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Abstract—Let X be a set of n points of norm at most 1
in the Euclidean space Rk, and suppose ε > 0. An ε-distance
sketch for X is a data structure that, given any two points of X
enables one to recover the square of the (Euclidean) distance
between them up to an additive error of ε. Let f(n, k, ε)
denote the minimum possible number of bits of such a sketch.
Here we determine f(n, k, ε) up to a constant factor for all
n ≥ k ≥ 1 and all ε ≥ 1

n0.49 . Our proof is algorithmic,
and provides an efficient algorithm for computing a sketch
of size O(f(n, k, ε)/n) for each point, so that the square of the
distance between any two points can be computed from their
sketches up to an additive error of ε in time linear in the length
of the sketches. We also discuss the case of smaller ε > 2/

√
n

and obtain some new results about dimension reduction in
this range. In particular, we show that for any such ε and
any k ≤ t = log(2+ε2n)

ε2
there are configurations of n points

in Rk that cannot be embedded in R� for � < ck with c a
small absolute positive constant, without distorting some inner
products (and distances) by more than ε. On the positive side,
we provide a randomized polynomial time algorithm for a
bipartite variant of the Johnson-Lindenstrauss lemma in which
scalar products are approximated up to an additive error of at
most ε. This variant allows a reduction of the dimension down
to O( log(2+ε2n)

ε2
), where n is the number of points.

Keywords-compression scheme; dimension reduction; Gaus-
sian correlation; epsilon-net;

I. INTRODUCTION

A crucial tool in several important algorithms is the ability

to generate a compact representation (often called a sketch)

of high dimensional data. Examples include streaming algo-

rithms [5], [20], compressed sensing [7] and data structures

supporting nearest neighbors search [1], [11]. A natural

problem in this area is that of representing a collection

of n points in the k-dimensional Euclidean ball in a way

that enables one to recover approximately the distances

or the inner products between the points. The most basic

question about it is the minimum possible number of bits

required in such a representation as a function of n, k and

the approximation required. Another challenge is to design

economic sketches that can be generated efficiently and

support efficient procedures for recovering the approximate

inner product (or distance) between any two given points.

Consider a sketch that enables one to recover each inner

product (or square distance) between any pair of the n points

up to an additive error of ε. The Johnson-Lindenstrauss

Lemma [14] provides an elegant way to generate such a

sketch. The assertion of the lemma is that any set of n
points in a Euclidean space can be projected onto a t-
dimensional Euclidean space, where t = Θ( logn

ε2 ), so that

all distances and inner products between pairs of points are

preserved up to a factor of 1 + ε. This supplies a sketch

obtained by storing the (approximate) coordinates of the

projected points. Although the above estimate for t has been

recently shown by Larsen and Nelson [18] to be tight up to a

constant factor for all ε ≥ 1
n0.49 , improving by a logarithmic

factor the estimate in [2], this does not provide a tight

estimate for the minimum possible number of bits required

for the sketch. The results in Kushilevitz, Ostrovsky and

Rabani [17] together with the lower bound in [18], however,

determine the minimum possible number of bits required for

such a sketch up to a constant factor for all k ≥ logn
ε2 where

ε ≥ 1
n0.49 , leaving a gap in the bounds for smaller dimension

k. Our first result here closes this gap.

A. Our contribution

Let X be a set of n points of norm at most 1 in the

Euclidean space Rk, and suppose ε > 0. An ε-distance

sketch for X is a data structure that, given any two points

of X enables one to recover the square of the Euclidean

distance between them, and their inner product, up to an

additive error of ε. Let f(n, k, ε) denote the minimum

possible number of bits of such a sketch. Our first main

result is a determination of f(n, k, ε) up to a constant factor

for all n ≥ k ≥ 1 and all ε ≥ 1
n0.49 .

Theorem I.1. For all n and 1
n0.49 ≤ ε ≤ 0.1 the function

f(n, k, ε) satisfies the following

• For logn
ε2 ≤ k ≤ n,

f(n, k, ε) = Θ(
n log n

ε2
).
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• For log n ≤ k ≤ logn
ε2 ,

f(n, k, ε) = Θ(nk log(2 +
log n

ε2k
)).

• For 1 ≤ k ≤ log n,

f(n, k, ε) = Θ(nk log(1/ε)).

The proof is algorithmic, and provides an efficient al-

gorithm for computing a sketch of size O(f(n, k, ε)/n)
for each point, so that the square of the distance between

any two points can be computed from their sketches up to

an additive error of ε in time linear in the length of the

sketches. The tight bounds show that if ε ≥ 1
n0.49 and

� ≤ c logn
ε2 for some (small) absolute positive constant c,

then f(n, k, ε) for k = logn
ε2 is significantly larger than

f(n, �, 2ε), supplying an alternative proof of the main result

of [18] which shows that the logn
ε2 estimate in the Johnson-

Lindenstrauss dimension reduction lemma is tight.

An advantage of this alternative proof is that an appropri-

ate adaptation of it works for smaller values of ε, covering all

the relevant range. For any ε ≥ 2√
n

, define t = log(2+ε2n)
ε2 .

We show that for every k ≤ t there is a collection of n points

of norm at most 1 in Rk, so that in any embedding of them in

dimension � such that no inner product (or distance) between

a pair of points is distorted by more than ε, the dimension �
must be at least Ω(k). This extends the main result of [18],

where the above is proved only for ε ≥ log0.5001 n√
k

.

The above result for small values of ε suggests that it may

be possible to improve the Johnson-Lindenstrauss Lemma

in this range. Indeed, our second main result addresses

dimension reduction in this range. Larsen and Nelson [19]

asked if for any ε the assertion of the Johnson-Lindenstrauss

Lemma can be improved, replacing logn
ε2 by t = log(2+ε2n)

ε2 .

(Note that this is trivial for ε < 1√
n

as in this range

t > n, and it is true for ε > 1
n0.49 as in this case

log(2 + ε2n) = Θ(log n).) Motivated by this we prove the

following bipartite version of this statement.

Theorem I.2. There exists an absolute positive constant C
such that for every vectors a1, a2, . . . , an, b1, b2, . . . , bn ∈
Rn, each of Euclidean norm at most 1, and for every
0 < ε < 1 and t = �C log(2+ε2n)

ε2 � there are vectors
x1, x2, . . . , xn, y1, y2, . . . , yn ∈ Rt so that for all i, j

|〈xi, yj〉 − 〈ai, bj〉| ≤ ε

The proof of the theorem is algorithmic, providing a

randomized polynomial time algorithm for computing the

vectors xi, yj given the vectors ai, bj .

B. Related work

As mentioned above, one way to obtain a sketch for the

above problem when k ≥ logn
ε2 and ε ≥ 1

n0.49 is to apply the

Johnson-Lindenstrauss Lemma [14] (see [1] for an efficient

implementation) projecting the points into a t-dimensional

space, where t = Θ( logn
ε2 ), and then rounding each point to

its closest neighbor in an appropriate ε-net. This provides

a sketch of size O(t log(1/ε)) bits per point, which by the

results in [18] is optimal up to a log(1/ε) factor for these

values of n and k.

