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Abstract—A weight-t halfspace is a Boolean function f(x) =
sign(w1x1 + · · · + wnxn − θ) where each wi is an integer
in {−t, . . . , t}. We give an explicit pseudorandom generator
that δ-fools any intersection of k weight-t halfspaces with
seed length poly(log n, log k, t, 1/δ). In particular, our result
gives an explicit PRG that fools any intersection of any
quasipoly(n) number of halfspaces of any polylog(n) weight to
any 1/polylog(n) accuracy using seed length polylog(n). Prior
to this work no explicit PRG with non-trivial seed length was
known even for fooling intersections of n weight-1 halfspaces
to constant accuracy.

The analysis of our PRG fuses techniques from two different
lines of work on unconditional pseudorandomness for different
kinds of Boolean functions. We extend the approach of Harsha,
Klivans and Meka [HKM12] for fooling intersections of regular
halfspaces, and combine this approach with results of Bazzi
[Baz07] and Razborov [Raz09] on bounded independence
fooling CNF formulas. Our analysis introduces new coupling-
based ingredients into the standard Lindeberg method for
establishing quantitative central limit theorems and associated
pseudorandomness results.

Keywords-Unconditional derandomization; intersection of
halfspaces; Lindeberg method

I. INTRODUCTION

A halfspace, or linear threshold function (henceforth

abbreviated LTF), over {−1, 1}n is a Boolean function

f that can be expressed as f(x) = sign(w1x1 + · · · +
wnxn − θ) for some real values w1, . . . , wn, θ. LTFs are

a natural class of Boolean functions which play a central

role in many areas such as machine learning and voting

theory, and have been intensively studied in complexity

theory from many perspectives such as circuit complex-

ity [GHR92], [Raz92], [Hås94], [SO03], communication

complexity [Nis93], [Vio15], Boolean function analysis

[Cho61], [GL94], [Per04], [Ser07], [O’D14], property test-

ing [MORS09], [MORS10], pseudorandomness [DGJ+10],

[MZ13], [GKM15] and more.

Because of the limited expressiveness of a single LTF

(even a parity function over two variables cannot be ex-

pressed as an LTF), it is natural to consider Boolean

functions that are obtained by combining LTFs in various

ways. Perhaps the simplest and most natural functions of

this sort are intersections of LTFs, i.e. Boolean functions of

the form F1∧· · ·∧Fk where each Fj is an LTF. Intersections

of LTFs have been studied in many contexts including

Boolean function analysis [Kan14], [She13a], [She13b],

computational learning (both algorithms [BK97], [KOS04],

[KOS08], [Vem10] and hardness results [KS06], [KS11]),

and pseudorandomness [GOWZ10], [HKM12]. We further

note that the set of feasible solutions to an {0, 1}-integer

program with k constraints corresponds precisely to the

set of satisfying assignments of an intersection of k LTFs;

understanding the structure of these sets has been the subject

of intensive study in computer science, optimization, and

combinatorics.

This paper continues the study of intersections of LTFs

from the perspective of unconditional pseudorandomness; in

particular, we are interested in constructing explicit pseudo-
random generators (PRGs) for intersections of LTFs. Recall

the following standard definitions:

Definition 1 (Pseudorandom generator). A function Gen :
{−1, 1}r → {−1, 1}n is said to δ-fool a function F :
{−1, 1}n → {−1, 1} with seed length r if∣∣∣∣ E

U ′←{−1,1}r
[
F (Gen(U ′))

]− E
U←{−1,1}n

[
F (U)

]∣∣∣∣ ≤ δ.
Such a function Gen is said to be a explicit pseudorandom

generator that δ-fools a class F of n-variable functions if
Gen is computable by a deterministic uniform poly(n)-time
algorithm and Gen δ-fools every function F ∈ F .
A. Prior work

Before describing our results, we recall relevant prior

work on fooling LTFs and intersections of LTFs.
Fooling a single LTF: In [DGJ+10] Diakonikolas et

al. showed that any Õ(1/δ2)-wise independent distribution

over {−1, 1}n suffices to δ-fool any LTF, and thereby gave

a PRG for single LTFs with seed length Õ(1/δ2) · log n.

Soon after, [MZ13] gave a more efficient PRG for LTFs

with seed length O(log n + log2(1/δ)). They did this by

first developing an alternative Õ(1/δ2) · log n seed length

PRG for regular LTFs; these are LTFs in which no in-

dividual weight is large compared to the total size of all

the weights (we give precise definitions later). [MZ13]

built on this PRG for regular LTFs using structural results

for LTFs and PRGs for read-once branching programs to
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obtain their improved O(log n+ log2(1/δ)) seed length for

fooling arbitrary LTFs. More recently, [GKM15] gave a PRG

which δ-fools any LTF over {−1, 1}n using seed length

O(log(n/δ)(log log(n/δ))2); this is the current state-of-the-

art for fooling a single LTF.

Since the approach of [MZ13] for fooling regular LTFs is

important for our discussion in later sections, we describe

it briefly here. The [MZ13] PRG for regular LTFs employs

hashing and other techniques; its analysis crucially relies

on the Berry–Esséen theorem [Ber41], [Ess42]. Recall that

the Berry–Esséen theorem is an “invariance principle” for

the distribution of linear forms; it (or rather, a special case

of it) says that for w a regular vector, the two random

variables w·U and w·G, where U is uniform over {−1, 1}n
and G is drawn from the standard n-dimensional Gaussian

distribution N (0, 1)
n

, are close in CDF distance. Roughly

speaking, the [MZ13] PRG analysis for τ -regular LTFs

proceeds by showing that the limited randomness provided

by their generator is sufficient to apply the Berry–Esséen

theorem (over a certain set of roughly 1/τ2 independent

random variables). We give a more detailed description of

the structure of the [MZ13] PRG in Section II.

Fooling intersections of regular LTFs: Now we turn to

results on fooling intersections of LTFs. Essentially simulta-

neously with [MZ13] (in terms of conference publication),

[HKM12] gave a PRG for intersections of regular LTFs.

Their PRG Õ((log k)8/5τ1/5)-fools any intersection of k
many τ -regular LTFs with seed length O((log n log k)/τ).
As we discuss in in Section II, the [HKM12] generator has

the same structure as the [MZ13] PRG for regular LTFs, but

with different (larger) parameter settings and a significantly

more involved analysis. At the heart of the correctness proof

of the [HKM12] PRG is a new invariance principle that

[HKM12] prove for k-tuples (w(1) · U , . . . , w(k) · U) of

regular linear forms, generalizing the Berry–Esséen theorem

which as described above applies to a single regular linear

form. With this new invariance principle in hand, to prove

their PRG theorem [HKM12] argue (similar in spirit to

[MZ13]) that the limited randomness provided by their

generator is sufficient for their new k-dimensional invariance

principle.

