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Abstract—We present a general framework for stochastic
online maximization problems with combinatorial feasibility
constraints. The framework establishes prophet inequalities by
constructing price-based online approximation algorithms, a
natural extension of threshold algorithms for settings beyond
binary selection. Our analysis takes the form of an extension
theorem: we derive sufficient conditions on prices when all
weights are known in advance, then prove that the resulting
approximation guarantees extend directly to stochastic settings.
Our framework unifies and simplifies much of the existing
literature on prophet inequalities and posted price mecha-
nisms, and is used to derive new and improved results for
combinatorial markets (with and without complements), multi-
dimensional matroids, and sparse packing problems. Finally,
we highlight a surprising connection between the smoothness
framework for bounding the price of anarchy of mechanisms
and our framework, and show that many smooth mechanisms
can be recast as posted price mechanisms with comparable
performance guarantees.

Keywords-mechanism design; posted prices; price of anar-
chy; prophet inequalities; smoothness

I. INTRODUCTION

A concert is being held in a local theatre, and potential au-

dience members begin calling to reserve seats. The organizer

doesn’t know individuals’ values for seats in advance, but

has distributional knowledge about their preferences. Some

need only a single seat, others require a block of seats.

Some think seats are very valuable, others are only willing

to attend if tickets are very cheap. Some prefer front-row

seats, some prefer to sit a few rows back, and some prefer

the balcony. The organizer needs to decide which seats, if

any, to allocate to each individual as they call. The goal is to

maximize the total value (i.e., social welfare) of the seating

arrangement.

Such stochastic online optimization problems have been

studied for decades. A common goal is to attain “prophet

The work of M. Feldman was partially supported by the European Re-
search Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement number 337122.

This work was done while T. Kesselheim was at Max Planck Institute for
Informatics and Saarland University, supported in part by the DFG through
Cluster of Excellence MMCI, and while he was visiting the Simons Institute
for the Theory of Computing.

inequalities” that compare the performance of an online

algorithm to that of an omniscient offline planner. A classic

result is that if the goal is to choose exactly one element (i.e.,

there is only a single seat to allocate), then a simple threshold

strategy—choosing the first value higher than a certain pre-

computed threshold—yields at least half of the expected

maximium value [1], [2], [3]. This solution has the appealing

property that it corresponds to posting a take-it-or-leave-it

price and allocating to the first interested buyer. A natural

question is whether more complex allocation problems (like

the concert example above) can be approximated by posting

prices and allowing buyers to select their preferred outcomes

in sequence.

Driven in part by this connection to posted prices, prophet

inequalities have seen a resurgence in theoretical computer

science. Recent work has established new prophet inequali-

ties for a variety of allocation problems, including matroids

[4], [5], unit-demand bidders [4], [6], and combinatorial

auctions [7]. In this paper we develop a framework for

proving prophet inequalities and constructing posted-price

mechanisms. Our framework, which is based on insights

from economic theory, unifies and simplifies many existing

results and gives rise to new and improved prophet inequal-

ities in a host of online settings.

A. Example: Combinatorial Auctions

To introduce our framework we will consider a combi-

natorial auction problem. There is a set M of m items for

sale and n buyers. Each buyer i has a valuation function

vi : 2
M → R≥0 that assigns non-negative value to every

subset of at most d items.1 Valuations are non-decreasing

and normalized so that vi(∅) = 0, but otherwise arbitrary.

The goal is to assign items to buyers to maximize total value.

Write v(x) =
∑n

i=1 vi(xi) for the total value of allocation

x = (x1, . . . , xn), where xi ⊆M for all i. There is a simple

O(d)-approximate greedy algorithm for this problem and a

lower bound of Ω(d/ log d) assuming P �= NP [8]. Our goal

is to match this O(d) approximation as a prophet inequality

1Alternatively, we can suppose that there is a cardinality constraint that
no buyer can receive more than d items.
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with posted item prices. That is, given distributions over

the valuations, compute prices for the items so that, when

buyers arrive in an arbitrary order and each chooses his

most-desired bundle from among the unsold items, the ex-

pected total value is an O(d) approximation to the expected

optimum.2

Let’s first consider the simpler full information case where

all valuations are known in advance. This problem is still

non-trivial, and in fact there may not exist prices that lead

to the optimal allocation.3 Intuitively, what we need for an

approximation result are prices that balance between two

forces. They should be small enough that high-valued buyers

are willing to purchase their optimal bundles if available, but

also large enough that those items will not first be scooped

up by bidders with much lower values. Such “balanced”

prices can be obtained as follows: Given valuation profile

v, consider the welfare-maximizing allocation x∗ (which we

can assume allocates all items). Then for each item j, say

j ∈ x∗i , set the price of j to pj = vi(x
∗
i )/(2|x∗i |). These

prices are low enough that the total price of all items is at

most 1/2 · v(x∗), which is significantly less than the total

value of x∗. At the same time, prices are high enough that,

for any set of goods S, the total price of S is at least 1/2d
of the value of allocations in the optimal allocation x∗ that

intersect S. So, in particular, a bidder that purchases S must

have value at least that high.

To see why these prices yield an O(d) approximation,

let x denote the purchase decisions of the players and let

I ⊆ N be the set of players i such that x∗i intersects with x.

The welfare achieved by x is equal to the revenue generated

plus the sum of buyer utilities. The revenue is the sum of

prices of the items sold, and since prices are “balanced”

this is at least (1/2d) ·∑i∈I vi(x
∗
i ). Also, each buyer i �∈ I

could have chosen to purchase x∗i , and therefore must get at

least as much utility as they would by purchasing x∗i , which

is vi(x
∗
i ) minus the price of x∗i . Again, since prices are

balanced, this means the sum of buyer utilities is at least∑
i �∈I vi(x

∗
i ) − 1/2 · v(x∗). Multiplying this by 1/2d and

2There is a straightforward lower bound of Ω(d) on the approximation
of any posted item prices. Suppose there are d items and two agents. The
first agent is unit-demand and has value 1 for any single item. The second
agent values the set of all d items for value d, and has value 0 for any
subset. If all items have price greater than 1, then neither agent purchases
anything. If any item has price less than 1, then the unit-demand agent (who
chooses first) will purchase the cheapest single item and the other agent
will purchase nothing, generating a total value of 1 whereas the optimum
is d. One can avoid issues of tie-breaking by perturbing the values by an
arbitrarily small amount.

3For example, suppose there are three items and four single-minded
bidders. The first three bidders each have value 2 for a different pair of
items, and the last bidder has value 3 for the set of all three items, so at
most one bidder can get positive value, and it is optimal to allocate all
items to the last bidder. However, at any item prices where the last bidder
is willing to purchase, one of the other bidders will purchase first if arriving
before the last bidder. This leads to a 3/2 approximation in the worst arrival
order.

adding the revenue gives an O(d) approximation.4

The argument above was for the full information case.

