
Quantum Speed-ups for Solving Semidefinite Programs

Fernando G.S.L. Brandao

Institute of Quantum Information and Matter
California Institute of Technology

Pasadena, CA
Email: fgslbrandao@gmail.com

Krysta M. Svore

Quantum Architectures and Computation Group
Microsoft Research

Redmond, WA
Email: ksvore@microsoft.com

Abstract—We give a quantum algorithm for solving
semidefinite programs (SDPs). It has worst-case running
time n

1
2m

1
2 s2 poly(log(n), log(m), R, r, 1/δ), with n and

s the dimension and row-sparsity of the input matrices,
respectively, m the number of constraints, δ the accuracy
of the solution, and R, r upper bounds on the size of the
optimal primal and dual solutions, respectively. This gives
a square-root unconditional speed-up over any classical
method for solving SDPs both in n and m. We prove the
algorithm cannot be substantially improved (in terms of
n and m) giving a Ω(n

1
2 +m

1
2) quantum lower bound for

solving semidefinite programs with constant s,R, r and δ.
The quantum algorithm is constructed by a combination

of quantum Gibbs sampling and the multiplicative weight
method. In particular it is based on a classical algorithm
of Arora and Kale for approximately solving SDPs. We
present a modification of their algorithm to eliminate the
need for solving an inner linear program which may be
of independent interest.

Keywords-quantum algorithms; semidefinite programs;
Gibbs sampling

I. INTRODUCTION

Quantum computers harness the unique features of

quantum mechanics to compute in novel ways and

outperform classical solutions to some problems. In the

past 25 years a variety of quantum algorithms offering

speed-ups over classical computations have been found,

including Shor’s polynomial-time quantum algorithm

for factoring [1] and Grover’s quantum algorithm for

searching a database in time square-root its size [2]. A

central challenge in quantum computing is to identify

more quantum algorithms that outperform their classical

computing counterparts, especially for practically rele-

vant problems.

Semidefinite programming is one of the most suc-

cessful algorithmic frameworks of the past few decades

[3]. It has applications ranging from designing efficient

algorithms for approximating combinatorial optimiza-

tion problems [4] to operations research and beyond

[5]. The power of semidefinite programs (SDPs) resides

in their generality, together with the fact that there are

efficient methods for solving them [5]. However, given

the steadily increasing sizes of SDPs found in practice,

it is an important problem to find even more efficient

algorithms.

We present a quantum algorithm for solving semidef-

inite programs achieving a quadratic speed-up over any

classical method, both in the dimension of the matrices

and in the number of constraints of the program (we

note however that the algorithm run-time also depends

on a parameter measuring the size of the solution of

the SDP, discussed below). Our work also shows the

first quantum speed-up for linear programming, which

is an important subclass of SDPs. We show that such

a quadratic speed-up is not far from the best possi-

ble in general. We believe the results herein make a

compelling case that solving SDPs efficiently has the

potential to be a relevant application of future quantum

computers.

A. Semidefinite Programs

A general semidefinite program (SDP) is given by

max tr(CX)

∀j ∈ [m], tr(AjX) ≤ bj

X ≥ 0, (1)

where the n × n Hermitian matrices (C,A1, . . . , Am)
and the real numbers (b1, . . . , bm) are the inputs of

the problem. The optimization is taken over positive

semidefinite n × n matrices X . The dual program of

the primal SDP given by Eq. (1) is the following:

min b.y
m∑
j=1

yjAj ≥ C

y ≥ 0, (2)

where the minimization is taken over real vectors y :=
(y1, . . . , ym). Under mild conditions the primal and dual

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.45

415

problems have the same optimal value [5]. We can

assume that

‖Ai‖ ≤ 1 ∀i ∈ [m], and ‖C‖ ≤ 1, (3)

with ‖ ∗ ‖ the operator norm. This is without loss of

generality by normalizing bi and the optimal solution

appropriately.

There are several different classical polynomial-time

algorithms for solving semidefinite programs. One is

the class of interior point methods. The state-of-the-

art algorithm (in terms of rigorous worst-case bounds)

has running time Õ(m(m2 +nω +mns) log(1/δ)) [7],

with ω the exponent of matrix multiplication, s the

row-sparsity of the matrices (C,A1, . . . , Am) (i.e., the

maximum number of non-zero entries in each of the

rows of the matrices), and δ the accuracy of the solution.

If one is willing to tolerate a worse scaling with error,

faster algorithms can be sometimes obtained using the

multiplicative weight method [8], [9], [10]. In particular

Arora and Kale gave an algorithm for solving the SDP

given by Eq. (1) in time Õ(nms
(
Rr
δ

)4
+ ns

(
Rr
δ

)7
)

[9], where R and r are upper bounds on the size of the

optimal primal and dual solutions, respectively.

It is an important open problem to find even more

efficient algorithms for solving SDPs. Nonetheless, as

we show in Section II-C, a limit for any such improve-

ment is the lower bound of Ω(n + m) for SDPs with

s, ω,R = O(1).

B. Problem Statement

The problem we want to solve is the following: Given

a list of n × n matrices (A1, . . . , Am, Am+1) (with

Am+1 := C), approximate the optimal value of Eqs. (1)

and (2) and output optimal primal and/or dual solutions.

To formulate the problem precisely we must specify in

which form the inputs and outputs are given.

Input Model: We assume there is an oracle PA that given

the indices j ∈ [m + 1], k ∈ [n] and l ∈ [s], computes

a bit string representation of the l’th non-zero element

of the k-th row of Aj ,1 i.e., the oracle performs the

following map:

|j, k, l, z〉 →
∣∣j, k, l, z ⊕ (Aj)kfjk(l)

〉
(4)

with fjk : [r] → [N] a function (parametrized by the

matrix index j and the row index k) which given l ∈ [s]
computes the column index of the l-th non-zero entry.

1We assume all elements of the input matrices can be represented
exactly by a bit string of size polylog(n,m). If not we can truncate
the matrices, which will only incur error exp(− polylog(n,m)) that
can be neglected.

Output: One way to specify the output is to require

a list with the entries of X or y. However it is clear

that in such a case at least n(n − 1)/2 (or m) time is

required even to write down a primal (or dual) solution.

Therefore it is necessary to relax the format of the

output in order to obtain faster algorithms.

We require the quantum algorithm provides the fol-

lowing:

• An estimate of the optimal objective value.

