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Abstract—In a non-uniform Constraint Satisfaction
problem CSP(Γ), where Γ is a set of relations on a finite set
A, the goal is to find an assignment of values to variables
subject to constraints imposed on specified sets of variables
using the relations from Γ. The Dichotomy Conjecture
for the non-uniform CSP states that for every constraint
language Γ the problem CSP(Γ) is either solvable in
polynomial time or is NP-complete. It was proposed by
Feder and Vardi in their seminal 1993 paper. In this paper
we confirm the Dichotomy Conjecture.
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I. INTRODUCTION

In a Constraint Satisfaction Problem (CSP) the ques-

tion is to decide whether or not it is possible to satisfy

a given set of constraints. One of the standard ways to

specify a constraint is to require that a combination of

values of a certain set of variables belongs to a given

relation. If the constraints allowed in a problem have to

come from some set Γ of relations, such a restricted

problem is referred to as a nonuniform CSP and de-

noted CSP(Γ). The set Γ is then called a constraint
language. Nonuniform CSPs not only provide a powerful

framework ubiquitous across a wide range of disciplines

from theoretical computer science to computer vision,

but also admit natural and elegant reformulations such

as the homomorphism problem and characterizations,

in particular, as the class of problems equivalent to a

logic class MMSNP. Many different versions of the CSP

have been studied across various fields. These include

CSPs over infinite sets, counting CSPs (and related

Holant problem, and the problem of computing partition

functions), several variants of optimization CSPs, valued

CSPs, quantified CSPs, and numerous related problems.

The reader is referred to the recent book [46] for a survey

of the state-of-the art in some of these areas. In this paper

we, however, focus on the decision nonuniform CSP and

its complexity.

A systematic study of the complexity of nonuniform

CSPs was started by Schaefer in 1978 [54] who showed

that for every constraint language Γ over a 2-element

set the problem CSP(Γ) is either solvable in polynomial

time or is NP-complete. Schaefer also asked about the

complexity of CSP(Γ) for languages over larger sets.

The next step in the study of nonuniform CSPs was

made in the seminal paper by Feder and Vardi [32],

[33], who apart from considering numerous aspects of

the problem, posed the Dichotomy Conjecture that states

that for every finite constraint language Γ over a finite

set the problem CSP(Γ) is either solvable in polynomial

time or is NP-complete. This conjecture has become a

focal point of the CSP research and most of the effort in

this area revolves to some extent around the Dichotomy

Conjecture.

The complexity of the CSP in general and the Di-

chotomy Conjecture in particular has been studied by

several research communities using a variety of methods,

each contributing an important aspect of the problem.

The CSP has been an established area in artificial intel-

ligence for decades, and apart from developing efficient

general methods of solving CSPs researchers tried to

identify tractable fragments of the problem [31]. A

very important special case of the CSP, the (Di)Graph

Homomorphism problem and the H-Coloring problem

have been actively studied in the graph theory commu-

nity, see, e.g. [37], [38] and subsequent works by Hell,

Feder, Bang-Jensen, Rafiey and others. Homomorphism

duality introduced in these works has been very useful

in understanding the structure of constraint problems.

The CSP plays a major role and has been successfully

studied in database theory, logic and model theory [44],

[43], [36], although the version of the problem mostly

used there is not necessarily nonuniform. Logic games

and strategies are now a standard tool in most of CSP

algorithms. An interesting approach to the Dichotomy

Conjecture through long codes was suggested by Kun

and Szegedy [47]. Brown-Cohen and Raghavendra pro-

posed to study the conjecture using techniques based

on decay of correlations [11]. In this paper we use the

algebraic structure of the CSP, which is briefly discussed

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.37

319



next.
The most effective approach to the study of the CSP

turned out to be the algebraic approach that associates

every constraint language with its (universal) algebra of

polymorphisms. This approach was first developed in a

series of papers by Jeavons and coauthors [40], [41],

[42] and then refined by Bulatov, Krokhin, Barto, Kozik,

Maroti, Zhuk and others [5], [8], [6], [25], [15], [27],

[50], [51], [55], [56]. While the complexity of CSP(Γ)
has been already solved for some interesting classes of

structures such as graphs [37], the algebraic approach

allowed the researchers to confirm the Dichotomy Con-

jecture in a number of more general cases: for languages

over a set of size up to 7 [13], [16], [49], [56], so called

conservative languages [14], [17], [18], [3], and some

classes of digraphs [7]. It also helped to design the main

classes of CSP algorithms [6], [23], [20], [10], [39], and

to refine the exact complexity of the CSP [1], [8], [30],

[48].
In this paper we confirm the Dichotomy Conjecture

for arbitrary languages over finite sets. More precisely

we prove the following
Theorem 1: For any finite constraint language Γ over

a finite set the problem CSP(Γ) is either solvable in

polynomial time or is NP-complete.
The same result has been independently obtained by

Dmitriy Zhuk and is also presented at FOCS 2017.
The proved criterion matches the algebraic form of the

Dichotomy Conjecture suggested in [25]. The hardness

part of the conjecture has been known for long time.

Therefore the main achievement of this paper is a

polynomial time algorithm for problems satisfying the

tractability condition from [25].
Using the algebraic language we can state the result in

a stronger form. Let A be a finite idempotent algebra and

let CSP(A) denote the union of problems CSP(Γ) such

that every term operation of A is a polymorphism of Γ.

Problem CSP(A) is no longer a nonuniform CSP, and

Theorem 1 allows for problems CSP(Γ) ⊆ CSP(A) to

have different solution algorithms even when A meets

the tractability condition. We show that the solution

algorithm only depends on the algebra A.
Theorem 2: For a finite idempotent algebra that sat-

isfies the conditions of the Dichotomy Conjecture there

is a uniform solution algorithm for CSP(A).
An interesting question arising from Theorems 1,2 is

known as the Meta-problem: Given a constraint language

or a finite algebra, decide whether or not it satisfies the

conditions of the theorems. The answer to this question

is not quite trivial, for a thorough study of the Meta-

problem see [29], [35].
We start with introducing the terminology and notation

for CSPs that is used throughout the paper and reminding

the basics of the algebraic approach. Then in Section IV

we introduce the key ingredients used in the algorithm:

separation of congruences and quasi-centralizers. Then

in Section V we apply these concepts to CSPs, first, to

demonstrate how quasi-centralizers help to decompose

an instance into smaller subinstances, and, second, to

introduce a new kind of minimality condition for CSPs,

block minimality. After that we state the main results

used by the algorithm and describe the algorithm itself.

The full version of this paper is found in [22].

II. CSP, UNIVERSAL ALGEBRA AND THE

DICHOTOMY CONJECTURE

For a detailed introduction to the CSP and the al-

gebraic approach to its structure the reader is referred

to a very recent and very nice survey by Barto et al.

[9]. Basics of universal algebra can be learned from the

textbook [28]. In preliminaries to this paper we therefore

focus on what is needed for our result.

A. The CSP

The ‘AI’ formulation of the CSP best fits our purpose.