A tight upper bound of O(t) bits per point for these values

of the parameters, with an efficient recovery procedure,

follows from the work of [17]. Their work does not seem

to provide tight bounds for smaller values of k.

A very recent paper of Indyk and Wagner [13] addresses

the harder problem of approximating the inner products

between pairs of points up to a relative error of ε, for the

special case k = n, and determines the minimum number

of bits required here up to a factor of log(1/ε).
There have been several papers dealing with the tightness

of the dimension t in the Johnson-Lindenstrauss lemma,

culminating with the recent work of Larsen and Nelson that

determines it up to a constant factor for ε ≥ 1
n0.49 (see

[18] and the references therein). For smaller values of ε the

situation is more complicated. Our results here, extending

the one of [18], show that no reduction to dimension smaller

than t = log(2+ε2n)
ε2 is possible, for any n ≥ k ≥ t and any

ε > 2√
n

. (For any smaller value of ε, or for any k < t no

reduction by more than a constant factor is possible). There

is no known improvement in the statement of the Johnson-

Lindenstrauss Lemma for small values of ε, and our bipartite

version and some related results proved here are the first to

suggest that such an improvement may indeed hold.

C. Techniques

Our arguments combine probabilistic and geometric tools.

The lower bound for the function f(n, k, ε) is proved by a

probabilistic argument. We provide two proofs of the upper

bound. The first is based on a short yet intriguing volume

argument. Its main disadvantage is that it is not constructive,

and its main advantage is that by combining it with results

about Gaussian correlation it can be extended to deal with

smaller values of ε as well, for all the relevant range. The

second proof is algorithmic and is based on randomized

rounding.

The results about improved (bipartite) dimension reduc-

tion for small ε are proven using several tools from convex

geometry including the low-M∗ estimate and the finite

volume-ratio theorem (see, e.g., [6]), and basic results about

the positive correlation between symmetric convex events

with the Gaussian measure. We believe that these tools may

be useful in the study of related algorithmic questions in

high dimensional geometry.

II. ADDITIONAL RESULTS

Theorem I.1 supplies an alternative proof of the main

result of [18] about dimension reduction. For n ≥ k ≥ �
and ε ≥ 1

n0.49 we say that there is an (n, k, �, ε)-Euclidean

dimension reduction if for any points x1, . . . , xn ∈ Rk
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of norm at most one, there exist points y1, . . . , yn ∈ R�

satisfying

‖xi − xj‖2 − ε ≤ ‖yi − yj‖2 ≤ ‖xi − xj‖2 + ε, (1)

for all i, j = 1, . . . , n.

Corollary II.1. There exists an absolute positive constant
c > 0 so that for any n ≥ k > ck ≥ � and for 1/n0.49 ≤ ε ≤
0.1, there is an (n, k, �, ε)-Euclidean dimension reduction if
and only if � = Ω( logn

ε2 ).

Moreover, the same holds if we replace additive distortion
by multiplicative distortion, i.e., if we replace condition (1)
by the following condition

(1− ε) · ‖xi − xj‖2 ≤ ‖yi − yj‖2

≤ (1 + ε) · ‖xi − xj‖2, (i, j = 1, . . . , n). (2)

Corollary II.1 means that if k ≥ c1 log n/ε
2, then there

is an (n, k, ε−2 log n, ε)-Euclidean dimension reduction (by

the Johnson-Lindenstrauss Lemma), and that if there is an

(n, k, �, ε)-Euclidean dimension reduction with � = o(k)
then necessarily k ≥ � ≥ c2ε

−2 log n, for some absolute

constants c1, c2 > 0.

In Theorem I.1 and Corollary II.1 it is assumed that

ε ≥ 1
n0.49 . For smaller ε we can combine some of our tech-

niques with Hargé’s Inequality about Gaussian correlation

and prove the following extension of Theorem I.1.

Theorem II.2. For all n and ε ≥ 2√
n

the function f(n, k, ε)

satisfies the following, where t = log(2+ε2n)
ε2 .

• For t ≤ k ≤ n,

Ω(nt) ≤ f(n, k, ε) ≤ O(n
log n

ε2
).

• For log(2 + ε2n) ≤ k ≤ t,

f(n, k, ε) = Θ(nk log(2 +
t

k
)).

• For 1 ≤ k ≤ log(2 + ε2n),

f(n, k, ε) = Θ(nk log(1/ε)).

This implies the following result about dimension reduc-

tion.

Corollary II.3. There exists an absolute positive constant
c > 0 so that for any n ≥ k > ck ≥ � and for all ε ≥ 2√

n
,

if there is an (n, k, �, ε)-Euclidean dimension reduction then
� = Ω( log(2+ε2n)

ε2 ).

Note that for the range of ε in which log(2 + ε2n) =
o(log n) the statements of Theorem II.2 and of Corollary

II.3 are essentially the ones obtained from those in Theorem

I.1 and Corollary II.1 by replacing the term logn
ε2 by the

expression t = log(2+ε2n)
ε2 . In fact, it is possible that as

suggested by Larsen and Nelson [19] for such small values

of ε the assertion of the Johnson-Lindenstrauss Lemma can

also be improved, replacing logn
ε2 by

log(2+ε2n)
ε2 . Motivated

by this we prove a bipartite version of the result, stated as

Theorem I.2 in the previous section. We conjecture that the

assertion of this theorem can be strengthened, as follows.

Conjecture II.4. Under the assumptions of Theorem I.2, the
conclusion holds together with the further requirement that
‖xi‖ ≤ O(1) and ‖yi‖ ≤ O(1) for all 1 ≤ i ≤ n.

Note that the assertion of the conjecture is trivial for ε <√
C/(2n), as in that case t ≥ n. Note also that for, say, ε >

1/n0.49 the assertion holds by the Johnson-Lindenstrauss

Lemma.

We can show that this conjecture, if true, together with

our methods here, suffices to establish a tight upper bound

up to a constant factor for the number of bits required for

maintaining all inner products between n vectors of norm

at most 1 in Rn, up to an additive error of ε in each

product, for all ε ≥ 2√
n

, closing the gap between the upper

and lower bound in the first bullet in Theorem II.2. The

conjecture, however, remains open, but we can establish two

results supporting it. The first is a proof of the conjecture

when t is n/2 (or more generally Ω(n), that is, the case

ε = Θ(1/
√
n)). Our result is as follows:

Theorem II.5. Let m ≥ n ≥ 1, ε > 0 and assume
that a1, . . . , am, b1, . . . , bm ∈ R2n are points of norm at
most one. Suppose that X1, . . . , Xm, Y1, . . . , Ym ∈ Rn

are independent random vectors, distributed according to
standard Gaussian law. Set X̄i = Xi/

√
n and Ȳi = Yi/

√
n

for all i.

Assume that n ≥ C1
log(2+ε2m)

ε2 . Then with probability of
at least exp(−C2nm),∣∣〈X̄i, Ȳj

〉− 〈ai, bj〉∣∣ ≤ ε, for i, j = 1, . . . ,m,

and moreover ‖X̄i‖ + ‖Ȳi‖ ≤ C3 for all i. Here,
C1, C2, C3 > 0 are universal constants.

