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Abstract—A tight criterion under which the abstract version
Lovasz Local Lemma (abstract-LLL) holds was given by
Shearer [42] decades ago. However, little is known about that
of the variable version LLL (variable-LLL) where events are
generated by independent random variables, though this model
of events is applicable to almost all applications of LLL. We
introduce a necessary and sufficient criterion for variable-LLL,
in terms of the probabilities of the events and the event-
variable graph specifying the dependency among the events.
Based on this new criterion, we obtain boundaries for two
families of event-variable graphs, namely, cyclic and treelike
bigraphs. These are the first two non-trivial cases where the
variable-LLL boundary is fully determined. As a byproduct,
we also provide a universal constructive method to find a set
of events whose union has the maximum probability, given the
probability vector and the event-variable graph.

Though it is #P-hard in general to determine variable-
LLL boundaries, we can to some extent decide whether a gap
exists between a variable-LLL boundary and the corresponding
abstract-LLL boundary. In particular, we show that the gap
existence can be decided without solving Shearer’s conditions
or checking our variable-LLL criterion. Equipped with this
powerful theorem, we show that there is no gap if the base
graph of the event-variable graph is a tree, while gap appears
if the base graph has an induced cycle of length at least 4.
The problem is almost completely solved except when the base
graph has only 3-cliques, in which case we also get partial
solutions.

A set of reduction rules are established that facilitate to infer
gap existence of an event-variable graph from known ones.
As an application, various event-variable graphs, in particular
combinatorial ones, are shown to be gapful/gapless.

1. INTRODUCTION

Lovasz Local Lemma, or LLL for short, is one of the
most important probabilistic methods that has numerous
applications since proposed in 1975 by Erdés and Lovész
[12]. Basically, LLL aims at finding conditions under which
any given set A of bad events in a probability space
can be avoided simultaneously, namely P(nac4A4) > 0.
In the most general setting, the dependency among A is
characterized by an undirected graph G = ([n], E), called a
dependency graph of A, which satisfies that for any vertex
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i, A; is independent of {A; : j # 4,5 ¢ N(i)}, where N (%)
stands for the neighborhood of 7 in G. In this context, finding
the conditions on A is reduced to the fundamental challenge:
Given a graph G, determine its abstract interior Z,, (G) which
is the set of vectors p such that P (m Ae AZ) > 0 for any
event set .4 with dependency graph G and probability vector
p. Local solutions to this problem are collectively called
abstract-LLL. The most frequently used abstract-LLL is as
follows:

Theorem 1 ([43]): Given a graph G = ([n], F) and a
vector p € (0,1)", if there exist real numbers 1, ..., 2, €
(0,1) such that p; < z; [ [;cpr(;)(1 — ) for any i € [n],
then p € Z,(G).

An exact characterization of Z,(G) was presented by
Shearer [42] over 30 years ago.

Theorem 2 ([42]): Given a graph G = ([n], F) and a
vector p € (0,1)", p € Z,(G) if and only if for any
S € Ind(G), ZTQS,TEInd(G)(_l)‘T‘i‘S‘ [Lerpi > 0,
where Ind(G) is the collection of independent sets of G.

As in Theorem 1 and Theorem 2, only dependency graphs
and probabilities of events are involved in abstract-LLL.
However, dependency graphs can only capture which events
are dependent (more precisely, which events are indepen-
dent), but not how they are dependent.

A nice model of richer dependency structures is the
variable-generated system .4 of events, where each event is a
constraint on a set /X’ of independent random variables that
can be continuous or discrete. Suppose A = {Aj,..., A, }
and X = {Xy,..., X;n}. Let X; X be a set of variables
that completely determines A; for each 4 € [n]. The model
can be characterized by an event-variable graph which is a
bigraph H = ([n], [m], E) where each pair (i, j) € [n]x[m]
is an edge if and only if X; € X;. Then the fundamental
challenge of LLL becomes the VLLL problem as follows:
Given a bigraph H, determine its interior Z(H ) which is the
set of vectors p such that P (m Ae AZ) > ( for any variable-
generated event system A with event-variable graph H
and probability vector p. LLLs solving this problem are
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collectively called variable-LLL.

The model of variable-generated event systems is impor-
tant, mainly because most applications of LLL have natural
underlying independent variables, e.g., hypergraph coloring
[29], satisfiability [15], [14], counting solutions to CNF
formulas [30], acyclic edge coloring [18], etc. Besides, most
results on the algorithmic aspects of LLL are based on
this model (see Section I-A). However, there are no special
studies on the VLLL problem. A common approach for
using LLL in the variable setting is ignoring the variable
information and applying abstract-LLL to a dependency
graph. This approach only produces results that cannot be
better than Shearer’s bound. Recently, Harris [22] presents
a condition for lopsided version [13] of variable-LLL which
can go beyond Shearer’s criterion, but his condition is based
on more information than the event-variable graph (i.e., how
events disagree on variables is needed). Thus, the VLLL
problem remains open.

Meanwhile, it is widely believed that Shearer’s bound is
generally not tight for variable-LLL. More precisely, given
a bigraph H = (U,V, E), its base graph is defined as the
graph Gy = (U,E’) where two nodes uj,us € U are
adjacent if and only if uq, us share some common neighbor
in H. A property of base graph is that if H is an event-
variable graph of variable-generated event system .4, then
Gy is a dependency graph of A, which immediately implies
that Z,(Gy) € Z(H). When Z,(G ) # Z(H), we say that
Shearer’s bound is not tight for H, or H has a gap. The
only reported bigraph that has a gap is the 4-cyclic one
[27], namely a bigraph whose base graph is the 4-cycle. An
exact characterization of the conditions for gap existence is
far from clear.

Therefore, we try to solve two closely related peoblems:

1) VLLL problem: characterize the interior Z(H) for any

bigraph H. Kolipaka et al. [27] have shown that the
Moser-Tardos algorithm is efficient up to the Shearer’s
bound. However, it remains unknown whether the
algorithm converges up to the tight bound of variable-
LLL and whether it is efficient even beyond Shearer’s
bound. Moreover, it is widely believed that better
bounds can be obtained through variable-LLL for
many combinatorial problems, but how much better
can it be? A prerequisite for answering these questions
is to know what Z(H) is since it tightly upper-bounds
the range of variable-LLL.
Gap problem: characterize the conditions for a bigraph
to have a gap. The status in quo of variable-LLL
is to ignore variable information and apply abstract-
LLL. This over-simplification generally compromises
the power of variable-LLL, but it is lossless and can
be safely used when there is no gap. In addition,
VLLL problem makes sense only when a gap exists,
otherwise it’s solved by Shearer’s theorem. All this
calls for a solution to the gap problem.