• An estimate of ‖y‖1 and/or tr(X).
• Samples from the distribution p := y/‖y‖1 and/or

from the quantum state ρ := X/ tr(X).2

As we show in Section II-C, Ω(n +m) calls to the

oracle are required even classically to output a solution

as above.

II. RESULTS

In this paper we give the first quantum algorithm

for solving SDPs offering a speed-up over classical

methods. Below we state the main contributions on a

high level, describe the algorithm, and present a few

open questions related to it.

A. Main Ideas

The first contribution of the paper is to notice that

classical algorithms for solving SDPs based on the mul-

tiplicative weight method [9] imply that in order to solve

the SDP of Eq. (1), it is enough to prepare quantum

thermal (Gibbs) states of Hamiltonians given by linear

combinations of the input matrices A1, . . . , Am, C of

the program. Therefore in cases where such Gibbs

states can be prepared efficiently (in time polynomial

in log(n)), quantum computers can give exponential

speed-ups. This already suggests that our method might

be an interesting heuristic to run on quantum computers

(e.g., by using quantum Metropolis sampling [11], [12]

to prepare the Gibbs states).

The second contribution is to combine the first obser-

vation with amplitude amplification [17] in the prepara-

tion of the Gibbs state to achieve a generic quadratic

speed-up in terms of n, the dimension of the input

matrices of the program. Here we can apply known

results [13], [14] on using amplitude amplification to

prepare Gibbs states on a quantum computer in time

given roughly by the square root of the dimension of

the system.

2In this paper we present a quantum algorithm producing an
estimate of ‖y‖1 and samples from the probability distribution
p := y/‖y‖1. The algorithm can be modified to also generate an
estimate of tr(X) and samples from ρ := X/ tr(X). However, we
leave the details of this improvement to a future version of the paper.

416

The third contribution is to show one can achieve a

quadratic speed-up also in m, the number of constraints

of the program. Establishing this fact requires more

work. We modify the Arora-Kale algorithm and replace

the inner linear program they use by the preparation of

a Gibbs state of a classical Hamiltonian, whose entries

are estimated from the expectation value (with each of

the input matrices) of the Gibbs state prepared in the

main thread of the algorithm. We show this replacement

is possible using Jaynes’ principle of maximum entropy

[18], or more specifically a recent approximate version

of it [19] with better control of parameters. Then we

apply amplitude amplification also to the preparation

of this Gibbs state. This modification alone is not

enough to give a speed-up, since the sparsity of the

Hamiltonians for which we must prepare the associated

Gibbs states also depends on m (and the quantum

algorithms for preparing Gibbs states we consider have

linear dependence on sparsity). We then show that we

can sparsify the Hamiltonians under consideration by

random sampling, without changing the functioning of

the algorithm, so that their sparsity only depends on

the original sparsity s of the input matrices (up to

polylogarithmic factors in n,m).

B. The Algorithm

Reduction to Feasibility: Using binary search we can

reduce the optimization problem to a feasibility one.

Let α be a guess for the optimal solution (which will

be varied by binary search). We are then concerned

with the problem of either sampling from a probability

distribution p := y/‖y‖1, with y a dual feasible vector

whose value is at most α(1 + δ) for a small δ > 0,

or finding out that the optimal value is greater than

α(1− δ).3

Gibbs Samplers: A subroutine of the main algorithm

is the following:

Definition 1 (Gibbs Sampler). Let H be a Hamil-
tonian and O[H] an oracle for its entries.4 Then
GibbsSampler(O[H], ν) is a quantum operation that
given access to O[H], outputs a state ρ such that
‖ρ− eH/ tr(eH)‖1 ≤ ν.

Several different Gibbs samplers have been proposed

3Alternatively we could also sample from a quantum state ρ :=
X/ tr(X), with X a primal feasible solution with objective value at
least α(1 − δ); however we do not consider this task in the current
version.

4In analogy with the input model 1, O[H] is an oracle that given
the indices k ∈ [n] and l ∈ [s], computes a bit string representation
of the l’th non-zero element of the k-th row of H . Here n is the
dimension of H and s its sparsity.

in the literature [11], [12], [13], [14], [15], [16], and any

of them could be used in the main quantum algorithm.

Oracle by Estimation: Given a Hamiltonian H , in

order to run a Gibbs sampler algorithm, we need an

oracle for its entries. We also need the notion of a

probabilistic oracle. This is an oracle that with high

probability outputs the right entry of the Hamiltonian,

but with small probability might output a wrong value.

Consider a quantum state ρ and two real numbers

λ and μ. We define the Hamiltonian h(ρ, λ, μ) :=∑m
i=1 ri |i〉 〈i|, with

ri := λ tr(Aiρ) + μbi, (5)

and its truncated version

h(ρ, λ, μ) :=
m∑
i=1

ri |i〉 〈i| , (6)

with ri the rounding of ri to precision hprecision.

Throughout the paper we set

hprecision =
δ

56R2
. (7)

The quantum algorithm will make use of calls to a

probabilistic oracle for h, which we show how to

construct in Section IV. A subtlety is that ρ will not

be given explicitly as a density matrix, but only as

a quantum state. Therefore in order to implement the

oracle for h, we need to first estimate (some of) the

values {tr(Aiρ)}mi=1.

The Size Parameter R: Apart from the dimension of

the matrices n, the number of constraints m, the sparsity

of the input matrices s, and the error δ, the algorithm

will depend on another parameter of the SDP. For many

problems of interest, this is a constant independent of

n and m.5

Following [9], we assume A1 = I and let b1 = R.

Thus we have the constraint

tr(X) ≤ R. (8)

We can always add this constraint without changing

the optimal solution by choosing R sufficiently large.

The parameter R is a measure of the size of the optimal

primal solution of the SDP. Note we have the upper

bound α ≤ R.6 We also assume R is chosen sufficiently

large such that maxi |bi| = R.

Reduction to bi ≥ 1 and α ≥ 1 and the dual size
parameter r: Our algorithm will only work for SDPs

5We remind the reader we are also assuming that ‖C‖, ‖Ai‖ ≤ 1
for all i ∈ [m] (which is w.l.o.g. by changing the values of the
numbers bj , α appropriately).

6It follows from tr(CX) ≤ ‖X‖1‖C‖ ≤ tr(X) ≤ R.

