
Much Faster Algorithms for Matrix Scaling

Zeyuan Allen-Zhu

Microsoft Research
zeyuan@csail.mit.edu

Yuanzhi Li

Princeton University
yuanzhil@cs.princeton.edu

Rafael Oliveira

University of Toronto
rafael@cs.toronto.edu

Avi Wigderson

Institute for Advanced Study
avi@ias.edu

Abstract—We develop several efficient algorithms for
the classical Matrix Scaling problem, which is used in
many diverse areas, from preconditioning linear systems to
approximation of the permanent. On an input n×n matrix
A, this problem asks to find diagonal (scaling) matrices
X and Y (if they exist), so that XAY ε-approximates a
doubly stochastic matrix, or more generally a matrix with
prescribed row and column sums.

We address the general scaling problem as well as some
important special cases. In particular, if A has m nonzero
entries, and if there exist X and Y with polynomially
large entries such that XAY is doubly stochastic, then we
can solve the problem in total complexity ˜O(m + n4/3).
This greatly improves on the best known previous results,
which were either ˜O(n4) or O(mn1/2/ε).

Our algorithms are based on tailor-made first and
second order techniques, combined with other recent
advances in continuous optimization, which may be of
independent interest for solving similar problems.

Keywords-matrix scaling, iterative algorithms, first-
order method, second-order method, doubly stochastic

I. INTRODUCTION

The matrix scaling problem is natural and simple to

describe. Given a non-negative real matrix A, can one

scale its rows and columns (namely multiply each by

a non-negative constant) to yield prescribed row sums
and column sums. Note that the number of constraints is

the same as the number of degrees of freedom; however,

what makes it interesting (beyond the many applications

that we detail below) is that the constraints are additive

while the scalings are multiplicative.

Taking real non-negative entries and computing the

row and column sums actually capture a much more

general problem: one can allow A to have complex

entries and require the �p norms of rows and columns,

after scaling, to equal prescribed values.1

The full (and better formatted) version of this paper is available at
https://arxiv.org/abs/1704.02315.

Most of this work was done when Z. Allen-Zhu were a research
member at the Institute for Advanced Study, and when Rafael Oliveira
was a student at Princeton University.

Z. Allen-Zhu and A. Wigderson are partially supported by NSF
grant CCF-1412958, and R. Oliveira is partially supported by NSF
grant DMS-1451191, NSF grant CCF-1523816, and a Siebel scholar-
ship.

1The simple reduction replaces any entry α in the matrix by |α|p.

For a non-negative d × n matrix A, we say A is an

(r, c)-matrix if r and c are respectively the vectors of

row and column sums of A. Given vectors r and c, the

problem of matrix (r, c)-scaling is

to find positive diagonal matrices X and Y for

which the matrix XAY is an (r, c)-matrix.

When d = n and r = c = � ∈ R
n where � is the all-

one vector, the matrix (�,�)-scaling problem becomes

the doubly stochastic scaling problem.
While the above exact scaling problem is of interest,

its asymptotic version is even more so, both from the

algorithmic viewpoint and from the structural one, as it

captures natural combinatorial problems. We say that A
is asymptotically (r, c)-scalable if the row and column

sums can reach r and c asymptotically: that is, for every

ε > 0, there exist positive diagonal matrices X,Y such

that, letting B = XAY , we have ‖B� − r‖ ≤ ε and

‖��B − c‖ ≤ ε.2

The combinatorial essence of asymptotic scal-

ing follows from a well-known characterization (see

Proposition II.2). A matrix A is asymptotically (�,�)-
scalable if and only if the permanent of A is positive,

namely if the bipartite graph defined by the positive

entries in A has a perfect matching. A matrix A is

asymptotically (r, c)-scalable if and only if a natural

flow on the same bipartite graph3 has a solution. Duality

(Hall’s theorem and max-flow-min-cut theorem) gives

simple certificates of non-scalability in terms of the

patterns of 0’s in the matrix A.

The main computational problem we study is: given

a matrix A, vectors r, c and ε > 0, determine if A is ε-

approximately (r, c) scalable, and if so, find the scaling

matrices X,Y .4

Before diving into the history of matrix scaling, we

explain one of its most basic applications, which also

demonstrates its algorithmic importance.

2The choice of norm in these expressions is not too important, and
can be taken to be �2.

3Connect the source to the row vertex i with capacity ri, and the
column vertex j to the sink with capacity cj .

4We shall formally define ε-approximation in Section II. At a high
level, it asks the matrix A, after scaling, to have row and column
sums being ε-close to r and c respectively.

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.87

890

Preconditioning Linear Systems. When solving a

linear system Az = b, it is often desirable —for

numerical stability and efficiency purposes— to have

matrix A be well-conditioned. When this is not the case,

one tries to transform A into a “better conditioned” ma-

trix A′. Matrix scaling provides a natural and efficient

reduction to do so. For instance, one would hope that

a scaled matrix A′, in which e.g. all row and column

p-norms are (say) 1, is better conditioned.5 For this

reason, we can use a matrix scaling algorithm to obtain

diagonal matrices X,Y , and define A′ = XAY . Now,

the solution to Az = b can be obtained by solving

the (hopefully more numerically stable) linear system

A′z′ = Xb and setting z = Y −1z′. We stress here that

A′ and A have the same sparsity.

A. History and Prior Work

The matrix (r, c)-scaling problem is so natural and

important that it was discovered independently by many

different scientific communities, starting in 1937 with

the work of Kruithof (6) in telephone forecasting,

Deming and Stephan (7) in transportation science,

Brown (8) in engineering, Stone (9) in economics,

Wilkinson (10) in numerical analysis, and Friedlan-

der (11) and Sinkhorn (12) in statistics. It has been

applied in image reconstruction (13), operations re-

search (14; 15), decision and control (16), theoretical

computer science (17), and other scientific disciplines.

For more references, we refer the reader to the sur-

vey (18), the paper (15) and references therein.

Perhaps the most famous algorithm for solving ma-

trix (r, c)-scaling is the RAS method (12). 6The RAS

method alternatively applies row and column normal-

ization, where in a row (resp. column) normalization

we multiply each Ai,j by ri ·
(∑

j Aij

)−1
(resp. by

cj ·
(∑

i Aij

)−1
).

In the original paper, Sinkhorn (12) only proved the

convergence of the RAS method when A has only

strictly positive entries and when r = c = �. The

best known complexity result for the RAS method is

given by Kalantari et al. (19). In particular, they showed

that if the entries of A are polynomially bounded,

then the RAS method converges in Õ(n/ε2) iterations7

for (�,�)-scaling, or in Õ(h2/ε2) iterations for (r, c)-

scaling, where r and c are integral vectors and h
def
=

5This indeed is widely use in practice (see (1; 2)), and indeed tends
to numerically stabilize systems (see (1; 3; 4)), although no theoretical
bounds are known (see (5)).

6Also known as the Sinkhorn process, discovered by Sinkhorn in
1964 (12). The RAS method fits as an instance of the “alternate
minimization” heuristic, of which this is one of the few known
instances in which it converges quickly.

7Each iteration of the RAS method costs complexity O(m), the
number of non-zero entries in A. The necessary word-size is only
polylogarithmic in n and 1/ε.

‖r‖1 = ‖c‖1. Kalantari et al. also analyzed the RAS

method when A is strictly positive in all n2 entries, or is

exactly (r, c)-scalable with polynomial scaling factors.8

We summarize them in Table I and II.
Other algorithmic approaches were also developed for

matrix scaling. The results (15; 20–22) proved asymp-

totic convergence without giving complexity bounds.

