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Abstract—We consider questions that arise from the in-
tersection between the areas of approximation algorithms,
subexponential-time algorithms, and fixed-parameter tractable
algorithms. The questions, which have been asked several times
(e.g., [1], [2], [3]) are whether there is a non-trivial FPT-
approximation algorithm for the Maximum Clique (Clique) and
Minimum Dominating Set (DomSet) problems parameterized
by the size of the optimal solution. In particular, letting OPT
be the optimum and N be the size of the input, is there an
algorithm that runs in t(OPT) poly(N) time and outputs a
solution of size f(OPT), for any functions t and f that are
independent of N (for Clique, we want f(OPT) = ω(1))?

In this paper, we show that both Clique and DomSet
admit no non-trivial FPT-approximation algorithm, i.e., there
is no o(OPT)-FPT-approximation algorithm for Clique and no
f(OPT)-FPT-approximation algorithm for DomSet, for any
function f (e.g., this holds even if f is an exponential or the
Ackermann function). In fact, our results imply something even
stronger: The best way to solve Clique and DomSet, even
approximately, is to essentially enumerate all possibilities. Our
results hold under the Gap Exponential Time Hypothesis (Gap-
ETH) [4], [5], which states that no 2o(n)-time algorithm can
distinguish between a satisfiable 3SAT formula and one which
is not even (1− ε)-satisfiable for some constant ε > 0.

Besides Clique and DomSet, we also rule out non-trivial
FPT-approximation for Maximum Balanced Biclique, the prob-
lem of finding maximum subgraphs with hereditary properties
(e.g., Maximum Induced Planar Subgraph), and Maximum
Induced Matching in bipartite graphs. Previously only exact
versions of these problems were known to be W[1]-hard [6],
[7], [8]. Additionally, we rule out ko(1)-FPT-approximation
algorithm for Densest k-Subgraph although this ratio does not
yet match the trivial O(k)-approximation algorithm.

To the best of our knowledge, prior results only rule
out constant factor approximation for Clique [9], [10] and
log1/4+ε(OPT) approximation for DomSet for any constant
ε > 0 [11]. Our result on Clique significantly improves on [9],
[10]. However, our result on DomSet is incomparable to [11]
since their results hold under ETH while our results hold under
Gap-ETH, which is a stronger assumption.

Keywords-Fixed Parameter Tractability; Hardness of Ap-
proximation; Clique; Set Cover; Dominating Set

I. INTRODUCTION

Fixed-parameter approximation algorithm (in short, FPT-

approximation algorithm) is a new concept emerging from

a cross-fertilization between two trends in coping with

NP-hard problems: approximation algorithms and fixed-
parameter tractable (FPT) algorithms. Roughly speaking, an

FPT-approximation algorithm is similar to an FPT algorithm

in that its running time can be of the form t(OPT) poly(N)
time, where t is any function (possibly super exponentially

growing), N is the input size, and OPT is the value of

the optimal solution1. It is similar to an approximation

algorithm in that it outputs an approximation of the optimal

solution; however, the approximation factor is analyzed in

terms of the optimum (OPT) and not the input size (N ).

Thus, an algorithm for a maximization (respectively, mini-

mization) problem is said to be f(OPT)-FPT-approximation
for some function f if it outputs a solution of size at

least OPT/f(OPT) (respectively, at most OPT · f(OPT)).
For a maximization problem, such an algorithm is non-
trivial when f(OPT) is o(OPT), while for a minimization

problem, it is non-trivial for any computable function f .

The notion of FPT-approximation is useful when we are

interested in a small optimal solution, and in particular its

existence connects to a fundamental question whether there
is a non-trivial approximation algorithm when the optimal
solution is small. Consider, for example, the Maximum
Clique (Clique) problem, where the goal is to find a clique

(complete subgraph) with maximum number of vertices in

an n-vertex graph G. By outputting any single vertex, we

get a trivial polynomial-time n-approximation algorithm.

The bound can be improved to O(n(log logn)
2

log3 n
) with clever

ideas [12]. Observe, however, that this bound are quite

meaningless when OPT = O(n(log logn)
2

log3 n
) since outputting

a single vertex already guarantees such bound. In this case,

a bound such as O( OPT
log logOPT ) would be more meaningful.

1There are many ways to parameterize a problem. In this paper we focus
on the standard parameterization which parameterizes the optimal solution.
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Unfortunately, no approximation ratio of the form o(OPT) is

known even when FPT-time is allowed2 (Note that outputting

a single vertex gives an OPT-approximation guarantee.)

Similar questions can be asked for a minimization

problem. Consider for instance, Minimum Dominating Set
(DomSet): Find the smallest set of vertices S such that ev-

ery vertex in an n-vertex input graph G has a neighbor in S.

DomSet admits an O(log n)-approximation algorithm via a

greedy method. However, if we want the approximation ratio

to depend on OPT and not n, no f(OPT)-approximation

ratio is known for any function f (not even 22
OPT

).

In fact, the existence of non-trivial FPT-approximation

algorithms for Clique and DomSet has been raised sev-

eral times in the literature (e.g., [1], [2], [3]). So far, the

progress towards these questions can only rule out O(1)-
FPT-approximation algorithms for Clique. This was shown

independently by Hajiaghayi et al. [9] and Bonnet et al. [10],

assuming the Exponential Time Hypothesis (ETH) and that a

linear-size PCP exists. Alternatively, Khot and Shinkar [15]

proved this under an assumption that solving quadratic equa-

tions over a finite field under a certain regime of parameters

is not in FPT; alas, this assumption was later shown to

be false [16]. For DomSet, Chen and Li [11] could rule

out O(1)-FPT-approximation algorithms assuming FPT �=
W[1]. Moreover, they improved the inapproximability ratio

to log1/4+ε(OPT) for any constant ε > 0 under ETH. Note

that ETH implies that FPT �= W[1].

Our Results and Techniques. We show that there is no

non-trivial FPT-approximation algorithm for Clique and

DomSet. That is, there is no o(OPT)-FPT-approximation

algorithm for Clique and no f(OPT)-FPT-approximation

algorithm for DomSet, for any function f . Our results hold

under the Gap Exponential Time Hypothesis (Gap-ETH),

which states that distinguishing between a satisfiable 3SAT
formula and one which is not even (1−ε)-satisfiable requires

exponential time for some constant ε > 0 (see Section II).

Gap-ETH, first formalized in [4], [5], is a stronger version

of the aforementioned ETH, which only asserts that no

subexponential time algorithms can decide whether a given

3SAT formula is satisfiable. It has recently been shown to

be useful in proving fine-grained hardness of approximation

for problems such as dense CSP with large alphabets [5]

and Densest-k-Subgraph with perfect completeness [17].

Note that Gap-ETH is implied by ETH if we addition-

ally assume that a linear-size PCP exists. So, our result

for Clique significantly improves the results in [9], [18]

under the same (in fact, weaker) assumption. Our result for

2In fact, for maximization problems, it can be shown that a prob-
lem admits an f(OPT)-FPT-approximation algorithm for some function
f = o(OPT) if and only if it admits a polynomial-time algorithm with
approximation ratio f ′(OPT) for some function f ′ = o(OPT) [13],
[1] (also see [14]). So, it does not matter whether the running time is
polynomial on the size of the input or depends on OPT.

DomSet also improves upon the results in [11] in terms of

inapproximability ratio, but our assumption is stronger.

In fact, we can show even stronger results: the best way

to solve Clique and DomSet, even approximately, is to

enumerate all possibilities in the following sense. Finding a

clique of size r can be trivially done in nr poly(n) time by

checking whether any among all possible
(
n
r

)
= O(nr) sets

of vertices forms a clique. It was known under ETH that

this is essentially the best one can do [19], [20]. We show

further that this running time is still needed, even when we

know that a clique of size much larger than r exists in the

graph (e.g., OPT ≥ 22
r

), assuming Gap-ETH. Similarly, for

DomSet, we can always find a dominating set of size r in

nr poly(n) time. Under Gap-ETH, we show that there is no

better way even when we just want to find a dominating set

of size q � r.