2)
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A. Related Work

The first result for abstract-LLL was proved by Erd&s and
Lovasz [12] and the first asymmetric one (Theorem 1) was
presented in [43]. Though these results are useful, they are
not tight in general. A tight, but not local, criterion (Theorem
2) for abstract-LLL was proposed by Shearer [42] over 30
years ago.

Pegden [34][35] introduced lefthanded-LLL which does
not hold on all dependency graphs, but it is generally tighter
than the condition in Theorem 1 and provides a much
simpler form of (tight) conditions on special classes of
dependency graphs, e.g., chordal graphs. Instead of bounds
only working for some dependency graphs, Bissacot et al.
[6] proposed to improve Theorem 1 by cluster expansion.
Kolipaka [26] further introduced a hierarchy of bounds (e.g.,
the clique-LLL) which can be applied to any dependency
graph and are all tighter than the condition in Theorem 1.

Erdos and Spenser [13] introduced lopsided-LLL, which
extends the results in [12] to lopsidependency graphs. Scott
and Sokal [41] proved that Shearer’s condition is tight for
lopsided dependency graphs.

There are settings in which Shearer’s bound are not
tight in general. The best known one may be the variable-
generated event systems, whose tight conditions are one of
the main contributions of this paper. Harris [22] extended
the concept of lopsidependency to variable-LLL, and pro-
posed a condition which can go beyond Shearer’s bound in
some cases, but not so in general. Note that Harris’ bound
cannot be applied to standard variable-LLL, because the key
concept of orderability cannot be defined on event-variable
graphs alone.

To make LLL constructive, various sampling algorithms
have been proposed so as to avoid all bad events. Algo-
rithm design for LLL is closely related to different bounds
mentioned above. Beck [5] first showed that an algorithmic
version LLL (algorithmic-LLL) is possible and proposed an
efficient deterministic sequential algorithm. In that paper, it
was required that the degree of the dependency graph under
consideration be upper bounded by 2"/48 which is a very
strong restriction. Several work has been done to relax this
requirement [11], [32], [37], [38].

Under the model of variable-generated event systems,
Moser and Tardos [33] proposed a simple sampling-based
algorithm with expected polynomial runtime. Their algo-
rithm is Las Vegas and outputs an assignment to the random
variables so as to avoid all bad events. Though a strong
model is used, the condition needed in their analysis is the
same as Theorem 1 which is even not tight for the abstract-
LLL. Pegden [36] proved that Moser and Tardos’s algorithm
efficiently converges even under the condition of the cluster
expansion local lemma. Kolipaka and Szegedy [27] further
showed that under the same model, Moser-Tardos algorithm
actually works efficiently up to Shearer’s bound. Harris [22]



presented an algorithm for lopsided version of variable-LLL
under the lopsided condition mentioned above. It is still
open what conditions are tight for an efficient constructive
variable-LLL. Catarata et al. [9] tried experimental methods
to observe the possibilities.

Moser-Tardos algorithm can be naturally parallelized be-
cause it is not harmful to do sampling for independent
events at the same time. Moser and Tardos showed that this
parallelization achieves a better expected runtime, but the
condition required in their analysis is slightly stronger than
that for the sequential case. In fact, parallel algorithms for
LLL has been considered much earlier than the invention
of Moser-Tardos algorithm [3]. Recently, there are new
researches for parallel algorithms inspired by Moser-Tardos
algorithm [21], [23]. Besides, algorithmic-LLL has been
studied using distributed computation models [7], [10], [16].

Algorithms have also been devised for LLL with depen-
dent variables and other conditions. Harris and Srinivasan
[24] first considered the space of permutations. Achlioptas
and Iliopoulos [2] studied algorithms specified by certain
multigraphs. Frameworks with resampling oracles are also
investigated [1], [25], [28].

Actually, variable-LLL has strong connection with sam-
pling. Guo et al. [19] proposed an algorithmic framework,
called partial rejection sampling, which establishes this con-
nection in scenarios such as uniform sampling. In a parallel
work, Moitra [31] presended an algorithm to approximately
sample solutions to general k-CNF under Lovasz Local
Lemma-like conditions.

Apart from algorithms, LLL has affected (or has been
affected by) many other disciplines, in particular physics.
For example, alternating-sign independence polynomials of
dependency graphs, which is a key element in Shearer’s
criterion, are also related to the concept of partition functions
in statistical physics [40], [20], [44], [45]. Inspired by
this connection, cluster expansion local lemma has been
proposed [6], and the lower bound of a singularity point
in the hard-core lattice gas model has been improved [26].
LLL has also been enriched by the concept of quantum in
physics [4], [39], [17].

NOTATION

[n]: the set {1,2,...,n} for positive integer n.

X, Y: sets of mutually independent random variables.
X,Y: random variables.

P, q, r: vectors of positive real numbers.
QS() given pPE€ (07 +Oo)n7 ¢(p) € (Oa l]n
whose i-th entry is min{1, p;}.

A, B: sets of events, or sets of cylinders.
A, B: events, or cylinders.

A: the complementary of the event/cylinder A.

P(A): the probability of event A.

P(A): the vector whose i-th entry is the probability of
the i-th event in A.

is the vector
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w: Lebesgue measure on Euclidean (sub)spaces.

G = (V,E): the undirected graph with vertex set V
and edge set E.

H = (V1,Va, E): the bigraph with vertex set V; u V3
and edge set E < Vi x V,. Vi and V; are called the
left part and the right part of H, denoted by L(H) and
R(H), respectively.

Ng(v): the neighborhood of vertex v in graph G, or
N (v) when G is implicit.

I{}: the unit interval in the i-th dimension of an
Euclidean space, or simply I when ¢ is implicit.

I°: the unit cube [ics (%}, or simply I when S =
[m] for some integer m.

II. RESULTS AND DISCUSSION

The main results of this paper are listed and discussed as
follows.

Tight condition for variable-LLL: As we mentioned,
Shearer’s condition is sufficient and necessary for abstract-
LLL, but in general it is not tight for variable-LLL. Our
first contribution is a sufficient and necessary condition for
variable-LLL, namely an exact characterization of Z(H)
for any bigraph H. Characterizing Z(H) is equivalent to
delimiting its boundary, simply called the boundary of H
and denoted by 0(H ), which consists of the vectors p such
that (1—e)p € Z(H) and (1+¢€)p ¢ Z(H) for any € € (0, 1).