Note that even the k = 1 case of the invariance principle

(the Berry–Esséen theorem) does not give a meaningful

bound for non-regular linear forms. As a simple example,

consider the trivial linear form x1, which is highly non-

regular: the two one-dimensional random variables U1 and

G1, where U1 is uniform over {−1, 1} and G1 is dis-

tributed according to N (0, 1), have CDF distance ≈ 0.341.

And indeed the analysis of the [HKM12] PRG only goes

through for intersections of LTFs in which all the LTFs

are regular. So while the [HKM12] PRG has an extremely

good (polylogarithmic) dependence on the number of LTFs

in the intersection, the regularity requirement means that the

[HKM12] PRG theorem cannot be applied, for example, to

fool the class of intersections of LTFs in which each weight

is either 0 or 1.

The PRG of Gopalan, O’Donnell, Wu, and Zuck-
erman: Around the same time, [GOWZ10] gave a

PRG that δ-fools intersections of k arbitrary LTFs

with seed length O((k log(k/δ) + log n) · log(k/δ)),
and indeed δ-fools any depth-k size-s decision tree

that queries LTFs at its internal nodes with seed

length O((k log(ks/δ) + log n) · log(ks/δ)). Their ap-

proach builds on the PRG of [MZ13] for general LTFs; one

central ingredient is a generalization of structural results for

single LTFs used in [MZ13] to k-tuples of LTFs. Both this

generalization, and the read-once branching program based

techniques from [MZ13] (which are extended in [GOWZ10]

to the context of k-tuples of LTFs), necessitate a seed length

which is at least linear in k. So while the [GOWZ10] PRG

is is notable for being able to handle intersections of general

LTFs, their seed length’s linear dependence in k means

that their seed length is nΩ(1) whenever k = nΩ(1), and

furthermore their result does not give a non-trivial PRG for

intersections of k ≥ n many LTFs.

1) A conceptual challenge: We elaborate briefly on an

issue related to the linear-in-k dependence of the [GOWZ10]

generator discussed above. A standard approach to ana-

lyze non-regular LTFs, both in pseudorandomness and in

other subfields of complexity theory such as analysis of

Boolean functions and learning theory [DS13], [DRST14],

[DSTW14], [DDS16], [FGRW09], [CSS16], is to reduce the

analysis of non-regular LTFs to that of regular LTFs via a

“critical index” argument (see [Ser07]). Indeed, most pre-

vious pseudorandomness results for classes involving non-

regular LTFs and PTFs—general LTFs [DGJ+10], [MZ13],

functions of LTFs [GOWZ10], degree-d PTFs and functions

of such PTFs [DKN10], [MZ13], [DDS14], [DS14]—make

use of such a reduction to the regular case. In working with

functions that involve k LTFs (or PTFs), this analysis (see

[DDS14], [GOWZ10]) involves “multi-critical-index” argu-

ments, originating in [GOWZ10], which necessitate an Ω(k)
seed length dependence; indeed, this linear-in-k dependence

was highlighed in [HKM12] as a conceptual challenge to

overcome in extending their results to intersections of k non-

regular LTFs.

In this work we give the first analysis that is able to handle

an interesting class of functions involving k non-regular

LTFs while avoiding this linear-in-k cost that is inherent to

multi-critical-index based arguments, and in fact achieving

a polylogarithmic dependence on k.

B. Our main result: fooling intersections of low-weight
LTFs

It is easy to see that every LTF f : {−1, 1}n → {−1, 1}
has some representation as f(x) = sign(w ·x−θ) where the

coefficients w1, . . . , wn are all integers; a standard way of

measuring the “complexity” of an LTF is by the size of its
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integer weights. It has been known at least since the 1960s

[MTT61], [Hon87], [Rag88] that every n-variable LTF has

an integer representation with max |wi| ≤ nO(n), and Håstad

has shown [Hås94] that there are LTFs that in fact require

maxwi = nΩ(n) for any integer representation. However, in

many settings, LTFs with small integer weights are of special

interest. Such LTFs are often the relevant ones in contexts

such as voting systems or contexts where, e.g., biological or

physical constraints may limit the size of the weights. From

a more theoretical perspective, it is well known that sample

complexity bounds for many commonly used LTF learning

methods, such as the Perceptron and Winnow algorithms, are

essentially determined by the size of the integer weights.

We say that f is a weight-t LTF if it can be represented as

f(x) = sign(w ·x−θ) where each wi is an integer satisfying

|wi| ≤ t. Note that arguably the simplest and most natural

LTFs — unweighted threshold functions, with the majority

function as a special case — have weight 1.

Our main result is an efficient PRG for fooling intersec-

tions of low-weight LTFs:

Theorem 1 (PRG for intersections of low-weight LTFs).
For all values of k, t ∈ N and δ ∈ (0, 1), there is an
explicit pseudorandom generator that δ-fools any intersec-
tion of k weight-t LTFs over {−1, 1}n with seed length
poly(log n, log k, t, 1/δ).

Recalling the results of [HKM12], [GOWZ10] described

in Section I-A, prior to this work no explicit PRG with

non-trivial seed length was known even for fooling in-

tersections of n weight-1 LTFs to constant accuracy. (In

fact, no 20.99n-time algorithm was known for deterministic

approximate counting of satisfying assignments of such an

intersection; since such an algorithm is allowed to inspect

the intersection of halfspaces which is its input, while a

PRG is “input-oblivious”, giving such an algorithm is an

easier problem than constructing a PRG.) In contrast, our

result gives an explicit PRG that fools any intersection

of any quasipoly(n) number of LTFs of any polylog(n)
weight to any 1/polylog(n) accuracy using seed length

polylog(n). For any c > 0 our result also gives an ex-

plicit PRG with seed length nc that fools intersections of

exp(nΩ(1)) many LTFs of weight nΩ(1) to accuracy 1/nΩ(1).
Recalling the correspondence between intersections of LTFs

and {0, 1}-integer programs, our PRG immediately yields

new deterministic algorithms for approximately counting the

number of feasible solutions to broad classes of {0, 1}-
integer programs.

Our most general PRG result: We obtain Theorem 1

as an easy consequence of a PRG that fools a more

general class of intersections of LTFs. To describe this

class we require some terminology. We say that a vector

w over Rn is s-sparse if at most s coordinates among

w1, . . . , wn are nonzero. We similarly say that a linear

threshold function sign(w · x − θ) is s-sparse if w is s-

sparse. Following [HKM12], we say that a linear form w =

(w1, . . . , wn) with norm ‖w‖ := (∑n
i=1 w

2
i

)1/2
is τ -regular

if
∑n

i=1 w
4
i ≤ τ2‖w‖2, and we say that a linear threshold

function sign(w · x− θ) is τ -regular if the linear form w is

τ -regular. Finally, we say that F : {−1, 1}n → {−1, 1} is

a (k, s, τ)-intersection of LTFs if F = F1 ∧ · · · ∧ Fk where

each Fj is an LTF which is either s-sparse or τ -regular.