417

for which bi ≥ 1 for all i ∈ [m]. However in the full

version of the paper, we prove Lemma 2 below, which

shows that if we can solve SDPs with the bi’s greater

than one, we can solve arbitrary SDPs in roughly the

same time. We say a feasible solution is δ-optimal if its

objective value is within additive error δ to the optimal.

Given the SDP of Eq. (2) with an optimal solution

(y1, . . . , ym), we assume we are given an upper bound r
to the sum

∑m
i=1 yi (if there is more than one solution,

any of them can be chosen). We have:

Lemma 2. One can sample from a δ-optimal solution
of the SDP given by Eq. (2) (with dimension n, m
variables, size parameter R and upper bound r on
optimal solution vector) given the ability to sample
from a (δ/r)-optimal solution of the SDP given by
Eq. (2) (with dimension n + 1, m + 1 variables and
size parameter 2R+1) in which bi ≥ 1 for all i ∈ [m].

To apply Lemma 2 we need an upper bound r on the

�1-norm of the optimal dual solution vector. For exam-

ple, if all bi’s are positive, we can take r = α/mini bi.

We also assume α ≥ 1. We ensure this is the case as

follows: Given the SDP of Eq. (2) with all bi’s greater

than one, it is clear that we can take α > 0 (as all

the yi’s are non-negative). Suppose α < 1. Then we

consider a new SDP with the b′is rescaled by 1/α. As

an effect we must solve the scaled SDP to accuracy δα.

Note the complexity of solving the SDP (which depends

on the accuracy) increases as α approaches zero. It is

an open question if this drawback can be avoided.

The quantum algorithm for α ≥ 1, bi ≥ 1 discussed

below is given in terms of multiplicative error, while

the reduction above works with additive error. It is easy

to convert the multiplicative approximation to additive

approximation by redefining the error δ → δ/α. This

results in an increased complexity of the algorithm in

terms of α.

Probability of success: The probability of success of

our algorithm is greater than

1−O(exp(−logξ(nm))), (9)

where ξ > 0 is a free parameter.

Algorithm 3 (Quantum Algorithm for Solving SDPs).

Input: Oracles for {A1, . . . , Am, C}, with ‖C‖,
‖Ai‖ ≤ 1 and {b1, . . . , bm} with bi ≥ 1.
Parameters R,α, δ, ξ > 0.

Output:Either a sample from distribution p and a
real number L such that y := Lp is dual fea-
sible with objective value less than (1+δ)α,
or the label Greater indicating the optimal
objective value is greater than (1− δ)α.

Set ρ(1) = I/n. Let ε = δ
28R2 , ε′ = − ln(1−ε), M =

80 log1+ξ(8R2nm/ε)/ε2, L = 80 log1+ξ(nm)/ε2

and Q = 106R6 ln2+ξ(nm)/δ4. Let T = 500R3 ln(n)
δ2 .

For t = 1, . . . , T :
1) Set y(t) = (0, . . . , 0).
2) For k = 1, . . . , γ =

⌈
8
ε2 log(m)R2

⌉
,

N = 1, . . . , �αε
,
• Create M copies of

q ← GibbsSampler(O[h(ρ(t), k)], ε/4).
• Sample i1, . . . , iM independently from the

distribution q.
• Compute estimates {ei1 , . . . , eiM , f} of
{tr(Ai1ρ

(t)), . . . , tr(AiMρ(t)), tr(Cρ(t))}
to accuracy ε/2 using (M + 1)L samples
from ρ(t) .

• If 1/M
∑M

j=1 eij ≥ f/(εN) − ε and
1/M

∑M
j=1 bij ≤ α/(εN)+Rε, set kt = k,

Nt = N , q(t) = q and y(t) = εNq(t).
3) If y(t) = (0, . . . , 0), stop and output Greater.
4) Create Q+ 1 copies of

q(t) ← GibbsSampler(O[h(ρ(t), kt)], ε/4)
5) Sample i1, . . . , iQ independently from the distri-

bution q(t).
6) Let

M (t) =⎛
⎝εNtQ

−1

Q∑
j=1

Aij − C + 2αI

⎞
⎠ /4α.

7) Let Ct := 10 log(m)
ε2 (γαε M + Q)Gh(ρ

(t)) +
2γα
ε ML.

Create Ct copies of the state
ρ(t+1) ← GibbsSampler(−ε′(∑t

τ=1 M
(τ)), ε/4).

Output: ‖y‖1 and a sample from y/‖y‖1 with
y = δα

2Re1 +
1
T

∑T
t=1 y

(t).

The Algorithm: Let

γ :=

⌈
8

ε2
log(m)R2

⌉
(10)

418

for an ε > 0 defined below. For an integer k ≤ γ, we

define

h(ρ, k) := h
(
ρ,− ε

8R2
k,− ε

8R2
(γ − k)

)
, (11)

with h the Hamiltonian given by Eq. (6). Let e1 :=
(1, 0, . . . , 0) be the first computational basis state of

R
m. Let

Gh(ρ) := max
k∈[γ]

(
number of calls to the oracle

O[h(ρ, k)] in GibbsSampler
(
O[h(ρ, k)],

ε

4

))
.

(12)

The main algorithm is given in Algorithm 3.

Let

GM := max
t≤T

(
number of calls to the oracle in

GibbsSampler

(
O

[
−ε′

(
t∑

τ=1

M (τ)

)]
,
ε

4

))
,

(13)

and

Gh := max
t≤T

Gh(ρ
(t)). (14)

Finally, let TMeas be the maximum time needed to

estimate one of tr(Aiρ), for i ∈ [m], and tr(Cρ) (for

an arbitrary ρ) within additive error ε/2 (in Lemma 12

we show that for s-sparse matrices, TMeas ≤ Õ(s/ε2)).
We prove in Section V the following:

Theorem 4. Algorithm 3 runs in time

Õ

(
R21

δ11
GhGM

)
+ Õ

(
R13

δ5
TMeas

)
. (15)

The algorithm fails with probability at most

O
(
(R/δ)18(nm)10 exp

(
− logξ(nm)

))
. (16)

Assuming it does not fail, if it outputs Greater, the opti-
mal objective value is greater than (1− δ)α. Otherwise
it outputs a sample of a probability distribution p and
a real number L such that y = Lp is dual feasible and∑

i yibi ≤ (1 + δ)α.

We note the algorithm is very costly in terms of

the size parameter R and the error δ. We believe it is

possible to significantly reduce the complexity in terms

of these two parameters, but we leave this possibility as

an open question to future work.