We now give an overview of our techniques. The main

challenge in showing our results is that we want them to

hold for the case where the optimal solution is arbitrarily
smaller than the input size. (This is important to get the

FPT-inapproximability results.) To this end, (i) reductions

cannot blow up the size of the optimal solution by a function

of the input size, and (ii) our reductions must start from

problems with a large hardness gap while having small OPT.

Fortunately, Property (i) holds for the known reductions we

employ.

The challenge of (ii) is that existing gap amplifying

techniques (e.g., the parallel repetition theorem [21] or the

randomized graph product [22]), while amplifying the gap

to arbitrarily large, cause the input size to be too large that

existing OPT reduction techniques (e.g., [19], [23]) cannot

be applied efficiently (in particular, in subexponential time).

We circumvent this by a step that amplifies the gap and

reduce OPT at the same time. In more detail, this step takes

a 3SAT formula φ as an input and produces a “label cover”3

instance J (roughly, a bipartite graph with constraints on

edges) such that: For any c > 0, (i) if φ is satisfiable, then J
is satisfiable, and (ii) if φ is at most 0.99 satisfiable, then less

than c-fraction of constraints of J can be satisfied. Moreover,

our reduction allows us to “compress” either the the left-

hand-side or the right-hand-side vertices to be arbitrarily

small. This label cover instance is a starting point for all our

problems. To derive our result for Clique, we would need

the left-hand-side to be arbitrarily small while for DomSet,
we would need the small right-hand-side.

The left-hand-side vertex compression is similar to the

randomized graph product [22] and, in fact, the reduction

itself has been studied before [24], [25] but in a very dif-

ferent regime of parameters. For a more detailed discussion,

please refer to Subsection IV-B.

3Our problem is an optimization problem on Label Cover instance, with
a slightly different objective from the standard Label Cover. Please refer to
Section IV for more detail.
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Once the inapproximability results for label cover prob-

lems with small left-hand-side and right-hand-side vertex set

are established, we can reduce it to Clique and DomSet us-

ing the standard reductions from [26] and [27] respectively.

Besides the results for Clique and DomSet, we also

show that no non-trivial FPT-approximation algorithm exists

for a few other problems, including Maximum Biclique
(Biclique), the problem of finding Maximum Subgraphs
with Hereditary Properties (e.g., Maximum Planar Induced
Subgraph) and Maximum Induced Matching in bipartite
graphs. Previously only the exact versions of these problems

were known to be W[1]-hard [6], [7], [8]. Additionally, we

rule out ko(1)-FPT-approximation algorithms for Densest k-
Subgraph (DkS) although this ratio does not yet match

the trivial O(k)-approximation algorithm. We remark that,

while our result for maximum subgraphs with hereditary

properties follows from a reduction from Clique, the FPT

inapproximability of other problems are shown not through

the label cover problems, but instead from a modification of

the hardness of approximating DkS in [17].

Due to space constraint, we will only focus on Clique
and DomSet here; for the other results, please refer to our

full version, which is available online as [28].

Previous Works. Our results are based on the method of

compressing (or reducing the size of) the optimal solution,

which was first introduced by Chen et al. in [29] (the journal

version appears in [19]). Assuming ETH, they showed that

finding both Clique and DomSet cannot be solved in time

no(OPT), where n is the number of vertices in an input graph.

Later, Pătras, cu and Williams [23] applied similar techniques

to sharpen the running time lower bound of DomSet to

nOPT−ε, for any constant ε > 0, assuming the Strong
Exponential Time Hypothesis (SETH). The technique of

compressing the optimal solution was also used in hardness

of approximation by Hajiaghayi, Khandekar and Kortsarz

in [9] and by Bonnet, Lampis and Paschos in [10]. Our

techniques can be seen as introducing gap amplification to

the reductions in [19]. We emphasize that while [19],[23],[9]

and [10] (and also the reductions in this paper) are all based

on the technique of compressing the optimal solution, Haji-

aghayi et al. [9] compress the optimal solution after reducing

SAT to the designated problems, i.e., Clique and DomSet.
The reductions in [19], [23], [10] and this paper, on the other

hand, compress the optimal solution of SAT prior to feeding

it to standard reductions (with small adjustment). While this

difference does not affect the reduction for Clique, it has

a huge effect on DomSet. Specifically, compressing the

optimal solution at the post-reduction step results in a huge

blow-up because the blow-up in the first step (i.e., from

SAT to DomSet) becomes exponential after compressing

the optimal solution. Our proof for Clique and the one in [9]

bear a similarity in that both apply graph product to amplify

approximation hardness. The key difference is that we use

randomized graph product instead of the deterministic graph

product used in [9].

Recently, Chen and Lin [11] showed that DomSet admits

no constant approximation algorithm unless FPT = W[1].
Their hardness result was derived from the seminal result

of Lin [6], which shows that the Maximum k-Intersection
problem (a.k.a, One-side Gap-Biclique) has no FPT ap-

proximation algorithm. Furthermore, they showed that, when

assuming ETH, their result can be strengthened to rule

out log1/4+ε(OPT) FPT-approximation algorithm, for any

constant ε > 0. The result of Chen and Lin follows from

the W[1]-hardness of Biclique [6] and the proof of the ETH-

hardness of Clique [29]. Note that while Chen and Lin did

not discuss the size of the optimal solution in their paper, the

method of compressing the optimal solution was implicitly

used there. This is due to the running-time lower bound of

Clique that they quoted from [29].

Our method for proving the FPT inapproximability of

DomSet is similar to that in [23]. However, the original

construction in [23] does not require a “partition system”.

This is because Pătras, cu and Williams reduction starts from

SAT, which can be casted as DomSet. In our construction,

the reduction starts from a label cover problem that is more

general than SAT (because of the gap-amplification step)

and hence requires the construction of a partition system.

(Note that the partition system has been used in standard

hardness reductions for DomSet [30], [27].)

We remark that our proof does not imply FPT-

inapproximability for DomSet under ETH whereas Chen

and Lin were able to prove the inapproximability result

under ETH [11]. If ones introduced Gap-ETH to the previous

works, then the proofs in [19], [9], [10] yield the constant

FPT-inapproximability of Clique, and the proof in [19]

yields the constant FPT-inapproximability of DomSet.
The summaries of previous works are presented in Table I.

II. PRELIMINARIES

For any graph G, we denote by V (G) and E(G) the

vertex and edge sets of G, respectively. For each u ∈ V (G),
we denote the set of its neighbors by NG(v). A clique of

G is a complete subgraph of G. The clique number of G,

denoted by Clique(G), is the size of the largest clique in

G. A dominating set of G is a subset S ⊆ V (G) such that

every vertex in G is either in S or has a neighbor in S.