Our most general PRG result is the following:

Theorem 2 (Our most general PRG, informal statement).
For all values of k, s ∈ N and τ ∈ (0, 1), there
is an explicit pseudorandom generator with seed length
poly(log n, log k, s, 1/τ) that fools any (k, s, τ)-intersection
of LTFs to accuracy δ = poly(log k, τ).

In Section IV-A we give the formal statement of Theo-

rem 2 and show how Theorem 1 follows from Theorem 2.

II. OUR APPROACH

As explained in Section I-A, invariance-based arguments

are not directly useful for our task of fooling intersections

of low-weight LTFs, since the invariance principle does not

give a non-trivial bound even for a single low-weight LTF.

Nevertheless, we are able to show that a generator with the

same structure as the [MZ13], [HKM12] generators (but now

with slightly larger parameter settings than were used in the

[HKM12] generator) indeed fools any (k, s, τ)-intersection

of LTFs. We do this via an analysis that brings in ingredients

that are novel in the context of fooling intersections of LTFs;

in particular, we use results of Bazzi [Baz07] and Razborov

[Raz09] on bounded independence fooling depth-2 circuits.

How are depth-2 circuits relevant to intersections of LTFs?

A starting point for our work is to re-express a (k, s, τ)-
intersection of LTFs using a different representation, in

which we replace each s-sparse LTF by a CNF formula

computing the same function over {−1, 1}n. The following

is an immediate consequence of the fact that any s-sparse

LTF depends on at most s variables:

Fact II.1. Let F be a (k, s, τ)-intersection of LTFs. Then
F ≡ H ∧G, where
• H is the intersection of at most k many τ -regular LTFs.
• G is a width-s CNF formula with at most k ·2s clauses;

We refer to a function of the form H ∧ G as above as a

(k, s, τ)-CNFLTF. We can thus restate our goal as that of

designing a PRG to fool any (k, s, τ)-CNFLTF: with this

perspective it is not surprising that pseudorandomness tools

for fooling CNF formulas can be of use.

A. The structure of our PRG

To describe our approach we need to explain the gen-

eral structure of the PRG which is used in [MZ13] for

regular LTFs, in [HKM12] for intersections of regular

LTFs, and in our work for (k, s, τ)-intersections of LTFs.

The construction uses an rhash-wise independent family
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H of hash functions h : [n] → [�], and an rbucket-
wise independent generator outputting strings in {−1, 1}n,

which we denote G . The overall generator, which we de-

note Gen, on input (h,X(1), . . . , X(�)) outputs the string

Gen(h,X(1), . . . , X(�)) := Y ∈ {−1, 1}n, where Yh−1(b) =

G (X(b))h−1(b) for all b ∈ [�]. (Here and elsewhere, for Y an

n-bit string and S ⊆ [n] we write YS to denote the |S|-bit

string obtained by restricting Y to the coordinates in S.)

The [MZ13] PRG for τ -regular LTFs instantiates this

construction with

� = 1/τ2, rhash = 2, and rbucket = 4,

while the [HKM12] PRG for intersections of k many τ -

regular LTFs takes

� = 1/τ, rhash = 2 log k, and rbucket = 4 log k.

We state the exact parameter settings which we use to fool

(k, s, τ)-intersections of LTFs in Section IV (the specific

values are not important for our discussion in this section).

B. Sketch of the [MZ13], [HKM12] analysis

As our analysis (sketched in Section II-C) builds on

[MZ13], [HKM12], in this subsection we sketch the [MZ13],

[HKM12] arguments establishing correctness of the PRG

Gen for regular LTFs and intersections of regular LTFs.

A high-level sketch of the [MZ13] analysis showing that

Gen fools any regular LTF F (x) = sign(w · x − θ) is

as follows: the hash function h : [n] → [�] partitions

the n coefficients w1, . . . , wn into � buckets. The pairwise

independence of h ← H and the regularity of w are

together used to show that each of the � buckets receives

essentially the same amount of “coefficient weight.” The

idea then is to view the sum w · Y , where Y is the

output of the generator, as a sum of � independent random

variables (note that the inputs X(1), . . . ,X(�) ∈ {−1, 1}r
to Gen are indeed mutually independent), one for each

bucket, and use the Berry–Esséen theorem on that sum.1 The

four-wise independence of G is used to ensure that each

of the � summands—the b-th summand corresponding to

wh−1(b) · Y h−1(b), the contribution from the b-th bucket—

has the moment properties that are required to apply the

Berry–Esséen theorem. Note that in this analysis the Berry–

Esséen theorem is used as a “black box.”

Since [HKM12] have to prove the k-dimensional invari-

ance principle that they use in place of the Berry–Esséen

theorem, their analysis is necessarily more involved, but at

a high level it follows a similar approach to the [MZ13]

analysis sketched above. A sketch of their argument that

1Note that if the weight vector w is non-regular, then it is in general
impossible for any hash function, even a fully independent one, to spread
the coefficient weight out evenly among the � buckets, and consequently the
Berry–Esséen theorem cannot be applied (as, intuitively, it requires that no
individual random variable summand is “too heavy” compared to the “total
weight” of the sum). This is why the overall approach requires regularity.

Gen fools any intersection F = F1 ∧ · · · ∧ Fk of regular

LTFs is as follows:

1) [HKM12] first argue that for any smooth test function

ψ : Rk → [0, 1]—replacing the “hard threshold”

function 1(v1 ≤ θ1) · 1(v2 ≤ θ2) · · · ·1(vk ≤ θk),
which corresponds to k-dimensional CDF distance—

the pseudorandom distribution output by the generator

fools the test function ψ relative to an N (0, 1)
n

Gaussian input to ψ. This is done by

a) first arguing (similar to [MZ13]) that the

(2 log k)-wise independent hash function h← H
and the regularity of each LTF Fk together

“spread the coefficient weight” of the k LTFs

roughly evenly among the � buckets (we note

that this part of the argument has nothing to do

with the function ψ);

b) then a hybrid argument across the � buckets, us-

ing the smoothness of ψ and moment properties

of the random variables corresponding to the �
buckets (which now follow from the (4 log k)-
wise independence of G ), is used to bound∣∣∣∣ E

Y←Gen

[
ψ(w(1) · Y , . . . , w(k) · Y )

]
− E

G←N (0,1)n

[
ψ(w(1) ·G, . . . , w(k) ·G)

]∣∣∣∣.
(1)

(Such a hybrid argument is a central ingredient in

the Lindeberg-style “replacement method” proof of the

Berry–Esséen theorem, and is also used in [HKM12]’s

proof of their invariance principle for intersections

of k regular LTFs.) We note that multidimensional

Taylor’s theorem plays a crucial role in bounding

the difference in expectation between ψ applied to

two random variables, which is done to “bound the

distance” at each step of the hybrid.