Perhaps surprisingly, the existence of sufficiently “bal-

anced” prices for full information instances also establishes

an O(d)-approximate prophet inequality for the general

stochastic problem, where one has only distributional knowl-

edge about valuations. Our main result is this reduction from

the stochastic setting to the full information setting, which

holds for a broad class of allocation problems.

B. A Framework for Prophet Inequalities

Consider a more general combinatorial allocation prob-

lem, where the cardinality constraint d is replaced with an

arbitrary downward-closed feasibility constraint F and each

vi is drawn independently from an arbitrary distribution Di.

While our framework applies for more general outcome

spaces (see Sections II and III), combinatorial allocation

problems provide a sweet spot between expressiveness and

clarity. Our key definition is the following notion of balanced

prices for full-information instances. For each x ∈ F we

write OPT(v | x) for the optimal residual allocation: the

allocation that maximizes
∑

i vi(x
′
i) over x′ ∈ F with x,x′

disjoint and x∪x′ ∈ F . Given a fixed valuation profile v, a

pricing rule defines a price pvi (xi) for every bundle that we

can assign to buyer i. For example, the item prices described

in Section I-A define a pricing rule pvi (xi) =
∑

j∈xi
pj .

Below we also extend the definition to dynamic prices, i.e.,

prices that depend on which allocations have already been

made.

Key Definition (special case) ((α, β)-balanced prices). Let
α, β > 0. A pricing rule pv = (pv1 , . . . , p

v
n) defined by

functions pvi : 2M → R≥0 is (α, β)-balanced with respect
to valuation profile v if for all x ∈ F and all x′ ∈ F with
x,x′ disjoint and x ∪ x′ ∈ F ,
(a)

∑
i p

v
i (xi) ≥ 1

α (v(OPT(v))− v(OPT(v | x))) ,
(b)

∑
i p

v
i (x

′
i) ≤ β v(OPT(v | x)) .

The first condition formalizes what it means that prices are

high enough: the sum of prices for x should partially cover

the welfare lost due to allocating x. The second condition

formalizes “low enough”: the sum of prices for any x′ that is

still feasible “after” allocating x should not be much higher

than the optimal residual welfare.

Our main result is that the existence of balanced prices

for full information instances directly implies a price-based

prophet inequality for the stochastic setting. The idea to

choose balanced prices is a natural one and has appeared

in the prophet inequality literature before, most explicitly

in the notion of balanced thresholds of Kleinberg and

4For simplicity we assumed here that
∑

i�∈I vi(x
∗
i )− 1/2 ·v(x∗) ≥ 0.

More generally, since utilities are non-negative, the sum of buyer utilities is
at least max{∑i�∈I vi(x

∗
i )−1/2 ·v(x∗), 0}. If the maximum is attained

at 0, then
∑

i∈I vi(x
∗
i ) > 1/2 · v(x∗) and the revenue alone exceeds

(1/4d) · v(x∗), as desired.
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Weinberg [5]. Previous definitions, however, applied to the

stochastic setting directly, which made the construction and

analysis of balanced thresholds inherently probabilistic. A

main advantage of our framework is that it suffices to reason

about the simpler full-information setting.

Main Theorem (informal). Consider the setting where
valuations are drawn from product distribution D. Sup-
pose that the pricing rule pv is (α, β)-balanced with
respect to valuation profile v. Then posting prices
pi(xi) = α

1+αβEṽ∼D
[
pṽi (xi)

]
achieves welfare at least

1
1+αβE[v (OPT(v))].

In other words, to construct appropriate prices for a

stochastic problem instance, it suffices to construct balanced

prices for the full-information instances in its support and

then post the expected values of those prices, scaled by an

appropriate factor. The proof of our main theorem is similar

in spirit to proofs in the price of anarchy literature [9], [10]

or for establishing algorithmic stability [11], in that it uses

“ghost samples.” It is, however, considerably more involved

because of the sequential, online aspect of our problem.

Remark 1 (Weakly Balanced Prices). We also define a

notion of weakly balanced prices, in which it suffices to

upper bound the prices by βv(OPT(v)). In this case,

we can show that posting an appropriately scaled version

of the expected prices yields a 4αβ-approximate prophet

inequality.

Remark 2 (Computation). It is sometimes easier to compute

prices that are balanced with respect to an approximation

algorithm ALG rather than OPT. Our result still applies

in this case, with OPT replaced by ALG in the welfare

guarantee. We also note that if the price rule p in the main

theorem is perturbed to some p̂ with ||p − p̂||∞ < ε, then

the welfare guarantee degrades by at most an additive O(nε)
term. This robustness is desirable in itself, and also implies

that appropriate prices can be computed for bounded values

with POLY(n,m, 1/ε) samples using standard concentration

bounds, as has been observed for various posted price

settings [12], [7].

Remark 3 (Static vs. Dynamic, Anonymous vs. Discrimina-

tory, Bundle vs. Item Pricing). We have described our frame-

work for static, discriminatory, bundle prices. In general,

our construction has the property that if the full-information

balanced prices pv are dynamic, anonymous, and/or take

the form of item prices, then the derived prices for the

stochastic setting will have these properties as well. For

example, our result holds also for dynamic prices, replacing

pi(xi) and pi(x
′
i) with pi(xi | x[i−1]) and pi(x

′
i | x[i−1])

where the conditioning on x[i−1] indicates that the price to

player i may depend on the purchase decisions of players

that precede him. See Sections II and III for details.

Remark 4 (Arrival Order). Balancedness can depend on

player arrival order. In the applications we consider, our

results hold even if the arrival order is chosen by an

adaptive adversary that observes previous realized values and

purchase decisions before selecting the next player to arrive.

Let’s return to our example from Section I-A. We es-

tablished the existence of weakly (d, 1)-balanced prices

(simply undo the scaling by 1/2), so our main result

implies a O(d)-approximate prophet inequality. What about

computation? We can compute prices in polynomial time

by basing them on the O(d)-approximate greedy algorithm

rather than the optimal allocation, but then we only get a

O(d2)-approximate solution. It turns out that we can further

improve this to O(d) in polynomial time, as we hoped for

in Section I-A, by applying our main theorem to a fractional

relaxation of the auction problem. See Section IV for details.

Composition: In the full version of this paper [13], we

also show that balanced prices “compose,” as was shown for

mechanism smoothness in [10]. This means that to derive a

prophet inequality for a complex setting it often suffices to

show balancedness for a simpler problem.

C. Unification of Existing Prophet Inequality Proofs

Our framework unifies and simplifies many of the exist-

ing prophet inequality proofs. We list some representative

examples below. We discuss these examples in more detail

in the full version.

Example 1 (Classic Prophet Inequality, [1], [2]). The goal is

to pick the single highest-value element vi. The pricing rule

pv defined by pvi (xi) = maxi vi for all i is (1, 1)-balanced.