A. FPT Approximation

We employ the following notations of optimization prob-

lems from [33]. An optimization problem Π is defined by

three components: (1) for each instance I of Π, a set of valid

solutions of I denoted by SOLΠ(I), (2) for each instance I
of Π and each y ∈ SOLΠ(I), the cost of y with respect to I
denoted by COSTΠ(I, y), and (3) the goal of the problem

4Constant FPT-inapproximability of Clique under ETH is claimed in [9]
(arXiv version). However, as we investigated, Gap-ETH is assumed there.
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Summary of Works on Clique
Inapprox Running Time Assumption Ref

any constant t(OPT ) · no(OPT) ETH + LPCP [10]

OPT1−ε exp(OPTρ(ε)) ETH [31]

1/(1− ε) exp(exp(OPTρ(ε)))4 ETH [9]

o(OPT) t(OPT ) · no(OPT) Gap-ETH *

Summary of Works on DomSet
Inapprox Running Time Assumption Ref
OPT1−γ exp(OPT1−ρ(γ)) ETH [31]

(logOPT)δ exp(exp((logOPT)δ−1)) ETH + PGC [9]

any constant t(OPT ) · nO(1) (i.e. no FPT) W[1] �= FPT [11]

(logOPT)1/4+ε t(OPT ) · no(
√
OPT) ETH [11]

f(OPT) t(OPT ) · no(OPT) Gap-ETH *

Table I: Summaries of previous works. Here t denotes any computable function t, ε denotes any constant 0 < ε < 1, γ denotes some
constant 0 < ε < 1, ρ denotes some non-decreasing function ρ : (0, 1)→ (0, 1), δ denotes some constant δ > 1. PGC and LPCP stand
for the Projection Game Conjecture [32] and Linear-Size PCP Conjecture [10] respectively. Stars in reference columns denote our works.

GOALΠ ∈ {min,max} which specifies whether Π is a min-

imization or maximization problem. Throughout this work,

we will assume that COSTΠ(I, y) can be computed in time

|I|O(1). Finally, we denote by OPTΠ(I) the optimal value

of each instance I , i.e., OPTΠ(I) = GOALΠ COST(I, y)
where y is taken over SOLΠ(I).

We now continue on to define parameterized approxi-

mation algorithms. While our discussion so far has been

on optimization problems, we will instead work with “gap

versions” of these problems. Roughly speaking, for a maxi-

mization problem Π, the gap version of Π takes in additional

inputs k, f and the goal is to decide whether OPTΠ(I) ≥ k
or OPTΠ(I) < k/f(k). As we will elaborate below, the gap

versions are weaker (i.e., easier) than the optimization ver-

sions and, hence, our impossibility results for gap versions

translate to those of optimization versions as well.

Definition 1 (FPT gap approximation). For any optimization
problem Π and any computable function f : N→ [1,∞), an
algorithm A, which takes as input an instance I of Π and a
positive integer k, is an f -FPT gap approximation algorithm

for Π if the following conditions hold on every input (I, k):

• A runs in time t(k) · |I|O(1) for some computable
function t : N→ N.

• If GOALΠ = max, A must output 1 if OPTΠ(I) ≥ k
and output 0 if OPTΠ(I) < k/f(k).
If GOALΠ = min, A must output 1 if OPTΠ(I) ≤ k
and output 0 if OPTΠ(I) > k · f(k).

Π is said to be f -FPT gap approximable if there is an f -FPT
gap approximation algorithm for Π.

Next, we formalize the concept of totally FPT inapprox-
imable, which encapsulates the non-existence of non-trivial

FPT approximations discussed earlier in the introduction.

Definition 2. A minimization problem Π is said to be totally

FPT inapproximable if, for every computable function f :
N→ [1,∞), Π is not f -FPT gap approximable.

A maximization problem Π is said to be totally FPT inap-

proximable if, for every computable function f : N→ [1,∞)
such that f(k) = o(k), Π is not f -FPT gap approximable.

Both Clique and DomSet will be shown to be totally

FPT inapproximable. To this end, we remark that totally

FPT inapproximable as defined above through gap problems

imply the non-existence of non-trivial FPT approximation al-

gorithm as discussed in the introduction. These implications

are formalized in the two propositions below; their proofs

are deferred to Appendix A of the full version [28].

Proposition 3. Let Π be any minimization problem. Then
(1) implies (2) where (1) and (2) are as defined below.
(1) Π is totally FPT inapproximable.
(2) For all computable functions t : N → N and f : N →

[1,∞), there is no algorithm that, on every instance I
of Π, runs in time t(OPTΠ(I)) · |I|O(1) and outputs y
such that COSTΠ(I, y) ≤ OPTΠ(I) · f(OPTΠ(I)).

Proposition 4. Let Π be any maximization problem. Then
(1) implies (2) where (1) and (2) are as defined below.
(1) Π is totally FPT inapproximable.
(2) For all computable functions t : N → N and f :

N→ [1,∞) such that f(k) = o(k) and k/f(k) is non-
decreasing, there is no algorithm that, on every instance
I of Π, runs in time t(OPTΠ(I)) · |I|O(1) and outputs
y such that COSTΠ(I, y) ≥ OPTΠ(I)/f(OPTΠ(I)).

B. List of Problems

While both Clique and DomSet can be defined in terms

of optimization problems similar to the previous subsection,

we will omit the terms SOL,COST and GOAL since they

are clear from the context.

The Maximum Clique Problem (Clique). In k-Clique, we

are given a graph G together with an integer k, and the

goal is to decide whether G has a clique of size k. The

maximization version of k-Clique, called Max-Clique or

simply Clique, asks to compute the size of the maximum

clique in G.

The Minimum Dominating Set Problem (DomSet). In k-

DomSet, we are given a graph G together with an integer

k, and the goal is to decide whether G has a dominating set

of size k. The minimization version of k-DomSet, called

Min-DomSet or simply DomSet, asks to compute the size

of the minimum dominating set in G.
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C. Gap Exponential Time Hypothesis

Our results are based on the Gap Exponential Time

Hypothesis (Gap-ETH). Before we state the hypothesis, let

us recall the definition of 3-SAT. In q-SAT, we are given a

CNF formula φ in which each clause consists of at most q
literals, and the goal is to decide whether φ is satisfiable.

Max q-SAT is a maximization version of q-SAT which

asks to compute the maximum number of clauses in φ that

can be simultaneously satisfied. We will abuse q-SAT to

mean Max q-SAT. For a formula φ, let SAT(φ) denote the

maximum number of clauses satisfied by any assignment.

Gap-ETH can now be stated in terms of SAT as follows.

Conjecture 5 ((randomized) Gap Exponential-Time Hypoth-

esis (Gap-ETH) [4], [5]). For some constant δ, ε > 0, no
algorithm can, given a 3-SAT formula φ on n variables
and m = O(n) clauses, distinguish between the following
cases correctly with probability ≥ 2/3 in O(2δn) time:

• SAT(φ) = m and
• SAT(φ) < (1− ε)m.

Note that the case where ε = 1/m (that is, the algorithm

only needs to distinguish between the cases that SAT(φ) =
m and SAT(φ) < m) is known as ETH [34]. While Gap-

ETH may seem strong due to the gap between the two cases,

there are evidences suggesting that it may indeed be true,

or, at the very least, refuting it is beyond the reach of our

current techniques. Some of these evidences are discussed

in Appendix F of the full version of this paper.

While Gap-ETH as stated above rules out not only deter-

ministic but also randomized algorithms, the deterministic

version of Gap-ETH suffices for some of our results, includ-

ing inapproximability of Clique and DomSet. The reduction

for DomSet as stated below will already be deterministic,

but the reduction for Clique will be randomized. However,

it can be easily derandomized; please see Section 4.2.1 of

the full version for more details.

III. FPT INAPPROXIMABILITY VIA INHERENTLY

ENUMERATIVE CONCEPT

Throughout the paper, we will prove FPT inapproximabil-

ity through the concept of inherently enumerative problems,

which will be formalized shortly.

To motivate the concept, note that all problems Π consid-

ered in this paper admit an exact algorithm that runs in time5

O�(|I|OPTΠ(I)). For instance, to find a clique of size k in G,

one can enumerate all
(|V (G)|

k

)
= |V (G)|O(k) possibilities6.

This running time is nearly the best possible assuming ETH:

Any algorithm that finds a k-clique in time |V (G)|o(k) would

refute ETH. In the light of such result, it is natural to ask

5Recall that O�(·) hides terms that are polynomial in the input size.
6A faster algorithm runs in time |V (G)|ωk/3 can be done by a reduction

to matrix multiplication.

the following question. Assume that Clique(G) ≥ 22
k

, can
we find a clique of size k in time |V (G)|o(k)?