The second result (stated as Theorem VI.1 below) is

an estimate, up to a constant factor, of the number of

bits required to represent, for a given set of n vectors

a1, a2, . . . , an ∈ Rk, each of norm at most 1, the sequence

of all inner products 〈ai, y〉 with a vector y of norm at most

1 in Rk up to an additive error of ε in each such product.

This estimate is the same, up to a constant factor, for all

dimensions k with t ≤ k ≤ n and t as in Theorem I.2, as

should be expected from the assertion of the Conjecture.

The remainder of this paper is structured as follows. In

Section III we provide our first proof of the upper bound

in Theorem I.1, which is based on a short probabilistic (or

volume) argument. The second proof, presented in Section

IV, is algorithmic. It provides an efficient randomized algo-

rithm for computing a sketch consisting of O(f(n, k, ε)/n)
bits for each point of X , so that the square of the distance
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between any two points can be recovered, up to an additive

error of ε, from their sketches, in time linear in the length of

the sketches. Section V is concerned with the lower bound in

Theorem I.1. The results on smaller ε, with the exception of

Theorem II.5 whose proof is postponed to the final version of

the paper due to space limitations (see also [3]), are proven

in Section VI using several tools from convex geometry. The

final section 7 contains some concluding remarks and open

problems.

Throughout the proofs we make no serious attempt to op-

timize the absolute constants involved. We write c, C̃, c1, . . .
etc. for various positive universal constants, whose values

may change from one line to the next. We usually use

upper-case C to denote universal constants that we consider

“sufficiently large”, and lower-case c to denote univer-

sal constants that are sufficiently small. For convenience

we sometimes bound f(n, k, 2ε) or f(n, k, 5ε) instead of

f(n, k, ε), the corresponding bounds for f(n, k, ε) follow,

of course, by replacing ε by ε/2 or ε/5 in the expressions

we get, changing the estimates only by a constant factor.

All logarithms are in the natural basis e unless otherwise

specified.

III. THE UPPER BOUND

It is convenient to split the proof of the upper bound in

Theorem I.1 into three lemmas, dealing with the different

ranges of k. The proof of the upper bound in Theorem II.2,

presented in Section VI, combines a similar reasoning with

results of Khatri, Sidak [15], [22] and Hargé [10] about the

Gaussian correlation Inequality.

Lemma III.1. For logn
ε2 ≤ k ≤ n,

f(n, k, 5ε) ≤ O(
n log n

ε2
).

Proof: Since f(n, k, 5ε) is clearly a monotone non-

decreasing function of k, it suffices to prove the upper bound

for k = n. By the Johnson-Lindenstrauss Lemma we can

replace the points of X ⊂ Bk, where Bk is the unit ball in

Rk, by points in Rm where m = C logn
ε2 so that all distances

and norms of the points change by at most ε. Hence we

may and will assume that our set of points X lies in Rm.

Note that given the squares of the norms of two vectors

up to an additive error of ε and given their inner product

up to an additive error of ε we get an approximation of

the square of their distance up to an additive error of 4ε.

It thus suffices to show the existence of a sketch that can

provide the approximate norm of each of our vectors and the

approximate inner products between pairs. The approximate

norms can be stored trivially by O(log(1/ε)) bits per vector.

(Note that here the cost for storing even a much better

approximation for the norms is negligible, so if the constants

are important we can ensure that the norms are known with

almost no error). It remains to prepare a sketch for the inner

products.

The Gram matrix G(w1, w2, . . . , wn) of n vectors

w1, . . . , wn is the n by n matrix G given by G(i, j) =
〈wi, wj〉. We say that two Gram matrices G1, G2 are ε-

separated if there are two indices i �= j so that |G1(i, j) −
G2(i, j)| > ε. Let G be a maximal (with respect to

containment) set of Gram matrices of ordered sequences of

n vectors w1, . . . , wn in Rm, where the norm of each vector

wi is at most 2, so that every two distinct members of G
are ε-separated. Note that by the maximality of G, for every

Gram matrix M of n vectors of norms at most 2 in Rm

there is a member of G in which all inner products of pairs

of distinct points are within ε of the corresponding inner

products in M , meaning that as a sketch for M it suffices

to store (besides the approximate norms of the vectors), the

index of an appropriate member of G. This requires log |G|
bits. It remains to prove an upper bound for the cardinality

of G. We proceed with that.

Let V1, V2, . . . , Vn be n vectors, each chosen randomly,

independently and uniformly in the ball of radius 3 in Rm

centered at 0. Let T = G(V1, V2, . . . , Vn) be the Gram

matrix of the vectors Vi. For each G ∈ G let AG denote the

event that for every 1 ≤ i �= j ≤ n, |T (i, j)−G(i, j)| < ε/2.

Note that since the members of G are ε-separated, all the

events AG for G ∈ G are pairwise disjoint. We claim that

the probability of each event AG is at least 0.5(1/3)mn.

Indeed, fix a Gram matrix G = G(w1, . . . , wn) ∈ G for

some w1, . . . , wn ∈ Rm of norm at most 2. For each fixed

i the probability that Vi lies in the unit ball centered at

wi is exactly (1/3)m. Therefore the probability that this

happens for all i is exactly (1/3)nm. The crucial observation

is that conditioning on that, each vector Vi is uniformly

distributed in the unit ball centered at wi. Therefore, after

the conditioning, for each i �= j the probability that the

inner product 〈Vi − wi, wj〉 has absolute value at least ε/4

is at most 2e−ε2m/64 < 1/(2n2). (Here we used the fact

that the norm of wj is at most 2 and that the constant C
in the definition of m is sufficiently large). Similarly, since

the norm of Vi is at most 3, the probability that the inner

product 〈Vi, Vj − wj〉 has absolute value at least ε/4 is at

most 2e−ε2m/96 < 1/2n2. It follows that with probability

bigger than 0.5(1/3)nm all these inner products are smaller

than ε/4, implying that

|〈Vi, Vj〉−〈wi, wj〉| ≤ |〈Vi−wi, wj〉|+|〈Vi, Vj−wj〉| < ε/2.

This proves that the probability of each event AG is at least

0.5(1/3)nm, and as these are pairwise disjoint their number

is at most 2 · 3nm, completing the proof of the lemma.

Lemma III.2. For log n ≤ k ≤ logn
ε2 ,

f(n, k, 4ε) ≤ O(nk log(2 +
log n

ε2k
)).

Proof: The proof is nearly identical to the one of the

previous lemma. Note, first, that by monotonicity and the
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fact that the expression in the right hand side of the statement

of the lemma changes only by a constant factor when ε
changes by a constant factor, it suffices to prove the required

bound for k = δ2

ε2 log n where 2ε ≤ δ ≤ 1/2. Let G be a

maximal set of ε-separated Gram matrices of n vectors of

norm at most 1 in Rk. (Here it suffices to deal with norm 1
as we do not need to start with the Johnson-Lindenstrauss

Lemma which may slightly increase norms). In order to

prove an upper bound for G consider, as before, a fixed Gram

matrix G = G(w1, . . . , wn) of n vectors of norm at most

1 in Rk. Let V1, V2, . . . , Vn be random vectors distributed

uniformly and independently in the ball of radius 2 in Rk,

let T denote their Gram matrix, and let AG be, as before, the

event that T (i, j) and G(i, j) differ by less than ε/2 in each

non-diagonal entry. The probability that each Vi lies in the

ball of radius, say, δ/20 centered at wi is exactly (δ/40)kn.

