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Abstract—We consider the following basic problem: given
an n-variate degree-d homogeneous polynomial f with real
coefficients, compute a unit vector x in Rˆn that maximizes
abs(f(x)). Besides its fundamental nature, this problem arises
in diverse contexts ranging from tensor and operator norms to
graph expansion to quantum information theory. The homo-
geneous degree-2 case is efficiently solvable as it corresponds
to computing the spectral norm of an associated matrix, but
the higher degree case is NP-hard.

We give approximation algorithms for this problem that
offer a trade-off between the approximation ratio and running
time: in nˆO(q) time, we get an approximation within factor
(O(n) / q)ˆ(d/2-1) for arbitrary polynomials, (O(n) / q)ˆ(d/4-1/2)
for polynomials with non-negative coefficients, and (m / q)ˆ(1/2)
for sparse polynomials with m monomials. The approximation
guarantees are with respect to the optimum of the level-q
sum-of-squares (SoS) SDP relaxation of the problem (though
our algorithms do not rely on actually solving the SDP).
Known polynomial time algorithms for this problem rely on
“decoupling lemmas.” Such tools are not capable of offering
a trade-off like our results as they blow up the number
of variables by a factor equal to the degree. We develop
new decoupling tools that are more efficient in the number
of variables at the expense of less structure in the output
polynomials. This enables us to harness the benefits of higher
level SoS relaxations. Our decoupling methods also work with
“folded polynomials,” which are polynomials with polynomials
as coefficients. This allows us to exploit easy substructures
(such as quadratics) by considering them as coefficients in our
algorithms.

We complement our algorithmic results with some polyno-
mially large integrality gaps for d-levels of the SoS relaxation.
For general polynomials this follows from known results for
random polynomials, which yield a gap of Omega(n)ˆ(d/4-1/2).
For polynomials with non-negative coefficients, we prove an
Omega(nˆ(1/6) / polylogs) gap for the degree-4 case, based on
a novel distribution of 4-uniform hypergraphs. We establish
an nˆOmega(d) gap for general degree-d, albeit for a slightly
weaker (but still very natural) relaxation. Toward this, we give
a method to lift a level-4 solution matrix M to a higher level
solution, under a mild technical condition on M.

From a structural perspective, our work yields worst-case
convergence results on the performance of the sum-of-squares

hierarchy for polynomial optimization. Despite the popularity
of SoS in this context, such results were previously only known
for the case of q = Omega(n).

I. INTRODUCTION

We study the problem of optimizing homogeneous poly-

nomials over the unit sphere. Formally, given an n-variate

degree-d homogeneous polynomial f , the goal is to compute

‖f‖2 := sup
‖x‖=1

|f(x)| (I.1)

When f is a homogeneous polynomial of degree 2, this

problem is equivalent computing the spectral norm of an

associated symmetric matrix Mf . For higher degree d, it

defines a natural higher-order analogue of the eigenvalue

problem for matrices. The problem also provides an impor-

tant testing ground for the development of new spectral and

semidefinite programming (SDP) techniques, and techniques

developed in the context of this problem have had applica-

tions to various other constrained settings [1], [2], [3].

Besides being a natural and fundamental problem in its

own right, it has connections to widely studied questions in

many other areas. In quantum information theory [4], [5],

the problem of computing the optimal success probability of

a protocol for Quantum Merlin-Arthur games can be thought

of as optimizing certain classes of polynomials over the unit

sphere. The problem of estimating the 2 → 4 norm of an

operator, which is equivalent to optimizing certain homo-

geneous degree-4 polynomials over the sphere, is known to

be closely related to the Small Set Expansion Hypothesis

(SSEH) and the Unique Games Conjecture (UGC) [6], [5].

The polynomial optimization problem is also very relevant

for natural extensions of spectral problems, such as low-rank

decomposition and PCA, to the case of tensors [7], [8], [9],

[10]. Frieze and Kannan [11] (see also [12]) also established

a connection between the problem of approximating the

spectral norm of a tensor (or equivalently, computing ‖f‖2

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.97

1008



for a polynomial f ), and finding planted cliques in random

graphs.
The problem of polynomial optimization has been studied

1 over various compact sets [3], [14], and is natural to

ask how well polynomial time algorithms can approximate
the optimum value over a given compact set (see [14] for

a survey). While the maximum of a degree-d polynomial

over the simplex admits a PTAS for every fixed d [15],

the problem of optimizing even a degree 3 polynomial over

the hypercube does not admit any approximation better than

2(logn)1−ε

(for arbitrary ε > 0) assuming NP cannot be

solved in time 2(logn)O(1)

[16].
The approximability of polynomial optimization on the

sphere is poorly understood in comparison. It is known that

the maximum of a degree-d polynomial can be approximated

within a factor of nd/2−1 in polynomial time [1], [17].

On the hardness side, Nesterov [18] gave a reduction from

Maximum Independent Set to optimizing a homogeneous

cubic polynomial over S
n−1. Formally, given a graph G,

there exists a homogeneous cubic polynomial f(G) such

that
√
1− 1

α(G) = max‖x‖=1 f(x). Combined with the

hardness of Maximum Independent Set [19], this rules out

an FPTAS for optimization over the unit sphere. Assuming

the Exponential Time Hypothesis, Barak et al. [6] proved

that computing 2 → 4 norm of a matrix, a special case

when f is a degree-4 homogeneous polynomial, is hard to

approximate within a factor exp(log1/2−ε(n)) for any ε > 0.
Optimization over S

n−1 has been given much attention

in the optimization community, where for a fixed num-

ber of variables n and degree d of the polynomial, it is

known that the estimates produced by q levels a certain

hierarchy of SDPs (Sum of Squares) get arbitrarily close

to the true optimal solution as q increases (see [3] for

various applications). We refer the reader to the recent work

of Doherty and Wehner [20] and de Klerk, Laurent, and

Sun [21] and references therein for more information on

convergence results. These algorithms run in time nO(q),

which is polynomial for constant q. Unfortunately, known

convergence results often give a non-trivial bound only when

the q is linear in n.
In computer science, much attention has been given to

the sub-exponential runtime regime (i.e. q � n) since

many of the target applications such as SSE, QMA and

refuting random CSPs are of considerable interest in this

regime. In addition to the polytime nd/2−1-approximation

for general polynomials [1], [17], approximation guarantees

have been proved for several special cases including 2→ q
norms [6], polynomials with non-negative coefficients [5],

some polynomials that arise in quantum information the-

ory [22], [4], and random polynomials [23], [24]. Hence

1In certain cases, the problem studied is not to maximize |f |, but just
f(x). While the two problems are equivalent for homogeneous polynomials
of odd degree, some subtle issues arise when considering polynomials of
even degree. We compare the two notions in the full version [13].