One interesting Gibbs sampler to consider is quantum

Metropolis [11], [12]. Although it is difficult to obtain

rigorous estimates on its running time, it is expected that

it is polylogarithmic in many cases. Whenever this is

the case for the Hamiltonians involved in the algorithm

(given by linear combinations of the Ai’s and C), one

would achieve exponential speed-ups.

In Section V we show:

Corollary 5. Using the Gibbs Sampler from Ref. [13],
Algorithm 3 runs in time Õ(n

1
2m

1
2 s2R32/δ18).

As we show in the next section, this represents an

unconditional polynomial speed-up (in terms of m and

n) over any classical method for solving semidefinite

programming.

One particular case of interest is when R is a constant

independent of all other parameters. In this case the

running time only depends on the parameters n,m, s, δ.

Moreover the SDP has a clear quantum interpretation:

we want to optimize the expectation value of an observ-

able C/R on a quantum state ρ subject to the constraints

that the expectation value of Ai on ρ is bounded by

bi/R, for all i ∈ [m].

C. Lower Bounds

We give a lower bound on the complexity of solving

SDPs which shows the n,m dependence of Algorithm

3 cannot be substantially improved. Consider the fol-

lowing two instances of the primal problem given by

Eq. (1), with R = 1, A1 = I , bj = 1 for j ∈ [m] and

either

1) For a random i ∈ [n], set Cii = 1. All other

elements of C are set to zero. Choose at random

j ∈ [m] and set (Aj)ii = 2. All other elements of

the matrices {Aj}mi=2 are set to zero.

2) For a random i ∈ [n], set Cii = 1. All other

elements of C are set to zero. All elements of the

matrices {Aj}mi=2 are set to zero.

We claim that to decide which of the two cases we are

given requires at least Ω(n+m) calls to the oracle clas-

sically and Ω(
√
n+

√
m) calls quantum-mechanically.

This follows from an elementary reduction to the search

problem.

It is easy to see that the optimal solution of the primal

and dual problems in the first case are X = |i〉 〈i| /2 and

y = |j〉 〈j|, with objective value 1/2. In the second case,

in turn, X = |i〉 〈i| and y = |1〉 〈1|, with objective value

1. Therefore we can decide which of the two we are

given and find the marked (i, j) (in the first case) given

samples of the optimal y and X and a constant-error

approximation to tr(X) or ‖y‖1. This is equivalent to

solving two search problems, one in a list of n elements

and another in a list of m elements.

419

D. Discussion and Open Questions

The core quantum part of the algorithm is the prepara-

tion of quantum Gibbs states. Classically there are sev-

eral interesting applications of the Monte Carlo method

and the Metropolis algorithm to problems not related

to simulating thermal properties of physical systems

[24]. One could expect the same will be the case for

quantum Metropolis. We might have to wait until there

are working quantum computers to fully explore the

usefulness of quantum Metropolis, since in analogy to

the classical case, many times heuristic methods based

on it might work well in practice even though it is

hard to get theoretical guarantees. Nevertheless, as far

as we know the results of this paper give the first

example of a problem of interest outside the simulation

of physical systems in which ”quantum Monte Carlo”

methods (i.e., sampling from quantum Gibbs states) play

an important role. The algorithm can also be seen as a

new application of quantum annealing. One difference

is that in this case the annealing is used to prepare a

finite temperature state, instead of a groundstate as is

usually considered in quantum adiabatic optimization.

The algorithm is also inherently robust, in the sense

that to compute a solution of the SDP to accuracy

ε, it suffices to be able to prepare approximations to

accuracy O(ε) of the Gibbs state of Hamiltonians given

by linear combinations of the input matrices. Moreover

we believe the constants and the dependence on R and

δ might be substantially improved by a more careful

analysis. If this turns out to be indeed the case, we

expect the algorithm to be a promising candidate for a

relevant application of small quantum computers (even

without the need for error correction).

This work leaves several open questions for future

work. For example:

• The algorithm has very poor scaling in terms of R
and δ. It is a pressing open question to improve

its running time in terms of these parameters. Also

can we close the gap in terms of n and m between

the lower bound (Ω(
√
n+

√
m)) and the algorithm

(O(
√
nm))?

• Although quadratic speed-ups in terms of n and

m are the best possible in the worst case, it is

an interesting question whether more significant

speed-ups are possible in specific instances. How

large are the speed-ups on average (for example

choosing the input matrices at random from a given

distribution)? Even more interesting is to explore

whether there is an SDP of practical interest for

which we might have greater quantum speed-ups.

• How robust is the algorithm to noise? Can we run

it without the need of quantum error correction in

analogy to what has been proposed for quantum an-

nealing? Is there an improvement of the algorithm

which would be suitable for a small-scale quantum

computer (with hundreds of physical qubits)?

• The multiplicative weight method is an important

algorithmic technique classically. In this paper we

give an application of the matrix multiplicative

weight method to quantum algorithms. Are there

more applications?

• Can we enlarge the class of optimization prob-

lems having a quantum speed-up beyond SDPs?

In particular, can we get quantum speed-ups for

optimizing general convex functions over convex

sets (assuming we have an efficient oracle for

membership in the set)?

• In practice the preferred algorithms for solving

SDPs are based on the interior point method. Can

we also find a quantum algorithm for SDPs based

on it?

III. ANALYSIS OF THE QUANTUM ALGORITHM

A. The Arora-Kale Algorithm

The quantum algorithm builds on a classical algo-

rithm of Arora and Kale for solving SDPs, which

we now review. One element of their approach is an

auxiliary algorithm termed ORACLE(ρ), which given

a density matrix ρ, searches for a vector y from the

polytope

Dα := {y ∈ R
m : y ≥ 0, b.y ≤ α} (17)

such that

m∑
j=1

yj tr(Ajρ) ≥ tr(Cρ), (18)

or outputs fail if no such vector exists.

The running time of their algorithm also depends on

the so-called width ω of the SDP, defined as

ω := max
y∈Dα

∥∥∥∥∥∥
∑
j

yjAj − C

∥∥∥∥∥∥ . (19)

420

We note the bound:7

ω = max
y∈Dα

∥∥∥∥∥∥
∑
j

yjAj − C

∥∥∥∥∥∥
≤ max

y∈Dα

∑
j

yj + 1

≤ max
y∈Dα

∑
j

bjyj + 1

≤ α+ 1

≤ R+ 1. (20)

The Arora-Kale algorithm is the following:

Algorithm 6 (Arora-Kale Algorithm for SDPs).