Kalantari and Khachiyan (23) used the ellipsoid method,

obtaining the first poly-logarithmic dependence on

the approximation parameter ε, with total complexity

Õ(n4).9 Balakrishnan (16) used interior point method

and obtained a total complexity Õ(n6). Rote and

Zachariasen (24) reduced the (r, c)-scaling problem to

running Õ(n4) instances of mincost maximum flow.

Linial et al. (17) proposed the first strongly polynomial

algorithm with a total complexity Õ(n7).

B. Our Improvements Over Known Results
We propose four algorithms to tackle the general

matrix scaling problem and also some special cases. In

all cases, we have outperformed all relevant previous

results, and in some cases our complexities are close to

linear in terms of the input size.
To state our complexity bounds let us discuss the

input conventions we use. We denote by m the number

of nonzero entries of A, and assume m ≥ n ≥ d.

We assume all entries of A are rational numbers with

polynomial sizes (i.e., at most poly(n) in numerators

and denominators10), and both r and c are positive

integral vectors with entries at most poly(n). Let h
def
=

‖r‖1 = ‖c‖1 ≥ n.
A complete listing of our results appear in Table I

and Table II.
Our Scaling0 can be viewed as an accelerated

version of RAS. Its total complexity is

Õ(mn/ε2/3) for the (�,�)-scaling, or

Õ(mn2/3h1/3/ε2/3) for the general (r, c)-scaling.

This improves the best result of RAS by a factor ε−4/3

for (�,�)-scaling, and a factor h5/3n−2/3ε−4/3 ≥
nε−4/3 for (r, c)-scaling. We stress that even testing

scalability requires ε < 1/n (see (17)) so reducing

the ε dependency from ε−2 to ε−2/3 (and later to

polylog(1/ε)) is very meaningful.
In the polylog(1/ε) complexity regimes, our

Scaling1 and Scaling3 have complexities

Õ(mn+ n7/3) for (�,�)-scaling, or

Õ
(
mn+min{n 5

2 , n
7
3 +mn

1
3h

1
2 }) for (r, c)-scaling.

8That is, A can be (r, c)-scaled with diagonal scaling matrices
X,Y where each Xi,i and Yj,j are in

[
1

poly(n)
, poly(n)

]
.

9Throughout the paper, we use Õ, Ω̃ and Θ̃ notions to hide
polylogarithmic factors in n and 1/ε.

10More generally, the complexities scale linearly with the bit-size
of the matrix entries.

891

Subcase Paper Total Complexity

full
positive
matrix

RAS method (25, 1993) Õ(n2+1/2/ε) �

Scaling0 Õ(n2+1/3/ε2/3) �

Scaling1 or Scaling3 Õ(n2)

scaling
factors
poly

bounded

RAS method (19, 2008) Õ(mn1/2/ε) �

Scaling0 Õ(mn1/3/ε2/3) �

Scaling1 Õ(m+ n3/2) �

Scaling2+Scaling3 Õ(m+ n4/3)

general

RAS method (19, 2008) Õ(mn/ε2) �

Scaling0 Õ(mn/ε2/3)

LSW method (17, 1998) Õ(mn5) �

ellipsoid (23, 1996) Õ(n4) �

interior point (16, 2004) Õ(n6) �

max flow (24, 2007) ≥ Ω̃(mn4) �

Scaling1 Õ(mn+ n5/2) �

Scaling0+Scaling3 Õ(mn+ n7/3)

Table I: (�,�)-scaling.

• We use Õ to hide log factors in n and 1/ε.
• Scaling0 is simple, deterministic just like RAS;
• Scaling1, Scaling2, and Scaling3 use SDD linear system

solvers and graph sparsification.
• � indicates the complexity is outperformed.

Subcase Paper Total Complexity

full
positive
matrix

RAS method (19, 2008) Õ(n2h1/2/ε) �

Scaling0 Õ(n2h1/3/ε2/3) �

Scaling1 Õ(n2)

scaling
factors
poly

bounded

RAS method (19, 2008) Õ(mh1/2/ε) �

Scaling0 Õ(mh1/3/ε2/3) �

Scaling1 Õ(m+ n3/2)

Scaling2+Scaling3 Õ(m+ h1/2n5/6)

general

RAS method (19, 2008) Õ(mh2/ε2) �

Scaling0 Õ(mn2/3h1/3/ε2/3)

LSW method (17, 1998) Õ(mn5) �

ellipsoid (23, 1996) Õ(n4) �

interior point (16, 2004) Õ(n6) �

max flow (24, 2007) ≥ Ω̃(mn4) �

Scaling1 Õ(mn+ n5/2)

Scaling0+Scaling3 Õ(mn+n
7
3 +mn

1
3 h

1
2)

Table II: (r, c)-scaling.

• Following (19), we assume r and c are positive integral vectors and
h = ‖r‖1 = ‖c‖1. Obviously h ≥ n.

• Since the complexity of maximum flow is at least Ω(m), we present
a complexity lower bound to (24).

If A is (r, c)-scalable with polynomially large scaling

factors,11 our complexities reduce to

Õ(m+ n4/3) for (�,�)-scaling, or

Õ(m+min{n3/2, h1/2n5/6}) for (r, c)-scaling.

Our Approaches. We have four algorithms Scaling0,

Scaling1, Scaling2, and Scaling3, all based on

tailor-made first and second-order techniques in continu-

ous optimization. We also combine graph sparsification,

SDD linear system solvers, and multiplicative weight

updates into the optimization process. We now elaborate

more on how this is done.
Matrix scaling can be written (in several ways) as the

solution to convex optimization problems. We focus on

a specific convex objective in this paper, which is the

log of the capacity function (26):

f(x)
def
=

∑d
i=1 ri log

(∑
j∈[n] Ai,je

xj
)− c�x . (I.1)

If A is asymptotically scalable, then the (approximate)

minimizer of f(x) corresponds to scaling matrices X,Y
such that XAY is an ε-approximate (r, c)-matrix (see

Proposition II.3). A similar objective was also studied

by Kalantari et al. (19).
At a high level, Scaling0 uses first-order optimiza-

tion techniques to minimize f(x), and all other methods

11Namely, when A can be scaled to an (r, c) matrix with diagonal
scaling matrices X,Y that satisfying each Xi,i and Yj,j are within[

1
poly(n)

, poly(n)
]
. This condition is satisfied at least when all entries

of A are within
[

1
poly(n)

, poly(n)
]
.

Scaling1, Scaling2, and Scaling3 use a mixture of

first and second order techniques.

FIRST-ORDER FRAMEWORK. It was known that the

RAS method can be viewed as a first-order method (19),

but only with convergence rate 1/ε2. Since f(x) is not

Lipschitz smooth (i.e., ∇2f(x) does not have a bounded

spectral norm), one cannot apply generic optimization

methods. We propose first-order building blocks that are

specific to the matrix scaling problem, and then use the

linear coupling framework of (27) to combine gradient

and mirror descent, in order to achieve the 1/ε2/3

convergence rate. We call this method Scaling0 and it

outperforms the RAS method in all relevant parameter

regimes. Note that Scaling0 is as simple to implement

as the RAS method.

SECOND-ORDER FRAMEWORK. It turns out the Hes-

sian ∇2f(x) is always symmetric diagonally dominant

(SDD), so one can invert it efficiently using modern

SDD linear system solvers and graph sparsification

techniques. This gives hope for designing efficient

second-order methods. Unfortunately, f(x) is not self-

concordant in the entire space (i.e., it does not satisfy the

apologue of |f ′′′(x)| ≤ 2f ′′(x)3/2 in high dimensions),

so we cannot apply standard second-order methods (e.g.

Newton method). Instead, we show f(x) satisfies a

special property: the second-order Taylor approximation

of f(x+ δ) at point x is accurate for all vector δ with

892

‖δ‖∞ ≤ 1/8:

f(x) + 〈∇f(x), δ〉+ 1
6δ
�∇2f(x)δ ≤ f(x+ δ)

≤ f(x) + 〈∇f(x), δ〉+ δ�∇2f(x)δ .

