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Abstract—
We propose an efficient meta-algorithm for Bayesian

inference problems based on low-degree polynomials,

semidefinite programming, and tensor decomposition.

The algorithm is inspired by recent lower bound

constructions for sum-of-squares and related to the

method of moments. Our focus is on sample complex-

ity bounds that are as tight as possible (up to additive

lower-order terms) and often achieve statistical thresh-

olds or conjectured computational thresholds.

Our algorithm recovers the best known bounds

for partial recovery in the stochastic block model, a

widely-studied class of inference problems for com-

munity detection in graphs. We obtain the first par-

tial recovery guarantees for the mixed-membership

stochastic block model (Airoldi et el.) for constant

average degree—up to what we conjecture to be the

computational threshold for this model. We show

that our algorithm exhibits a sharp computational

threshold for the stochastic block model with multi-

ple communities beyond the Kesten–Stigum bound—

giving evidence that this task may require exponential

time.

The basic strategy of our algorithm is strikingly

simple: we compute the best-possible low-degree ap-

proximation for the moments of the posterior dis-

tribution of the parameters and use a robust tensor

decomposition algorithm to recover the parameters

from these approximate posterior moments.

Keywords-Bayesian inference, stochastic block-

model, low-degree polynomials, tensor decomposition,

semidefinite programming, sum of squares algorithms,

average-case hardness, phase transitions

I. Introduction

Bayesian estimation [Wik17a] is a basic task

in statistics with a wide range of application,

especially for machine learning. The estimation

problems we study have the following form:

For a known joint distribution p(x , θ) over data

points x and parameters θ (typically both high-

dimensional objects), we draw a parameter θ ∼
p(θ) from its marginal distribution and i.i.d. sam-

ples x1 , . . . , xm ∼ p(x | θ) from the distribution

conditioned on θ. The goal is to efficiently esti-

mate the underlying parameter θ from the samples

x1 , . . . , xm .

Many ubiquitous statistical inference and un-

supervised learning problems fit this description:

independent component analysis, variants of prin-

cipal component analysis, and planted problems—

for example, planted constraint satisfaction prob-

lems and planted coloring problems—are just

some examples.

In this paper we develop general algorithmic

techniques for such problems and apply them to

the stochastic blockmodel. In the blockmodel, the

parameter θ is a labeling of each of [n] nodes with
one or more communities. The samples x1 , . . . , xm

are edges (i , j) ∈ [n]2, generated with a bias

towards pairs (i , j) from the same community (or

sharing many communities). Taken together these

inputs form a random graph x on [n] which

exhibits latent community structure; the goal is

to estimate the community memberships θ. The
problem becomes easier as more samples are gen-

erated, which is to say as the average degree of

the graph x increases. The question is: how many

samples (i.e. what average degree of x) is required
for an efficient algorithm to estimate θ?
Our main contribution is a meta-algorithm for

Bayesian estimation problems. The algorithm is

based on low-degree polynomials and related to

the method of moments. We apply the algorithm

to recover the best-known polynomial time sam-

ple complexity guarantees for the stochastic block-

model. We give the first sample complexity guar-

antees in the regime where x has constant degree

and each node may participate in several commu-

nities simultaneously. Our work, and especially our

meta-algorithm, unifies several previous lines of

work on this problem: algorithms based on the

belief propagation method from statistical physics,
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algorithms based on tensor decomposition, and al-

gorithms based on semidefinite programming. Our
meta-algorithm gives a recipe to design algorithms

which achieve the tight sample complexity guaran-

tees of belief propagation, share the broad applica-

bility of tensor decomposition methods, and lever-

age ideas from semidefinite programming and

the sum-of-squares hierarchy to obtain provable

bounds.

In this proceedings version we give an overview

of our main results and proof techniques. Full

proofs are deferred to the full version of this work.

Why focus on sample bounds?.: Our focus is

on obtaining the tightest possible sample com-

plexity bounds (ideally precise up to low-order

additive terms) achievable by polynomial time al-

gorithms. Unlike running times, which vary by

constant factors (at least) with only subtle changes

in underlying computational models, sample com-

plexity bounds can be studied very precisely. In

this respect, from the perspective of algorithms

research, sample complexity bounds are more akin

to approximation ratios than they are to running

times. As with approximation ratios, even constant

factor improvements in sample complexity bounds

often involve substantial algorithmic insights, and

much can be learned from studying the optimal

sample complexity of an estimation problem.

Obtaining the best possible sample complexity

bounds is also an important stepping stone to an-

swering the question: how complex can unsuper-

vised learning models be while permitting efficient

learning from limited data? Modern unsupervised

learning models, like deep neural networks, are

specified by enormous numbers of parameters; to

understand how sophisticated we can make these

models and maintain polynomial-time learnability

from reasonable numbers of samples we need a

precise theory of sample complexity.

Relation to previous approaches and phase tran-
sitions in sample complexity..: The stochastic block-

model has been studied for decades, and param-

eter estimation is among the oldest problems in

statistics. (We defer a more thorough overview

of previous work on the stochastic blockmodel

till later in this paper.) However, precise sample

complexity bounds for variants of the blockmodel

are a relatively recent development. Algorithms

achieving these bounds are sophisticated and often

intricate to analyze. Using ideas from semidefinite

programming and Fourier analysis, we are able

to unify the analysis of preious algorithms using

belief propagation, moment methods, and tensor

decomposition.

Furthermore, many precise sample complexity

bounds or sample complexity “phase

transitions”—a number of samples fewer than

which estimation suddenly becomes impossible

for efficient algorithms—were initially studied

using ideas from statistical physics. These ideas

are able to heuristically predict the locations

of and give physical explanations for these

phase transition phenomena. However, until now

rigorous verification of these predictions—by

designing efficient and provable algorithms—

required innovation on a case-by-case basis.