Fix a finite set A and let Γ be a constraint language over

A, that is, a set — not necessarily finite — of relations

over A. The (nonuniform) Constraint Satisfaction Prob-
lem (CSP) associated with language Γ is the problem

CSP(Γ), in which, an instance is a pair (V, C), where

V is a set of variables; and C is a set of constraints,

i.e. pairs 〈s, R〉, where s = (v1, . . . , vk) is a tuple of

variables from V , the constraint scope, and R ∈ Γ,

the k-ary constraint relation. We always assume that

relations are given explicitly by a list of tuples. The way

constraints are represented does not matter if Γ is finite,

but it may change the complexity of the problems for

infinite languages. The goal is to find a solution, i.e.,

a mapping ϕ : V → A such that for every constraint

〈s, R〉 ∈ C, ϕ(s) ∈ R.

B. Algebraic methods in the CSP

Jeavons et al. in [40], [41] were the first to observe

that higher order symmetries of constraint languages,

called polymorphisms, play a significant role in the study

of the complexity of the CSP. A polymorphism of a

relation R over A is an operation f(x1, . . . , xk) on A
such that for any choice of a1, . . . , ak ∈ R we have

f(a1, . . . , ak) ∈ R. If this is the case we also say that f
preserves R, or that R is invariant with respect to f . A

polymorphism of a constraint language Γ is an operation

that is a polymorphism of every R ∈ Γ.
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Theorem 3 ([40], [41]): For constraint languages

Γ,Δ, where Γ is finite, if every polymorphism of Δ is

also a polymorphism of Γ, then CSP(Γ) is polynomial

time reducible to CSP(Δ).1

Listed below are several types of polymorphisms that

occur frequently throughout the paper. The presence of

each of these polymorphisms imposes strong restrictions

on the structure of invariant relations that can be used

in designing a solution algorithm. Some of such results

we will mention later.

– Semilattice operation is a binary operation f(x, y) such

that f(x, x) = x, f(x, y) = f(y, x), and f(x, f(y, z)) =
f(f(x, y), z) for all x, y, z ∈ A;

– k-ary near-unanimity operation is a k-ary op-

eration u(x1, . . . , xk) such that u(y, x, . . . , x) =
u(x, y, x, . . . , x) = · · · = u(x, . . . , x, y) = x for all

x, y ∈ A; a ternary near-unanimity operation m is

called a majority operation, it satisfies the equations

m(y, x, x) = m(x, y, x) = m(x, x, y) = x;

– Mal’tsev operation is a ternary operation h(x, y, z)
satisfying the equations h(x, y, y) = h(y, y, x) = x for

all x, y ∈ A; the affine operation x−y+z of an Abelian

group is a special case of a Mal’tsev operation;

– k-ary weak near-unanimity operation is a k-ary

operation w that satisfies the same equations as a

near-unanimity operation w(y, x, . . . , x) = · · · =
w(x, . . . , x, y), except for the last one (= x).

To illustrate the effect of polymorphisms on the struc-

ture of invariant relations we give a few examples that

involve polymorphisms introduced above. First, we need

some terminology and notation.

By [n] we denote the set {1, . . . , n}. For sets

A1, . . . , An tuples from A1 × · · · × An are denoted in

boldface, say, a; the ith component of a is referred to

as a[i]. An n-ary relation R over sets A1, . . . , An is

any subset of A1 × · · · × An. For I = {i1, . . . , ik} ⊆
[n] by prIa, prIR we denote the projections prIa =
(a[i1], . . . , a[ik]), prIR = {prIa | a ∈ R} of tuple a
and relation R. If priR = Ai for each i ∈ [n], relation

R is said to be a subdirect product of A1 × · · · × An.

Sometimes it is convenient to label the coordinate posi-

tions of relations by elements of some set other than [n],
e.g. by variables of a CSP.

Example 1: (1) Let ∨ be the binary operation of

disjunction on {0, 1}, as is easily seen, it is a semilattice

operation. The following property of relations invariant

under ∨ helps solving the corresponding CSP: A

relation R contains the tuple (1, . . . , 1) whenever for

1Using the s − t-Connectivity algorithm by Reingold [53] this
reduction can be improved to a log-space one.

each coordinate position R contains a tuple with a 1 in

that position. Similarly, relations invariant under other

semilattice operations on larger sets always contain a

sort of ‘maximal’ tuple.

(2) By the results of [2] a tuple a belongs to a (n-ary)

relation R invariant under a k-ary near-unanimity

operation if and only if for every (k − 1)-element

set I ⊆ [n] we have prIa ∈ prIR. In particular,

if f is the majority operation on {0, 1} given by

(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x), and R is a relation on

{0, 1}, then a ∈ R if and only if (a[i], a[j]) ∈ prijR.

This property easily gives rise to a reduction of the

corresponding CSP to 2-SAT.

(3) If m(x, y, z) = x− y + z is the affine operation of,

say, Zp, p prime, then relations invariant with respect

to m are exactly those that can be represented as

solutions sets of systems of linear equations over Zp,

and the corresponding CSP can be solved by Gaussian

Elimination. 	

The next step in discovering more structure behind

nonuniform CSPs was made in [25], where universal

algebras were brought into the picture. A (universal)
algebra is a pair A = (A,F ) consisting of a set A, the

universe of A, and a set F of operations on A. Operations

from F (called basic) together with operations that can

be obtained from them by means of composition are

called the term operations of A.

Algebras allow for a more general definition of CSPs

than is used above. Let CSP(A) denote the class of

nonuniform CSPs {CSP(Γ) | Γ ⊆ Inv(F ), Γ finite},
where Inv(F ) denotes the set of all relations invariant

with respect to all operations from F . Note that the

tractability of CSP(A) can be understood in two ways:

as the existence of a polynomial-time algorithm for every

CSP(Γ) from this class, or as the existence of a uniform

polynomial-time algorithm for all such problems. One of

the implications of our results is that these two types of

tractability are the same. From the formal standpoint we

will use the stronger one.

C. Structural features of universal algebras

We use some structural elements of algebras, the main

of which are subalgebras, congruences, and quotient

algebras. For B ⊆ A and an operation f on A by fB we

denote the restriction of f on B. Algebra B = (B, {fB |
f ∈ F}) is a subalgebra of A if f(b1, . . . , bk) ∈ B for

any b1, . . . , bk ∈ B and any f ∈ F .

Congruences play a very significant role in our algo-

rithm, and we discuss them in more detail. A congruence
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is an equivalence relation α ∈ Inv(F ). This means that

for any operation f ∈ F and any (a1, b1), . . . , (ak, bk) ∈
α it holds (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ α. Hence

one can define an algebra on A/α, the set of α-blocks,

by setting f/α(a
α
1 , . . . , a

α
k ) = (f(a1, . . . , ak))/α for

a1, . . . , ak ∈ A, where aα denotes the α-block contain-

ing a. The algebra A/α is called the quotient algebra
modulo α.

Example 2: The following are examples of congru-

ences and quotient algebras.

(1) Let A be any algebra. Then the equality relation 0
A

and the full binary relation 1
A

on A are congruences of

A. The quotient algebra A/0
A

is A itself, while A/1
A

is

a 1-element algebra.