Theorem 3: Given a bigraph H = ([n],[m], E), let d =
(dy, ..., dm) where d; is the degree of the vertex j € R(H).
For any vector q € (0,1)™, Aq lies on the boundary of H
if and only if A is the optimal solution to the program:

min A

Z Ci k1 ka,... ki = 1 for any k; € [d;], 7 € [m];

i€[n]

For any (i, j) € ([n] x [m])\E, C; ky ks,... .k, dOES

S.t.

not depend on kj;

> (T ik )Cir o = Aai
ki€ld1],....km€[dm] je[m]
for i € [n];
Z xj, = 1 for j € [m];
keld;]

zjk € [0,1] for j € [m], k € [d;];
Cikr ks, .k € {0,1} for i € [n], k; € [d;], j € [m].

As far as we know, this is the first condition for general
variable-LLL. It essentially means that the variables can be
discretized. Namely, to determine the boundary vectors, it is
enough to consider the discrete variables taking d; values.
In addition, the program facilitates to construct the “worst-
case” set of events, which means that the probability of the
union of the events is maximized.



Boundary of cyclic bigraphs: Though the program
above is hard to solve in general, its insight of discretization
makes it possible to fully determine the boundary of any
cyclic bigraph as in the following theorem. Here a bigraph
is called n-cyclic if its base graph is a cycle of length n.

Theorem 4: Given a vector p € (0,1)", for each i € [n],
let A\; be the minimum positive solution to the equation
system: by = Ap;, by )ipfbil’:l for 2 < k < n—1,
bn—1 = 1 — Api—1. Let Ag = mingep,) A;. Then Agp lies
on the boundary of any n-cyclic bigraph.

In the literature, only one vector on the boundary of
4-cyclic bigraphs has been identified. The above theorem
shows that the whole boundary of any n-cyclic bigraph can
be determined by solving an (n — 1)-degree polynomial
equation.

Not only for cyclic bigraphs, we also give a procedure
to exactly determine the boundary of treelike bigraphs. A
bigraph is called treelike if its base graph is a tree.

A sufficient and necessary condition for gap existence:
Since a bigraph provides more information than its base
graph, it is naturally expected to have a gap, namely
Shearer’s bound is not tight for bigrpahs. We propose a
necessary and sufficient condition to decide whether such
a gap exist. For conciseness of presentation, we also call a
bigraph gapful if it has a gap, and gapless otherwise.

Theorem 5: Given a bigraph H and a vector p of positive
reals, the following three conditions are equivalent:

1) For any X such that Ap € Z(H), there is an exclusive
variable-generated event system .4 with event-variable
graph H and probability vector Ap.

2) For the A such that Ap € d(H ), there is an exclusive
variable-generated event system .4 with event-variable
graph H and probability vector Ap.

3) H is gapless in the direction of p.

Here the qualifier “exclusive” means that the events in
A are either independent or disjoint, and “gapless in the
direction of p” means that for any A\, Ap € Z(H) if and
only if A\p € Z,(Gg).

By this criterion, one can check the existence of a gap
just by examining the bigraph, without computing Shearer’s
bound of its base graph.

On this basis, we investigate gap existence for two fami-
lies of bigraphs.

Theorem 6: Treelike bigraphs are gapless.

Based on this theorem, we develop a simple algorithm
to efficiently compute Shearer’s bound for any dependency
graph which is a tree.

In contrast, we obtain an opposite result for cyclic bi-
graphs, which considerably extends the only gap-existing
example in literature [27].

Theorem 7: Cyclic bigraphs are gapful.

Reduction method: To discover more instances that
have or have no gaps, we propose a set of reduction rules
which allow us transforming a bigraph without changing the
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existence or nonexisence of a gap. We identify five basic
operations. Three of them as well as their inverses preserve
both gapful and gapless; the other two preserve gapful, while
the inverses of the two preserve gapless. Applying these
operations, we show that a bigraph is gapful if it contains
a gapful one. This, together with Theorem 7, intuitively
means that Shearer’s criterion is not tight for almost all
cases of variable-LLL. Likewise, we show that combinatorial
bigraphs H,, ,,, are gapful if m is small enough and are
gapless if m is large enough.

III. PROBABILITY BOUNDARY OF VARIABLE-LLL

This section aims at solving the VLLL problem: given
a bigraph H, determine all the vectors p such that
P (nead) > 0 for any variable-generated event system
A with event-variable graph H and probability vector p.
Basically, we will transform the problem into a geometric
one and solve it in the framework of Euclidean geometry.

For conciseness of presentation, a variable-generated
event system A is said to conform with a bigraph H, denoted
by A ~ H, if H is an event-variable graph of A.

Throughout this section, we only consider bigraphs whose
base graphs are connected. This restriction does not lose
generality for the following reason. If a bigraph has discon-
nected base graph, itself must also be disconnected and each
component is again a bigraph. In this case, the interior of the
original bigraph is exactly the direct product of the interiors
of the component bigraphs.

A. A Geometric Counterpart

Now we formulate a geometric counterpart of the VLLL
problem, called the GLLL problem. Consider the m-
dimensional Euclidean space R™ endowed with Lebesgue
measure . Let X; be the coordinate variable of the i-th
dimension, ¢ € [m]. For any S < [m], the S-unit cube,
denoted by I, is defined to be the |S|-dimensional unit
hypercube [0,1]'S] working as the domain range of the
variables {X; : i € S} such that for each i € S, X; € [0, 1].
When S = [k] for some k < m, we simply write I* for ItF].
A cylinder A in I™ is a subset of the form B x I%, where
B < 1™\ s called a base of A; define dim(B) = [m]\S.
Given a bigraph H = ([n],[m], E) and a set A of cylinders
Ay, ..., A, in I, we say that A conforms with H, also de-
noted by A ~ H, if there are bases By, ..., B, of Ay, ..., A,
such that £ = {(i,j) € [n] x [m] : j € dim(B;)}. Now
comes the GLLL problem: given bigraph H, determine all
the vectors p such that p(Uaec4A4) < 1 for any cylinder set
A ~ H with pu(A) = p.

One can easily see that the VLLL problem is equivalent
to the GLLL problem in the sense that they have the same
solutions. Hence, the rest of the paper will be presented in
the context of the GLLL problem. To ease understanding, the
terms “event” and “cylinder” will be used interchangeably,
and so will “probability” and “Lebesgue measure”. The



complementary of a cylinder A in 1l is defined to be the
cylinder A4 = Il™N\ A,

B. A Sufficient and Necessary Criterion

Definition 1 (Interior): The interior of a bigraph H, de-
noted by Z(H), is the set of vectors p on (0,1) such
that p (naead) > 0 for any cylinder set A ~ H with
1(A) = p.