Example 2 (Matroids, [5]). The goal is to pick a maximum

weight independent set in a matroid. Encode sets S by n-

dimensional vectors x over {0, 1} such that xi = 1 if i ∈ S.

Then one can define a dynamic pricing rule pv by pi(xi |
y) = v(OPT(v | y))−v(OPT(v | y∪xi)) for all i, where

y is the set of previously-selected elements. This pricing

rule is (1, 1)-balanced.

Example 3 (XOS Combinatorial Auctions, [7]). The goal

is to assign m goods to n buyers with XOS valuations.5

Let x∗ = OPT(v) and let a1, . . . , an be the corresponding

additive supporting functions. Set item prices pj = ai(j) for

j ∈ x∗i . This pricing rule is (1, 1)-balanced.6

The final example also illustrates the power of our com-

position results. Namely, as we show in the full version,

the existence of (1, 1)-balanced prices for XOS combinato-

rial auctions follows directly from the existence of (1, 1)-
balanced prices for a single item.

5A valuation v is XOS if there is a collection of additive functions
a1(·), . . . , ak(·), such that for every set S, v(S) = max1≤i≤k ai(S).
This is a generalization of submodular valuations [14].

6Note that this approach also yields a O(logm)-approximate prophet in-
equality for subadditive valuations by approximating subadditive valuations
with XOS valuations [15], [16].
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D. New and Improved Prophet Inequalities
We also establish new prophet inequalities using our

framework; see Table I. Our first result is a poly-time

(4k−2)-approximate prophet inequality for MPH-k combi-

natorial auctions.7

Theorem 1 (Combinatorial auctions with MPH-k valua-

tions). For combinatorial auctions with MPH-k valuations,
a (4k − 2 + ε)-approximate posted-price mechanism, with
static item prices, can be computed in POLY(n,m, 1/ε)
demand and MPH-k queries.

Theorem 1 improves the poly-time result of [7] from

O(k2) to O(k). We note two interesting special cases. First,

combinatorial auctions with bundle size d (from Section I-A)

belong to MPH-d, so Theorem 1 captures the poly-time O(d)
approximation discussed above. Second, XOS valuations

coincide with MPH-1, so Theorem 1 improves the previously

best known poly-time result of [7] from 2e/(e − 1) to 2,

matching the existential lower bound.
The second set of new results includes Knapsack fea-

sibility constraints and d-sparse Packing Integer Programs

(PIPs), for which we obtain a constant- and a O(d)-
approximation, respectively.

Theorem 2 (Knapsack). For Knapsack constraints, a factor
(5 + ε)-approximate posted-price mechanism, with static
prices, can be computed in time POLY(n, 1/ε). This improves
to a (3 + ε) approximation if no individual demands more
than half of the total capacity.

Theorem 3 (Sparse PIPs). For d-sparse Packing Integer
Programs (PIPs) with constraint matrix A ∈ R

m×n
≥0 where

aj,i ≤ 1/2 for all i, j and unit capacities, a factor (8d+ ε)-
approximate posted-price mechanism, with static prices, can
be computed in time POLY(n,m, 1/ε).

To the best of our knowledge, Theorems 2 and 3 are the

first prophet inequalities for these settings. We note that [18]

derived a prophet inequality for closely-related fractional

knapsack constraints, with approximation factor ≈ 11.657.

We obtain an improved prophet inequality for this fractional

setting: a corollary of Theorem 1 (with k = 1) is that one can

obtain a 2-approximation for a fractional knapsack constraint

using a static per-unit price, even when knapsack weights

are private and arbitrarily correlated with buyer values. See

Section IV for more details.
Finally, we generalize the matroid prophet inequalities of

Kleinberg and Weinberg [5] to settings where players make

choices regarding multiple elements of a matroid, and have

submodular preferences over subsets of elements.

Theorem 4 (Multi-Dimensional Matroids). For matroid
feasibility constraints and submodular valuations, there is a

7The maximum over positive hypergraphs-k (MPH-k) hierarchy of
valuations [17] is an inclusive hierarchy, where k measures the degree of
complementarity.

(4 + ε)-approximate posted-price mechanism, with dynamic
prices, that can be computed in POLY(n, 1/ε) value queries.

We discuss Theorem 1 and Theorem 2 in more detail in

Section IV. Additional details regarding the other results can

be found in the full version.

E. From Price of Anarchy to Prophet Inequalities

In the proof sketch in Section I-A, we derived a lower

bound on buyer utility by considering a deviation to a certain

purchasing decision. This deviation argument, which appears

in the proof of our main result, is also useful for establishing

price of anarchy bounds [9], [10]. There is a subtle but

important difference, however. In smoothness proofs one

considers deviations against a fixed strategy profile, while

the prophet inequality problem is inherently temporal and

agents deviate at different points in time. As it turns out,

many smoothness proofs have a built-in charging scheme

(which we refer to as outcome smoothness) that, under the

assumption that critical payments are monotonically increas-

ing, implies prophet inequalities with the same (asymptotic)

approximation guarantee. Both outcome smoothness and

monotonicity are necessary for this result to hold.

Theorem 5 (informal). For general multi-parameter prob-
lems, if the first-price (i.e., pay-your-bid) mechanism based
on declared welfare maximization has a price of anarchy of
O(γ) provable via outcome smoothness, and critical pay-
ments are monotonically increasing, then posting a scaled
version of the critical payments yields a O(γ)-approximate
price-based prophet inequality.

We also provide two “black-box reductions” for binary

single-parameter settings, where price of anarchy guarantees

of O(γ) established by (normal) smoothness imply O(γ2)-
approximate prophet inequalities. See Section V.

Using these results we can, for example, rederive the

classic prophet inequality [1], [2] from the smoothness of

the first-price single-item auction [10] or the matroid prophet

inequality [5] from the smoothness of the pay-your-bid,

declared welfare maximizing mechanism for selecting a

maximum-weight basis [19].

F. Further Related Work

Prophet inequalities and their applicability as posted-price

mechanisms were (re-)discovered in theoretical computer

science by [20]. Subsequently, threshold-based prophet in-

equalities and posted-price mechanisms were developed for

matroids and matroid intersection [4], [5], [21], polymatroids

[22], unit-demand bidders [4], [6], and combinatorial auc-

tions [6], [7].

Not all prophet inequalities in the literature are based on

explicit thresholds. Examples include prophet inequalities

for the generalized assignment problem [23], [24], matroids

and matroid intersection [25], and for general binary feasi-

bility constraints [26]. On the other hand, many posted-price
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Table I
OVERVIEW OF APPLICATIONS. RESULTS ARE COMPUTATIONAL UNLESS OTHERWISE STATED. THE QUERY MODEL REFERS TO THE VALUATION ACCESS

NEEDED FOR THE COMPUTATIONAL UPPER BOUNDS, WHERE “EXPLICIT” INDICATES THAT VALUATIONS CAN BE DESCRIBED EXPLICITLY. ALL

RESULTS ARE ORDER OBLIVIOUS (SEE SECTION II).