We provide a recipe to design algorithms achiev-

ing the predicted optimal sample complexity guar-

antee and a recipe for their analysis. We give

a physics-free explanation for the origin and lo-

cations of these phase transitions, based on the

low-degree structure of the underlying probability

distributions p(x , θ). In addition to an algorithm-

design recipe, this explanation allows rigorous

study of the other side of the phase transition,

where physics methods predict that there are

too few samples for computationally-efficient algo-

rithms to perform parameter estimation. We prove

impossibility results for a class of efficient algo-

rithms based on low-degree polynomials in the

stochastic blockmodel setting.

Relation to pseudocalibration and the sum-of-
squares algorithm..: This work is related to recent

work of Barak et al [BHK+16] and concurrent work

of Hopkins et al [HKP+17] on the power of sum-of-

squares algorithms for planted problems, closely

related to Bayestian estimation. Those works also

demonstrate that properties of the low-degree

structure of distributions p(x , θ) play a role in

the complexity of inferring hidden variables from

samples. These works focus on structural theorems

and lower bounds for estimation problems, while

here our main focus is on algorithms.

Those works study sum-of-squares algorithms—

a powerful family of semidefinite programs—

which we also utilize here in some of our al-

gorithms. The goal of the work [HKP+17] is to

obtain a very general characterization of sum-of-

squares for many planted problems at once. As

such, the results are much less fine-grained than

those we present here: they can be interpreted only

as understanding the numbers of samples required
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for sum-of-squares algorithms up to subpolyno-

mial factors, while here we focus on very precise

bounds, which require substantially different algo-

rithmic ideas.

A. Detecting overlapping communities

The stochastic block model is a widely studied

(family of) model(s) of random graphs containing

latent community structure. It is most common to

study the block model in the sparse graph setting:

many large real-world networks are sparse, and

the sparse graph setting is nearly always more

mathematically challenging than the dense setting.

A series of recent works has for the first time

obtained algorithms which recover communities in

blockmodel graphs under (conjecturally) optimal

sparsity conditions. For an excellent survey, see

[Abbar].

Such sharp results remain limited to relatively

simple versions of the blockmodel; where, in par-

ticular, each vertex is assigned a single community

in an iid fashion. A separate line of work has

developed more sophisticated and realistic random

graph models with latent community structure.

The mixed-membership stochastic block model

[ABFX08] is one such natural extension of the

stochastic block model that allows for communities

to overlap. In addition to the number of vertices

n, the average degree d, the correlation parameter

ε, and the number of communities k, this model

has an overlap parameter α � 0 that controls how

many communities a typical vertex participates in.

Roughly speaking, the model generates an n-vertex
graph by choosing k communities as random ver-

tex subsets of size (1 + α)n/k and choosing dn/2
random edges, favoring pairs of vertices that have

many communities in common.

Definition I.1 (Mixed-membership stochastic block

model). The mixed-membership stochastic block

model SBM(n , d , ε, k , α) is the following distribu-

tion over n-vertex graphs G and k-dimensional

probability vectors σ1 , . . . , σn for the vertices:

• draw σ1 , . . . , σn independently from Dir(α)
the symmetric k-dimensional Dirichlet distri-

bution with parameter α � 0,1

1In the symmetric k-dimensional Dirichlet distribution with

parameter α > 0, the probability of a probability vector σ
is proportional to

∏k
t�1 σ(t)α/k−1. By passing to the limit, we

define Dir(0) to be the uniform distribution over the coordinate

vectors 11 , . . . , 1k .

• for every potential edge {i , j}, add it to G with

probability d
n ·

(
1 +

�〈σi , σ j〉 − 1
k

�
ε
)
.2

Due to symmetry, 〈σi , σ j〉 has expected value 1
k ,

which means that the expected degree of every

vertex in this graph is d. In the limit α → 0, the

Dirichlet distribution is equivalent to the uniform

distribution over coordinate vectors 11 , . . . , 1k and

the model becomes SBM(n , d , ε, k), the stochastic

block model with k disjoint communities. For α � k,
the Dirichlet distribution is uniform over the open

(k − 1)-simplex [Wik17b]. For general values of α,
a probability vector from Dir(α) turns out to have

expected collision probability (1− 1
k ) 1
α+1 +

1
k , which

means that we can think of the probability vector

being concentrated on about α + 1 coordinates.3

This property of the Dirichlet distribution is what

determines the threshold for our algorithm. Cor-

respondingly, our algorithm and analysis extends

to a large class of distributions over probability

vectors that share this property.

Measuring correlation with community struc-
tures.: Our algorithm for stochastic block models

returns a list of vectors L ⊆ �n . The intention is

that L consists of the indicator vectors for the k
communities. If we let σ � (σ1 , . . . , σn) be a la-

beling of the vertices by k-dimensional probability

vectors, we define the correlation corr(σ, L) to be the
minimum of the following two quantities:

1)

max
Ỹ∈Mk (L)

〈Yσ , Ỹ〉
‖Yσ‖F · ‖Ỹ‖F

2)

min
Ỹ∈Mk (L),s∈[k]

max
t∈[k]

〈Ỹ 1s ,Yσ 1t〉
‖Ỹ 1s ‖ · ‖Yσ 1t ‖

Here, Yσ ∈ �n×k is the matrix with rows σ1 −
1
k 1, . . . , σn − 1

k 1 (so that �σ Yσ � 0 by symmetry)

and Mk(L) ⊆ �n×k consists of all matrices with

columns u1− 1
k 1, . . . , uk− 1

k 1 such that u1 , . . . , uk ∈
L. All norms are Euclidean and the inner products

correspond to the norms.

The best-possible L consists of the columns of

the matrix with rows σ1 , . . . , σn . This choice of

L has correlation corr(σ, L) � 1. To illustrate this

notion of correlation, consider the case of disjoint

communities (i.e., α � 0). Suppose corr(σ, L) � δ.
2An equivalent, more operational description of this process

is that for every potential edge {i , j}, we draw labels s ∼ σi ,

t ∼ σ j and add the edge with probability d
n · (1 + (1 − 1

k )ε) if
s � t and with probability d

n · (1 − 1
k ε) if s � t.