2) Next [HKM12] use a particular smooth function

ψ∗ based on a result of Bentkus [Ben90] and

a Gaussian surface area bound for intersections

of k halfspaces due to Nazarov [Naz03] to pass

from fooling the smooth test function ψ∗ to

fooling the “hard threshold” function corresponding

to CDF distance. This essentially amounts to

using the fact that (1) is small to show that∣∣EY←Gen[F (Y )]−EG←N (0,1)n [F (G)]
∣∣ is also

small. Given this, the fact that the generator fools

F , i.e. that
∣∣EY←Gen[F (Y )]−EX←{−1,1}n [F (X)]

∣∣
is small, follows from [HKM12]’s

invariance principle, which bounds∣∣EG←N (0,1)n [F (G)]−EX←{−1,1}n [F (X)]
∣∣. We

note that this second step of [HKM12]’s analysis

does not use regularity of the Fj’s at all (but their

invariance principle does require that each Fj is

regular).
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C. Sketch of our analysis

Here we give an overview of our proof that Gen, with

suitable parameters, fools any (k, s, τ)-CNFLTF F = H∧G.

Recall that H is an intersection of k many τ -regular LTFs

and G is a (k · 2s)-clause CNF, and that the difference

between our task and that of [HKM12] is that we must

handle the CNF G in addition to the intersection of regular

LTFs H . While it is not difficult to see, as a consequence of

[Baz07], [Raz09], that the [HKM12] generator with suitable

parameters (i) fools H , and (ii) fools G, it is far from clear

a priori that it fools H ∧ G. We show this via a rather

delicate argument, which involves a novel extension of the

Lindeberg method that is at the heart of all PRGs in this

line of work [GOWZ10], [MZ13], [HKM12]. To surmount

the technical challenges that arise in our setting (which we

described next), our analysis features several new ingredi-

ents which are not present in the analyses of [GOWZ10],

[MZ13], [HKM12], or indeed in other Lindeberg-type proofs

of quantitative central limit theorems that we are aware of.

The ideas in this new style of coupling-based analysis, which

we outline in Section II-C1 below, may be of use elsewhere.

The standard Lindeberg setup, and a new challenge in
our setting: As is standard in Lindeberg-style proofs, our

analysis focuses on a particular smooth test function, which

for us takes k + 1 arguments and which we denote ψ∗k+1.

This should be thought of as the (k + 1)-variable version

of the smooth function of Bentkus [Ben90], which was

used by [HKM12] as mentioned in the preceding subsection.

Crucially, while ψ∗k+1 maps all of Rk+1 to [−1, 1], in our

arguments this test function will only ever receive inputs

from Rk×{±1}; indeed, its last ((k+1)-st) coordinate will

always be a Boolean value which is the output of the CNF

G.

The heart of our proof lies in showing that for this specific

smooth test function ψ∗k+1 (which should be thought of as a

proxy for AND(sign(v1−θ), . . . , sign(vk−θk), vk+1))), the

pseudorandom distribution output by the generator fools the

test function ψ∗k+1 relative to a uniform random input drawn

from {−1, 1}n. This is done by means of a hybrid argument,

the analysis of which (like that of [GOWZ10], [HKM12])

employs a multidimensional version of Taylor’s theorem.

However, the fact that the distinguished last coordinate of

ψ∗k+1 always receives a {±1}-valued input—in particular, an

input whose magnitude changes by a large amount (namely

2) when it does change—introduces significant challenges

in using the multidimensional Taylor’s theorem. Recall that

Taylor’s theorem quantifies the following intuition: roughly

speaking, if the input to a smooth function ψ is only changed

by a small amount Δ, then the resulting change in its output

value, ψ(v + Δ) − ψ(v), is correspondingly small as well.

Naturally, if Δ is large then Taylor’s theorem does not give

useful bounds.

1) New ingredients in our approach: Taylor’s theorem is

the core ingredient in Lindeberg-style proofs of invariance

principles (see e.g. [Tao10] and Chapter 11 of [O’D14]) and

associated pseudorandomness results (see e.g. [GOWZ10],

[MZ13], [HKM12]), where it is used to bound the dis-

tance incurred by a single step of the hybrid argument. As

mentioned above, in order for Taylor’s theorem to give a

useful bound when it is applied to re-express ψ∗k+1(v +Δ)
(in terms of ψ∗k+1(v), various derivatives of ψ∗k+1 at v,

Δ, and an error term), the quantity Δ must be “small.”

This is a problem in our context since the distinguished

last coordinate of ψ∗k+1’s argument (the output of the CNF

G) is {±1}-valued, so the last coordinate of Δ alone may

already be as large as 2. We get around this difficulty by

utilizing a carefully chosen coupling between two adjacent

hybrid random variables and decomposing each of the two

relevant arguments to which ψ∗k+1 is applied (each of which

is a random variable) in a very careful way. One of these

random variables is expressed as v +Δunif (corresponding

to “filling in the current bucket uniformly at random”) and

the other is v + Δpseudo (corresponding to “filling in the

current bucket pseudorandomly”); roughly speaking, in order

to succeed our analysis must show that the magnitude of

E[ψ∗k+1(v + Δunif)] − E[ψ∗k+1(v + Δpseudo)] is suitably

small. The key property of the coupling we employ is that

it ensures that the last coordinates of both random variables

Δunif and Δpseudo are almost always zero; in fact, one of

them will actually be always zero, see Equation (7). (We

note that if no coupling is used then the last coordinate of

Δpseudo can be as large as 2 with constant probability.)

The existence of such a favorable coupling follows from

the fact that each bucket of Gen is, by virtue of its bounded

independence and the results of Bazzi [Baz07] and Razborov

[Raz09], “sufficiently pseudorandom” to fool CNF formulas.

However, the way that we structure the random variables

v,Δunif , and Δpseudo to ensure that the last coordinate

of each Δ is almost always small (as discussed above),

introduces a new complication, which is that now the random

variables v and Δunif are not independent (and neither are

v and Δpseudo). This situation does not arise in standard

uses of the Lindeberg method, either in proving invariance

principles or in applications to pseudorandom generators. In

all of these previous proofs, independence is used to show

that various first derivative, second derivative, etc. terms in

the Taylor expansions for the two adjacent random variables

cancel out perfectly upon subtraction (using matching mo-

ments). To surmount this lack of independence, we exploit

the fact that our coupling lets us re-express the coupled joint

distribution (over a pair of vectors in Rk × {±1}) as a

mixture of three joint distributions over pairs of (k + 1)-
dimensional vectors in such a way that one component of

the mixture is entirely supported on (Rk×{1})×(Rk×{1}),
one is entirely supported on (Rk × {−1})× (Rk × {−1}),
and the third has a very small mixing weight. Under each of
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the first two joint distributions (supported entirely on pairs

that agree in the last coordinate), v and Δunif will indeed

be independent, and so will v and Δpseudo.