This implies if we can repeatedly minimize

f(x) + 〈∇f(x), δ〉+ 1
6δ
�∇2f(x)δ

over an �∞ constraint on δ, (I.2)

and update x ← x+ 1
6δ, then we can have an log(1/ε)

convergence rate as opposed to 1/poly(ε).
Our Scaling1 algorithm uses multiplicative weight

update to solve (I.2), our Scaling2 algorithm uses

accelerated gradient descent to solve (I.2), and our

final and most involved algorithm Scaling3 uses more

advanced multiplicative weight update in combination

with first-order techniques to solve (I.2). We remark

here that Scaling3 needs a warm-start, that is, a point

x where f(x) − infx{f(x)} is sufficiently small. We

use Scaling0 or Scaling2 to find such a warm-start.

A Related Problem. In the matrix balancing problem,

a symmetric matrix B ∈ R
n×n is �p-balanced if the

�p-norm of its i-th row equals that of its i-th column,

for every i ∈ [n]. Given any A ∈ R
n×n, we wish to

find a diagonal matrix D with positive diagonal entries,

such that B = DAD−1 is �p-balanced. Our techniques

in this paper can also be extended to matrix balancing.

C. A Parallel Work

When preparing this paper, we found out that Cohen,

Mądry, Tsipras, and Vladu also worked on the same

problem. The two works are completely independent,

so the two teams decided to put the results on arXiv on

the same date, see

• https://arxiv.org/abs/1704.02315 (ours), and

• https://arxiv.org/abs/1704.02310 (theirs).

We summarize the main differences between the two

results as follows:

• They worked on a different objective g(x, y) =∑
ij Ai,je

xi−yj − r�x − c�y from our f(x), see

(I.1). However, g(x, y) has the same properties as

f(x), so their algorithms also apply to f(x), and our

algorithms also apply to g(x, y).
• Both results obtained the same second-order frame-

work and reduced matrix scaling to solving (I.2).

However, in this regime, their result solves (I.2)

faster, because they have non-trivially adapted the

SDD linear system techniques from (28). They

obtained a nearly-linear time Õ(m) algorithm for

(�,�)-scaling, when the scaling factors are polyno-

mially bounded.

• Our first-order framework is not studied in Cohen

et al. Since our first-order method Scaling0 is as

simple to implement as the RAS method, and also

deterministic, it may be of practical and perhaps

other interests. In particular, Scaling0 applies to

the problem of deterministic approximation of per-

manent (17).12

D. Roadmap

In Section II, we discuss preliminaries. In Section III,

we show diameter bounds for the scaling parameters.

In Section IV, we present our first-order framework

and algorithm Scaling0. In Section V, we present our

second-order framework. In Section VI, VII, and VIII

respectively, we introduce our algorithms Scaling1,

Scaling2, and Scaling3. Throughout this paper, we

assume exact arithmetic operations for presenting the

cleanest proofs; we discuss how to use logarithmic bit-

length to implement our algorithms in the full version.

Most of the proofs are in the appendix.

II. NOTATIONS AND PRELIMINARIES

Throughout the paper, we denote by ‖v‖p the p-norm

of vector v if p ∈ [1,+∞], and ‖v‖ the Euclidean

norm of v when it is clear from the context. We

denote by ‖v‖w def
=

(∑n
i=1 wiv

2
i

)1/2
the w-normalized

Euclidean norm of vector v if w is a positive vector. We

denote by ‖v‖A = (v�Av)1/2 the matrix-Euclidean

norm. We denote by ev = (evi)i = (ev1 , ev2 , . . .),
log(v) = (log vi)i, and v−1 = (v−1

i)i the component-

wise exponentiation, logarithm, and inversion for vector

v. Given vectors u, v, we denote by u ≤ v the relation-

ship that ui ≤ vi for all coordinates i.
Given symmetric matrices M and N, we write M �

N if N − M is positive semidefinite (PSD). We say

a matrix M is Laplacian if (1) M is symmetric, (2)

Mi,j ≤ 0 for i �= j, and (3) Mi,i = −∑
j �=i Mi,j .

It satisfies v�Mv =
∑

i<j |Mi,j |(vi − vj)
2 for every

vector v. We say a matrix M is symmetric diagonally

dominant (or SDD for short) if (1) M is symmetric and

(2) Mi,i ≥
∑

j �=i |Mi,j |. Obviously, a Laplacian matrix

is SDD; and an SDD matrix is PSD.

Throughout this paper, A ∈ R
d×n
≥0 is non-negative

and of dimensions d× n. We denote by m the number

of non-zero entries of A. Without loss of generality, we

assume d ≤ n ≤ m and the maximum entry of each row

of A is exactly 1. We denote by Ai the i-th row vector

of A. We assume all the positive entries of A are in the

range
[

1
poly(n) , 1

]
and represented by rational numbers

with numerators and denominators at most poly(n). We

also assume r ∈ R
d
>0 and c ∈ R

n
>0 are positive integral

12In contrast, due to the randomness in efficient SDD linear system
solvers, the second-order algorithms of both this paper and Cohen et
al. are randomized.

893

vectors and each ri, cj ∈ {1, 2, . . . , poly(n)}.13 We let

h
def
= ‖r‖1 = ‖c‖1.

Definition II.1. Given r ∈ R
d
>0, c ∈ R

n
>0 and A ∈

R
d×n
≥0 , and denote by r′ ∈ R

d
≥0 (resp. c′ ∈ R

d
≥0) the

vector of row sums (resp. column sums) of A. We say

• A is an (r, c)-matrix if r = r′ and c = c′.
• A is an ε-approximate (r, c)-matrix if r′ = r and
‖c′ − c‖2c−1 =

∑
j∈[n] c

−1
j (c′j − cj)

2 ≤ ε2.14

• A is (r, c)-scalable if there exists positive diagonal
matrices X,Y so XAY is an (r, c)-matrix.

• A is asymptotically (r, c)-scalable if for every ε >
0, there exist positive diagonal matrices X,Y so that
XAY is an ε-approximate (r, c)-matrix.

It is known that the existence of (r, c)-scaling can be

characterized by the following proposition.

Proposition II.2 ((15)). A non-negative matrix A ∈
R

d×n
≥0 is exactly (r, c)-scalable if and only if ‖r‖1 =

‖c‖1 and for every zero minor R×C ⊆ [d]× [n] of A,

1)
∑

i∈[d]\R ri ≥
∑

j∈C cj or equivalently
∑

i∈R ri ≤∑
j∈[n]\C cj .

2) Equality in 1 holds iff the minor ([d] \R)× ([d] \C)
is all zero as well.

A nonnegative matrix A is asymptotically (r, c)-scalable
if condition 1 holds.

Proposition II.3. Our objective f(x) in (I.1) is convex
and

• ∇jf(x) =
∑d

i=1
riAi,j

〈Ai,ex〉e
xj − cj .

• If ‖∇f(x)‖2c−1 ≤ ε, then
(riAi,j ·exj

〈Ai,ex〉
)
i,j

is an ε-
approximate (r, c)-matrix.

• If A is exactly (r, c)-scalable, then there exists x∗ so
that f(x∗) = minx{f(x)} and ∇f(x∗) = 0.

• If A is asymptotically (r, c)-scalable, then
infx{f(x)} > −∞.

• A is not asymptotically (r, c)-scalable if and only if
infx{f(x)} = −∞.

III. NEW BOUNDS ON SCALING PARAMETERS

We first recall a few bounds for (r, c)-scalable matri-

ces that are essentially from prior work.

Lemma III.1 (objective bound). For every x satisfying
‖x‖∞ ≤ N , we have f(0)− f(x) ≤ 2hN .