3When k and α are comparable in magnitude, it is important

to interpret this more accurately as (α + 1) · k
k+α coordinates.
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Then, the condition 〈Yσ , Ỹ〉 � δ · ‖Yσ‖ · ‖Ỹ‖ means

that by looking at the large coordinates of Ỹ we

can correctly identify the community membership

of a δO(1) + 1
k fraction of the vertices. The second

term in the correlation definition means that every

vector in L is δ-correlated with the indicator vector

of one of the communities.

Main result for mixed-membership models.: The
following theorem gives a precise bound on the

number of edges that allows us to find in polyno-

mial time a small list of vectors that has constant

correlation with the true labeling (similar in spirit

to list-decoding). Here, the parameters d , ε, k , α of

the mixed-membership stochastic block model may

even depend on the number of vertices n.

Theorem I.2 (Mixed-membership SBM—signifi-

cant correlation). Let d , ε, k , α be such that k � no(1),
α � no(1), and ε2d � no(1). Suppose ε2d � (1 +

δ) · k2(α + 1)2 for some δ > 0. Then, there exists
δ′ � min{δO(1) , 0.1} > 0 and a polynomial-time
algorithm that given an n-vertex graph G outputs a
list of vectors L(G) ⊆ [0, 1]n of size |L(G)| � k1/δ

′

satisfying

�
(G,σ)∼SBM(n ,d ,ε,k ,α)

corr(σ, L(G)) � δ′ . (I.1)

Note that in the above theorem, the correlation

δ′ that our algorithm achieves depends only on δ
(the distance to the threshold) and in particular is

independent of n.
For disjoint communities (α � 0), our algorithm

achieves constant correlation with the planted la-

beling if ε2d/k2 is bounded away from 1 from

below. This condition is called the Kesten–Stigum

threshold and is exactly the threshold achieved by

previous best polynomial-time algorithms4 (due to

[Mas14], [MNS15] for k � 2 and [AS16] for general

k). For k � 2, our notion of correlation is equivalent

to the ones in previous works [Mas14], [MNS15].

For general k, our notion of correlation is stronger.

Previous algorithms output a single vector ỹ ∈ �n

such that 〈Yσ 1S , ỹ〉 � δ′ · ‖Yσ 1S‖ · ‖ ỹ‖ for a

subset S ⊆ [k] of communities.5 The idea is that

4Here, achieving the Kesten–Stigum threshold means that if

ε2d/k2 − 1 > 0 is lower bounded by any constant, then the al-

gorithm achieves constant correlation with the true community

structure (for a notion of correlation similar to ours).

5 Algorithms in previous works typically output subsets of

vertices as opposed to vectors in �n . For disjoint communities,

there is little difference between the two. In particular, if we

have a set of vectors L, we can convert it to a set of L′ of 0/1
vectors by a randomized algorithm such that �L′ corr(σ, L′) �
Ω(1) · corr(σ, L)O(1).

y corresponds to a single community or a union

of up to k−1 communities. The difference between

these notions of correlation can be a multiplicative

factor of k.
We conjecture that the threshold achieved by

our algorithm is best-possible for polynomial-time

algorithms. Concretely, if d , ε, k , α are constants

such that ε2d < k2(α + 1)2, then we conjecture

that every polynomial-time algorithm that given

a graph G outputs a polynomial-size list of vectors

L(G) satisfies
lim
n→∞ �

(G,σ)∼SBM(n ,d ,ε,k ,α)
corr(σ, L(G)) � 0 . (I.2)

This conjecture is a natural extension of a con-

jecture for disjoint communities (α � 0), which

says that beyond the Kesten–Stigum threshold,

i.e., ε2d < k2, no polynomial-time algorithm can

achieve correlation bounded away from 0 with

the true labeling e.g., [Moo17]. For large enough

values of k, this conjecture predicts a computation-

information gap because the condition ε2d �
O(k) is enough for achieving constant correlation

information-theoretically (and in fact by a simple

exponential-time algorithm).

Comparison to previous algorithms for mixed-
membership models.: The best previous algorithms

for stochastic block models with overlapping com-

munities, i.e., α is (significantly) larger than 0,

require ε2d � O(log n)O(1) · k2(α + 1)2 [AGHK13].

Our bound saves the O(log n)O(1) factor. (This sit-
uation is analogous to the standard block model,

where simpler algorithms based on eigenvectors of

the adjacency matrix require the graph degree to

be logarithmic.) We remark that there is a stark

difference between the algorithmic techniques that

go into detecting disjoint communities and over-

lapping ones. The former is based on matrices and

pairwise correlations whereas the latter is based

on tensors and higher-order correlations. In order

to achieve the Kesten–Stigum threshold for dis-

joint communities, the key ingredients are spectral

properties of matrices that correspond to non-

standard random walks like self-avoiding or non-

backtracking ones. Our algorithm for overlapping

communities is based on higher-order tensors as-

sociated with such non-standard random walks. To

analyze these tensors, we introduce new kinds of

random walks called colorful random walks inspired
by color coding [AYZ95], which greatly simplify

the analysis (even for disjoint communities). The

most involved part of our algorithm is a new
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algorithm based on sum-of-squares to decompose

tensors that have only constant correlation with an

orthogonal tensor. Previous algorithms require cor-

relation close to 1 [MSS16], [SS17] or even inverse-

polynomial distance.

Recovering overlapping communities with higher
accuracy.: Our above theorem focuses on providing

an estimate that has constant correlation with the

ground truth. The following theorem shows that

if we are a constant multiplicative factor above the

threshold, so that ε2d 	 k2(α+1)2, we can achieve

correlation close to 1 with the ground truth. In this

case, our algorithm outputs exactly k vectors as

opposed to kO(1) vectors in the previous theorem.