there is considerable interest in tightly characterizing the

approximation guarantee achievable using sub-exponential

time.
In this paper, we develop general techniques to design

and analyze algorithms for polynomial optimization over

the sphere. The sphere constraint is one of the simplest

constraints for polynomial optimization and thus is a good

testbed for techniques. Indeed, we believe these techniques

will also be useful in understanding polynomial optimization

for other constrained settings.
In addition to giving an analysis the problem for arbi-

trary polynomials, these techniques can also be adapted to

take advantage of the structure of the input polynomial,

yielding better approximations for several special cases

such as polynomials with non-negative coefficients, and

sparse polynomials. Previous polynomial time algorithms for

polynomial optimization work by reducing the problem to

diameter estimation in convex bodies [17] and seem unable

to utilize structural information about the (class of) input

polynomials. Development of a method which can use such

information was stated as an open problem by Khot and

Naor [25] (in the context of �∞ optimization).
Our approximation guarantees are with respect to the

optimum of the well-studied Lasserre/sum-of-squares (SoS)

semidefinite programming relaxation. Such SDPs are the

most natural tool to bound the optima of polynomial opti-

mization problems, and our results shed light on the efficacy

of higher levels of the SoS hierarchy to deliver better approx-

imations to the optimum. We discuss the SoS connection

in Section I-B, but first turn to stating our approximation

guarantees.

A. Our Algorithmic Results
For a homogeneous polynomial h of even degree q, a

matrix Mh ∈ IR[n]q/2×[n]q/2 is called a matrix representation

of h if (x⊗q/2)T ·Mh · x⊗q/2 = h(x) ∀x ∈ R
n. Next we

define the quantity,

Λ(h) := inf

{
sup
‖z‖2=1

zTMh z

∣∣∣∣∣ M is a representation of h

}
.

(I.2)

Let hmax denote sup‖x‖=1 h(x). Clearly, hmax ≤ Λ(h),
i.e. Λ(h) is a relaxation of hmax. However, this does not

imply that Λ(h) is a relaxation of ‖h‖2, since it can be

the case that hmax �= ‖h‖2. To remedy this, one can

instead consider
√
Λ(h2) which is a relaxation of ‖h‖2,

since (h2)max =
∥∥h2

∥∥
2
. More generally, for a degree-d

homogeneous polynomial f and an integer q divisible by

2d, we have the upper estimate

‖f‖2 ≤ Λ
(
fq/d

)d/q

The following result shows that Λ
(
fq/d

)d/q
approximates

‖f‖2 within polynomial factors, and also gives an algo-

rithm to approximate ‖f‖2 with respect to the upper bound
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Λ
(
fq/d

)d/q
. In the statements below and the rest of this

section, Od(·) and Ωd(·) notations hide 2O(d) factors. Our

algorithmic results are as follows:

Theorem I.1. Let f be an n-variate homogeneous polyno-
mial of degree-d, and let q ≤ n be an integer divisible by
2d. Then,

Arbitrary f :(
Λ
(
fq/d

))d/q

≤ Od

(
(n/q)

d/2−1
)
· ‖f‖2

f with Non-neg. Coefficients:(
ΛC

(
fq/d

))d/q

≤ Od

(
(n/q)

d/4−1/2
)
· ‖f‖2

f with Sparsity m:(
Λ
(
fq/d

))d/q

≤ Od

(√
m/q

)
· ‖f‖2 .

(where ΛC(·) is a a related efficiently computable quantity)
Furthermore, there is a deterministic algorithm that runs

in nO(q) time and returns x such that

|f(x)| ≥ Λ
(
fq/d

)d/q
Od(c(n, d, q))

where c(n, d, q) is (n/q)d/2−1, (n/q)d/4−1/2 and
√
m/q

respectively, for each of the above cases (the inequality
uses ΛC(·) in the case of polynomials with non-negative
coefficients).

Remark I.2. Interestingly, our deterministic algorithms
only involve computing the maximum eigenvectors of nO(q)

different matrices in IRn×n, and actually don’t require
computing Λ

(
fq/d

)d/q
(even though this quantity can also

be computed in nO(q) time by the sum-of-squares SDP; see
Section I-B). The quantity Λ

(
fq/d

)d/q
is only used in the

analysis.

Remark I.3. If m = n ρ·d for ρ < 1/3, then for all
q ≤ n1−ρ, the

√
m/q-approximation for sparse polynomials

is better than the (n/q)d/2−1 arbitrary polynomial approx-
imation.

Remark I.4. In cases where ‖f‖2 = fmax (such as when d
is odd or f has non-negative coefficients), the above result
holds whenever q is even and divisible by d, instead of 2d.

A key technical ingredient en route establishing the above

results is a method to reduce the problem for arbitrary

polynomials to a list of multilinear polynomial problems

(over the same variable set). We believe this to be of

independent interest, and describe its context and abstract

its consequence (Theorem I.5) next.

Let Mg be a matrix representation of a degree-q homo-

geneous polynomial g, and let K = (I, J) ∈ [n]q/2× [n]q/2

have all distinct elements. Observe that there are q! distinct

entries of Mg including K across which, one can arbitrarily

assign values and maintain the property of representing g,

as long as the sum across all q! entries remains the same

(specifically, this is the set of all permutations of K). In

general for K ′ = (I ′, J ′) ∈ [n]q/2 × [n]q/2, we define the

orbit of K ′ denoted by O(K ′), as the set of permutations

of K ′, i.e. the number of entries to which ’mass’ from

Mg[I
′, J ′] can be moved while still representing g.

As q increases, the orbit sizes of the entries increase,

and to show better bounds on Λ
(
fq/d

)
, one must ex-

ploit these additional ”degrees of freedom” in representa-

tions of fq/d. However, a big obstacle is that the orbit

sizes of different entries can range anywhere from 1 to

q!, two extremal examples being ((1, . . . 1), (1, . . . 1)) and

((1, . . . q/2), (q/2 + 1, . . . q)). This makes it hard to exploit

the additional freedom afforded by growing q. Observe that

if g were multilinear, all matrix entries corresponding to

non-zero coefficients have a span of q! and indeed it turns

out to be easier to analyze the approximation factor in the

multilinear case as a function of q since the representations

of g can be highly symmetrized. However, we are still

faced with the problem of fq/d being highly non-multilinear.

The natural symmetrization strategies that work well for

multilinear polynomials fail on general polynomials, which

motivates the following result:

Theorem I.5 (Informal). For even q, let g(x) be a degree-
q homogeneous polynomial. Then there exist multilinear
polynomials g1(x), . . . , gm(x) of degree at most q, such that

Λ(g)

‖g‖2
≤ 2O(q) · max

i∈[m]

Λ(gi)

‖gi‖2
and m = qO(q).

By combining Theorem I.5 (or an appropriate gener-

alization) with the appropriate analysis of the multilinear

polynomials induced by fq/d, we obtain the aforementioned

results for various classes of polynomials.

Weak decoupling lemmas.: A common approach for

reducing to the multilinear case is through more general

“decoupling” or “polarization” lemmas, which also have

variety of applications in functional analysis and probability

[26]. However, such methods increase the number of vari-

ables to nq, which would completely nullify any advantage

obtained from the increased degrees of freedom. This is

because the approximation obtained would be of the form

(#vars/q)d/2−1 = nd/2−1.