Proof of Lemma III.1: Denoting x′ = x+‖x‖∞�,

we know that f(x′) = f(x) and ‖x′‖∞ ≤ 2‖x‖∞.

13This assumption was also made for instance by Kalantari et
al. (19).

14In certain literature people have also used ‖c′− c‖22 ≤ ε2 as the
definition of ε-approximation (19). However, their performance loses
a factor of ‖c‖∞ so we used this ‖ · ‖c−1 notation to simplify our
and their statements.

On the other hand, since for every i ∈ [d], we have

〈Ai, e
x′〉 ≥ 〈Ai,�〉 ≥ 1, it satisfies f(0) − f(x′) ≤

c�x′ ≤ 2hN .

Lemma III.2 (diameter bound). If A is exactly (r, c)
scalable, and all non-zero entries of A are within [ν, 1]
for some ν > 0. Then, the following holds:

1) If A is full (i.e., ∀i, j,Ai,j > 0) then there exists a
minimizer x∗ of f(x) s.t. ‖x∗‖∞ ≤ ln hn

ν .
2) If A is not full, then there exists a minimizer x∗ of

f(x) such that ‖x∗‖∞ ≤ (h+ 1/2) ln h
ν .

In this paper, we improve (the second item of)

Lemma III.2 in two aspects. First, we allow A to be

asymptotically (r, c)-scalable. Second, we improve the

diameter bound from Õ(h) to Õ(n) for arbitrary (r, c).
(Recall that r and c are integral so h ≥ n.)

Lemma III.3 (diameter bounds for the asymptotic

case). If A is asymptotically (r, c)-scalable, and all
non-zero entries of A are within [ν, 1] for some ν > 0,
then, for every ε > 0, there exists x∗ε ∈ R

n such that

‖x∗ε‖∞ = O
(
n ln nh

νε

)
, ‖∇f(x∗ε)‖∞ ≤ ε ,

and f(x∗ε)− inf
x

{
f(x)

} ≤ ε .

One can verify that Lemma III.3 is tight (up to

constant factors) for instance when A is a square upper-

triangular matrix and the diagonal of A equals r = c.

IV. A NEW FIRST-ORDER FRAMEWORK

In this section, we minimize f(x) using a specially

designed first-order optimization method, and finds an

ε-approximate (r, c)-scaling with a total complexity that

scales with ε−2/3.

High-Level Intuition. We first illustrate why the con-

vergence rate ε−2/3 is reasonable from an optimization

standpoint. Recall that if we are given a convex function

g(x) that is O(1)-Lipschitz smooth —meaning that its

Hessian ∇2g(x) has a bounded spectral norm— then,

using accelerated gradient descent (29; 30), one can find

a point x1 satisfying g(x1) − g(x∗) ≤ O
(‖x∗‖22

T 2

)
in

T iterations, where x∗ is a minimizer of g(x). At the

same time, also recall that each step of gradient descent

x′ = x − ∇g(x) decreases the objective by at least

g(x) − g(x′) ≥ 1
2‖∇g(x)‖22, so we can apply another

T steps of gradient descent on top of x1, and obtain

a point x2 satisfying ‖∇g(x2)‖22 ≤ O
(‖x∗‖22

T 3

)
. In other

words, we reach x2 with ‖∇g(x2)‖22 ≤ ε2 in T ∝ ε−2/3

iterations.

Unfortunately, the function f(x) we are dealing in

this paper is not Lipschitz smooth, so we cannot apply

the above approach. This is also why previous results

using first-order techniques only achieve 1/ε2 rate in

894

general and 1/ε rate in some special cases (see Table I

and II).15

Instead, we use the linear-coupling framework of (27)

to recover this ε−2/3 convergence rate without using

smoothness. To apply linear coupling, we need to design

• a problem-specific gradient descent step, which is a

direction δ to move so that the objective decrease

f(x)− f(x+ δ) is sufficiently large;

• a problem-specific mirror descent step, which is an

online update rule which ensures 〈∇f(x), x − u〉 is

small for “any” vector u; and

• a linear combination of the analysis of the two for a

faster convergence.

Furthermore, due to technical difficulties, we need to

ensure the updates are always inside some infinite-norm

box. This adds some extra difficulty in the proofs.

Roadmap. We introduce our gradient and mirror

descent steps in Section IV-A and IV-B respectively, and

present our linear coupling method LC in Algorithm 1,

and analyze it in Section IV-C. In Section IV-D we

build our algorithm Scaling0 using LC as a subrou-

tine, and present the final theorems. We introduce the

following notion for convenience:16

Definition IV.1 (gradient split). At any x ∈ R
n, define

small and large gradients ∇s,∇l ∈ R
n by

∀j ∈ [n] : ∇s
j

def
= min

{
cj ,∇jf(x)

} ∈ [−cj , cj] and

∇l
j

def
= ∇jf(x)−∇s

j ≥ 0 .

Also, define small and large coordinates Λs,Λl ⊆ [n]
by

Λs def
=

{
j ∈ [n] : ∇j ∈ [−cj , cj]

}
and

Λl def
= [n] \ Λs =

{
j ∈ [n] : ∇j > cj

}
.

(The above definition has used the trivial fact that

∇jf(x) ∈ [−cj ,+∞) for any j.)

A. A Specific Gradient Descent

We now introduce a problem-specific gradient de-

scent. Recall that when analyzing a smooth function

g(x), one can show a quadratic lower bound

g(x)− g(x+ δ) ≥ Q(x, δ)
def
= −〈∇g(x), δ〉 − 1

2‖δ‖22 ,

and thus choosing δ = argmaxδ
{
Q(δ)

}
= −∇g(x)

gives a decrease g(x)− g(x+ δ) ≥ 1
2‖∇g(x)‖22.

For our function f(x), we show a similar quadratic

lower bound:

15For instance, the RAS method can be viewed as performing a
gradient descent step x′ = x−∇f(x) (19).

16Recall that each coordinate ∇jf(x) is in the interval [−cj ,∞).
This gradient splitting technique was earlier introduced to solve
positive linear programming and semidefinite programming (31–33).

Lemma IV.2. Given x ∈ R
n, denote by ∇ = ∇f(x)

and Λs,Λl ⊆ [n] the set of small and large coordinates
(see Def. IV.1). Then, for every δ ∈ R

n where ‖δ‖∞ ≤
1/2, we have

• if δ ≥ 0, then f(x) − f(x + δ) ≥ Q+(x, δ)
def
=∑

j∈Λs

(−∇j · δj − 4
3cj · δ2j

)
+

∑
j∈Λl

(− 7
3∇j · δj

)
.

• if δ ≤ 0, then f(x) − f(x + δ) ≥ Q−(x, δ) def
=∑

j∈Λs

(−∇j · δj − 4
3cj · δ2j

)
+

∑
j∈Λl

(− 1
2∇j · δj

)
.

(Recall that δ ≥ 0 or δ ≤ 0 means entry-wise non-
negativity or non-positivity.)

The above quadratic lower bounds distinct from the

classical one Q(x, δ) in two aspects. First, for large

coordinates j ∈ Λl, we only have a linear lower bound.

Second, Q+ and Q− have different forms for δ ≥ 0 and

δ ≤ 0. Here is an explanation for such two distinctions.

Consider even a simple univariate function h(x) =
ex − 1. First, we do not have h(0)−h(δ) ≥ −h′(0)δ−
Cδ2 for any constant C, so we cannot have a quadratic

lower bound. Second, one can try to show inequalities

like

h(0)− h(δ) ≥ −C1h
′(0)δ for δ ≥ 0 and

h(0)− h(δ) ≥ −C2h
′(0)δ for δ ≤ 0.

However, it must satisfy C1 > 1 and C2 < 1, so the

two constants must be distinct for δ ≥ 0 and δ ≤ 0. We

choose to let C1 = 7
3 and C2 = 1

2 .

