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Abstract—We show variants of spectral sparsification routines
can preserve the total spanning tree counts of graphs, which by
Kirchhoff’s matrix-tree theorem, is equivalent to determinant of
a graph Laplacian minor, or equivalently, of any SDDM matrix.
Our analyses utilizes this combinatorial connection to bridge
between statistical leverage scores / effective resistances and the
analysis of random graphs by [Janson, Combinatorics, Prob-
ability and Computing ‘94]. This leads to a routine that in
quadratic time, sparsifies a graph down to about n1.5 edges in
ways that preserve both the determinant and the distribution
of spanning trees (provided the sparsified graph is viewed as a
random object). Extending this algorithm to work with Schur
complements and approximate Cholesky factorizations leads to
algorithms for counting and sampling spanning trees which are
nearly optimal for dense graphs.

We give an algorithm that computes a (1±δ) approximation to
the determinant of any SDDM matrix with constant probability
in about n2δ−2 time. This is the first routine for graphs that out-
performs general-purpose routines for computing determinants
of arbitrary matrices. We also give an algorithm that generates
in about n2δ−2 time a spanning tree of a weighted undirected
graph from a distribution with total variation distance of δ from
the w -uniform distribution .

I. INTRODUCTION

This document is an extended abstract which has neither

full proofs nor our full set of results. Readers are strongly

encouraged to instead read the full version of the paper, which

can be found at https://arxiv.org/abs/1705.00985

The determinant of a matrix is a fundamental quantity in

numerical algorithms due to its connection to the rank of the

matrix and its interpretation as the volume of the ellipsoid

corresponding of the matrix. For graph Laplacians, which are

at the core of spectral graph theory and spectral algorithms,

the matrix-tree theorem gives that the determinant of the minor

obtained by removing one row and the corresponding column

equals to the total weight of all the spanning trees in the graph

[1] . Formally on a weighted graph G with n vertices we have:

det
(
LG
1:n−1,1:n−1

)
= TG,

where LG is the graph Laplacian of G and and TG is the

total weight of all the spanning trees of G. As the all-ones

vector is in the null space of LG, we need to drop its last row

and column and work with LG
1:n−1,1:n−1, which is precisely

the definition of SDDM matrices in numerical analysis [2].

The study of random spanning trees builds directly upon this

connection between tree counts and determinants, and also

plays an important role in graph theory [3], [4], [5].

While there has been much progress in the development

of faster spectral algorithms, the estimation of determinants

encapsulates many shortcomings of existing techniques. Many

of the nearly linear time algorithms rely on sparsification

procedures that remove edges from a graph while provably

preserving the Laplacian matrix as an operator, and in turn,

crucial algorithmic quantities such as cut sizes, Rayleigh

quotients, and eigenvalues. The determinant of a matrix on

the other hand is the product of all of its eigenvalues. As a

result, a worst case guarantee of 1 ± (ε/n) per eigenvalue is

needed to obtain a good overall approximation, and this in

turn leads to additional factors of n in the number of edges

needed in the sparse approximate.

Due to this amplification of error by a factor of n, previous

works on numerically approximating determinants without

dense-matrix multiplications [6], [7], [8] usually focus on the

log-determinant, and (under a nearly-linear running time) give

errors of additive εn in the log determinant estimate, or a

multiplicative error of exp(εn) for the determinant. The lack

of a sparsification procedure also led to the running time of

random spanning tree sampling algorithms to be limited by the

sizes of the dense graphs generated in intermediate steps [9],

[10], [11].

In this paper, we show that a slight variant of spectral

sparsification preserves determinant approximations to a much

higher accuracy than applying the guarantees to individual

edges. Specifically, we show that sampling ω(n1.5) edges

from a distribution given by leverage scores, or weight times

effective resistances, produces a sparser graph whose deter-

minant approximates that of the original graph. Furthermore,
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by treating the sparsifier itself as a random object, we can

show that the spanning tree distribution produced by sam-

pling a random tree from a random sparsifier is close to

the spanning tree distribution in the original graph in total

variation distance. Combining extensions of these algorithms

with sparsification based algorithms for graph Laplacians then

leads to quadratic time algorithms for counting and sampling

random spanning trees, which are nearly optimal for dense

graphs with m = Θ(n2).
This determinant-preserving sparsification phenomenon is

surprising in several aspects: because we can also show—

both experimentally and mathematically—that on the com-

plete graph, about n1.5 edges are necessary to preserve the

determinant, this is one of the first graph sparsification phe-

nomenons that requires the number of edges to be between

>> n. The proof of correctness of this procedure also

hinges upon combinatorial arguments based on the matrix-tree

theorem in ways motivated by a result for Janson for complete

graphs [12], instead of the more common matrix-concentration

bound based proofs [13], [14], [15], [16]. Furthermore, this

algorithm appears far more delicate than spectral sparsifica-

tion: it requires global control on the number of samples,

high quality estimates of resistances (which is the running

time bottleneck in Theorem 18 below), and only holds with

constant probability. Nonetheless, the use of this procedure

into our determinant estimation and spanning tree generation

algorithms still demonstrates that it can serve as a useful

algorithmic tool.

A. Our Results

We will use G = (V,E,w) to denote weighted multigraphs,

and du
def
=

∑
e:e�u we to denote the weighted degree of vertex

u. The weight of a spanning tree in a weighed undirected

multigraph is:

w (T )
def
=

∏
e∈T

we.

We will use TG to denote the total weight of trees, TG def
=∑

T∈T w(T ). Our key sparsification result can be described

by the following theorem:

Theorem 1. Given any graph G and any parameter δ, we
can compute in O(n2δ−2) time a graph H with O(n1.5δ−2)
edges such that with constant probability we have

(1− δ) TG ≤ TH ≤ (1 + δ) TG.

This implies that graphs can be sparsified in a manner that

preserves the determinant, albeit to a density that is not nearly-

linear in n.
We show how to make our sparsification routine to errors

in estimating leverage scores, and how our scheme can be

adapted to implicitly sparsify dense objects that we do not

have explicit access to. In particular, we utilize tools such as

rejection sampling and high quality effective resistance estima-

tion via projections to extend this routine to give determinant-

preserving sparsification algorithms for Schur complements,

which are intermediate states of Gaussian elimination on

graphs, using ideas from the sparsification of random walk

polynomials.

