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Abstract—We show that every H-minor-free graph has a
light (1 + ε)-spanner, resolving an open problem of Grigni
and Sissokho [13] and proving a conjecture of Grigni and
Hung [12]. Our lightness bound is

O

(
σH

ε3
log

1

ε

)

where σH = |V (H)|√log |V (H)| is the sparsity coefficient of
H-minor-free graphs. That is, it has a practical dependency
on the size of the minor H . Our result also implies that
the polynomial time approximation scheme (PTAS) for the
Travelling Salesperson Problem (TSP) in H-minor-free graphs
by Demaine, Hajiaghayi and Kawarabayashi [7] is an efficient
PTAS whose running time is 2

OH

(
1
ε4

log 1
ε

)
nO(1) where OH

ignores dependencies on the size of H . Our techniques signifi-
cantly deviate from existing lines of research on spanners for
H-minor-free graphs, but build upon the work of Chechik and
Wulff-Nilsen for spanners of general graphs [6].

Keywords-light spanners, Poynomial Time Approximation
Scheme (PTAS), minor-free graphs, Traveling Salesperson
Problem (TSP)

I. INTRODUCTION

Peleg and Schäffer [18] introduced t-spanners of graphs

as a way to sparsify graphs while approximately preserving

pairwise distances between vertices. A t-spanner of a graph

G is a subgraph S of G such that dS(x, y) ≤ t · dG(x, y)
for all vertices x, y 1. Two parameters of t-spanners that

are of interest are their sparsity and lightness. The sparsity
of S is the ratio of the number of edges to the number of

vertices of S. The lightness of S is the ratio of the total

weight of the edges of S to the weight of an MST of G;

generally, we assume that MST(G) ⊆ S (and so MST(S) =
MST(G)). Here, we are concerned with the lightness of

(1 + ε)-spanners, where ε < 1, and so we refer to (1 + ε)-
spanners simply as spanners.

We say that a spanner is light if the lightness does not

depend on the number of vertices in the graph. Grigni

and Sissokho [13] showed that H-minor-free graphs have

spanners of lightness

O
(
1
εσH log n

)
. (1)

1We use standard graph terminology, which can be found in Appendix A.

where σH = |V (H)|
√
log |V (H)| is the sparsity coefficient

of H-minor-free graphs; namely that an H-minor-free graph

of n vertices has O(|V (H)|
√

log |V (H)|n) edges2 [17].

Later Grigni and Hung [12], in showing that graphs of

bounded pathwidth have light spanners, conjectured that H-

minor-free graphs also have light spanners; that is, that the

dependence on n can be removed from the lightness above.

In this paper, we resolve this conjecture positively, proving:

Theorem 1. Every H-minor-free graph G has a (1 + ε)-
spanner of lightness

O

(
σH

ε3
log

1

ε

)
. (2)

Our algorithm consists of a reduction phase and a greedy

phase. In the reduction phase, we adopt a technique of

Chechik and Wulff-Nilsen [6]: edges of the graph are subdi-

vided and their weights are rounded and scaled to guarantee

that every MST-edge has unit weight and we include all

very low weight edges in the spanner (Appendix C). In

the greedy phase, we use the standard greedy algorithm for

constructing a spanner to select edges from edges of the

graph not included in the reduction phase (Appendix B).

As a result of the reduction phase, our spanner is not

the ubiquitous greedy spanner. However, since Filtser and

Solomon have shown that greedy spanners are (nearly)

optimal in their lightness [10], our result implies that the

greedy spanner for H-minor-free graphs is also light.

A. Implication: Approximating TSP

Light spanners have been used to give PTASes, and in

some cases efficient PTASes, for the traveling salesperson

problem (TSP) on various classes of graphs. A PTAS,

or polynomial-time approximation scheme, is an algorithm

which, for a fixed error parameter ε, finds a solution whose

value is within 1±ε of optimal in polynomial time. A PTAS

is efficient if its running time is f(ε)nO(1) where f(ε) is

a function of ε. Rao and Smith [19] used light spanners

of Euclidean graphs to give an EPTAS for Euclidean TSP.

Arora, Grigni, Karger, Klein and Woloszyn [2] used light

2This bound is tight [21].
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spanners of planar graphs, given by Althöfer, Das, Dobkin,

Joseph and Soares [1], to design a PTAS for TSP in planar

graphs with running time nO( 1
ε2

). Klein [15] improved upon

this running time to 2O( 1
ε2

)n by modifying the PTAS frame-

work, using the same light spanner. Borradaile, Demaine

and Tazari generalized Klein’s EPTAS to bounded genus

graphs [4].

In fact, it was in pursuit of a PTAS for TSP in H-

minor-free graphs that Grigni and Sissokho discovered the

logarithmic bound on lightness (Equation (1)); however, the

logarithmic bound implies only a quasi-polynomial time

approximation scheme (QPTAS) for TSP [13]. Demaine, Ha-

jiaghayi and Kawarabayashi [7] used Grigni and Sissokho’s

spanner to give a PTAS for TSP in H-minor-free graphs

with running time nO(poly( 1
ε )); that is, not an efficient PTAS.

However, Demaine, Hajiaghayi and Kawarabayashi’s PTAS

is efficient if the spanner used is light. Thus, the main result

of this paper implies an efficient PTAS for TSP in H-minor-

free graphs.

B. Techniques

In proving the lightness of spanners in planar graphs [1]

and bounded genus graphs [11], the embedding of the graph

was heavily used. Thus, it is natural to expect that showing

minor-free graphs have light spanners would rely on the de-

composition theorem of minor-free graphs by Robertson and

Seymour [20], which shows that graphs excluding a fixed

minor can be decomposed into the clique-sum of graphs

nearly embedded on surfaces of fixed genus. Borradaile and

Le [5] use this decomposition theorem to show that if graphs

of bounded treewidth have light spanners, then H-minor-

free graphs also have light spanners. As graphs of bounded

treewidth are generally regarded as easy instances of H-

minor-free graphs, it may be possible to give a simpler proof

of lightness of spanners for H-minor-free graphs using this

implication.

However, relying on the Robertson and Seymour decom-

position theorem generally results in constants which are

galactic in the size of the the minor [16], [14]. In this work,

we take a different approach which avoids this problem. Our

method is inspired from the recent work of Chechik and

Wulff-Nilsen [6] on spanners for general graphs which uses

an iterative super-clustering technique [3], [8]. Using the

same technique in combination with amortized analysis, we

show that H-minor-free graphs not only have light spanners,

but also that the dependency of the lightness on ε and

|V (H)| is practical (Equation (2)).

At a high level, our proof shares several ideas with

the work of Chechik and Wulff-Nilsen [6] who prove that

(general) graphs have (2k−1)·(1+ε)-spanners with lightness

Oε(n
1/k), removing a factor of k/ log k from the previous

best-known bound and matching Erdős’s girth conjecture [9]

up to a 1 + ε factor. Our work differs from Chechik and

Wulff-Nilsen in two major aspects. First, Chechik and Wulff-

Nilsen reduce their problem down to a single hard case

where the edges of the graph have weight at most gk for

some constant g. In our problem, we must partition the

edges according to their weight along a logarithmic scale

and deal with each class of edges separately. Second, we

must employ the fact that H-minor-free graphs (and their

minors) are sparse in order to get a lightness bound that

does not depend on n.

C. Future directions

Since we avoid relying on Robertson and Seymour’s

decomposition theorem and derive bounds using only the

sparsity of graphs excluding a fixed minor, it is possible

this technique could be extended to related spanner-like
constructions that are used in the design of PTASes for

connectivity problems. Except for TSP, many connectivity

problems [4] have PTASes for bounded genus graphs but are

not known to have PTASes for H-minor-free graphs – for

example, subset TSP and Steiner tree. The PTASes for these

problems rely on having a light subgraph that approximates

the optimal solution within 1+ε (and hence is spanner-like).