(2) Let Ln be an n-dimensional vector space and L
′ its

k-dimensional subspace, k ≤ n. The binary relation π
given by: (a, b) ∈ π iff a, b have the same orthogonal

projection on L
′, is a congruence of Ln and Ln/π

is L′. (3) The next example will be our running example

throughout the paper. Let A = {0, 1, 2}, and AM is

the algebra with universe A and two basic operations:

a binary operation r such that r(0, 0) = r(0, 1) =
r(2, 0) = r(0, 2) = r(2, 1) = 0, r(1, 1) = r(1, 0) =
r(1, 2) = 1, r(2, 2) = 2; and a ternary operation t such

that t(x, y, z) = x−y+z if x, y, z ∈ {0, 1}, where +,−
are the operations of Z2, t(2, 2, 2) = 2, and otherwise

t(x, y, z) = t(x′, y′, z′), where x′ = x if x ∈ {0, 1} and

x′ = 0 if x = 2; the values y′, z′ are obtained from

y, z by the same rule. It is an easy excercise to verify

the following facts: (a) B = ({0, 1}, r{0,1}, t{0,1}) and

C = ({0, 2}, r{0,2}, t{0,2}) are subalgebras of AM , (b)

the partition {0, 1}, {2} is a congruence of AM , let us

denote it θ, (c) algebra C is basically a semilattice, that

is, a set with a semilattice operation, see Fig 1(a).

The classes of congruence θ are 0θ =
{0, 1}, 2θ = {2}. Then the quotient algebra

AM/θ is also basically a semilattice, as

r/θ(0
θ, 0θ) = r/θ(0

θ, 2θ) = r/θ(2
θ, 0θ) = 0θ

and r/θ(2
θ, 2θ) = 2θ. 	

Fig. 1. (a) Algebra AM ; (b) algebra AN . Dots represent elements,
ovals represent subalgebras, and arrows represent semilattice edges (see
Section III-B).

Fig. 2. (a) The congruence lattice of algebra AM ; (b) congruence
lattice of a subdirectly irreducible algebra.

The (ordered) set of all congruences of A is denoted

by Con(A). This set is actually a lattice, that is, the

operations of meet ∧ and join ∨ can be defined so that

α∧β is the greatest lower bound of α, β ∈ Con(A) and

α ∨ β is the least upper bound of α, β. Fig. 2(a) shows

Con(AM ) for the algebra AM from Example 2(3). By

HS(A) we denote the set of all quotient algebras of all

subalgebras of A.

D. The Dichotomy Conjecture

The results of [25] reduce the dichotomy conjecture

to idempotent algebras. An algebra A = (A,F ) is said

to be idempotent if every operation f ∈ F satisfies

the equation f(x, . . . , x) = x. If A is idempotent, then

all the constant relations {(a)} are invariant under F .

Therefore studying CSPs over idempotent algebras is the

same as studying the CSPs that allow all constant rela-

tions. Another useful property of idempotent algebras is

that every block of every its congruence is a subalgebra.

We now can state the algebraic version of the dichotomy

theorem.

Theorem 4: For a finite idempotent algebra A the

following are equivalent:

(1) CSP(A) is solvable in polynomial time;

(2) A has a weak near-unanimity term operation;

(3) every algebra from HS(A) has a nontrivial term

operation (that is, not a projection, an operation of the

form f(x1, . . . , xk) = xi);

Otherwise CSP(A) is NP-complete.

The hardness part of this theorem is proved in [25];

the equivalence of (2) and (3) was proved in [24] and

[52]. The equivalence of (1) to (2) and (3) is the main

result of this paper. In the rest of the paper we assume

all algebras to satisfy conditions (2),(3).

III. BOUNDED WIDTH AND THE FEW SUBPOWERS

ALGORITHM

Leaving aside occasional combinations thereof, there

are only two standard types of algorithms solving the

CSP. In this section we give a brief introduction into

them.
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A. CSPs of bounded width

Algorithms of the first kind are based on the idea of

local propagation, that is formally described below.

Let P = (V, C) be a CSP instance. For W ⊆ V by

PW we denote the restriction of P onto W , that is, the

instance (W, CW ), where for each C = 〈s, R〉 ∈ C, the

set CW includes the constraint CW = 〈s∩W, prs∩WR〉.
The set of solutions of PW will be denoted by SW .

Unary solutions, that is, when |W | = 1 play a

special role. As is easily seen, for v ∈ V the set

Sv is just the intersections of unary projections prvR
of constraints whose scope contains v. Instance P is

said to be 1-minimal if for every v ∈ V and every

constraint C = 〈s, R〉 ∈ C such that v ∈ s, it holds

prvR = Sv . For a 1-minimal instance one may always

assume that allowed values for a variable v ∈ V is the

set Sv . We call this set the domain of v and assume

that CSP instances may have different domains, which

nevertheless are always subalgebras or quotient algebras

of the original algebra A. It will be convenient to denote

the domain of v by Av . The domain Av may change as

a result of transformations of the instance.

Instance P is said to be (2,3)-consistent if it has

a (2,3)-strategy, that is, a collection of relations RX ,

X ⊆ V , |X| = 2 satisfying the following conditions:

– for every X ⊆ V with |X| ≤ 2, prs∩XR
X ⊆ SX ;

– for every X = {u, v} ⊆ V , any w ∈ V −X , and any

(a, b) ∈ RX , there is c ∈ Aw such that (a, c) ∈ R{u,w}

and (b, c) ∈ R{v,w}.

Let the collection of relations RX be denoted by R.

A tuple a whose entries are indexed with elements of

W ⊆ V and such that prXa ∈ RX for any X ⊆ W ,

|X| = 2, will be called R-compatible. If a (2,3)-

consistent instance P with a (2,3)-strategy R satisfies

the additional condition

– for every constraint C = 〈s, R〉 of P every tuple a ∈ R
is R-compatible,

it is called (2,3)-minimal. For k ∈ N, (k, k+1)-strategies,

(k, k + 1)-consistency, and (k, k + 1)-minimality are

defined in a similar way replacing 2,3 with k, k + 1.

Instance P is said to be minimal (or globally minimal)
if for every C = 〈s, R〉 ∈ C and every a ∈ R there is a

solution ϕ ∈ S such that ϕ(s) = a. Similarly, P is said

to be globally 1-minimal if for every v ∈ V and a ∈ Av

there is a solution ϕ with ϕ(v) = a.