Theorem I.3 (Mixed-membership SBM—high ac-

curacy). Let d , ε, k , α be such that k � no(1), α �
no(1), and ε2d � no(1). Suppose ε2d � 1/η · k2(α + 1)2
for some η with 0 < η < 0.9. Then, there exists η′ �
ηΩ(1) and a polynomial-time algorithm that given an n-
vertex graph G outputs a list of vectors L(G) ⊆ [0, 1]n

of size |L(G)| � k satisfying

�
(G,σ)∼SBM(n ,d ,ε,k ,α)

corr(σ, L(G)) � 1 − η′ . (I.3)

The above theorem is byproduct of our proof of

Theorem I.2. We regard Theorem I.2 as our main

result for the mixed-membership stochastic block

model because it gives non-trivial guarantees all

the way up to what we believe to be the threshold.

Theorem I.3 by itself could potentially be proved

in a more direct way and with a better trade-

off between the multiplicative distance η from the

threshold and the achieved accuracy η′.

B. Meta-theorems for Bayesian estimation

Our Theorem I.2 is an instantiation of a meta-

algorithm for Bayesian estimation. In the following,

we describe the guarantees of this meta-algorithm

in greater generality.

We first consider a version of the meta-algorithm

that is enough to capture the stochastic block

model with two disjoint communities. Let p(x , y)
be a joint probability distribution over observable

variables x ∈ �n and hidden variables y ∈ �d .

Nature draws (x , y) from the distribution p, we
observe x and our goal is to provide an esti-

mate ŷ(x) for y. Often the mean square error

�p(x ,y)
�
ŷ(x) − y

�2
is a reasonable measure for the

quality of the estimation. For this measure, the

information-theoretically optimal estimate is the

mean of the posterior distribution ŷ(x) � �p(y |x) y.

This approach has two issues that we address in

the current work.

The first issue is that naively computing the

mean of the posterior distribution takes time ex-

ponential in the dimensions n or d. There are

many well-known algorithmic approach that aim

to address this issue or related ones, for example,

belief propagation or expectation maximization.

While these approaches appear to work well in

practice, they are notoriously difficult to analyze. In

this work, we can resolve this issue in a very simple

way: We analytically determine a low-degree poly-

nomial f (x) so that � f (x ,y)
�

f (x) − y
�2

is as small

as possible and use the simple fact that low-degree

polynomials can be evaluated efficiently (even for

high dimensions n).6 In this way, we can cap-

ture linearized variants of belief propagation (e.g.,

[AS15]) and spectral properties of linear operators

that have low-degree in the observable variables x
(e.g., the Hashimoto non-backtracking operator).

The second issue is that even if we can compute

the posterior mean, it may not contain any infor-

mation about the hidden variable y and the mean

square error is not the right measure to assess the

quality of the estimator. This situation typically

arises if there are symmetries in the posterior

distribution. For example, in the stochastic block

model with two communities we have �p(y |x) y � 0

regardless of the observations x because p(y |
x) � p(−y |x). A simple way to resolve this issue

is to estimate higher-order moments of the hid-

den variables. For stochastic block models with

disjoint communities, the second moment would

suffice �p(y |x) y yT . (For overlapping communities,

we need third moments �p(y |x) y⊗3 due to more

substantial symmetries.)

Theorem I.4 (Bayesian estimation meta-theo-

rem—2nd moment). Let δ > 0 and p(x , y) be a
distribution over vectors x ∈ {0, 1}n and unit vectors
y ∈ �d . Assume p(x) � 2−nO(1) for all x ∈ {0, 1}n .7
Suppose there exists a matrix-valued degree-� polyno-

6Our polynomials typically have logarithmic degree and

naive evaluation takes time nO(log n). However, we show that

under mild conditions it is possible to approximately evaluate

these polynomials in polynomial time using the idea of color

coding [AYZ95].

7This mild condition on the marginal distribution of x allows

us to rule out pathological situations where a low-degree

polynomial in x may be hard to evaluate accurately enough

because of coefficients with super-polynomial bit-complexity.
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mial P(x) such that

�
p(x ,y)

〈P(x), y yT 〉 � δ ·
(
�

p(x)
‖P(x)‖2F

)1/2
. (I.4)

Then, there exists δ′ � δO(1) > 0 and an estimator ŷ(x)
computable by a circuit of size nO(�) such that

�
p(x ,y)

�
p(x ,y)

〈 ŷ(x), y〉2 � δ′ . (I.5)

Using the appropriate polynomial P, this theo-
rem captures the best known guarantees for par-

tial recovery in the k-community stochastic block-

model. One curious aspect of the theorem state-

ment is that it yields a nonuniform algorithm—

a family of circuits—rather than a uniform algo-

rithm. If the coefficients of the polynomial P can

themselves be computed in polynomial time, then

the conclusion of the algorithm is that an nO(�)-
time algorithm exists with the same guarantees.

The following theorem is an analogue of Theo-

rem I.4 for 3rd order moments and the key ingre-

dient for Theorem I.2. The advantage of this the-

orem compared to the previous one is that it can

deal with the case that the posterior distribution

exhibits more symmetries. When we apply this

theorem for detecting k communities, the vector x
is the adjacency matrix of a graph and y1 , . . . , yk

are related to the indicator vectors of the k com-

munities.8

Theorem I.5 (Bayesian estimation meta-theo-

rem—3rd moment). Let p(x , y1 , . . . , yk) be a joint
distribution over vectors x ∈ {0, 1}n and exchangable,9
orthonormal10 vectors y1 , . . . , yk ∈ �d . Assume the
marginal distribution of x satisfies p(x) � 2−nO(1)

for
all x ∈ {0, 1}n .11 Suppose there exists a tensor-valued
degree-� polynomial P(x) such that

�
p(x ,y1 ,...,yk )

〈P(x),
k∑

i�1

y⊗3i 〉 � δ ·
(
�

p(x)
‖P(x)‖2

)1/2
· √k .