Definition 2 (Exterior): The exterior of a bigraph H =
([n], [m], E), denoted by E(H), is the set (0, 1]"\Z(H).

Definition 3 (Boundary): The boundary of a bigraph H,
denoted by d(H), is the set of vectors p on (0, 1] such that
(1-epeZ(H)and (1 +¢€)p ¢ Z(H) for any € € (0,1).
Any p € 0(H) is called a boundary vector of H.

We can show that there is a boundary vector in every
direction.

Lemma 8: Given a bigraph H = ([n],[m], E), for any
p € (0,1]™, there exists a unique A > 0 such that Ap €
o(H).

In the rest of this section, we propose a program to char-
acterize boundary vectors. The cornerstone of the program
is the observation that cylinders can be properly discretized
without changing the boundary.

Given an integer d > 0, a cylinder A < II"* is said to be
d-discrete in dimension j, if there is a partition of 14} into
d disjoint intervals A1, ..., Ag such that A = U¢_ S x Ay
for some S,? c Im\G} | | = 1,...,d. A cylinder set A is
called d-discrete in dimension j, or discrete in dimension j
when d is implicit, if so is every A € A. Given a vector
d = (di,...,dn), a cylinder A is called d-discrete, if it is
d;-discrete in dimension j for any j € [m]. Likewise, A
is called d-discrete, or discrete when d is implicit, if so
is every A € A; then the vector d is called a discreteness
degree of A.

Given two vectors p and q, we say p < q if the inequality
holds entry-wise. Additionally, if the inequality is strict on
at least one entry, we say that p < q.

In the rest of this section, fix a bigraph H = ([n], [m], F)
and a probability vector p € d(H). Let q. = ¢((1 + €)p)
for any real number € > 0 and d = (dy, ..., d,,) with each
d; being the degree of the vertex j € [m] in H.

The main results (Theorem 13 and Theorem 3) of this
section present a discrete cylinder set for each probability
vector on the boundary. As a byproduct, it is shown that the
boundary lies in the exterior. Following these theorems, there
are two corollaries handling the discretization of interior and
exterior respectively.

The boundary is discretized in four steps, as shown in the
coming four lemmas. First, we show that for any ¢ > 0, there
is a discrete cylinder set whose measure vector lies in the
exterior and is e-close to p. Unfortunately, the discreteness
degree of this cylinder set depends on €, and may be
unbounded when ¢ tends to 0. Second, we show that the set
of cylinders can be chosen such that the discreteness degree

.
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is no more than d. However, the measure vector may not
be lower-bounded by p, though it is still upper-bounded by
q.. Third, with € tending to 0, a mathematic program and
a calculus argument guarantee the existence of a d-discrete
cylinder set whose measure vector lies in the exterior and
is upper-bounded by p. Finally, we show that the measure
vector of this cylinder set is exactly p, which immediately
leads to the main theorem.

The basic idea of proving the next lemma is to discretize
cylinders dimension by dimension. To discretize the j-
th dimension, the axis I¥7} is partitioned so that every
cylinder varies little in each part, which naturally leads to
an approximation (that is discrete in dimension j) to the
origin cylinders. The partition is found by approximating an
integral with a finite summation.

Lemma 9: For any e > 0, there exists a discrete cylinder
set A ~ H such that p < p(A) < g and p(Ugead) = 1.

The basic idea of proving the next lemma is as follows. By
Lemma 9, we have a discrete cylinder set. The vector of the
measures of the cylinders that depend on a common variable
X turns out to be a convex combination of d;-dimensional
vectors. A simple combinatorial argument indicates that at
most d; out of the latter vectors are enough to generate (also
by convex combination) former one, which immediately
implies the desired discreteness degree.

Lemma 10: For any € > 0, there exists a d-discrete cylin-
der set A ~ H such that p(A) < q and p(Use44) = 1.

By Lemma 10, for any small ¢ > 0, there is a d-
discrete cylinder set A, whose measure is upper bounded
by q.. The next lemma claims that this is the case even
if ¢ = 0. The basic idea is to show that as ¢ tends to O,
A¢ converges in some sense and the limit is a d-discrete
cylinder set. For this end, we establish an equivalence
between the existence of a d-discrete cylinder set and a
mathematical program consisting of polynomial constraints.
This equivalence, together with an argument based on the
continuity of the constraints, ensures that a sequence of A,
converges and the limit cylinder set is as desired.

Lemma 11: There is a d-discrete cylinder set A ~ H
such that p(A) < p and p(Uaead) = 1.

For the cylinder set A obtained in Lemma 11, the next
lemma claims that p(A) = p. Roughly speaking, if there
are A; and A; both depending on X; and satisfying that
#(4;) < p; and p(A4;) = pj, we can remove a thin
slice (perpendicular to the axis X;) from A; and attach
it to A;. After this operation, both u(A4;) < p; and
1(A4;) < pj, no extra dependency is brought about, and
the whole cube remains been filled up. Iteratively, we can
finally get u(Ay) < pg for any k, which is contradictory to
the assumption that p is a boundary vector.

Lemma 12: 1If there is a cylinder set A ~ H such that
w(A) < p and pu(UacaA) =1, then u(A) = p.

Our main theorem immediately follows from Lemma 11
and Lemma 12.



Theorem 13: Given a bigraph H = ([n],[m], E) and p €
O(H), let d = (dy,...,d,,) where d; is the degree of the
vertex j € R(H). Then there is a d-discrete cylinder set
A ~ H such that ;(A) = p and p(Uaead) = 1.

Theorem 13 and Lemma 12 essentially give a necessary
and sufficient condition for deciding the boundary: p is
a boundary vector if and only if it is a minimal probability
vector that allows a cylinder set as in Theorem 13. Due
to discreteness, such cylinders have only finitely many
forms, so their existence can be checked at least by the
exhaustive method. In this sense, not only can we decide
boundary vectors, but also constructively find the “worst-
case” cylinders (i.e., the measure of the union is maximized).
The method is as in Theorem 3.

Theorem 3: Given a bigraph H = ([n],[m],E), let d =
(d1,...,dn) where d; is the degree of the vertex j € R(H).
For any vector q € (0,1)™, Aq lies on the boundary of H
if and only if A is the optimal solution to the program:

min A
Z Cikr ka,.. ko, = 1 for any kj € [d;], j € [m];
i€[n]

For any (4, j) € ([n] x [m])\E, C; ky ks,... .k, dOES

S.t.

not depend on k;;

Z ( H Tk, ) Ci ke ko =

ki€ldi],....km€e[dm] je[m]

Ag;

for i € [n];

2 zj, = 1 for j € [m];
ke[d;]
zji € [0,1] for j € [m], k € [d;];
Cikey ko, ko € {0,1} for i € [n], k; € [d;],7 € [m].