Conditioning on that, the probability that the inner product

〈Vi − wi, wj〉 has absolute value at least ε/4 is at most

2e−ε2400k/32δ2 < 1/(2n2).

Similarly, the probability that the inner product 〈Vi, Vj−wj〉
has absolute value at least ε/4 is at most

2e−ε2400k/64δ2 < 1/2n2.

As before, this implies that |G| ≤ 2(40/δ)kn, establishing

the assertion of the lemma.

Lemma III.3. For k ≤ log n,

f(n, k, ε) ≤ O(nk log(1/ε)).

Proof: Fix an ε/2-net of size (1/ε)O(k) in the unit ball

in Rk. The sketch here is simply obtained by representing

each point by the index of its closest neighbor in the net.

IV. AN ALGORITHMIC PROOF

In this section we present an algorithmic proof of the

upper bound of Theorem I.1. We first reformulate the

theorem in its algorithmic version. Note that the first part

also follows from the results in [17].

Theorem IV.1. For all n and 1
n0.49 ≤ ε ≤ 0.1 there is

a randomized algorithm that given a set of n points in
the k-dimensional unit ball Bk computes, for each point,
a sketch of g(n, k, ε) bits. Given two sketches, the square
of the distance between the points can be recovered up to
an additive error of ε in time O( logn

ε2 ) for logn
ε2 ≤ k ≤ n

and in time O(k) for all smaller k. The function g(n, k, ε)
satisfies the following
• For logn

ε2 ≤ k ≤ n,

g(n, k, ε) = Θ(
log n

ε2
)

and the sketch for a given point can be computed in
time O(k log k + log3 n/ε2).

• For log n ≤ k ≤ logn
ε2 ,

g(n, k, ε) = Θ(k log(2 +
log n

ε2k
)).

and the sketch for a given point can be computed in
time linear in its length.

• For 1 ≤ k ≤ log n,

g(n, k, ε) = Θ(k log(1/ε))

and the sketch for a given point can be computed in
time linear in its length.

In all cases the length of the sketch is optimal up to a
constant factor.

As before, it is convenient to deal with the different

possible ranges for k separately. Note first that the proof

given in Section III for the range k ≤ log n is essentially

constructive, since it is well known (see, for example [4] or

the argument below) that there are explicit constructions of

ε-nets of size (1/ε)O(k) in Bk, and it is enough to round

each vector to a point of the net which is ε-close to it (and

not necessarily to its nearest neighbor).

For completeness we include a short description of a δ-

net which will also be used later. For 0 < δ < 1/4 and

for k ≥ 1 let N = N(k, δ) denote the set of all vectors of

Euclidean norm at most 1 in which every coordinate is an

integral multiple of δ√
k

. Note that each member of N can

be represented by k signs and k non-negative integers ni

whose sum of squares is at most k/δ2. Representing each

number by its binary representation (or by two bits, say, if

it is 0 or 1) requires at most 2k+
∑

i log2 ni bits, where the

summation is over all positive ni. Note that
∑

i log2 ni =
0.5 log2(Πin

2
i ) which is maximized when all numbers are

equal and gives an upper bound of k log2(1/δ)+2k bits per

member of the net. Given a vector in Bk we can round it

to a vector of the net that lies within distance δ/2 from it

by simply rounding each coordinate to the closest integral

multiple of δ/
√
k. The computation of the distance between

two points of the net takes time O(k). The size of the net is

(1/δ)k2O(k), as each point is represented by k log2(1/δ) +
2k bits and k signs.

The above description of the net suffices to prove Theorem

IV.1 for k ≤ log n. We proceed with the proof for larger k.

For k ≥ 40 logn
ε2 we first apply the Johnson-Lindenstrauss

Lemma (with the fast version described in [1]) to project

the points to Rm for m = 40 log n/ε2 without changing any

square distance or norm by more than ε. It is convenient to

now shrink all vectors by a factor of 1− ε ensuring they all

lie in the unit ball Bm while the square distances, norms and

inner products are still within 3ε of their original values. We

thus may assume from now on that all vectors lie in Bm.

As done in Section III, we handle norms sepa-

rately, namely, the sketch of each vector contains some

O(log(1/ε)) bits representing a good approximation for its
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norms. The rest of the sketch, which is its main part, will

be used for recovering approximate inner products between

vectors. This is done by replacing each of our vectors wi by

a randomized rounding of it chosen as follows. Each coordi-

nate of the vector, randomly and independently, is rounded to

one of the two closest integral multiples of 1/
√
m, where the

probabilities are chosen so that its expectation is the original

value of the coordinate. Thus, if the value of a coordinate

is (i+ p)/
√
m with 0 ≤ p ≤ 1 it is rounded to i/

√
m with

probability (1 − p) and to (i + 1)/
√
m with probability p.

Let Vi be the random vector obtained from wi in this way.

Then the expectation of each coordinate of Vi −wi is zero.

For each j �= i the random variable 〈Vi−wi, wj〉 is a sum of

m independent random variables where the expectation of

each of them is 0 and the sum of squares of the difference

between the maximum value of each random variable and its

minimum value is the square of the norm of wj divided by

m. Therefore this sum is at most 1/m, and by Hoeffding’s

Inequality (see [12], Theorem 2) the probability that this

inner product is in absolute value at least ε/2 is at most

2e−ε2m/8 which is smaller than 1/n5. Similar reasoning

shows that the probability that 〈Vi, Vj − wj〉 is of absolute

value at least ε/2 is smaller than 1/n5. As in the proof in

Section III, it follows that with probability at least 1−2/n3

all inner products of distinct vectors in our rounded set lie

within ε of their original values, as needed. The claims about

the running time follow from [1] and the description above.

This completes the proof of the first part of Theorem IV.1.

The proof of the second part is essentially identical

(without the projection step using the Johnson-Lindenstrauss

Lemma). The only difference is in the parameters. If k =
40δ2 logn

ε2 with ε ≤ δ ≤ 1/2 we round each coordinate

randomly to one of the two closest integral multiples of

δ/
√
k, ensuring the expectation will be the original value of

the coordinate. The desired result follows as before, from the

Hoeffding Inequality. This completes the proof of Theorem

IV.1.

V. THE LOWER BOUND

Lemma V.1. If

k = δ2 log n/(200ε2)

where 2ε ≤ δ ≤ 1/2, then f(n, k, ε/2) ≥ Ω(kn log(1/δ)

Proof: Fix a maximal set of points N in the unit ball

Bk of Rk so that the Euclidean distance between any two

of them is at least δ. It is easy and well known that the

size of N is (1/δ)(1+o(1))k (where the o(1)-term tends to 0
as δ tends to 0). For the lower bound we construct a large

number of ε-separated Gram matrices of n vectors in Bk.