The construction of these subgraphs, though, rely heavily

on the embedding of the graph on a surface and since the

Robertson and Seymour decomposition gives only a weak

notion of embedding for H-minor-free graphs, pushing these

PTASes beyond surface embedded-graphs does not seem

likely. The work of this paper may be regarded as a first

step toward designing spanner-like graphs for problems such

as subset TSP and Steiner tree that do not rely on the

embedding.

II. BOUNDING THE LIGHTNESS OF A (1 + ε)-SPANNER

As we already indicated, we start with a reduction that

allows us to assume that the edges of the MST of the

graph each have unit weight. (For details, see Appendix C.)

For simplicity of presentation, we will also assume that the

spanner is a greedy (1 + s · ε))-spanner for a sufficiently

large constant s; this does not change the asymptotics of

our lightness bound.

Herein, we let S be the edges of a greedy (1+s·ε)-spanner

of graph G with an MST having edges all of unit weight.

We simply refer to S as the spanner. The greedy spanner

considers the edges in non-decreasing order of weights and

adds an edge xy if (1 + s · ε)w(xy) is at most the x-to-y
distance in the current spanner.

We partition the edges of S according to their weight

as it will be simpler to bound the weight of subsets of S.

Let J0 be the edges of S of weight in the range [1, 1
ε );

note that MST ⊆ J0 and, since G has O(σHn) edges and

w(MST) = n− 1,

w(J0) = O(σHn/ε) = O
(σH

ε
w(MST)

)
(3)
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Let Πi
j be the edges of S of weight in the range [ 2

j

εi ,
2j+1

εi ) for

every i ∈ Z
+ and j ∈ {0, 1, . . . , �log 1

ε �}. Let Jj = ∪iΠ
i
j .

We will prove that

Lemma 1. There exists a set of spanner edges B such that
w(B) = O( 1

ε2w(MST)) and for every j ∈ {0, . . . , �log 1
ε �},

w (MST ∪ (Jj \B)) = O
(σH

ε3

)
w(MST).

Combined with Equation (3), Lemma 1 gives us

w(S) = w(B)+

�log 1
ε �∑

j=0

w(Jj\B) = O

(
σH

ε3
log

1

ε

)
w(MST)

which, combined with the reduction to unit-weight MST-

edges, proves Theorem 1 (noting that the stretch condition

of S is satisfied since S is a greedy spanner of G).

In the remainder, we prove Lemma 1 for a fixed j ≥ 0. Let

Ei = Πi
j for this fixed j and some i ∈ Z

+. Let �i =
2j+1

εi ;

then, the weight of the edges in Ei are in the range [�i/2, �i).
Let E0 = MST. We refer to the indices 0, 1, 2, . . . of the

edge partition as levels.

A. Proof overview

To prove Lemma 1, we use an amortized analysis, initially

assigning each edge of E0 = MST a credit of c = O
(
σH

ε3

)
.

For each level, we partition the vertices of the spanner into

clusters where each cluster is defined by a subgraph of the

graph formed by the edges in levels 0 through i. (Note that

not every edge of level 0 through i may belong to a cluster;

some edges may go between clusters.) Level i − 1 clusters

are a refinements of level i clusters. We prove (by induction

over the levels), that the clusters for each level satisfy the

following diameter-credit invariants:

DC1 A cluster in level i of diameter k has at least c ·
max{k, �i

2 } credits.

DC2 A cluster in level i has diameter at most g�i for

some constant g > 2 (specified later).

We achieve the diameter-credit invariants for the base

case (level 0) as follows. Although a simpler proof could

be given, the following method we use will be revisited in

later, more complex, constructions. Recall that E0 = MST

and that, in a greedy spanner, the shortest path between

endpoints of any edge is the edge itself. If the diameter of E0

is < �0/2 = O(1), edges in the spanner have length at most

�0/2. Thus, it is trivial to bound the weight of all the spanner

edges across all levels using the sparsity of H-minor-free

graphs. Assuming a higher diameter, let T be a maximal

collection of vertex-disjoint subtrees of E0, each having

diameter ��0/2� (chosen, for example, greedily). Delete T
from E0. What is left is a set of trees T ′, each of diameter

< �0/2. For each tree T ∈ T , let CT be the union of T
with any neighboring trees in T ′ (connected to T by a

single edge of E0). By construction, CT has diameter at

most 3�0/2 + 1 ≤ 2�0 (giving DC2). CT is assigned the

credits of all the edges in the cluster each of which have

credit c (giving DC1).

We build the clusters for level i from the clusters of

level i− 1 in a series of four phases (Section III). We call

the clusters of level i− 1 ε-clusters, since the diameter of

clusters in level i− 1 are an ε-fraction of the diameters of

clusters in level i. A cluster in level i is induced by a group

of ε-clusters.

We try to group the ε-clusters so that the diameter of

the group is smaller than the sum of the diameters of the ε-
clusters in the group (Phases 1 to 3). This diameter reduction
will give us an excess of credit beyond what is needed to

maintain DC1 which allows us to pay for the edges of Ei.

We will use the sparsity of H-minor free graphs to argue

that each ε-cluster needs to pay for, on average, a constant

number of edges of Ei. In Phase 4, we further grow existing

clusters via MST edges and unpaid edges of Ei. Showing

that the clusters for level i satisfy invariant DC2 will be seen

directly from the construction. However, satisfying invariant

DC1 is trickier. Consider a path D witnessing the diameter

of a level-i cluster B. Let D be the graph obtained from

D by contracting ε-clusters; we call D the cluster-diameter
path. The edges of D are a subset of MST ∪Ei. If D does

not contain an edge of Ei, the credits from the ε-clusters

and MST edges of D are sufficient for satisfying invariant

DC1 for B. However, since edges of Ei are not initialized

with any credit, when D contains an edge of Ei, we must

use credits of the ε-clusters of B outside D to satisfy DC1

as well as pay for Ei. Finally, we need to pay for edges of

Ei that go between clusters. We do so in two ways. First,

some edges of Ei will be paid for by this level by using

credit leftover after satisfying DC1. Second, the remaining

edges will be paid for at the end of the entire process (over

all levels); we show that there are few such edges over all

levels (the edges B of Lemma 1).

In our proof below, the fixed constant g required in DC2

is roughly 100 and ε is sufficiently smaller than 1
g . For

simplicity of presentation, we make no attempt to optimize

g. We note that a (1+ ε)-spanner is also a (1+ 2ε)-spanner

for any constant ε and the asymptotic dependency of the

lightness on ε remains unchanged. That is, requiring that ε
is sufficiently small is not a limitation on the range of the

parameter ε.

III. ACHIEVING DIAMETER-CREDIT INVARIANTS

In this section, we construct clusters for level i that satisfy

DC2 using the induction hypothesis that ε-clusters (clusters

of level i− 1) satisfy the diameter-credit invariants (DC1

and DC2). Since �i−1 = ε�i, we let � = �i, and drop

the subscript in the remainder. For DC2, we need to group

ε-clusters into clusters of diameter Θ(�). Let Cε be the

collection of ε-clusters and C be the set of clusters that we

construct for level i. Initially, C = ∅. We define a cluster
graph K(Cε, Ei) whose vertices are the ε-clusters and edges
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are the edges of Ei. K(Cε, Ei) can be obtained from the

subgraph of G formed by the edges of the ε-clusters and Ei

by contracting each ε-cluster to a single vertex. Recall each

ε-cluster is a subgraph of the graph formed by the edges in

levels 0 through i− 1.

