we begin with a restricted set of

functions, say a code C ⊂ {0, 1}n whose distance is δ, then

this transformation results in a new code whose distance is

Ω(kδ) (as long as δ < 1/k), see Lemma IV.5. However,

even if C is locally testable to begin with, it is not clear

how to retain the local testability of the amplified code.

E. More related work

Works on PCP agreement tests: Agreement tests were

initially studied as a type of low degree test, e.g. the line

vs. line test of [RS92a], [RS92b], [AS97] and the plane vs.
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plane test of [RS97]. Goldreich and Safra [GS97] were the

first to consider the more general question of agreement tests

and listed a set of axioms that imply agreement expansion

(in current terminology). They were interested in finding a

smaller collection of subsets on which such a theorem holds

and proved agreement expansion of a certain (derandomized)

collection of subsets. However, their result employs a weaker

notion of approximate global consistency, namely that fs ≈
g|s instead of fs ≡ g|s. Further works [DR06], [DG08],

[IKW09] adopted this approximate consistency notion which

is in fact inherent in the small acceptance regime. The only

setting where an agreement test is known to have the (more

natural) exact global consistency is in the work of [DS14]

on the complete complex.

For the approximate global consistency notion, Impagli-

azzo et. al. [IKW09] suggested to look at a collection of

subsets that corresponds to affine subspaces inside a high-

dimensional vector space. The collection has size that is

polynomial in the size of the ground set which is much

better than the exponential size of the complete complex,

but still far from linear and certainly at least quadratic. The

[IKW09] agreement test theorem holds also in the so-called

small acceptance regime, also known as the 1% regime.

Extending our results on the bounded-degree complexes to

this regime is an intriguing open question. In particular, we

conjecture the following to be true

Conjecture I.10 (Derandomization in the 1% regime). For
every δ > 0 there exists a d ∈ N and an infinite family
X1, X2, . . . of sparse d-dimensional complexes, and for
each Xn a distribution Dn over pairs of subsets, such
that for each X = Xn the following holds. For every
f = {fs}s∈X(d), if agreeD(f) > δ then there is a global
g : X(0)→ {0, 1} such that Pr[fs ≈ g|s] ≥ Ω(δ).

Such a result holds for the complete complex [DG08],

and the subspaces complex [IKW09].

So far in the PCP literature essentially two constructions

are known that give non trivial agreement tests. The first,

called the direct product construction, is where X is the

collection of all subsets of size d, i.e. the complete complex.

The second, called the subspaces construction, is where

the ground set [n] is identified with the points of some

vector space Fm and the subsets correspond to all fixed-

dimensional linear (or affine) sub-spaces of Fm. Apart from

these two constructions (and some very similar variants) no

other construction is known and certainly not one with linear

or nearly-linear size that so much as comes close to results

cited above.

Recently agreement tests on the subspaces complex

(Grassmann) were studied [KMS16], [DKK+16] towards

proving strong inapproximability results and in particular

the so-called 2-to-1 conjecture. This may be taken as further

indication of the importance of agreement tests inside PCP

constructions.

We remark that although finding a smaller collection of

subsets is called a derandomization task (and this can be

justified because we want to use fewer random bits to choose

a random subset in the collection), it is unlike most other

derandomization questions studied in the context of pseu-

dorandom generators or extractors. The difference is that in

standard derandomization a random object with the correct

size almost surely has the desired property, and the difficulty

is coming up with an explicit construction that imitates

the random object. Here, in contrast, a random collection

of linearly many subsets, also called the random sparse

complex, is very far from having the desired agreement

behavior. This is for a very similar reason to the fact that a

random sparse simplicial complex is not at all a good high-

dimensional expander.

Works on high order random walks: Combinatorial

high order random walks on high dimensional expanders

were first defined and analysed by [KM17], who showed

that these walks are rapidly mixing. However the second

largest eigenvalue bound obtained by [KM17] is 1−O( 1
k2 )

and not 1−O( 1k ). This innocent looking difference is quite

important since only the optimal gap of 1/k (that we end

up showing in Theorem I.7) suffices for proving the strong

sampling properties that underly our proof.