(I.6)

8Concretely, for community detection the vectors y1 , . . . , yk
are obtained by orthogonalizing the centered indicator vectors

of the k communities.

9 Here, exchangeable means that for every x ∈ {0, 1}n and

every permutation π : [k] → [k], we have p(y1 , . . . , yk | x) �

p(yπ(1) , . . . , yπ(k) | x).
10 Here, we say the vector-valued random variables y1 , . . . , yk

are orthonormal if with probability 1 over the distribution p we

have 〈yi , yj〉 � 0 for all i � j and ‖yi ‖2 � 1.

11As in the previous theorem, this mild condition on the

marginal distribution of x allows us to rule out pathological

situations where a low-degree polynomial in x may be hard to

evaluate accurately enough because of coefficients with super-

polynomial bit-complexity.

(Here, ‖·‖ is the norm induced by the inner product
〈·, ·〉. The factor √k normalizes the inequality because
‖∑k

i�1 y⊗3i ‖ by orthonormality.) Then, there exists δ′ �
δO(1) > 0 and a circuit of size nO(�) that given x ∈
{0, 1}n outputs a list of unit vectors L(x) with |L(x)| �
n1/δ′ such that

�
p(x ,y1 ,...,yk )

�
i∈[k] max

ŷ∈L(x)
〈 ŷ , yi〉 � δ′ . (I.7)

Previous algorithmic results for overlapping

communities [AGHK13] can be viewed as instances

of this meta-theorem. However, for this meta-

theorem we use a more robust tensor decomposi-

tion algorithm than in previous algorithms, which

allows us to tolerate more error in the estimate P
of the tensor

∑k
i�1 y⊗3i . This improvement is not on

its own sufficient: we also need to use a more so-

phisticated polynomial P (which will have degree

roughy log n) than the constant-degree polynomi-

als used by previous work. The latter improvement

is akin to the difference between the information

carried by the adjacency matrix of a graph and that

carried by the matrix whose (i , j)-th entry is the

number of log n-length simple paths from i to j.
This meta-theorem also captures algorithms for

other estimation problems based on tensor meth-

ods, e.g., latent Dirichlet allocation [AFH+12],

learning spherical mixtures of Gaussians [HK13],

and independent component analysis [VX15]. As

for detecting overlapping communities, it is plau-

sible that more careful choices of polynomial es-

timators give improved sample bounds for these

problems as well.

C. Concrete unconditional lower bounds for Bayesian
estimation

The average-case nature of Bayesian estimation

problems makes it unlikely that classical tools

like (NP-hardness) reductions allow us to reason

about the computational difficulty of such prob-

lems. More recently, sum-of-squares lower bounds

emerged as a promising tool to understand the

computational complexity of certain classes of

average-case problems [Gri01], [Sch08], [HSS15],

[MW15], [BHK+16]. However, before our work, it

was not clear if or in what sense sum-of-squares

algorithms can achieve the kind of precise sample

bounds we seek for stochastic block models and

related problems.

Our meta-algorithm for Bayesian estimation

opens up a new avenue of research to give ev-

idence for the computational difficulty of esti-

mation problems and inherent gaps between the
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information-theoretic threshold for estimation and

the threshold for efficient estimation algorithms.

Concretely, Theorems I.4 and I.5 show that in order

for an estimation problem to be intractable it is

necessary that every low-degree polynomial fails

to correlate with the second or third moment of

the posterior distribution (in the sense of Eqs. (I.4)

and (I.6)). This kind of fact about low-degree

polynomial is something we can aim to prove

unconditionally as a way to give evidence for the

intracability of a Bayesian estimation problem.

Concrete unconditional lower bound at the Kesten–
Stigum threshold.: In this work, we show an un-

conditional lower bound about low-degree poly-

nomials for the stochastic block model with k
communities at the Kesten–Stigum threshold. For

k � 4, this threshold is bounded away from

the information-theoretic threshold [AS15]. In this

way, our lower bounds gives evidence for an inher-

ent gap between the information-theoretical and

computational thresholds.

For technical reasons, our lower bound is for

slightly notion of correlation different than we have

yet discussed. Our goal is to compare the stochastic

block model distribution SBM(n , d , ε, k) graphs to
the Erdős-Rényi distribution G(n , d

n ) with respect

to low-degree polynomials. As before we represent

graphs as adjacency matrices x ∈ {0, 1}n×n . Among

all low-degree polynomials p(x), we seek one so

that the typical value of p(x) for graphs x from

the stochastic blocks model is as large as possible

compared to its typical for Erdős-Rényi graphs.

The following theorem shows that a suitable math-

ematical formalization of this question exhibits

a sharp “phase transition” at the Kesten–Stigum

threshold.

Theorem I.6. Let d , ε, k be constants. Then,

max
p∈�[x]��

�x∼SBM(n ,d ,ε,k) p(x)
�
�x∼G(n ,d/n) p(x)2�1/2

is (I.8)

• � nΩ(1) if ε2d > k2 , � � O(log n)
• � no(1) if ε2d < k2 , � � no(1)

In the full version of this paper, we

show that this theorem also implies a sharp

threshold for polynomials which estimate, say,

1vertices 1 and 2 in same community; nontrivial estimation

of this random variable by degree � � no(1)
polynomials is possible only when d > k2/ε2.
Let μ : {0, 1}n×n → � be the relative density of

SBM(n , d , ε, k) with respect to G(n , d
n ). Basic linear

algebra shows that the left-hand side of Eq. (I.8) is

equal to ‖μ�� ‖2, where ‖·‖ is the Euclidean norm

with respect to the measure G(n , d/n) and μ�� is
the projection (with respect to this norm) of μ to

the subspace of functions of degree at most �. It
follows that we can analyze ‖μ�� ‖2 using Fourier

analysis over the d
n -biased hypercube. We defer the

proof of Theorem I.6 to the full version of this

paper.