However, performing the hybrid method using these

conditional distributions presents another challenge: while

now v and Δunif are independent (and likewise for v
and Δpseudo), the moments of these conditional random

variables may not match perfectly. We deal with this by

exploiting the fact that each pseudorandom distribution that

we consider “filling in a single bucket” can in fact fool,

to very high accuracy, any of poly(n) many new circuits

which arise in our analysis of the multidimensional Taylor

expansion (intuitively, these are “slightly augmented” CNFs

or DNFs). This allows us to show that while we do not

get perfect cancellation, the relevant moments under the

conditional distributions are adequately close to each other.

Finally, our coupling-based perspective also allows us to

bound the (crucial) final error term resulting from Taylor’s

theorem by reducing its analysis to that of the corresponding

error term in [HKM12].

The above is a sketch of how we show that Gen fools

the smooth test function ψ∗k+1. To pass from fooling ψ∗k+1

to fooling the “hard threshold” AND function, we combine

the [HKM12] invariance principle with a simple relation-

ship, Claim V.2, which we establish between the anti-

concentration of the (k + 1)-dimensional input to the ψ∗k+1

function (with its distinguished last coordinate correspond-

ing to outputs of the CNF) and its k-dimensional marginal

which excludes the last coordinate (all coordinates of which

correspond to outputs of regular linear forms, i.e. the setting

of [HKM12]).

III. NOTATION AND PRELIMINARIES

LTFs and regularity: We recall that a linear threshold

function (LTF) is a function of the form sign(w · x − θ),
where sign(z) is 1 if z > 0 and is −1 otherwise. We view

−1 as TRUE and 1 as FALSE throughout the paper.

We write W ∈ Rn×k to denote the matrix whose j-
th column is the weight vector of the j-th LTF in an

intersection of k LTFs. We assume that each such LTF has

been normalized so that its weight vector has norm 1. For

j ∈ [k] (indexing one of the LTFs) we write W j to denote

the j-th column of W (so ‖W j‖ = 1 for all j), and for

B ⊆ [n] (a subset of variables) we write WB to denote

the matrix formed by the rows of W with indices in B.

Combining these notations, W j
B denotes the |B|-element

column vector which is obtained from W j by taking those

entries given by the indices in B. Throughout the paper we

will write �θ to denote the k-tuple �θ = (θ1, . . . , θk) ∈ Rk.

We say that a vector w ∈ Rn is τ -regular if
∑n

i=1 w
4
i ≤

τ2‖w‖2, and that it is s-sparse if it has at most s non-zero

entries. We use the same terminology to refer to an LTF

sign(w · x − θ). We say that a matrix W ∈ Rn×k is τ -

regular if each of its columns is τ -regular.

A restriction ρ fixing a subset S ⊆ [n] of n input

variables is an element of {0, 1}S ; it corresponds to setting

the variables in S in the obvious way and leaving the

variables outside S free. Given an n-variable function f and

a restriction ρ we write f � ρ to denote the function obtained

by setting some of the input variables as dictated by ρ.

Probability background: We recall some standard def-

initions of bounded-independence distributions and hash

families. A distribution D over {−1, 1}n is r-wise inde-
pendent if for every 1 ≤ i1 < · · · < ir ≤ n and every

(b1, . . . , br) ∈ {−1, 1}r, we have

Pr
X←D

[
Xi1 = b1 and · · · and Xir = br

]
= 2−r.

We recall the results of [Baz07], [Raz09] which state that

bounded-independence distributions fool CNF formulas:

Theorem 3 (Bounded independence fools depth-2 circuits).
Let f be any M -clause CNF formula or M -term DNF
formula. Then f is δ-fooled by any O((log(M/δ))2)-wise
independent distribution.

A family H of functions from [n] to [�] is said to be an

r-wise independent hash family if for every 1 ≤ i1 < · · · <
ir ≤ n and (j1, . . . , jr) ∈ [�]r, we have

Pr
h←H

[
h(i1) = j1 and · · · and h(ir) = jr

]
= �−r.

When S is a set the notations PrX←S [·],EX←S [·] indicate

that the relevant probability or expectation is over a uniform

draw of X from set S. Throughout the paper we use bold

fonts such as X,U ,h, etc. to indicate random variables.

We write N (0, 1) to denote the standard normal distribution

with mean 0 and variance 1.

Calculus: We say that a function ψ : Rk → R

is smooth if its first through fourth derivatives are uni-

formly bounded. For smooth ψ : Rk → R, v ∈ Rk,

and j1, . . . , jr ∈ [k], we write (∂j1,...,jrψ)(x) to denote

∂j1∂j2 · · · ∂jrψ(x), and for s = 1, 2, . . . we write ‖ψ(s)‖1
to denote

sup
v∈Rk

⎧⎨⎩ ∑
j1,...,js∈[k]

|(∂j1,...,jsψ)(v)|
⎫⎬⎭ .

Given indices j1, . . . , jr ∈ [k], we write (j1, . . . , jr)! to

denote s1!s2! · · · sk!, where for each � ∈ [k], s� denotes the

number of occurrences of � in (j1, . . . , jr). We will use the

following form of multidimensional Taylor’s theorem (see

e.g. Fact 4.3 of [HKM12]):

Fact III.1 (Multidimensional Taylor’s theorem). Let ψ :
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Rk → R be smooth and let v,Δ ∈ Rk. Then

ψ(v +Δ) = ψ(v) +
∑
j∈[k]

(∂jψ)(v)Δj

+
∑

j,j′∈[k]

1

(j, j′)!
(∂j,j′ψ)(v)ΔjΔj′

+
∑

j,j′,j′′∈[k]

1

(j, j′, j′′)!
(∂j,j′,j′′ψ)(v)ΔjΔj′Δj′′

+ err(v,Δ),

where |err(v,Δ)| ≤ ‖ψ(4)‖1 ·maxj∈[k] |Δj |4.
Useful results from [HKM12]: The following notation

will be useful: for 0 < λ < 1, k ≥ 1, and �θ = (θ1, . . . , θk) ∈
Rk, we define

Innerk,�θ =
{
v ∈ Rk : vj ≤ θj for all j ∈ [k]

}
,

Outerλ,k,�θ =
{
v ∈ Rk : vj ≥ θj + λ for some j ∈ [k]

}
,

Stripλ,k,�θ = Rk \ (Innerk,�θ ∪Outerλ,k,�θ).

We recall the main result of [HKM12]:

Theorem 4 (Invariance principle for polytopes, Theorem 3.1

of [HKM12]). Let W ∈ Rn×k be τ -regular with each
column W j satisfying ‖W j‖ = 1. Then for all �θ ∈ Rk,
we have ∣∣∣∣ Pr

U←{−1,1}n
[
WTU ∈ Innerk,�θ

]
− Pr

G←N (0,1)n

[
WTG ∈ Innerk,�θ

]∣∣∣∣
= O

(
(log k)8/5(τ log(1/τ))1/5

)
.

We will also use the following anti-concentration bound

for Gaussian random variables (which is an easy conse-

quence of the O(
√
log k) Gaussian surface area upper bound

of Nazarov [Naz03] for intersections of k LTFs):

Theorem 5 (Anti-concentration bound for Gaussian random

variables landing in a strip, Lemma 3.4 of [HKM12]). For
all �θ ∈ Rk and all 0 < λ < 1, we have

Pr
G←N (0,1)n

[
WTG ∈ Stripλ,k,�θ

]
= O(λ

√
log k).