Observation 1. K(Cε, Ei) is a simple graph.

Proof: Since gε� ≤ �
2 when ε is sufficiently smaller than

1
g , there are no self-loops in K(Cε, Ei). Suppose that there

are parallel edges x1y1 and x2y2 where x1, x2 ∈ X ∈ Cε
and y1, y2 ∈ Y ∈ Cε. Let w(x2y2) ≤ w(x1y1), w.l.o.g..

Then, the path P consisting of the shortest x1-to-x2 path in

X , edge x2y2 and the shortest y1-to-y2 path in Y has length

at most w(x2y2)+2gε� by DC2. Since w(x2y2) ≤ w(x1y1)
and w(x1y1) ≥ �/2, P has length at most (1+4gε)w(x1y1).
Therefore, if our spanner is a greedy (1+4gε)-spanner, x1y1
would not be added to the spanner.

We call an ε-cluster X high-degree if its degree in the

cluster graph is at least 20
ε , and low-degree otherwise. For

each ε-cluster X , we use C(X) to denote the cluster in C that

contains X . To both maintaining diameter-credit invariants

and buying edges of Ei, we use credits of ε-clusters in

C(X) and MST edges connecting ε-clusters in C(X). We

save credits of a subset S(X) of ε-clusters of C(X) and

MST-edges connecting ε-clusters in S(X) for maintaining

invariant DC1. We then reserve credits of another subset

R(X) of ε-clusters to pay for edges of of Ei incident

to ε-clusters in S(X) ∪ R(X). We let other ε-clusters in

C(X)\ (S(X)∪R(X)) release their credits to pay for their

incident edges of Ei; we call such ε-clusters releasing ε-
clusters. We designate an ε-cluster in C(X) to be its center
and let the center collect the credits of ε-clusters in R(X).
The credits collected by the center are used to pay for edges

of Ei incident to non-releasing ε-clusters.

A. Phase 1: High-degree ε-clusters

In this phase, we group high-degree ε-clusters. The goal

is to ensure that any edge of Ei not incident to a low-degree

ε-cluster has both endpoints in the new clusters formed

(possibly in distinct clusters). Then we can use sparsity of

the subgraph of K(Cε, Ei) induced by the ε-clusters that

were clustered to argue that the clusters can pay for all such

edges; this is possible since this subgraph is a minor of

G. The remaining edges that have not been paid for are all

incident to low-degree ε-clusters which we deal with in later

phases.

With all ε-clusters initially unmarked, we apply Step 1

until it no longer applies and then apply Step 2 to all

remaining high-degree ε-clusters at once and breaking ties

arbitrarily:

Step 1: If there is a high-degree ε-cluster X such that all

of its neighbor ε-clusters in K are unmarked, we group X ,

edges in Ei incident to X and its neighboring ε-cluster into

Step 1
Phase 1

Phase 4a

X
N(X)

ediam <4Step 2
Phase 1

Phase 4b
Step 1

Phase 4b
Step 2

S(X)
R(X)
Releasing

C(X)

Figure 1. A cluster C(X) formed in Phase 1 is enclosed in the dotted
blue curve. The set S(X) consists of five gray ε-clusters inside the dotted
blue closed curve and S(X) consists of green-shaded ε-clusters. Remaining
hollow ε-clusters are releasing. Cluster C(X) will be augmented further in
Phase 4 and augmenting ε-clusters are outside the dotted blue curve. Solid
blue edges are in Ei and thin black edges are in MST. The diameter path D
is highlighted by the dashed red curve and ε-clusters in D are gray-shaded.

a new cluster C(X). We then mark all ε-clusters in C(X).
We call X the center ε-cluster of C(X).

Step 2: After Step 1, any unmarked high-degree ε-cluster,

say Y , must have at least one marked neighboring ε-cluster,

say Z. We add Y and the edge of Ei between Y and Z to

C(Z) and mark Y .

In the following, the upper bound is used to guarantee

DC2 and the lower bound will be used to guarantee DC1.

Claim 1. The diameter of each cluster added in Phase 1 is
at least � and at most (4 + 5gε)�.

Proof: Since the clusters formed are trees each contain-

ing at least two edges of Ei and since each edge of Ei has

weight at least �/2, the resulting clusters have diameter at

least �.

Consider an ε-cluster X that is the center of a cluster C
in Step 1 that is augmented to Ĉ in Step 2 (where, possibly

C = Ĉ). The upper bound on the diameter of Ĉ comes

from observing that any two vertices in Ĉ are connected via

at most 5 ε-clusters and via at most 4 edges of Ei (each ε-
cluster that is clustered in Step 2 is the neighbor of a marked

ε-cluster from Step 1). Since ε-clusters have diameter at most

gε� and edges of Ei have weight at most �, the diameter of

Ĉ is at most (4 + 5gε)�.

Let C(X) be a cluster in Phase 1 with the center X . Let

N (X) be the set of X’s neighbors in the cluster graph

K(Cε, Ei). By construction, C(X) is a tree of ε-clusters.

Thus, at most five ε-clusters in C(X) would be in the

cluster-diameter path D while at most three of them are in

N (X)∪{X}. We use the credit of X and of two ε-clusters in
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N (X) for maintaining DC1. Let this set of three ε-clusters

be S(X). Since X is high-degree and ε < 1, N (X) \S(X)
has at least 20

ε −2 ≥ 18
ε ε-clusters. Let R(X) be any subset

of 18
ε ε-clusters in N (X) \ S(X). The center X collects

the credits of ε-clusters in R(X). We let other ε-clusters in

C \ (R(X) ∪ S(X)) release their own credits; we call such

ε-clusters releasing ε-clusters. By diameter-credit invariants

for level i− 1, each ε-cluster has at least cε�
2 credits. Thus,

we have:

Observation 2. The center X of C(X) collects at least 9c�
credits.

Let A1 be the set of edges of Ei that have both endpoints

in marked ε-clusters.

Claim 2. If c = Ω
(
σH

ε

)
, we can buy edges of A1 using

c� credits deposited in the centers and credit of releasing
ε-clusters.

Proof: Since the subgraph of K induced by marked

ε-clusters and edges of A1 is H-minor-free, each marked

ε-cluster, on average, is incident to at most O(σH) edges

of A1. Thus, each ε-cluster must be responsible for buying

Ω(σH) edges of A1.

Consider a cluster C(X). The total credits of each re-

leasing ε-clusters is at least cε�
2 , which is Ω(σH)� when

c = Ω(σH

ε ). For non-releasing ε-clusters, we use c� credits

from their center X to pay for incident edges of A1. Recall

that non-releasing ε-clusters are in R(X) ∪ S(X) and:

|R(X) ∪ S(X)| ≤ 5 +
18

ε
(4)

Thus, non-releasing ε-cluster are responsible for paying

at most O(σH

ε ) edges of A1 and c� credits suffice if c =
Ω(σH

ε ).
By Claim 2, each center ε-cluster has at least 8c� credits

remaining after paying for A1. We note that clusters in Phase

1 could be augmented further in Phase 4. We will use these

remaining credits at the centers to pay for edges of Ei in

Phase 4.

B. Phase 2: Low-degree, branching ε-clusters

Let F be a maximal forest whose nodes are the ε-clusters

that remain unmarked after Phase 1 and whose edges are

MST edges between pairs of such ε-clusters.