First [Fir16] studies a broad collection of high order

random walks and shows that their spectral behavior is the

same as that of the infinite Affine Building. This could

potentially lead to an alternate way of calculating the spectral

gap of these walks: understand them on the infinite building

and then transfer the results to the finite quotient. However,

this path has so far not been carried out.

We refer the reader to the work [LLP17] and the refer-

ences therein for a broader discussion of high order random

walks.

F. Discussion

High dimensional expanders and PCPs: We believe

that there is a true connection between high dimensional

expanders and PCPs. These objects posses a mixture of

pseudo-randomness and structure that can not be obtained by

any known random construction. This is in striking contrast

to the one dimensional case, where random graphs easily

give nearly optimal expanders.

We think that further exploration of the relations between

these two objects could be beneficial. It could well be the

case that known high dimensional expanders can be used

to construct better PCPs, either towards the sliding scale

conjecture or towards linear size PCPs and locally testable

codes. Additionally, it can be the case that known PCP

constructions based on composition can be used to obtain

new constructions of high dimensional expanders that are

not algebraic. Remark: although some limitations are known

regarding constructing high dimensional expanders (under

some conditions only number theoretic constructions can
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be Ramanujan) there is no limitation for constructing a

generic λ-HD high dimensional expander. It would be very

interesting to construct such an object without using repre-

sentation theory; This could possibly be achieved through

PCP techniques.

Agreement expansion is a kind of approximate coho-
mology with local coefficients: Functions on a topological

space are sometimes easier to specify by giving them as a

collection of local functions, one per small part of the space.

It is required of course that the different local functions agree

on the intersection of their domains. This is called the sheaf
condition, and corresponds exactly to our notion of agree-

ment. If the collection of local functions satisfies agreement

perfectly then it is a global section (or a cohomology with
local coefficients). In this language what we are studying is

a notion of “approximate sections”.

The fact that agreement testing has a natural countepart

in topology (although exact and not approximate), hints to-

wards promising relations between these seemingly different

areas.

G. Organization

The rest of the paper contains some preliminaries followed

by two sections. The analysis of higher order random walks

is given in Section III. We skip the proofs of the main

theorems (Theorem I.3 and Theorem I.6) and of existence

of sparse λ-HD-expanders of all dimensions (Lemma I.5).

These can be found in the full version of the manuscript.

We conclude with Section IV about application to direct

sum and direct product.

II. PRELIMINARIES

A. Markov operators and singular values

The following is a slight generalization of the theory

of spectral decomposition of graphs to the case of bipar-

tite graphs with nonnegative weights. By normalizing the

weights to sum up to one we can always think of such a

bipartite graph as a probability distribution over pairs of

vertices (u, v) ∈ U × V .

Throughout the paper we will be working with Markov

operators that are defined via a distribution. We define this

next,

Definition II.1 (Markov operator of a bipartite graph).
Let G = (U, V,E) be a bipartite graph, and assume that

each edge carries a non-negative weight puv such that∑
u,v puv = 1.

• The probability distribution {puv} induces a marginal

probability distribution on U and similarly on V given

by

pu =
∑
v∈V

puv, pv =
∑
u∈U

puv

All expectations on U, V are with respect to these

distributions. Moreover, we define an inner product on

the space L2(U) of functions f : U → R by

〈f, f ′〉 .
= Eu[f(u)f

′(u)] =
∑
u∈U

puf(u)f
′(u).

and similarly on the space L2(V ).
• There are two natural linear operators A : L2(U) →

L2(V ) and A† : L2(V ) → L2(U) that are associated

with G. These are the conditional expectation operators

given by,

∀f ∈ L2(U), Af(v)
.
= Eu|v[f(u)],

∀g ∈ L2(V ), A†g(u) .
= Ev|u[g(v)],

or, in terms of the normalized adjacency matrix, Auv =
puv

pu
and (A†)vu = puv

pv
.

In case U = V and the distribution is symmetric (i.e.

puv = pvu which corresponds to an undirected graph), then

it is more natural to view G simply as an undirected graph

instead of connecting two copies of V . Indeed there will

be only one marginal distribution on the vertices and only

one (self-adjoint) operator A = A†, and so this definition

coincides with that of a Markov operator for undirected non-

bipartite graphs.