IV. OUR PRG AND THE STATEMENTS OF OUR MAIN

RESULTS

Our PRG for (k, s, τ)-intersections of LTFs is the gen-

erator Gen described in Section II-A, instantiated with the

following parameters:

� = 1/τ,

rhash = 2 log k,

rbucket = 4 log k +O((log(M/δCNF))
2

where

M = k · 2s and δCNF = 1/poly(n)

(the exact value for δCNF will be specified later). By stan-

dard constructions of rhash-wise independent hash families

and rbucket-wise independent random variables, the total

seed length of our generator is

O(log(n log �) · rhash + � · (log n) · rbucket)
= O

(
1

τ
· log n · (log k + s+ log n)

2

)
= poly(log n, log k, s, 1/τ).

A. Formal statements of our main results

We begin with our most general PRG result:

Theorem 6 (Formal statement of Theorem 2). For all values
of k, s ∈ N and τ ∈ (0, 1), the pseudorandom generator
Gen instantiated with the parameters above fools the class
of (k, s, τ)-intersections of LTFs to accuracy

δ := O((log k)8/5(τ log(1/τ))1/5)) (2)

with seed length poly(log n, log k, s, 1/τ).

Our PRG for the intersections of low-weight LTFs (The-

orem 1) follows as a consequence of Theorem 6 via the

following observation:

Observation 7 (Sparse-or-regular dichotomy). Let F (x) =
sign(w · x− θ) be a weight-t LTF. Then for any s, either F
is s-sparse or F is (t/

√
s+ 1)-regular.

Proof of Theorem 1 assuming Theorem 6: We fix

τ := Θ̃

(
δ5

(log k)8

)
so as to satisfy (2). By Observation 7, we have that every

weight-t LTF is either τ -regular or (s := (t/τ)2)-sparse.

By our choice of τ , the parameters �, rhash, and rbucket
of the pseudorandom generator Gen instantiated with our

parameters are all bounded by poly(log n, log k, t, 1/δ), and

hence the overall seed length is

O (log(n log �) · rhash + � · (log n) · rbucket)
which is indeed poly(log n, log k, t, 1/δ) as claimed.

The remainder of this paper will be devoted to proving

Theorem 6.

V. FOOLING THE SMOOTH TEST FUNCTION ψ∗k+1

An intermediate goal, which in fact takes us most of the

way to establishing Theorem 6, is to show that Gen fools a

particular smooth test function ψ∗
λ,k+1,(�θ,0)

. In this section

we define this smooth test function, establish some of its

basic properties, and formally state our intermediate goal

(Theorem 8 below).
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A. The smooth test function ψ∗
λ,k+1,(�θ,0)

and its basic prop-
erties

As discussed in Section II-C, our analysis crucially fea-

tures a particular smooth function ψ∗
λ,k+1,(�θ,0)

: Rk+1 →
[−1, 1], which is essentially the (k+1)-dimensional version

of a function due to Bentkus [Ben90]. Fact V.1 below states

the key properties of this function.

Fact V.1 (Main result of [Ben90], see Theorem 3.5 of

[HKM12]). For all positive integers k, 0 < λ < 1, and
�θ ∈ Rk, there exists a smooth function ψ∗

λ,k,�θ
: Rk →

[−1, 1] such that the following holds: for every s = 1, 2, 3, 4,
we have ‖(ψ∗

λ,k,�θ
)(s)‖1 ≤ C logs−1(k + 1)/λs, and for all

v ∈ Rk, we have

ψ∗
λ,k,�θ

(v) =

⎧⎪⎨⎪⎩
−1 if v ∈ Innerk,�θ
1 if v ∈ Outerλ,k,�θ
∈ [−1, 1] otherwise (i.e. if v ∈ Stripλ,k,�θ).

(3)

For intuition, the test function ψ∗
λ,k,�0

: Rk → [−1, 1] may

loosely be thought of as a smooth approximation to the k-

variable AND function; recall that on input (b1, . . . , bk) ∈
{−1, 1}k, the AND function outputs −1 iff (b1, . . . , bk) =
(−1, . . . ,−1). (We note that [HKM12] only require the s =
4 case of the above theorem (this is their Theorem 3.5), since

in their framework they can obtain perfect cancellation of

the first, second and third derivative terms in the relevant

difference of Taylor expansions. In contrast we need to use

all of the s = 1, 2, 3, 4 cases.)

As mentioned earlier, in our analysis of ψ∗
λ,k+1,(�θ,0)

the

last argument will always receive a Boolean value from

{−1, 1} (corresponding to the output of the CNF G). We

will use the following simple claim to control the behavior

of ψ∗
λ,k+1,(�θ,0)

on inputs of this sort:

Claim V.2. Given 0 < λ < 1, k ≥ 1, and �θ ∈ Rk, let v ∈
Rk be such that v /∈ Stripλ,k,�θ. Then both vectors (v,−1) ∈
Rk+1 and (v, 1) ∈ Rk+1 lie outside of Stripλ,k+1,(�θ,0).

B. Towards Theorem 6: fooling the test function ψ∗
λ,k+1,(�θ,0)

As an intermediate step towards Theorem 6 we will first

establish the following “pseudorandom generator” for the

smooth function ψ∗
λ,k+1,(�θ,0)

:

Theorem 8 (Gen fools the smooth test function

ψ∗
λ,k+1,(�θ,0)

). Let H ∧G be a (k, s, τ)-CNFLTF, and let

W ∈ Rn×k be the matrix of weight vectors (each of norm
1) of the τ -regular LTFs that comprise H , and �θ ∈ Rk be
the vector of their thresholds (so sign(W j · x − θj) is the
j-th LTF). For 0 < λ < 1, let ψ∗

λ,k+1,(�θ,0)
: Rk+1 → [−1, 1]

be as described in Fact V.1. Then when Gen is instantiated

with the parameters from Section IV,∣∣∣∣ E
Y←Gen

[
ψ∗
λ,k+1,(�θ,0)

(WTY , G(Y ))
]

− E
U←{−1,1}n

[
ψ∗
λ,k+1,(�θ,0)

(WTU , G(U))
]∣∣∣∣

= O

(
(log k)3

λ4

(
(log k)3 · τ log(1/τ) + 1

τ
· δCNF · n2

)
+

1

τ

(√
δCNF +

3∑
a=1

na
√
δCNF · (log k)

a−1

λa

))
. (4)

VI. SETUP FOR OUR COUPLING-BASED HYBRID

ARGUMENT

We begin by defining the sequence of random variables

that we will use to hybridize between Y ← Gen, the n-

bit pseudorandom input, and U , the n-bit uniform random

input.