Let diam(P) be the diameter of a path P in F , which is

the diameter of the subgraph of G formed by edges inside

ε-clusters and MST edges connecting ε-clusters of P . We

define the effective diameter ediam(P) to be the sum of the

diameters of the ε-clusters in P . Since the edges of F have

unit weight (since they are MST edges), the true diameter of

a path in F is bounded by the effective diameter of P plus

the number of MST edges in the path. Since each ε-cluster

has diameter at least 1 (by construction of the base case),

we have:

Phase 2
ediam~

X
Phase 4a

ediam <4 Phase 4b
Step 1

Figure 2. A cluster C(X) formed in Phase 2 is enclosed in the dotted
blue curve. C(X) will be augmented further in Phase 4 and augmenting
ε-clusters are outside the dotted blue curve. Edges connecting ε-clusters are
MST edges.

Observation 3. diam(P) ≤ 2ediam(P).
We define the effective diameter of a tree (in F) to be

the maximum effective diameter over all paths of the tree.

Let T be a tree in F that is not a path and such that

ediam(T ) ≥ 2�. Let X be a branching vertex of T , i.e.,

a vertex of T of degree is at least 3, and let C(X) be a

minimal subtree of T that contains X and X’s neighbors

and such that ediam(C(X)) ≥ 2�. We add C(X) to C and

delete C(X) from T (see Figure 2); this process is repeated

until no such tree exists in F . We refer to X as the center
ε-cluster of C(X).

Claim 3. The diameter of each cluster added in Phase 2 is
at most (4 + 2gε)�.

Proof: Since C(X) is minimal, its effective diameter is

at most 2�+ gε�. The claim follows from Observation 3.

Let X be a set of ε-clusters. We define a subset of X as

follows:


X�2g/ε
=

{
X if |X | ≤ 2g/ε

any subset of 2g/ε of X otherwise

By definition, we have:

|
X�2g/ε
| ≤ 2g

ε
(5)

Let S(X) = 
C(X) ∩ D�2g/ε
where D is the diameter

path of C(X). We save credits of ε-clusters in S(X) for

maintaining DC1 and we use credits of ε-clusters in C\S(X)
to buy edges of Ei incident to ε-clusters in C(X). Since X is

branching, at least one neighbor ε-cluster of X , say Y , is not

in S(X). Let R(X) = {Y }. The center collects credits of

clusters in R(X); other ε-clusters in C(X)\{S(X)∪R(X)}
release their credits.

Let A2 be the set of unpaid edges of Ei incident to ε-
clusters grouped in Phase 2.
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Claim 4. If c = Ω( g
ε3 ), we can buy edges of A2 using cε�

6
credits from the center ε-clusters and half the credit from
releasing ε-clusters.

Proof: Consider a cluster C(X) formed in Phase 2.

Recall ε-clusters in Phase 2 are low-degree. Thus, each ε-
cluster in C(X) is incident to at most 20

ε edges of A2. We

need to argue that each ε-cluster has at least 20�
ε = Ω( �ε )

credits to pay for edges of A2. By invariant DC1 for level

i− 1, half credits of releasing ε-clusters are at least cε�
4 ,

which is Ω( 1ε )� when c = Ω( 1
ε2 ).

Since |R(X)| = 1, the center X collects at least cε�
2

credits by invariant DC1 for level i− 1. Recall non-releasing

ε-clusters are all in S(X). Thus, by Equation 5, the total

number of edges of A2 incident to ε-clusters in S(X) ∪
R(X) is at most:(

2g

ε
+ 1

)
20

ε
= O

( g

ε2

)
Since c = Ω( g

ε3 ),
cε�
6 credits of the center X is at least

Ω( g�ε2 ) which suffices to buy all edges of A2 incident to

ε-clusters in S(X) ∪R(X).
We use remaining half the credit of releasing ε-clusters

to achieve invariant DC1. More details will be given later

when we show diameter-credit invariants of C(X).

C. Phase 3: Grouping ε-clusters in high-diameter paths

In this phase, we consider components of F that are paths

with high effective diameter. To that end, we partition the

components of F into HD-components (equiv. HD-paths),

those with (high) effective diameter at least 4� (which are

all paths) and LD-components, those with (low) effective

diameter less that 4� (which may be paths or trees).

Phase 3a: Edges of Ei within an HD-path: Consider an

HD-path P that has an edge e ∈ Ei with endpoints in ε-
clusters X and Y of P such that the two disjoint affices

ending at X and Y both have effective diameter at least 2�.
We choose e such that there is no other edge with the same

property on the X-to-Y subpath of P (By Observation 1,

there is no edge of Ei parallel to e). Let PX,Y be the X-

to-Y subpath of P . By the stretch guarantee of the spanner,

diam(PX,Y ) ≥ (1 + sε)w(e). Let PX and PY be minimal
subpaths of the disjoint affices of P that end at X and Y ,

respectively, such that the effective diameters of PX and PY

are at least 2�. PX and PY exist by the way we choose e.

Case 1: ediam(PX,Y ) ≤ 2�: We construct a new

cluster consisting of (the ε-clusters and MST edges of)

PX,Y , PX , PY and edge e (see Figure 3). We refer to,

w.l.o.g, X as the center ε-cluster of the new cluster.

Claim 5. The diameter of each cluster added in Case 1 of
Phase 3a is at least �

2 and at most (12 + 4εg)�.

Proof: Since the new cluster contains edge e of Ei

and, in spanner S, the shortest path between endpoints of

X Y
PX,YPX PY

Figure 3. (A cluster of C in Case 1 of Phase 3a. Thin edges are edges of
MST, solid blue edges are edges of Ei and vertices are ε-clusters. Edges
and vertices inside the dashed red curves are grouped into a new cluster.

any edge is the edge itself, we get the lower bound of the

claim. The effective diameters of PX and PY are each at

most (2 + εg)� since they are minimal. By Observation 3,

we get that the diameter is at most:

2(ediam(PX) + ediam(PY ) + ediam(PX,Y ))

≤ 4(2 + εg)�+ 4� = (12 + 4εg)�

Claim 6. Let x, y be any two vertices of G in a cluster C(X)
added in Case 1 of Phase 3a. Let Px,y be the shortest x-to-y
path in C(X) as a subgraph of G. Let Px,y be obtained from
Px,y by contracting ε-clusters into a single vertex. Then,
Px,y is a simple path.

Proof: By construction, the only cycle of ε-clusters in

C(X) is PX,Y ∪{e} (see Figure 3). Therefore, if Px,y is not

simple, e ∈ Px,y and Px,y must enter and leave PX,Y at

some ε-cluster Z. In this case, D could be short-cut through

Z, reducing the weight of the path by at least w(e) ≥ �/2
and increasing its weight by at most diam(Z) ≤ gε�. This

contradicts the shortness of Px,y for ε sufficiently smaller

than 1
g (gε < 1

2 ).

Since PX,Y ∪ {e} is the only cycle of ε-clusters, by

Claim 6, ε-clusters in D ∩ C(X) form a simple subpath of

D where D is the diameter path of C(X). We have:

Observation 4. PX,Y 
⊆ D.

Proof: For otherwise, D could be shortcut through e at

a cost of

≤ diam(X) + diam(Y ) + w(e)︸ ︷︷ ︸
cost of shortcut

− (diam(PX,Y )− diam(X)− diam(Y ))︸ ︷︷ ︸
lower bound on diameter

≤ +w(e) + 4gε�− (1 + sε)w(e)

≤ 4gε�− sε�/2 (since w(e) ≥ �/2)

The second equation is due to the stretch condition for e.

This change in cost is negative for s ≥ 8g + 1.