One can check that for every f ∈ L2(U), g ∈ L2(V )

〈Af, g〉 = Exy[f(x)g(y)] = 〈f,A†g〉
justifying the notation. Note that the inner product on the

right is over the space L2(U) whereas the inner product

on the left is over the space L2(V ). The following claim

justifies the use of the term Markov operator,

Claim II.2. Let A : L2(U)→ L2(V ) be a Markov operator

as defined above. Then for every f ∈ L2(U), ‖Af‖2 ≤ ‖f‖2
and also A1 = 1.

It now makes sense to consider the space of functions

orthogonal to 1 and upper bound ‖Af‖/‖f‖ in this space,

Definition II.3 (Second largest singular value). Let A be a

Markov operator. Define

λ(A) = sup
f⊥1

‖Af‖
‖f‖ .

We remark that it also holds that

λ(A) = sup
f,g⊥1

〈Af, g〉
‖f‖ · ‖g‖ . (3)

Clearly this second definition is only larger because one can

plug in g = Af , observing that if f ⊥ 1 then also Af ⊥ 1.

For the other direction use Cauchy Schwartz.

The following definition coincides with the standard def-

inition, but is slightly more general as it pertains to general

and not necessarily uniform edge distribution,

Definition II.4 (λ-expander). A bipartite graph G =
(U, V,E) is called a λ-expander if λ(A) ≤ λ, where

A : L2(U)→ L2(V ) is the associated Markov operator.
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A non-bipartite graph G = (V,E) is called a λ-expander

if λ(A) ≤ λ, where A : L2(V ) → L2(V ) is the associated

Markov operator.

1) Concatenation of two Markov operators: Let U, V,W
be three vertex sets. Let G′ = (U, V,E′) and G′′ =
(V,W,E′′) each be a bipartite graph with a probability

distribution P ′ and P ′′ on the respective sets of edges E′

and E′′. Assume further that the marginal distribution that

P ′ induces on V is identical to the marginal distribution that

P ′′ induces on V . Define the bipartite graph G = (U,W,E)
with edge distribution P defined by

puw :=
∑
v

p′uvp
′′
vw = Pr

u1,v1,w1

[u1 = u,w1 = w].

Lemma II.5. Let A,A′, A′′ be the Markov operators as-
sociated with G,G′, G′′ respectively. Then A = A′′A′ and
λ(A) ≤ λ(A′) · λ(A′′).

Let G = (U, V,E) be a weighted bipartite graph and let

A : L2(U) → L2(V ) be its Markov operator. The operator

A†A : L2(U)→ L2(U) is self adjoint, i.e. (A†A)† = A†A,

as is the operator AA† : L2(V ) → L2(V ). Every self-

adjoint operator M on an n-dimensional space has a spectral

decomposition, namely there is a basis of eigenfunctions

f1, . . . , fn ∈ L2(U) and real eigenvalues λ1 ≥ . . . ≥ λn

such that Mfi = λifi. Clearly if M is self-adjoint then

λ(M) = max(|λ2|, |λn|).
Claim II.6. Let A : L2(U)→ L2(V ) and let A† : L2(V )→
L2(U). Then λ(A†A) = λ(A)λ(A†) = λ(A)2.

B. Simplicial complexes and high dimensional expansion

A simplicial complex X = X(0)∪X(1)∪ · · · ∪X(d) of

dimension d is a hypergraph on vertex set X(0) such that

for all 0 < i ≤ d, X(i) is a collection of i-faces, which are

subsets of X(0) of size i+1. The complex has the property

that if s ∈ X then for every s′ ⊂ s, also s′ ∈ X . We also

denote by X(−1) the set containing the single empty set

face.

We will consider a slight generalization where the

complex comes with a distribution over the top (i.e. d-

dimensional) faces that is not necessarily uniform. This

distribution naturally extends to a distribution over X(i)
by letting the probability of s ∈ X(i) be proportional to

the probability of the set {r ∈ X(d) | r ⊃ s}, see a more

detailed description in Section III-A.

For a face s ∈ X(i), the link Xs is a simplicial complex

of dimension d− i− 1 defined by

Xs = {t \ s | s ⊂ t ∈ X} .
More accurately, we will give each top face in Xs a proba-

bility proportional to its probability in X (but renormalized

so that the probabilities sum to 1).