Any instance can be transformed to a 1-minimal, (2,3)-

consistent, or (2,3)-minimal instance in polynomial time

using the standard constraint propagation algorithms

(see, e.g. [31]). These algorithms work by changing the

constraint relations and the domains of the variables

eliminating some tuples and elements from them. We call

such a process tightening the instance. It is important to

notice that if the original instance belongs to CSP(A)
for some algebra A, that is, all its constraint relations are

invariant under the basic operations of A, the constraint

relations obtained by propagation algorithms are also

invariant under the basic operations of A, and so the

resulting instance also belongs to CSP(A). Establishing

minimality amounts to solving the problem and therefore

not always can be easily done.
If a constraint propagation algorithm solves a CSP,

the problem is said to be of bounded width. More

precisely, CSP(Γ) (or CSP(A)) is said to have bounded
width if for some k every (k, k + 1)-minimal instance

from CSP(Γ) (or CSP(A)) has a solution. Problems of

bounded width are very well studied, see the older survey

[26] and a more recent paper [4].
Theorem 5 ([4], [20], [15], [45]): For an idempo-

tent algebra A the following are equivalent:

(1) CSP(A) has bounded width;

(2) every (2,3)-minimal instance from CSP(A) has a

solution;

(3) A has a weak near-unanimity term of arity k for

every k ≥ 3;

(4) every algebra HS(A) has a nontrivial operation, and

none of them is equivalent to a module (in a certain

precise sense).

B. Omitting semilattice edges and the few subpowers
property

The second type of CSP algorithms can be viewed

as a generalization of Gaussian elimination, although, it

utilizes just one property also used by Gaussian elimina-

tion: the set of solutions of a system of linear equations

or a CSP has a set of generators of size polynomial

in the number of variables. The property that for every

instance P of CSP(A) its solution space S has a set

of generators of polynomial size is nontrivial, because

there are only exponentially many such sets, while, as is

easily seen CSPs may have up to double exponentially

many different sets of solutions. Formally, an algebra

A = (A,F ) has few subpowers if for every n there are

only exponentially many n-ary relations in Inv(F ).
Algebras with few subpowers are well studied and the

CSP over such an algebra has a polynomial-time solution

algorithm, see, [10], [39]. In particular, such algebras

admit a characterization in terms of the existence of a

term operation with special properties, an edge term. We

need only a subclass of algebras with few subpowers that

appeared in [20] and is defined as follows.
A pair of elements a, b ∈ A is said to be a semilattice

edge if there is a binary term operation f of A such that
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f(a, a) = a and f(a, b) = f(b, a) = f(b, b) = b, that is,

f is a semilattice operation on {a, b}. For example, the

set {0, 2} from Example 2(3) is a semilattice edge, and

the operation r of AM witnesses that.

Proposition 6 ([20]): If an idempotent algebra A has

no semilattice edges, it has few subpowers, and therefore

CSP(A) is solvable in polynomial time.

Semilattice edges have other useful properties includ-

ing the following one that we use for reducing a CSP to

smaller problems.

Lemma 7 ([19]): For any idempotent algebra A there

is a binary term operation xy of A (think multiplication)

such that xy is a semilattice operation on any semilattice

edge and for any a, b ∈ A either ab = a or {a, ab} is a

semilattice edge.

Note that any semilattice operation satisfies the con-

ditions of Lemma 7. The operation r of the algebra AM

from Example 2(3) is not a semilattice operation (for in-

stance, it does not satisfy the equation r(x, y) = r(y, x)),
but it satisfies the conditions of Lemma 7.

IV. CONGRUENCE SEPARATION AND CENTRALIZERS

In this section we introduce two of the key ingredients

of our algorithm.

A. Separating congruences

Unlike the vast majority of the literature on the

algebraic approach to the CSP we use not only term op-

erations, but also polynomial operations of an algebra. It

should be noted however that the first to use polynomials

for CSP algorithms was Maroti in [51]. We make use of

some ideas from that paper in the next section.

Let f(x1, . . . , xk, y1, . . . , y�) be a k + �-ary term

operation of an algebra A and b1, . . . , b� ∈ A. The

operation g(x1, . . . , xk) = f(x1, . . . , xk, b1, . . . , b�) is

called a polynomial of A. The term ‘polynomial’ refers to

usual polynomials. Indeed, if A is a ring, its polynomials

as just defined are the same as polynomials in the regular

sense. A polynomial for which k = 1 is said to be a

unary polynomial.

While polynomials of A do not have to be polymor-

phisms of relations from Inv(F ), congruences and unary

polynomials are in a special relationship. More precisely,

it is a well known fact that an equivalence relation over

A is a congruence if and only if it is preserved by all

the unary polynomials of A. If α is a congruence, and

f is a unary polynomial, by f(α) we denote the set of

pairs {(f(a), f(b)) | (a, b) ∈ α}.
Let A be an algebra. For α, β ∈ Con(A) we write

α ≺ β if α < β (that is, α ⊂ β as sets of pairs) and

α ≤ γ ≤ β in Con(A) implies γ = α or γ = β; if this

is the case we call (α, β) a prime interval in Con(A).
Let α ≺ β and γ ≺ δ be prime intervals in Con(A).
We say that α ≺ β can be separated from γ ≺ δ if

there is a unary polynomial f of A such that f(β) �⊆ α,

but f(δ) ⊆ γ. The polynomial f in this case is said to

separate α ≺ β from γ ≺ δ.

Example 3: The unary polynomials of the algebra

AM from Example 2(3) include the following unary

operations (these are the polynomials we will use, there

are more unary polynomials of AM ):

h1(x) = r(x, 0) = r(x, 1), such that h1(0) = h1(2) =
0, h1(1) = 1;

h2(x) = r(2, x), such that h2(0) = h2(1) = 0,

h2(2) = 2;

h3(x) = r(0, x) = 0.

The lattice Con(AM ) has two prime intervals 0 ≺ θ
and θ ≺ 1 (see Example 2(3)). As is easily seen,

h3(1) ⊆ 0, therefore h3 collapses both prime intervals.

Since h1(θ) �⊆ 0, but h1(1) ⊆ θ, polynomial h1
separates (0, θ) from (θ, 1). Similarly, the polynomial

h2 separates (θ, 1) from (0, θ), because h2(1) �⊆ θ,

while h2(θ) ⊆ 0. 	

In a similar way separation can be defined for prime

intervals in different coordinate positions of a relation.

Let R be a subdirect product of A1 × · · · × An. Then

R can also be viewed as an algebra with operations

acting component-wise, and polynomials of R can be

defined in the same way. Since every basic operation

acts on R component-wise, its unary polynomials also

act component-wise. Therefore, for a unary polynomial

f of R it makes sense to consider f(a), where a ∈ Ai,

i ∈ [n]. Let i, j ∈ [n] and let α ≺ β, γ ≺ δ be prime

intervals in Con(Ai) and Con(Aj), respectively. Interval

α ≺ β can be separated from γ ≺ δ if there is a unary

polynomial f of R such that f(β) �⊆ α but f(δ) ⊆ γ.

The binary relation ‘cannot be separated’ on the set of

prime intervals of an algebra or factors of a relation is

easily seen to be reflexive and transitive.

