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Abstract—Given a set of points P ⊂ R
d and a kernel

k, the Kernel Density Estimate at a point x ∈ R
d is

defined as KDEP (x) = 1
|P |

∑
y∈P k(x, y). We study the

problem of designing a data structure that given a data
set P and a kernel function, returns approximations to
the kernel density of a query point in sublinear time.
We introduce a class of unbiased estimators for kernel
density implemented through locality-sensitive hashing,
and give general theorems bounding the variance of
such estimators. These estimators give rise to efficient
data structures for estimating the kernel density in high
dimensions for a variety of commonly used kernels. Our
work is the first to provide data-structures with theoretical
guarantees that improve upon simple random sampling in
high dimensions.

Keywords-Kernel Density, Locality Sensitive Hashing,
Kernel-Matrix Vector Multiplication, Cell-probe model

I. INTRODUCTION

A fundamental question in Statistics and Learning

Theory is the following: given a set of points P ⊂ R
d

sampled from some unknown distribution D estimate
the probability at an arbitrary point x ∈ R

d. This

problem is known as density estimation and different

ways to formalize it lead to very different statistical

and computational tasks. In the past two decades the

problem has attracted significant interest in theoretical

computer science [10], [1]. Some of the most important

problems that have been studied are learning discrete

distributions [23], learning mixture models [36], and

more recently the topic of robust estimation in high

dimensions [13], [24]. In this paper, we focus on Kernel
Density Estimation (KDE), one of the most widely

developed methods in non-parametric estimation.

A. Kernel Density Estimation

In this approach, given a set of n points P , starting

from the empirical distribution μ̃(x) = 1
n

∑
y∈P δy ,

one obtains a smooth distribution by “convolving” it

with a kernel function k, whose smoothness is typically

controlled by a parameter σ > 0 called the bandwidth.

Definition 1 (Kernel Density). Given a kernel function
kσ : Rd×R

d → [0, 1] and a dataset P ⊂ R
d we define

the Kernel Density (KD) of P at a point x ∈ R
d as:

KDEP (x) :=
1

|P |
∑
y∈P

kσ(x, y) (1)

This is a natural way to extend the function smoothly

from a discrete set of points to the whole space that

is independent of any particular parametric assumption

on the underlying distribution of the data. Selecting the

kernel and bandwidth are intensively studied subjects

in the literature of non-parametric estimation [12] for

which there is still ongoing theoretical research [17].

The kernel function k(x, y) is typically a function of

only x− y (shift invariant kernels) or just the euclidean

distance ‖x − y‖ (radial kernels). One of the most

prominent functions is the Gaussian kernel

kσ(x, y) = exp

(
−‖x− y‖2

σ2

)
(2)

The importance of KDE lies in that it gives a sim-

ple and general way of approximating the underlying

probability distribution that can be subsequently used

to perform more complex and computationally intensive

tasks. Examples include mode estimation [7], outlier
detection [33], local regression [15], reproducing kernel
Hilbert spaces [32], density based clustering [31], and

topological data analysis [22], [16]. Kernel Density

Estimation is consequently an important primitive that

is a building block in many applications.

In all of the above settings, at some point, the

following problem is solved: given P ⊂ R
d, z ∈ R

n,
compute KDEz

P (x) :=
∑n

i=1 k(x, yi)zi. This can be

computed exactly in linear time, but this is prohibitively

slow for large data sets, especially since it is needed

repeatedly in applications of interest.

The problem has been studied extensively in the batch
setting, where given a set of n points, the goal is to

compute, for each of the points, a sum of contributions

due to all the points, i.e. n queries of the above form.