The one-dimensional skeleton of a complex X is the graph

whose vertices are X(0) and whose edges are X(1). The k-
dimensional skeleton of a complex X is the k-dimensional

complex whose i-faces are X(i) for every 0 ≤ i ≤ k.

High dimensional expanders:

Proposition II.7 (Ramanujan complexes of [LSV05b],

[LSV05a]). For every d ∈ N and every γ > 0 there
is a number c = ( 1γ )

O(d2) and an infinite sequence of
explicitly constructible d-dimensional simplicial complexes
X1, X2, . . . where Xt is on nt vertices and |Xt(d)| ≤ c ·nt,
and for each t, X = Xt has the following properties. For
each i < d− 1 and each face v ∈ X(i), the vertices of the
link Xv are colorable by d− i colors such that:
• Every d− i− 1-dimensional face in Xv has one vertex

from each color.
• Consider the 1-skeleton of Xv , namely the graph whose

vertices are Xv(0) and whose edges are Xv(1). Then
there are no edges inside a color class, and moreover,
for every 1 ≤ i < j ≤ d, the graph induced on vertices
colored i and j is a bipartite graph that is a γ-expander.

Proof: We choose a prime q whose size is at least

1/γ2. The work of [LSV05a] gives an infinite sequence of

explicitly constructible d-dimensional simplicial complexes

based on finite quotients of the Bruhat Tits building over

a local field with characteristic q. These complexes have

the claimed number of vertices and faces and moreover,

the link of every vertex looks exactly like the link of the

(infinite) affine building of dimension d. The link is a d−1-

dimensional simplicial complex is known under the name

“spherical building” or the “subspaces flag complex” and

it is possible to analyze it by elementary combinatorial

considerations. The two itemized properties are proven in

[EK16, Section 5.2].

Definition II.8 (λ-HD expander, restatement of Definition

I.4). A d-dimensional simplicial complex is a λ-HD ex-

pander if for every i < d − 1 and every s ∈ X(i), the

one dimensional skeleton of Xs is a λ-expander graph.

The advantage of this definition is that it tells us that the

links of a complex have the most convenient expansion guar-

antee: their one-skeleton is a λ-expander (as per Definition

II.4).

A potential explanation to why this definition did not show

up before is that it does not hold for the LSV complexes. It

turns out that sufficiently low-dimensional skeletons of an

LSV complex are indeed λ-HD expanders, as we show in

Section ??.

III. RANDOM WALKS ON SIMPLICIAL COMPLEXES

A. Random walks on simplicial complexes

Let X be a pure simplicial complex of dimension d,

and let Dd be an arbitrary probability distribution on X(d).
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We extend Dd to a natural probability distribution D over

sequences

sd ⊃ sd−1 ⊃ . . . ⊃ s1 ⊃ s0, si ∈ X(i)

Simply choose sd ∈ X(d) according to the distribution Dd,

and then sd−1 ⊂ sd by removing a random element from sd,

and inductively we choose si−1 ⊂ si by removing a random

element from si. Since X is simplicial, si ∈ X(i) for every

i.

Let Di be the probability distribution induced in this way

on X(i). It is easy to see that the probability of a face

r ∈ X(i) is directly proportional to the weight of top faces

s ∈ X(d) that contain it. Note that even if Dd happens

to be uniform, for i < d, Di is not necessarily uniform,

because different r ∈ X(i) may be contained in a different

proportion of top faces in X(d).

For each i we consider the space of functions f : X(i)→
R with inner product

〈f, f ′〉 = Es∼Di
[f(s)f ′(s)]

and we denote this space by L2(X(i)). The norm on this

space is ‖f‖2 = 〈f, f〉 = Es∼Di [f(s)
2].

Fix 0 ≤ t < k ≤ d. Let Ptk be the distribution over pairs

r ∈ X(t), s ∈ X(k) given by

Pr
Ptk

[(r, s)] := Pr
sd⊃...⊃s0∼D

[sk = s and st = r].

We view Ptk as a bipartite graph whose vertices are X(t)
and X(k) and where we connect r and s by an edge iff

r ⊂ s. The weight on this edge is exactly PrPtk
[(r, s)].

Observe that the sum of weights of edges adjacent to a vertex

r ∈ X(t) is exactly the probability of r under Dt. Similarly

the sum of weights of edges adjacent to a vertex s ∈ X(k)
is exactly the probability of s under Dk.