We use these extensions of our routine to obtain a variety

of algorithms built around our graph sparsifiers. Our two main

algorithmic applications are as follows. We achieve the first

algorithm for estimating the determinant of an SDDM matrix

that is faster than general purpose algorithms for the matrix

determinant problem. Since the determinant of an SDDM m

corresponds to the determinant of a graph Laplacian with one

row/column removed.

Theorem 2. Given an SDDM matrix M , there is a routine
DETAPPROX which in Õ

(
n2δ−2

)
time outputs D such that

D = (1± δ) det(M ) with high probability

A crucial thing to note which distinguishes the above

guarantee from most other similar results is that we give a mul-

tiplicative approximation of the det(M). This is much stronger

than giving a multiplicative approximation of log det(M),
which is what other work typically tries to achieve.

The sparsifiers we construct will also approximately pre-

serve the spanning tree distribution, which we leverage to yield

a faster algorithm for sampling random spanning trees. Our

new algorithm improves upon the current fastest algorithm

for general weighted graphs when one wishes to achieve

constant—or slightly sub-constant—total variation distance.

Theorem 3. Given an undirected, weighted graph G =
(V,E,w), there is a routine APPROXTREE which in expected
time Õ

(
n2δ−2

)
outputs a random spanning tree from a

distribution that has total variation distance ≤ δ from the
w -uniform distribution on G.

We prove this theorem in the full version of the paper.

B. Prior Work

1) Graph Sparsification: In the most general sense, a graph

sparsification procedure is a method for taking a potentially

dense graph and returning a sparse graph called a sparsifier
that approximately still has many of the same properties of

the original graph. It was introduced in [17] for preserving

properties related to minimum spanning trees, edge connec-

tivity, and related problems. [18] defined the notion of cut
sparsification in which one produces a graph whose cut sizes

approximate those in the original graph. [19] defined the more

general notion of spectral sparsification which requires that

the two graphs’ Laplacian matrices approximate each other

as quadratic forms.1 In particular, this spectral sparsification

samples Õ(n/ε2) edges from the original graph, yielding

a graph with Õ(n/ε2) whose quadratic forms—and hence,

eigenvalues—approximate each other within a factor of (1±ε).
This implies that their determinants approximate each other

within (1 ± ε)n. This is not useful from the perspective of

preserving the determinant: since one would need to samples

1If two graphs Laplacian matrices approximate each other as quadratic
forms then their cut sizes also approximate each other.
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Ω(n3) edges to get a constant factor approximation, one could

instead exactly compute the determinant or sample spanning

trees using exact algorithms with this runtime.

All of the above results on sparsification are for undi-

rected graphs. Recently, [20] has defined a useful notion of

sparsification for directed graphs along with a nearly linear

time algorithm for constructing sparsifiers under this notion

of sparsification.

2) Determinant Estimation: Exactly calculating the the

determinant of an arbitrary matrix is known to be equivalent to

matrix multiplication [21]. For approximately computing the

log of the determinant, [22] uses the identity log(det(A)) =
tr(log(B)) + tr(log(B−1A)) to do this whenever one can

find a matrix B such that the tr(log(B)) = log(det(B))
and tr(log(B−1A)) = log(det(B−1A) can both be quickly

approximated.2

For the special case of approximating the log determinant

of an SDD matrix, [23] applies this same identity recur-

sively where the B matrices are a sequence of ultrasparsifiers

that are inspired by the recursive preconditioning frame-

work of [2]. They obtain a running time of O(m(n−1ε−2 +
ε−1)polylog(nκ/ε)) for estimating the log determinant to

additive error ε.
[24] estimates the log determinant of arbitrary positive

definite matrices, but has runtime that depends linearly on the

condition number of the matrix.

In contrast, our work is the first we know of that gives a

multiplicative approximation of the determinant itself, rather

than its log. Despite achieving a much stronger approximation

guarantee, our algorithm has essentially the same runtime

as that of [23] when the graph is dense. Note also that if

one wishes to conduct an “apples to apples” comparison by

setting their value of ε small enough in order to match our

approximation guarantee, their algorithm would only achieve

a runtime bound of O(mnδ−2polylog(nκ/ε)), which is never

better than our runtime and can be as bad as a factor of n
worse.3

3) Sampling Spanning Trees: Previous works on sampling

random spanning trees are a combination of two ideas: that

they could be generated using random walks, and that they

could be mapped from a random integer via Kirchoff’s matrix

tree theorem. The former leads to running times of the form

O(nm) [25], [26], while the latter approach[27], [28], [29],

[30] led to routines that run in O(nω) time, where ω ≈ 2.373
is the matrix multiplication exponent [31].

These approaches have been combined in algorithms

by Kelner and Madry [9] and Madry, Straszak and Tar-

nawski [10]. These algorithms are based on simulating the

walk more efficiently on parts of the graphs, and combining

2Specifically, they take B as the diagonal of A and prove sufficient con-
ditions for when the log determinant of B−1A can be quickly approximated
with this choice of B.

3This simplification of their runtime is using the substitution ε = δ/n which
gives roughly (1 ± δ) multiplicative error in estimating the determinant for
their algorithm. This simplification is also assuming δ ≤ 1, which is the only
regime we analyze our algorithm in and thus the only regime in which we
can compare the two.

this with graph decompositions to handle the more expensive

portions of the walks globally. Due to the connection with

random-walk based spanning tree sampling algorithms, these

routines often have inherent dependencies on the edge weights.

Furthermore, on dense graphs their running times are still

worse than the matrix-multiplication time routines.

The previous best running time for generating a

random spanning tree from a weighted graph was

Õ
(
(n4/3m1/2 + n2) log2 (1/δ)

)
achieved by [11]. It works

by combining a recursive procedure similar to those used in

the more recent O(nω) time algorithms [30] with spectral

sparsification ideas. When m = Θ
(
n2

)
, the algorithm in

[11] takes Õ
(
n7/3

)
time to produce a tree from a distribution

that is o(1) away from the w -uniform distribution, which is

slower by nearly a n1/3 factor than the algorithm given in

this paper.