Feasibility Constraint Valuation Class Pricing Model Upper Bound Query Model

Combinatorial Auction XOS Static, anonymous item prices 2e
e−1

[7]

2 [this work]

XOS,
Demand

Combinatorial Auction MPH-k Static, anonymous item prices O(k2) [7]
4k − 2 [this work]

MPH,
Demand

Matroid Submodular Dynamic prices 2 (existential)
4 (computational)

Value

Knapsack Additive Static, anonymous prices 3 Explicit

d-Sparse PIPs Additive Static, anonymous prices 8d Explicit

mechanisms from the literature are constructed either with-

out explicit reference to prophet inequalities or via different

techniques. Chawla et al. [12] developed approximately-

optimal (revenue-wise) posted-price mechanisms for unit-

demand buyers. Posted-price mechanisms have subsequently

been developed for a variety of other auction settings [27],

[28], [29], [30]. Dynamic posted prices that give optimal

welfare for unit-demand buyers were established in [31].

Recently, dynamic posted prices for various online settings

have been considered, including k-server on the line and

metrical task systems [32], and makespan minimization for

scheduling problems [33].

Most recently, and in parallel to this work combinato-

rial prophet inequalities were developed in [34] and [35].

The former, amongst others, proves prophet inequalities for

subadditive combinatorial auctions, but considers a different

allocation model and is therefore imcomparable. The latter,

in turn, focuses on revenue and not welfare as we do

here. Finally, [36] and [37] re-consider the classic prophet

inequality setting, but focus on identical distributions or a

large market setting with random or best arrival order.

The notion of smooth games was introduced by Rough-

garden [9] as a tool for bounding the price of anarchy, which

measures the inefficiency that can be incurred in equilibrium.

This notion has been extended to mechanisms by Syrgkanis

and Tardos [10]. Notions of outcome smoothness were

considered in [38], [39].

II. GENERAL MODEL AND NOTATION

Problem Formulation: There is a set N of n agents. For

each agent i ∈ N there is an outcome space Xi containing

a null outcome ∅. We write X = X1 × . . . × Xn for the

joint outcome space. Given outcome profile x ∈ X and a

subset of agents S ⊆ N , we will write xS for the outcome

in which each i ∈ S receives xi and each i �∈ S receives ∅.
Specifically, we will write x[i−1] for allocation x with the

outcomes of agents i, . . . , n set to ∅. There is a subset F ⊆
X of feasible outcomes. We assume that F is downward-

closed, so that if x ∈ F then also xS ∈ F for all S ⊆ N .

A valuation function for agent i is a function vi : Xi →
R≥0. We will assume values are bounded, and without loss

of generality scaled to lie in [0, 1]. Each agent i’s valuation vi
is drawn independently from a publicly known distribution

Di. We write D = D1×· · ·×Dn for the product distribution

over the set V = V1 × · · · × Vn of valuation profiles. We

often suppress dependence on D from our notation when

clear from context. Agent utilities are quasilinear: if agent i
receives outcome xi and makes a payment πi, his utility is

ui = vi(xi)− πi.

The welfare of outcome x is v(x) =
∑

i vi(xi). An

outcome rule ALG maps each valuation profile to a feasible

outcome. ALGi(v) denotes the outcome of agent i on input

v. We will write OPT(v,F) = argmaxx∈F{v(x)} for

the welfare-maximizing outcome rule for F , omitting the

dependence on F when it is clear from context.

Pricing Rules and Mechanisms: A pricing rule is a

profile of functions p = (p1, . . . , pn) that assign prices to

outcomes. We write pi(xi | y) for the (non-negative) price

assigned to outcome xi ∈ Xi, offered to agent i, given

partial allocation y ∈ F . Define pi(xi) = pi(xi | ∅) for

convenience. We require that pi(xi | y) = ∞ for any

xi such that (xi,y−i) �∈ F . A pricing rule is said to be

monotone non-decreasing if pi(xi | y) ≥ pi(xi | yS) for all

i, xi ∈ Xi, y ∈ X , (xi,y−i) ∈ F , and S ⊆ N . In general,

we allow prices to be dynamic and discriminatory. We refer

to prices that do not depend on the partial allocation (apart

from feasibility) as static and to prices that do not depend

on the identity of the agent as anonymous.

A posted-price mechanism is defined by a pricing rule

p and an ordering over the agents. This pricing rule can,

in general, depend on the distributions D. The agents are

approached sequentially. Each agent i is presented the menu

of prices determined by pi, given all previous allocations,

and selects a utility-maximizing outcome. A posted-price

mechanism is order-oblivious if it does not require the

agents to be processed in a specific order. In all of the

applications we consider, the mechanisms we construct are

order-oblivious. It is well-known that every posted-price
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mechanism is truthful [4].
Online Allocations and Prophet Inequalities: We con-

sider stochastic allocation algorithms that can depend on the

value distributions D. That is, an allocation algorithm A
maps a value profile and distribution to a feasible outcome.

We say A is an online allocation algorithm if Ai(v,D)
does not depend on the entries of v that occur after i in

some ordering over the indices. Extending the notion of

competitive ratio from the worst-case analysis of online

algorithms, we’ll say the (stochastic) competitive ratio of

online allocation algorithm A is

max
D

Ev∼D[v(OPT(v))]
Ev∼D[v(A(v,D))] .

We somtimes refer to a competitive ratio using its inverse,

when convenient. A prophet inequality for constraint F is

an upper bound on the stochastic competitive ratio of an

online allocation algorithm for F . We note that a posted-

price mechanism describes a particular form of an online

allocation algorithm.

III. A FRAMEWORK FOR PROPHET INEQUALITIES

In this section we state and prove our main result, which

reduces prophet inequalities to finding balanced prices for

the simpler full information setting. We say that a set of

outcome profiles H ⊆ X is exchange compatible with x ∈
F if for all y ∈ H and all i ∈ N , (yi,x−i) ∈ F . We

call a family of sets (Fx)x∈X exchange compatible if Fx is

exchange compatible with x for all x ∈ X .

Definition 1. Let α > 0, β ≥ 0. Given a set of feasible

outcomes F and a valuation profile v, a pricing rule p
is (α, β)-balanced with respect to an allocation rule ALG,

an exchange-compatible family of sets (Fx)x∈X , and an

indexing of the players i = 1, . . . , n if for all x ∈ F
(a)

∑
i pi(xi | x[i−1]) ≥ 1

α ·
(
v(ALG(v))−v(OPT(v,Fx)

)
,

(b) for all x′ ∈ Fx:∑
i pi(x

′
i | x[i−1]) ≤ β · v(OPT(v,Fx)).