Each collection of n vectors consists of a fixed set R of n/2
vectors, whose existence is proved below, together with n/2
points of the set N . The set R of fixed points will ensure

that all the corresponding Gram matrices are ε-separated.

We claim that there is a choice of a set R of n/2 points

in Bk so that the inner products of any two distinct points

from N with some point of R differ by more than ε. Indeed,

for any two fixed points of N , the difference between them

has norm at least δ, hence the probability that the product

of a random point of Bk with this difference is bigger, in

absolute value, than ε is at least, say, e−1.5ε2k/δ2 (with room

to spare). It thus suffices to have

(1− e−1.5ε2k/δ2)n/2 < 1/|N |2

hence the following will do:

(n/2)e−2ε2k/δ2 > (2 + o(1))k log(1/δ).

Thus it suffices to have

2ε2k/δ2 < log(n/5k log(1/δ))

and as the left hand side is equal to (log n)/100 this indeed

holds. Thus a set R with the desired properties exists. (Note

that here we used the assumption that ε ≥ 1
n0.49 to conclude

that the right-hand-side is at least (0.02− o(1)) log n.)

Fix a set R as above. Note that every two distinct choices

of ordered sets of n/2 members of N provide ε-separated

Gram matrices. This implies that

f(n, k, ε/2) ≥ log |N |n/2

= Ω(n log |N |) = Ω(nk log(1/δ)),

completing the proof of the lemma.

By monotonicity and the case δ = 1/2 in the above

Lemma the desired lower bound in Theorem I.1 for all

k ≥ log n follows.

It remains to deal with smaller k. Here we fix a set N of

size (1/2ε)(1+o(1))k in Bk so that the distance between any

two points is at least 2ε. As before, the inner products with

all members of a random set R of n/2 points distinguishes,

with high probability, between any two members of N by

more than ε. Fixing R and adding to it in all possible ways

an ordered set of n/2 members of N we conclude that in

this range

f(n, k, ε/2) ≥ log(|N |n/2) = Ω(nk log(1/ε))

completing the proof of the lower bound and hence that of

Theorem I.1.

We conclude this section by observing that the proof of

the lower bound implies that the size of the sketch per point

given by Theorem IV.1 is tight, up to a constant factor, for

all admissible values of the parameters. Indeed, in the lower

bounds we always have a fixed set R of n/2 points and a

large net N , so that if our set contains all the points of R
then no two distinct points of N can have the same sketch, as

for any two distinct u, v ∈ N there is a member of R whose

inner products with u and with v differ by more than ε. The

lower bound for the length of the sketch is thus log |N |, by

the pigeonhole principle.
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VI. SMALL DISTORTION

In this section we prove several results related the case

of smaller ε. In Section VI-A we prove a tight estimate for

the number of bits needed to represent ε-approximations of

all inner products 〈a1, y〉, . . . , 〈an, y〉 for a vector y ∈ Rk

of norm at most 1, where a1, a2, . . . , an ∈ Rk are fixed

vectors of norm at most 1. In Section VI-B we present

the proof of Theorem II.2. The proof of Theorem II.5 is

postponed to the final version of the paper, due to space

limitations (see also [3]). In Section VI-C we prove Theorem

I.2. The techniques here are more sophisticated than those in

the previous sections, and rely on several tools from convex

geometry.

A. Inner products with fixed vectors

Theorem VI.1. Let a1, a2, . . . , an be vectors of norm at
most 1 in Rk. Suppose ε ≥ 2√

n
and assume that

log(2 + ε2n)

8ε2
≤ k ≤ n.

Then, for a vector y of norm at most 1 the number of bits
required to represent all inner products 〈ai, y〉 for all 1 ≤
i ≤ n up to an additive error of ε in each such product is

Θ

(
log(2 + ε2n)

ε2

)
.

Equivalently, the number of possibilities of the vector(
�〈a1, y〉

ε
�, �〈a2, y〉

ε
�, · · · , �〈an, y〉

ε
�
)

for vectors y of norm at most 1 is

2Θ(
log(2+ε2n)

ε2
).

Proof: As the number of bits required is clearly a mono-

tone non-decreasing function of the dimension it suffices to

prove the upper bound for k = n and the lower bound for

k = log(2+ε2n)
8ε2 .

We start with the upper bound. Define t > 0 by the

equation

ε =

√
2 log(2 + n/t)√

t
.

(There is a unique solution as the right hand side is a

decreasing function of t). Therefore

t =
2 log(2 + n/t)

ε2
.

Since ε ≥ 2√
n

this implies that t < n since otherwise the

right hand side is at most 2 log 3 · n/4 < n. By the last

expression for t, t ≥ 1
ε2 and thus log(2+n/t) ≤ log(2+ε2n)

implying that

t ≤ 2 log(2 + ε2n)

ε2
.

This implies that

n

t
≥ ε2n

2 log(2 + ε2n)

and since ε2n ≥ 4 it follows that

log(2 + n/t) ≥ 1

4
log(2 + ε2n),

as can be shown by checking that for z ≥ 4,

2 +
z

2 log(2 + z)
≥ (2 + z)1/4.

We have thus shown that

log(2 + ε2n)

2ε2
≤ t ≤ 2 log(2 + ε2n)

ε2
.

Define a convex set K in Rn as follows.

K = {x ∈ Rn : |〈 x√
t
, ai〉| ≤ ε for all 1 ≤ i ≤ n}.

By the Khatri-Sidak Lemma ([15], [22], see also [8] for a

simple proof), if γn denotes the standard Gaussian measure

in Rn, then

γn(K) ≥
n∏

i=1

γn({x ∈ Rn : |〈 x√
t
, ai〉| ≤ ε})

≥ (1− 2e−ε2t/2)n

≥ (1− 2e− log(2+n/t))n = (1− 2t

2t+ n
)n ≥ e−3t.

For every measurable centrally symmetric set A in Rn and

for any vector x ∈ Rn,

γn(x+A) ≥ e−‖x‖
2/2γn(A).

For completeness we repeat the standard argument.

γn(x+A) =

∫
A

e−‖x+y‖2/2 1

(2π)n/2
dy

= e−‖x‖
2/2γn(A)

∫
A

e−〈x,y〉e−‖y‖
2/2 1

γn(A)(2π)n/2
dy.

The integral in the right hand side is the expectation, with re-

spect to the Gaussian measure on A, of e−〈x,y〉. By Jensen’s

Inequality this is at least ez where z is the expectation of

−〈x, y〉 over A. As A = −A this last expectation is 0 and

as e0 = 1 we conclude that γn(x + A) ≥ e−‖x‖
2/2γn(A),

as needed. Taking A as the set K defined above and letting

x be any vector b of norm at most 1 in Rn we get

γn(
√
tb+K) ≥ e−t/2γn(K) > e−4t.

Given a vector b ∈ Rn, ‖b‖ ≤ 1, let X be a standard ran-

dom Gaussian in Rn. We bound from below the probability

of the event Eb that for every i, 1 ≤ i ≤ n,

|〈 X√
t
, ai〉 − 〈b, ai〉| ≤ ε.
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This, however, is exactly the probability that X− b
√
t ∈ K,

that is, γn(
√
tb+K) which as we have seen is at least e−4t.