Such computations are prevalent in the field of scientific

computing and involve computing approximations to

y = Kz where K is an n × n kernel matrix. In low
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dimensions, Fast Multipole Methods (combining hier-

archical space partitions with Taylor approximations)

were developed [25] to reduce the trivial O(n2) runtime

to O(n log n) (and O(n) in some cases). The fast mul-

tipole algorithm [19] has been enormously influential

in numerical analysis and scientific computing; it was

named as one of the top 10 algorithms of the 20th

century by the editors of Computing in Science and
Engineering [14]. For this work, Greengard and Rokhlin

received the 2001 Steele Prize. The KDE problem thus

lies in the core of both scientific computing as well as

machine learning.

In this paper, we study the problem of approximately
computing the KDE. For most of the paper we fix kσ
to be the Gaussian Kernel and define the following

computational problem:

Definition 2 (KDE Problem). Given a dataset P ⊂ R
d

of n points, and ε, δ, τ ∈ [0, 1] construct a data structure
that given a query x ∈ R

d with KDEP (x) = μ ∈ [τ, 1]
returns a number μ̂ such that P[|μ̂ − μ| ≥ ε · μ] ≤ δ.
We call this problem the (μ, ε, δ)-KDE problem.

B. Our Contribution

The starting point of our work is the old and

tested idea of importance sampling. Given non-negative

weights w1, . . . , wn and a distribution Q over [n] (in-

ducing probabilities q1, . . . , qn), an unbiased estimator
for μ := 1

n

∑n
i=1 wi is given by sampling I ∈ [n]

according to Q and returning Z = wI/(qin). The

minimum variance estimator is obtained by setting q∗i =
wi/

∑
j wj for which the variance is zero. What pre-

cludes us from obtaining such probabilities is that in our

setting of KDE, the weights wi = wi(x) := k(x, xi) de-

pend on the query x, and thus the sampling distribution

Q needs to be adaptive to the query. Furthermore, hav-

ing an ideal distribution Q∗ indirectly involves knowing

the normalizing constant
∑

i wi = nμ, the very quantity

we wish to estimate. Thus, the main challenge in turning

the idea of importance sampling into an algorithm is

to have an efficient way to define an adaptive sampling
distribution Q(x) that has low variance. We next present

our methods at an abstract level and subsequently show

their implications for Kernel Density Estimation.

1) Hashing-Based-Estimators (HBE): Our main con-

tribution is to introduce a hashing-based framework to

succinctly define an adaptive distribution Q(x) and to

provide sharp tools bounding the variance of the result-

ing unbiased estimator. Our estimators are formed by:

• Preprocessing: given a hash function h sampled

from a hash family H, where the colision probabil-

ity of x, y is p(x, y), we evaluate h on x1, . . . , xn

and form the corresponding hash table H .

• Querying: let H(x) ⊆ P denote the cell where

the query x falls into and let y ∈ P be a random

element of H(x), we return Zh(x) =
k(x,y)
p(x,y) |H(x)|

(or 0 if H(x) is empty).

We say that a HBE has complexity T if the evaluation

time (resp. space usage) is bounded by T (resp. T · n).

This two-level sampling procedure induces probabilities

that depend both on P and H. Although |H(x)| is

a priori a random variable, it becomes known to us

through the preprocessing step. This sidesteps the issue

of computing the normalizing constant separately for

each query and is at the core of our approach.

The challenge in fully implementing this scheme is

to bound the second moment of our estimator. In this

regard, picking a random element from H(x) turns out

to be crucial, as it is this step that allows us to get

an analytical handle on the second moment of Zh. We

provide two general theorems that bound the variance

of Hashing-Based-Estimators. The first theorem applies

to any such unbiased HBE and shows that

Theorem 1 (Two-points suffice). Up to absolute con-
stants the variance of a HBE is maximized by datasets
where there are only two values for the weights and
sampling probabilities.

This characterization is extremely useful as given

pi(x) := p(x, xi) and wi(x), it reduces bounding the

variance to a simple case analysis. The bound de-

pends on the compatibility between the probability and

weights, and is captured by the maximum element of an

explicitly defined matrix. Going beyond the general case

we identify a natural class of HBE that induce sampling

probabilities that vary as a power of the weights.