Given a solution to the program, I is partitioned into
subcubes by cutting every axis X; into d; intervals of
length 2, k;j € [d;]. For each i € [n], let A; be the
union of the subcubes numbered by (ki,ka, ..., kmy) with
Cliker kz s om 1. Then A = {A4,...,A,} satisfies the
requirement of Theorem 13.

By Theorem 13, for p € d(H ), the worst set of cylinders
can be d-discrete. We will generalize the result to non-
boundary vectors. When p is in the interior of H, the basic
idea of the next corollary is to add an extra cylinder to the
original set of cylinders so that their union has measure 1.
By minimizing the extra cylinder, the union of the original
cylinders should be maximized. Then the discreteness degree
follows from Theorem 13.

Corollary 14: Given a bigraph H = ([n],[m], E) and
p € Z(H), define d (di,...,dn,) where d; is the
degree of the vertex j € R(H). Let d’ (dv +
1,...;dm, + 1). Then there is a d’-discrete cylinder set
B = arg MAaX A pr (A)—p w(UaeaA).

The next corollary indicates that for p € E£(H), the
discreteness degree is also small. The basic idea is opposite
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to that of proving Corollary 14. Some events and/or a part
of one are removed so that the remaining events exactly
fill the cube. Then discretize the rest events according to
Theorem 13. Finally, a slight refinement of the discretization
also discretizes the removed events.

Corollary 15: Given a bigraph H = ([n],[m], E) and
p € E(H), define d = (dy, ...,d,,) where d; is the degree
of the vertex j € R(H). There is a d-discrete cylinder set
A ~ H such that u(A) = p and p(Uacad) = 1, where
d;, = dj, + 1 for some jo € [m] and d; = d; for j # jo.

Remark 1: The above theorems and corollaries mean that
given a bigraph and a vector in (0, 1]™, the worst case cylin-
ders can be discretized. More importantly, the discreteness
degree is determined by the bigraph only.

The discreteness degrees mentioned in Theorems 13, 3
and Corollaries 14, 15 are tight in general. For example,
consider the complete bigraph H = ([n], [1], E). For any
p € (0,1]", p € Z(H) if and only if Zie[n] pi < 1, while
p € (H) if and only if Zie[n] p; = 1. One can easily check
that the discreteness degrees in the Theorems and Lemmas
are the smallest possible for this example.

IV. BREAKING CYCLES

In this section, we compute the boundary of cyclic
bigraphs. Roughly speaking, a cyclic bigraph models the
variable-generated system of events where events are located
on a cycle and neighbors (and only neighbors) depend
on common variables. Note that the only gapful bigraph
reported in the literature is 4-cyclic [27].

Definition 4 (Cyclic bigraph): A bigraph H is said to be
n-cyclic if the base graph G is a cycle of length n. When
n = 3, it additionally requires MmN (i) = . In case
of no ambiguity, an n-cyclic bigraph is simply called a cyclic
bigraph.

As far as the GLLL problem is concerned, an n-cyclic
bigraph is always equivalent to the canonical one H,,
([n], [n], E) where E, = {(i,i), (i, (i + 1)(mod n)) :
i € [n]}. Here the value k(mod n) is defined to be
(k —1)(mod n) + 1. Hence, in the rest of this section, we
will focus on H,,.

To simplify notation, the operator “(mod n)” will be
omitted whenever clear from context.

A concept that is opposite to cyclic bigraphs is as follows.

Definition 5 (Linear bigraph): A bigraph H is said to be
n-linear if the base graph G is a path of length n. In case
of no ambiguity, an n-linear bigraph is simply called linear.

A rather surprising phenomenon of cyclic bigraphs is that
they can be reduced to linear bigraphs in the following sense:
any boundary vector of a cyclic bigraph is also that of a
linear one. That is, to find the boundary vector in a certain
direction, some pair of neighboring events can be decoupled
(i.e., get independent of each other) by ignoring their shared
variables. In this sense we say that the cycle is broken. The
result is stated in the next theorem.




Xi

Figure 1. Partitioning 147} into four rectangles

Theorem 16: For any vector p € 0(H,,), there is a d-
discrete cylinder set A ~ H, such that p(A) p,
/L(UAE_AA) =1,and d < (2,2, ey 2).

Remark 2: d < (2,2,...,2) means that d; = 1 for some
j € [n]. Then all the cylinders (especially A; and A;1) are
independent of X;. As a result, A also conforms with H,{ﬂ },
the n-linear bigraph obtained by removing the vertex j €
R(H,), meaning that p € £ (H,{LJ }). Due to the assumption
that p € d(H,,) and the easy fact that‘E(Héj}) c &(Hy), p
must also lie on the boundary of HY.

Now we give a sketchy proof of Theorem 16.

Arbitrarily fix p € 0(H,). By Theorem 13, there is a
(2,2, ...,2)-discrete cylinder set A ~ H,, such that p(A) =
p and pu(UaeaA) = 1. Arbitrarily choose such a cylinder
set A = {A,...,A,}. For each i € [n], let B; be the base
of A; such that dim(B;) = {i,7 + 1}.

Due to the discreteness of A, each 114} is partitioned into
four rectangles as in Figure 1 and only unions of some of the
rectangles make sense. Especially interesting is the 14 types
of non-trivial unions, namely 77, through to T}4, grouped
into the four categories 717, ..., Ty, as shown in Figure 2.

For any i € [n], since 0 < u(B;) < 1, B; must have one
of the 14 types in 111} Now, we explore how B;, B4
are correlated in terms of their types.

If some B; has type T5, then A; is independent of either
X, or X;.1. It is easy to see that A is 1-discrete either in
dimension ¢ or in dimension ¢ + 1. Hence we have

Lemma 17: If B; has type T, for some i € [n], A has a
discreteness degree smaller than (2,2, ...,2).

As a result, in the rest of this section, it is assumed that no
bases have type T5. Then we show that there are at most two
essentially different possibilities of the types of By, ..., By,
as indicated in the next lemma.

Lemma 18: There are at most two possible combinations
of the types of the bases.