Our proof of Theorem I.5 (and its generalizations) re-

quires only a decoupling with somewhat weaker properties

than given by the above lemmas. However, we need it to

be very efficient in the number of variables. In analogy

with “weak regularity lemmas” in combinatorics, which

trade structural control for complexity of the approximating

object, we call these results “weak decoupling lemmas” (see
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Section III-A4 and [13]). They provide a milder form of

decoupling but only increase the number of variables to 2n
(independently of q).

We believe these could be more generally applicable;

in particular to other constrained settings of polynomial

optimization as well as in the design of sub-exponential

algorithms. Our techniques might also be able to yield a

full tradeoff between the number of variables and quality of

decoupling.

B. Connection to sum-of-squares hierarchy

The Sum of Squares Hierarchy (SoS) is one of the canon-

ical and well-studied approaches to attack polynomial opti-

mization problems. Algorithms based on this framework are

parametrized by the degree or level q of the SoS relaxation.

For the case of optimization of a homogenous polynomial

h of even degree q (with some matrix representation Mh)

over the unit sphere, the level q SoS relaxes the non-convex

program of maximizing (x⊗q/2)T · Mh · x⊗q/2 = h(x)
over x ∈ R

n with ‖x‖2 = 1, to the semidefinite program

of maximizing Tr
(
MT

h X
)

over all positive semidefinite

matrices X ∈ R
[n]q/2×[n]q/2 with Tr(X) = 1. (This is

a relaxation because X = x⊗q/2(x⊗q/2)T is psd with

Tr(X) = ‖x‖q2.)

It is well known (see for instance [2]) that the quantity

Λ(h) from (I.2) is the dual value of this SoS relaxation.

Further, strong duality holds for the case of optimization on

the sphere and therefore Λ(h) equals the optimum of the

SoS SDP and can be computed in time nO(q). (See the full

version [13] for more detailed SoS preliminaries.) In light of

this, our results from Theorem I.1 can also be viewed as a

convergence analysis of the SoS hierarchy for optimization

over the sphere, as a function of the number of levels q.

Such results are of significant interest in the optimization

community, and have been studied for example in [20], [21]

(see Section I-C for a comparison of results).

SoS Lower Bounds. While the approximation factors in our

upper bounds of Theorem I.1 are modest, there is evidence

to suggest that this is inherent.

When h is a degree-q polynomial with random i.i.d ±1
coefficients, it was shown in [24] that there is a constant c

such that w.h.p.
(

n
qc+o(1)

)q/4

≤ Λ(h) ≤
(

n
qc−o(1)

)q/4

. On

the other hand, ‖h‖2 ≤ O(
√
nq log q) w.h.p. Thus the ratio

between Λ(h) and ‖h‖2 can be as large as Ωq(n
q/4−1/2).

Hopkins et al. [27] recently proved that degree-d polyno-

mials with random coefficients achieve a degree-q SoS gap

of roughly (n/qO(1))d/4−1/2 (provided q > nε for some

constant ε > 0). This is also a lower bound on the ratio

between Λ
(
fq/d

)d/q
and ‖f‖2 for the case of arbitrary

polynomials. Note that this lower bound is roughly square

root of our upper bound from Theorem I.1. Curiously, our

upper bound for the case of polynomials with non-negative

coefficients essentially matches this lower bound for random

polynomials.

Non-Negative Coefficient Polynomials. In this paper, we

give a new lower bound construction for the case of non-

negative polynomials, To the best of out knowledge, the only

previous lower bound for this problem, was known through

Nesterov’s reduction [14], which only rules out a PTAS.

We give the following polynomially large lower bound. The

gap applies for random polynomials associated with a novel

distribution of 4-uniform hypergraphs, and is analyzed using

subgraph counts in a random graph.

Theorem I.6. There exists an n variate degree-4 homoge-
neous polynomial f with non-negative coefficients such that

‖f‖2 ≤ (log n)O(1) and Λ(f) ≥ Ω̃(n1/6) .

For larger degree t, we prove an nΩ(t) gap between ‖h‖2 and

a quantity ‖h‖sp that is closely related to Λ(h). Specifically,

‖h‖sp is defined by replacing the largest eigenvalue of

matrix representations Mh of h in (I.2) by the spectral
norm ‖Mh‖2. (See [13] for a formal definition.) Note that

‖h‖sp ≥ max{Λ(h) ,Λ(−h)}. Like Λ(·), ‖·‖sp suggests a

natural hierarchy of relaxations for the problem of approx-

imating ‖h‖2, obtained by computing ‖hq/t‖t/qsp as the q-th

level of the hierarchy.

We prove a lower bound of nq/24/ (q · log n)O(q)
on

‖fq/4‖sp where f is as in Theorem I.6. This not only

gives ‖·‖sp gaps for the degree-q optimization problem

on polynomials with non-negative coefficients, but also an

n1/6/(q log n)O(1) gap on higher levels of the aforemen-

tioned ‖·‖sp hierarchy for optimizing degree-4 polynomials

with non-negative coefficients. Formally we show:

Theorem I.7. Let g := fq/4 where f is the degree-4
polynomial as in Theorem I.6. Then

‖g‖sp
‖g‖2

≥ nq/24

(q log n)O(q)
.

Our lower bound on ‖fq/4‖sp is based on a general tool

that allows one to “lift” level-4 ‖·‖sp gaps, that meet one

additional condition, to higher levels. While we derive final

results only for the weaker relaxation ‖·‖sp, the underlying

structural result can be used to lift SoS lower bounds (i.e.

gaps for Λ(·)) as well, provided the SoS solution matrix

X satisfies PSD-ness of two other matrices of appropriately

related shapes to X (see full version [13]) — this inspired us

to name our tool “Tetris theorem.” Recently, the insightful

pseudo-calibration approach [28] has provided a recipe to

give higher level SoS lower bounds for certain average-
case problems. We believe our lifting result might similarly

be useful in the context of worst-case problems, where in

order to get higher degree lower bounds, it suffices to give

lower bounds for constant degree SoS with some additional

structural properties.
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C. Related Previous and Recent Works
Polynomial optimization is a vast area with several previ-

ous results. Below, we collect the results most relevant for

comparison with the ones in this paper, grouped by the class

of polynomials. Please see the excellent monographs [2], [3]

for a survey.