Definition 2 (Hybrid random variables). For any index
b ∈ {0, 1, . . . , �} and any hash h : [n] → [�], we define
the hybrid random variable Xh,b over {−1, 1}n as follows:
Independently across each c ∈ [�],

• If c > b, then the coordinates Xh,b
h−1(c) of Xh,b are

distributed according to a uniform random draw from
{−1, 1}n;

• If c ≤ b, then the coordinates Xh,b
h−1(c) of Xh,b are

distributed according to a draw from an rbucket-wise
independent random variable over {−1, 1}n.

Let H be a (2 log k)-wise independent family of hashes
h : [n]→ [�]. For each b ∈ {0, 1, . . . , �}, the hybrid random
variable Xh,b is defined by drawing h← H and then taking
Xh,b as above.

Remark 9. Note that Xh,0 is a uniform random variable

over {−1, 1}n (indeed Xh,0 is uniform for every fixed hash

h), while Xh,� is distributed according to Gen.

A. Coupling adjacent random variables in the hybrid argu-
ment

Fix a hash h : [n]→ [�], a bucket b ∈ [�], and a restriction

ρ ∈ {−1, 1}[n]\h−1(b) fixing the variables outside bucket

h−1(b). Recall that Xh,b−1 is distributed according to the

uniform distribution within h−1(b), and Xh,b is distributed

according to a rbucket-wise independent distribution within

this same bucket h−1(b). For the remainder of this paper,

for notational clarity unless otherwise indicated U denotes

a uniformly distributed random variable over {−1, 1}h−1(b)

and Z denotes a rbucket-wise independent random variable

over {−1, 1}h−1(b).

Our CNF-fooling-based coupling: By the results of

Bazzi and Razborov (Theorem 3) and the choice of rbucket
from Section IV, the random variable Z δCNF-fools G � ρ
(which, like G, is an M -clause CNF). Consequently there
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exists a coupling (Û , Ẑ) between U and Z such that

Pr
(̂U ,̂Z)

[
(G � ρ)(Û) �= (G � ρ)(Ẑ)

] ≤ δCNF. (5)

(Note that this coupling depends on G � ρ.)

Consider the following joint distribution over a pair of

random variables (X̂
h,b−1

(ρ), X̂
h,b

(ρ)), both supported on

{−1, 1}n: First make a draw (Û , Ŷ )← (Û , Ẑ), and output

(X̂h,b−1(ρ), X̂h,b(ρ)) where

• X̂h,b−1(ρ) assigns variables according to Û within

h−1(b), and according to ρ outside h−1(b).
• X̂h,b(ρ) assigns variables according to Ŷ within

h−1(b), and according to ρ outside h−1(b).

Remark 10. Note that for ρ ← Xh,b
[n]\h−1(b), we have that

X̂
h,b−1

(ρ) is distributed identically as Xh,b−1 and likewise

X̂
h,b

(ρ) is distributed identically as Xh,b.

VII. THE HYBRID ARGUMENT: PROOF OF THEOREM 8

Throughout this section for notational clarity we sim-

ply write ψ instead of ψ∗
λ,k+1,(�θ,0)

. We also write Fψ :

{−1, 1}n → [−1, 1] to denote the function

Fψ(x) = ψ(WTx,G(x)).

Our core technical result, which we prove in Section VIII,

is the following:

Lemma VII.1 (Error incurred in one step of hybrid). For
all hashes h : [n] → [�], buckets b ∈ [�], and restrictions
ρ ∈ {−1, 1}[n]\h−1(b), we have that

∣∣E [Fψ(X̂
h,b−1

(ρ))
]−E

[
Fψ(X̂

h,b
(ρ))

]∣∣ (6)

= O

(
(log k)3

λ4
(
(log k)2 · h(W, b) + δCNF · n2

)
+
√
δCNF +

3∑
a=1

na
√
δCNF · (log k)

a−1

λa

)
,

where

h(W, b) :=

⎛⎝ k∑
j=1

‖W j
h−1(b)‖4 log k

⎞⎠1/ log k

.

The following corollary follows as an immediate con-

sequence of Lemma VII.1, Remark 10, and the triangle

inequality:

Corollary VII.2 (Averaging Lemma VII.1 over ρ and

summing over b ∈ [�]). For all hashes h : [n] → [�], we

have that∣∣E [Fψ(X
h,0)

]−E
[
Fψ(X

h,�)
]∣∣

=
O((log k)3)

λ4
· (log k)2 ·

�∑
b=1

h(W, b)

+ � ·O
(
(log k)3

λ4
· δCNF · n2 +

√
δCNF

+
3∑

a=1

na
√
δCNF · (log k)

a−1

λa

)
.

We do not have a good bound on the quantity h(W, b) for

an arbitrary hash h : [n] → [�] and bucket b ∈ [�]. Instead,

we shall use the following:

Lemma VII.3 (Lemma 4.1 of [HKM12]). For � = 1/τ and
h drawn from a (2 log k)-wise independent hash family H,

E

[
�∑

b=1

h(W, b)

]
≤

�∑
b=1

⎛⎝E

⎡⎣ k∑
j=1

‖W j
h−1(b)‖4 log k

⎤⎦⎞⎠1/ log k

≤ 4 log k · τ log(1/τ).
(The middle quantity is what [HKM12] denotes by H(W )
and is the quantity they bound; the left inequality is by the

power-mean inequality.)

We are now ready to prove Theorem 8:

Proof of Theorem 8 assuming Lemma VII.1:∣∣∣∣ E
Y←Gen

[
ψ∗
λ,k+1,(�θ,0)

(WTY , G(Y ))
]

− E
U←{−1,1}n

[
ψ∗
λ,k+1,(�θ,0)

(WTU , G(U))
]∣∣∣∣

=
∣∣E [Fψ(X

h,0)
]−E

[
Fψ(X

h,�)
]∣∣

(Remark 9 and definition of Fψ)

≤ E
h←H

[∣∣E [Fψ(X
h,0)

]−E
[
Fψ(X

h,�)
]∣∣]

= O

(
(log k)3

λ4

(
(log k)3 · τ log(1/τ) + 1

τ
· δCNF · n2

)
+

1

τ

(√
δCNF +

3∑
a=1

na
√
δCNF · (log k)

a−1

λa

))
,

where the final equality is by Corollary VII.2, Lemma VII.3,

and recalling that � = 1/τ .

VIII. A SINGLE STEP OF THE HYBRID ARGUMENT:

PROOF OF LEMMA VII.1

Fix a hash h : [n]→ [�], a bucket b ∈ [�], and a restriction

ρ ∈ {−1, 1}[n]\h−1(b). As is standard in applications of

the Lindeberg method, we will express Fψ(X̂
h,b−1

(ρ))

and Fψ(X̂
h,b

(ρ)) as ψ(v + Δunif) and ψ(v + Δpseudo)
respectively, where v is common to both random variables.