Definition 3. An HBE is (β,M)-scale free for param-
eters β ∈ (0, 1] and M ≥ 1 if, for all i ∈ [n] and x,
M−1 · wβ

i (x) ≤ pi(x) ≤M · wβ
i (x).

The second theorem provides a refined analysis of

the variance of scale-free HBE that is able to capture

additional structure when one exists. In particular, the

upper bound on the variance improves when most of

the contribution to μ = μ(x) comes from relatively

large weights wi. We state here the weakest bound that

assumes nothing about the weights.

Theorem 2. Let Z be an unbiased (β,M)-scale free
HBE for β ∈ [ 12 , 1]. Then E[Z2] ≤ μ2 · (4M3/μβ).

The main technical tools behind the analysis are two

Hölder-type inequalities that we develop. The first one

(Lemma 1) is a simple two-sided (matrix) extension of
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Hölder’s inequality that bounds a quadratic form over

the intersection of two weighted �1-balls. A clever appli-

cation of this inequality gives us the proof of Theorem

1. The second (Lemma 2) is a non-trivial Hölder-type

inequality for monotone vectors that in combination

with some easy consequences of Hölder’s inequality

gives us the refined analysis of scale-free estimators.

The proof also shows the possibility of exploiting other

structural assumptions of the data. This is important in

the statistical setting (where the data set is sampled from

a distribution) or for parameter tuning in practice.

Our theorem shows that under no structural assump-

tions, the optimal choice is β∗ = 1/2 and results in

an estimator with relative variance
Var[Z]
(E[Z])2 ≤ V(μ) =

4M3 ·μ−1/2. Using the Median-of-means (MoM) tech-

nique, we can estimate μ within a multiplicative accu-

racy of (1± ε) using O
(
M3 1

ε2
1√
μ log(1/δ)

)
indepen-

dent samples. Observe that this does not directly imply

an algorithm to estimate μ using this many samples, as

setting the number of samples (sufficient for accurate

estimation) requires approximate knowledge of μ, the

very quantity we are aiming to estimate.

We resolve this issue by proposing an adaptive pro-

cedure that uses O(1) times additional samples to get

a constant factor approximation to μ. We start with an

overestimate of μ and iteratively decrease it until we get

close enough to the truth where a consistency check

is satisfied. The resulting algorithm, Adaptive Mean
Relaxation, is applicable to settings where one has an

unbiased estimator whose (upper bound on) variance is

a non-decreasing function of the mean μ and the relative

variance is a decreasing function of the mean.

2) Kernel Density Estimation through Locality Sen-
sitive Hashing: We next turn to address the (μ, ε, δ)-
KDE problem. To provide intuition about the problem

we first analyze two simple randomized estimators, the

(uniform) Random Sampling (RS) estimator and an es-

timator based on Random Fourier Features (RFF) [30].

We show that in the worst case, the first has variance

bounded by μ whereas the RFF estimator has constant

variance. Using the MoM framework and our adaptive

procedure, one immediately gets an algorithm to solve

the KDE problem using O(min{ 1
ε2

1
μ log(1/δ), n}) sam-

ples that is polynomial in (ε, μ, log(1/δ)).

In order to improve upon this simple bound, we

employ the framework of Hashing-Based-Estimators

instantiated with Locality Sensitive Hashing schemes.

All our results follow a similar theme: (a) we obtain

pointwise upper and lower bounds on the collision

probabilities of the hash functions, and (b) we bound

the variance of the estimator by invoking either Theorem

Table I
SCALE FREE ESTIMATORS FOR KDE USING LSH

Kernel (β,M) Complexity T

e−‖x−y‖2 (β, eO(R
4
3 log logn)) eO(R

4
3 log logn)

e−‖x−y‖ (β,
√
e ) O(dR2)

1
1+‖x−y‖p2

( q
p
, 3q) O(dp)

1 or Theorem 2 in cases where we are able to obtain

scale-free estimators (cf. Table I-B2).