Example 4: Let R be a ternary relation over AM

invariant under r, t, given by

R =

⎛
⎝ 0 0 1 1 0 0 1 1 2 2

0 1 1 0 0 1 1 0 2 2
0 0 0 0 1 1 1 1 0 2

⎞
⎠ ,

where triples, the elements of the relation are written ver-

tically. It will be convenient to distinguish congruences

in the three factors of R, so we denote them by 0i, θi, 1i
for the ith factor. Since pr12R is the congruence θ, any

unary polynomial h of R acts identically modulo θ on the

first and the second coordinate positions. In particular,

the prime interval (θ1, 11) cannot be separated from the
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prime interval (θ2, 12). Consider the polynomial h(x) of

R given by

h(x) = r

⎛
⎝
⎛
⎝22
0

⎞
⎠ , x

⎞
⎠ =

⎛
⎝r(2, x)r(2, x)
r(0, x)

⎞
⎠ =

⎛
⎝h2(x)h2(x)
h3(x)

⎞
⎠ ,

it is a polynomial of R because (2, 2, 0) ∈ R. Since

h2(1) �⊆ θ, but h3(1) ⊆ θ and h3(θ) ⊆ 0, the prime

interval (θ2, 12) can be separated from (03, θ3) and

(θ3, 13). Also, the interval (θ3, 13) can be separated from

(01, θ1), (02, θ2). Indeed, consider the polynomial

h′(x) = r

⎛
⎝
⎛
⎝22
2

⎞
⎠ , x

⎞
⎠ =

⎛
⎝h2(x)h2(x)
h2(x)

⎞
⎠ ;

then h2(1) �⊆ θ, but h2(θ) ⊆ 0. Through a slightly more

involved argument it can be shown that (θ3, 13) cannot

be separated from (θ1, 11), (θ2, 12). In the next section

we explain why the prime intervals (0i, θi), (0j , θj)
cannot be separated from each other. 	

B. Quasi-Centralizers

The second ingredient introduced here is the notion of

quasi-centralizer of a pair of congruences. It is similar to

the centralizer as it is defined in commutator theory [34],

albeit the exact relationship between the two concepts is

not quite clear, and so we name it differently for safety.

For an algebra A, a term operation f(x, y1, . . . , yk),
and a ∈ A

k, let fa(x) = f(x,a); it is a unary poly-

nomial of A. Let α, β ∈ Con(A), and let ζ(α, β) ⊆ A
2

denote the following binary relation: (a, b) ∈ ζ(α, β) if

an only if, for any term operation f(x, y1, . . . , yk), any

i ∈ [k], and any a,b ∈ A
k such that a[i] = a, b[i] = b,

and a[j] = b[j] for j �= i, it holds fa(β) ⊆ α if and

only if fb(β) ⊆ α. (Polynomials of the form fa, fb are

sometimes called twin polynomials.) It can be shown that

the relation ζ(α, β) is always a congruence of A and its

effect on the structure of algebra A is illustrated by the

following statement.

Lemma 8: Let ζ(α, β) = 1
A

, a, b, c ∈ A and (b, c) ∈
β. Then (ab, ac) ∈ α, where multiplication is as in

Lemma 7.

Example 5: In the algebra AM , see Example 2(3),

the quasi-centralizer acts as follows: ζ(0, θ) = 1 and

ζ(θ, 1) = θ. We start with the second centralizer. Since

every polynomial preserves congruences, for any term

operation h(x, y1, . . . , yk) and any a,b ∈ A
k
M such that

(a[i],b[i]) ∈ θ for i ∈ [k], we have (ha(x), hb(x)) ∈ θ
for any x. This of course implies ζ(θ, 1) ≥ θ. On the

other hand, let f(x, y) = r(y, x). Then as we saw before

f0(x) = f(x, 0) = r(0, x) = h3(x),

f2(x) = f(x, 2) = r(2, x) = h2(x),

and f0(1) ⊆ θ, while f2(1) �⊆ θ. This means

that (0, 2) �∈ ζ(θ, 1) and so ζ(θ, 1) ⊂ 1. For

the first centralizer it suffices to demonstrate

that the condition in the definition of quasi-

centrailizer is satisfied for pairs of twin polynomials

of the form (r(a, x), r(b, x)), (r(x, a), r(x, b)),
(t(x, a1, a2), t(x, b1, b2)), (t(a1, x, a2), t(b1, x, b2)),
(t(a1, a2, x), t(b1, b2, x)), which can be verified directly.

Interestingly, Lemma 8 implies that if we change the

operation r in just one point, it has a profound effect

on the quasi-centralizer ζ(0, θ). Let AN be the same

algebra as AM with operations r′, t′ defined in the same

way as r, t, except r′(1, 2) = 1 replacing the value

r(1, 2) = 0. In this case {1, 2} is also a semilattice

edge, see Fig. 1(b). Let again f(x, y) = r′(y, x) and

a = 0, b = 2. This time we have

f0(x) = f(x, 0) = r′(0, x) = h′3(x),
f2(x) = f(x, 2) = r′(2, x) = h′2(x),

where h′3(x) = 0 for all x ∈ {0, 1, 2} and

h′2(0) = 0, h′2(1) = 1 showing that f0(θ) ⊆ 0,

while f2(θ) �⊆ 0. 	

Fig. 3(a),(b) shows the effect of large quasi-

centralizers ζ(α, β) on the structure of algebra A, which

is a generalization of the phenomena observed in Exam-

ple 5. Dots there represent α-blocks (assume α is the

equality relation), ovals represent β-blocks, let they be

B and C, and such that there is at least one semilattice

edge between B and C. If ζ(α, β) is the full relation,

Lemmas 7 and 8 imply that for any a ∈ B and any

b, c ∈ C we have ab = ac, and so ab is the only element

of C such that {a, ab} is a semilattice edge (represented

by arrows). In other words, we have a mapping from B
to C that can also be shown injective. We will use this

mapping to lift any solution with a value from B to a

solution with a value from C.

V. THE ALGORITHM

In this section we introduce the reductions used in

the algorithm, and then explain the algorithm itself. The

reductions heavily use the algebraic structure of the

domains of an instance, and the structure of the instance

itself.
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Fig. 3. (a) ζ(α, β) is the full relation; (b) ζ(α, β) is not the full
relation

A. Decomposition of CSPs

We have seen in the previous section that big cen-

tralizers impose strong restrictions on the structure of

an algebra. We start this section showing that small

centralizers restrict the structure of CSPs.

Let R be a binary relation, a subdirect product of A×
B, and α ∈ Con(A), γ ∈ Con(B). Relation R is said to

be αγ-aligned if, for any (a, c), (b, d) ∈ R, (a, b) ∈ α if

and only if (c, d) ∈ γ. This means that if A1, . . . , Ak are

the α-blocks of A, then there are also k γ-blocks of B

and they can be labeled B1, . . . , Bk in such a way that

R = (R ∩ (A1 ×B1)) ∪ · · · ∪ (R ∩ (Ak ×Bk)).

Lemma 9: Let R,A,B be as above and α, β ∈
Con(A), γ, δ ∈ Con(B), with α ≺ β, γ ≺ δ. If (α, β)
and (γ, δ) cannot be separated, then R is ζ(α, β)ζ(γ, δ)-
aligned.