The definition provides flexibility in the precise choice

of Fx. As Fx becomes larger (more permissive), both

inequalities become easier to satisfy since v(OPT(v,Fx))
increases. On the other hand, a larger set Fx means that

the second condition must be satisfied for more outcomes

x′ ∈ Fx. We say that a collection of pricing rules (pv)v∈V
is (α, β)-balanced if there exists a choice of (Fx)x∈X such

that, for each v, the pricing rule pv is balanced with respect

to (Fx)x∈X .

The definition of (α, β)-balancedness captures sufficient

conditions for a posted-price mechanism to guarantee high

welfare when agents have a known valuation profile v. Our

interest in (α, β)-balanced pricing rules comes from the fact

that this result extends to Bayesian settings.

Theorem 6. Suppose that the collection of pricing rules
(pv)v∈V for feasible outcomes F and valuation profiles

v ∈ V is (α, β)-balanced with respect to allocation rule
ALG and indexing of the players i = 1, . . . , n. Then for
δ = α

1+αβ the posted-price mechanism with pricing rule
δp, where pi(xi | y) = Eṽ[p

ṽ
i (xi | y)], generates welfare

at least 1
1+αβ · Ev[v(ALG(v))] when approaching players

in the order they are indexed.

Proof: We denote the exchange-compatible family of

sets with respect to which the collection of pricing rules

(pv)v∈V is balanced by (Fx)x∈X . We will first use Property

(b) to show a lower bound on the utilities of the players, and

Property (a) to show a lower bound on the revenue of the

posted-price mechanism. We will then add these together to

obtain a bound on the social welfare.
We will write x(v) for the allocation returned by the

posted-price mechanism on input valuation profile v and

x′(v,v′) = OPT(v′,Fx(v)) for the welfare-maximizing al-

location with respect to valuation profile v′ under feasibility

constraint Fx(v).

Utility bound: We obtain a lower bound on the expected

utility of a player as follows. We sample valuations v′ ∼ D.

Player i now considers buying OPTi((vi,v
′
−i),Fx(v′i,v−i))

at price δ·pi(OPTi((vi,v
′
−i),Fx(v′i,v−i)) | x[i−1](v)). Tak-

ing expectations and exploiting that x[i−1](v) does not

depend on vi we obtain

E
v
[ui(v)] ≥ E

v,v′

[
vi

(
OPTi((vi,v

′
−i),Fx(v′i,v−i))

)−
δpi

(
OPTi((vi,v

′
−i),Fx(v′i,v−i))

∣∣∣x[i−1](v)
)]

= E
v,v′

[
v′i
(
x′i(v,v

′)
)
− δpi

(
x′i(v,v

′)
∣∣∣x[i−1](v)

)]
.

Summing the previous inequality over all agents we get

E
v

[∑
i∈N

ui(v)

]
≥ E

v,v′

[∑
i∈N

v′i
(
x′i(v,v

′)
)]
−

E
v,v′

[∑
i∈N

δ · pi
(
x′i(v,v

′)
∣∣∣∣ x[i−1](v)

)]

= E
v,v′

[
v′
(
OPT(v′,Fx(v))

)]
−

E
v,v′

[∑
i∈N

δ · pi
(
x′i(v,v

′)
∣∣∣∣ x[i−1](v)

)]
.

(1)

We can upper bound the last term in the previous inequality

by using Property (b). This gives∑
i∈N

δpi

(
x′i(v,v

′)
∣∣∣ x[i−1](v)

)
≤ δβ·E

ṽ

[
ṽ
(
OPT(ṽ,Fx(v))

)]
pointwise for any v and v′, and therefore also

E
v,v′

[∑
i∈N

δ · pi
(
x′i(v,v

′)
∣∣∣ x[i−1](v)

)]

≤ δβ · E
v,ṽ

[
ṽ
(
OPT(ṽ,Fx(v))

)]
. (2)
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Replacing v′ with ṽ in Inequality (1) and combining it with

Inequality (2) we obtain

E
v

[∑
i∈N

ui(v)

]
≥ (1− δβ) · E

v,ṽ

[
ṽ
(
OPT(ṽ,Fx(v))

)]
.

(3)

Revenue bound: The second step is a lower bound on the

revenue achieved by the posted-price mechanism. Applying

Property (a) we obtain∑
i∈N

δ · pi(xi(v) | x[i−1](v))

= δ ·
∑
i∈N

E
ṽ

[
pṽi (xi(v) | x[i−1](v))

]

≥ δ

α
· E
ṽ

[
ṽ(ALG(ṽ))− ṽ(OPT(ṽ,Fx(v)))

]
.

Taking expectation over v this shows

E
v

[∑
i∈N

δ · pi(xi(v) | x[i−1](v))
]

≥ δ

α
· E
ṽ
[ṽ(ALG(ṽ))]− δ

α
· E
ṽ,v

[
ṽ(OPT(ṽ,Fx(v)))

]
.

(4)

Combination: It remains to show how the two bounds can

be combined so that they imply the approximation guarantee.

By quasi-linearity we can rewrite the expected social welfare

that is achieved by the posted-price mechanism as the sum

of the expected utilities plus the expected revenue. Using

δ = α/(1 + αβ) and Inequalities (3) and (4), this gives

E
v

[∑
i∈N

vi(xi(v))
]

≥ E
v

[∑
i∈N

ui(v)

]
+ E

v

[∑
i∈N

δ · pi
(
xi(v) | x[i−1](v)

)]

≥ (1− δβ) · E
v,ṽ

[
ṽ(OPT(ṽ,Fx(v)))

]
+

δ

α
· E
ṽ
[ṽ(ALG(ṽ))]− δ

α
E
ṽ,v

[
ṽ(OPT(ṽ,Fx(v)))

]
=

1

1 + αβ
· E
ṽ
[ṽ(ALG(ṽ)] .

In what follows, we provide an alternative definition of

balancedness, in which Property (b) is refined. This defini-

tion will be useful for some applications, as exemplified in

Section IV.

Definition 2. Let α > 0, β1, β2 ≥ 0. Given a set of feasible

outcomes F and a valuation profile v, a pricing rule p is

weakly (α, β1, β2)-balanced with respect to allocation rule

ALG, an exchange-compatible family of sets (Fx)x∈X , and

an indexing of the players i = 1, . . . , n if for all x ∈ F
(a)

∑
i pi(xi | x[i−1]) ≥ 1

α ·
(
v(ALG(v))−v(OPT(v,Fx)

)
,

(b) for all x′ ∈ Fx:
∑

i pi(x
′
i | x[i−1]) ≤ β1 ·

v(OPT(v,Fx)) + β2 · v(ALG(v)).

The following theorem specifies the refined bound on

the welfare that is obtained by weakly (α, β1, β2)-balanced

pricing rules. Its proof appears in the full version.