D. Low-correlation tensor decomposition

The algorithmically most involved part of our

tensor-based estimation is to decompose tensors

that have small correlation with orthogonal ten-

sors.

Theorem I.7. There exists a polynomial-time algorithm
that given a 3-tensor T ∈ (�n)⊗3 and a parameter
δ outputs a list of unit vectors L(T) of cardinality
|L(t)| � n1/δ′ for δ′ � δO(1) with the following prop-
erty: if T satisfies 〈T,∑k

i�1 a⊗3i 〉 for some orthonormal
vectors a1 , . . . , ak , then

�
i∈[k] max

â∈L(T)
〈â , ai〉 � δ′ .

In words, thinking of δ as a constant, the algo-

rithm finds a polynomial-length list of unit vectors

that have constant correlation with a constant frac-

tion of the components of the orthogonal tensor∑k
i�1 a⊗3i .

To the best of our knowledge, all previous algo-

rithms for tensor decomposition (even in the or-

thogonal) require that the correlation between the

input tensor and the orthogonal tensor is close to 1

[GVX14], [AGH+14], [BCMV14], [BKS15], [MSS16]

II. Techniques

To illustrate the idea of low-degree estimators

for posterior moments, let’s first consider the most

basic stochastic block model k � 2 disjoint commu-

nities (α � 0). (Our discussion will be similar to

the analysis in [MNS15].) Let y ∈ {±1}n be chosen

uniformly at random and let x ∈ {0, 1}n×n be the

adjacency matrix of a graph such that for every

pair i < j ∈ [n], we have xi j � 1 with probability

(1 + εyi yj) d
n . Our goal is to find a matrix-valued

low-degree polynomial P(x) that correlates with

y yT . It turns out to be sufficient to construct for

every pair i < j ∈ [n] a low-degree polynomial

that correlates with yi yj .

The linear polynomial pi j(x) �
n
εd

�
xi j − d

n

�
is

an unbiased estimator for yi yj in the sense that

�[pi j(x) | y] � yi yj . By itself, this estimator is not
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particular useful because its variance � pi j(x)2 ≈
n
ε2d is much larger than the quantity yi yj we are

trying to estimate. However, if we let α ⊆ [n]2 be
a length-� path between i and j (in the complete

graph), then we can combine the unbiased estima-

tors along the path α and obtain a polynomial

pα(x) �
∏
ab∈α

pab(x) (II.1)

that is still an unbiased estimator �[pα(x) | y] �∏
ab∈α ya yb � yi yj . This estimator has much higher

variance � pα(x)2 ≈ ( n
ε2d)� . But we can hope to re-

duce this variance by averaging over all such paths.

The number of such paths is roughly n�−1 (because
there are � − 1 intermediate vertices to choose).

Hence, if these estimators {pα(x)}α were pairwise
independent, this averaging would reduce the vari-

ance by a multiplicative factor n�−1, giving us a

final variance of ( n
ε2d)� · n1−� � ( 1

ε2d )� · n. We can

see that above the Kesten–Stigum threshold, i.e.,

ε2d � 1+ δ for δ > 0, this heuristic variance bound

( 1
ε2d )� · n � 1 is good enough for estimating the

quantity yi · yj for paths of length � � log1+δ n.
Two steps remain to turn this heuristic argument

into a polynomial-time algorithm for estimating

the matrix y yT . First, it turns out to be important

to consider only paths that are self-avoiding. As

we will see next, estimators from such paths are

pairwise independent enough to make our heuris-

tic variance bound go through. Second, a naive

evaluation of the final polynomial takes quasi-

polynomial time because it has logarithmic de-

gree (and a quasi-polynomial number of non-zero

coefficients in the monomial basis). We describe

the high-level ideas for avoiding quasi-polynomial

later in this section (Section II-E).

A. Approximately pairwise-independent estimators

Let SAW�(i , j) be the set of self-avoiding

walks α ⊆ [n]2 of length � between i and

j. Consider the unbiased estimator p(x) �
1

|SAW�(i , j)|
∑
α∈SAW�(i , j) pα(x) for yi yj . Above the

Kesten–Stigum threshold and for � � O(log n), we
can use the following lemma to show that p(x)
has variance O(1) and achieves constant correlation

with z � yi yj . We remark that the previous heuris-

tic variance bound corresponds to the contribution

of the terms with α � β in the left-hand side of

Eq. (II.2).

Lemma II.1 (Constant-correlation estimator). Let
(x , z) be distributed over {0, 1}n×�. Let {pα}α∈I be a

collection of real-valued n-variate polynomials with the
following properties:
1) unbiased estimators: �[pα(x) | z] � z for every
α ∈ I

2) approximate pairwise independence: for δ > 0,∑
α,β∈I

� pα(x) · pβ(x) � 1
δ2
· |I|2� z2 (II.2)

Then, the polynomial p �
1
|I|

∑
α∈I pα satisfies � p(x) ·

z � δ · �� p(x)2 · � z2
�1/2
.

Proof: Since the polynomial p is an unbiased

estimator for z, we have � p(x)z � � z2. By

Eq. (II.2), � p(x)2 � (1/δ2) · � z2. Taken together,

we obtain the desired conclusion.

In the full version of this work, we present

the short combinatorial argument that shows that

above the Kesten–Stigum bound the estimators for

self-avoiding walks satisfy the conditions Eq. (II.2)

of the lemma.

We remark that if instead of self-avoiding walks

we were to average over all length-� walks between
i and j, then the polynomial p(x) computes up

to scaling nothing but the (i , j)-entry of the �-th
power of the centered adjacency x − d

n 1 1ᵀ. For

� ≈ log n, the �-th power of this matrix converges

to vvT , where v is the top eigenvector of the

centered adjacency matrix. For constant degree

d � O(log n), it is well-known that this eigenvector

fails to provide a good approximation to the true

labeling. In particular, the corresponding polyno-

mial fails to satisfy the conditions of Lemma II.1

close to the Kesten–Stigum threshold.