Theorem 3 (Informal). There exist scale-free HBE for
the Gaussian, Exponential and Polynomial kernel.

Using our theorem for scale-free estimators and the

adaptive algorithm, we arrive at our main result for the

KDE problem.

Theorem 4. For a kernel k and dataset P
for which there exists a ( 12 ,M)-scale-free
estimator with complexity T , there exists a data
structure that solves the (μ, ε, δ)-KDE problem
∀μ ∈ [τ, 1] using O(M3 1

ε2
1√
μ log(1/δ)T ) time and

O(M3 1
ε2

1√
τ
log(1/δ)T · n) space.

As an application, we show that one can use such

a data structure to get an approximate vector-matrix
multiplication algorithm for Kernel matrices using time

that is adaptive to the vector and is always bounded

by Õ(n
1+o(1)√

τ
1/ε2) where ε, τ indicate respectively the

relative and additive error per coordinate (cf. Theorem

12). This result is important as it improves on the

main bottleneck of Kernel Ridge Regression [8], that

is, multiplying a dense Kernel matrix with a vector and

requires time O(n2) in general.

3) Lower Bounds for KDE problem: We also com-

plement our results by providing a reduction between

hard instances for the Approximate Nearest Neighbor

Search problem to the (μ, ε, δ)-KDE problem. We show

that the latter is at least as hard as the (r, c)-ANNS with

n = 1
μ points and c = O( log(n)

log(1/ε) ). Combined with the

results of Panigrahy, Talwar, Wieder [28] and Andoni et

al [5], we get non-trivial lower bounds in the cell-probe
model with a single probe that captures an interesting

class of algorithms based on adaptive coresets.

C. Related Work

The problem of Kernel Density Estimation although

widely studied in low-dimensions [20] has largely been

unexplored in high dimensions [26]. In recent parallel

and independent work, Spring and Shrivastava [34]

introduced the idea of using locality sensitive hashing as
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a sampling scheme to estimate the partition function of

log-linear models, albeit without theoretical guarantees.

Coresets: The problem of KDE has mostly been

investigated in the context of coresets. The first theo-

retical work we are aware of is that of Phillips [29].

Given a kernel k and a set P ⊂ R
d, a subset S ⊂ P

is an ε-coreset if |KDEP (x)−KDES(x)| ≤ ε for all

x ∈ R
d. Phillips uses techniques from discrepancy the-

ory to show that one can construct an ε-coreset of size

O
(
1/ε2−

4
d+2 log1−

2
d+2 (1/εδ)

)
with probability at least

1− δ. For large d the bound deteriorates and becomes

similar to what one gets by simple random sampling

O( 1
ε2 log(1/δ)) which is known to be tight. For rela-

tive error, recent work [37] uses random sampling to

give a similar guarantee that roughly requires O( 1
ε2

1
μ )

samples. Our lower bound against the (m,w, 1)-cell

probe models encompasses algorithms of this kind, and

shows that any set S (not necessarily a subset of P )

that can be used to answer the (μ, ε, δ)-problem must

have size at least Ω( 1μ ). The implication is that in terms

of constructing a coreset for KDE in high dimensions,

Random Sampling is essentially optimal.

Kernel Matrix Approximation: A closely related

idea to that of coresets, is that of Nyström approx-

imation. In this method, given a kernel matrix K a

set of s columns (points) is selected and subsequently

K is projected on their span. Musco and Musco [27]

propose a method based on recursive leverage-score

sampling that, using s = Θ(k log k) points, Õ(nk2)
time and Õ(nk) space, outputs a matrix K̃ such that

‖K̃ −K‖2 ≤ λ with λ = 1
k

∑n
i=k+1 σi(K) . One can

use this algorithm to obtain an approximate Kenrel-

Matrix Vector Multiplication algorithm ŷ ≈ Kz. For

kernel matrices of large rank, like the ones correspond-

ing to the equilateral metric of r =
√
n = τ−1

clusters consisting of
√
n identical points, their algo-

rithm requires Õ(n2) time and space Õ(n3/2) whereas

our algorithm requires Õ(n
5
4 ) time and space for the

Exponential and Polynomial kernel, and O(n
5
4+o(1)) for

the Gaussian kernel. However, the algorithm of Musco

and Musco applies to any kernel and gives guarantees

that hold simultaneously for any test vector z.