In other words, can we exploit a prior knowledge that

there is a clique of size much larger than k to help us find

a k-clique faster? Roughly speaking, we will show later

that, assuming Gap-ETH, the answer of this question is

also negative, even when 22
k

is replaced by any constant

independent of k. This is encapsulated in the concept of

inherently enumerative as defined below.

Definition 6 (Inherently Enumerative). A problem Π is said
to be inherently enumerative if there exist constants δ, r0 > 0
such that, for any integers q ≥ r ≥ r0, no algorithm
can decide, on every input instance I of Π, whether (i)
OPTΠ(I) < r or (ii) OPTΠ(I) ≥ q in time7 Oq,r(|I|δr).

While we will show that Clique and DomSet are inher-

ently enumerative, we cannot do the same for some other

problems, such as Biclique. Even for the exact version

of Biclique, the best running time lower bound known is

only |V (G)|Ω(
√
k) [6] assuming ETH. In order to succinctly

categorize such lower bounds, we define a similar but weaker

notation of weakly inherently enumerative:

Definition 7 (Weakly Inherently Enumerative). For any
function β = ω(1), a problem Π is said to be β-weakly

inherently enumerative if there exists a constant r0 > 0 such
that, for any integers q ≥ r ≥ r0, no algorithm can decide,
on every input instance I of Π, whether (i) OPTΠ(I) < r
or (ii) OPTΠ(I) ≥ q in time Oq,r(|I|β(r)).
Π is said to be weakly inherently enumerative if it is β-

weakly inherently enumerative for some β = ω(1).

As stated earlier, we will prove total FPT inapproxima-

bility through inherently enumerative; the proposition below

establishes a connection between the two.

Proposition 8. If Π is weakly inherently enumerative, then
Π is totally FPT inapproximable.

For the purpose of facilitating proofs of totally FPT

inapproximability, we define the following reduction, which

we call FPT gap reductions.

Definition 9 (FPT gap reduction). For any functions f, g =
ω(1), a problem Π0 is said to be (f, g)-FPT gap reducible

to a problem Π1 if there exists an algorithm A which takes
in an instance I0 of Π0 and integers q, r and produce an
instance I1 of Π1 such that the following conditions hold.
• A runs in time t(q, r) · |I0|O(1) for some computable

function t : N× N→ N.
• If OPTΠ0

(I0) ≥ q, then OPTΠ1
(I1) ≥ f(q).

• If OPTΠ0
(I0) < g(r), then OPTΠ1

(I1) < r.

It is not hard to see that FPT gap reduction indeed

preserves total FPT inapproximability and weakly inherently

7Oq,r(·) hides any multiplicative term that is a function of q and r.
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enumerative, as formalized below. Due to space constraint,

we defer all proofs in this section to the full version [28].

Proposition 10. If Π0 is totally FPT inapproximable and is
(f, g)-FPT gap reducible to Π1 for some computable non-
decreasing f, g = ω(1), Π1 is totally FPT inapproximable.

Proposition 11. If Π0 is β-weakly inherently enumerative
and is (f, g)-FPT gap reducible to Π1 for some f, g, β =
ω(1), then Π1 is Ω(β ◦ g)-weakly inherently enumerative.

IV. COVERING PROBLEMS ON LABEL COVER INSTANCES

In this section, we give intermediate results for the lower

bounds on the running time of approximating variants of

the label cover problem, which will be the source of our

inapproximability results for Clique and DomSet.

A. Problems and Results

Label cover instance: A label cover instance Γ consists of

(G,ΣU ,ΣV ,Π), where

• G = (U, V,E) is a bipartite graph with vertex sets U, V
and an edge set E,

• ΣU and ΣV are sets of alphabets to be assigned to

vertices in U and V , respectively, and

• Π = {Πe}e∈E is a set of constraints Πe ⊆ ΣU × ΣV .

We say that Π (or Γ) has the projection property if for

every edge uv ∈ E (where u ∈ U, v ∈ V ) and every α ∈
ΣU , there is exactly one β ∈ ΣV such that (α, β) ∈ Πuv .

We will define two combinatorial optimization problems

on an instance of the label cover problem. These two prob-

lems are defined on the same instance as the standard label

cover problem. We will briefly discuss how our problems

differ from the standard one.

Max-Cover Problem: A labeling of the graph, is a pair of

mappings σU : U → ΣU and σV : V → ΣV . We say that

a labeling (σU , σV ) covers edge uv if (σU (u), σV (v)) ∈
Πuv . We say that a labeling covers a vertex u if it covers

every edge incident to u. For any label cover instance Γ, let

MaxCov(Γ) denote the maximum number of vertices in U
that can be covered by a labeling, i.e.,

MaxCov(Γ) := max
σU :U→ΣU ,
σV :V→ΣV

|{u ∈ U | (σU , σV ) covers u}|.

The goal of the Max-Cover problem is to compute

MaxCov(Γ). We remark that the standard label cover prob-

lem (e.g., [35]) would try to maximize the number of

covered edges, as opposed to our Max-Cover problem, which

seeks to maximize the number of covered vertices.

Min-Label Problem: A multi-labeling of the graph, is a pair

of mappings σU : U → ΣU and σ̂V : V → 2ΣV . We say that

(σU , σ̂V ) covers an edge uv, if there exists β ∈ σ̂V (v) such

that (σ(u), β) ∈ Πuv . For any label cover instance Γ, let

MinLab(Γ) denote the minimum number of labels needed

to assign to vertices in V in order to cover all vertices in

U , i.e.,

MinLab(Γ) := min
(σU ,σ̂V )

∑
v∈V

|σ̂V (v)|

where the minimization is over multi-labelings (σU , σ̂V ) that

cover every edge in G.

Note that we can assign multiple labels to vertices in V
while each vertex in U must be assigned a unique label.

This makes MinLab different from the problem known in

the literature as MinRep (e.g., [35]) since MinRep allows

us to assign multiple labels to all vertices, even those in U .

Results. First, note that checking whether MaxCov(Γ) < r,

for any r ≥ 1, can be done by the following algorithms.

1) It can be done8 in O�(
(|U |

r

)
(|ΣU |)r) = O�((|U | ·

|ΣU |)r) time: First, enumerate all
(|U |

r

)
possible subsets

U ′ of U and all |ΣU ||U ′| possible labelings on vertices

in U ′. Once we fix the labeling on U ′, we only need

polynomial time to check whether we can label other

vertices so that all vertices in U ′ are covered.

2) It can be done in O�(|ΣV ||V |) time: Enumerate all

O�(|ΣV ||V |) possible labelings σV on V . After σV is

fixed, we can find labeling σU on U that maximizes the

number of vertices covered in U in polynomial time.

ETH can be restated as that these algorithms are the best

possible when |U | = Θ(|V |), |ΣU |, |ΣV | = O(1) and Π has

the projection property. Gap-ETH asserts further that this is

the case even to distinguish between MaxCov(Γ) = |U | and

MaxCov(Γ) ≤ (1− ε)|U |:
Theorem 12. Gap-ETH (Conjecture 5) is equivalent to the
following statement. There exist constants ε, δ > 0 such
that no algorithm can take a label cover instance Γ and
distinguish between the following cases in O(2δ|U |) time:
• MaxCov(Γ) = |U |, and
• MaxCov(Γ) < (1− ε)|U |.

This holds even when |ΣU |, |ΣV | = O(1), |U | = Θ(|V |)
and Π has the projection property.

The proof of the theorem is standard and is therefore

omitted from this extended abstract.