Lemma 9 provides a way to decompose CSP in-

stances. Let P = (V, C) be a (2,3)-minimal instance

from CSP(A). We will always assume that a (2,3)-

consistent or (2,3)-minimal instance has a constraint

CX = 〈X,SX〉 for every X ⊆ V , |X| = 2. So,

C contains a constraint C{v,w} = 〈(v, w), R{v,w}〉 for

every v, w ∈ V , and these relations form a (2,3)-strategy

for P . Recall that Av denotes the domain of v ∈ V .

Also, let W ⊆ V and congruences αv, βv ∈ Con(Av)
for v ∈W be such that αv ≺ βv , and for any v, w ∈W
the intervals (αv, βv) and (αw, βw) cannot be separated

in R{v,w}.

Denoting ζv = ζ(αv, βv) for v ∈ W we see that

there is a one-to-one correspondence between ζv- and

ζw-blocks of Av and Aw, v, w ∈W . Moreover, by (2,3)-

minimality these correspondences are consistent, that is,

if u, v, w ∈ W and Bu, Bv, Bw are ζu-, ζv- and ζw-

blocks, respectively, such that R{u,v} ∩ (Bu×Bv) �=∅

and R{v,w} ∩ (Bv × Bw) �= ∅, then R{u,w} ∩ (Bu ×
Bw) �=∅. This means that PW can be split into several

instances, whose domains are ζv-blocks.

Lemma 10: Let P,W, αv, βv for each v ∈ W , be as

above. Then PW can be decomposed into a collection

of instances P1, . . . ,Pk, k constant, Pi = (W, Ci) such

that every solution of PW is a solution of one of the Pi

and for every v ∈W its domain in Pi is a ζv-block.

Example 6: Consider the following simple CSP in-

stance from CSP(AM ), where AM is the algebra intro-

duced in Example 2(3), and R is the relation introduced

in Example 4: P = (V = {v1, v2, v3, v4, v5}, {C1 =
〈s1 = (v1, v2, v3), R1〉, C2 = 〈s2 = (v2, v4, v5), R2〉},
where R1 = R2 = R. To make the instance (2,3)-

minimal we run the appropriate local propagation algo-

rithm on it. First, such an algorithm adds new binary

constraints C{vi,vj} = 〈(vi, vj), R{vi,vj}〉 for i, j ∈ [5]
starting with R{vi,vj} = AM × AM . It then iteratively

removes pairs from these relations that do not satisfy the

(2,3)-minimality condition. Similarly, it tightens the orig-

inal constraint relations if they violate the conditions of

(2,3)-minimality. It is not hard to see that this algorithm

does not change constraints C1, C2, and that the new

binary relations are as follows: R{v1,v2} = R{v2,v4} =
R{v1,v4} = θ, R{v1,v3} = R{v2,v3} = R{v2,v5} =
R{v4,v5} = Q, and R{v1,v5} = R{v3,v4} = R{v3,v5} =
S, where

Q = pr13R =

(
0 0 1 1 2 2
0 1 0 1 0 2

)
,

S =

(
0 0 1 1 0 2 2
0 1 0 1 2 0 2

)
.

In order to distinguish elements and congruences of

domains belonging to different variables let the the

domain of vi be denoted by Ai, its elements by 0i, 1i, 2i,
and the congruences of Ai by 0i, θi, 1i.

Let W = {v1, v2, v4}, αi = θi, βi = 1i for vi ∈
W . We have ζi = ζ(αi, βi) = θi = αi. Then, as was

observed in Example 5, the prime interval (αi, βi) cannot

be separated from (αj , βj) for vi, vj ∈W . Therefore by

Lemma 10 the instance PW = ({v1, v2, v4}, {C1
W =

〈(v1, v2), prv1v2
R1〉, C2

W = 〈(v2, v4), prv2v4
R2〉}) can

be decomposed into a disjoint union of two instances

P1 = ({v1, v2, v4}, {〈(v1, v2), Q1〉, 〈(v2, v4), Q2〉),
P2 = ({v1, v2, v4}, {〈(v1, v2), S1〉, 〈(v2, v4), S2〉),

where Q1 = {01, 11} × {02, 12}, Q2 =
{02, 12}×{04, 14}, S1 = {(21, 22)}, S2 = {(22, 24)}. 	

B. Irreducibility

In order to formulate the algorithm properly we need

one more transformation of algebras. An algebra A is

said to be subdirectly irreducible if the intersection of

all its nontrivial (different from the equality relation)
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congruences is nontrivial. This smallest nontrivial con-

gruence μA is called the monolith of A, see Fig. 2(b).

For instance, the algebra AM from Example 2(3) is

subdirectly irreducible, because it has the smallest non-

trivial congruence, θ. It is a folklore observation that any

CSP instance can be transformed in polynomial time to

an instance, in which the domain of every variable is

a subdirectly irreducible algebra. We will assume this

property of all the instances we consider.

C. Block-minimality
Using Lemma 10 we introduce a new type of consis-

tency of a CSP instance, block-minimality, which will

be crucial for our algorithm. In a certain sense it is

similar to the standard local consistency notions, as it

also defined through a family of relations that have to be

consistent in a certain way. However, block-minimality

is not quite local, and is more difficult to establish, as it

involves solving smaller CSP instances recursively. The

definitions below are designed to allow for an efficient

procedure to establish block-minimality. This is achieved

either by allowing for decomposing a subinstance into

instances over smaller domains as in Lemma 10, or by

replacing large domains with their quotient algebras.
Let αv be a congruence of Av for v ∈ V . By

P/α we denote the instance (V, Cα) constructed as

follows: the domain of v ∈ V is Av/αv
; for every

constraint C = 〈s, R〉 ∈ C, s = (v1, . . . , vk), the

set Cα includes the constraint 〈s, R/α〉, where R/α =
{(a[v1]αv1 , . . . ,a[vk]

αvk ) | a ∈ R}.
Example 7: Consider the instance P from Exam-

ple 6, and let αvi = θi for each i ∈ [5]. Then

P/α is the instance over AM/θ given by P/α =
(V, {〈s1, R1/α〉, 〈s2, R2/α〉}), where

R1/α = R2/α =

⎛
⎝ 0θ 2θ 2θ

0θ 2θ 2θ

0θ 0θ 2θ

⎞
⎠ .

	

We start with several definitions. Let P = (V, C) be a

(2,3)-minimal instance and {RX | X ⊆ V, |X| = 2}
is its (2,3)-strategy. Let UP denote the set of triples

(v, α, β) such that v ∈ V , α, β ∈ Con(Av), and α ≺ β.
For every (v, α, β) ∈ UP , let Wv,αβ denote the set of

all variables w ∈ V such that (α, β) and (γ, δ) cannot

be separated in R{v,w} for some γ, δ ∈ Con(Aw) with

(w, γ, δ) ∈ UP . Sets of the form Wv,αβ will be called

coherent sets. Let ZP denote the set of triples (v, α, β) ∈
UP , for which ζ(α, β) is the full relation.

We say that algebra Av is semilattice free if it does

not contain semilattice edges. Let size(P) denote the

maximal size of domains of P that are not semilattice

free and MAX(P) be the set of variables v ∈ V such

that |Av| = size(P) and Av is not semilattice free. For

instances P,P ′ we say that P ′ is strictly smaller than P
if size(P ′) < size(P). For Y ⊆ V let μY

v = μv if v ∈ Y
and μY

v = 0v otherwise.