Lemma IV.2 suggests us to perform gradient descent

as (one of) the minimizer of Q+ and Q−:

Definition IV.3 (gradient descent). Given x satisfy-
ing ‖x‖∞ ≤ N , define the projected gradient de-
scent step x′ ← GradN (x) where GradN (x)

def
=

argminy∈{y1,y2}
{
f(y)

}
where

y1 = x+ argmaxδ∈Ω+
N,x

{
Q+(x, δ)

}
and

Ω+
N,x

def
=

{
δ ≥ 0 | ‖x+ δ‖∞ ≤ N, ‖δ‖∞ ≤ 1/2

}
y2 = x+ argmaxδ∈Ω−N,x

{
Q−(x, δ)

}
and

Ω−N,x
def
=

{
δ ≤ 0 | ‖x+ δ‖∞ ≤ N, ‖δ‖∞ ≤ 1/2

}

Obviously, GradN (x) can be computed in complexity
O(n+m).

Note that in the definition above, we have specified

a parameter N which ensures that the output x′ =
GradN (x) is also in the box ‖x′‖∞ ≤ N . One can

also let N = +∞ and this means that we put no

constraint on ‖x′‖∞. The next two are direct corollaries

of Lemma IV.2:

895

Corollary IV.4. If x′ = GradN (x), then we have

f(x)− f(x′) ≥
1

2

(
max

δ∈Ω+
N,x

{Q+(x, δ)}+ max
δ∈Ω−N,x

{Q−(x, δ)}
)
≥ 0 .

Corollary IV.5. If x′ = Grad∞(x) and ∇f(x) = ∇s+
∇l (see Def. IV.1), we have

‖x′ − x‖∞ ≤ 1/2

and

f(x)− f(x′) ≥ 3

32
‖∇s‖2c−1 +

1

4
‖∇l‖1

≥ Ω
(‖∇s‖2c−1 + ‖∇l‖1

)
.

Remark IV.6. Corollary IV.5 replaces the classical gra-

dient descent statement on smooth functions g(x) that

says g(x)− g(x′) ≥ 1
2‖∇g(x)‖22. Corollary IV.4 is the

constrained version of Corollary IV.5.

B. A Specific Mirror Descent

The mirror descent step we take is a constrained

minimization with respect to the ‖ · ‖2c norm:

Definition IV.7 (mirror descent). Given z satisfying
‖z‖∞ ≤ N , a feedback vector v ∈ R

n, define the
projected mirror descent step z′ ← MirrN (z, v) as

MirrN (z, v)
def
= argmin‖z′‖∞≤N

{〈v, z′〉+ 1
2‖z′−z‖2c} .

Obviously, MirrN (z, v) can be computed in complexity
O(n).

The following lemma is classical for mirror descent:

Lemma IV.8. If z′ = MirrN (z, v), then for every u
satisfying ‖u‖∞ ≤ N , we have

〈v, z−u〉 ≤ 〈v, z−z′〉− 1
2‖z−z′‖2c+ 1

2‖z−u‖2c− 1
2‖z′−u‖2c .

C. Linear Coupling

We now introduce our linear-coupling algorithm LC

(see Algorithm 1). Starting from two initial vectors y0
and z0 = 0, in each iteration k = 0, 1, . . . , T − 1, our

LC chooses a linear combination xk+1 = τkzk + (1 −
τk)yk for some parameter τk ∈ (0, 1), and performs

two updates: yk+1 = Grad15N (xk+1) and zk+1 =
MirrN (zk, αk∇s). Here, αk > 0 is the learning rate

for mirror descent. The choices of τk and αk are in

Algorithm 1. From the description:

Fact IV.9. We always have ‖zk‖∞ ≤ N , ‖xk‖∞ ≤
15N , and ‖yk‖∞ ≤ 15N .

Proof of Fact IV.9: y0 and z0 = 0 both satisfy

norm bounds. yk comes from gradient descent with

range 15N so ‖yk‖∞ ≤ 15N ; zK comes from mirror

descent with range N so ‖zk‖∞ ≤ N ; finally, xk is

a convex combination of yk−1 and zk−1 so satisfies

‖xk‖∞ ≤ 15N .

We show the following lemma which describes the

one-iteration behavior of LC:

Lemma IV.10. If τkαk ≤ 3/64, τk ∈ (
0, 1

32N

]
, and u

is any vector satisfying ‖u‖∞ ≤ N , then

0 ≤ 1−τk
τk

(
f(yk)− f(u)

)− 1
τk

(
f(yk+1)− f(u)

)
+

1

2αk
‖zk − u‖2c −

1

2αk
‖zk+1 − u‖2c .

Lemma IV.10 is the main technical contribution of

this section, and relies on careful applications of

Lemma IV.2 and Lemma IV.8, together with tailor-

made analysis for our f(x). The next theorem is a

corollary of Lemma IV.10 by appropriate choices τk and

αk, and telescoping k = 0, 1, . . . , T − 1.

Theorem IV.11 (LC). If y0 satisfies ‖y0‖∞ ≤ 15N
and T ≥ 1, then the output yT = LC(A, N, T, y0)
(see Algorithm 1) satisfies that for every u ∈ R

n and
‖u‖∞ ≤ N :

‖yT ‖∞ ≤ 15N

and

f(yT)− f(u) ≤ O
(N2

(
f(y0)− f(u) + h

)
(N + T)2

)
.

D. Complexity Statements

The N2

(N+T)2

(
f(y0) − f(u)

)
term in Theorem IV.11

can hurt the performance of LC.17 For this reason, as a

warm start, one needs to repeatedly apply LC for logN
times, each with T = Θ(N). We summarize this final

algorithm as Scaling0 in Algorithm 2 and present the

final theorem:

Theorem IV.12 (Scaling0). If N ≥ 1, then (z1, z) =
Scaling0(A, N, T) satisfies

• If T ≥ N , then for every u satisfying ‖u‖∞ ≤ N ,
we have

‖z1‖∞ ≤ 15N and f(z1)− f(u) ≤ O
(
N2h
T 2

)
.

• If T ≥ (N2h)1/3 and there exists u so that ‖u‖∞ ≤
N and f(u)− infx{f(x)} ≤ 1, then

‖∇f(z)‖2c−1 ≤ O
(
N2h
T 3

)
.

The total complexity of Scaling0 is O(m(N logN +
T)).

(Due to technical reasons, we do not have bound on

‖z‖∞.)

Recall that to obtain an ε-approximate (r, c)-
scaling, it suffices to find z with ‖∇f(z)‖2c−1 ≤

17For instance, the general upper bound on f(0)− f(x∗) is only

Õ(Nh) (see Lemma III.1).

896

Algorithm 1 LC(A, N, T, y0)

Input: A ∈ R
d×n, a non-negative matrix; N ≥ 1, a diameter bound; T ≥ 1, number of iterations; y0 ∈ R

n a

starting vector satisfying ‖y0‖∞ ≤ 15N ;

1: z0 ← 0 and τ0 ← 1
32N ;

2: for k = 0 to T − 1 do
3: τk ← the unique positive root of the quadratic equation

τ2
k

τ2
k−1

+ τk − 1 = 0;

4: xk+1 ← τkzk + (1− τk)yk; � τk ∈ (0, 1)

5: yk+1 ← Grad15N (xk+1); � see Def. IV.3

6: Define ∇s ∈ R
n where ∇s

j ← min
{∇jf(xk+1), 1

}
;

7: zk+1 ← MirrN
(
zk, αk∇s

)
where αk = 3

64τk
; � see Def. IV.7

8: end for
9: return yT . � yT satisfies ‖yT ‖∞ ≤ 15N

Algorithm 2 Scaling0(A, N, T)

Input: A ∈ R
d×n, a non-negative matrix; N ≥ 1, a

diameter bound; T ≥ 1, number of iterations;

1: z0 ← 0;

2: for k = 0 to logN do
3: z0 ← LC(A, N,Θ(N), z0);

4: z1 ← LC(A, N, T, z0);
5: for k = 1 to T do
6: zk+1 ← Grad∞(zk);

7: z ← argminz∈{z1,...,zT }{‖∇f(z)‖2c−1}.