D. Open questions

Our work leaves open a few intriguing directions.

Data-dependent Hashing: There is a recent line of

work [6], [5] that designs data-dependent LSH schemes

that are optimal within a certain class of hashing-

based algorithms. We believe that modifications of such

schemes can be used for the purposes of KDE.

Batch Setting: The study of the offline or batch

setting for Nearest Neighbor Search has received re-

newed interest over the past years and has brought a

wealth of techniques into light [35], [2]. Given the

connection between KDE and the Nearest Neighbor

Search problem, it would be of practical and theoretical

interest to design data-structures that offer provable

speedups for the offline setting of the KDE problem. In

the regime where ε = exp(−ω(log2(n))) there is recent

work [9] that shows that under SETH no significant

improvements can be made beyond quadratic time.

Applications of HBE: It would be interesting to

explore other extensions of HBE, e.g. get theoretical

guarantees for estimating the partition function of log-

linear models [34] or analyze the performance of multi-

probe schemes.

II. PRELIMINARIES

Notation: For a vector x ∈ R
n let ‖x‖pp :=∑n

i=1 |xi|p for p ≥ 1 denote the �p-norm. For a strictly

positive vector w ∈ R
n
++, we denote by ‖x‖w,1 :=∑

i wi|xi| the weighted �1-norm. Given a number τ > 0
let (xi)τ := max{xi, τ}. Given a probability distribu-

tion ν, we write Y ∼ ν to denote that Y is sampled from

ν. For a set S, U(S) denotes the uniform distribution

over S and S⊗k denotes the Cartesian product of S with

itself k ≥ 1 times. Similarly, ν⊗k denotes the product

distribution ν × . . .× ν. We use N(0, Id) to denote the

standard multivariate normal distribution and Φ(·) its

CCDF. Throughout the paper P = {x1, . . . , xn} ⊂ R
d

will denote a set of n points from R
d and we shall

assume that diam(P ∪{x}) ≤ R for any query x ∈ R
d

where R = R(n) ≥ 1.

A. Unbiased Estimators and Median-of-Means

For ε, δ > 0, given a query point x ∈ R
d and

weights w1(x), . . . , wn(x) induced by a set P , our

goal is to estimate μ(x) := 1
n

∑n
i=1 wi(x) within a

multiplicative (1± ε) accuracy with probability at least

1 − δ. When it is clear from the context we will often

drop the dependence on x and simply write wi and μ.

An estimator Z ∼ ν is called unbiased for our problem

if E[Z] = μ. The basis of our approach is to design an

unbiased estimator that has small variance relative to μ.

Definition 4. Given a non-increasing function V : R→
R+, we call an unbiased estimator Z, V -bounded if
E[Z2] ≤ μ2 · V (μ) and μ2V (μ) is non-decreasing.

The function V is intimately related to the number

of samples need to estimate μ and is often referred to

as (a bound on) the relative variance. The principal
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approach to use such an estimator is the Median-of-

Means (MoM) technique [3], that allows one to get an

estimate Zε,δ such that P [|Zε,δ − μ| ≥ ε · μ] ≤ δ using

O( 1
ε2V (μ) log( 1δ )) samples.

Algorithm 1 Median-of-Means (MoM)

1: Input: Estimator Z ∼ ν, V ≥ 0, accuracy ε ∈
(0, 1), success prob. δ ∈ (0, 1).

2: m(ε, V )← � 4
ε2V �, L(δ)← �3 log(1/δ)�.

3: Z
(i)
j

iid∼ ν for j = 1, . . . ,m, and i = 1, . . . , L.