Let S(X) = 
D ∩ C(X)�2g/ε
and R(X) =


C(X) \ D�2g/ε
. The center X collects the credits

of ε-clusters in R(X) and MST edges outside D
connecting ε-clusters of C(X). We let other ε-clusters in

C(X) \ (R(X) ∪ S(X)) release their credits.
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Claim 7. If D does not contain e, then X has at least cε�
2

credits. Otherwise, X has at least cw(e) + cε�
2 credits.

Proof: If C(X) \D contains at least 2g
ε ε-clusters, then

|R(X)| = 2g
ε . Thus, by invariant DC1 for level i− 1, the

total credit of ε-clusters in R(X) is at least:

2g

ε
· cε�
2

= gc� ≥ c�+
cε�

2
(for g ≥ 2 and ε < 1)

≥ cw(e) +
cε�

2
(since w(e) ≤ �)

Thus, we can assume that C(X) \ D contains less than 2g
ε

ε-clusters. In this case, R(X) = C(X)\D. Since PX,Y 
⊆ D
by Observation 4, D does not contain, w.l.o.g., PX . Thus,

R(X) contains at least one ε-cluster and the claim holds for

the case that e 
∈ D.

Suppose that D contains e and an internal ε-clusters of

PX,Y , then w.l.o.g., D does not contain PX \ X . PX \ X
has credit 2c�−gεc�. Since � ≥ w(e) and �−gε� ≥ ε�

2 when

ε is sufficiently small (ε ≤ 2
1+2g ), the claim holds.

If D contains e but no internal ε-clusters of PX,Y , then

diam(PX,Y \ {X,Y })
≥ diam(PX,Y )− diam(X)− diam(Y )

≥ (1 + sε)w(e)− diam(X)− diam(Y )

≥ we + sε�/2− 2gε� (by bounds on w(e) and DC2)

≥ we + ε�/2 (for s ≥ 8g + 1, as previously required)
(6)

The credit of the MST edges and ε-clusters of PX,Y \
{X,Y } is at least:

c · (MST(PX,Y \ {X,Y }) + ediam(PX,Y \ {X,Y }))
≥ c · diam(PX,Y \ {X,Y })
≥ c(we + ε�/2)

(7)

Let A3 be the set of unpaid edges of Ei incident to ε-
clusters of clusters in Case 1 of Phase 3a.

Claim 8. If c = Ω( g
ε3 ), we can buy edges of A3 using cε�

6
credits from each center and credits of releasing ε-clusters.

Proof: Consider a cluster C(X) in Phase 3. Similar

to Claim 4, releasing ε-clusters can pay for their incident

edges in A3 when c = Ω( 1
ε2 ). By construction, non-releasing

clusters of C(X) are in S(X)∪R(X). Since |R(X)| ≤ 2g
ε

and |S(X)| ≤ 2g
ε by Equation (5) and since clusters now

we are considering have low degree, there are at most

4g

ε
· 20
ε

= O
( g

ε2

)
edges of A3 incident to non-releasing ε-clusters. Thus, if

c = Ω( g
ε3 ),

cε�
6 ≥ Ω( g

ε2 )�. That implies cε�
4 credits of X

suffice to pay for all edges of A3 incident to non-releasing

ε-clusters.

X Y
PX QX QY PY

Figure 4. A cluster of C in Case 2 of Phase 3a. Thin edges are edges of
MST, solid blue edges are edges of Ei and vertices are ε-clusters. Edges
and vertices inside the dashed red curves are grouped into a new cluster.

Case 2: ediam(PX,Y ) > 2�: Refer to Figure 4. Let

QX and QY be minimal affices of PX,Y such that each

has effective diameter at least �. We construct a new cluster

consisting of (the ε-clusters and MST edges of) PX , PY ,

QX and QY and edge e. We refer to X as the center of the

new cluster.

We apply Case 1 to all edges of Ei satisfying the condition

of Case 1 until no such edges exist. We then apply Case 2

to all remaining edges of Ei satisfying the conditions of

Case 2. After each new cluster is created (by Case 1 or 2),

we delete the ε-clusters in the new cluster from P , reassign

the resulting components of P to the sets of HD- and LD-

components. At the end, any edge of Ei with both endpoints

in the same HD-path have both endpoints in two disjoint

affixes of effective diameter less than 2�.
We bound the diameter and credit of the centers of clusters

in Case 2 of Phase 3a in Phase 3b.

Phase 3b: Edges of Ei between HD-paths: Let e be an

edge of Ei that connects ε-cluster X of HD-path P to ε-
cluster Y of different HD-path Q such that none affix of

effective diameter less than 2� of P contains X and none

affix of effective diameter less than 2� ofQ contains Y . Such

edge e is said to have both endpoints far from endpoint ε-
clusters of P and Q.

Let PX and QX be minimal edge-disjoint subpaths of P
that end at X and each having effective diameter at least 2�.
(PX and QX exist by the way we choose edge e.) Similarly,

define PY and QY . We construct a new cluster consisting

of (the ε-clusters and MST edges of) PX ,PY ,QX ,QY and

edge e (see Figure 5). We refer to X as the center of the new

cluster. We then delete the ε-clusters in the new cluster from

P and Q, reassign the resulting components of P and Q to

the sets of HD- and LD-components. We continue to create

such new clusters until there are no edges of Ei connecting

HD-paths with far endpoints.

We now bound the diameter and credits of the center of

a cluster, say C(X), that is formed in Case 2 of Phase 3a or

in Phase 3b. By construction in both cases, C(X) consists

of two paths PX ∪QX and PY ∩QY connected by an edge

e.

Claim 9. The diameter of each cluster in Case 2 of Phase
3a and Phase 3b is at least �

2 and at most (9 + 4εg)�.

Proof: The lower bound follows from the same argu-

ment as in the proof of Claim 5. Since the effective diameters

of QX and QY are smaller than the effective diameters of
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X
YPX QX

PY YQ
Figure 5. A cluster of C in Phase 4a. Thin edges are edges of MST, solid
blue edges are edges of Ei and vertices are ε-clusters. Edges and vertices
inside the dashed red curves are grouped into a new cluster.

PX and PY , the diameter of the new cluster is bounded by

the sum of the diameters of PX and PY and w(e). The upper

bound follows from the upper bounds on these diameters as

given in the proof of Claim 5.

We show how to pay for unpaid edges of Ei incident to

ε-clusters in Case 2 of Phase 3a and Phase 3b. W.l.o.g, we

refer to X as the center ε-cluster of C(X). Let S(X) =

D ∩ C(X)�2g/ε

and R(X) = 
C(X) \ D�2g/ε
where D is

the cluster-diameter path of C(X). We save credits of ε-
clusters in S(X) for maintaining invariant DC1. The center

X collects credits of ε-clusters in R(X). We let other ε-
clusters in C(X) \ (S(X) ∪R(X)) to release their credits.

Claim 10. The center of a cluster in Case 2 of Phase 3a or
in Phase 3b has at least 2c(1− gε)� credits.

Proof: If |C(X) \ D| ≥ 2g
ε , R(X) has 2g

ε ε-clusters

which have at least gc� total credits by invariant DC1 for

level i− 1. Since gc� > 2c(1 − gε)� when g > 2, the

claim holds. Thus, we assume that |C(X) \ D| < 2g
ε which

implies R(X) = C(X)\D. By construction, S(X) contains

ε-clusters of at most two of four paths PX ,PY ,QX ,QY .

Since each path has effective diameter at least �, the ε-
clusters of each path in R(X) have total diameter at least

�−gε�. By invariant DC1 for level i− 1, each path in R(X)
has at least c(1− gε)� credits that implies the claim.

Let A4 be the set of unpaid edges of Ei incident to ε-
clusters of clusters in Case 2 of Phase 3a and clusters in

Phase 3b.