B. Low-degree estimators for higher-order moments

Let’s turn to the general mixed-membership

stochastic block model SBM(n , d , ε, k , α0). Let

(G, σ) be graph G and community structure σ �

(σ1 , . . . , σn) drawn from this model. Recall that

σ1 , . . . , σn are k-dimensional probability vectors,

each roughly uniform over α0+1 of the coordinates.
Let x ∈ {0, 1}n×n be the adjacency matrix of G
and let y1 , . . . , yk ∈ �n be centered community

indicator vectors, so that (ys)i � (σi)s − 1
k .

It’s instructive to see that, unlike for disjoint

communities, second moments are not that use-

ful for overlapping communities. As a thought

experiment suppose we are given the matrix∑k
s�1(ys)(ys )T (which we can estimate using the

path polynomials described earlier).

In case of disjoint communities, this matrix al-

lows us to “read off” the community structure
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directly (because two vertices are in the same

community if and only if the entry in the matrix

is 1 − O(1/k)).
For overlapping communities (say the extreme

case α0 	 k for simplicity), we can think of

each σi as a random perturbation of the uniform

distribution so that (σi)s � (1 + ξi ,s) 1k for iid

Gaussians {ξi ,s} with small variance. Then, the

centered community indicator vectors y1 , . . . , yk

are iid centered, spherical Gaussian vectors. In

particular, the covariance matrix
∑k

s�1 ys ys
ᵀ essen-

tially only determines the subspace spanned by the

vectors y1 , . . . , yk but not the vectors themselves.

(This phenomenon is sometimes called the “rota-

tion problem” for matrix factorizations.)

In contrast, classical factor analysis results show

that if we were given the third moment tensor∑k
s�1 y⊗3s , we could efficiently reconstruct the vec-

tors y1 , . . . , yk [Har70], [LRA93]. This fact is the

reason for aiming to estimate third order moments

in order to recover overlapping communities.

In the same way that a single edge xi , j − d
n

gives an unbiased estimator for the (i , j)-entry
of the second moment matrix, a 3-star (xi ,c −
d
n )(xj,c − d

n )(xk ,c − d
n ) gives an unbiased estimator

for the (i , j, k)-entry of the third moment tensor∑k
s�1 y⊗3s . This observation is key for the previous

best algorithm for mixed-membership community

detection [AGHK13]. However, even after averag-

ing over all possible centers c, the variance of this
estimator is far too large for sparse graphs. In or-

der to decrease this variance, previous algorithms

[AGHK13] project the tensor to the top eigenspace

of the centered adjacency matrix of the graph. In

terms of polynomial estimators this projection cor-

responds to averaging over all length-�-armed 3-

stars12 for � � log n. Even for disjoint communities,

this polynomial estimator would fail to achieve the

Kesten–Stigum bound.

In order to improve the quality of this polyno-

mial estimator, informed by the shape of threshold-

achieving estimator for second moments, we aver-

age only over such long-armed 3-stars that are self-

avoiding. We show in the full version of this pa-

per that the resulting estimator achieves constant

correlation with the desired third moment tensor

precisely up to the Kesten–Stigum bound.

12A length-�-armed 3-star between i , j, k ∈ [n] consists of

three length-� walks between i , j, k and a common center

c ∈ [n]

C. Correlation-preserving projection

A recurring theme in our algorithms is that we

can compute an approximation vector P that is cor-

related with some unknown ground-truth vector Y
in the Euclidean sense 〈P,Y〉 � δ · ‖P‖ · ‖Y‖, where
the norm ‖·‖ is induced by the inner product 〈·, ·〉.
(Typically, we obtain P by evaluating a low-degree

polynomial in the observable variables and Y is the

second or third moment of the hidden variables.)

In this situation, we often seek to improve the

quality of the approximation P—not in the sense

of increasing the correlation, but in the sense of

finding a new approximation Q that is “more

similar” to Y while roughly preserving the cor-

relation, so that 〈Q ,Y〉 � δO(1) · ‖Q‖ · ‖Y‖. As
a concrete example, we may know that Y is a

positive semidefinite matrix with all-ones on the

diagonal and our goal is to take an arbitrary matrix

P correlated with Y and compute a new matrix

Q that is still correlated with Y but in addition

is positive semidefinite and has all-ones on the

diagonal. More generally, we may know that Y
is contained in some convex set C and the goal

is “project” P into the set C while preserving the

correlation. We note that the perhaps most natural

choice of Q as the vector closest to P in C does

not work in general. (For example, if Y � (1, 0),
C � {(a , b) | a � 1}, and P � (δ · M,M), then the

closest vector to P in C is (1,M), which has poor

correlation with Y for large M.)

Theorem II.2 (Correlation-preserving projection).

Let C be a convex set and Y ∈ C. Let P be a vector with
〈P,Y〉 � δ · ‖P‖ · ‖Y‖. Then, if we let Q be the vector
that minimizes ‖Q‖ subject to Q ∈ C and 〈P,Q〉 �
δ · ‖P‖ · ‖Y‖, we have

〈Q ,Y〉 � δ/2 · ‖Q‖ · ‖Y‖ . (II.3)

Furthermore, Q satisfies ‖Q‖ � δ‖Y‖.
Proof: By construction, Q is the Euclidean

projection of 0 into the set C′ :� {Q ∈ C |
〈P,Q〉 � δ‖P‖ · ‖Y‖}. It’s a basic geometric fact

(sometimes called Pythagorean inequality) that a

Euclidean projection into a set decreases distances

to points into the set. Therefore, ‖Y−Q‖2 � ‖Y−0‖2
(using that Y ∈ C′). Thus, 〈Y,Q〉 � ‖Q‖2/2. On
the other hand, 〈P,Q〉 � δ‖P‖ · ‖Y‖ means that

‖Q‖ � δ‖Y‖ by Cauchy–Schwarz. We conclude

〈Y,Q〉 � δ/2 · ‖Y‖ · ‖Q‖.
In our applications the convex set C typically

consists of probability distributions or similar ob-

387



jects (for example, quantum analogues like den-

sity matrices or pseudo-distributions—the sum-of-

squares analogue of distributions). Then, the norm

minimization in Theorem II.2 can be viewed as

maximizing the Rényi entropy of the distribution

Q. From this perspective, maximizing the entropy

within the set C′ ensures that the correlation with

Y is not lost.