4: Z(i) ← mean{Z(i)
1 , . . . , Z

(i)
m } for i = 1, . . . , L.

5: Output: Zε,δ ← median{Z(1), . . . , Z(L)}

Most of our effort in this paper goes into obtaining

efficient V -bounded unbiased estimators with V being

of the form V (μ) = no(1) · μ−Δ for some 0 ≤ Δ ≤ 2.

Once we have such an estimator, we will be able to

combine it with the MoM technique and eventually get

an estimation algorithm. Hence, the main challenge is

bounding the variance.

B. Bounding the Variance

Given an unbiased estimator Z in order to bound

the variance we first obtain a simple data-dependent

upper bound on E[Z2] ≤ F (w,P ) and then

for a class of datasets P , we aim to show that

supP∈P{F (w,P )|∑i wi = μ} ≤ μ2V (μ). As a warm

up, we present two simple unbiased estimators for the

Kernel Density Problem and bound their variance. Let

Y ∼ U [P ], the random sampling estimator is given by

ZRS(x) = k(x, Y ). Let θ ∼ U [0, π] and g ∼ N(0, Id),
the Random Fourier Features [30] estimator is given by

ZRFF (x) =
2
|P |

∑
y∈P

(
cos(g�x+ θ) cos(g�y + θ)

)
.

Proposition 1. The RS and RFF estimators are unbi-
ased and satisfy respectively E[Z2

RS ] ≤ μ2 · μ−1 and
E[Z2

RFF ] ≤ μ2 · 4μ−2. Moreover, the bounds are tight
up to constants in the worst case.

Proof Sketch: The fact that the RS estimator is

unbiased is trivial, whereas the fact that RFF is unbiased

was shown by Rahimi and Recht [30] and follows from

Bochner’s theorem and trigonometric identities. We next

bound the second moment

E[Z2
RS ] ≤ max

y∈P
{k(x, y)} · 1

|P |
∑
y∈P

K(x, y) ≤ μ2 · μ−1

E[Z2
RFF ] ≤

⎛
⎝ 2

|P |
∑
y∈P

1

⎞
⎠

2

= 4 ≤ μ2 · 4μ−2

To see that these bounds are tight up to constants

consider for the RS estimator a dataset with nμ points

located at x and the rest n(1 − μ) points at distance√
log(1/μ) from x. For the RFF estimator the worst

case is when all points are all located at the same point

y0 at distance
√
log(1/μ).

The result on Random Sampling shows that KDE

problem is solvable in time O
(
min

{
1
ε2

1
μ log( 1δ ), n

})
.

Despite the simplicity of the above result, some salient

features of the problem are revealed. Firstly, the quality

of the initial upper bound F (w,P ) can differ dra-

matically between two different estimators. Secondly,

despite the simplicitly of the analysis, often the resulting

bounds are tight up to constants. Lastly, in both cases

we used Hölder’s inequality to get the bound. This is

going to be a general theme as behind all our bounds on

the variance are increasingly sophisticated consequences

of Hölder’s inequality. We state below the two main

inequalities used to bound the variance of Hashing-
Based-Estimators that we introduce in the next section.

Lemma 1 (2-sided Hölder). ∀x ∈ R
n, u, v ∈ R

n
++,

|∑ij Aijxixj | ≤ ‖x‖u,1‖x‖v,1 ·maxij

{ |Aij |
uivj

}
.

Lemma 2 (Monotone Hölder). ∀n ≥ 1, β ∈ [12 , 1], and
∀x ∈ R

n such that |x1| ≥ |x2| ≥ . . . ≥ |xn| , we have∑ |xi|
2−β
β

(
i+

∑
j>i

|xj |
|xi|

)
≤ nβ ·

(∑n
i=1 |xi| 1β

)2−β

with equality holding for x∗ = c1 for any c �= 0.