We will show that Theorem 12 can be extended to several

cases, which will be useful later. First, consider when the

first (O�((|U | · |ΣU |)r)-time) algorithm is faster than the

second. We show that, in this case, the first algorithm is

essentially the best even for r = O(1), and this holds even

when we know that MaxCov(Γ) = |U |.
For convenience, in the statements of Theorems 13 to 15

below, we will use the notation |Γ| to denote the size of the

label cover instance; in particular, |Γ| = |ΣU |+|ΣV |+|U |+
|V |. Furthermore, recall that the notation Ok,r(·) denotes any

multiplicative factor that depends only on k and r.

8Recall that we use O�(·) to hide factors polynomial in the input size.
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Theorem 13 (MaxCov with Small |U |). Assuming Gap-
ETH, there exist constants δ, ρ > 0 such that, for any
positive integers k ≥ r ≥ ρ, no algorithm can take a label
cover instance Γ with |U | = k and distinguish between the
following cases in Ok,r(|Γ|δr) time:
• MaxCov(Γ) = k and
• MaxCov(Γ) < r.

This holds even when |ΣV | = O(1) and Π has the projection
property.

We emphasize that it is important for applications in later

sections that r = O(1). In fact, the main challenge in

proving the theorem above is to prove it is true for r that is

arbitrarily small compared to |U |.
Secondly, consider when the second (O�(|ΣV ||V |)-time)

algorithm is faster; in particular when |V | � |U |. In this

case, we cannot make the soundness (i.e., the parameter r
in Theorem 13) to be arbitrarily small. (Roughly speaking,

the first algorithm can become faster otherwise.) Instead, we

will show that the second algorithm is essentially the best

possible for soundness as small as γ|U |, for any constant

γ > 0. More importantly, this holds for |V | = O(1) (thus

independent from the input size). This is the key property

of this theorem that we need later.

Theorem 14 (MaxCov with Small |V |). Assuming Gap-
ETH, there exist constants δ, ρ > 0 such that, for any positive
integer q ≥ ρ and any 1 ≥ γ > 0, no algorithm can take a
label cover instance Γ with |V | = q and distinguish between
the following cases in Oq,γ(|Γ|δq) time:
• MaxCov(Γ) = |U | and
• MaxCov(Γ) < γ|U |.

This holds even when |ΣU | ≤ (1/γ)O(1).

We remark that the above label cover instance does not

have the projection property.
In our final result, we turn to computing MinLab(Γ).

Since MaxCov(Γ) = |U | if and only if MinLab(Γ) = |V |,
a statement similar to Theorem 12 intuitively holds for dis-

tinguishing between MinLab(Γ) ≤ |V | and MinLab(Γ) >
(1+ε)|V |, i.e., we need O�(|ΣV ||V |) time. In the following

theorem, we show that this gap can be substantially ampli-

fied, while maintaining the property that |V | = O(1) (thus

independent from the input size).

Theorem 15 (MinLab Hardness). Assuming Gap-ETH,
there exist constants δ, ρ > 0 such that, for any positive
integers r ≥ q ≥ ρ, no algorithm can take a label cover
instance Γ with |V | = q and distinguish between the
following cases in Oq,r(|Γ|δq) time:
• MinLab(Γ) = q and
• MinLab(Γ) > r.

This holds even when |ΣU | = (r/q)O(q).

The rest of this section is devoted to the proofs of

Theorems 13 to 15.

B. Proof of Theorem 13

The proof proceeds by compressing the left vertex set U
of a label cover instance from Theorem 12. Specifically, each

new left vertex will be a subset of left vertices in the original

instance. In the construction below, these subsets will just

be random subsets of the original vertex set of a certain

size; however, the only property of random subsets we will

need is that they form a disperser. To clarify our proof, let

us start by stating the definition of dispersers here. Note

that, even though dispersers are often described in terms of

graphs or distributions in literatures (see, e.g., [36]), it is

more convenient for us to describe it in terms of subsets.

Definition 16. For any positive integers m, k, �, r ∈ N

and any constant ε ∈ (0, 1), an (m, k, �, r, ε)-disperser is
a collection I of k subsets I1, . . . , Ik ⊆ [m] each of size
� such that the union of any r different subsets from the
collection has size at least (1− ε)m.

The idea of using dispersers to amplify gap in hardness of

approximation bears a strong resemblance to the randomized

graph product [22]. Indeed, similar approaches have been

used before, both implicitly (e.g., [37]) and explicitly (e.g.,

[24], [25], [38]). In fact, even the reduction we use below

has been studied before by Zuckerman [24], [25]!

What differentiates our proof from previous works is the

setting of parameters. Since the reduction size (specifically,

the left alphabet size |ΣU |) blows up exponentially in � and

previous results aim to prove NP-hardness of approximating

Clique, � are chosen to be small (i.e., O(logm)). On the

other hand, we will choose our � to be Θε(m/r) since we

only aim to prove a running time lower bound of |ΣU |Ω(r).
The exact dependency of parameters can be found in the

claim below, which also states that random subsets will

be a disperser for such choice of parameters with high

probability. Here and throughout the proof, k and r should

be thought of as constants where k � r; these are the same

k, r as the ones in the statement of Theorem 13.

Claim 17. For any m, k, r ∈ N and any ε ∈ (0, 1), let
� = max{m, �3m/(εr)
} and let I1, . . . , Ik be �-element
subsets of [m] drawn uniformly independently at random.
If ln k ≤ m/r, then I = {I1, . . . , Ik} is an (m, k, �, r, ε)-
disperser with probability at least 1− e−m.

The proof of Claim 17 is via standard probabilistic method

and is deferred to the full version. With the definition of

dispersers and Claim 17 ready, we now prove Theorem 13.

Proof of Theorem 13: First, we take a label cover in-

stance Γ̃ = (G̃ = (Ũ , Ṽ , Ẽ),Σ
˜U ,Σ˜V , Π̃) as in Theorem 12.

We may assume that |Σ
˜U |, |Σ˜V | = O(1), and |Ũ | = Θ(|Ṽ |).

Moreover, let m = |Ũ | and n = |Ṽ |; for convenience,

we rename the vertices in Ũ and Ṽ so that Ũ = [m] and

Ṽ = [n]. Note that it might be useful for the readers to think

of Γ̃ as a 3-SAT instance where Ũ is the set of clauses and
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Ṽ is the set of variables.

Recall the parameter ε from Theorem 12 and the pa-

rameters k, r from the statement of Theorem 13. Let � :=
3m/(εr) and assume w.l.o.g. that � is an integer.

The new label cover (MaxCov) instance Γ = (G =
(U, V,E),ΣU ,ΣV ,Π) is defined as follows.

• The right vertices and right alphabet set remain un-

changed, i.e., V = Ṽ and ΣV = Σ
˜V .

• There are k vertices in U where each vertex is a random

set of � vertices of Ũ . More specifically, we define

U = {I1, . . . , Ik} where each Ii is a random �-element

subsets of [m] drawn independently of each other.

• The left alphabet set ΣU is Σ	
˜U

. For each I ∈ U , we

view each label α ∈ ΣU as a tuple (αu)u∈I ∈ (Σ˜U )
I ;

this is a partial assignment to all vertices u ∈ I in the

original instance Γ̃.

• We create an edge between I ∈ U and v ∈ V in E if

and only if there exists u ∈ I such that uv ∈ Ẽ. More

formally, E = {Iv : I ∩N
˜G(v) �= ∅}.

• Finally, we define the constraint ΠIv for each Iv ∈ E.

As stated above, we view each α ∈ ΣU as a partial

assignment (αu)u∈I for I ⊆ Ũ . The constraint ΠIv

then contains all (α, β) such that (αu, β) satisfies the

constraint Π̃uv for every u ∈ I that has an edge to v
in Γ̃. More precisely, ΠIv = {(α, β) = ((αu)u∈I , β) :
∀u ∈ I ∩N

˜G(v), (αu, β) ∈ Π̃uv}.
Readers who prefer the 3-SAT/CSP viewpoint of label

cover may think of each Ii as a collection of clauses in

the 3-SAT instance that are joined by an operator AND; to

satisfy Ii, the assignment must satisfy all clauses in Ii.
We remark that, if Π̃ has the projection property, then Π

also has projection property.