Set ρ(1) = I/n. Let ε = δα
2R2 , and let ε′ = ln(1− ε).

Let T ≥ 16R4 ln(n)
α2δ2 . For t = 1, ..., T :

1) Run ORACLE(ρ(t)). If it fails, stop and output
ρ(t).

2) Else, let y(t) be the vector generated by
ORACLE(ρ(t)).

3) Let M (t) = (
∑m

j=1 Ajy
(t)
j − C + ωI)/2ω

4) Compute W (t+1) = exp(−ε′(∑t
τ=1 M

(τ))).
5) Set ρ(t+1) = W (t+1)

tr(W (t+1))
and continue.

The central idea behind the algorithm is a variant of

the multiplicative weight method for positive semidef-

inite matrices. Let us denote by λn(X) the minimum

eigenvalue of the n×n Hermitian matrix X . Arora and

Kale proved the following:

Lemma 7. [Matrix Multiplicative Weights method; The-
orem 10 of [9]] Let M (t) be such that 0 ≤ M (t) ≤ I
for every t. Fix ε < 1

2 , and let ε′ = − ln(1− ε). define

W (t) = exp
(
−ε′

(∑t−1
τ=1 M

(τ)
))

and the density

matrices ρ(t) = W (t)

tr(W (t))
. Then

T∑
t=1

tr(M (t)ρ(t)) ≤ (1 + ε)λn

(
T∑

t=1

M (t)

)
+

ln(n)

ε
.

(21)

Let e1 := (1, 0, . . . , 0). Then the main result of [9] is

the following (as a warm up to the proof of correctness

of the quantum algorithm we reproduce the argument

of Arora and Kale below):

Theorem 8 (Theorem 1 of [9]). Suppose ORACLE

never fails for T = 16R4 ln(n)
α2δ2 iterations. Then y =

δα
R e1+

1
T

∑T
t=1 y

(t) is dual feasible with objective value
at most α(1 + δ) .

7Assuming bi ≥ 1.

The proof is given in [9] and in the full version of

the paper.

B. Approximately Implementing ORACLE by Gibbs
Sampling

As a step towards the quantum algorithm, we now

give an explicit implementation of the ORACLE aux-

iliary algorithm. The idea is to use the fact that by

Jaynes’ principle, we can w.l.o.g. take the output y
of ORACLE(ρ) to be (up to normalization) a Gibbs

probability distribution over the two constraints, i.e., a

distribution over [m] of the form

qρ,λ,ν(i) :=
exp (λ tr(Aiρ) + μ

∑
i bi)∑

i exp (λ tr(Aiρ) + μ
∑

i bi)
, (22)

for real numbers λ, μ.

The following is a special case of Lemma 4.6 of [19]

(obtained by taking the reference state to be maximally

mixed) and is an approximate version of Jaynes’ prin-

ciple with a quantitative control of the parameters of

the Hamiltonian in the Gibbs state (in contrast, in the

original Jaynes’ principle there is no control over the

size of the interaction strengths of the Hamiltonian)

Let M(Cn) and D(Cn) be the set of Hermitian

and density matrices over C
n. Let T ⊆ M(Cn) be

a compact set of matrices. We set

Δ(T) := sup
A∈T

‖A‖. (23)

For A ∈M(Cn), we define the associated dual norm

[A]T := sup
B∈T

tr(BA). (24)

Lemma 9. (Lemma 4.6 of [19]) For every κ > 0, the
following holds. Let T ⊆ M(Cm) be a compact set
of matrices and let π ∈ D(Cm) be a density matrix.
If one defines γ = � 8

κ2 log(m)Δ(T)2
 then there exist
X1, . . . , Xγ ∈ T such that

π̃ :=
exp

(
− κ

4Δ(T)2

∑γ
i=1 Xi

)
tr

(
exp

(
− κ

4Δ(T)2

∑γ
i=1 Xi

)) (25)

satisfies
[π − π̃]T ≤ κ. (26)

The finitary version of Jaynes’ principle above allows

us to implement ORACLE assuming we have access

to samples from the distributions qρ,λ,μ. In fact, for

the quantum algorithm it will be useful to prove a

generalization in which we only assume we can sample

from distributions qρ,λ,μ close in variational distance to

qρ,λ,μ.

421

For an integer k, let

qρ,k := qρ,− κ
4R2 k,− κ

4R2 (γ−k), (27)

with

γ :=

⌈
8

κ2
log(m)R2

⌉
. (28)

Algorithm 10 (Instantiation of ORACLE(ρ) by Sam-

pling).
Input: Samples from distributions qρ,k such that

‖qρ,k − qρ,k‖1 ≤ ν and real numbers
{ei}m+1

i=1 such that |ei − tr(Aiρ)| ≤ ν. A
parameter κ > 0.

Output:Samples from distribution y/‖y‖1 and value
of ‖y‖1 satisfying Eqs. (29) and (30).

Let M = 80 log1+ξ(8R2nm/ε)/ε2. For k = 1, . . . , γ
and N = 1, . . . ,

⌈
α
κ

⌉
:

• Sample i1, . . . , iM ∈ [m]M independently from
the distribution qρ,k.

• If 1
M

∑M
j=1 eij ≥ em+1

κN − (κ + ν) and
1
M

∑M
j=1 bij ≤ α

κN + R(κ + ν), output samples
from q̃ρ,k and the number κN (as y/‖y‖1 and
‖y‖1, respectively).

Lemma 11. Suppose ORACLE(ρ) does not fail. Then
with probability greater than 1 − exp(− logξ(nm)),
Algorithm 10 outputs y such that

m∑
i=1

biyi ≤ α(1 + 2R(κ+ ν)), (29)

and
m∑
i=1

yi tr(Aiρ) ≥ tr(Cρ)− 2α(κ+ ν). (30)

Proof:
By the Chernoff bound and the union bound over

all all k ∈ [γ], with probability at least 1 −
exp(− logξ(nm)), sampling i1, . . . , iM independently

from qρ,k guarantees that∣∣∣∣∣∣
m∑
i=1

qρ,k(i) tr(Aiρ)−
1

M

M∑
j=1

eij

∣∣∣∣∣∣ ≤ κ+ ν, (31)

and ∣∣∣∣∣∣
m∑
i=1

qρ,k(i)bi −
1

M

M∑
j=1

bij

∣∣∣∣∣∣ ≤ κ+ ν, (32)

for all k ≤ γ.