8: return (z1, z). � z1 satisfies ‖z1‖∞ ≤ 15N

ε2 (see Proposition II.3). Therefore, we can combine

Theorem IV.12 with bounds on the scaling parameters:

namely, N ≤ Õ(n) for the general (r, c)-scaling (see

Lemma III.3), or N ≤ Õ(1) if the scaling parameters

are polynomially bounded (see Footnote 11). This gives

us the claimed results of Scaling0 in Table I and

Table II.

V. A NEW SECOND-ORDER FRAMEWORK

In this section, we propose a second-order framework

in order to minimize f(x). Our methods Scaling1,

Scaling2 and Scaling3 in subsequent sections are all

be based on this framework.

We show that near any point x, the function value

f(x + δ) is well approximated by the second-order

Taylor expansion of f(x), as long as ‖δ‖∞ ≤ 1/8:

Lemma V.1 (second-order approximation). For every
x, δ ∈ R

n with ‖δ‖∞ ≤ 1/8, we have

f(x) + 〈∇f(x), δ〉+ 1

6
δ�∇2f(x)δ ≤ f(x+ δ)

≤ f(x) + 〈∇f(x), δ〉+ δ�∇2f(x)δ .

Note that if f(x) were an arbitrary convex function,

such a quadratic approximation would only work for

a very small region of δ. It is the special property

of the matrix scaling problem that allows us to prove

Lemma V.1 for all ‖δ‖∞ ≤ 1/8. We include the details

in the full version.

Also, one may carefully verify that ∇2f(x) is a

Laplacian matrix that may contain up to n2 non-zero

entries even if the original matrix A is sparse. Using

classical graph sparsification techniques (see full ver-

sion), with total complexity Õ(m), one can find another

Laplacian matrix H ∈ R
n×n satisfying H � ∇2f(x) �

1.1H, where H only has Õ(n) non-zero entries.

High-Level Intuition. Using Lemma V.1, it becomes

natural to study the minimization question 〈∇f(x), δ〉+
1
6δ
�Hδ over all ‖δ‖∞ ≤ 1/8. If δ∗ is such a

minimizer, then one can show f(x) − f(x + δ∗) ≥
Ω
(

1
‖x−x∗‖∞

)
(f(x) − f(x∗)) where x∗ is the min-

imizer of f(x). This sounds like we only needed

O(N log(1/ε)) iterations in total if ‖x∗‖∞ ≤ N .

Unfortunately, this approach fails because ‖x−x∗‖∞
may increase by 1/8 per iteration, so the convergence

rate may drop to 1/ε as opposed to log(1/ε). We fix this

issue by restricting our attention only to the region {x ∈
R

n | ‖x‖∞ ≤ N}. If this region contains x∗, and if we

can minimize 〈∇f(x), δ〉+ 1
6δ
�Hδ over the intersection

of ‖x+δ‖∞ ≤ N and ‖δ‖∞ ≤ 1/8, then we can always

have f(x)−f(x+δ∗) ≥ Ω
(

1
N

)
(f(x)−f(x∗)) and thus

converge in O(N log(1/ε)) iterations.

For the reason above, we wish to repeatedly solve the

following minimization problem

min
δ∈boxN (x)

{〈∇f(x), δ〉+ 1

6
δ�Hδ

}
(V.1)

Definition V.2. Given any point x ∈ R
n satisfying

‖x‖∞ ≤ N for some N > 1, we define

boxN (x)
def
=

{
δ ∈ R

n
∣∣∣ ‖δ − α‖∞ ≤ 1

32

}

897

where

αi
def
=

⎧⎨
⎩

(1
32 −N − xi) ∈ (0, 1

32], if xi − 1
32 < −N ;

(N − xi − 1
32) ∈ [− 1

32 , 0), if xi +
1
32 > N ;

0, otherwise.

Fact V.3. For all δ ∈ boxN (x), we have ‖x+δ‖∞ ≤ N
and ‖δ‖∞ ≤ 1

16 . We also have 0 ∈ boxN (x).

Our next Lemma V.4 says that if we can solve (V.1)

up to a small additive error, then we can decrease the

objective distance to f(u) by a factor of 1 − 1
900N up

to the same small additive error.

Lemma V.4. Given x with ‖x‖∞ ≤ N and H with
H � ∇2f(x) � 1.1H, the following holds:

(a) For any u ∈ R
n with ‖u‖∞ ≤ N ,

−minδ∈boxN (x)

{〈∇f(x), δ〉+ 1
6δ
�Hδ

}
≥ 1

64N

(
f(x)− f(u)

)
.

(b) If we are given δ̂ satisfying ‖δ̂‖∞ ≤ 1/8 and for
ε ≥ 0:

〈∇f(x), δ̂〉+ 1
6 δ̂
�Hδ̂

≤ min
δ∈boxN (x)

{〈∇f(x), δ〉+ 1

6
δ�Hδ

}
+ ε ,

then it satisfies that for every u ∈ R
n with ‖u‖∞ ≤

N , f(x)− f
(
x+

̂δ
6.6

) ≥ 1
900N

(
f(x)− f(u)

)− ε.

VI. SECOND-ORDER METHOD 1: VIA

MULTIPLICATIVE WEIGHT UPDATES

In this section, we propose Scaling1 which uses

multiplicative weight update (MWU) and an �2 con-

strained SDD linear system solver to tackle problem

(V.1).

High-Level Intuitions. Denote by h(δ)
def
=

〈∇f(x), δ〉+ 1
6δ
�Hδ for notation simplicity.

Given any weight vector w ∈ Δ where Δ
def
= {w ∈

[1/2, n]n | ∑
i wi = n}, instead of minimizing h(δ)

over all δ ∈ boxN (x) =
{
δ ∈ R

n
∣∣ ‖δ − α‖∞ ≤ 1

32

}
,

we can minimize h(δ) over a larger set Ωw =
{
δ ∈

R
n
∣∣ ‖δ−α‖2w ≤ n

1024

}
.18 We would like do so because

�2 constrained minimization is computationally cheap:

minimizing h(δ) over Ωw can be done using a variant

of SDD linear system solvers in total complexity Õ(n)
(see full version).

Next, we wish to apply the multiplicative weight

update framework. Starting from some w0 ∈ Δ, in

each round k = 0, 1, . . . , T −1, we minimize h(δ) over

set Ωwk
and let δk ∈ Ωwk

be an approximate mini-

mizer. Then, we update wk+1 from wk by penalizing

18It is easy to verify that boxN (x) ⊆ Ωw and conversely ‖δ −
α‖∞ ≤ O(

√
n) for every δ ∈ Ωw .

the coordinates i in δk where |δk,i − αi| is large. A

variant of the MWU theory implies that, as long as

T = Ω̃(
√
n), the average δ = 1

T

∑T−1
k=0 δk satisfies

‖δ−α‖∞ ≤ O(1). At the same time, since objective δk
minimizes (V.1) over a larger set Ωw ⊇ boxN (x), we

also have h(δ) ≤ 1
T

∑T−1
k=0 h(δk) ≤ minδ∈boxN (x) h(δ).

This gives an approximate solution to (V.1), and the

total complexity is Õ(nT) = Õ(n3/2) if H is given.