Completeness. Suppose there is a labeling (σ
˜U , σ˜V ) of Γ̃

that covers all vertices in Ũ . We take σV = σ
˜V and construct

σU by setting σU (I) = (σ
˜U (u))u∈I for each I ∈ U . Since

(σ
˜U , σ˜V ) covers all the vertices of Ũ , (σU , σV ) also covers

all the vertices of U . Therefore, MaxCov(Γ) = |U |.
Soundness. Recall Claim 17 that {I1, . . . , Ik} is an

(m, k, �, r, ε)-disperser w.h.p. Conditioned on this event

happening, we will prove the soundness property, i.e., if

MaxCov(Γ̃) < (1− ε)|Ũ |, then MaxCov(Γ) < r.

We prove by contrapositive. Assume that there is a label-

ing (σU , σV ) that covers at least r vertices Ii1 , · · · , Iir ∈ U .

We construct a labeling (σ
˜U , σ˜V ) as follows. First, let

σ
˜V = σV . Moreover, for each u ∈ Ii1 ∪ · · · ∪ Iir , let

σ
˜U (u) = (σU (Iij ))u where j ∈ [r] is an index such that

u ∈ Iij ; if there are multiple such j’s, just pick an arbitrary

one. Finally, for u ∈ U \ (Ii1 ∪ · · · ∪ Iir ), we set σ
˜U (u)

arbitrarily.

We claim that, every u ∈ Ii1 ∪ · · · ∪ Iir is covered

by (σ
˜U , σ˜V ) in the original instance Γ̃. To see that this

is the case, recall that σ
˜U (u) = (σU (Iij ))u for some

j ∈ [r] such that u ∈ Iij . For every v ∈ V , if uv ∈ E,

then, from how the constraint ΠIij v
is defined, we have

(σ
˜U (u), σ˜V (v)) = (σU (Iij )u, σV (v)) ∈ Π̃uv . In other

words, u is indeed covered by (σ
˜U , σ˜V ).

Hence, (σ
˜U , σ˜V ) covers at least |Ii1∪· · ·∪Iir | ≥ (1−ε)m,

where the inequality comes from the definition of dispersers.

As a result, MaxCov(Γ̃) ≥ (1− ε)|Ũ | as desired.

Running Time Lower Bound. Our construction gives a

MaxCov instance Γ with |U | = k and |ΣU | = |Σ
˜U |	 =

2Θ(m/(εr)), whereas |V | and |ΣV | remain n and O(1)
respectively. Assume that Gap-ETH holds and let δ0 be the

constant in the running time lower bound in Theorem 12.

Let δ be any constant such that 0 < δ < δ0ε/c where c is

the constant such that |ΣU | ≤ 2cm/(εr).

Suppose for the sake of contradiction that, for some

k ≥ r ≥ ρ, there is an algorithm that distinguishes whether

MaxCov(Γ) = k or MaxCov(Γ) < r in Ok,r(|Γ|δr) time.

Observe that, in our reduction, |U |, |V |, |ΣV | = |ΣU |o(1).
Hence, the running time of the algorithm on input Γ is at

most Ok,r(|ΣU |δr(1+o(1))) ≤ Ok,r(|ΣU |δ0εr/c) ≤ O(2δ0m)
where the first inequality comes from our choice of δ
and the second comes from |ΣU | ≤ 2cm/(εr). Thanks

to the completeness and soundness of the reduction, this

algorithm can also distinguish whether MaxCov(Γ̃) = |Ũ |
or MaxCov(Γ̃) < (1 − ε)|Ũ | in time O(2δ0m). From

Theorem 12, this is indeed a contradiction.

C. Proof of Theorem 14

The proof proceeds by compressing the right vertex
set V of a label cover instance from Theorem 12 plus

amplifying the hardness gap. The gap amplification step

is similar to that in the proof of Theorem 13 except that,

since here MaxCov(Γ) is not required to be constant in the

soundness case, we can simply take all subsets of appropriate

sizes instead of random subsets as in the previous proof.

Proof of Theorem 14: First, we take a label cover in-

stance Γ̃ = (G̃ = (Ũ , Ṽ , Ẽ),Σ
˜U ,Σ˜V , Π̃) as in Theorem 12.

We may assume that |Σ
˜U |, |Σ˜V | = O(1), and |Ũ | = Θ(|Ṽ |).

We also assume w.l.o.g. that Ũ = [m] and Ṽ = [n].
Recall the parameter ε from Theorem 12 and the pa-

rameters q, γ from Theorem 14. Let � = ln(1/γ)/ε. We

assume w.l.o.g. that � is an integer and that n is divisible

by q. The new label cover (MaxCov) instance Γ = (G =
(U, V,E),ΣU ,ΣV ,Π) is defined as follows.

• First, partition Ṽ = [n] into q parts J1, . . . , Jq , each of

size n/q. Then, let V = {J1, . . . , Jq}. In other words,

we merge n/q vertices of Ṽ into a single vertex in V .

• Let U be
(
[m]
	

)
, the collection of all �-element subsets

of [m] = Ũ .

• The left alphabet set ΣU is Σ	
˜U

. For each I ∈ U , we

view each label α ∈ ΣU as a tuple (αu)u∈I ∈ (Σ˜U )
I ;

this is a partial assignment to all vertices u ∈ I in the

original instance Γ̃.
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• Our graph G is simply a complete bipartite graph, i.e.,

for every I ∈ U and J ∈ V , IJ ∈ E(G).

• The label set of V is ΣV = Σ
n/q
˜V

, and the label set of

U is ΣU = Σ	
˜U

. For each I ∈ U , we view each label

α ∈ ΣU as a tuple (αu)u∈I ∈ (Σ˜U )
I ; this is simply a

partial assignment to all vertices u ∈ I in the original

instance Γ̃. Similarly, for each J ∈ V , we view each

label β ∈ ΣV as (βv)v∈J ∈ (Σ˜V )
J .

• Finally, we define ΠIJ for each IJ ∈ E. The constraint

ΠIJ contains all (α, β) such that (αu, βv) satisfies

the constraint Π̃uv for every u ∈ I, v ∈ J such

that uv ∈ Ẽ. More precisely, ΠIJ = {(α, β) =
((αu)u∈I , (βv)v∈J) : ∀u ∈ I, v ∈ J such that uv ∈
Ẽ, (αu, βv) ∈ Π̃uv}.

We remark that Π may not have the projection property

even when Π̃ has the property.

Completeness. Suppose that there is a labeling (σ
˜U , σ˜V ) of

Γ̃ that covers all |Ũ | left-vertices. We construct (σU , σV ) by

setting σU (I) = (σ
˜U (u))u∈I for each I ∈ U and σV (J) =

(σ
˜V (v))v∈J for each J ∈ V . It is easy to see that (σU , σV )

covers all the vertices of U . Therefore, MaxCov(Γ) = |U |.
Soundness. Suppose that MaxCov(Γ̃) < (1 − ε)|Ũ |.
Consider any labeling (σU , σV ) of Γ; we will show that

(σU , σV ) covers less than γ|U | left-vertices.

Let I1, . . . , It ∈ U be the vertices covered by (σU , σV ).
Analogous to the proof of Theorem 13, we define a labeling

(σ
˜U , σ˜V ) as follows. First, σ

˜V is naturally defined from σV

by σ
˜V = σV (J)v where J is the partition that contains

v. Moreover, for each u ∈ Ii1 ∪ · · · ∪ Iir , let σ
˜U (u) =

(σU (Iij ))u where j ∈ [r] is an index such that u ∈ Iij ; for

u ∈ U \ (Ii1 ∪ · · · ∪ Iir ), we set σ
˜U (u) arbitrarily.