Arbitrary Polynomials. For general homogeneous polyno-

mials of degree-d, a polytime Od

(
nd/2−1

)
-approximation

was given by He et al. [1], which was improved to

Od

(
(n/ log n)d/2−1

)
by So [17]. The convergence of SDP

hierarchies for polynomial optimization was analyzed by

Doherty and Wehner [20]. However, their result only applies

to relaxations given by Ω(n) levels of the SoS hierarchy

(Theorem 7.1 in [20]). Thus, our results can be seen an giv-

ing an interpolation between the polynomial time algorithms

obtained by [1], [17] and the exponential time algorithms

given by Ω(n) levels of SoS, although the bounds obtained

by [20] are tighter (by a factor of 2O(d)) for q = Ω(n) levels.
For the case of arbitrary polynomials, we believe a trade-

off between running time and approximation quality similar

to ours can also be obtained by considering the tradeoffs for

the results of Brieden et al. [29] used by So [17]. However,

to the best of our knowledge, this is not published. In

particular, So uses the techniques of Khot and Naor [25] to

reduce degree-d polynomial optimization to d− 2 instances

of the problem of optimizing the �2 diameter of a convex

body. This is solved by [29], who give an O((n/k)1/2)
approximation in time 2k · nO(1). We believe this can be

combined with proof of So, to yield a Od

(
(n/q)d/2−1

)
approximation in time 2q . We note here that the method

of Khot and Naor [25] cannot be improved further (up to

polylog) for the case d = 3 (see full version [13]). Our

results for the case of arbitrary polynomials show that similar

bounds can also be obtained by a very generic algorithm

given by the SoS hierarchy. Moreover, the general techniques

developed here are versatile and demonstrably applicable

to various other cases (like polynomials with non-negative

coefficients, sparse polynomials, worst-case sparse PCA)

where no alternate proofs are available. The techniques of

[25], [17] are oblivious to the structure in the polynomials

and it appears to be unlikely that similar results can be

obtained by using diameter estimation techniques.

Polynomials with Non-negative Coefficients. The case of

polynomials with non-negative coefficients was considered

by Barak, Kelner, and Steurer [5] who proved that the

relaxation obtained by Ω(d3 · log n/ε2) levels of the SoS

hierarchy provides an ε · ‖f‖BKS additive approximation

to the quantity ‖f‖2. Here, the parameter we denote by

‖f‖BKS corresponds to a relaxation for ‖f‖2 that is weaker

than the one given by ‖f‖sp.2 Their results can be phrased

2Specifically, ‖f‖BKS minimizes the spectral norm over a smaller
set of matrix representations of f than ‖f‖sp which allows all matrix
representations.

as showing that a relaxation obtained by q levels of the SoS

hierarchy gives an approximation ratio of

1 +

(
d3 · log n

q

)1/2

· ‖f‖BKS

‖f‖2
.

Motivated by connections to quantum information the-

ory, they were interested in the special case where

‖f‖BKS/ ‖f‖2 is bounded by a constant. However, this

result does not imply strong multiplicative approximations

outside of this special case since in general ‖f‖BKS and

‖f‖2 can be far apart. In particular, we are able to establish

that there exist polynomials f with non-neg. coefficients

such that ‖f‖BKS/ ‖f‖2 ≥ nd/24. Moreover we conjec-

ture that the worst-case gap between ‖f‖BKS and ‖f‖2
for polynomials with non-neg. coefficients is as large as

Ω̃d((n/d)
d/4−1/2) (note that the conjectured (n/d)d/4−1/2

gap for non-negative coefficient polynomials is realizable

using arbitrary polynomials, i.e. it was established in [24]

that polynomials with i.i.d. ±1 coefficients achieve this gap

w.h.p.).

Our results show that q levels of SOS gives an

(n/q)d/4−1/2 approximation to ‖f‖2 which has a better

dependence on q and consequently, converges to a constant

factor approximation after Ω(n) levels.

2-to-4 norm. It was proved in [5] that for any matrix A,

q levels of the SoS hierarchy approximates ‖A‖42→4 =∥∥‖Ax‖44
∥∥
2

(i.e. the fourth power of the 2-to-4-norm) within

a factor of

1 +

(
log n

q

)1/2

· ‖A‖
2
2→2‖A‖22→∞
‖A‖42→4

.

Brandao and Harrow [30] also gave a nets based algorithm

with runtime 2q that achieves the same approximation as

above. Here again, the cases of interest were those matri-

ces for which ‖A‖22→2‖A‖22→∞ and ‖A‖42→4 are at most

constant apart.

We would like to bring attention to an open problem in

this line of work. It is not hard to show that for an m × n
matrix A with i.i.d. Gaussian entries, ‖A‖22→2 = Θ(m +
n), ‖A‖22→∞ = Θ(n), and ‖A‖22→4 = Θ(m + n2) which

implies the worst case approximation factor achieved above

is Ω(n/
√
q) when we take m = Ω(n2).

Our result for arbitrary polynomials of degree-4, achieves

an approximation factor of O(n/q) after q levels of SoS

which implies that the current best known approximation

2-to-4 norm is oblivious to the structure of the 2-to-4
polynomial and seems to suggest that this problem can be

better understood for arbitrary tall matrices. For instance,

can one get a
√
m/q approximation for (m × n) matrices

(note that [30] already implies a
√
m/q-approximation for

all m, and our result implies a
√
m/q-approximation when

m = Ω(n2)).
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Random Polynomials. For the case when f is a degree-

d homogeneous polynomial with i.i.d. random ±1 coef-

ficients [24], [23] showed that degree-q SoS certifies an

upper bound on ‖f‖2 that is with high probability at most

Õ((n/q)d/4−1/2)·‖f‖2. Curiously, this matches our approx-

imation guarantee for the case of arbitrary polynomials with

non-negative coefficients. This problem was also studied for

the case of sparse random polynomials in [23] motivated by

applications to refuting random CSPs.

II. PRELIMINARIES AND NOTATION

Polynomials. We use Rd[x] to denote the set of all homo-

geneous polynomials of degree (exactly) d. Similarly, R+
d [x]

is used to denote the set of polynomials with non-negative

coefficients. All polynomials considered in this paper will

be n-variate and homogeneous (with x denoting the set of

n variables x1, . . . , xn) unless otherwise stated.

A multi-index is defined as sequence α ∈ N
n. We use

|α| to denote
∑n

i=1 αi and N
n
d (resp. Nn

≤d) to denote the set

of all multi-indices α with |α| = d (resp. |α| ≤ d). Thus,

a polynomial f ∈ Rd[x] can be expressed in terms of its

coefficients as

f(x) =
∑

α∈Nn
d
fα · xα ,

where xα is used to denote the monomial corresponding to

α. A polynomial is multilinear if α ≤ 1 whenever fα �= 0,

where 1 denotes the multi-index 1n. We use the notation αr

to denote the vector (αr
1, . . . , α

r
n) for r ∈ R. In general, with

the exception of absolute-value, any scalar function when

applied to a vector/multi-index returns the vector obtained

by applying the function entry-wise. We also use ◦ to denote

the Hadamard (entry-wise) product of two vectors.

To save the additive constant terms in the exponent of

our results, we will need to extract the “quadratic part”

of a given polynomial, and use the fact that eigenvalue

problems are easy for quadratic polynomials. We thus define

the following polynomials where the coefficients themselves

may be polynomials (in the same variables).

Definition II.1 (Folded Polynomials). A degree-(d1, d2)
folded polynomial f ∈ (Rd2

[x])d1
[x] is defined to be a

polynomial of the form

f(x) =
∑

α∈Nn
d1

fα(x) · xα ,

where each fα(x) ∈ Rd2 [x] is a homogeneous polynomial
of degree d2. Folded polynomials over R

+ are defined
analogously.