(Very roughly speaking, the Lindeberg method employs

Taylor’s theorem to show that quantities such as (6) are
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small if Δunif and Δpseudo are sufficiently “small” and ψ is

sufficiently “nice.”). We now describe the choice of random

variables v,Δunif ,Δpseudo ∈ Rk+1 to accomplish this.

We define v : {−1, 1}h−1(b) → Rk+1 as follows:

v(x)j =
∑

i∈[n]\h−1(b)

W j
i ρi for j ∈ [k],

v(x)k+1 = (G � ρ)(x).

Recalling that ρ is a fixed restriction, we observe that

only the final coordinate of v depends on its input x. We

further define Δunif : {−1, 1}h−1(b) → Rk+1 and Δpseudo :
{−1, 1}h−1(b) × {−1, 1}h−1(b) → Rk+1 as follows:

Δunif(x)j =
∑

i∈h−1(b)

W j
i xi for j ∈ [k],

Δunif(x)k+1 = 0, (7)

and

Δpseudo(x, z)j =
∑

i∈h−1(b)

W j
i zi for j ∈ [k],

Δpseudo(x, z)k+1 = (G � ρ)(z)− (G � ρ)(x).

We observe that

Fψ(X̂
h,b−1

(ρ)) ≡ ψ(v(U) + Δunif(U))

Fψ(X̂
h,b

(ρ)) ≡ ψ(v(Û) + Δpseudo(Û , Ẑ)),

and so the desired quantity (6) of Lemma VII.1 that we wish

to upper bound may be re-expressed as

(6) =
∣∣E[Fψ(X̂

h,b−1
(ρ))]−E[Fψ(X̂

h,b
(ρ))]

∣∣
=
∣∣∣E
U

[
ψ(v(U) + Δunif(U))

]
− E

(̂U ,̂Z)

[
ψ(v(Û) + Δpseudo(Û , Ẑ))

]∣∣∣. (8)

We observe that unlike standard Lindeberg-style proofs

of invariance principles and associated pseudorandomness

results, in our setup v(U) and Δunif(U) are not indepen-

dent, and likewise neither are v(Û) and Δpseudo(Û , Ẑ).
This motivates the definitions of the following subsection.

A. Mixtures of conditional distributions

Let U1 denote the distribution U conditioned on out-

comes x ∈ {−1, 1}h−1(b) such that (G � ρ)(x) = 1,

and similarly U−1. Equivalently, U1 and U−1 are uniform

distributions over (G � ρ)−1(1) and (G � ρ)−1(−1)
respectively. We note that U can be expressed as the mixture

of U1 and U−1 with mixing weights

π1 := Pr
U

[
(G � ρ)(U) = 1

]
π−1 := Pr

U

[
(G � ρ)(U) = −1].

We may suppose without loss of generality that PrU [(G �
ρ)(U) = −1] ≥ PrZ [(G � ρ)(Z) = −1] (the other case is

entirely similar).

Next, we similarly express the joint distribution (Û , Ẑ)

as the mixture of conditional distributions (Û
1
, Ẑ

1
),

(Û
−1
, Ẑ
−1

), (Û
err
, Ẑ

err
), where

• (Û
1
, Ẑ

1
) is supported on pairs (x, z) such that (G �

ρ)(x) = (G � ρ)(z) = 1

• (Û
−1
, Ẑ
−1

) is supported on pairs (x, z) such that (G �
ρ)(x) = (G � ρ)(z) = −1

• (Û
err
, Ẑ

err
) is supported on pairs (x, z) such that (G �

ρ)(x) = −1, (G � ρ)(z) = 1.

The mixing weights are π̃1, π̃−1, and π̃err respectively, where

π̃1 = π1, π̃−1 = π−1 − π̃err, π̃err ≤ δCNF

and the bound π̃err ≤ δCNF follows from (5). We stress that

while Û
1

is distributed identically as U1, this is not the

case for Û
−1

and U−1, because of the small fraction of

pairs that do not align perfectly under the coupling (Û , Ẑ)

and are captured by (Û
err
, Ẑ

err
).

Proposition VIII.1 (Expressing U and (Û , Ẑ) as mix-

tures of conditional distributions). For any function f :
{−1, 1}h−1(b) → R,

E
U

[
f(U)

]
= π1 E

U1

[
f(U1)

]
+ π−1 E

U−1

[
f(U−1)

]
.

Similarly, for any function f : {−1, 1}h−1(b) ×
{−1, 1}h−1(b) → R,

E
(̂U ,̂Z)

[
f(Û , Ẑ)

]
= π̃1 E

(̂U
1
,̂Z

1
)

[
f(Û

1
, Ẑ

1
)
]
+ π̃−1 E

(̂U
−1

,̂Z
−1

)

[
f(Û

−1
, Ẑ
−1

)
]

+ π̃err E
(̂U

err
,̂Z

err
)

[
f(Û

err
, Ẑ

err
)
]

= π1 E
(̂U

1
,̂Z

1
)

[
f(Û

1
, Ẑ

1
)
]
+ π−1 E

(̂U
−1

,̂Z
−1

)

[
f(Û

−1
, Ẑ
−1

)
]

± 2 δCNF · ‖f‖∞.
These conditional distributions are useful because of the

following two simple but crucial observations:

Observation 11 (v becomes constant). Fix c ∈ {−1, 1}.
For all x ∈ supp(U c) we have that v(x) is the same fixed

vector v∗ ∈ Rk+1 given by

v∗j =
∑

i∈[n]\h−1(b)

W j
i ρi for j ∈ [k],

v∗k+1 = (G � ρ)(x) = c.

The same is true for Û
c
: for all x ∈ supp(Û

c
) we have

v(x) = v∗.
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Note that as a consequence of Observation 11, the ran-

dom variables v(U c) and Δunif(U c) are independent for

c ∈ {−1, 1}, and likewise v(Û
c
) and Δpseudo(Û

c
, Ẑ

c
)

are independent as well; cf. our remark following Equation

(8). The next observation further motivates our couplings

(Û
1
, Ẑ

1
) and (Û

−1
, Ẑ
−1

):

Observation 12 (Δpseudo
k+1 = 0). Fix c ∈ {−1, 1}. For all

(Û , Ẑ) ∈ supp(Û
c
, Ẑ

c
), we have

Δpseudo
k+1 (Û , Ẑ) = (G � ρ)(Ẑ)− (G � ρ)(Û) = 0.

Due to space considerations, the remainder of the proof

of Lemma VII.1 is deferred to the full version. In the full

version, we apply Proposition VIII.1 to bound the RHS of

(8) by:∑
c∈{−1,1}

πc ·
∣∣∣∣ E
Uc

[
ψ(v(U c) + Δunif(U c))

]
− E

(̂U
c
,̂Z

c
)

[
ψ(v(Û

c
) + Δpseudo(Û

c
, Ẑ

c
))
]∣∣∣∣,

which we then proceed to analyze via the Taylor expansion

of ψ(v +Δ) (Fact III.1). Having established Lemma VII.1,

and hence Theorem 8, we then show how Theorem 8 yields

Theorem 6.
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