III. IMPORTANCE SAMPLING THROUGH HASHING

BASED ESTIMATORS

Given a distribution ν over a collection of hash

functions H, let h ∈ H be an element sampled ac-

cording to ν. For a point x ∈ R
d let H(x) := {y ∈

P : h(y) = h(x)} be the set of elements in P that

have the same hash value as x. Also, let I(x) be a

uniform random element out of H(x) or ⊥ if H(x)
is empty. Further, define pi := P[i ∈ H(x)] and

P̃ := {i ∈ P |pi > 0}. We also set p⊥ := 1 and

w⊥ := 0. An (H, ν)-hashing based estimator (HBE)

is defined as Zh = Zh(x) :=
wI(x)

pI(x)
· |H(x)|

n .

Lemma 3 (Moments). Let Zh be a (H, ν)-HBE and P
a set of points. Let p1 ≥ p2 ≥ . . . ≥ pn, then

E[Zh] =
1

n

∑
i∈P̃

wi (3)

E[Z2
h] ≤

1

n2

∑
i∈P̃

w2
i

pi

⎛
⎝i+

∑
j>i

pj
pi

⎞
⎠ (4)

The proof is straightforward and is based on applying

Bayes rule to condition on the random variable |H(x)|.
Observe that the estimator is unbiased iff wi > 0 ⇒
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pi > 0 for all i ∈ [n]. The quantity in the parenthesis

plays the role of F (w,P ) and expresses a pessimistic

upper bound on E
[|H(x)|∣∣i ∈ H(x)

]
. This is perhaps

the single most important aspect of the method in that

it allows us to express the variance purely in terms of
known collision probabilities pi that are amenable to

analytic manipulations. Theorem 1 provides a charac-

terization of HBE under worst case assumptions

Proof of Theorem 1: Fix n distinct weights, that

might be considered. Without loss of generality we

assume that the weights are in decreasing order. Let

fi be the fraction of points that are assigned to weight

i. We have the following:

E[Z2
h] ≤

1

n2

∑
i

(fin)
w2

i

pi

⎛
⎝n

∑
j≤i

fj +
1

pi

∑
j>i

pj(nfj)

⎞
⎠

=
∑
i,j

fifj

(
w2

i

pi
Ij≤i + Ij>i

w2
i

p2i
pj

)

≤ sup
‖f‖w,1 ≤ μ

‖f‖1 ≤ 1

{
f�Af

}

where in the last step we set Aij :=
w2

i

pi
Ij≤i+Ij>i

w2
i

p2
i
pj .

Let k(μ) be the largest index i such that wi ≤ μ, to

obtain an upper bound, we split the weights into two sets

S≤ := {i ≤ k} and S> := {i > k}. We define accord-

ingly x≤ := (x1, . . . , xk) and x> := (xk+1, . . . , xn)
as well as the matrices A≤≤, A≤>, A>≤, A>> in the

natural way. We have that:

f�Af = f�≤A≤≤f≤ + f�≤A≤>f>

+ f�>A>≤f≤ + f�>A>>f>

We next compute the supremum of the above quantity

separately for each term. The main idea is to always

enforce the tightest set of constraints. For instance,

for all indices with weights at least μ the constraint

on ‖f‖w,1 is the tightest. Using the two-sided Hölder

inequality (Lemma 1) appropriately we get:

E[Z2
h] ≤ μ2 max

i,j≤k

{
Aij

wiwj

}
+ μ · max

i≤k,j>k

{
Aij

wi

}

+ μ · max
i>k,j≤k

{
Aij

wj

}
+ max

i>k,j>k
{Aij}

Let us define the diagonal matrix D := D(w, μ)

as Dii =

{ μ
wi

, for i ≤ k(μ)

1, for i > k(μ)
. Then, we have the

following bound E[Z2
h] ≤ 4 supij

{
eTi DADej

}
.

The theorem assumes nothing about HBE besides

unbiasedness and therefore is applicable in an arbitrary

setting. If more structure is assumed stronger statements

can be made. We give a refined analysis of scale-free

estimators based on whether a large fraction of the mean

comes from points with relatively large weights.