Claim 11. If c = Ω( g
ε2 ), we can buy edges of A4 using

c(1 − 3gε)� credits of the centers of clusters in Case 2 of
Phase 3a and Phase 3b and credits of releasing ε-clusters.

Proof: Similar to the proof of Claim 4, releasing ε-
clusters of C(X) can buy their incident edges in A4 when

c = Ω( 1
ε2 ). By construction, non-releasing ε-clusters are in

S(X)∪R(X). Since |R(X)| ≤ 2g
ε and |S(X)| ≤ 2g

ε , there

are at most O( g
ε2 ) edges of A4 incident to non-releasing ε-

clusters. When ε is sufficiently small (ε < 1
6g ), c(1−3gε)� >

c�
2 . Thus, if c = Ω( g

ε2 ),
c�
2 = Ω( g

ε2 )� and hence, c(1−3gε)�
credits suffice to pay for all edges of A4 incident to non-

releasing ε-clusters of C(X).

D. Phase 4: Remaining HD-paths and LD-components

We assume that C 
= ∅ after Phase 3. The case when C = ∅
will be handled at the end of this section.

Phase 4a: LD-components: Consider a LD-component T ,

that has effective diameter less than 4�. By construction,

T must have an MST edge to a cluster, say C(X), in C
formed in a previous phase. We include T and an MST
edge connecting T and C(X) to C(X). Let A5 be the set of

unpaid edges of Ei that incident to ε-clusters merged into

new clusters in this phase. We use credit of the center X
and ε-clusters in this phase to pay for A5. More details will

be given in Phase 4b.

Phase 4b: Remaining HD-paths: Let P be a HD-path. By

construction, there is at least one MST edge connecting P
to an existing cluster in C. Let e be one of them. Greedily

break P into subpaths such that each subpath has effective

diameter at least 2� and at most 4�. We call a subpath of P
a long subpath if it contains at least 2g

ε + 1 ε-clusters and

short subpath otherwise. We process subpaths of P in two

steps. In Step 1, we process affixes of P , long subpaths of

P and the subpath of P containing an endpoint ε-cluster of

e. In Step 2, we process remaining subpaths of P .

Step 1: If a subpath P ′ of P contain an ε-cluster that is

incident to e, we merge P ′ to the cluster in C that contains

another endpoint ε-cluster of e. We call P ′ the augmenting
subpath of P . We form a new cluster from each long subpath

of P and each affix of P . It could be that one of two affixes

of P is augmenting. We repeatedly apply Step 1 for all HD-

paths. The remaining cluster paths which are short subpaths

of HD-paths would be handled in Step 2. We then pay for

every unpaid edges of Ei incident to ε-clusters in this step.

We call a cluster a long cluster if it is a long subpath of P
and a short cluster if it is a short subpath of P .

Let A6 be the set of unpaid edges of Ei incident to ε-
clusters of long clusters. We show below that each long

cluster can both maintain diameter-credit invariant and pay

for its incident edges in A6 using credits of its ε-clusters.

Let A7 be the set of unpaid edges of Ei incident to

remaining ε-clusters involved in this step; those belong to

augmenting subpaths and short affices of HD-paths. We can

pay for edges of A7 incident to ε-clusters in augmenting

subpaths using the similar argument in previous phases.

However, we must be careful when paying for other edges

of A7 that are incident to ε-clusters in short affices of P .

Since short affices of P spend all credits of their children

ε-clusters to maintain invariant DC1, we need to use credits

of ε-clusters in P ′ to pay for edges of A7 incident to short

affices of P .

Step 2: Let P ′ be a short subpath of P . If edges of Ei

incident to ε-clusters of P ′ are all paid, we let P ′ become

a new cluster. Suppose that ε-clusters in P ′ are incident to

at least one unpaid edge of Ei, say e. We have:
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Observation 5. Edge e must be incident to an ε-cluster
merged in Phase 1.

We defer the proof of Observation 5 to the full version.
We merge ε-clusters, MST edges of P ′ and e to the cluster

in C that contains another endpoint of e. This completes the

clustering process. Let A8 be the set of remaining unpaid

edges of Ei incident to ε-clusters involved in Step 2. We

now analyze clusters of C which are formed or modified in

Phase 4.

Claim 12. Let B be a short cluster. Then, diam(B) ≤ 8� and
credits of ε-clusters and MST edges connecting ε-clusters
in B suffice to maintain invariant DC1 for B.

Proof: Since ediam(B) ≤ 4�, by Observation 3,

diam(B) ≤ 8�. The total credit of ε-clusters and MST edges

in B is at least:

c(|MST(B)|+ ediam(B)) ≥ c · diam(B))
Since ediam(B)) ≥ 2�, B has at least 2c� credits. Thus, B
has at least c ·max(diam(B), �/2) credits.

We show how to pay for edges of Ei in A6 and maintain

diameter-credit invariants of long clusters. We use cr(X ) to

denote the total credit of ε-clusters of a set of ε-clusters X .

Claim 13. Let B be a long cluster. If c = Ω( g
ε3 ) and g ≥ 8,

we can maintain diameter-credit invariants of B and pay
for edges in A6 incident to ε-clusters in B using credits of
ε-clusters in B.

Proof: By construction, B has effective diameter at most

4�. By Observation 3, B has diameter at most 8�. Thus, B
satisfies invariant DC2 if g ≥ 8. Since B is a long cluster, it

has at least 2g
ε +1 ε-clusters. Let S be a set of 2g

ε ε-clusters

in B and X be an ε-cluster in B \ S . Let R = {X}. We

save credits of S for maintaining invariant DC1 of B and

use credits of R to pay for edges of A6 incident to ε-clusters

in S∪R. Since |S ∪R| = 2g
ε +1 and ε-clusters in S∪R are

low-degree, there are at most O( g
ε2 ) edges of A6 incident to

ε-clusters in S ∪R. By invariant DC1 for level i− 1, R has

at least cε�
2 credits which is sufficient to pay for O( g

ε2 ) edges

of A6 when c = Ω( g
ε3 ). We let other ε-clusters in B\(S∪R)

pay for their incident edges of A6 using their credits. This

is sufficient when c = Ω( 1
ε2 ) since each ε-cluster is incident

to at most 20
ε edges and has at least cε�

2 credits.
We use credits of S to maintain invariant DC1. Since

|S| = 2g
ε and each ε-clusters has at least cε�

2 credits, cr(S) ≥
g�. Since diam(B) ≤ g� by DC2, cr(S) ≥ cdiam(B). Thus,

cr(S) ≥ c ˙max(diam(B), �/2); invariant DC1 is satisfied.
Let C(X) be a cluster in C before Phase 4. Let

C′(X), C′′(X) and C′′′(X) be the corresponding clusters that

are augmented from C(X) in Phase 4a, Step 1 of Phase 4b

and Step 2 of Phase 4b, respectively. It could be that any

two of three clusters are the same.
By construction in Phase 4a, LD-components are attached

to C(X) via MST edges. Recall each LD-component has

effective diameter at most 4� and hence, diameter at most

8� by Observation 3. Thus, diam(C′(X))− diam(C(X)) ≤
16� + 2. By construction in Step 1 of Phase 4b, subpaths

of effective diameter at most 4b� are attached to C′(X) via

MST edges. Thus, diam(C′′(X))−diam(C′(X)) ≤ 16�+2.

We have:

Claim 14. diam(C′′(X))− diam(C(X)) ≤ 32�+ 4.

By construction in Step 2 of Phase 4b, subpaths of

HD-paths are attached to C′′(X) via edges of Ei. Since

attached subpaths have effective diameter at most 4�, by

Observation 3, we have:

Claim 15. diam(C′′′(X))− diam(C′′(X)) ≤ 18�

We are now ready to show invariant DC2 for C′′′(X).