D. Low-correlation tensor decomposition

Earlier we described how to efficiently compute

a 3-tensor P that has correlation δ > 0 with a

3-tensor
∑k

i�1 y⊗3i , where y1 , . . . , yk are unknown

orthonormal vectors we want to estimate (Sec-

tion II-B). Here, the correlation δ depends on how

far we are from the threshold and may be minus-

cule (say 0.001).

It remains to decompose the tensor P into

a short list of vectors L so as to ensure that

�i∈[k] max ŷ∈L〈 ŷ , y〉 � δO(1). To the best of our

knowledge, previous tensor decomposition algo-

rithms do not achieve this kind of guarantee and

require that the correlation of P with the orthog-

onal tensor
∑k

i�1 y⊗3i is close to 1 (sometimes even

within polynomial factors 1/nO(1)).
In the current work, we achieve this guarantee

building on previous sum-of-squares based tensor

decomposition algorithms [BKS15], [MSS16]. These

algorithms optimize over moments of pseudo-

distributions (a generalization of probability dis-

tributions) and then apply Jennrich’s classical ten-

sor decomposition algorithms to these “pseudo-

moments”. The advantage of this approach is that

it provably works even in situations where Jen-

nrich’s algorithm fails when applied to the original

tensor.

As a thought experiment, suppose we are able to

find pseudo-moments M that are correlated with

the orthogonal tensor
∑k

i�1 y⊗3i . Extending previ-

ous techniques [MSS16], we show that Jennrich’s

algorithm applied to M is able to recover vectors

that have constant correlation with a constant frac-

tion of the vectors y1 , . . . , yk .

A priori it is not clear how to find such pseudo-

moments M because we don’t know the orthogonal

tensor
∑k

i�1 y⊗3i , we only know a 3-tensor P that is

slightly correlated with it. Here, the correlation-

preserving projection discussed in the previous

section comes in: by Theorem II.2 we can efficiently

project P into the set of pseudo-moments in a way

that preserves correlation. In this way, we obtain

pseudo-moments M that are correlated with the

unknown orthogonal tensor
∑k

i�1 y⊗3i .

E. From quasi-polynomial time to polynomial time

In this section, we describe how to eval-

uate certain logarithmic-degree polynomials in

polynomial-time (as opposed to quasi-polynomial

time). The idea is to use color coding [AYZ95].13

For a coloring c : [n] → [�] and a subgraph α ⊆
[n]2 on � vertices, let Fc ,α �

��

�! · 1c(α)�[�] be a scaled
indicator variable of the event that α is colorful.

Theorem II.3 (Evaluating colorful-path polynomi-

als). There exists a nO(1) · exp(�)-time algorithm that
given vertices i , j ∈ [n], a coloring c : [n] → [�]
and an adjacency matrix x ∈ {0, 1}n×n evaluates the
polynomial

pc(x) :� 1
|SAW�(i , j)|

∑
α∈SAW�(i , j)

pα(x) · Fc ,a . (II.4)

(Here, pα ∝ ∏
ab∈α(xab − d

n ) is the polynomial in
Eq. (II.1).)

Proof: We can reduce this problem to comput-

ing the �-th power of the following n · 2�-by-n · 2�
matrix: The rows and columns are indexed by pairs

(a , S) of vertices a ∈ [n] and color sets S ⊆ [�]. The
entry for column (a , S) and row (b , T) is equal to
xab − d

n if T � S ∪ {c(a)} and 0 otherwise. If we

compute the �-th power of this matrix, then the

entry for column (i , ∅) and row ( j, [�]) is the sum

over all colorful �-paths from i to j.
For a fixed coloring c, the polynomial pc does not

provide a good approximation for the polynomial

p(x) :� 1
|SAW�(i , j)|

∑
α∈SAW�(i , j) pα(x). In order to get

a good approximation, we will choose random

colorings and average over them.

If we let c be a random coloring, then by con-

struction �c Fc ,α � 1 for every simple �-path α.
Therefore, �c pc(x) � p(x) for every x ∈ {0, 1}n×n .

We would like to estimate the variance of pc(x).
Here, it turns out to be important to consider

a typical x drawn from stochastic block model

distribution.

�
x∼SBM(n ,d ,ε)

�
c

pc(x)2 (II.5)

�
1

|SAW�(i , j)|2 · (II.6)∑
α,β∈SAW�(i , j)

�
c

Fc ,α · Fc ,β · �
x∼SBM pα(x)pβ(x) (II.7)

13We thank Avi Wigderson for suggesting that color coding

may be helpful in this context.
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� e2� · 1
|SAW�(i , j)|

∑
α,β∈SAW�(i , j)

|�
x

pα(x)pβ(x)| . (II.8)

For the last step, we use that �c F2
c ,α � e2� (because

��/�! � e�).
The right-hand side of Eq. (II.8) corresponds

precisely to our notion of approximate pairwise

independence in Lemma II.1. Therefore, if we are

within the Kesten–Stigum bound, ε2d � 1 + δ,
the right-hand side of Eq. (II.8) is bounded by

e2� · 1/δO(1).
We conclude that with high probability over x,

the variance of pc(x) for random c is bounded by

eO(k). It follows that by averaging over eO(k) ran-
dom colorings we obtain a low-variance estimator

for p(x).
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