Our algorithm can be viewed as a natural extension of the

sparsification0-based approach from [11]: instead of preserv-

ing the probability of a single edge being chosen in a random

spanning tree, we instead aim to preserve the entire distribution

over spanning trees, with the sparsifier itself also considered

as a random variable. This allow us to significantly reduce

the sizes of intermediate graphs, but at the cost of a higher

total variation distance in the spanning tree distributions. This

characterization of a random spanning tree is not present in

any of the previous works, and we believe it is an interesting

direction to combine our sparsification procedure with the

other algorithms.

II. BACKGROUND

A. Graphs, Matrices, and Random Spanning Trees

The goal of generating a random spanning tree is to pick

tree T with probability proportional to its weight, which we

formalize in the following definition.

Definition 4 (w -uniform distribution on trees). Let PrGT (·)
be a probability distribution on TG such that

PrGT (T = T0) =
Πe∈T0

we

TG
.

We refer to PrGT (·) as the w -uniform distribution on the trees

of G.

When the graph G is unweighted, this corresponds to the

uniform distribution on TG.
We refer to PrGT (·) as the w -uniform distribution on TG.

When the graph G is unweighted, this corresponds to the uni-

form distribution on TG. Furthermore, as we will manipulate

the probability of a particular tree being chosen extensively,

we will denote such probabilities with PrG(T̂ ), aka:

PrG
(
T̂
)

def
= PrGT

(
T = T̂

)
.

The Laplacian of a graph G = (V,E,w) is an n×n matrix

specified by:

Luv
def
=

{
du if u = v

−wuv if u �= v
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We will write LG when we wish to indicate which graph G
that the Laplacian corresponds to and L when the context is

clear. When the graph has multi-edges, we define wuv as the

sum of weights of all the edges e that go between vertices

u, v. Laplacians are natural objects to consider when dealing

with random spanning trees due to the matrix tree theorem,

which states that the determinant of L with any row/column

corresponding to some vertex removed is the total weight of

spanning trees. We denote this removal of a vertex u as L−u.

As the index of vertex removed does not affect the result,

we will usually work with L−n. Furthermore, we will use

det (M ) to denote the determinant of a matrix. As we will

work mostly with graph Laplacians, it is also useful for us

to define the ‘positive determinant’ det+, where we remove

the last row and column. Using this notation, the matrix tree

theorem can be stated as:

TG = det(LG
−n) = det+

(
LG

)
.

We measure the distance between two probability distributions

by total variation distance.

Definition 5. Given two probability distributions p and q on

the same index set Ω, the total variation distance between p
and q is given by

dTV (p, q)
def
=

1

2

∑
x∈Ω

|p(x)− q(x)| .

Let G = (V,E,w) be a graph and e ∈ E an edge. We write

G/e to denote the graph obtained by contracting the edge e,

i.e., identifying the two endpoints of e and deleting any self

loops formed in the resulting graph. We write G\e to denote

the graph obtained by deleting the edge e from G. We extend

these definitions to G/F and G\F for F ⊆ E to refer to the

graph obtained by contracting all the edges in F and deleting

all the edges in F , respectively.

Also, for a subset of vertices V1, we use G[V1] to denote

the graph induced on the vertex of V1. letting G(V1) be the

edges associated with L[V1,V1] in the Schur complement.

B. Effective Resistances and Leverage Scores

The matrix tree theorem also gives connections to another

important algebraic quantity: the effective resistance between

two vertices. This quantity is formally given as Reff (u, v)
def
=

χᵀ
uvL

−1χuv where χuv is the indicator vector with 1 at u, −1
at v, and 0 everywhere else. Via the adjugate matrix, it can be

shown that the effective resistance of an edge is precisely the

ratio of the number of spanning trees in G/e over the number

in G:

Reff (u, v) =
TG/e

TG
.

As we · TG/e is the total weight of all trees in G that contain

edge e, the fraction4 of spanning trees that contain e = uv is

given by weReff (u, v). This quantity is called the statistical

4provided one thinks of an edge with weight w as representing w parallel
edges, or equivalently, counts spanning trees with multiplicity according to
their weight

leverage score of an edge, and we denote it by τ e. It is

fundamental component of many randomized algorithms for

sampling / sparsifying graphs and matrices [13], [32], [14].

The fact that τ e is the fraction of trees containing e also

gives one way of deriving the sum of these quantities:

Fact 6. (Foster’s Theorem) On any graph G we have∑
e

τ e = n− 1.

The resistance Reff (u, v), and in turn the statistical lever-

age scores τ e can be estimated using linear system solves

and random projections [13]. For simplicity, we follow the

abstraction utilized by Madry, Straszak, and Tarnawski [10],

except we also allow the intermediate linear system solves to

utilize a sparsifier instead of the original graph.

Lemma 7. (Theorem 2.1. of [10])
Let G = (V,E) be a graph with m edges. For every

ε > 0 we can find in Õ(min{mε−2,m + nε−4}) time an
embedding of the effective resistance metric into �O(ε−2 logm)

such that with high probability allows one to compute an
estimate R̃eff (u, v) of any effective resistance satisfying

(1− ε) R̃eff (u, v) ≤ Reff (u, v) ≤ (1 + ε) R̃eff (u, v)

∀u, v ∈ V . Specifically, each vertex u in this embedding is
associated with an (explicitly stored) zu ∈ �O(ε−2 logm), and
for any pair of vertices, the estimate R̃eff (u, v) is given by:

R̃eff (u, v) = ‖zu − z v‖22 ,

which takes O(ε−2 logm) time to compute once we have the
embedding.

C. Schur Complements

For our applications, we will utilize our determinant-

preserving sparsification algorithms in recursions based on

Schur complements. A partition of the vertices, which we will

denote using

V = V1 
 V2,

partitions the corresponding graph Laplacian into blocks which

we will denote using indices in the subscripts:

L =

[
L[V1,V1] L[V1,V2]

L[V2,V1] L[V2,V2]

]
.

The Schur complement of G, or L, onto V1 is then:

SC (G, V1) = SC

(
LG, V1

)
def
= LG

[V1,V1] − LG
[V1,V2]

(
LG
[V2,V2]

)−1

LG
[V2,V1],

and we will use SC (G, V1) and SC

(
LG, V1

)
interchange-

ably. We further note that we will always consider V1 to be

the vertex set we Schur complement onto, and V2 to be the

vertex set we eliminate, except for instances in which we need

to consider both SC (G, V1) and SC (G, V2).

929



Schur complements behave nicely with respect to determi-

nants determinants, which suggests the general structure of the

recursion we will use for estimating the determinant.