- We refer to the polynomials fα as the folds of f and
the terms xα as the monomials in f .

- A folded polynomial can also be used to define a degree
d1 + d2 polynomial by multiplying the monomials with
the folds (as polynomials in R[x]). We refer to this
polynomial in Rd1+d2

[x] as the unfolding of f , and
denote it by U(f).

- For a degree (d1, d2)-folded polynomial f and r ∈ N,
we take fr to be a degree-(r · d1, r · d2) folded polyno-
mial, obtained by multiplying the folds as coefficients.

Matrices. For k ∈ N, we will consider nk × nk matrices

M with real entries. All matrices considered in this paper

should be taken to be symmetric (unless otherwise stated).

We index entries of the matrix M as M [I, J ] by tuples
I, J ∈ [n]k.

A tuple I = (i1, . . . , ik) naturally corresponds to a multi-

index α(I) ∈ N
n
k with |α(I)| = k, i.e. α(I)j = |{� | i� =

j}|. For a tuple I ∈ [n]k, we define O(I) the set of all tuples

J which correspond to the same multi-index i.e., α(I) =
α(J). Thus, any multi-index α ∈ N

n
k , corresponds to an

equivalence class in [n]k. We also use O(α) to denote the

class of all tuples corresponding to α.

Note that a matrix of the form
(
x⊗k

)(
x⊗k

)T
has many

additional symmetries, which are also present in solutions

to programs given by the SoS hierarchy. To capture this,

consider the following definition:

Definition II.2 (SoS-Symmetry). A matrix M which satis-
fies M[I, J ] = M[K,L] whenever α(I) + α(J) = α(K) +
α(L) is referred to as SoS-symmetric.

Remark. It is easily seen that every homogeneous polyno-

mial has a unique SoS-Symmetric matrix representation.

III. OVERVIEW OF PROOFS AND TECHNIQUES

In the interest of clarity, we shall present all techniques

for the special case where f is an arbitrary degree-4
homogeneous polynomial. We shall further assume that

‖f‖2 = fmax just so that Λ(f) is a relaxation of ‖f‖2.

Summarily, the goal of this section is to give an overview

of an O(n/q)-approximation of ‖f‖2, i.e.

Λ
(
fq/4

)4/q

≤ O(n/q) · ‖f‖2 .
Many of the high level ideas remain the same when

considering higher degree polynomials and special classes

like polynomials with non-negative coefficients, or sparse

polynomials.

A. Warmup: (n2/q2)-Approximation

We begin with seeing how to analyze constant levels of

the Λ(·) relaxation and will then move onto higher levels in

the next section. The level-4 relaxation actually achieves an

n-approximation, however we will start with n2 as a warmup

and cover the n-approximation a few sections later.

1) n2-Approximation using level-4 relaxation: We shall

establish that Λ(f) ≤ O(n2) · ‖f‖2. Let Mf be the SoS-

symmetric representation of f , let xi1xi2xi3xi4 be the mono-

mial whose coefficient in f has the maximum magnitude,

and let B be the magnitude of this coefficient. Now by Ger-

shgorin circle theorem, we have Λ(f) ≤ ‖Mf‖2 ≤ n2 ·B.
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It remains to establish ‖f‖2 = Ω(B). To this end, define

the decoupled polynomial F(x, y, z, t) := (x ⊗ y)T ·Mf ·
(z ⊗ t) and define the decoupled two-norm as

‖F‖2 := sup
‖x‖,‖y‖,‖z‖,‖t‖=1

F(x, y, z, t).

It is well known that ‖f‖2 = Θ(‖F‖2) (see Lemma III.1).

Thus, we have,

‖f‖2 = Ω(‖F‖2) ≥ Ω (|F(ei1 , ei2 , ei3 , ei4)|)
= Ω(B) = Ω

(
Λ(f) /n2

)
.

In order to better analyze Λ
(
fq/4

)4/q
we will need to

introduce some new techniques.

2) (n2/q2)-Approximation Assuming Theorem I.5: We

will next show that Λ
(
fq/4

)4/q ≤ O(n2/q2) · ‖f‖2 (for

q divisible by 4). In fact, one can show something stronger,

namely that for every homogeneous polynomial g of degree-

q, Λ(g) ≤ 2O(q) · (n/q)q/2 · ‖g‖2 which clearly implies

the above claim (also note that for the target O(n2/q2)-
approximation to ‖f‖2, losses of 2O(q) in the estimate of

‖g‖2 are negligible, while factors of the order qΩ(q) are

crucial).
Given the additional freedom in choice of representation

(due to the polynomial having higher degree), a first instinct

would be to completely symmetrize, i.e. take the SoS-

symmetric representation of g, and indeed this works for

multilinear g (see [13] for details).
However, the above approach of taking the SoS-symmetric

representation breaks down when the polynomial is non-

multilinear. To circumvent this issue, we employ Theo-

rem I.5 which on combining with the aforementioned multi-

linear polynomial result, yields that for every homogeneous

polynomial g of degree-q, Λ(g) ≤ (n/q)q/2 · ‖g‖2. The

proofs of Theorem I.5 and it’s generalizations (that will be

required for the n/q approximation), are quite non-trivial

and are the most technically involved sections of our upper

bound results. We shall next give an outline of the proof of

Theorem I.5.

3) Reduction to Optimization of Multi-linear Polynomi-
als: One of the main techniques we develop in this work, is

a way of reducing the optimization problem for general poly-

nomials to that of multi-linear polynomials, which does not
increase the number of variables. While general techniques

for reduction to the multi-linear case have been widely used

in the literature [25], [1], [17] (known commonly as de-

coupling/polarization techniques), these reduce the problem

to optimizing a multi-linear polynomial in n · d variables

(when the given polynomial h is of degree d). Below is one

example:

Lemma III.1 ([1]). Let A be a SoS-symmetric d-tensor
and let h(x) := 〈A, x⊗d〉. Then ‖h‖2 ≥ 2−O(d) ·
max‖xi‖=1〈A, x1 ⊗ · · · ⊗ xd〉.

Since we are interested in the improvement in approximation

obtained by considering fq/4 for a large q, applying these

would yield a multi-linear polynomial in n · q variables.

For our analysis, this increase in variables exactly cancels

the advantage we obtain by considering fq/4 instead of f
(i.e., the advantage obtained by using q levels of the SoS

hierarchy).

We can uniquely represent a homogeneous polynomial g
of degree q as

g(x) =
∑

|α|≤q/2

x2α ·G2α(x)

=

q/2∑
r=0

∑
|α|=r

x2α ·G2α(x)

=:

q/2∑
r=0

gr(x) , (III.1)

where each G2α is a multi-linear polynomial and gr(x) :=∑
|α|=r x

2α ·G2α(x). We reduce the problem to optimizing

‖G2α‖2 for each of the polynomials G2α. More formally,

we show that

Λ(g)

‖g‖2
≤ max

α∈Nn
≤q/2

Λ(G2α)

‖G2α‖2 · 2
O(q) (III.2)

As a simple and immediate example of its applicability,

(III.2) provides a simple proof of a polytime constant factor

approximation for optimization over the simplex (actually

this case is known to admit a PTAS [15], [31]). Indeed,

observe that a simplex optimization problem for a degree-

q/2 polynomial in the variable vector y can be reduced to

a sphere optimization by substituting yi = x2
i . Now since

every variable present in a monomial has even degree in that

monomial, each G2α is constant, which implies a constant

factor approximation (dependent on q) on applying (III.2).