As discussed above for a general bipartite graph with non-

negative weights, there are two natural operators which we

will denote Mt↗k : L2(X(t))→ L2(X(k)) defined by

∀r ∈ X(k), Mt↗kf(r) := Es|rf(s)

and Mk↘t : L
2(X(k))→ L2(X(t)) defined by

∀s ∈ X(t), Mk↘tg(s) := Er|sg(r)

Easily check that

(Mt↗k)
† = Mk↘t,

namely for every f : X(k)→ R and g : X(t)→ R

〈Mk↘tf, g〉 = E(r,s)∼Ptk
[g(r)f(s)] = 〈f,Mt↗kg〉.

B. Random walks on X(k)

Define random walk distributions on pairs (s1, s2) ∈
X(k) by defining their Markov operators:

Mk�k := Mk+1↘k Mk↗k+1 and

Mk�k := Mk−1↗k Mk↘k−1

We observe that from the definition, and since (A†A)† =
A†A both operators are self adjoint. Morever, since

λ(A†A) = λ(A)2 (see Claim II.6)

λ(Mk�k) = λ(Mk↗k+1)
2 and

λ(Mk�k) = λ(Mk−1↗k)
2

• The distribution Dk�k corresponding to taking a ran-

dom step according to the Markov operator Mk�k can

be described by choosing a random r ∈ X(k − 1) and

then independently two random k-faces s1, s2 ⊃ r and

outputting s1, s2.

• The distribution Dk�k corresponding to taking a ran-

dom step according to the Markov operator Mk�k can

be described by choosing a random w ∈ X(k+1) and

then independently two random k-faces s1, s2 ⊂ w and

outputting s1, s2.

It is easy to check that in each of these distributions s1 is

distributed according to Dk. The same holds for s2 since

each distribution is symmetric with respect to s1 and s2.

In the next section we will prove,

Lemma III.1. Assume that the complex X is a γ-HD
expander. Then,

λ(Mk�k) ≤ 1− 1/(k + 1) +O(kγ)

Let us first see how the lemma implies Theorem I.7.

Proof of Theorem I.7: Firstly, ignoring the O(γ) term,

observe that it implies

λ(Mk↘k−1) ≤
(
1− 1

k + 1
+O(kγ)

)1/2

. (4)

Plugging k ← k + 1 into the above equation and moving

to the adjoint we get

λ(Mk↗k+1) = λ(Mk+1↘k) ≤
(
1− 1

k + 2
+O(kγ)

)1/2

(5)

which completes the proof.

Next, we show how the lemma implies Theorem I.8.

Proof of Theorem I.8:

Mt↗k = Mk−1↗kMk−2↗k−1 · · ·Mt↗t+1,
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so by relying on Lemma II.5 and plugging in the bound

from (5),

λ(Mt↗k) ≤ λ(Mk−1↗k) · λ(Mk−2↗k−1) · · ·λ(Mt↗t+1)

≤
k∏

�=t+1

(
1− 1

�

)1/2

+O(tkγ)

=

(
t

k

)1/2

+O(tkγ)

where the last equality is because of a telescoping argument,

and the previous inequality is true as long assuming that

γ < 1/k.

C. Decreasing differences and proof of Lemma III.1

Let f : X(k)→ R be such that E[f ] = 0 and E[f2] = 1.

Let us define, for 0 ≤ i < k and a function f : X(k)→ R,

fi = Mk↘if , and the correlation quantity

αi(f) = ‖fi‖2 = ‖Mk↘if‖2 = Es′∼X(i),s1,s2∼Xs′ (k)[f(s1)f(s2)].

(6)

We also denote α−1(f) = E[f ] = 0 and αk(f) = ‖f‖2 =
1. By definition, αk−1(f) = ‖Mk↘k−1f‖2. This value is

related to the spectral gap since

‖Mk↘k−1f‖2
‖f‖2 ≤ λ(Mk↘k−1f)

2 = λ(Mk�k).

It is clear that for any i > j also αi ≥ αj . We will be

interested in the “second derivative” of this sequence. For

each −1 < i ≤ k

Δi(f)
.
= αi(f)− αi−1(f) . (7)

In particular Δk = 1 − αk−1(f), and our goal is to prove

that Δk ≥ 1/(k + 1)−O(kγ).