1) Tj-dominant: all bases have type 77 except one has
type Ty.
2) T3-dominant: all bases have type T5.
However, the two possibilities are ruled out by the fol-
lowing lemma.
Lemma 19: Neither T}-dominant nor 753-dominant com-
bination is possible.
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(c) T3 types

(d) T4 types

Figure 2. Types Tq1 through to Ty in 153}, indicated by the shaded

areas

By Lemmas 17 through to 19, Theorem 16 immediately
follows, which in turn enables us to find out all boundary
vectors of any cyclic bigraph.

Theorem 4: Given a vector p € (0,1)", for each i € [n],
let )\; be the minimum positive solution to the equation
system: by = Ap;, by = Alp_’“bi*:ll for 2 < k <n-1,
bp—1 = 1 — Api—1. Let Ao = min;ep, Ai. Then Aop lies
on the boundary of any n-cyclic bigraph.

As an application of Theorem 4, we explicitly characterize
the boundary of the 3-cyclic bigraph Hs.

Example 1: For Hj, consider an arbitrary p € (0,1)3
with p; + po + p3 = 1. For i € {1,2,3}, we have \; =

1—y/1—4pipi—1 . . /1= .. .
W. Since the function % is increasing
Pl

with = > 0, the final Ao is the A; with ¢ minimizing
pipi—1. For example, if p; > py and p; = ps, then
Asp = =¥ 1=p2ps b 5g 9 boundary vector.

2paps3
V. GAP BETWEEN ABSTRACT- AND VARIABLE-LLL

In this section, we investigate conditions under which
Shearer’s bound remains tight for Variable-LLL.

A. A Theorem for Gap Decision

Definition 6 (Exclusiveness): An event set A is said to be
exclusive with respect to a graph G, if G is a dependency
graph of A and p(A; N Aj) = 0 for any 4,j such that
i € Ng(j). A cylinder set A is called exclusive with respect
to a bigraph H, if A conforms with H and A is exclusive
with respect to G . We do not mention “with respect to G
or H” if it is clear from context.



The next lemma claims that exclusive cylinder sets always
exist if only the measures are small enough.

Lemma 20: For any bigraph H, there is € > 0 such that
for any vector p on (0, €), there exists a cylinder set A that
is exclusive with respect to H and u(A) = p.

Definition 7 (Abstract Interior): The abstract interior of
a graph G = ([n], E), denoted by Z,(G), is the set {p €
(0,1)" : P(naead) > 0 for any event set A ~, G with
P(A) = p}, where “A ~, G” means G is a dependency
graph of A. Given a bigraph H, we simply write Z,(H) for
Z.(Gg).

It is obvious that Z,(H) < Z(H) for any bigraph H.

Definition 8 (Abstract Boundary): The abstract bound-
ary of a graph G = ([n], E), denoted by 0,(G), is the
set {p € (0,1]" : (1 —e)p € Z,(G) and (1 + ¢)p ¢
Z.(G) for any € € (0,1)}. Any p € 0,(G) is called an
abstract boundary vector of G.

The following is a counterpart of Lemma 8.

Lemma 21: For any graph G = ([n], E) and p € (0,1)",
there is a unique A > 0 such that Ap € 0,(G).

The proof of [42, Theorem 1] presents an interesting
property of exclusive event sets as in Lemma 22.

Lemma 22: Given a graph G and p € Z,(G) v 04(G).
Among all event sets A ~, G with P(A) = p, there is an
exclusive one such that P(Uae4A) is maximized.

Definition 9 (Gap): A bigraph H is called gapful in the
direction of p € (0,1)", if there is A > 0 such that Ap €
Z(H)\Z,(H), otherwise it is called gapless in this direction.
H is said to be gapful if it is gapful in some direction,
otherwise it is gapless.

For convenience, “being gapful” will be used interchange-
ably with “having a gap”.

The main result of this section, namely Theorem 5, is
a necessary and sufficient condition for deciding whether
a bigraph is gapful. Intuitively, it bridges gaplessness and
exclusiveness both in interior and on boundary. At the first
glance, the connection between gaplessness and exclusive-
ness seems to be an immediate corollary of the well-known
Lemma 22 by Shearer. However, this is not the case. The
main difficulty lies in boundary vectors. Suppose the bigraph
is gapless. On the one hand, for a vector on its boundary,
there is an exclusive event set whose union has probability
1, by Lemma 22. These events are not necessarily cylinders,
so we can’t claim the existence of an exclusive cylinder set.
On the other hand, there indeed is a cylinder set whose
union has measure 1. Such a cylinder set must be exclusive
as desired, if the union of non-exclusive events always has
smaller probability than that of exclusive ones. But Lemma
22 just claims that the union of non-exclusive events can’t
have bigger probability, not precluding the possibility that
the probabilities are equal. Our proof essentially distills
down to ruling out this possibility, as in Lemma 23.

The following lemma is key to the proof of Theorem 5.
Intuitively, it claims that the overall probability is maximized
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by and only by an exclusive set of event. Note that the “by”
part was proved in [42, Theorem 1], but it apears here to
make this paper self-contained.

Lemma 23: Suppose that G is a dependency graph of
event sets A and B, P(A) = P(B), and B is exclusive.
Then P(UacaA) < P(UpepB), and the equality holds if
and only if A is exclusive.

Now we are ready to prove the main theorem of this
section.

Theorem 5: Given a bigraph H and a vector p of positive
reals, the following three conditions are equivalent:

1) For any A such that A\p € Z(H), there is an exclusive
variable-generated event system A with event-variable
graph H and probability vector Ap.

2) For the A such that Ap € 0(H), there is an exclusive
variable-generated event system A with event-variable
graph H and probability vector Ap.

3) H is gapless in the direction of p.

Proof: (1 = 3): Arbitrarily fix A > 0 such that
q = A\p € Z(H). Let A ~ H be an exclusive cylinder set
such that u(A) = q and p(UaeaA) < 1. It also holds that
A is exclusive with respect to the base graph Gp. Since
u(UaeaA) < 1, by Lemma 23, p(upegB) < 1 for any
event set B ~, Gy with P(B) = q. As aresult, q € Z,(H).
Altogether, H is gapless in the direction of p.

(3 = 2): Assume that H is gapless in the direction of p.
Let A be such that g = Ap € ¢(H ). By Theorem 13, there is
a cylinder set A ~ H such that u(A) = q and p(UgeaA) =
1. On the other hand, q € 0,(H) due to the assumption that
H is gapless in the direction of p. By Lemma 22, there is
an exclusive event set B ~, Gy such that u(B) = q and
P(UpepB) = 1. Because A also conforms with Gy and
P(UpeB) = P(UgcaA) = 1, by Lemma 23, A must be
exclusive with respect to G g7, hence exclusive with respect
to H.