Let k ≤ γ,N ≤ �Rκ
 be the smallest integers

(assuming they exist) such that

m∑
i=1

qρ,k(i) tr(Aiρ) ≥
tr(Cρ)

κ(N + 1)
− (κ+ ν), (33)

and
m∑
i=1

qρ,k(i)bi ≤
α

κN
+R(κ+ ν). (34)

Then by Eqs. (31) and (32), with probability greater than

1− exp(− logξ(nm)) over the choice of i1, . . . , iM ,

1

M

M∑
j=1

eij ≥
tr(Cρ)

κ(N + 1)
− 2(κ+ ν), (35)

and

1

M

M∑
j=1

bij ≤
α

κN
+ 2R(κ+ ν), (36)

where we used maxi |bi| = R. The algorithm will then

output y = κNq̃ρ,k, which satisfies Eqs. (29) and (30).

It remains to prove the existence of at least one

pair k ≤ γ,N ≤
⌈
α
κ

⌉
satisfying Eqs. (33) and (34).

Let y∗ be an output of ORACLE(ρ). Let us apply

Lemma 9 with π :=
∑

i y
∗
i |i〉 〈i| /‖y∗‖1 and T =

{X :=
∑

i tr(Aiρ) |i〉 〈i| , Y :=
∑

i bi |i〉 〈i|}. Note that

Δ(T) = R. We find there is an integer k ≤ γ such that

π̃ :=
exp

(
− κ

4R2 (kX + (γ − k)Y)
)

tr
(
exp

(
− κ

4R2 (kX + (γ − k)Y)
)) (37)

satisfies

[π − π̃]T ≤ κ. (38)

Let N be the integer which minimizes |κN ′−‖y∗‖1|
over N ′ ∈

[⌈
α
κ

⌉]
. By the bound ‖y∗‖ ≤∑

i biy
∗
i ≤ α,

we have

|κN − ‖y∗‖1| ≤ κ. (39)

Then

m∑
j=1

qρ,kopt
tr(Ajρ) ≥

m∑
j=1

y∗j
‖y∗‖1

tr(Ajρ)− (κ+ ν)

≥ 1

‖y∗‖1
tr(Cρ)− (κ+ ν)

≥ 1

κ(N + 1)
tr(Cρ)− (κ+ ν),(40)

where the first inequality follows from Eq. (38) and

the fact that qρ,k is ν-close to qρ,k, the second from

Eq. (18), and the last from Eq. (39).

422

Likewise,

m∑
j=1

qρ,kopt
bi ≤

m∑
j=1

y∗i
‖y∗‖1

bi +R(κ+ ν)

≤ 1

‖y∗‖1
α+R(κ+ ν)

≤ 1

κ(N − 1)
α+R(κ+ ν). (41)

IV. IMPLEMENTING THE ORACLE FOR h(ρ, λ, μ)

In this section we explain how to implement the ora-

cle that outputs the entries of the Hamiltonian h(ρ, λ, μ)
defined in Eq. (6). We start with the following standard

result in quantum algorithms:

Lemma 12. Given an s-sparse n×n Hermitian matrix
A with ‖A‖ ≤ 1 and a density matrix ρ, with probability
greater than 1 − pe, one can compute tr(ρA) with
additive error ε in time O(sε−2 log4(ns/(peε))) using
O(log(1/pe)ε

−2) copies of ρ.

Proof: Using the Hamiltonian simulation technique

of Ref. [25], the phase estimation algorithm takes time

(s log4(ns/ε))) to measure to accuracy ε/2 the energy

of Ai in the state ρ. By the Chernoff bound, repeating

the process O(1/ε2) times allows us to obtain an

estimation for tr(ρAi) to accuracy ε.

Lemma 13. Using O(log(m/pe)h
−2
precision) copies of ρ

and time O(sh−2
precision log

4(nms/(pehprecision)), one can
implement O[h] with error probability pe.

Proof: Since by assumption we have an oracle

for the {bi}, we can focus on showing how to com-

pute tr(Aiρ) to accuracy ν given access to an oracle

for the entries of the Ai and copies of the state ρ.

Lemma 12 shows how to compute, with probability

at least 1 − p′e, an estimate of tr(Aiρ) to accuracy

hprecision in time O(sh−2
precision log

4(ns/(p′ehprecision)) us-

ing O(log(1/p′e)h
−2
precision) copies of ρ. Suppose the

input of the oracle is
∑m

i=1 ci |i〉. Then its output is∑m
i=1 ci |i, ei〉 with ei the estimation of tr(Aiρ). We

know each ei is within hprecision from the true value

with probability at least 1− p′e. Therefore by the union

bound all of the ei are hprecision-close with probability

1−mp′e.

V. THE QUANTUM ALGORITHM: CORRECTNESS

AND COMPLEXITY

We are ready to prove:

Theorem 14 (restatement of Theorem 4). Algorithm 3
runs in time

Õ

(
R21

δ11
GhGM

)
+ Õ

(
R13

δ5
TMeas

)
. (42)

The algorithm fails with probability at most

O((R/δ)18(nm)10 exp(− logξ(nm))). (43)

Assuming it does not fail, if it outputs Greater, the opti-
mal objective value is greater than (1− δ)α. Otherwise
it outputs a sample of a probability distribution p and
a real number L such that y = Lp is dual feasible and∑

i yibi ≤ (1 + δ)α.

Proof:
Correctness of Algorithm: We let pe =
exp(− logξ(nm)), with pe the error probability

for the oracle h. If at some call to h, the output is

wrong, we declare the algorithm failed. Let us first

assume that the oracle h outputs the correct value in

all calls. Later we will show the oracle to h is used at

most O((R/δ)10(nm)10 exp(− logξ(nm))) times, the

algorithm fails due to a faulty h with probability at

most O((R/δ)18(nm)10 exp(− logξ(nm))).
Let us first consider the case in which for every t ≤

T , after step 2, y(t) is not equal to (0, . . . , 0). Then the

algorithm has to output a sample from y/‖y‖1 and the

value of ‖y‖1, with

y =
δα

2R
e1 +

1

T

T∑
t=1

y(t). (44)

Note ‖y(t)‖1 = εNt, so we know all of them. Therefore

we can compute ‖y‖1. Since we have samples from y(t)

for all t ≤ T , we can sample from y, which is a convex

combination of them (and where we know the mixing

probability distribution).