Theorem 7. Suppose that the collection of pricing rules
(pv)v∈V for feasible outcomes F and valuation profiles
v ∈ V is weakly (α, β1, β2)-balanced with respect to
allocation ALG and indexing of the players i = 1, . . . , n
with β1 + β2 ≥ 1

α . Then for δ = 1
β1+max{2β2,1/α}

the posted-price mechanism with pricing rule δp, where
pi(xi | y) = Eṽ[p

ṽ
i (xi | y)], generates welfare at least

1
α(2β1+4β2)

· Ev[v(ALG(v))] when approaching players in
the order they are indexed.

IV. NEW AND IMPROVED PROPHET INEQUALITIES

We have already argued that our framework unifies and

simplifies many of the existing prophet inequality proofs.

In this section we show how it can be used to derive

new and improved bounds on the approximation ratio that

can be obtained via price-based prophet inequalities. We

highlight two results: the new poly-time O(d)-approximation

for combinatorial auctions with bundle size at most d,

and the new poly-time constant-approximation for knapsack

problems. Additional results are provided in the full version,

and include combinatorial auctions with MPH-k valuations,

d-sparse packing integer programs, and multi-dimensional

matroids (where the result follows from the Rota exchange

theorem [40, Lemma 2.7] and our composition results).

Combinatorial Auctions with Bounded Bundle Size: An

existential O(d)-approximate price-based prophet inequality

is presented in Section I-A. Combined with the O(d)-
approximation greedy algorithm for this setting, it gives a

poly-time O(d2)-approximate price-based prophet inequality

(as shown in [7]). In what follows we use the flexibility

of our framework to work directly with a relaxation of the

allocation problem, thereby improving the approximation of

the prophet inequality from O(d2) to O(d). This is a special

case of Theorem 1, which is proved in the full version.

Theorem 8. For combinatorial auctions where every agent
can get at most d items, there exist weakly (1, 1, d − 1)-
balanced item prices that are static, anonymous, and order
oblivious. Moreover, a (4d−2−ε)-approximate posted-price
mechanism can be computed in POLY(n,m, 1/ε) demand
queries, where ε is an additive error due to sampling.

Proof: Consider the canonical fractional relaxation of

the combinatorial auction problem: a feasible allocation is

described by values xi,S ∈ [0, 1] for all i ∈ N and S ⊆ M
such that

∑
S xi,S ≤ 1 for all i and

∑
i,S	j xi,S ≤ 1 for

all j ∈ M . Take F to be all such fractional allocations,

and Fx to be the set of fractional allocations y such that∑
i,S	j(xi,S + yi,S) ≤ 1 for all j ∈ M , and

∑
S yi,S ≤ 1

for all i. As usual, we think of Fx as the set of allocations

that remain feasible given a partial allocation x.
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Consider the following pricing rule for fractional allo-

cations. Given valuation profile v, let x∗ be the welfare-

maximizing fractional allocation. Then for each item j, set

pj =
∑

i

∑
S	j x

∗
i,Svi(S). We claim that these prices are

(1, 1, d− 1)-balanced with respect to the optimal allocation

rule.

For Property (a), fix some x ∈ F . Write xj =∑
i,S	j xi,S . Consider the following allocation y ∈ Fx:

for each S, choose jS ∈ argmaxj∈S{xj}. Set yi,S =
(1 − xjS ) · x∗i,S . We think of y as the optimal allocation

x∗ adjusted downward to lie in Fx. We then have that

v(x∗)− v(y) =
∑
i

∑
S

xjS · x∗i,S · vi(S)

=
∑
j

xj
∑

i,S : j=jS

x∗i,S · vi(S)

≤
∑
j

xj · pj =
∑
i

pi(xi).

Property (a) follows since v(y) ≤ v(OPT(v,Fx)). For

Property (b), fix x ∈ F and x′ ∈ Fx. Then∑
i

pi(x
′
i) ≤

∑
j

(1− xj)pj

=
∑
j

(1− xj)
∑
i,S	j

x∗i,S · vi(S)

=
∑
i,S

x∗i,S · vi(S)
∑
j∈S

(1− xj)

=
∑
i,S

(|S| − 1)x∗i,S · vi(S)+

∑
i,S

x∗i,S · vi(S) ·
(
1−

∑
j∈S

xj

)
.

The first expression on the right-hand side is at most

(d− 1)v(OPT(v)), since |S| ≤ d whenever x∗i,S > 0. For

the second expression, note that it is at most the welfare of

the allocation y defined by yi,S = x∗i,S · (1 −
∑

j∈S xj)+.

Moreover, this allocation y is in Fx. So the second expres-

sion is at most v(OPT(v,Fx)), giving Property (b).

Theorem 7 therefore yields prices that guarantee a (4d−2)
approximation for the fractional allocation problem, and

an ε-approximation to those prices can be computed via

sampling. To complete the proof, note that for every agent i,
if all previous agents have selected integral outcomes, then

agent i also has a utility-maximizing outcome that is integral.

This is because any fractional allocation can be interpreted

as a convex combination of integral allocations. These same

prices therefore guarantee a (4d−2−ε) approximation even

if the mechanism prohibits non-integral allocations from

being purchased.

The more general Theorem 1 also improves the best-

known poly-time prophet inequality for XOS valuations

from 2e/(e − 1) to 2 (which is tight [7]) and for MPH-

k valuations it improves the best known poly-time bounds

from O(k2) to O(k).
Knapsack: In the knapsack allocation problem, there

is a single divisible unit of resource and each agent has

a private value vi ≥ 0 for receiving at least si ≥ 0 units.

Assume for now that si ≤ 1/2 for all i. We allow both vi and

si to be private information, drawn from a joint distribution.

In our notation: Xi = [0, 1
2 ], F = {x | ∑i xi ≤ 1}, and

vi(xi) = vi if xi ≥ si and vi(xi) = 0 otherwise. Based

on an arbitrary allocation algorithm ALG, we design anony-

mous, static prices by setting pi(xi | y) = xi · v(ALG(v))
if xi can feasibly be added and ∞ otherwise. The following

restates the second half of Theorem 2.

Theorem 9. For the knapsack allocation problem in which
no single agent can request more than half of the total
capacity, the prices above are (1, 2)-balanced with respect to
ALG. This implies a (3 + ε)-approximate poly-time posted-
price mechanism with a single static anonymous per-unit
price.

Proof: The poly-time claim follows from Theorem 6

with ALG set to the classic FPTAS for knapsack [41], so it

suffices to prove balancedness. For any x ∈ F , let Fx = F
if

∑
i xi < 1

2 , and Fx = ∅ otherwise. Note that Fx is

exchange compatible with x since, for any x′ ∈ Fx and any

agent k, x′k +
∑

i xi ≤ 1. To establish balancedness with

respect to (Fx)x, we consider two cases based on the value

of
∑

i xi.