(2 = 1): Arbitrarily fix A > 0 such that q = Ap € Z(H).
Let 6 > 1 be such that 0Ap € J(H). Arbitrarily choose
an exclusive cylinder set A ~ H which satisfies u(.A)
OAp. Let A = {A4,...,A,}. For each i € L(H), there is
a base B; of A; such that dim(B;) = Ng(¢). Arbitrarily
choose a subset B. ¢ B; with u(B}) = u(B;)/d. Let A’ =
{Af,...,A!,} where each A} is the cylinder with base B.
It is easy to check that A" ~ H, pu(A’) = q, and A’ is
exclusive. |

The significance of Theorem 5 lies in that it enables
to decide whether a gap exists without checking Shearer’s
bound.

Remark 3: Given a bigraph H ([n],[m], E) and a
vector p € (0,1)", consider three real numbers that are
of special interest. Aj, Ao are such that \yp € J(H) and
A2p € 0.(Gr), respectively. Az is the maximum A\ such that
there is an exclusive cylinder set A ~ H with p(A) = Ap.
It is not difficult to see that \; > A > A3. An equivalent



form of Theorem 5 is that the three numbers are either all
equal or pairwise different.

B. Reduction Rules

Given a bigraph H, we define the following 5 types of
operations on H.

1) Delete-Variable: Delete a vertex j € R(H) with
N ()] <1, and remove the incident edge if any.

2) Duplicate-Event: Given a vertex ¢ € L(H), add a

vertex i’ to L(H), and add edges incident to i’ so

that M () = N ().

Duplicate-Variable: Given a vertex j € R(H), add a

vertex j' to R(H), and add some edges incident to j’

so that N'(5') € N (5).

Delete-Edge: Delete an edge from E provided that the

base graph remains unchanged.

Delete-Event: Delete a vertex ¢ € L(H), and remove

all the incident edges.

3)

4)

5)

We also define the inverses of the above operations. The
inverse of an operation O is the operation O’ such that for
any H, O'(O(H)) = O(0O'(H)) = H.

The next theorems show how these operations influence
the existence of gaps.

Theorem 24: A bigraph H is gapful, if and only if it
is gapful after applying Delete-Variable, Duplicate-Event,
Duplicate-Variable, or their inverse operations.

Theorem 25: A gapless bigraph remains gapless after
applying Delete-Event or the inverse of Delete-Edge.

Theorem 26: A gapful bigraph remains gapful after ap-
plying Delete-Edge or the inverse of Delete-Event.

Because the operations can be pipelined, applying them in
combination may produce interesting results. The following
corollaries are some examples.

Definition 10 (Combinatorial bigraph): Given two posi-
tive integers m < n, let H, ., = ([(%)], [n], En,m) Where
(,7) € By m if and only if j is in the m-sized subset of [n]
represented by . H, ,, is called the (n,m)-combinatorial
bigraph.

Corollary 27: 1f H,, ,, is gapless, then so iS Hy4cm+c
for any integer ¢ > 1.

Corollary 28: If H,, ,, is gapful, then for any integer ¢ >
1, Hepem 1s also gapful.

Definition 11 (Sparsified bigraphs): A bigraph H'
([n'],[m'], E’) is called a sparsification of H
([n], [m], E) if [n'] = [n],[m'] € [m],E’ € E and their
base graphs are the same.

By Theorem 24 and Theorem 25, we know that if H is
gapful, all sparsifications of H must be gapful. Applying
Corollary 28, we get the following result.

Corollary 29: If H, ,, is gapful, all sparsifications of
Hp, e are also gapful for any integer ¢ > 1.
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VI. RELATIONSHIP BETWEEN GAPS AND CYCLES

In this section, we show that a bigraph has a gap is almost
equivalent to that its base graph has an cycle. The only case
that is not completely known is when the bigraph does not
contain any cyclic bigraph but its base graph has a 3-clique.
Many examples in this case is gapless, but we find one that
turns out to be gapful.

First of all, we prove that any treelike bigraph is gapless.
Recall that a bigraph is called treelike if its base graph is
a tree. Basically, for a vector on boundary, we construct
an exclusive cylinder set, which leads to the result by
Theorem 5. To ensure exclusiveness, the unit interval in
each dimension is divided into two disjoint parts, each of
which is assigned to one of the two cylinders depending on
this dimension. The construction is feasible because the base
graph is a tree.

Theorem 6: Treelike bigraphs are gapless.

Using of the constructed cylinders, we get a system of
equations whose solution determines the boundary of a
treelike bigraph.

Corollary 30: Given a bigraph H = ([n],[m], E) such
that G is a tree, appoint the vertex n as the root of Gy.
For any p € (0,1)", Ap € d(H) if and only if X is the
minimum positive solution to the equation system: g; = Ap;
if vertex ¢ is a leaf of G, i = Api/ [ 11 is 2 chitd of 1 (1 — Q)
if i # n and is not a leaf, and App, = [ [ i a chitd of m (1 — @)

Now we show that cyclic bigraphs are gapful. Though
in principle this can be shown by a combination of [42,
Theorem 1] and the results in Section IV, it is tough
since both Shearer’s inequality system and the high degree
polynomial in Theorem 4 are hard to solve. Hence we do it in
another way. Specifically, for the vector q = (i +e, .., i+e)
where € > 0 is small enough, we show two facts. First, the
vector q lies in the interior of the cyclic bigraph. Second,
q does not allow any exclusive cylinder set. By Theorem 5,
these facts immediately imply Theorem 7.

Theorem 7: Cyclic bigraphs are gapful.

By Theorem 7, we get a large class of gapful bigraphs.

Definition 12 (Containing): We say that a bigraph H
contains another bigraph H’, if there are injections 7, :
L(H') - L(H) and wr : R(H') — R(H) such that the
following two conditions hold simultaneously:

1) For any ¢ € L(H') and j € R(H'), mr(j) €

Ny (mr (7)) if and only if j € Ng/(4).
2) For any j € R(H)\rr(R(H")), j ¢ Nu(rr(i)) n
Ny (rp(k)) for any 4,k € L(H').
Intuively, H contains H’ means that H' can be embedded
in H without incurring extra dependency.

By Theorem 24 and Theorem 25, a bigraph H is gapful if
it contains a gapful one. According to Theorem 7, we obtain
the following result.

Corollary 31: Any bigraph containing a cyclic one is
gapful.



Based on Theorem 6 and Corollary 31, it is natural to
have the following conjecture:

Conjecture 1 (Gap conjecture): A bigraph is gapful if
and only if it contains a cyclic bigraph.