Fact 8. For any matrix M where M [V2,V2] is invertible,

det (M−n) = det
(
M [V2,V2]

)
· det+(SC (M , V1)).

This relationship also suggests that there should exist a bi-

jection between spanning tree distribution in G and the product

distribution given by sampling spanning trees independently

from SC (L, V1) and the graph Laplacian formed by adding

one row/column to L[V2,V2]. We examine this further in the

full version.

III. SKETCH OF THE RESULTS

The starting point for us is the paper by Janson [12] which

gives (among other things) the limiting distribution of the

number of spanning trees in the Gn,m model of random

graphs. Our concentration result for the number of spanning

trees in the sparsified graph is inspired by this paper, and

our algorithmic use of this sparsification routine is motivated

by sparsification based algorithms for matrices related to

graphs [33], [34], [35]. The key result we will prove is a

concentration bound on the number of spanning trees when

the graph is sparsified by sampling edges with probability

approximately proportional to effective resistance.

A. Concentration Bound

Let G be a weighted graph with n vertices and m edges,

and H be a random subgraph obtained by choosing a subset of

edges of size s uniformly randomly. The probability of a subset

of edges, which could either be a single tree, or the union of

several trees, being kept in H can be bounded precisely. Since

we will eventually choose s > n1.5, we will treat the quantity

n3/s2 as negligible. The probability of H containing a fixed

tree was shown by Janson to be:

Lemma 9. If m ≥ s2

n , then for any tree T , the probability of
it being included in H is

PrH [T ∈ H] =
(s)n−1

(m)n−1
= pn−1 · exp

(
−n2

2s
−O

(
n3

s2

))
.

where (a)b denotes the product a · (a− 1) · · · (a− (b− 1)).

By linearity of expectation, the expected total weight of

spanning trees in H is:

EH [TH ] = TG · pn−1 · exp
(
−n2

2s
−O

(
n3

s2

))
. (1)

As in [12], the second moment, EH

[
T 2
H

]
=

EH

[∑
(T1,T2)

w(T1)w(T2)Pr (T1, T2 ∈ H)
]
, can be

written as a sum over all pairs of trees (T1, T2) . Due to

symmetry, the probability of a particular pair of trees T1, T2

both being subgraphs of H depends only on the size of their

intersection. The following bound is shown in the appendix

of the full version.

Lemma 10. Let G be a graph with n vertices and m edges,
and H be a uniformly random subset of s > 10n edges chosen
from G, where m ≥ s2

n . Then for any two spanning trees T1

and T2 of G with |T1 ∩ T2| = k, we have:

PrH [T1, T2 ∈ H] ≤ p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

,

where p = s/m.

The crux of the bound on the second moment in Janson’s

proof is getting a handle on the number of tree pairs (T1, T2)
with |T1 ∩ T2| = k in the complete graph where all edges are

symmetric. An alternate way to obtain a bound on the number

of spanning trees can also be obtained using leverage scores,

which describe the fraction of spanning trees that utilize a

single edge. A well known fact about random spanning tree

distributions [36] is that the edges are negatively correlated:

Fact 11 (Negative Correlation). Suppose F is subset of edges
in a graph G, then

PrGT (F ⊆ T ) ≤ Πe∈FPrGT (e ∈ T ) .

An easy consequence of Fact 11 is

Lemma 12. For any subset of edges F we have that the total
weight of all spanning trees containing F is given by∑

T is a spanning tree of G
F⊆T

w (T ) ≤ TG
∏
e∈F

τ e.

The combinatorial view of all edges being interchangable in

the complete graph can therefore be replaced with an algebraic

view in terms of the leverage scores. Specifically, invoking

Lemma 12 in the case where all edges have leverage score

at most n
m gives the following lemma which is proven in

appendix of the full version.

Lemma 13. In a graph G where all edges have leverage
scores at most n

m , we have∑
T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤ T 2
G ·

1

k!

(
n2

m

)k

With Lemma 13, we can finally prove the following bound

on the second moment which gives our concentration result.

Lemma 14. Let G be a graph on n vertices and m edges
such that all edges have statistical leverage scores ≤ n

m . For
a random subset of s > 10n edges, H , where m ≥ s2

n we
have:

EH

[
T 2
H

]
≤ T 2

Gp
2n−2 exp

(
−n2

s
+O

(
n3

s2

))
= EH [TH ]

2
exp

(
O

(
n3

s2

))
.

Proof. By definition of the second moment, we have:

EH

[
T 2
H

]
=

∑
T1,T2

w (T1) ·w (T2) · PrH [T1 ∪ T2 ⊆ H] .
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Re-writing the above sum in terms of the size of the intersec-

tion k, and invoking Lemma 10 gives:

EH

[
T 2
H

]
≤

n−1∑
k=0

∑
T1,T2

|T1∩T2|=k

w (T1) ·w (T2) · p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

.

Note that the trailing term only depends on k and can be pulled

outside the summation of T1, T2, so we then use Lemma 13

to bound this by:

EH

[
T 2
H

]
≤

n−1∑
k=0

T 2
G ·

1

k!

(
n2

m

)k

· p2n−2

· exp
(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

.

Pulling out the terms that are independent of k, and substitut-

ing in p = s/m gives:

EH

[
T 2
H

]
≤ T 2

G ·p2n−2 ·exp
(
−2n2

s

)
·
n−1∑
k=0

·
(

n2

s

(
1 + 2n

s

))k

k!
.

From the Taylor expansion of exp(·), we have:

EH

[
T 2
H

]
≤ T 2

G · p2n−2 · exp
(
−2n2

s
+

n2

s

(
1 +

2n

s

))
= T 2

G · p2n−2 · exp
(
−n2

s

)
· exp

(
O

(
n3

s2

))
.

This bound implies that once we set s2 > n3, the variance

becomes less than the square of the expectation. It forms the

basis of our key concentration results, which we show in

Section IV, and also leads to Theorem 1. In particular, we

demonstrate that this sampling scheme extends to importance

sampling, where edges are picked with probabilities propor-

tional to (approximations of) of their leverage scores.