Case 1:
∑

i xi < 1
2 . Property (a) is trivially fulfilled

because v(ALG(v)) − v(OPT(v,Fx)) ≤ v(OPT(v)) −
v(OPT(v,Fx)) = 0. For Property (b), note that for any

x′ ∈ Fx, we have∑
i

pi(x
′
i | x[i−1]) =

∑
i

x′i · v(ALG(v)) ≤ v(ALG(v))

≤ v(OPT(v)) = v(OPT(v,Fx)).

Case 2:
∑

i xi ≥ 1
2 . Property (b) is vacuous since Fx = ∅.

For Property (a), we have∑
i

pi(xi | x[i−1]) =
∑
i

xi · v(ALG(v)) ≥ 1

2
v(ALG(v))

=
1

2
(v(ALG(v))− v(OPT(v,Fx))).

We can remove the restriction that si ≤ 1/2 as fol-

lows, completing the proof of Theorem 2. Consider the

contribution to the expected optimal welfare separated into

welfare from agents with si ≤ 1/2, and agents with

si > 1/2. The posted-price mechanism described above

obtains a 3-approximation to the former. For the latter, a

mechanism that treats the unit of resource as indivisible,

and posts the best take-it-or-leave-it price for the entire unit,

is a 2-approximation. This is because at most one agent

with si > 1/2 can win in any realization. Thus, for any
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distribution profile, one of these two mechanisms must be

a 5-approximation to the unrestricted knapsack problem.8

One can therefore obtain a (5 + ε)-approximate price-based

prophet inequality by estimating the expected welfare of

each pricing scheme (via sampling) and selecting the better

of the two. In the full version we show how to generalize the

result for the knapsack problem to d-sparse packing integer

programs.

Finally, consider the fractional version of the knapsack

problem, where agents obtain partial value for receiv-

ing a portion of their desired allocation: vi(xi) = vi ·
min{xi/si, 1}. If we restrict allocations xi to be multiples

of some δ > 0, this is a special case of a submodular

combinatorial auction with 
1/δ� identical items. Since

Theorem 1 implies that a fixed per-item price yields a 2-

approximation for any δ, we can infer by taking the limit as

δ → 0 that for any ε > 0 there is a (2+ε)-approximate poly-

time posted-price mechanism for the fractional knapsack

problem, with a single static anonymous per-unit price, even

if each agent’s size si is private and arbitrarily correlated

with their value. As mentioned in Section I-D, this improves

the previously best-known prophet inequality of ≈ 11.657
due to [18].

V. FROM PRICE OF ANARCHY TO PROPHET

INEQUALITIES

In this section we explore the connection between bal-

anced prices and mechanism smoothness. While generally

smoothness does not suffice to conclude the existence of a

posted-price mechanism with comparable welfare guarantee

(see the full version), we will show that this is the case

for typical smoothness proofs and present pretty general

reductions from the problem of proving prophet inequalities

to mechanism smoothness.

We first recall the definition of a smooth mechanism. A

(possibly indirect) mechanismMπ for an allocation problem

π is defined by a bid space B = B1×· · ·×Bn, an allocation

rule f : B → F , and a payment rule P : B → R
n
≥0. We

focus on first-price mechanisms, where Pi(b) = bi(f(b)).
Typically, mechanisms are defined for a collection of prob-

lems Π, in which case we will simply refer to the mechanism

as M.

Definition 3 (Syrgkanis and Tardos [10]). Mechanism Mπ

is (λ, μ)-smooth for λ, μ ≥ 0 if for any valuation profile v ∈
V and any bid profile b ∈ B there exists a bid b′i(v, bi) ∈ Bi

for each player i ∈ N such that∑
i∈N

ui(b
′
i,b-i) ≥ λ · v(OPT(v))− μ ·

∑
i∈N

Pi(b).

8The worst case is when both mechanisms achieve the same expected
welfare, which occurs if 3/5 of the expected welfare is due to agents with
si ≤ 1/2. The expected welfare of each mechanism is then 1

3
· 3
5
= 1

5
of

the optimum.

A mechanism M that is (λ, μ)-smooth has a price of an-

archy (with respect to correlated and Bayes-Nash equilibria)

of at most max{μ, 1}/λ [10].

The following formal notion of a residual market will

be useful for our further analysis. For any x ∈ F we

define the contraction of F by x, F/x, as follows. Let

N+(x) = {i ∈ N | xi �= ∅}. Then F/x = {z =
(zj)j∈N\N+(x) | (z,xN+(x)) ∈ F}. That is, F/x contains

allocations to players who were allocated nothing in x, that

remain feasible when combined with the allocations in x.

We think of the contraction by x as a subinstance on players

N \N+(x) with feasibility constraint F/x, and refer to it

as the subinstance induced by x. We say that a collection of

problems Π is subinstance closed if for every π ∈ Π with

feasible allocations F and every x ∈ F the subinstance

induced by x is contained in Π. The contraction by x also

naturally leads to an exchange feasible set Fx by padding

the allocations z ∈ F/x with null outcomes. We refer to

this Fx as the canonical exchange-feasible set.

A. Warm-up: Binary, Single-Parameter Problems with
Monotone Prices

We begin with a simple result that serves to illustrate

the connection between balancedness and smoothness. We

will show that if a binary, single-parameter problem has the

property that the welfare-maximizing mechanism is (λ, μ)-
smooth and its critical prices τi( · | y) are non-decreasing in

y,9 then there exists a pricing rule that is (α, β)-balanced,

where αβ = O(max{μ, 1}/λ). In particular, this implies

that the welfare guarantee due to Theorem 6 is within a

constant factor of the price of anarchy of the mechanism

implied by smoothness.

Theorem 10. Consider a subinstance-closed collection
of binary, single-parameter problems such that the first-
price mechanism based on the welfare maximizing allo-
cation rule OPT is (λ, μ)-smooth. If the critical prices
τi( · | y) are non-decreasing in y then setting pi(1 | y) =
max{vi, τi(v-i | y)} and pi(0 | y) = 0 is (1, μ+1+λ

λ )-
balanced with respect to OPT and the canonical exchange-
feasible sets (Fx)x∈X .

Proof: Fix any y and x ∈ Fy. Observe that by

definition of the prices, it holds that

pi(xi | y) ≥ v(OPT(v,F(∅,y−i)))−v(OPT(v,F(xi,y−i))).
(5)

To see this, first note that both sides of the inequality are

equal to 0 if xi = 0. If xi = 1 and vi ≥ τi(v-i | y), then

agent i is allocated in OPT(v,F(∅,y−i)) and hence both

sides of the inequality are equal to vi. If xi = 1 and vi <
τi(v-i | y), then agent i is not allocated in OPT(v,F(∅,y−i)),

9The critical price τi(v-i | y) is the infimum of values vi such that
the mechanism allocates 1 to agent i on input (vi,v-i), in the problem
subinstance induced by y.
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and hence the right-hand side of the inequality is at most

the externality imposed by forcing an allocation to agent i,
which is at most τi(v-i | y) = pi(xi | y).