We can now complete the proof of the upper bound as

done in Section III. Let B be a maximum collection of

vectors of norm at most 1 in Rn so that for every two distinct

b, b′ ∈ B there is some i so that |〈b, ai〉 − 〈b′, ai〉| > 2ε.

Then the events Eb for b ∈ B are pairwise disjoint and hence

the sum of their probabilities is at most 1. It follows that

|B| ≤ e4t. The upper bound follows as the number of bits

needed to represent all inner products 〈b, ai〉 for 1 ≤ i ≤ n
up to an additive error of 2ε is at most 
log2 |B|�.

We proceed with the proof of the lower bound, following

the reasoning in Section V. Put

k =
log(2 + ε2n)

8ε2
.

Let B be a collection of, say, ek/8 unit vectors in Rk so that

the Euclidean distance between any two of them is at least

1/2. We claim that there are n unit vectors ai in Rk so that

for any two distinct members b, b′ of B there is an i so that

|〈b, ai〉 − 〈b′, ai〉| > ε.

Indeed, taking the vectors ai randomly, independently and

uniformly in the unit ball of Rk the probability that for a

fixed pair b, b′ the above fails is at most

(1− e−4ε2k)n.

Our choice of parameters ensures that(|B|
2

)
(1− e−4ε2k)n < 1.

Indeed it suffices to check that

e−4ε2k · n > k/4

that is 4ε2k < log(4n/k) or

k <
log(4n/k)

4ε2
.

It thus suffices to check that

log(2 + ε2n) < 2 log(4n/k) = 2 log(
32ε2n

log(2 + ε2n)
).

This easily holds since for ε ≥ 2/
√
n,

2 log(
32ε2n

log(2 + ε2n)
) > log(2 + ε2n).

By the union bound the assertion of the claim follows,

implying the desired lower bound as no two members of B
can have the same representation. This completes the proof

of the theorem.

B. Compression schemes

In this subsection we prove Theorem II.2. The basic

approach is similar to the one in the proof of Theorem

I.1, the main difference is that in the upper bound proved

in Lemma III.1 we replace the simple union bound by a

more sophisticated geometric argument based on Hargé’s

Inequality, which is a special case of the Gaussian correla-

tion conjecture, proved recently by Royen. We start with the

following Lemma.

Lemma VI.2. Let H1, . . . , Hn ⊆ Rk be symmetric slabs,
where a symmetric slab is a set of the form {x ∈
Rk ; |〈x, θ〉| ≤ 1} for some θ ∈ Rk. Then,

V olk
(
Bk ∩⋂n

i=1 Hi

)
V olk(Bk)

≥ ck
n∏

i=1

γk(
√
kHi),

where c > 0 is an absolute constant.

Proof: Since T =
√
k
⋂n

i=1 Hi is convex and centrally-

symmetric, we may use Hargé’s inequality [10], which is a

particular case of the Gaussian correlation inequality proven

by Royen [21]. This implies that

γk

(√
k

(
Bk ∩

n⋂
i=1

Hi

))

≥ γk(
√
kBk) · γk

(√
k

n⋂
i=1

Hi

)

≥ c
n∏

i=1

γk(
√
kHi)

where the last passage is the Khatri-Sidak lemma. However,

V olk
(
Bk ∩⋂n

i=1 Hi

)
V olk(Bk)

=
V olk

(√
k
(
Bk ∩⋂n

i=1 Hi

))
V olk(

√
kBk)

≥
γk

(√
k
(
Bk ∩⋂n

i=1 Hi

))
(2π)k/2

V olk(
√
kBk)

since the density of γk is at most (2π)−k/2. Since

V olk(
√
kBk) ≤ Ck, the lemma is proven.

We proceed with the proof of the upper bound in Theorem

II.2. For t ≤ k ≤ n the upper bound (which is probably not

tight) is proved by repeating the proof of Lemma III.1 as

it is. For 1 ≤ k ≤ log(2 + ε2n) the upper bound follows

by rounding each vector to the closest point in an ε-net in

the ball Bk. It remains to deal with the interesting range

log(2+ ε2n) ≤ k ≤ t. By the computation in the beginning

of the proof of Theorem VI.1,

ε = Θ(

√
2 log(2 + n/t)√

t
).
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Suppose k = δt, with ε2 ≤ δ ≤ b for some small absolute

positive constant b. Given points w1, . . . , wn in Bk, as in the

proof of Lemma III.1 it suffices to prepare a sketch for the

inner products between pairs of distinct points. Again, as in

that proof, let G be a maximal (with respect to containment)

set of Gram matrices of ordered sequences of n vectors

w1, . . . , wn in Bk, so that every two distinct members of

G are ε-separated (that is, have at least one non-diagonal

entry in which the two matrices differ by more than ε).

By the maximality of G, for every Gram matrix M of n
vectors in Bk there is a member of G in which all inner

products of pairs of distinct points are within ε of the

corresponding inner products in M , meaning that as a sketch

for M it suffices to store (besides the approximate norms of

the vectors), the index of an appropriate member of G. This

requires log |G| bits. It remains to prove an upper bound for

the cardinality of G.

Let V1, V2, . . . , Vn be n vectors, each chosen randomly,

independently and uniformly in the ball of radius 2 in Rk.

Let T = G(V1, V2, . . . , Vn) be the Gram matrix of the

vectors Vi. For each G ∈ G let AG denote the event that

for every 1 ≤ i �= j ≤ n, |T (i, j) − G(i, j)| < ε/2.

Note that since the members of G are ε-separated, all the

events AG for G ∈ G are pairwise disjoint. To complete

the proof it thus suffices to show that the probability of

each event AG is at least e−O(nk log(1/δ)). To see that this

is the case, fix a Gram matrix G = G(w1, . . . , wn) ∈ G for

some w1, . . . , wn ∈ Bk of norm at most 2. For each fixed

i the probability that Vi lies in the ball of radius δ centered

at wi is exactly (δ/2)k. Therefore the probability that this

happens for all i is (δ/2)nk. Conditioning on that, for each

i the vector Vi − wi is uniformly distributed in the ball of

radius δ in Rk centered at 0. For each i let, now, Ai be the

event that |〈Vi − wi, wj〉| ≤ ε/4 for all i < j ≤ n, and

that |〈V�, Vi − wi〉| ≤ ε/4 for all 1 ≤ � < i. In particular,

the event A1 is that V1 − w1 lies in the intersection of the

n − 1 slabs |〈x,wj〉| ≤ ε/4 for j > 1. More generally,

conditioning on the events A1, . . . Ai−1 (as well as on the

events that |Vj − wj | ≤ δ for all j), the event Ai is that

Vi − wi lies in the intersection of the slabs |〈x,wj〉| ≤ ε/4
for j > i and the slabs |〈V�, x〉| ≤ ε/4 for � < i. Note that

conditioning on A1, . . . , Ai−1, the vectors V1, V2, . . . , Vi−1

are of norm at most 1 + ε/4 < 2, and once their values are

exposed then indeed we have here an intersection of n− 1
slabs with a ball centered at the origin.