Returning to our overview of the proof, note that given

representations of each of the polynomials G2α, each of

the polynomials gr can be represented as a block-diagonal

matrix with one block corresponding to each α. Combining

this with triangle inequality and the fact that the maximum

eigenvalue of a block-diagonal matrix is equal to the max-

imum eigenvalue of one of the blocks, gives the following

inequality:

Λ(g) ≤ (1 + q/2) · max
α∈Nn

≤q/2

Λ(G2α) . (III.3)

We can further strengthen (III.3) by averaging the ”best”

representation of G2α over |O(α)| diagonal-blocks which

all correspond to x2α. We show (see [13])

Λ(g) ≤ (1 + q/2) · max
α∈Nn

≤q/2

Λ(G2α)

|O(α)| . (III.4)

Since |O(α)| can be as large as qΩ(q), the above strengthen-

ing is crucial. We then prove the following inequality, which
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shows that the decomposition in Eq. (III.1) not only gives a

block-diagonal decomposition for matrix representations of

g, but can in fact be thought of as a “decomposition” of the

tensor corresponding to g (with regards to computing ‖g‖2).

We show that

‖g‖2 ≥ 2−O(q) · max
α∈Nn

≤q/2

‖G2α‖2
|O(α)| . (III.5)

The above inequality together with (III.4), implies (III.2).

4) Bounding ‖g‖2 via a new weak decoupling lemma:
Recall that the expansion of g(x) in Eq. (III.1), contains the

term x2α · G2α(x). The key part of proving the bound in

(III.5) is to show the following “weak decoupling” result

for x2α and G2α.

∀α ‖g‖2 ≥ max
‖y‖=‖x‖=1

y2α ·G2α(x) · 2−O(q)

= max
‖y‖=1

y2α · ‖G2α‖2 · 2−O(q).

The proof of (III.5) can then be completed by considering

the unit vector y :=
√
α/

√|α|, i.e. y :=
∑

i∈[n]
√
αi√
|α| ·ei. A

careful calculation shows that y2α ≥ 2−O(q)/ |O(α)| which

finishes the proof.

The primary difficulty in establishing the above decou-

pling is the possibility of cancellations. To see this, let x∗

be the vector realizing ‖G2α‖2 and substitute z = (x∗ + y)
into g. Clearly, y2α · G2α(x

∗) is a term in the expansion

of g(z), however there is no guarantee that the other terms

in the expansion don’t cancel out this value. To fix this our

proof relies on multiple delicate applications of the first-

moment method, i.e. we consider a complex vector random

variable Z(x∗, y) that is a function of x∗ and y, and argue

about E [|g(Z)|].
The extremal case of α = 0n. We first consider the extremal

case of α = 0n, where we define y2α = 1. This amounts to

showing that for every homogeneous polynomial h of degree

t, ‖h‖2 ≥ ‖hm‖2 · 2−O(t) where hm is the restriction of h
to it’s multilinear monomials.

Given the optimizer x∗ of ‖hm‖2, let z be a random vector

such that each Zi = x∗i with probability p and Zi = 0 other-

wise. Then, E [h(Z)] is a univariate degree-t polynomial in

p with the coefficient of pt equal to hm(x
∗). An application

of Chebyshev’s extremal polynomial inequality then gives

that there exists a value of the probability p such that

‖h‖2 ≥ E [|h(Z)|] ≥ |E [h(Z)]| ≥ 2−O(t) · |hm(x
∗)|

= 2−O(t) · ‖hm‖2 .

For the case of general α, we first pass to the complex
version of ‖g‖2 defined as

‖g‖c2 := sup
z∈Cn,‖z‖=1

|g(z)| .

We use another averaging argument together with an applica-

tion of the polarization lemma (Lemma III.1) to show that

we do not loose much by considering ‖g‖c2. In particular,

‖g‖2 ≤ ‖g‖c2 ≤ 2O(q) · ‖g‖2.

The extremal case of g = gr. In this case, the problem

reduces to showing that for all α ∈ N
n
r and for all y ∈ S

n−1,

‖gr‖c2 ≥ y2α · ‖G2α‖2 · 2−O(q).

Fix any α ∈ N
n
r , and let ω ∈ C

n be a complex vector

random variable, such that ωi is an independent and uni-

formly random (2αi+1)-th root of unity. Let Ξ be a random

(q − 2r + 1)-th root of unity, and let x∗ be the optimizer

of ‖G2α‖2. Let Z := ω ◦ y + Ξ · x∗, where ω ◦ y denotes

the coordinate-wise product. Observe that for any α′, γ such

that |α′| = r, |γ| = q − 2r, γ ≤ 1,

E

[∏
i

ωi · Ξ · Z2α′+γ

]
=

{
y2α · (x∗)γ if α′ = α

0 otherwise

By linearity, this implies E [
∏

i ωi · Ξ · gr(Z)] = y2α ·
G2α(x

∗). The claim then follows by noting that

‖gr‖c2 ≥ E [|gr(Z)|] = E

[∣∣∣∣∣∏
i

ωi · Ξ · gr(Z)
∣∣∣∣∣
]

≥
∣∣∣∣∣E

[∏
i

ωi · Ξ · gr(Z)
]∣∣∣∣∣ ≥ y2α · ‖G2α‖2 .

The general case. The two special cases considered here

correspond to the cases when we need to extract a specific

gr (for r = 0), and when we need to extract a fixed

α from a given gr. The argument for the general case

uses a combination of the arguments for both these cases.

Moreover, to get an O(n/q) approximation, we also need

versions of such decoupling lemmas for folded polynomials

to take advantage of “easy substructures” as described next.

B. Exploiting Easy Substructures via Folding and Improved
Approximations

To obtain the desired n/q-approximation to ‖f‖2, we need

to use the fact that the problem of optimizing quadratic poly-

nomials can be solved in polynomial time, and moreover that

SoS captures this. More generally, in this section we consider

the problem of getting improved approximations when a

polynomial contains ”easy substructures”. It is not hard

to obtain improved guarantees when considering constant

levels of SoS. The second main technical contribution of our

work is in giving sufficient conditions under which higher

levels of SoS improve on the approximation of constant

levels of SoS, when considering the optimization problem

over polynomials containing ”easy substructures”.
As a warmup, we shall begin with seeing how to exploit

easy substructures at constant levels by considering the

example of degree-4 polynomials that trivially ”contain”

quadratics.
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1) n-Approximation using Degree-4 SoS: Given a degree-

4 homogeneous polynomial f (assume f is multilinear

for simplicity), we consider a degree-(2, 2) folded poly-

nomial h, whose unfolding yields f , chosen so that

max‖y‖=1 ‖h(y)‖2 = Θ(‖f‖2) (recall that an evaluation of

a folded polynomial returns a polynomial, i.e., for a fixed

y, h(y) is a quadratic polynomial in the indeterminate x).