Claim 16. diam(C′′′(X)) ≤ g� when g ≥ 70.

Proof: The claim follows directly from Claim 1,

Claim 3, Claim 5 and Claim 9. We defer details to the full

version.

Recall we show how to pay for edges in

A1, A2, A3, A4, A6 before. It remains to show how

to pay for edges in A5 ∪ A7 ∪ A8. We first consider

edges in A5 ∪ A7. Recall S(X) = 
(D ∩ C(X))�2g/ε

where D is the cluster-diameter path. We call ε-
clusters in C′′(X) \ C(X) augmenting ε-clusters. Let

S ′′(X) = 
(D ∩ (C′′(X) \ C(X))�2g/ε
be the set of

augmenting ε-clusters that are in the diameter path D. We

save credits of ε-clusters in S ′′(X) for maintaining DC1

and let other augmenting ε-clusters release their credits.

Claim 17. If c = Ω( g
ε2 ), we can buy edges in A5∪A7 using

cε�
3 credits of the cluster centers and credits of releasing

augmenting ε-clusters.

Proof: We use c�
6 credits of X to pay for edges of

A5 ∪ A7 incident to ε-clusters in S ′′(X). Recall each ε-
cluster is incident to at most 20

ε edges of Ei since it is

low-degree. Thus, ε-clusters in S ′′(X) are incident to most

O( g
ε2 ) edges of A5 ∪ A7. Hence, c�

6 credits suffice when

c = Ω( g
ε2 ). We let releasing augmenting ε-clusters of LD-

components to pay for their incident edges of A5. This is

sufficient when c = Ω( 1
ε2 ). Thus, all edges of A5 are paid.

We now turn to edges of A7.

Let P1,P2,P3 be three segments of a HD-path P in Step

1 where P1,P2 are affixes of P and P3 is the augmenting

subpath of P . It could be that P1 = P3 or P2 = P3. Since

edges of Ei incident to long clusters are paid in Claim 13,

ε-clusters of Pi, 1 ≤ i ≤ 2, are incident to unpaid edges

of Ei only when Pi is a short cluster and thus, incident to

at most O( g
ε2 ) edges of A7. Note that in Claim 12, we use

all credits of ε-clusters and MST edges of Pi to maintain

diameter-credit invariants and we need to pay for edges of

A7 incident to Pi. We consider two cases:

1) If P3∩S ′′(X) = ∅, then ε-clusters in P3 are releasing.
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Recall P3 has effective diameter at least 2�. We let

each ε-cluster in P3 pay for its incident edges of

A7 using half of its credits, which is at least cε�
4 by

invariant DC1 for level i− 1. This amount of credits

is enough when c = Ω( 1
ε2 ). The total remaining credit

from ε-clusters of P3 is at least c�, that is sufficient

to pay for O( g
ε2 ) edges of A7 incident to ε-clusters of

P1 ∪ P2 when c = Ω( g
ε2 ).

2) If P3∩S ′′(X) 
= ∅, we use c�/6 credits of the center X
of C′′(X) to pay for edges of A7 incident to ε-clusters

in X = (P1∩S ′′(X))∪P2∪P3. Recall S ′′(X) has at

most 2g
ε ε-clusters, X has at most 6g

ε ε-clusters. Thus,

ε-clusters in X are incident to at most 120g
ε2 edges in

A7. Since there are at most two augmenting subpaths

that contain ε-clusters of the cluster diameter path D,

X only need to pay for at most 240g
ε2 = O( g

ε2 ) edges.

Thus, c�
6 credits are sufficient if c = Ω( g

ε2 ). Other ε-
clusters of P3 \ S ′′(X) are releasing and we can use

their released credits to pay for their incident edges of

A7.

We now show how to pay for edges of A8 which consists

of edges of Ei incident to ε-clusters in Step 2 of Phase 4b.

By Observation 5, C(X) is formed in Phase 1. Let S ′′′(X)
be augmenting ε-clusters in D of C′′′(X) that are not in

S(X) ∪ S ′′(X). We save credit of S ′′′(X) for maintaining

DC1 and let other augmenting ε-clusters release their credits.

Claim 18. If c = Ω( g
ε2 ), we can pay for edges of A8 incident

to ε-clusters in C′′′(X) using credits of releasing ε-clusters
and c� credits of the center X .

Proof: Since augmenting ε-clusters are low-degree,

each augmenting ε-cluster is incident to at most 20
ε edges of

A8. When c = Ω( 1
ε2 ),

cε�
2 credits of each releasing ε-cluster

suffice to buy their incident edges of A8.

By construction, the augmenting subpath P ′ in Step 1 of

Phase 4b is a short path. Since the cluster-diameter path D
contains ε-clusters of at most two short subpaths of HD-

paths, |S ′′′(X)| ≤ 4g
ε . Thus, there are at most O( g

ε2 ) edges

of A8 incident to non-releasing ε-clusters. Hence, c� credits

of X suffice to pay for such edges when c = Ω( g
ε2 ).

It remains to maintain invariant DC1 for clusters in C. We

have:

Claim 19. If any of the sets S(X),S ′′(X) and S ′′′(X) has
at least 2g

ε ε-clusters, then C′′′(X) satisfies invariant DC1.

Proof: Suppose, w.l.o.g, say S(X) has at least 2g
ε ε-

clusters. Then, by DC1 for level i− 1, the total credits of

ε-clusters in S(X) is at least:

2g

ε
· cε�
2

= gc�

which is at least c · max(diam(C′′′(X)), �/2) since

diam(C′′′(X)) ≤ g� by Claim 16 and g > 1.

Claim 20. If c = Ω( g
ε3 ), we can maintain invariant DC1

of C′′′(X) using credits of ε-clusters and MST edges in D
and the credits of the cluster center X .

Proof: By Claim 19, credits of all ε-clusters and MST

edges of D are saved for maintaining DC1. We prove the

claim by case analysis.

Case 1: C(X) is formed in Phase 1. Recall D contains at

most six edges of Ei where four edges of Ei are in C(X)
and two more edges of Ei are by the augmentation in Step

2 of Phase 4b. We use 6c� credits from X and credits of

ε-clusters and MST edges in D. The total credit is:

6c�+ c(|MST(D)|+ ediam(D)) ≥ c · diam(D)
= c · diam(C′′′(X)))

Since C′′′(X) contains an edge in Ei, diam(C′′′(X)) ≥
�/2. Thus, c · diam(C′′′(X))) ≥ c�/2.

To complete the proof, we need to argue that X has non-

negative credits after paying for edges of Ei and maintaining

invariant DC1 of C′′′(X). Recall X initially has 9c� credits

by Observation 2 and loses: (a) c� credits in Claim 2, (b)
cε�
3 credits in Claim 17, (c) c� credits to pay for the edges of

A8 incident to non-releasing augmenting ε-clusters in Step

2 of Phase 4b and (d) 6c� credits for maintaining DC1 of

C′′′(X). Thus, X still has:

9c�− 8c�− cε�

3
= c(1− ε

3
)�

which is non-negative since ε < 1.

Case 2: C(X) is formed in Phase 2. Recall the center X
collects at least ε�

2 from a neighbor Y of X (R(X) = {Y }).
We observe that credits in X is taken totally by at most ε�

2 in

Claim 4 and Claim 17. Thus, the center still has non-negative

credits after buying incident edges Ei when c = Ω( g
ε3 ).