We summarize the above process as MWUbasic (see

Algorithm 3), and show the following lemma:

Lemma VI.1 (MWUbasic). If H ∈ R
n×n is Lapla-

cian, K ≥ 1, T ≥ Ω((n1/2K + K2) log n),
‖α‖∞ ≤ 1/32, and ε > 0, then the output δ =
MWUbasic(A,H, α, T,K, ε) satisfies

‖δ − α‖∞ ≤ 1

32
+

1

8K

and

〈∇, δ〉+1

6
δ
�
Hδ ≤ min

‖δ−α‖∞≤1/32

{〈∇, δ〉+1

6
δ�Hδ

}
+ε .

With Lemma VI.1, we can repeatedly apply

MWUbasic to minimize (V.1) for Õ(N log(1/ε))
times. We summarize the algorithm as Scaling1 (in

Algorithm 4) and have the following final theorem:

Theorem VI.2 (Scaling1). If N ≥ 1 and ε ∈ (0, 1),
the output y = Scaling1(A, N, ε) satisfies ‖y‖∞ ≤
2N and

f(y)− f(u) ≤ ε for every u with ‖u‖∞ ≤ N .

Furthermore, if there exists u satisfying f(u) −
infx{f(x)} ≤ ε and ‖u‖∞ ≤ N , then we also have
‖∇f(y)‖2c−1 ≤ ε. The total complexity is Õ(N(m +
n3/2)).

We can combine Theorem VI.2 with bounds on

scaling parameters: namely, N ≤ Õ(n) for the gen-

eral (r, c)-scaling (see Lemma III.3), or N ≤ Õ(1)
if the scaling parameters are polynomially bounded

(see Footnote 11). This gives us the claimed results of

Scaling1 in Table I and Table II.

VII. SECOND-ORDER METHOD 2: VIA

ACCELERATED GRADIENT DESCENT

In this section, we propose Scaling2 (see

Algorithm 5) which directly solves the constrained

minimization problem (V.1) using a constrained version

of accelerated gradient descent (29; 30). We shall not

directly use Scaling2 to solve the matrix scaling

problem; instead, we shall later use Scaling2 as a

warm-start for Scaling3.

We have the following main lemma to estimate the

per-iteration performance of Scaling2:

898

Algorithm 3 MWUbasic(∇,H, α, T,K, ε)

Input: ∇ ∈ R
n; H ∈ R

n×n a Laplacian matrix; α ∈ R
n satisfying ‖α‖∞ ≤ 1/32; T ≥ 1 number of rounds;

K ≥ 1 a parameter; ε > 0 an accuracy parameter.

1: Δ ← {w ∈ [1/2, n]n :
∑

i wi = n} and w0 ← (1, 1, . . . , 1) ∈ Δ;

2: for k = 0 to T − 1 do
3: Use SDD solver (see full version) to find a vector δk ∈ R

n satisfying ‖δk − α‖2wk
≤ n

1024 and
〈∇f(x), δk〉+ 1

6δ
�
k Hδk ≤ min‖δ−α‖2wk

≤n/1024

{〈∇f(x), δ〉+ 1
6δ
�Hδ

}
+ ε

4: Define loss vector �k ∈ R
n by �k,i ← −|δk,i − αi|.

5: wk+1 ← argminz∈Δ
{
η〈�k, z〉+

∑
i∈[n]

(
zi log

zi
wk,i

+ wk,i − zi
)}

� a multiplicative weight update with parameter η = 1/(
√
n+K), see full version

6: end for
7: return δ ← 1

T

∑T−1
k=0 δk;

Algorithm 4 Scaling1(A, N, ε)

Input: A ∈ R
d×n non-negative matrix; N ≥ 1 diameter bound; ε ∈ (0, 1) accuracy parameter.

1: x0 ← 0, K ← Θ(log(1/ε)), and T ← Θ̃(
√
n);

2: for t = 0 to NK do
3: Define boxN (xt) and α ∈ [−1/32, 1/32]n using Def. V.2;

4: H ← a matrix with Õ(n) nonzeros satisfying H � ∇2f(xt) � 1.1H;

5: δ ← MWUbasic(∇f(xt),H, α, T,K, ε
900N);

6: xt+1 ← x+ δ
6.6 and N ← N + 1

50K ; � so xt+1 satisfies ‖xt+1‖∞ ≤ N for this new N

7: end for
8: return y ← the last xt.

Algorithm 5 Scaling2(A, N, T)

Input: A ∈ R
d×n, a non-negative matrix; N ≥ 1, a diameter bound; T ≥ 1, number of iterations;

1: x0 ← 0;

2: for t = 0 to Õ(N) do
3: H ← a matrix with Õ(n) nonzeros satisfying H � ∇2f(xt) � 1.1H;

� see full version for details.

4: δ ← approximate minimizer for minδ∈boxN (xt)

{〈∇f(xt), δ〉+ 1
6δ
�Hδ

}
.

� compute δ by applying T steps of constrained accelerated gradient descent. See Lemma VII.1

5: xt+1 ← xt + δ;

6: end for
7: return y ← the last xt. � y satisfies ‖y‖∞ ≤ N

Lemma VII.1. In each iteration t of Scaling2, if
‖xt‖∞ ≤ N , then we can compute xt+1 in complexity
Õ(m+ Tn), and it satisfies ‖xt+1‖∞ ≤ N and

either (1) : f(xt+1)− f(u) ≤ O
(Nh

T 2

)
or

(2) : f(xt)− f(xt+1) ≥ Ω
(1

N

)
(f(xt)− f(u)) .

Here, u is any vector satisfying ‖u‖∞ ≤ N .

The following theorem is a direct corollary of

Lemma VII.1.

Theorem VII.2 (Scaling2). If T ≥ 1, the output
y = Scaling2(A, N, T) satisfies ‖y‖∞ ≤ N and

f(y)−f(u) ≤ O
(Nh

T 2

)
for every u with ‖u‖∞ ≤ N .

The total complexity Õ
(
mN +NnT

)
.

Proof of Theorem VII.2 from Lemma VII.1: When-

ever Line 3 is reached, either we have f(xt+1)−f(u) ≤
O
(
Nh
T 2

)
so we are done, or we have f(xt+1)− f(u) ≤(

1 − Ω
(

1
N

))
(f(xt) − f(u)). The latter cannot happen

more than Õ(N) times.

899

VIII. SECOND-ORDER METHOD 3: VIA MORE

ADVANCED MWU

Due to space limitation, we include Scaling3 only

in our arXiv version of the paper.

REFERENCES

[1] T. Pock and A. Chambolle, “Diagonal precondi-

tioning for first order primal-dual algorithms in

convex optimization,” in Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE,

2011, pp. 1762–1769.

[2] E. Chu, B. OíDonoghue, N. Parikh, and S. Boyd,

“A primal-dual operator splitting method for conic

optimization,” Stanford Internal Report, 2013.

[3] O. E. Livne and G. H. Golub, “Scaling by binor-

malization,” Numerical Algorithms, vol. 35, no. 1,

pp. 97–120, 2004.

[4] A. M. Bradley, “Algorithms for the equilibration of

matrices and their application to limited-memory

quasi-newton methods,” Ph.D. dissertation, Stan-

ford University, 2010.

[5] R. Takapoui and H. Javadi, “Preconditioning

via diagonal scaling,” arXiv preprint
arXiv:1610.03871, 2016.

[6] J. Kruithof, “Telefoonverkeersrekening,” De Inge-
nieur, vol. 52, pp. E15–E25, 1937.

[7] W. E. Deming and F. F. Stephan, “On a least

squares adjustment of a sampled frequency table

when the expected marginal totals are known,” The
Annals of Mathematical Statistics, vol. 11, no. 4,

pp. 427–444, 1940.

[8] D. T. Brown, “A note on approximations to dis-

crete probability distributions,” Information and
Control, vol. 2, no. 4, pp. 386–392, 1959.