Instance P is said to be block-minimal if for every

(v, α, β) ∈ UP the following conditions hold:

(B1) if (v, α, β) �∈ ZP , the problem PWv,αβ
is minimal;

(B2) if (v, α, β) ∈ ZP , for every C = 〈s, R〉 ∈ C the

problem PWv,αβ
/μY , where Y = MAX(P) − s, is

minimal;

(B3) if (v, α, β) ∈ ZP , then for every (w, γ, δ) ∈
UP − ZP the problem PWv,αβ

/μY , where Y =
MAX(P)− (Wv,αβ ∩Ww,γδ) is minimal.

Example 8: Let us consider again the instance P from

Example 6. In that example we found all its binary

solutions, and now we use them to find coherent sets

and to verify that this instance is block-minimal. For

the instance P we have UP = {(vi, 0i, θi), (vi, θi, 1i) |
i ∈ [5]} and ZP = {(vi, 0i, θi) | i ∈ [5]}. As we

noticed in Example 4, interval (0, θi) cannot be separated

from (0j , θj) for any i, j ∈ [5]. Therefore, for each

i ∈ [5] we have Wvi,0iθi
= V . Also, it was shown

in Example 4 that (θi, 1i) cannot be separated from

(θj , 1j) for {i, j} = {1, 2} and {i, j} = {2, 4}, while

{θi, 1i} can be separated from (θj , 1j) and (0j , θj) for

i ∈ {1, 2, 4} and j ∈ {3, 5}. Therefore, for i ∈ {1, 2, 4}
we have Wvi,θi1i

= {v1, v2, v4}. Finally, (θ3, 13) can

be separated from (05, θ5), (θ5, 15) by considering the

relation S from Example 6, and (0i, θi), i ∈ {1, 2, 4}
can be separated from (θ3, 13). Therefore, for i ∈ {3, 5}
we have Wvi,θi1i

= {vi}.
Now we check the conditions (B1)–(B3) for P . Since

ζ(θi, 1i) = θi, i ∈ [5], for the coherent sets Wvi,θi1i
we need to check condition (B1). If i = 3, 5 this

condition is trivially true, as the set of solutions of P
on every 1-element set of variables is AM . Consider

Wv1,θ111
= {v1, v2, v4}; as is easily seen, a triple

(a1, a2, a4) is a solution of P{v1,v2,v4} if and only if

(a1, a2), (a1, a4), (a2, a4) ∈ θ. Condition (B1) amounts

to saying that for any constraint of P , say, C1, and any

tuple a from its constraint relation R1, the projection

prv1v2a can be extended to a solution of P{v1,v2,v4}.

Since prv1v2
a ∈ θ, this can always be done. For other

constraints (B1) is verified in a similar way.

Now consider Wv1,01θ1
= V . As ζ(v1, 01, θ1) = 11,

we have to verify conditions (B2),(B3). We consider

condition (B2) for constraint C1, the remaining cases

are similar. The monolith of AM is θ, therefore in the

first case Y = {v4, v5} and μY
vi

is the equality relation
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for i ∈ {1, 2, 3} and μY
v4
= θ4, μ

Y
v5 = θ5. The instance

P/μY is as follows: P/μY = (V, {C ′1 = 〈s1, R1〉, C ′2 =
〈s2, R2/μ〉}). The constraint relation, of C ′1 equals R1,

as μvi = 0i for i ∈ {1, 2, 3}. The constraint relation of

C ′2 then equals

R′
2 = R2/μY =

⎛
⎝ 0 1 2 2

0θ 0θ 2θ 2θ

0θ 0θ 0θ 2θ

⎞
⎠ .

Now, for every tuple a ∈ R1, and for every tuple

b ∈ R′
2 we need to find solutions ϕ,ψ of P/μY such

that ϕ(vi) = a[vi] for i ∈ {1, 2, 3} and ψ(vi) = b[vi]
for i ∈ {2, 4, 5}. If a[v2] ∈ {0, 1} (b[v2] ∈ {0, 1})
then extending a by ϕ(v4) = ϕ(v5) = 0θ (extending

b by ψ(v1) = ψ(v3) = 0) gives solutions of P/μY . If

a[v2] = 2 (b[v2] = 2), then tuples a,b can be extended

by ϕ(v4) = ϕ(v5) = 2θ and by ψ(v1) = ψ(v3) = 2 to

solutions of P/μY . 	

Next we observe that establishing block-minimality

can be efficiently reduced to solving a polynomial

number of strictly smaller instances. First, observe that

Wv,αβ can be large, even equal to V , as we saw in

Example 8. However if (v, α, β) �∈ ZP , by Lemma 10

the problem PWv,αβ
splits into a union of disjoint prob-

lems over smaller domains, and so its minimality can

be established by recursing to strictly smaller problems.

On the other hand, if (v, α, β) ∈ ZP then PWv,αβ
may

not split into such a union. Since we need an efficient

procedure of establishing block-minimality, this explains

the complications introduced in conditions (B2),(B3). In

the case of (B2) PWv,αβ
/μY (see the definition of block-

minimality) can be solved for each tuple a ∈ R by

fixing the values from this tuple. Taking the quotient

algebras of the remaining domains guarantees that we

recurse to a strictly smaller instance. In the case of (B3)

PWv,αβ∩Ww,γδ
/μY splits into disjoint subproblems, and

we branch on those strictly smaller subproblems.

Lemma 11: Let P = (V, C) be a (2,3)-minimal in-

stance. Then by solving a quadratic number of strictly

smaller CSPs P can be transformed to an equivalent

block-minimal instance P ′.

D. The algorithm

In the algorithm we distinguish three cases depend-

ing on the presence of semilattice edges and quasi-

centralizers of the domains of variables. In each case

we employ different methods of solving or reducing the

instance to a strictly smaller one. Algorithm 1 gives a

more formal description of the solution algorithm.

Let P = (V, C) be a subdirectly irreducible, (2,3)-

minimal instance. Let Center(P) denote the set of vari-

ables v ∈ V such that ζ(0v, μv) = 1v . Let μ∗
v = μv if

v ∈ MAX(P) ∩ Center(P) and μ∗
v = 0v otherwise.

a) Semilattice free domains: If no domain of P
contains a semilattice edge then by Proposition 6 P can

be solved in polynomial time, using the few subalgebras

algorithm, as shown in [39], [20].

b) Small centralizers: If μ∗
v = 0v for all v ∈ V ,

block-minimality guarantees the existence of a solution,

as Theorem 12 shows, and we can use Lemma 11 to

solve the instance.

Theorem 12: If P is subdirectly irre-

ducible, (2,3)-minimal, block-minimal, and

MAX(P) ∩ Center(P) = ∅, then P has a solution.

Proof of Theorem 12 is the most technically involved

part of our result.

c) Large centralizers: Suppose that MAX(P) ∩
Center(P) �= ∅. In this case the algorithm proceeds

in three steps.