Similar to the proof of Theorem 13, it is not hard to see

that every vertex in I1 ∪ · · · ∪ It is covered by (σ
˜U , σ˜V ) in

Γ̃. Since MaxCov(Γ̃) < (1 − ε)|Ũ |, we can conclude that

|I1∪· · ·∪It| < (1−ε)|Ũ |. Since each Ii is simply an �-size

subset of I1 ∪ · · · ∪ It, we can conclude that

t <

(
(1− ε)|Ũ |

�

)
≤ (1− ε)	|U | ≤ e−ε	|U | = γ|U |.

Hence, (σU , σV ) covers less than γ|U | left-vertices.

Running Time Lower Bound. Our construction gives an

instance Γ with |V | = q and |ΣV | = |Σ
˜V |n/q = 2Θ(n/q);

moreover, |U | = m	 and |ΣU | = |Σ
˜U |	 = (1/γ)O(1).

Assume that Gap-ETH holds and let δ0 be the constant

from Theorem 12. Let δ be any positive constant such that

δ < δ0/c where c is the constant such that |ΣV | ≤ 2cm/q .

Suppose for the sake of contradiction that, for some

q ≥ ρ and 1 ≥ γ > 0, there is an algorithm that

distinguishes whether MaxCov(Γ) = |U | or MaxCov(Γ) <
γ|U | in Oq,γ(|Γ|δq) time. Observe that, in our reduc-

tion, |U |, |V |, |ΣU | = |ΣV |o(1). Hence, the running time

of the algorithm on input Γ is Oq,γ(|ΣV |δq(1+o(1))) ≤

Oq,γ(|ΣV |δ0q/c) ≤ O(2δ0m) where the first inequality

comes from our choice of δ and the second comes from

|ΣV | ≤ 2cm/q . Thanks to the completeness and soundness

of the reduction, this algorithm can also distinguish whether

MaxCov(Γ̃) = |Ũ | or MaxCov(Γ̃) < (1 − ε)|Ũ | in time

O(2δ0m). From Theorem 12, this is a contradiction.

V. PROOF OF THEOREM 15

The proof proceeds simply by showing that, if an algo-

rithm can distinguish between the two cases in the statement

of Theorem 15, it can also distinguish between the two cases

in Theorem 14 (with an appropriate value of γ).

Proof of Theorem 15: Consider the label cover instance

Γ = (G = (U, V,E),ΣU ,ΣV ,Π) given by Theorem 14 with

γ = (r/q)−q . Assume w.l.o.g. that no vertex in G is isolated.

Completeness. If MaxCov(Γ) = |U |, then there is a

labeling (σU , σV ) that covers every edge; this also induces a

multi-labeling that covers every edge. Hence, MinLab(Γ) =
|V |.
Soundness. Suppose contrapositively that MinLab(Γ) ≤
r, i.e., there exists a multi-labeling (σU , σ̂V ) such that∑

v∈V |σ̂V (v)| ≤ r and every vertex is covered. Since there

is no isolated vertex in G, σ̂V (v) �= ∅ for all v ∈ V .

Consider σV : V → ΣV sampled randomly by, for each

v ∈ V , letting σV (v) be a random element of σ̂V (v). From

linearity of expectation, the expected number of u ∈ U that

are covered by the labeling (σU , σV ) is equal to∑
u∈U

Pr
σV

[(σU , σV ) covers u] ≥
∑
u∈U

∏
v∈N(u)

|σ̂V (v)|−1

(From AM-GM inequality) ≥
∑
u∈U

(
1

q

∑
v∈V

|σ̂V (v)|
)−q

≥
∑
u∈U

|U |(r/q)−q = γ|U |.

where the first inequality comes from the fact that there

exists β ∈ σ̂V (v) such that (σU (u), β) ∈ Πuv . This implies

that MaxCov(Γ) ≥ γ|U |, which concludes our proof.

VI. HARDNESS FOR COMBINATORIAL PROBLEMS

A. Maximum Clique

Recall that, for any graph G, we can decide whether

Clique(G) ≥ r by enumerating all r-vertex subsets of

V (G), which takes |V (G)|O(r) time. We show that this is

essentially the best we can do even when we are given a

promise that a clique of size q � r exists:

Theorem 18. Assuming Gap-ETH, there exist constants
δ, r0 > 0 such that, for any positive integers q ≥ r ≥ r0, no
algorithm can take a graph G and distinguish between the
following cases in Oq,r(|V (G)|δr) time:
• Clique(G) ≥ q and
• Clique(G) < r.
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The above theorem simply follows from plugging the

FGLSS reduction below to Theorem 13.

Theorem 19 ([26]). Given a label cover instance Γ = (G =
(U, V,E),ΣU ,ΣV ,Π) with projection property as in Sec-
tion IV, there is a reduction that produces a graph HΓ such
that |V (HΓ)| = |U ||ΣU | and Clique(HΓ) = MaxCov(Γ).
The reduction takes O(|V (HΓ))|2|V |) time.

For clarity, we would like to note that, in our terminolo-

gies, the FGLSS graph [26] is be defined as follows:

• The vertex set V (HΓ) is simply U × ΣU .

• There is an edge between two vertices (u, α), (u′, α′) ∈
V (HΓ) if and only if, Πuv(α) = Πu′v(α

′) (i.e., recall

that we have a projection constraint, so we can repre-

sent the constraint Πuv as a function Πuv : ΣU → ΣV .)

Proof of Theorem 18: Assume that Gap-ETH holds and

let δ, ρ be as in Theorem 13. Let r0 = max{ρ, 2/δ}. Suppose

for the sake of contradiction that, for some q ≥ r ≥ r0, there

is an algorithm A that distinguishes between Clique(G) ≥ q
and Clique(G) < r in Oq,r(|V (G)|δr) time.

Given a label cover instance Γ with projection property,

we can distinguish whether MaxCov(Γ) ≥ q or MaxCov(Γ)
< r as follows. We first run the FGLSS reduction to produce

a graph HΓ and then use A to decide whether Clique(HΓ) ≥
q or Clique(HΓ) < r. From Clique(HΓ) = MaxCov(Γ),
this indeed correctly distinguishes between MaxCov(Γ) ≥ q
and MaxCov(Γ) < r; moreover, the running time of

the algorithm is Oq,r(|V (HΓ)|δr) + O(|V (HΓ))|2|V |) ≤
Oq,r(|Γ|δr). From Theorem 13, this is a contradiction.

Theorem 18 immediately implies the totally FPT inap-

proximability of Clique:

Corollary 20. Assuming Gap-ETH, Maximum Clique is
inherently enumerative and thus totally FPT inapproximable.

B. Set Cover and Dominating Set

It is well-known that DomSet is equivalent to the mini-
mum set cover problem (SetCov): Given a universe U of n
elements and a collection S of m subsets S1, . . . , Sm ⊆ U ,

the goal is to find the minimum number of subsets of

S whose union equals U . We denote such number by

SetCov(U ,S). Since it is more convenient for us, we will

work with SetCov instead of DomSet.
Note that checking whether SetCov(U ,S) ≤ q can be

done in O�(|S|q) time by enumerating all q-element subsets

of S. We show that this essentially the best we can do: Even

when the algorithm is promised the existence of a set cover

of size q, it cannot find a set cover of size r for any constant

r (even when r � q) in time Oq,r((|S||U|)δq) for some

constant δ > 0 independent of q, r:

Theorem 21. Assuming Gap-ETH, there exist constants
δ, q0 > 0 such that, for any integers r ≥ q ≥ q0, no algo-
rithm can take a SetCov instance (U ,S), and distinguish
between the following cases in Oq,r((|S||U|)δq) time:

• SetCov(U ,S) ≤ q.
• SetCov(U ,S) > r.