A somewhat surprising aspect of this concentration result is

that there is a difference between models Gn,m and the Erdos-

Renyi model Gn,p when the quantity of interest is the number

of spanning trees. In particular, the number of spanning trees

of a graph G ∼ Gn,m is approximately normally distributed

when m = ω
(
n1.5

)
, whereas it has approximate log-normal

distribution when G ∼ Gn,p and p < 1.
An immediate consequence of this is that we can now

approximate det+(L
G) by computing det+(L

H). It also be-

comes natural to consider speedups of random spanning tree

sampling algorithms that generate a spanning tree from a

sparsifier. Note however that we cannot hope to preserve the

distribution over all spanning trees via a single sparsifier, as

some of the edges are no longer present.

To account for this change in support, we instead consider

the randomness used in generating the sparsifier as also part

of the randomness needed to produce spanning trees. In the

full version, we show that just bounds on the variance of TH
suffices for a bound on the TV distances of the trees.

Lemma 15. Suppose H is a distribution over rescaled sub-
graphs of G such that for some parameter some 0 < δ < 1
we have

EH∼H
[
T 2
H

]
EH∼H [TH ]

2 ≤ 1 + δ,

and for any tree T̂ and any graph from the distribution that
contain it, H we have:

wH
(
T̂
)
= wG

(
T̂
)
· PrH′∼H

[
T̂ ⊆ H ′

]−1

· EH′∼H [TH′ ]
TG

,

then the distribution given by PrG(T ), p, and the distribution
induced by EH∼H

[
PrH(T )

]
, p̃ satisfies

dTV (p, p̃) ≤
√
δ.

Note that uniform sampling meets the property about

wH(T ) because of linearity of expectation. One can also

check that the importance sampling based routine that we

discuss in the full version of this paper also meets this

criteria. Combining this with the running time bounds from

Theorem 1, as well as the Õ(m1/2n4/3) time random spanning

tree sampling algorithm from [11] then leads to a faster

algorithm.

Corollary 16. For any graph G on n vertices and any δ > 0,
there is an algorithm that generates a tree from a distribution
whose total variation is at most δ from the random tree
distribution of G in time Õ(n

25
12=2.0833...δ−2/3 + n2δ−2).

B. Integration Into Recursive Algorithms

As a one-step invocation of our concentration bound leads

to speedups over previous routines, we investigate tighter

integrations of the sparsification routine into algorithms. In

particular, the sparsified Schur complement algorithms [35]

provide a natural place to substitute spectral sparsifiers with

determinant-preserving ones. In particular, the identity of

det+(L) = det (L[V2,V2]) · det+(SC (L, V1)).

where det+ is the determinant of the matrix minor, sug-

gests that we can approximate det (L−n) by approximating

det (L[V2,V2]) and det+(SC (L, V1)) instead. Both of these

subproblems are smaller by a constant factor, and we also

have |V1| + |V2| = n. So this leads to a recursive scheme

where the total number of vertices involved at all layers is

O(n log n). This type of recursion underlies both our determi-

nant estimation and spanning tree sampling algorithms.

The main difficulty remaining for the determinant estimation

algorithm is then sparsifying SC (G, V1) while preserving its

determinant. For this, we note that some V1 are significantly

easier than others: in particular, when V2 = V \ V1 is an

independent set, the Schur complement of each of the vertices

in V2 can be computed independently. Furthermore, it is

well understood how to sample these complements, which
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are weighted cliques, by a distribution that exceeds their true

leverage scores.

Lemma 17. There is a procedure that takes a graph G with
n vertices, a parameter δ, and produces in Õ(n2δ−1) time a
subset of vertices V1 with |V1| = Θ(n), along with a graph
HV1 such that

TSC(G,V1) exp (−δ) ≤ EHV1 [THV1 ] ≤ TSC(G,V1) exp (δ) ,

and
EHV1

[
T 2
HV1

]
EHV1 [THV1 ]

2 ≤ exp (δ) .

Lemma 7 holds w.h.p., and we condition on this event.

In our algorithmic applications we will be able to add the

polynomially small failure probability of Lemma 7 to the error

bounds.

The bound on variance implies that the number of span-

ning trees is concentrated close to its expectation, TSC(G,V1),

and that a random spanning tree drawn from the generated

graph HV1 is —over the randomness of the sparsification

procedure—close in total variation distance to a random span-

ning tree of the true Schur complement.

As a result, we can design schemes that:

1) Finds an O(1)-DD subset V2, and set V1 ← V \ V2.

2) Produce a determinant-preserving sparsifier HV1 for

SC (G, V1).
3) Recurse on both L[V2,V2] and HV1 .

However, in this case, the accumulation of error is too rapid

for yielding a good approximation of determinants. Instead, it

becomes necesary to track the accumulation of variance during

all recursive calls. Formally, the cost of sparsifying so that the

variance is at most δ is about n2δ−1, where δ is the size of

the problem. This means that for a problem on Gi of size βin
for 0 ≤ βi ≤ 1, we can afford an error of βiδ when working

with it, since:

1) The sum of βi on any layer is at most 2, 5 so the sum

of variance per layer is O(δ).
2) The cost of each sparsification step is now βin

2δ−1,

which sums to about n2δ−1 per layer.

Our random spanning tree sampling algorithm in the full

version is similarly based on this careful accounting of vari-

ance.

IV. DETERMINANT PRESERVING SPARSIFICATION

In this section we give some of the key steps in proving

Theorem 1 (proven in the full version), our primary re-

sult regarding determinant-preserving sparsification. The main

step is proving the following general determinant-preserving

sparsification routine that also forms the core of subsequent

algorithms:

Theorem 18. Given an undirected, weighted graph G =
(V,E,w), an error threshold ε > 0, parameter ρ along with
routines:

5each recursive call may introduce one new vertex

1) SAMPLEEDGEG() that samples an edge e from a prob-
ability distribution p (

∑
e pe = 1), as well as returning

the corresponding value of pe. Here pe must satisfy:

τ e

n− 1
≤ ρ · pe

where τ e is the true leverage score of e in G.
2) APPROXLEVERAGEG(u, v, ε) that returns the leverage

score of an edge u, v in G to an error of ε. Specifically,
given an edge e, it returns a value τ̃ e such that:

(1− ε) τ e ≤ τ̃ e ≤ (1 + ε) τ e.