By Lemma VI.2 it follows that the conditional probability

of each event Ai given all previous ones A1, . . . , Ai−1

and given that all vectors Vi lie within distance δ of the

corresponding vectors wi is at least

C−k(1− 2e−
ε2

64δ2
k)n,

where C is an absolute positive constant. Since k = δt and

ε2t = Θ(log(2 + n/t)) it follows that

e−
ε2

64δ2
k ≤ e−

c log(2+n/t)
δ = (

t

2t+ n
)c/δ.

As t ≤ n the last quantity is at most

(
1

3
)

c
2δ

t

2t+ n

provided δ < c/2.

Thus

(1− 2e−
ε2

64δ2
k)n ≥ [1− (

1

3
)c/2δ

t

2t+ n
]n

≥ e−(1/3)c/2δt ≥ e−δt = e−k

for all δ < c′.
By multiplying all conditional probabilities we conclude

that the probability that Vi−wi is of norm at most δ for all

i and that all events Ai hold too is at least e−O(nk log(1/δ)).

However, in this case, for all i < j

|〈Vi, Vj〉−〈wi, wj〉| ≤ |〈Vi−wi, wj〉|+|〈Vi, Vj−wj〉| ≤ ε/2

and the event AG occurs. Thus the probability of each event

AG is at least e−O(nk log(1/δ)), providing the required upper

bound for |G| and hence completing the proof of the upper

bound in Theorem II.2.

The proof of the lower bound is similar to the proof of

the lower bound in Theorem VI.1. The most interesting case

here is again the range

log(2 + ε2n) ≤ k ≤ t =
log(2 + ε2n)

ε2
.

(Note that the lower bound for k ≥ t follows from the case

k = Θ(t).) Here it is convenient to define δ so that k =

δ2 log(2+ε2n)
4ε2 where ε ≥ 2√

n
and 2ε ≤ δ < 1 and to assume

we have 2n points. Let B be a collection of, say, (δ−1/2)k

unit vectors in Rk so that the Euclidean distance between

any two of them is at least δ. We claim that there are n unit

vectors ai in Rk so that for any two distinct members b, b′

of B there is an i so that |〈b, ai〉 − 〈b′, ai〉| > ε.

Indeed, taking the vectors ai randomly, independently and

uniformly in the unit ball of Rk the probability that for a

fixed pair b, b′ the above fails is at most

(1− e−
ε2

δ2
k)n.

Our choice of parameters ensures that(|B|
2

)
(1− e−

ε2

δ2
k)n < 1.

Indeed it suffices to check that

e−
ε2

δ2
k · n > 2k log(1/2δ)

that is
ε2

δ2
k < log(

n

2k log(1/2δ)
),
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or equivalently

k <
δ2

ε2
log(

n

2k log(1/2δ)
).

By the definition of

k = δ2
log(2 + ε2n)

4ε2

it suffices to show that

log(2 + ε2n) < 4 log(
n

2k log(1/2δ)
)

= 4 log[
n4ε2

2δ2 log(2 + ε2n) log(1/2δ)
].

This easily holds for ε ≥ 2/
√
n.

By the union bound the assertion of the claim follows. The

desired result now holds, since every union of the vectors ai
with an ordered set of n members of B must have a different

representation, hence the number of bits needed is at least

n log2 |B| = Ω(nk log(1/δ).
The case k ≤ log(2+ ε2n) is proved in a similar way by

letting B be a 2ε-separated set of points in Bk. We omit

the detailed computation. This completes the proof of the

theorem.

C. Keeping the inner products with small distortion

In this subsection we prove Theorem I.2. The main result

we use is the well-known low M∗-estimate due to Pajor

and Tomczack-Jaegermann, which builded upon earlier con-

tributions by Milman and by Gluskin, see e.g., [6, Chapter

7]:

Theorem VI.3. Let 1 ≤ t ≤ n and let K ⊆ Rn be a
centrally-symmetric convex body with γn(K) ≥ 1/2. Let
E ⊆ Rn be a random subspace of dimension n − t. Then
with probability at least 1− C exp(−ct) of selecting E,

c̃
√
tBE ⊆ ProjE(K).

Here, c, c̃, C > 0 are universal constants and BE = Bn∩E.

Proof: Our formulation is very close to (7.1.1) and

Theorem 7.3.1 in [6]. We only need to explain a standard

fact, why γn(K) ≥ 1/2 implies the bound M(K) ≤ C/
√
n

where

M(K) :=

∫
Sn−1

‖x‖Kdσn−1(x)

and ‖x‖K = inf{λ > 0 ; x ∈ λK}. However, it is not

difficult to show that

1

2
≤ γn(K)

≤ γn

(√
n

2
Bn

)
+ γn

(
K \

√
n

2
Bn

)

≤ e−cn + σn−1

(
2√
n
K

)
,

where σn−1 is the uniform probability measure on the unit

sphere Sn−1. Hence σn−1

(
2√
n
K

)
≥ 1/2 − exp(−cn). In

other words, in a large subset of Sn−1, the norm ‖x‖K is

at most 2/
√
n. In [6, Lemma 5.2.3] it is explained how

concentration inequalities upgrade this fact to the desired

bound M(K) ≤ C/
√
n.

Our next observation is that the assumption γn(K) ≥ 1/2
in Theorem VI.3 is too strong, and may be weakened to the

requirement that γn(K) ≥ exp(−ct).
Theorem VI.4. Let 1 ≤ t ≤ n and let K ⊆ Rn be a
centrally-symmetric convex body with γn(K) ≥ exp(−c0t).
Let E ⊆ Rn be a random subspace of dimension n−t. Then
with probability of at least 1− C exp(−ct),

c1
√
tBE ⊆ ProjE(K).

Proof: We may select the universal constant c0 > 0 so

that the probability that a standard normal random variable

exceeds c̃
√
t/2, where c̃ is the constant in the conclusion of

Theorem VI.3, is at most e−c0t.

According to the Gaussian isoperimetric inequality, for a

half-space H ⊆ Rn,

γn(K)

= γn(H) =⇒ γn(K+(c̃
√
t/2)Bn) ≥ γn(H+(c̃

√
t/2)Bn).

Since γn(H) = γn(K) ≥ exp(−c0t), the choice of c0
implies that the distance between the half-space H and the

origin is at most c̃
√
t/2. Consequently, H+(c̃

√
t/2)Bn is a

half-space containing the origin, thus its Gaussian measure

is at least 1/2. Hence

T := K +
c̃

2

√
tBn

is a centrally-symmetric convex body with γn(T ) ≥ 1/2.

By Theorem VI.3, with probability at least 1−C exp(−ct)
of selecting E,

c̃
√
tBE ⊆ ProjE(T ) = ProjE(K) + ProjE

(
c̃
√
t

2
Bn

)

= ProjE(K) +
c̃
√
t

2
BE . (3)

Since BE and ProjE(K) are convex, we deduce from (3)

that (c̃
√
t/2)BE ⊆ ProjE(K), completing the proof.