[9] R. Stone, Multiple classifications in social ac-
counting. University of Cambridge, Department

of Applied Economics, 1964.

[10] J. H. Wilkinson, “Rounding errors in algebraic

processes.” in IFIP Congress, 1959, pp. 44–53.

[11] D. Friedlander, “A technique for estimating a

contingency table, given the marginal totals and

some supplementary data,” Journal of the Royal
Statistical Society. Series A (General), pp. 412–

420, 1961.

[12] R. Sinkhorn, “A relationship between arbitrary

positive matrices and doubly stochastic matrices,”

The annals of mathematical statistics, vol. 35,

no. 2, pp. 876–879, 1964.

[13] G. T. Herman and A. Lent, “Iterative recon-

struction algorithms,” Computers in biology and
medicine, vol. 6, no. 4, pp. 273–294, 1976.

[14] T. Raghavan, “On pairs of multidimensional matri-

ces,” Linear Algebra and its Applications, vol. 62,

pp. 263–268, 1984.

[15] U. G. Rothblum and H. Schneider, “Scalings of

matrices which have prespecified row sums and

column sums via optimization,” Linear Algebra
and its Applications, vol. 114, pp. 737–764, 1989.

[16] H. Balakrishnan, Inseok Hwang, and

C. Tomlin, “Polynomial approximation

algorithms for belief matrix maintenance

in identity management,” in 2004 43rd
IEEE Conference on Decision and Control
(CDC) (IEEE Cat. No.04CH37601), vol. 5.

IEEE, 2004, pp. 4874–4879 Vol.5. [Online].

Available: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1429569http:

//ieeexplore.ieee.org/document/1429569/

[17] N. Linial, A. Samorodnitsky, and A. Wigderson,

“A deterministic strongly polynomial algorithm

for matrix scaling and approximate permanents,”

in Proceedings of the thirtieth annual ACM
symposium on Theory of computing - STOC ’98.

New York, New York, USA: ACM Press, 1998,

pp. 644–652. [Online]. Available: http://portal.

acm.org/citation.cfm?doid=276698.276880

[18] M. Idel, “A review of matrix scaling and

sinkhorn’s normal form for matrices and positive

maps,” arXiv preprint arXiv:1609.06349, 2016.

[19] B. Kalantari, I. Lari, F. Ricca, and B. Simeone,

“On the complexity of general matrix scaling and

entropy minimization via the RAS algorithm,”

Mathematical Programming, vol. 112, no. 2, pp.

371–401, 2008.

[20] W. Gorman, “Estimating trends in leontief ma-

trices: a note on mr. bacharach’s paper,” Nuffield
College, Oxford, duplicated, 1963.

[21] A. W. Marshall and I. Olkin, “Scaling of matrices

to achieve specified row and column sums,” Nu-
merische Mathematik, vol. 12, no. 1, pp. 83–90,

1968.

[22] S. M. Macgill, “Theoretical properties of bipro-

portional matrix adjustments,” Environment and
Planning A, vol. 9, no. 6, pp. 687–701, 1977.

[23] B. Kalantari and L. Khachiyan, “On the

complexity of nonnegative-matrix scaling,” Linear
Algebra and its Applications, vol. 240, pp. 87–103,

jun 1996. [Online]. Available: http://linkinghub.

elsevier.com/retrieve/pii/002437959400188X

[24] G. Rote and M. Zachariasen, “Matrix

Scaling by Network Flow,” in SODA
’07, 2007, pp. 848–854. [Online]. Avail-

able: http://page.mi.fu-berlin.de/rote/Papers/pdf/

Matrix+scaling+by+network+flows.pdf

[25] B. Kalantari and L. Khachiyan, “On the rate of

convergence of deterministic and randomized ras

matrix scaling algorithms,” Operations research
letters, vol. 14, no. 5, pp. 237–244, 1993.

900

[26] L. Gurvits and A. Samorodnitsky, “A deterministic

algorithm for approximating the mixed discrim-

inant and mixed volume, and a combinatorial

corollary,” Discrete & Computational Geometry,

vol. 27, no. 4, pp. 531–550, 2002.

[27] Z. Allen-Zhu and L. Orecchia, “Linear Coupling:

An Ultimate Unification of Gradient and Mirror

Descent,” in Proceedings of the 8th Innovations
in Theoretical Computer Science, ser. ITCS ’17,

2017, full version available at http://arxiv.org/abs/

1407.1537.

[28] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva,

and D. A. Spielman, “Sparsified Cholesky and

multigrid solvers for connection laplacians,”

in Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing
- STOC 2016. New York, New York, USA:

ACM Press, 2016, pp. 842–850. [Online].

Available: http://arxiv.org/abs/1512.01892http://dl.

acm.org/citation.cfm?doid=2897518.2897640

[29] Y. Nesterov, “A method of solving a con-

vex programming problem with convergence rate

O(1/k2),” in Doklady AN SSSR (translated as
Soviet Mathematics Doklady), vol. 269, 1983, pp.

543–547.

[30] ——, Introductory Lectures on Convex Program-
ming Volume: A Basic course. Kluwer Academic

Publishers, 2004, vol. I.

[31] Z. Allen-Zhu and L. Orecchia, “Using optimiza-

tion to break the epsilon barrier: A faster and sim-

pler width-independent algorithm for solving pos-

itive linear programs in parallel,” in Proceedings
of the 26th ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’15, 2015.

[32] ——, “Nearly-Linear Time Positive LP Solver

with Faster Convergence Rate,” in Proceedings of
the 47th Annual ACM Symposium on Theory of
Computing, ser. STOC ’15, 2015.

[33] Z. Allen-Zhu, Y. T. Lee, and L. Orecchia, “Using

optimization to obtain a width-independent, par-

allel, simpler, and faster positive SDP solver,” in

Proceedings of the 27th ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’16, 2016.

[34] M. Zinkevich, “Online convex programming and

generalized infinitesimal gradient ascent,” in Pro-
ceedings of the 20th International Conference on
Machine Learning, ser. ICML 2003, 2003, pp.

928–936.

[35] A. Rakhlin, “Lecture notes on online

learning,” Draft, 2009, available at

http://www-stat.wharton.upenn.edu/~rakhlin/

courses/stat991/papers/lecture_notes.pdf.

[36] R. Peng and D. A. Spielman, “An efficient parallel

solver for SDD linear systems,” in Proceedings of

the 46th Annual ACM Symposium on Theory of
Computing - STOC ’14. New York, New York,

USA: ACM Press, 2014, pp. 333–342. [Online].

Available: http://arxiv.org/abs/1311.3286http://dl.

acm.org/citation.cfm?doid=2591796.2591832

[37] D. A. Spielman and S.-H. Teng, “Nearly-linear

time algorithms for graph partitioning, graph spar-

sification, and solving linear systems,” in Proceed-
ings of the thirty-sixth annual ACM symposium on
Theory of computing - STOC ’04. New York,

New York, USA: ACM Press, 2004, p. 81.

[38] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A.

Zhu, “A simple, combinatorial algorithm for solv-

ing SDD systems in nearly-Linear time,” in Pro-
ceedings of the 45th Annual ACM Symposium on
Theory of Computing, ser. STOC ’13, 2013.

[39] R. Kyng and S. Sachdeva, “Approximate

Gaussian Elimination for Laplacians - Fast,

Sparse, and Simple,” in 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science
(FOCS). IEEE, oct 2016, pp. 573–582. [On-

line]. Available: https://arxiv.org/pdf/1605.02353.

pdfhttp://ieeexplore.ieee.org/document/7782972/

[40] A. Ben-Tal and A. Nemirovski, Lectures on Mod-
ern Convex Optimization. Society for Industrial

and Applied Mathematics, Jan. 2013.

901