Such an h always exists and is not hard to find based on the

SoS-symmetric representation of f . Also recall,

h(x) =
∑

|β|=2, β≤1

hβ(x) · xβ ,

where each hβ is a quadratic polynomial (the aforemen-

tioned phrase ”easy substructures” is referencing the folds:

hβ which are easy to optimize). Now by assumption we

have,

‖f‖2 ≥ max
|β|=2, β≤1

‖h(β/
√
2)‖2 = max

|β|=2, β≤1
‖hβ‖2/2.

We then apply the block-matrix generalization of Gershgorin

circle theorem to the SoS-symmetric matrix representation

of f to show that

Λ(f) ≤ ‖f‖sp ≤ n · max
|β|=2, β≤1

∥∥hβ

∥∥
sp

= n · max
|β|=2, β≤1

‖hβ‖2 ,

where the last step uses the fact that hβ is a quadratic, and

‖·‖sp is a tight relaxation of ‖·‖2 for quadratics. This yields

the desired n-approximation.

2) n/q-approximation using Degree-q SoS: Following the

cue of the n2/q2-approximation, we derive the desired n/q
bound by proving a folded-polynomial analogue of every

claim in the previous section (including the multilinear

reduction tools), a notable difference being that when we

consider a power fq/4 of f , we need to consider degree-

(q − 2q/4, 2q/4) folded polynomials, since we want to use

the fact that any product of q/4 quadratic polynomials is

“easy” for SoS (in contrast to Section III-B1 where we only

used the fact quadratic polynomials are easy for SoS). We

now state an abstraction of the general approach we use to

leverage the tractability of the folds.

Conditions for Exploiting ”Easy Substructures” at
Higher Levels of SoS. Let d := d1 + d2 and f := U(h)
where h is a degree-(d1, d2) folded polynomial that satisfies

sup
‖y‖=1

‖h(y)‖2 = Θd(‖f‖2) .

Implicit in our work (see [13]), is the following theorem we

believe to be of independent interest:

Theorem III.2. Let h, f be as above, and let

Γ := min

{
Λ(p)

‖p‖2
∣∣∣ p(x) ∈ span

(
hβ

∣∣∣β ∈ N
n
d2

)}
.

Then for any q divisible by 2d,

Λ
(
fq/d

)d/q

≤ Od

(
Γ · (n/q)d1/2

)
· ‖f‖2 .

In other words, if degree-d2 SoS gives a good approximation

for every polynomial in the subspace spanned by the folds

of h, then higher levels of SoS give an improving approx-

imation that exploits this. In this work, we only apply the

above with Γ = 1, where exact optimization is easy for the

space spanned by the folds.

While we focused on general polynomials for the

overview, let us remark that in the case of polynomials

with non-negative coefficients, the approximation factor in

Theorem III.2 becomes Od

(
δ · (n/q)d1/4

)
.

C. Lower Bounds for Polynomials with Non-negative Coef-
ficients

1) Degree-4 Lower Bound for Polynomials with Non-
Negative Coefficients: We discuss some of the important

ideas from the proof of Theorem I.6. The lower bound

proved by a subset of the authors in [24] proves a large

ratio
Λ(f)
‖f‖2 by considering a random polynomial f where

each coefficient of f is an independent (Gaussian) random

variable with bounded variance. The most natural adaptation

of the above strategy to degree-4 polynomials with non-

negative coefficients is to consider a random polynomial f
where each coefficient fα is independently sampled such

that fα = 1 with probability p and fα = 0 with probability

1−p. However, this construction fails for every choice of p.

If we let A ∈ R
[n]2×[n]2 be the natural matrix representation

of f (i.e., each coefficient fα is distributed uniformly among

the corresponding entries of A), the Perron-Frobenius the-

orem shows that ‖A‖2 is less than the maximum row sum

max(Õ(n2p), 1) of M, which is also an upper bound on

Λ(f). However, we can match this bound by (within constant

factors) choosing x = ( 1√
n
, . . . , 1√

n
) when p ≥ 1/n2. Also,

when p < 1/n2, we can take any α with fα = 1 and set

xi = 1/2 for all i with αi > 0, which achieves a value of

1/16.

We introduce another natural distribution of random non-

negative polynomials that bypasses this problem. Let G =
(V,E) be a random graph drawn from the distribution Gn,p

(where we choose p = n−1/3 and V = [n]. Let C ⊆ (
V
4

)
be

the set of 4-cliques in G. The polynomial f is defined as

f(x1, . . . , xn) :=
∑

{i1,i2,i3,i4}∈C
xi1xi2xi3xi4 .

Instead of trying Θ(n4) p-biased random bits, we use Θ(n2)
of them. This limited independence bypasses the problem

above, since the rows of A now have significantly different

row sums: Θ(n2p) rows that correspond to an edge of G
will have row sum Θ(n2p5), and all other rows will be zeros.

Since these n2p rows (edges) are chosen independently from
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(
[n]
2

)
, they still reveal little information that can be exploited

to find a n-dimensional vector x with large f(x). However,

the proof requires a careful analysis of the trace method (to

bound the spectral norm of an “error” matrix).

It is simple to prove that ‖f‖sp ≥ Ω
(√

n2p5
)

=

Ω(n1/6) by considering the Frobenius norm of the n2p×n2p
principal submatrix, over any matrix representation (indeed,

A is the minimizer). To prove Λ(f) ≥ Ω̃(n1/6), we con-

struct a moment matrix M that is SoS-symmetric, positive

semidefinite, and has a large 〈M,A〉 (see the dual form of

Λ(f) in [13]). It turns out that the n2p × n2p submatrix

of A shares spectral properties of the adjacency matrix of

a random graph Gn2p,p4 , and taking M := c1A + c2I for

some identity-like matrix I proves Λ(f) ≥ Ω̃(n1/6). An

application of the trace method is needed to bound c2.

To upper bound ‖f‖2, we first observe that ‖f‖2 is the

same as the following natural combinatorial problem up to

an O(log4 n) factor: find four sets S1, S2, S3, S4 ⊆ V that

maximize |CG(S1, S2, S3, S4)|√|S1||S2||S3||S4|
where |CG(S1, S2, S3, S4)| is the number of 4-cliques

{v1, . . . , v4} of G with vi ∈ Si for i = 1, . . . , 4. The

number of copies of a fixed subgraph H in Gn,p, including

its tail bound, has been actively studied in probabilistic

combinatorics [32], [33], [34], [35], [36], [37], [38], though

we are interested in bounding the 4-clique density of every
4-tuple of subsets simultaneously. The previous results give

a strong enough tail bound for a union bound, to prove that

the optimal value of the problem is O(n2p6 · logO(1) n)
when |S1| = · · · = |S4|, but this strategy inherently

does not work when the set sizes become significantly

different. However, we give a different analysis for the above

asymmetric case, showing that the optimum is still no more

than O(n2p6 · logO(1) n).