Step 1. Consider the problem P/μ∗. We establish the

global 1-minimality of this problem. If it is tightened

in the process, we start solving the new problem from

scratch. To check global 1-minimality, for each v ∈ V
and every a ∈ Av/μ∗

v
, we need to find a solution of

the instance, or show it does not exists. To this end,

add the constraint 〈(v), {a}〉 to P/μ∗. The resulting

problem belongs to CSP(A), since Av is idempotent, and

hence {a} is a subalgebra of Av/μ∗
v
. Then we establish

(2,3)-minimality and block minimality of the resulting

problem. Let us denote it P ′. There are two possibilities.

First, if size(P ′) < size(P) then P ′ is a problem strictly

smaller than P and can be solved by recursivly calling

Algorithm 1 on P ′. If size(P ′) = size(P) then, as all

the domains Av of maximal size for v ∈ Center(P)
are replaced with their quotient algebras, there is w �∈
Center(P) such that |Av| = size(P) and Av is not

semilattice free. Therefore for every u ∈ Center(P ′), for

the corresponding domain A
′
u we have |A′

u| < size(P) =
size(P ′). Thus, MAX(P ′)∩Center(P ′) =∅, and P ′ has

a solution by Theorem 12.

Step 2. We find a solution ϕ of P/μ∗ satisfying the

following condition: For every v ∈ Center(P) there is

a ∈ Av such that {a, ϕ(v)} is a semilattice edge if

μ∗
v = 0v , or, if μ∗

v = μv , there is b ∈ ϕ(v) such that

{a, b} is a semilattice edge. Take v ∈ Center(P) and

b ∈ Av/μ∗
v

such that {a, b} is a semilattice edge in Av/μ∗
v

for some a ∈ Av/μ∗
v
. Since P/μ∗ is globally 1-minimal,

there is a solution ϕv,b such that ϕv,b(v) = b. Setting

ϕ = ϕv1,b1 · (ϕv2,b2 · . . . (ϕv�,a�
) . . .),
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where (v1, a1), . . . , (v�, a�) is a list of pairs specified

above, we obtain a required solution by Lemma 7.

CASE 3. We apply the transformation of P suggested by

Maroti in [51]. By P ·ϕ we denote the instance (V, Cϕ)
given by the rule: for every C = 〈s, R〉 ∈ C the set Cϕ
contains a constraint 〈s, R ·ϕ〉. To construct R ·ϕ choose

a tuple b ∈ R such that b[v]μ
∗
v = ϕ(v) for all v ∈ s;

this is possible because ϕ is a solution of P/μ∗. Then

set R · ϕ = {a · b | a ∈ R}. By the results of [51] and

Lemma 8 the instance P · ϕ has a solution if and only

if P does, and also size(P · ϕ) < size(P).
This last case can be summarized as the following

Theorem 13: If P/μ∗ is globally 1-minimal, then P
can be reduced in polynomial time to a strictly smaller

instance over an algebra satisfying the conditions of the

Dichotomy Conjecture.

Algorithm 1 Procedure SolveCSP
Require: A CSP instance P = (V, C) from CSP(A)
Ensure: A solution of P if one exists, ‘NO’ otherwise

1: if all the domains are semilattice free then
2: Solve P using the few subpowers algorithm and

RETURN the answer

3: end if
4: Transform P to a subdirectly irreducible, block-

minimal, and (2,3)-minimal instance

5: μ∗
v = μv for v ∈ MAX(P)∩Center(P) and μ∗

v = 0v
otherwise

6: P∗ = P/μ∗

7: %% Check the 1-minimality of P∗

8: for every v ∈ V and a ∈ Av/μ∗
v

do
9: P ′ = P∗

(v,a) %% Add the constraint 〈(v), {a}〉
fixing the value of v to a

10: Transform P ′ to a subdirectly irreducible, (2,3)-

minimal instance P ′′

11: If size(P ′′) < size(P) call SolveCSP on P ′′ and

flag a if P ′′ has no solution

12: Establish block-minimality of P ′′; if the problem

changes, return to Step 10

13: If the resulting instance is empty, flag element a
14: end for
15: If there are flagged values, tighten the instance by

removing the flagged elements and start over

16: Use Theorem 13 to reduce P to an instance P ′ with

size(P ′) < size(P)
17: Call SolveCSP on P ′ and RETURN the answer

Example 9: We illustrate the algorithm SolveCSP on

the instance from Example 6. Recall that the domain of

each variable is AM , its monolith is θ, and ζ(0, θ) is the

full relation. This means that size(P) = 3, MAX(P) =

V and Center(P) = V , as well. Therefore we are in

the case of nontrivial centralizers. Set μ∗
vi
= θi for each

i ∈ [5] and consider the problem P/μ∗ = (V, {C∗
1 =

〈s1, R∗
1〉, C∗

2 = 〈s2, R∗
2〉), where

R∗ =

⎛
⎝ 0θ 2θ 2θ

0θ 2θ 2θ

0θ 2θ 2θ

⎞
⎠ .

It is an easy excercise to show that this instance is

globally 1-minimal (every value 0θ can be extended to

the all-0θ solution, and every value 2θ can be extended

to the all-2θ solution). This completes Step 1. For

every variable vi we choose b ∈ AM/θ such that

for some a ∈ AM/θ the pair {a, b} is a semilattice

edge. Since AM/θ is a 2-element semilattice, setting

b = 0θ and a = 2θ is the only choice. Therefore ϕ
in our case can be chosen by ϕ(vi) = 0θ; and Step
2 is completed. For Step 3 first note that in AM the

operation r plays the role of multiplication · Then for

each of the constraints C1, C2 choose a representative

a1 ∈ R1 ∩ (ϕ(v1) × ϕ(v2) × ϕ(v3)) = R1 ∩ {0, 1}3,

a2 ∈ R2 ∩ (ϕ(v2)×ϕ(v4)×ϕ(v5)) = R2 ∩{0, 1}3, and

set P ′ = ({v1, . . . , v5}, {C ′
1 = 〈(v1, v2, v3), R′

1〉, C ′
2 =

〈(v2, v4, v5), R′
2〉}), where R′

1 = r(R1, a),
R′

2 = r(R2,b). Since r(2, 0) = r(2, 1) = 0, regardless

of the choice of a,b in our case R′
1 ⊆ R1, R

′
2 ⊆ R2,

and are invariant with respect to the affine operation

of Z2. Therefore the instance P ′ can be viewed

as a system of linear equations over Z2 (this system

is actually empty in our case), and can be easily solved. 	

Using Lemma 11 and Theorems 12,13 it is not diffi-

cult to see that the algorithm runs in polynomial time.

Indeed, every time it makes a recursive call it calls on a

problem whose non-semilattice free domains of maximal

cardinality have strictly smaller size, and therefore the

depth of recursion is bounded by |A| if we are dealing

with CSP(A).
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[50] Miklós Maróti. Malcev on top. Manuscript, available
at http://www.math.u-szeged.hu/˜mmaroti/
pdf/200x%20Maltsev% 20on%20top.pdf, 2011.
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