The above theorem follows from plugging in the following

reduction from MinLab to SetCov to Theorem 22.

Theorem 22. There is a reduction that on input Γ = (G =
(U, V,E),ΣU ,ΣV ,Π) of MinLab instance, produces a set
cover instance (U ,S) such that
• MinLab(Γ) = SetCov(U ,S)
• |U| = |U ||V ||ΣU | and |S| = |V ||ΣV |
• The reductions runs in time poly(|U|, |S|)
We defer the explanation of this reduction to Sec-

tion VI-B1. For now, let us turn to the proof of Theorem 21.

Proof of Theorem 21: Assume that Gap-ETH holds

and let δ, ρ be as in Theorem 15. Let q0 = max{ρ, c/δ}
where c is the constant such that the running time of the

reduction in Theorem 22 is O((|U||S|)c). Suppose for the

sake of contradiction that, for some r ≥ q ≥ q0, there is an

algorithm A that distinguishes between SetCov(U ,S) ≤ q
and SetCov(U ,S) > r in Oq,r((|S||U|)δq) time.

Given a label cover instance Γ where |V |, |ΣU | =
Oq,r(1), we can distinguish whether MinLab(Γ) ≤ q or

MinLab(Γ) > r as follows. We first run the reduction

from Theorem 22 to produce a SetCov instance (U ,S)
and then use A to decide whether SetCov(U ,S) ≤ q or

SetCov(U ,S) > r. From SetCov(U ,S) = MinLab(Γ),
this indeed correctly distinguishes between MinLab(Γ) ≤ q
and MinLab(Γ) > r; moreover, the running time of the

algorithm is Oq,r((|U||S|)δq)+O((|U||S|)c) ≤ Oq,r(|Γ|δq).
From Theorem 15, this is a contradiction.

As a corollary of Theorem 21, we immediately arrive at

FPT inapproximability of Set Cover.

Corollary 23. Assuming Gap-ETH, Set Cover is inherently
enumerative and thus totally FPT inapproximable.

1) Proof of Theorem 22: Our construction is based on

a standard hypercube set system, as used by Feige [27] in

proving the hardness of the k-Maximum Coverage problem.

We provide it here for completeness.

Hypercube set system: Let z, k ∈ N be parameters. The

hypercube set system H(z, k) is a set system (U ,S) with

the ground set U = [z]k, and the collection S of canonical
sets {Xi,a}i∈[z],a∈[k] defined as

Xi,a = {
x : 
xa = i}
In other words, each set Xi,a contains the vectors whose

ath coordinate is i. A nice property of this set system is

that, it can only be covered completely if all canonical sets

corresponding to some ath coordinate are chosen.

Proposition 24. Consider any sub-collection S ′ ⊆ S . We
have

⋃S ′ = U if and only if there is a value a ∈ [k] for
which X1,a, X2,a, . . . , Xz,a ∈ S ′.
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The proof of Proposition 24 is straightforward and is

omitted from this version of the paper.

The construction: Our reduction starts from the MinLab
instance Γ = (G,ΣU ,ΣV ,Π). We will create the set system

I = (U ,S). We make |U | different copies of the hypercube

set system: For each vertex u ∈ U , we have the hypercube

set system (Uu,Su) = H(NG(u),ΣU ), i.e., the ground set

Uu is a copy of NG(u)
ΣU and Su contains |NG(u)||ΣU |

“virtual” sets, that we call {Su
v,a}v∈NG(u),a∈ΣU

where each

such set corresponds to a canonical set of the hypercube. We

remark that these virtual sets are not the eligible sets in our

instance I. For each vertex v ∈ V , for each label b ∈ ΣV ,

we define a set

Sv,b =
⋃

u∈NG(v),(a,b)∈Πuv

Su
v,a

The set system (U ,S) in our instance is simply:

U =
⋃
u∈U

Uu and S = {Sv,b : v ∈ V, b ∈ ΣV }

Notice that |S| = |V ||ΣV | and |U| = |U ||V ||ΣU |. This

completes the description of our instance.

Analysis: We argue that MinLab(Γ) = SetCov(U ,S).
First, we will show that MinLab(Γ) ≤ SetCov(U ,S). Let

(σU , σ̂V ) be an optimal solution of MinLab on Γ. For each

v ∈ V , the SetCov solution chooses the set Sv,b for all b ∈
σ̂V (v). Denote this solution by S ′ ⊆ S . The total number

of sets chosen is exactly
∑

v |σ̂(v)|, the cost of MinLab(Γ).
We argue that this is a feasible set cover: For each u, since

u is covered by (σU , σ̂V ), there is a label bv ∈ σ̂V (v) such

that (σU (u), bv) ∈ Πuv for every v ∈ NG(u). Notice that

Su
v,σU (u)

⊆ Sv,bv ∈ S ′ for every v ∈ NG(u), so we have⋃
S∈S′

S ⊇
⋃

v∈NG(u)

Sv,bv ⊇
⋃

v∈NG(u)

Su
v,σU (u)

= Uu

where the last equality comes from Proposition 24. In other

words, S ′ covers all elements in Uu. Hence, S ′ is indeed a

valid SetCov solution for (U ,S).
To prove the converse, consider a collection of sets

{Sv,b}(v,b)∈Λ that covers the whole universe U . We define

the (multi-)labeling σ̂V : V → 2ΣV where σ̂V (v) = {b :
(v, b) ∈ Λ} for each v ∈ V . Clearly,

∑
v∈V |σ̂V (v)| = |Λ|,

so the cost of σ̂V as a solution for MinLab is exactly the

cost of SetCov. We verify that all left vertices u ∈ U of

Γ are covered (and along the way will define ΣU (u) for

all u ∈ U .) Consider each vertex u ∈ U . The fact that

the ground elements in Uu are covered implies that (from

Proposition 24) there is a label au ∈ ΣU where all virtual

sets {Su
v,au

}v∈NG(u) are included in the solution. Therefore,

for each v ∈ NG(u), there must be a label bv ∈ σ̂V (v) such

that aubv ∈ Πuv . We simply define σU (u) = au. Therefore,

the vertex u is covered by the assignment (σU , σ̂V ).

VII. CONCLUSION AND DISCUSSIONS

We prove that Clique and DomSet are totally FPT inap-

proximable. In fact, we show a stronger property that they

are inherently enumerative, i.e., the best way to approximate

both problems is to essentially enumerate all possibilities.

Since Clique and DomSet are complete problems for the

class W[1] and W[2] respectively, it might be possible that

these two problems can be sources of FPT-inapproximability

of many other problems that admit no FPT algorithms.

Remark also that there are some problems that are known

to be totally FPT-inapproximable under weaker assumptions;

examples of such problems are independent dominating set
and induced path. The former has been shown to be FPT-

inapproximable under the assumption FPT �= W[2] in [39].

For the induced path problem, we show in Appendix C of the

full version that it is FPT-inapproximable assuming FPT �=
W[1]. It would be interesting to understand whether it is

possible to also base total FPT-inapproximability of Clique
and DomSet under assumptions that are weaker than Gap-

ETH, such as FPT �= W[1] or ETH. To this end, we note that

Chen and Lin [11] showed the inapproximability of DomSet
under FPT �= W[1] (resp., ETH), but their inapproximability

ratio is only any constant (resp., log1/4−ε(OPT)); if their

result could be extended to exclude f(OPT)-approximation

for any function f , then DomSet would indeed be totally

FPT-inapproximable under weaker assumptions.

Another interesting research direction is to study the trade-

off between the running time and the approximation ratio of

problems that are known to be FPT-approximable or admit

FPT (exact) algorithms. The exploration of such trade-off

may be useful in both theory and practice.
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