There is a routine DETSPARSIFY(G, s, ε) that computes a
graph H with s edges such that its tree count, TH , satisfies:

EH [TH ] = TG
(
1±O

(
n3

s2

))
,

and:
EH

[
T 2
H

]
EH [TH ]

2 ≤ exp

(
ε2n2

s
+O

(
n3

s2

))
Furthermore, the expected running time is bounded by:

1) O(s · ρ) calls to SAMPLEEDGEG(e) and
APPROXLEVERAGE(e) with constant error,

2) O(s) calls to APPROXLEVERAGE(e) with ε error.

We establish all guarantees for this algorithm in the full

version, and only show here that the concentration bounds as

sketched in Section III holds for approximate leverage scores

in Section IV-A.

A. Concentration Bound with Approximately Uniform Lever-
age Scores

Similar to the simplified proof as outlined in Section III,

our proofs relied on uniformly sampling s edges from a multi-

graph with m ≥ s2

n edges, such that all edges have leverage

score within multiplicative 1 ± ε of n−1
s , aka. approximately

uniform. The bound that we prove is an analog of Lemma 14

Lemma 19. Given a weighted multi-graph G such that m ≥
s2

n , s ≥ n, and all edges e ∈ E have (1−ε)(n−1)
m ≤ τ e ≤

(1+ε)(n−1)
m , with 0 ≤ ε < 1, then

EH

[
T 2
H

]
EH [TH ]

2 ≤ exp

(
n2ε2

s
+O

(
n3

s2

))
Similar to the proof of Lemma 14 in Section III, we can

utilize the bounds on the probability of k edges being chosen

using Lemma 10. The only assumption that changed was the

bounds on τ e, which does not affect EH [TH ]
2
. The only term

that changes is our upper bound the total weight of trees that

contain some subset of k edges that was the produce of k
leverage scores. At a glance, this product can change by a

factor of up to (1 + ε)k, which when substituted naively into

the proof of Lemma 10 directly would yield an additional term

of

exp

(
n2ε

s

)
,
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and in turn necessitating ε < n−1/2 for a sample count of

s ≈ n1.5.

However, note that this is the worst case distortion over a

subset F . The upper bound that we use, Lemma 13 sums over

these bounds over all subsets, and over all edges we still have∑
e∈G

τ e = n− 1.

Incorporating this allows us to show a tighter bound that

depends on ε2.

Similar to the proof of Lemma 13, we can regroup the

summation over all
(
m
k

)
subsets of E(G), and bound the frac-

tion of trees containing each subset F via
∑

T :F⊆T w(T ) ≤
TG

∏
e∈F τ e via Lemma 12.∑

T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤
∑
F⊆E
|F |=k

T 2
G

∏
e∈F

τ 2
e

The proof heavily uses the identity
∑

e∈E τ e = n − 1.

We bound this in first two steps: first treat it as a symmetric

product over τ 2
e, and bound the total as a function of∑

e

τ 2
e,

then we bound this sum using the fact that
∑

e τ e = n− 1.

The first step utilizes the concavity of the product function,

and bound the total by the sum:

Lemma 20. For any set of non-negative values x 1 . . .xm with∑
i x i ≤ z, we have∑

F⊆[1...m]
|F |=k

∏
i∈F

x i ≤
(
m

k

)( z

m

)k

.

Proof. We claim that this sum is maximized when x i =
(

z
m

)
for all e.

Consider fixing all variables other than some x i and x j ,

which we assume to be x 1 ≤ x 2 without loss of generality as

the function is symmetric on all variables:

∑
F⊆[1...m]
|F |=k

∏
i∈F

x i = x 1x 2

⎛⎜⎜⎝ ∑
F⊆[3...m]
|F |=k−2

∏
i∈F

x i

⎞⎟⎟⎠

+ (x 1 + x 2) ·

⎛⎜⎜⎝ ∑
F⊆[3...m]
|F |=k−1

∏
i∈F

x i

⎞⎟⎟⎠+
∑

F⊆[3...m]
|F |=k

∏
i∈F

x i.

Then if x 1 < x 2, locally changing their values to x 1 + ε
and x 2 − ε keeps the second term the same. While the first

term becomes

(x 1 + ε) (x 2 − ε) = x 1x 2 + ε (x 2 − x 1)− ε2,

which is greater than x 1x 2 when 0 < ε < (x 2 − x 1).

This shows that the overall summation is maximized when

all x i are equal, aka

x i =
z

m
,

which upon substitution gives the result.

The second step is in fact the k = 1 case of Lemma 13.

Lemma 21. For any set of values ye such that∑
e

y = n− 1,

and
(1− ε)n

m
≤ ye ≤

(1 + ε)n

m
,

we have ∑
e

y2
e ≤

(1 + ε2)(n− 1)2

m
.

Proof. Note that for any a ≤ b, and any ε, we have

(a− ε)
2
+ (b+ ε)

2
= a2 + b2 + 2ε2 + 2ε (b− a) ,

and this transformation must increase the sum for ε > 0. This

means the sum is maximized when half of the leverage scores

are
(1−ε)(n−1)

m and the other half are
(1+ε)(n−1)

m . This then

gives

∑
e∈E

y2
e ≤

m

2

(
(1 + ε)(n− 1)

m

)2

+
m

2

(
(1− ε)(n− 1)

m

)2

=
(1 + ε2)(n− 1)2

m
.

Proof. (of Lemma 19)

We first derive an analog of Lemma 13 for bounding the

total weights of pairs of trees containing subsets of size k,

where we again start with the bounds

∑
T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤
∑
F⊆E
|F |=k

∑
T1,T2

F⊆T1∩T2

w (T1) ·w (T2)

=
∑
F⊆E
|F |=k

⎛⎝ ∑
T :F⊆T

w (T )

⎞⎠2

Applying Lemma 12 to the inner term of the summation then

gives ∑
T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤
∑
F⊆E
|F |=k

T 2
G ·

∏
e∈F

τ 2
e

The bounds on τ e and
∑

e τ e = n−1 gives, via Lemma 21∑
e

τ 2
e ≤

(1 + ε2)(n− 1)2

m
.
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Substituting this into Lemma 20 with x i = τ 2
e then gives

∑
F⊆E
|F |=k

∏
e∈F

τ 2
e ≤

(
m

k

)(
(1 + ε2)n2

m2

)k

≤ mk

k!

(
(1 + ε2)n2

m2

)k

=
1

k!

(
(1 + ε2)n2

m

)k

.

which implies our analog of Lemma 13

∑
T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤ T 2
G ·

1

k!