Lemma 13 with hprecision = ε/2 and Lemma 11 with

ν = κ = ε/2 show Step 2 of the algorithm implements

ORACLE(ρ(t)) as in Algorithm 10. Then for each t,
Step 2 outputs a vector y(t) such that, with probability

at least 1− exp(− logξ(nm)),

m∑
i=1

biy
(t)
i ≤ α(1 + 2Rε), (45)

and
m∑
i=1

y
(t)
i tr(Aiρ

(t)) ≥ tr(Cρ(t))− 2αε. (46)

The remaining steps of the algorithm run the Matrix

Multiplicative Weight method. One difference (which

will be important to keep the quantum complexity of

423

the algorithm low), is the sparsification of the pay-off

matrix M (t). Let

M̂ (t) :=

(
m∑
i=1

y
(t)
i Ai − C + 2αI

)
/4α. (47)

Since

∥∥∥∥∥
m∑
i=1

y
(t)
i Ai − C

∥∥∥∥∥ ≤
m∑
i=1

y
(t)
i +1 ≤

m∑
i=1

biy
(t)
i +1 ≤ α+1,

(48)

we have 0 ≤ M̂ (t) ≤ I .

By the Matrix Hoeffding bound (Lemma 15), with

probability greater than 1− exp(− logξ(nm)),

∥∥∥M̂ (t) −M (t)
∥∥∥ ≤ 1

4T
. (49)

Then by Lemma 16 and the fact the Gibbs sampler has

error ε/2, we find

∥∥∥ρ(t) − ρ̂(t)
∥∥∥
1
≤ ε, (50)

with

ρ̂(t) :=
exp(−ε′((∑t

τ=1 M̂
(τ)))

tr
(
exp(−ε′((∑t

τ=1 M̂
(τ)))

) . (51)

We are ready to show the correctness of the algo-

rithm. Since η = δα
2R , we find

y.b = Rη +
1

T

T∑
t=1

y(t).b

≤ Rη + α(1 + 2Rε)

= α (1 + δ/2 + 2Rε)

≤ (1 + δ)α. (52)

Let us now show that y is dual feasible. It is clear

that y ≥ 0. In analogy with the proof of Theorem 8

(Theorem 1 of [9]), we have

λn

⎛
⎝ m∑

j=1

yjAj − C

⎞
⎠ (53)

= λn

⎛
⎝ 1

T

T∑
t=1

m∑
j=1

ytjAj − C

⎞
⎠+ η (54)

= 4αλn

⎛
⎝ 1

T

T∑
t=1

⎛
⎝ m∑

j=1

ytjAj − C + 2αI

⎞
⎠ /4α

⎞
⎠

− 2α+ η (55)

(i)

≥ 4α

(1 + ε)

1

T

T∑
t=1

tr

⎛
⎝ρ̂(t)

⎛
⎝ m∑

j=1

ytjAj − C + 2αI

⎞
⎠ /4α

⎞
⎠

− 4α ln(n)

T (1 + ε)ε
− 2α+ η (56)

(ii)

≥ 4α

(1 + ε)

1

T

T∑
t=1

tr

⎛
⎝ρ(t)

⎛
⎝ m∑

j=1

ytjAj − C + 2αI

⎞
⎠ /4α

⎞
⎠

− 4αε

(1 + ε)
− 4α ln(n)

T (1 + ε)ε
− 2α+ η (57)

(iii)

≥ 4α

(1 + ε)

(
1

2
− 2αε

)
− 4αε

(1 + ε)
− 4α ln(n)

T (1 + ε)ε
− 2α+ η (58)

= − 6αε

(1 + ε)
− 8α2ε

(1 + ε)
+

αδ

2R
− 4α ln(n)

T (1 + ε)ε

≥ δα

4R
− 4α ln(n)

T (1 + ε)ε
(59)

≥ 0, (60)

where we used that α ≥ 1,

T =
16R ln(n)

δε
, (61)

and

ε =
δ

28R2
. (62)

Inequality (i) follows from the Matrix Multiplicative

Weight method (Lemma 7), which can be applied since

by Eq. (48),

0 ≤

⎛
⎝ m∑

j=1

ytjAj − C + 2αI

⎞
⎠ /4α ≤ I. (63)

Inequality (ii) follows from Eq. (50), while Inequality

(iii) follows from Eq. (46).

Let us now turn to the case in which there is a t ∈ [T]
such that the loop in Step 2 outputs y(t) = (0, . . . , 0).

424

Then by the Chernoff bound and Lemma 9 we find that

for every y ≥ 0 such that

m∑
i=1

yi tr(Aiρ) ≥ tr(Cρ)− 3αε, (64)

we must have

y.b ≤ α(1− 3Rε). (65)

By duality of linear programming it follows the maxi-

mum over λ ≥ 0 of

λ(tr(Cρ(t))− 3αε) (66)

subject to the constraints

λ tr(Aiρ
(t)) ≤ bi, i ∈ [m] (67)

must be greater than α(1 − 3Rε). Note that λ =
λ tr(ρ(t)) ≤ R. Then defining X = λoptimalρ

(t) (with

λoptimal the optimal value of λ for the LP above), we

find that tr(AiX) ≤ bi for all i ∈ [m] and

tr(CX) ≥ α(1− 3Rε) ≥ (1− δ)α. (68)

Finally, let us bound the probability that the algorithm

fails. This can be due to three causes. The first is a faulty

oracle call for h. This is upper bounded by

O
(
(R/δ)18(nm)10 exp

(
− logξ(nm)

))
. (69)

The second is due to an error in estimating the values of

{tr(Aiρ
(t))} in Step 2 of the algorithm. The third is the

random sampling used to construct M (t). By the union

bound the error probability of both are also bounded by

Eq. (69).

Run-time Analysis: We remind the reader we are assum-

ing that α ≥ 1.

The cost of running step 2 is Õ(αR2/ε3) ≤
Õ(R9/δ3) times the sum of cost of the following:

(i) performing M times the Gibbs sampling of the

Hamiltonian h with cost MGh, (ii) sampling M times

from the resulting distribution with cost O(M), and (iii)

computing estimates to the expectation values of the

input matrices on the state ρ(t), with cost (M+1)TMeas.