Lemma III.2 (Decreasing Differences). Let f : X(k)→ R.
If X is a γ-HD expander, then for each i > 0

Δi(f) ≥ Δi−1(f) · (1− γ) ≥ Δi−1(f)− γ .

The lemma directly implies that for each i < k, Δi ≤
Δk + (k − i)γ. By assumption α−1(f) = E[f ] = 0 and

αk(f) = 1, so 1 = αk(f) − α−1(f) = Δk + Δk−1 +
Δk−2+ · · ·+Δ1+Δ0 ≤ (k+1)Δk+O(k2γ). This implies

that

1− λ(Mk�k) ≥ 1− αk−1(f) = Δk ≥ 1

k + 1
−O(kγ)

and completes the proof of Lemma III.1.

The proof of Lemma III.2 relies on the following lemma

on graphs whose proof can be found in the full version of

this manuscript.

Lemma III.3. Let G = (V,E) be a graph with non-negative
weights on the edges. Suppose that G is a γ-expander. Let h :
E → R be a function on the edges of G. Define h1 : V → R

by setting for each vertex i ∈ [n], h1(i) = Ej|ih(i, j) and
also let h0 = Ei[h1(i)]. Define

δ1 = Ei[(h1(i)−h0)
2] and δ2 = Eij [(h(i, j)−h1(i))

2]

where all expectations above are with respect to the normal-
ized edge and vertex distribution of G. Then δ2 ≥ δ1 ·(1−λ).

IV. DERANDOMIZED DIRECT PRODUCT AND DIRECT SUM

ENCODINGS

The direct product and direct sum encodings are studied

in various complexity settings espectially since they are

very useful for hardness amplification. In the direct sum

encoding, we map a string w ∈ {0, 1}n to the string

DS(w) ∈ {0, 1}Y (k−1) where Y (k − 1) =
(
[n]
k

)
is the set

of all possible k-element subsets of [n], namely, Y is the

complete (k − 1)-dimensional complex on n vertices. The

encoding is defined by

∀s ∈
(
[n]

k

)
, DS(w)(s) =

∑
x∈s

w(x) mod 2.

In the direct product encoding, we map a string w ∈ {0, 1}n
to a table DP(w) ∈ {0, 1}k×Y (k−1) whose rows correspond

to subsets s ∈ Y (k − 1). Every row in this table is a k bit

string that is equal to w|s,

∀s ∈
(
[n]

k

)
, DP(w)(s) = w|s.

These encodings are often very useful for hardness amplifi-

cation, essentially because they are locally computable and

provide good distance amplification. Two strings w,w′ ∈
{0, 1}n that differ on δ fraction of their coordinates, have

encodings that are kδ apart (see Lemma IV.5).
One serious drawback of these encodings is that their

length is
(
n
k

)
which grows exponentially with k. This leads

us to consider a so-called “derandomized” version of these

encodings, that has shorter length while hopefully retaining

the all of the good properties. The term “derandomized”

comes from trying to minimize the amount of randomness

needed to choose a single symbol in the encoding. Such

ideas have been explored in the past and [IKW09] have

showed how to obtain a derandomized encoding that maps

n bit strings to poly(n) bit strings.

We suggest to use simplicial complexes for obtaining such

derandomization. Given any k − 1 dimensional complex

X(k − 1), we now define the appropriate direct sum and

direct product encodings with respect to X .

Definition IV.1 (Direct sum encoding with respect to a

simplicial complex). A simplicial complex X(k − 1) gives

rise to the following encoding, called the direct sum encod-

ing, that maps strings w ∈ {0, 1}X(0) to strings DS(w) ∈
{0, 1}X(k−1) via

∀s ∈ X(k − 1), DSX(w)(s) =
∑
x∈s

w(x) mod 2.
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Definition IV.2 (Direct product encoding with respect to

a simplicial complex). A simplicial complex X(k − 1) on

n vertices gives rise to the following encoding, called the

direct product encoding, that maps strings w ∈ {0, 1}X(0)

to strings DS(w) ∈ {0, 1}k×X(k−1) via

∀s ∈ X(k − 1), DPX(w)(s) = w|s.
where we view w|s as a k-bit string using some fixed

ordering on the vertex set X(0).