2) Lifting Stable Degree-4 Lower Bounds: For a

degree-t (t even) homogeneous polynomial f , note that

max{|Λ(f) |, |Λ(−f) |} is a relaxation of ‖f‖2. ‖f‖sp is

a slightly weaker (but still quite natural) relaxation of ‖f‖2
given by

‖f‖sp :=
inf {‖M‖2 | M is a matrix representation of f} .

As in the case of Λ(f), for a (say) degree-4 polynomial

f ,
∥∥fq/4

∥∥4/q

sp
gives a hierarchy of relaxations for ‖f‖2, for

increasing values of q.

We give an overview of a general method of “lifting”

certain “stable” low degree gaps for ‖·‖sp to gaps for

higher levels with at most qO(1) loss in the gap. While

we state our techniques for lifting degree-4 gaps, all the

ideas are readily generalized to higher levels. We start with

the observation that the dual of ‖f‖sp is given by the

following “nuclear norm” program. Here Mf the canonical

matrix representation of f , and ‖X‖S1
is the Schatten 1-

norm (nuclear norm) of X , which is the sum of it’s singular

values.

maximize 〈Mf ,X〉
subject to : ‖X‖S1

= 1

X is SoS symmetric

Now let X be a solution realizing a gap of δ between ‖f‖sp
and ‖f‖2. We shall next see how assuming reasonable con-

ditions on X and Mf , one can show that ‖fq/4‖sp/‖fq/4‖2
is at least δq/4/qO(q).

In order to give a gap for the program corresponding to∥∥fq/4
∥∥
sp

, a natural choice for a solution is the symmetrized

version of the matrix X⊗q/4 normalized by its Schatten-1
norm i.e., for Y = X⊗q/4, we take

Z := Y S/
∥∥Y S

∥∥
S1

where Y S [K] = E
π∈Sq

[Y [π(K)]] ∀K ∈ [n]q .

To get a good gap, we are now left with showing that∥∥Y S
∥∥
S1

is not too large. Note that symmetrization can

drastically change the spectrum of a matrix as for different

permutations π, the matrices Y π[K] := Y [π(K)] can have

very different ranks (while ‖Y ‖F = ‖Y π‖F ). In particular,

symmetrization can increase the maximum eigenvalue of a

matrix by polynomial factors, and thus one must carefully

count the number of such large eigenvalues in order to get

a good upper bound on
∥∥Y S

∥∥
S1

. Such an upper bound is a

consequence of a structural result about Y S that we believe

to be of independent interest.

To state the result, we will first need some notation. For a

matrix M ∈ IR[n]2×[n]2 let T ∈ R
[n]4 denote the tensor

given by, T [i1, i2, i3, i4] = M [(i1, i2), (i3, i4)]. Also for

any non-negative integers x, y satisfying x + y = 4, let

Mx,y ∈ IR[n]x×[n]y denote the (rectangular) matrix given by,

M [(i1, . . . , ix), (j1, . . . jy)] = T [i1, . . . , ix, j1, . . . jy]. Let

M ∈ IR[n]2×[n]2 be a degree-4 SoS-Symmetric matrix, let

MA := M1,3 ⊗ M4,0 ⊗ M1,3, let MB := M1,3 ⊗ M3,1,

let MC := M and let MD := Vec(M)Vec(M)
T

=
M0,4 ⊗M4,0.

We show (see [13]) that (M⊗q/4)S can be written as the

sum of 2O(q) terms of the form:

C(a, b, c, d) · P · (M⊗a
A ⊗M⊗b

B ⊗M⊗c
C ⊗M⊗d

D ) · P
where 12a + 8b + 4c + 8d = q, P is a matrix with

spectral norm 1 and C(a, b, c, d) = 2O(q). This implies

that controlling the spectrum of MA,MB ,M and MD is

sufficient to control on the spectrum of (M⊗q/4)S .

Using this result with M := X, we are able to

establish that if X satisfies the additional condition of

‖X1,3‖S1
≤ 1 (note that we already know ‖X‖S1

≤ 1), then
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∥∥Y S
∥∥
S1

= 2O(q). Thus Z realizes a 〈M⊗q/4
f , Y S〉/2O(q)

gap for
∥∥fq/4

∥∥
sp

. On composing this result with the degree-

4 gap from the previous section, we obtain an ‖·‖sp
gap of nq/24/ (q · log n)O(q)

for degree-q polynomials with

non-neg. coefficients. We also show the q-th level ‖·‖sp
gap for degree-4 polynomials with non-neg. coefficients is

Ω̃(n1/6)/qO(1).

Even though we only derive results for the weaker relax-

ation ‖·‖sp, the structural result above can be used to lift

“stable” low-degree SoS lower bounds as well (i.e. gaps for

Λ(·)), albeit with a stricter notion of stability (see [13]).

However, the problem of finding such stable SoS lower

bounds remains open.

There are by now quite a few results giving near-tight

lower bounds on the performance of higher level SoS relax-

ations for average-case problems [28], [39], [27]. However,

there are few examples in the literature of matching SoS

upper/lower bounds on worst-case problems. We believe our

lifting result might be especially useful in such contexts,

where in order to get higher degree lower bounds, it suffices

to give stable lower bounds for constant degree SoS.

IV. CONCLUSION

Our work makes progress on polynomial optimization

based on new spectral techniques for dealing with higher

order matrix representations of polynomials. Several inter-

esting questions in the subject remain open, and below we

collect some of the salient ones brought to the fore by our

work.

1) What is the largest possible ratio between Λ(f) and

‖f‖2 for arbitrary homogeneous polynomials of degree

d? Recall that we have an upper bound of Od(n
d/2−1)

and a lower bound of Ωd(n
d/4−1/2), and closing this

quadratic gap between these bounds is an interesting

challenge. Even a lower bound for ‖·‖sp that improves

upon the current Ωd(n
d/4−1/2) bound by polynomial

factors would be very interesting.

2) A similar goal to pursue would be closing the gap

between upper and lower bounds for polynomials with

non-negative coefficients.

3) We discussed two relaxations of ‖h‖2 — Λ(h) which

minimizes the maximum eigenvalue λmax(Mh) over

matrix representations Mh of h, and ‖h‖sp which

minimizes the spectral norm ‖Mh‖2. How far apart, if

at all, can these quantities be for arbitrary polynomials

h?

4) We studied three classes of polynomials: arbitrary, those

with non-negative coefficients, and sparse. Are there

other natural classes of polynomials for which we

can give improved SoS-based (or other) approxima-

tion algorithms? Can our techniques be used in sub-

exponential algorithms for special classes?

5) Despite being such a natural problem for which known

algorithms give weak polynomially large approximation

factors, the known NP-hardness results for polynomial

optimization over the unit sphere only rule out an

FPTAS. Can one obtain NP-hardness results for bigger

approximation factors?
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