Therefore the total cost of step 2 (for a particular

t ∈ [T]) is

Õ

(
R9

δ3
M

(
Gh + TMeas

))
= Õ

(
R13

δ5
(
Gh + TMeas

))
.

(70)

The cost of step 4 is (Q + 1)Gh = Õ((R6/δ4)Gh.

The cost of step 5 is Q = Õ(R6/δ4). The cost of steps

6-7 is

CtGM = Õ

(
α

ε3
R2

ε2

(
1

ε2
+

R6

δ4

)
Gh

)
GM

+ Õ

(
2α

ε3
R2

ε4

)
GM =

(
R19

δ9

)
GhGM . (71)

As each step is repeated T = Õ(R3/δ2) times, the

total cost is

Õ

(
R21

δ11
GhGM

)
+ Õ

(
R13

δ5
TMeas

)
. (72)

Lemma 15. (Matrix Hoeffding Bound, Theorem 2.8 of
[26]) Suppose Z1, . . . , Zk are independent random d×d
Hermitian matrices satisfying E[Zi] = 0 and ‖Zi‖ ≤ λ.
Then

Pr

[∥∥∥∥∥1k
k∑

i=1

Zi

∥∥∥∥∥ ≥ δ

]
≤ d.e−

kδ2

8λ2 . (73)

Lemma 16. Let H,H ′ be Hermitian matrices. Then∥∥∥∥∥ eH

tr(eH)
− eH

′

tr(eH′)

∥∥∥∥∥
1

≤ 2
(
e‖H−H′‖ − 1

)
. (74)

The proof of the lemma above is given in the full

version of this paper.

Finally let us prove

Corollary 17 (Restatement Corollary 5). Using the
Gibbs Sampler from Ref. [13], Algorithm 3 runs in time
Õ(n

1
2m

1
2 s2R32/δ18).

The proof is given in the full version of the paper.

ACKNOWLEDGMENTS

We thank Joran van Apeldoorn, Ronald de Wolf,

Andras Gilyen, Aram Harrow, Sander Gribling, Matt

Hastings, Cedric Yen-Yu Lin, Ojas Parekh, and David

Poulin for interesting discussions and useful comments

on the paper. This work was funded by Cambridge

Quantum Computing, Microsoft and the National Sci-

ence Foundation.

REFERENCES

[1] P.W. Shor. Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer.
SIAM review 41.2, 303 (1999).

[2] L.K. Grover. Quantum mechanics helps in searching for
a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997).

[3] L. Vandenberghe and S. Boyd. Semidefinite programming.
SIAM Review 38, 49 (1996).

425

[4] M.X. Goemans. Semidefinite programming in combina-
torial optimization. Mathematical Programming 79, 143
(1997).

[5] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[6] M.X. Goemans and D.P. Williamson. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the
ACM 42, 1115 (1995).

[7] Y.T. Lee, A. Sidford, and S.C. Wong. A faster cutting
plane method and its implications for combinatorial and
convex optimization. IEEE 56th Annual Symposium on
the Foundations of Computer Science (FOCS), 2015.

[8] S. Arora, E. Hazan and S. Kale. Fast algorithms for
approximate semidefinite programming using the mul-
tiplicative weights update method. 46th Annual IEEE
Symposium on Foundations of Computer Science, 2005.
FOCS 2005.

[9] S. Arora and S. Kale. A combinatorial, primal-dual
approach to semidefinite programs. Proceedings of the
thirty-ninth annual ACM symposium on Theory of com-
puting. ACM, 2007.

[10] S. Arora, E. Hazan and S. Kale. The Multiplicative
Weights Update Method: a Meta-Algorithm and Appli-
cations. Theory of Computing 8, 121 (2012).

[11] K. Temme et al. Quantum metropolis sampling. Nature
471, 87 (2011).

[12] M.H. Yung and A. Aspuru-Guzik. A quantumquan-
tum Metropolis algorithm. Proceedings of the National
Academy of Sciences 109, 754 (2012).

[13] D. Poulin and P. Wocjan. Sampling from the thermal
quantum Gibbs state and evaluating partition functions
with a quantum computer. Phys. Rev. Lett. 103, 220502
(2009).

[14] A.N. Chowdhury and R.D. Somma. Quantum algorithms
for Gibbs sampling and hitting-time estimation. arXiv
preprint arXiv:1603.02940 (2016).

[15] M. Kastoryano and F.G.S.L. Brandao. Quantum Gibbs
Samplers: the commuting case. Comm. Math. Phys. 344,
915 (2016).

[16] F.G.S.L. Brandao and M. Kastoryano. Finite correlation
length implies efficient preparation of quantum thermal
states. In preparation.

[17] G. Brassard et al. Quantum amplitude amplification and
estimation. Contemporary Mathematics 305, 53 (2002).

[18] E.T. Jaynes. Information Theory and Statistical Mechan-
ics II. Phys. Rev. 108, 171 (1957).

[19] J.R. Lee, P. Raghavendra, and D. Steurer. Lower bounds
on the size of semidefinite programming relaxations.
Proceedings of the Forty-Seventh Annual ACM on Sym-
posium on Theory of Computing. ACM, 2015.

[20] R. Ahlswede, A. Winter. Strong Converse for Identifi-
cation via Quantum Channels”. IEEE Trans. Information
Theory 48, 569 (2003).

[21] N.E. Sherman, T. Devakul, M.B. Hastings, R.R.P. Singh.
Phys. Rev. E 93, 022128 (2016).

[22] S. Lloyd, M. Mohseni, P. Rebentrost. Quantum Principal
Component Analysis. Nature Physics 10, 631 (2014).

[23] A. Childs and R. Kothari. Limitations on the sim-
ulation of non-sparse Hamiltonians. arXiv preprint
arXiv:0908.4398 (2009).

[24] W.R. Gilks. Markov chain monte carlo. John Wiley and
Sons, Ltd. Chicago (2005).

[25] D.W. Berry, A.M. Childs, R. Kothari. Hamiltonian sim-
ulation with nearly optimal dependence on all parameters.
Proceedings of the 56th IEEE Symposium on Foundations
of Computer Science (FOCS 2015), 792 (2015).

[26] J. A. Tropp. User-friendly tail bounds for sums of
random matrices, 2010, arXiv:1004.4389.

426