(
(1 + ε2)n2

m

)k

.

We can then duplicate the proof of Lemma 14. Similar to

that proof, we can regroup the summation by k = |T1 ∩ T2|
and invoking Lemma 10 to get:

EH

[
T 2
H

]
≤

n−1∑
k=0

∑
T1,T2

|T1∩T2|=k

w (T1) ·w (T2) · p2n−2

· exp
(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

.

where p = s/m. When incorporated with our analog of

Lemma 13 gives:

EH

[
T 2
H

]
≤

n−1∑
k=0

p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

· T 2
G

1

k!

(
(1 + ε2)n2

m

)k

= T 2
Gp

2n−2 · exp
(
−2n2

s

)
·
n−1∑
k=0

(
(1+ε2)n2

s

(
1 + 2n

s

))k

k!
.

Substituting in the Taylor expansion of
∑

k
zk

k! ≤ exp(z) then

leaves us with:

EH

[
T 2
H

]
≤ T 2

G · p2n−2 · exp
(
−n2

s
+

n2ε2

s
+O

(
n3

s2

))
and finishes the proof.

B. Implicit Sparsification of the Schur Complement

To obtain speedups in our applications, we also need ac-

cess to a fast determinant-preserving sparsification routine for

Schur complement. This will first require finding (1 + α)-
diagonally-dominant subsets.

Definition 22. In a weighted graph G = (V,E,w), a subset

of vertices V2 ⊆ V is (1+α)-diagonally-dominant, or (1+α)-
DD if for every u ∈ V2 with weighted degree du we have:∑

v∼u,v/∈V2

wuv ≥
1

1 + α
du =

1

1 + α

∑
v∼u

wuv.

It was shown in [35] that large sets of such vertices can be

found by trimming a uniformly random sample.

Lemma 23. (Lemma 3.5. of [35] instantiated on graphs)
There is a routine ALMOSTINDEPENDENT(G,α) that for a
graph G with n vertices, and a parameter α ≥ 0, returns in
O(m) expected time a subset V2 with |V2| ≥ n/(8(1 + α))
such that LG,[V2,V2] is (1 + α)-DD.

Given such a subset V2, we then proceed to sample edges

in SC (G, V1) via the following simple random walk sampling

algorithm:

1) Pick a random edge in G.

2) Extend both of its endpoints in random walks until they

first reach somewhere in V1.

Incorporating this scheme into the determinant preserving

sparsification schemes then leads these guarantees (proven in

the full version):

Theorem 24. Conditioned on Lemma 7 holding, there is a
procedure SCHURSPARSE that takes a graph G, and an 1.1-
DD subset of vertices V2, returns a graph HV1 in Õ(n2δ−1)
expected time such that the distribution over HV1 satisfies:

TSC(G,V1) exp (−δ) ≤ EHV1 [THV1 ] ≤ TSC(G,V1) exp (δ) ,

and
EHV1

[
T 2
HV1

]
EHV1 [THV1 ]

2 ≤ exp (δ) .

Furthermore, the number of edges of HV1 can be set to any-
where between O(n1.5δ−1) and O(n2δ−1) without affecting
the final bound.

V. APPROXIMATE DETERMINANT OF SDDM MATRICES

In this section, we provide an algorithm for computing an

approximate determinant of SDDM matrices, which are minors

of graph Laplacians formed by removing one row/column.

Theorem 1 allows us to sparsify a dense graph while still

approximately preserving the determinant of the graph minor.

If there were some existing algorithm for computing the

determinant that had good dependence on sparsity, we could

achieve an improved runtime for determinant computation by

simply invoking such an algorithm on a minor of the sparsified

graph.6 Unfortunately, current determinant computation algo-

rithms (that achieve high-accuracy) are only dependent on n,

so simply reducing the edge count does not directly improve

the runtime for determinant computation. Instead the algorithm

we give will utilize Fact 8

det+(L) = det
(
L[V2,V2]

)
· det+(SC (L, V1)).

(where we recall that det+ is the determinant of the matrix

minor) to recursively split the matrix. Specifically, we partition

the vertex set based upon the routine ALMOSTINDEPENDENT

from Lemma 23, then compute Schur complements according

to SCHURSPARSE in Theorem 24. Our algorithm will take

as input a Laplacian matrix. However, this recursion naturally

produces two matrices, the second of which is a Laplacian and

6To get with high probability one could use standard boosting tricks
involving taking the median of several estimates of the determinant obtained
in this fashion.
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the first of which is a submatrix of a Laplacian. Therefore,

we need to convert L[V2,V2] into a Laplacian. We do this by

adding one vertex with appropriate edge weights such that

each row and column sums to 0. Pseudocode of this routine

is in Algorithm 1, and we call it with the parameters LV2 ←
ADDROWCOLUMN(L[V2,V2]).

Algorithm 1: ADDROWCOLUMN(M ) : complete M into

a graph Laplacian by adding one more row/column

Input: SDDM Matrix M
Output: Laplacian matrix L with one extra row / column

than M
1 Let n be the dimension of M ;

2 for i = 1 to n do
3 Sum non-zero entries of row i, call si;

4 Set L(n+ 1, i),L(i, n+ 1)← −si;

5 Let L(n+ 1, n+ 1)←∑n
i=1 si;

6 Output L;

The procedure ADDROWCOLUMN outputs a Laplacian

LV2 such that L[V2,V2] can be obtained if one removes this

added row/column. This immediately gives det+(L
V2) =

det(L[V2,V2]) by definition, and we can now give our determi-

nant computation algorithm of the minor of a graph Laplacian.

Algorithm 2: DETAPPROX(L, δ, n) : Compute det+(L)
with error parameter δ

Input: Laplacian matrix L, top level error threshold δ,

and top level graph size n
Output: Approximate det+(L)

1 if this is the top-level invocation of this function in the
recursion tree then

2 δ′ ← Θ(δ2/ log3 n)
3 else
4 δ′ ← δ

5 if L is 2× 2 then
6 return the weight on the (unique) edge in the graph

7 V2 ← ALMOSTINDEPENDENT(L, 1
10 ) {Via Lemma 23}

8 V1 ← V \ V2 ;

9 LV1 ← SCHURSPARSE(L, V1, δ
′); {|V1| /n is the value

of β in Lemma 25.}
10 LV2 ← ADDROWCOLUMN(L[V2,V2]);

11 Output DETAPPROX(LV1 , δ′ |V1| /n, n) ·
DETAPPROX(LV2 , δ′ |V2| /n, n);

Our analysis of this recursive routine consists of bounding

the distortions incurred at each level of the recursion tree. This

in turn uses the fact that the number of vertices across all

calls within a level and the total “amount” of δ across all calls

within a level both remain unchanged from one level to the

next. This can be summarized by the following Lemma which

bounds the error accumulated within one level of recursion in

our algorithm.