Remark. Consider the case where

K = [−r, r]n

is an n-dimensional cube, for r = c
√
log(n/�). In this

case one may easily verify that γn(K) ≥ exp(−c0�).
Thus, according to the last Theorem, with high probability

a random (n − �)-dimensional projection of K contains a
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Euclidean ball of radius c̃
√
�. This recovers an inequality

by Garnaev and Gluskin [9]. Moreover, the tightness of

the Garnaev-Gluskin result shows that the requirement that

γn(K) ≥ exp(−c0�) in the Theorem is optimal.

Corollary VI.5. Let K ⊆ Rn be a centrally-symmetric
convex body with γn(K) ≥ exp(−c0t) with 1 ≤ t ≤ n.
Then there exists a t-dimensional subspace E ⊆ Rn such
that for any v ∈ Rn,

|v| ≤ √t =⇒ E ∩ (v + CK) �= ∅. (4)

Proof: Write F = E⊥. Condition (4) is equivalent to√
tBF ⊆ ProjF (CK). The corollary thus follows from

Theorem VI.4 with C = 1/c1.

Proof of Theorem I.2: We may assume that t ≤ n as

otherwise the conclusion of the theorem is trivial. We may

also assume that C > 5/c0 where c0 > 0 is the universal

constant from Corollary VI.5. That is, c0t ≥ 5 · ε−2 log(2+
ε2n), thus

ε ≥ 2

√
log(2 + n/(c0t))

c0t
.

Identify Rt with the subspace of Rn of all vectors whose

last n− t coordinates vanish, thus we may write Rt ⊆ Rn.

Let U ∈ O(n) be an orthogonal matrix to be determined

later on. For all i, j, and for every vectors Xi, Yj in Rn∣∣∣∣
〈
Xi√
t
,
Yj√
t

〉
− 〈ai, bj〉

∣∣∣∣ (5)

≤
∣∣∣∣
〈
UXi√

t
− ai, bj

〉∣∣∣∣+
∣∣∣∣
〈
Xi√
t
,
Yj√
t
− U−1bj

〉∣∣∣∣ . (6)

We next bound the first summand on the right-hand side

of (6). (We will later observe that we can ensure that the

second summand vanishes). Define

K ={
x ∈ Rn ;

∣∣∣∣
〈

x√
t
, bj

〉∣∣∣∣ ≤ √c0ε for j = 1, . . . , n

}
,

where c0 > 0 is still the constant from Corollary VI.5. By

the Khatri-Sidak lemma

γn(K) ≥
n∏

j=1

γn

({
x ∈ Rn ;

∣∣∣∣
〈

x√
t
, bj

〉∣∣∣∣ ≤ √c0ε

})

=
n∏

j=1

(
1− 2Φ(

√
c0tε/|bj |)

)

≥
(
1− 2Φ

(
2
√
log(2 + n/(c0t))

))n

≥
(
1− c0t

n+ c0t

)n

≥ e−c0t.

By Corollary VI.5 there exists a t-dimensional subspace

E ⊆ Rn such that for any v ∈ Rn

|v| ≤ √t =⇒ E ∩ (v + CK) �= ∅.
Let us now set U ∈ O(n) to be any orthogonal transfor-

mation with U(Rt) = E, and choose Uxi ∈ E so that

Uxi−
√
tai ∈ CK. Finally define yj =

√
tP (U−1bj), where

P (z1, z2, . . . , zn) = (z1, z2, . . . , zt).
This gives an upper bound of C

√
c0ε for the right-hand

side of (6) for all i, j, implying a variant of Theorem I.2

in which ε is replaced by C
√
c0ε. By adjusting the con-

stants, this variant is equivalent to the original formulation,

completing the proof.

Note that the proof of Theorem I.2 leads to a randomized,

polynomial-time algorithm for the computation of the xi, yj .

Indeed, the orthogonal matrix U ∈ O(n) can be chosen

randomly, and according to Theorem VI.4 and Corollary

VI.5 such a random matrix works with probability of at

least 1 − C exp(−ct). Once the matrix U is known, the

computation of xi such that Uxi ∈ E and Uxi ∈
√
tai+CK

may be done by linear programming. The computation of

the yj is even quicker, since we set yj =
√
tP (U−1bj). The

total running time of the algorithm is clearly polynomial in

the input size.

VII. CONCLUDING REMARKS

• By the first two parts of Theorem I.1, f(n, n, 2ε)
is much bigger than f(n, k, ε) for any k < c logn

ε2

for some absolute constant c > 0, implying that, as

proved recently by Larsen and Nelson [18], the logn
ε2

bound in the Johnson-Lindenstrauss Lemma [14] is

tight. The first part of Corollary II.1 follows by a similar

reasoning. It can also be derived directly from the result

for k = log n/ε2. As for the “Moreover” part, it follows

by combining the Johnson-Lindenstrauss Lemma with

the lower bound of Theorem I.1. Corollary II.3 follows

from Theorem II.2 using essentially the same argument.

• It is worth noting that in the proof of Theorem IV.1

the inner product of each rounded vector with itself is

typically not close to the square of its original norm

and hence it is crucial to keep the approximate norms

separately. An alternative, less natural possibility is to

store two independent rounded copies of each vector

and use their inner product as an approximation for

its norm. This, of course, doubles the length of the

sketch and there is no reason to do it. For the same

reason in the proof of Theorem I.1 in Section III

we had to handle norms separately and consider only

inner products between distinct vectors. Indeed, in this

proof after the conditioning Vi is likely to have much

bigger norm than wi, and yet the inner products of

distinct Vi, Vj are typically very close to those of the

corresponding distinct wi, wj .
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• The assertion of Theorem II.5 for m = 2n and ε = C√
n

is tight up to a constant factor even for the case that

ai = bi for all i and the vectors ai form an orthonormal

basis of R2n. Indeed, it is well known (see, e.g., [2])

that any 2n by 2n matrix in which every entry differs

from the corresponding entry of the identity matrix of

dimension 2n by less than, say, 1
2
√
n

has rank exceeding

n.

• For a matrix A, the γ2-norm of A denoted by γ2(A)
is the minimum possible value, over all factorizations

A = XY , of the product of the maximum �2-norm of a

row of X and the maximum �2-norm of a column of Y .

Therefore, an equivalent formulation of the statement

of Theorem I.2 for ε = O(1/
√
n) is that for any n

by n matrix A satisfying γ2(A) ≤ 1 there is an n by

n matrix B of rank at most, say, n/10 so that |Aij −
Bij | ≤ O(1/

√
n) for all i, j. It is worth noting that the

assumption that γ2(A) ≤ 1 here is essential and cannot

be replaced by a similar bound on max |Aij |. Indeed,

it is known (see [4], Theorem 1.2) that if A is an n by

n Hadamard matrix then any B as above has rank at

least n−O(1).
• Conjecture II.4 remains open, it seems tempting to try

to iterate the assertion of Theorem II.5 in order to prove

it. This does not work as the norms of the vectors xi

and yi obtained in the proof may be much larger than

1 (while bounded), causing the errors in the iteration

process to grow too much. An equivalent formulation

of this fact is that the γ2-norm of the matrix 〈ai, bj〉 is

1 whereas that of its approximating lower rank matrix

is a larger constant.
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