We are now ready to prove balancedness. To verify

Condition (a), choose x ∈ F and note that

n∑
i=1

pi(xi | x[i−1])

≥
n∑

i=1

(
v(OPT(v,Fx[i−1]

))− v(OPT(v,Fx[i]
))
)

= v(OPT(v))− v(OPT(v,Fx))

as required, where the inequality follows from Equation (5),

and the equality follows by a telescoping sum. For Condition

(b), we get∑
i∈x′

τi(v-i | x[i−1]) ≤
∑
i∈x′

τi(v-i | x)

≤ μ+ 1

λ
v(OPT(v,Fx)), (6)

where the first inequality follows by the monotonicity of

critical prices, and the second inequality follows by a

known implication of smoothness [42] (see the full version).

Therefore, for any x′ ∈ Fx,∑
i

pi(x
′
i | x[i−1]) ≤

∑
i∈x′

vi +
∑
i∈x′

τi(v-i | x[i−1])

≤ v(x′) +
μ+ 1

λ
v(OPT(v,Fx))

≤ μ+ 1 + λ

λ
v(OPT(v,Fx)),

where the first inequality follows by replacing the maximum

in the definition of the prices by a sum, the second inequality

follows by Equation (6), and the last inequality follows by

v(x′) ≤ v(OPT(v,Fx)), since x′ ∈ Fx.

B. General Problems and Outcome Smoothness

We proceed to show an implication from smoothness to

prices that works in more general settings. It is based on

the observation that many smoothness proofs proceed by

showing that agent i could bid b′i to get some target outcome

x∗i . We capture proofs that proceed in this manner through

the following notion of outcome smoothness. Similar but

different notions were considered in [38], [39].

Definition 4. A mechanism is (λ, μ)-outcome smooth for

λ, μ ≥ 0 if for all valuation profiles v ∈ V there exists an

outcome x′(v) ∈ F such that for all bid profiles b ∈ B,∑
i∈N

(
vi(x

′
i)− inf

b′i: fi(b
′
i,b-i)�x′i

Pi(b
′
i,b-i)

)

≥ λ · v(OPT(v))− μ ·
∑
i∈N

Pi(b).

We show that if a first-price, declared welfare maximizing

mechanism (i.e., a mechanism with allocation rule f(b) =

OPT(b)) is (λ, μ)-outcome smooth and has non-decreasing

critical prices, then the critical prices for that mechanism

(from the definition of outcome smoothness) can be used

as posted prices that yield an O(λ/μ) approximation to the

optimal welfare. Recall that these critical prices are different

from the first-price payments that make up the mechanism’s

payment rule. This result has a mild technical caveat: we

require that the mechanism continues to be smooth in a

modified problem with multiple copies of each bidders. An

allocation is feasible in the modified feasibility space F ′ if

it corresponds to a feasible allocation x ∈ F , with each xi

being partitioned between the copies of agent i.

Theorem 11. Fix valuation space V and feasibility space
F , and suppose F ′ is an extension of F as defined above.
Suppose that the first-price mechanism based on the declared
welfare maximizing allocation rule for valuation space V
and feasibility space F ′ has non-decreasing critical prices,
and is (λ, μ)-outcome smooth for every F ′/z. Then there
is a collection of exchange-feasible sets (Fx)x∈X , and an
allocation rule ALG that returns the welfare-maximization
allocation with probability λ, such that for every v ∈ V
there exists a pricing rule that is (λ, μ/λ)-balanced with
respect to ALG and (Fx)x∈X .

Theorem 11 implies that posting (an appropriately scaled

version of) the critical prices from the outcome smooth

mechanism yields a welfare approximation of O(λ/μ),
matching the price of anarchy guarantee of the original

mechanism. The proof of Theorem 11 appears in the full

version.

C. Binary, Single-Parameter Problems

We conclude with two general “black-box reductions” for

binary single-parameter settings, in which agents can either

win or lose, which show how to translate price of anarchy

guarantees of O(γ) provable via (regular) smoothness into

O(γ2)-approximate posted-price mechanisms. The key to

both these results is a novel, purely combinatorial impli-

cation of smoothness for the greedy allocation rule. Proofs

appear in the full version.

Theorem 12. Suppose that the first-price mechanism based
on the greedy allocation rule GRD has a price of anarchy
of O(γ) provable via smoothness, then there exists a O(γ2)-
approximate price-based prophet inequality.

Theorem 13. Suppose that the first-price mechanism based
on the declared welfare maximizing allocation rule OPT
has a price of anarchy of O(γ) provable via smoothness,
then there exists a O(γ2)-approximate price-based prophet
inequality.

We note that Theorem 10 applied to matroids (using

known smoothness results for pay-your-bid greedy mecha-

nisms over matroids [19]) implies the existence of (1, 3)-
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balanced prices and hence a 4-approximate prophet in-

equality. A strengthening of Theorem 13 for monotonically

increasing critical prices (discussed in the full version) leads

to an improved factor of 2, matching the prophet inequality

for matroids shown in [5]. This also captures the classic

single-item prophet inequality, as a special case.

VI. CONCLUSIONS AND OPEN PROBLEMS

We introduced a general framework for establishing

prophet inequalities and posted price mechanisms for multi-

dimensional settings. This work leaves many questions open.

A general class of questions is to determine the best ap-

proximation guarantee that a prophet inequality can achieve

for a particular setting. For example, even for the intersection

of two matroids there is a gap between the trivial lower

bound of 2 and the upper bound of 4k − 2 = 6. Similarly,

in subadditive combinatorial auctions, the best-known upper

bound is logarithmic in the number of items m [7], but again

the best-known lower bound is 2, inherited from the case of

a single item. Notably, the price of anarchy for simultaneous

single-item auctions is known to be constant for subadditive

valuations [43], but the proof does not use the smoothness

framework and hence our results relating posted prices to

smooth mechanisms do not directly apply.

A related question is whether there exist prophet in-

equalities that cannot be implemented using posted prices.

Interestingly, we are not aware of any separation between the

two so far. More generally, one could ask about the power of

anonymous versus personalized prices, item versus bundle

prices, static versus dynamic prices, and so on. For example,

to what extent can static prices approximate the welfare

under a matroid constraint, an intersection of matroids, or

an arbitrary downward-closed feasibility constraint?

Regarding the pricing framework itself, it would be in-

teresting to extend the notion of (α, β)-balancedness to

allow randomization in a dynamic pricing rule, and to

understand the additional power of randomization. One

could also generalize beyond feasibility constraints to more

general seller-side costs for allocations. For the connection

between smoothness and balancedness, we leave open the

question of removing the price-monotonicity condition from

Theorem 11, or whether the approximation factors can be

improved for our single-parameter reductions (Theorems 12

and 13). Finally, recent work has shown that smoothness

guarantees often improve as markets grow large [44]; is there

a corresponding result for balancedness?
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