Since credits of ε-clusters and MST edges in D are

reserved and D does not contain any edge of Ei, the total

reserved credit is:

c(|MST(D)|+ediam(D)) ≥ c·diam(D) = c·diam(C′′(X)))
(8)

It remains to argue that C′′(X) has at least c�
2 credits. Note

that we do not have lower bound on the diameter of C′′(X)
as in other cases. Let X be the set of releasing ε-clusters

of C(X) and cr(X ) be the total credits of ε-clusters in X .

Since ediam(C(X)) ≥ 2�, we have:

cr(X ) + cr(S(X)) ≥ 2c� (9)

Recall half credit of X is taken in Claim 4. We use the

remaining half to guarantee that the credit of C′′(X) is at

least c�/2.

Case 3: C(X) is formed in Case 1 of Phase 3a. Recall (in

Claim 7) the center X collects at least ε�
2 credits if D does

not contain e (we are using notation in Case 1 Phase 3a)

and at least cw(e) + ε�
2 credits if D contains e. We observe

that credits in X is taken totally by at most ε�
2 in Claim 8
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and Claim 14. By construction, D contains at most one edge

of Ei which is e (in this case X has at least c · w(e) + ε�
2

credits). Thus, the remaining credits of X and credits from

reserved ε-clusters and MST edges in D are sufficient for

maintaining invariant DC1. Since diam(C′′(X)) ≥ �/2 by

Claim 5, c · diam(C′′(X)) ≥ c�/2.

Case 4: C(X) is formed in Case 2 of Phase 3a or in Phase
3b. Recall in Claim 10, we argue that the center of cluster X
collects at least 2c(1− gε)� credits. By construction, D can

contain at most one edge of Ei, which connects two cluster

paths in Case 2 of Phase 3a or Phase 3b. We observe that

credits in X is taken totally by at most c(1 − 3gε − ε/3)�
in Claim 11 and Claim 17. Thus, X has at least:

c(2− 2gε)�− c(1− 3gε− ε/3)� > c�

remaining credits. That implies the remaining credits of

X and credits from reserved ε-clusters and MST edges

in D are sufficient for maintaining invariant DC1. Since

diam(C′′(X)) ≥ �/2 by Claim 9, c · diam(C′′(X)) ≥ c�/2.

Proof of Lemma 1: Recall in the beginning of Phase

4, we assume that C 
= ∅ after Phase 3 and in this case, we

already paid for every edges of Ei with:

c = max(
Θ(g)

ε3
,
Θ(σH)

ε
) = O(

σH

ε3
)

and ε sufficiently small.

We only need to consider the case when C = ∅ after Phase

3. We have:

Observation 6. The case when C = ∅ after Phase 3 only
happens when: (i) there is a single cluster-path P that
contains all ε-clusters, (ii) every edge of Ei is incident to
an ε-cluster in an affix of P of effective diameter at most 2�
and (iii) ε-clusters of P are low-degree in K(Cε, Ei).

We greedily break P into subpath of ε-clusters of effective

diameter at least 2� and at most 4� as in Phase 4b and form

a new cluster from each subpath. Recall a long cluster is

formed from a subpath containing at least 2g
ε +1 ε-clusters.

Let P ′ be a subpath of P . If P ′ is long, we can both buy

edges of Ei incident to ε-clusters of P ′ and maintain two

diameter-credit invariants as in Claim 13. If P ′ is short,

we use credits of ε and MST edges of P ′ to maintain

DC1. Recall P ′ has effective diameter at least �, thus, has

at least c� credits by DC1 for level i− 1. That implies

c · diam(P ′) ≥ cmax( �2 , diam(P ′)).
We put remaining unpaid edges of Ei to the holding bag

B. Recall unpaid edges of Ei must be incident to ε-clusters

of short clusters, which are affixes of P . By Observation 6,

B holds at most O( g
ε2 ) = O( 1

ε2 ) edges of Ei. Thus, the

total weight of edges of B in all levels is at most:

O

(
1

ε2

)∑
i

�i ≤ O

(
1

ε2

)
�max

∑
i

εi

≤ O

(
1

ε2

)
w(MST)

∑
i

εi

≤ O

(
1

ε2

)
w(MST)

1

1− ε

= O

(
1

ε2
w(MST)

)
(10)

In the above equation, �max = maxe∈S{w(e)}
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APPENDIX

A. Notation and definitions

Let G(V (G), E(G)) be a connected and undirected graph

with a positive edge weight function w : E(G)→ �+ \{0}.
We denote |V (G)| and |E(G)| by n and m, respectively.

Let MST(G) be a minimum spanning tree of G; when the

graph is clear from the context, we simply write MST. A

walk of length p is a sequence of alternating vertices and

edges {v0, e0, v1, e1, . . . , ep−1, vp} such that ei = vivi+1

for every i such that 1 ≤ 0 ≤ p − 1. A path is a simple
walk where every vertex appears exactly once in the walk.

For two vertices x, y of G, we use dG(x, y) to denote the

shortest distance between x and y. Let S be a subgraph of

G. We define w(S) =
∑

e∈E(S) w(e). Let X ⊆ V (G) be

a set of vertices. We use G[X] to denote the subgraph of

G induced by X . Let Y ⊆ E(G) be a subset of edges of

G. We denote the graph with vertex set V (G) and edge set

Y by G[Y ]. We call a graph K a minor of G if K can

be obtained from G from a sequences of edge contraction,

edge deletion and vertex deletion operations. A graph G is

H-minor-free if it excludes a fixed graph H as a minor. If

G excludes a fixed graph H as a minor, it also excludes the

complete h-vertex graph Kh as a minor where h = |V (H)|.
Observation 7. If a graph G excludes Kh as a minor for
h ≥ 3, then any graph obtained from G by subdividing an
edge of G also excludes Kh as a minor.

B. Greedy spanners

A subgraph S of G is a (1 + ε)-spanner of G if V (S) =
V (G) and dS(x, y) ≤ (1 + ε)dG(x, y) for all x, y ∈ V (G).
In the greedy algorithm by Althöfer et al. [1] to find a

(1+ ε)-spanner of G, edges are added in order of increasing

weight while doing so decreases the distance between their

endpoints by a 1+ ε factor. Since the greedy algorithm is a

relaxation of Kruskal’s algorithm, MST(G) = MST(S).

C. Reduction to unit-weight MST edges

We adapt the reduction technique of Chechik and Wulff-

Nilsen [6] to analyze the increase in lightness due to this

simplification for H-minor-free graphs. Let G be the input

graph and let w : E(G)→ �+ be the edge weight function

for G. Let w̄ = w(MST)
n−1 be the average weight of the MST

edges. We do the following. First, we round up the weight

of each edge of E(G) to an integral multiple of w̄. Second,

we subdivide each MST edge so that each resulting edge

has weight exactly w̄. Let G′ be the resulting graph. Third,

we scale down the weight of every edge by w̄. Let w′

be the resulting edge weights of G′. G′ is minor-free by

Observation 7. Fourth, we find a (1 + ε)-spanner S′ of G′.
Finally, let S be a graph on V (G) with edge set equal to the

union of E(S′) ∩ E(G), the edges of MST(G), and every

edge e in G of weight w(e) ≤ w̄
ε .

Lemma 2. If S′ is a (1 + ε)-spanner of G′ with lightness
f(ε), then S is a (1 + O(ε))-spanner of G with lightness
2f(ε) +O(σH/ε).

Proof: The proof is an adaption of the proof of Chechik

and Wulff-Nilsen [6]that we defer to the full version.

By Lemma 2, we may assume that all edges of MST(G)
have weight 1. We find the (1+ ε)-spanner S of G by using

the greedy algorithm. Thus, the stretch condition of S is

satisfied.
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