Lemma 25. Suppose we are given some small δ ≥ 0 and
non-negative β1, ..., βk such that

∑k
i=1 βi = O(1), along

with Laplacian matrices L(1), . . . ,L(k) and each having a
corresponding vertex partition V1(i), V2(i), where

L(i) =

[
L (i)[V1(i),V1(i)]

L (i)[V1(i),V2(i)]

L (i)[V2(i),V1(i)]
L (i)[V2(i),V2(i)]

]
.

Let LV1(i) denote the result of running SCHURSPARSE to
remove the V2(i) block in each of these matrices:7

LV1(i) def
= SCHURSPARSE (L(i), V1(i), βiδ) .

Then conditioning upon a with high probability event8 in each
of these calls to SCHURSPARSE, for any p we have with
probability at least 1− p:

k∏
i=1

det+ (L (i)) =

(
1±O

(√
δ/p

)) k∏
i=1

det
(
L[V2(i),V2(i)](i)

)
det+(L

V1(i)).

Here the βi corresponds to the |V1| /n and |V2| /n val-

ues that δ is multiplied against in each call parameter to

SCHURSPARSE.

Applying Lemma 25 to all the layers of the recursion tree

gives the overall guarantees.

Proof of Theorem 2.
Running Time: Let the number of vertices and edges in the

current graph corresponding to L be n and m respectively.

Calling ALMOSTINDEPENDENT takes expected time O(m)
and guarantees

n

16
≤ |V2| ≤

n

8
,

which means the total recursion terminates in O(log n) steps.

For the running time, note that as there are at most O(n)
recursive calls, the total number of vertices per level of the

recursion is O(n). The running time on each level are also

dominated by the calls to SCHURSPARSE, which comes out

to

Õ

(
|V1 (i)|2

n

δ′ |V1 (i)|

)
= Õ

(
|V1 (i)|nδ−2

)
,

and once again sums to Õ(n2δ−2). We note that this running

time can also be obtained from more standard analyses of

recursive algorithms, specifically applying guess-and-check to

a running time recurrence of the form of:

T (n, δ) = T (θn, θδ) + T ((1− θ)n+ 1, (1− θ) δ)

+ Õ(n2δ−1).

7This Lemma only applies when the matrices are fixed with respect to
the randomness used in the invocations of SCHURSPARSE mentioned in
the Lemma. In other words, it only applies when the result of running
SCHURSPARSE on each of these L(i) matrices is independent of the result
of running it on the other matrices. This is why the Lemma only immediately
bounds error within a level of the recursion—where this independence holds—
rather than for the entire algorithm.

8namely, the event that all the leverage score estimation calls to Lemma 7
from SCHURSPARSE succeed
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Correctness. As shown in the running time analysis, our

recursion tree has depth at most O(log n), and there are at

most O(n) total vertices at any given level. We associate each

level of the recursion in our algorithm with the list of matrices

which are given as input to the calls making up that level of

recursion. For any level in our recursion, consider the product

of det+ applied to each of these matrices. We refer to this

quantity for level j as qj . Notice that q0 is the determinant we

wish to compute and q# levels−1 is what our algorithm actually

outputs. As such, it suffices to prove that for any j, qj =
(1± δ

# levels
)qj−1 with probability of failure at most 1

10·# levels
.

However, by the fact that we set δ′ = Θ(δ2/ log3 n) in the

top level of recursion with sufficiently small constants, this

immediately follows from Lemma 25.

A minor technical issue is that Lemma 25 only gives

guarantees conditioned on a WHP event. However, we only

need to invoke this Lemma a logarithmic number of times, so

we can absorb this polynomially small failure probability into

the our total failure probability without issue.

Standard boosting techniques—such as running O(log n) in-

dependent instances and taking the medians of the estimates—

give our desired with high probability statement.

It remains to bound the variances per level of the recursion.

Proof. (Of Lemma 25) As a result of Fact 8

k∏
i=1

det+ (L(i)) =

k∏
i=1

det
(
L (i)[V2(i),V2(i)]

)
det+ (SC (L (i) , V1 (i))) .

Consequently, it suffices to show that with probability at least

1− p

k∏
i=1

det+ (SC (L (i) , V1 (i))) =

(
1±O

(√
δ/p

)) k∏
i=1

det+

(
LV1(i)

)
.

Recall that LV1(i) denotes the random variable that is the

approximate Schur complement generated through the call to

SCHURSPARSE(L(i), V1(i), βiδ).
Using the fact that our calls to SCHURSPARSE are indepen-

dent along with the assumption of
∑k

i=1 βi = O(1), we can

apply the guarantees of Theorem 24 to obtain

ELV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(1)

)]

=

k∏
i=1

ELV1(i)

[
det+L

V1(i)
]

= (1±O (δ))

k∏
i=1

det+ (SC (L(i), V1(i))) ,

and

ELV1(1)...LV1(k)

[∏k
i=1 det+

(
LV1(i)

)2
]

ELV1(1)...LV1(k)

[∏k
i=1 det+

(
LV1(i)

)2
]

=

k∏
i=1

ELV1(i)

[
det+

(
LV1(i)

)2
]

ELV1(i)

[
det+

(
LV1(i)

)]2
≤

k∏
i=1

exp (O (βiδ)) ≤ exp (O (δ)).

By assumption δ is small, so we can approximate

exp (O(δ)) with 1 +O(δ), which with bound above gives

VarLV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(i)

)]

≤ O (δ)ELV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(i)

)]2

,

Then applying the approximation on

E

[∏k
i=1 det+ (SCHURSPARSE(L(i), V1(i), βiδ))

]
gives

VarLV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(i)

)]

≤ O (δ)

(
k∏

i=1

det+ (SC (L(i), V1(i)))

)2

.

At which point we can apply Chebyshev’s inequality to obtain

our desired result.
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