The crucial point is that if X is a bounded degree

complex, namely |X(k−1)| = O(|X(0)|), then the encoding

length is linear in the message length, quite a big savings

compared to the non-derandomized situation. Agreement

expansion of X impies quite directly that these encodings

can be locally tested with 2 or 3 queries.

Lemma IV.3 (Derandomized Direct Product - two query

test). Let X(k−1) be a k−1 dimensional simplicial complex
on n vertices that is an agreement expander. Let D be a
distribution for which γ(X,D) ≥ Ω(1). Then D gives rise
to a natural two-query agreement test :

• Choose (s1, s2) ∼ D
• Read the rows of f corresponding to s1, s2
• Accept iff for every x ∈ s1∩s2 the corresponding values

agree: f [s1](x) = f [s2](x).

Namely, if f = DS(w) for some w then the test succeeds
with probability 1; and if the test succeeds on f with
probability 1 − ε then there is some w ∈ {0, 1}n such
that for at least 1 − O(ε) of the sets s ∈ X(k − 1),
f [s] = DPX(w)(s).

The proof of this lemma is immediate from Theorem I.3.

Using a reduction from [DDG+15] from direct sum to

direct product, and relying on the fact that inside an r-set

we are exactly in the setting of the complete complex as

studied in [DDG+15], we can prove

Lemma IV.4 (Derandomized Direct Sum - three query

test). Let X(d) be a d dimensional simplicial complex on
n vertices that is an agreement expander and such that
γ(X,D) ≥ Ω(1) for D the distribution d − 2d − d. Let
k = 2�d/10� be an even integer, then DSX(k) is locally
testable with three queries with the following test

• Choose r ∼ X(k)
• Choose s1, s2, s3 ⊂ r such that every element in r is

covered by an even number sets out of s1, s2, s3 and
such that s1, s2, s3 ∈ X(k/2).

• Accept iff f(s1) + f(s2) + f(s3) = 0 mod 2.

Namely, if f = DS(w) for some w then the test succeeds
with probability 1; and if the test succeeds on f with
probability 1 − ε then there is some w ∈ {0, 1}n such
that for at least 1 − O(ε) of the sets s ∈ X(k − 1),
f [s] = DSX(d/2)(w)(s).

We omit the proof of this lemma, but let us explain the

main idea. The idea is to rely on the testing result from

[DDG+15] to show that for typical r ∈ X(k), there is one

function hr ∈ {0, 1}r whose DS encoding agrees with 1−ε
fraction the sets s ⊂ r, |s| = k. This is enough to prove

that the local function {hr}r∈X(d) has agreement at least

agreeD(h) ≥ 1−O(ε). We apply Theorem I.3 to deduce a

global function g that agrees with most of hr and therefore

with most of fs.

A. Distance amplification code

Note that the direct sum (and the direct product encoding)

is far from an error correcting code because of its poor

relative distance, which is about k
n , but nevertheless it has

the interesting distance amplification property: the distance

between every two message strings w,w′ grows roughly k-

fold. This gives the first construction, to the best of our

knowledge, of a distance amplification code with constant

rate that is locally testable with a constant number of queries

that is independent of k.

One can view the set {0, 1}n of possible functions on

the vertices as a code of distance 1/n that is transformed,

through the direct sum encoding, to a new code whose

distance is Ω(k/n). If we begin with a restricted set of

functions, say a code C ⊂ {0, 1}n whose distance is δ, then

this transformation results in a new code whose distance is

Ω(kδ) (as long as δ < 1/k), see Lemma IV.5. However,

even if C is locally testable to begin with, it is not clear

how to retain the local testability of the amplified code.

We next prove a lemma showing distance amplification

of the direct product encoding. This easily implies a similar

result for the direct sum encoding as well, but we omit the

details.

Lemma IV.5 (Distance Amplification). Let X(d) be a β-HD
expander d-dimensional simplicial complex on n vertices,
and assume β < 1/d. Then for every 1 < k ≤ d and every
pair of strings w,w′ ∈ {0, 1}n whose Hamming distance is
δ < 1/k,

Pr
s∼X(k−1)

[w|s �= w′|s] ≥ k · δ/4.

The lemma follows essentially due to an expander missing

lemma, see the full version for details.
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