We have already known that the sufficiency does hold. As
to the necessity, assume that the bigraph H does not contain
any cyclic one. We analyze case by case.

Case 1: the base graph is a tree. By Theorem 6, H is
gapless, as desired.

Case 2: the base graph has cycles. Since H does not
contain a cyclic bigraph, its base graph does not have
induced cycles longer than three. As a result, solving the
conjecture is equivalent to answering the following question
Q: Is a bigraph gapless if it does not contain any cyclic
one but its base graph has 3-cliques?

First look at a trivial example: the bigraph H
([3],[1], E) with E = [3] x [1]. It satisfies the condition of
question Q. One can easily check that 0(H) = {(p1,p2,p3) :
p1+p2+ps =1} =3,(Gg). So, H is gapless.

For more evidence, recall H, ,,, the (n,m)-combinatorial
bigraph. As a special case, Hs is the canonical 3-cyclic
bigraph H3. Generally, we have the following observations:

First, m 1: Only sets of independent events can
conform with H, ,,.

Second, 2 < m < %n: H,, ,, contains 3-cyclic bigraphs,
so it is gapful.

Third, m > %n: H,, ,, does not contain cyclic bigraphs,
but the base graph have 3-cliques since it is a complete
graph. We mainly consider bigraphs in this category.

Theorem 32: Hy 3 is gapless.

Theorem 32, together with Corollary 27, immediately
implies the following result.

Corollary 33: Forn > 4, H,, ,,_1 is gapless.

Actually, Corollary 33 can be generalized to H,, ,,—,, for
any fixed m and large enough n, as shown in Theorem 34.

Theorem 34 is proved by construction. Basically, given a
boundary vector p of H,, ,,_.,, we identify a small number
of dimensions, partition the unit cube C spanned by these
dimensions into (") parts, and use each part as the base to
construct a cylinder in I". Essentially this means projecting
all cylinders to a low-dimensional cube. For this end, we first
show that when n is big enough, there are 10 dimensions
such that any cylinder independent of at least one of these
dimensions has very small probability. Then Lemma 20
ensures that the bases of these cylinders can be chosen
as exclusive. Finally, the other cylinders are obtained by
partitioning the part of C that has not yet been covered.
Altogether, we get an exclusive set of cylinders whose
measure vector is p.

Theorem 34: For any constant m, when n is large
enough, H,, ,,_,, is gapless.

In spite of so much confirmative evidence, the general
answer to the question () turns out to be NO! The following
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Table I
INSTANCES OF GAPFUL/GAPLESS BIGRAPHS

Gapful
V2K
Sparsifications of Hrc 5¢
cyclic bigraphs

Gapless
Hy p—c for large n
Hy oy forn >4
treelike bigraphs

bigraph is an example where gap is not caused by contain-
ing cyclic bigraphs. Specifically, it is the bigraph H*
(5], [5], ) with E = ({1} x {1,4,5}) U ({2} x {2,4,5}) U
({3} x {3,4,5}) u ({4} x {1,2,3,4}) U ({5} x {1,2,3,5}).

Theorem 35: H* is gapful.

By Delete-Event and the inverse operation of Duplicate-
Variable, it is not difficult to reduce H7 5 to H*. Because
H* is gapful, Hr 5 is also gapful. From Corollary 29, we
have the following corollary.

Corollary 36: For any integer ¢ > 1, every sparsification
of Hr. 5. is gapful.

In summary, we get some instances of gapful/gapless
bigraphs, listed in Table I.

VII. HARDNESS RESULTS

We define some computational problems that are closely
related to the variable-LLL problem and show that they are
difficult to solve.

Definition 13 (MUP Problem): Given a bigraph H
([n],[m], E) and vector p € (0,1]™, compute ¥(H,p)
max A~ g u(A)=p 1 (UaecaA), where A ranges on sets
cylinders in 1" and p is Lebesgue measure.

Definition 14 (INT Problem): Given a bigraph H and a
vector p on (0,1), decide whether p € Z(H).

Theorem 37: MUP is #P-hard.

Proof: 1t is enough to show that MUP is #P-hard even
if H is a (3,2)-regular bigraph and p = (%, %, - %)

Arbitrarily fix a (3, 2)-regular bigraph H = ([n],[m], E).
We will construct a set A of cylinders in I such that
u(A) p, A is exclusive with respect to H, and the
probability of the union is maximized.

Arbitrarily choose a function f : [m] — [n] which maps
each vertex in [m] to one of its neighbors. For each i € [n],
a cylinder A; < I" is defined in this way: for each neighbor
jofi,0<X; <1/2if f(j) =i, otherwise 1/2 < X; < 1.
Let A= {A1,..., An}.

Since each i € [n] has exactly three neighbors in H and
each j € [m] has exactly two neighbors, we observe that
1(A) = p and A is exclusive with respect to H. Hence
M(Uie[n]Ai) = \I}(H7 p)’ by Lemma 23.

The construction actually partitions I into 2" blocks
each having measure 27"". Any cylinder in A consists of
some blocks. Let By, k... k... kj € {0,1} for any j, denote
the block defined by 0 < X; < 1/2ifk; =0or1/2 < X; <
1if k; = 1, for any j € [m]. Given ki, ko, ..., km € {0,1}
and i € [n], the following two conditions are equivalent.

L. Bi, ko, b S Aie

bl

of



2. For each neighbor j of ¢ in H, k; = 0 if and only if
fG) =i

Let N be the number of blocks outside of Uje[,,)A;. Then
we have (1(Usefn)A4:) = 1 — N/2™, so computing ¥(H, p)
is equivalent to computing V.

On the other hand, computing N is related to the 3SAT
problem. Let {y1, ..., ym} be a set of boolean variables. For
each i € [n], assume j1, jo, j5 are its neighbors in H; define
a 3SAT clause ¢; = 2z, Vv zj, V z;j, where the literal z;,
yj. if f(jr) = 14, otherwise z;, = 75 , for k = 1,2,3.
The constraint-variable graph of ¢ = ¢1 A ... A ¢, is H.
Note that each variable appears twice oppositely, so ¢ is a
Holant([0, 1,0]|[0,1,1,1]) or Rtw-Opp-#3SAT instance.

Now consider an assignment y; = kj;,j € [m]. It is
straightforward to check that ¢ is satisfied if and only if
the block By, k,,... k,, i outside e[, A;. Thus, N is the
number of satisfying assignments of ¢, which is #P-hard to
compute even if H is (3,2)-regular, by [8, Theorem 8.1]. W

By Theorem 37, one can prove the following result.

Theorem 38: INT is #P-hard.

a
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