Definition 5. For a query x and τ ∈ [μ, 1] let
Bτ,μ(x) := {i ∈ P |wi ≥ μ

τ }. For γ ∈ [0, 1] the
query is said to be (τ, γ)-localized if

∑
i∈Bτ,μ

wi ≥
(1− γ)

∑
i wi.

Theorem 5 (Restatement of Theorem 2). Let Zh be a
(β,M)-scale free estimator with β ∈ [1/2, 1]. For every
(τ, γ)-localized query x,

E[Z2
h] ≤ μ2 ·M3

{
2τβ + γ2−β + τ2β−1γβ

}
μ−β

The optimal choice of β in the case where no

assumptions are made (γ = τ = 1) is β∗ = 1
2 . Even

if β is not selected depending on the structure of the

query, significant gains can be obtained, in cases where

the parameters τ, γ are small enough. As an example,

for β = 1
2 , τ = μ

1
2 , γ = μδ the theorem implies

that the variance is bounded by μ2 · 4M3μ−Δ(δ) where

Δ(δ) = max{ 14 − δ, 1−3δ
2 } < 1

2 for all δ > 0.

Proof Sketch: We start by using the scale-free

property and (4):

E[Z2
h] ≤M3 · 1

n2

n∑
i=1

w2−β
i

⎛
⎝i+

∑
j>i

(
wj

wi

)β
⎞
⎠

Let A be the summation term, we break up the terms

according to Bτ,μ. Let J be the maximal index in Bτ,μ:

A =
∑
i≤J

w2−β
i (i+

∑
J≥j>i

(
wj

wi
)β) +

∑
i≤J

w2−2β
i ·

∑
j>J

wβ
j

+
∑
i>J

w2−β
i (i− J +

∑
j>i

(
wj

wi
)β) + |Bτ,μ|

∑
i>J

w2−β
i

We next use Hölder-type inequalities to bound each

term. For the first two terms we invoke Lemma 2

and use the fact that |Bτ,μ| ≤ τn. To bound the

remaining terms, we use the following consequences

of Hölder’s inequality ‖x‖ββ ≤ ‖x‖β1 ·n1−β and ‖x‖pp ≤
‖x‖qq · ‖x‖p−q

∞ for all β ∈ [0, 1], p ≥ q > 0,

x ∈ R
n. By combining all the inequalities, we get

A ≤ n2μ2−β(τβ + γ2−β + τ2β−1γβ + τβγ).
This concludes the presentation of the general frame-

work of Hashing-Based-Estimators, that given a set of

weights {wi} and collisions probabilities {pi} computes

a function V such that the resulting HBE is V -bounded.

IV. ADAPTIVE ESTIMATION THROUGH MEAN

RELAXATION

Our goal in this section is, given a dataset P ∈ R
d

and a V -bounded unbiased estimator, to build a data-

structure that can efficiently approximate the mean
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μ(x) for a given query x ∈ R
d . Thus, presenting a

complete algorithmic framework that can be instantiated

for different problems.

We first address the problem of obtaining a constant

factor approximation to the mean. We exploit two facts:

(i) monotonicity of the variance in terms of μ, (ii)

concentration of measure. Monotonicity suggests that

we can start with an over estimate of the mean and

keep refining it until we come very close to the truth.

Concentration of measure allows us to come up with

a simple consistency check that recognizes when our

estimate is close enough to the query. Based on this we

propose the following adaptive algorithm for which we

get strong guarantees.

Algorithm 2 Adaptive Mean Relaxation (AMR)

1: Input: V-bounded unbiased estimator Z ∼ ν, query

x ∈ R
d, accuracy α ∈ (0, 1], threshold τ ∈ (0, 1),

failure prob. χ ∈ (0, 1).
2: ε← 2

7α, c← ε
2 , γ ← ε

7 , δ ← 2α
49 log(1/τ)χ, i← −1.

3: repeat
4: i← i+ 1, μi ← (1− γ)i,
5: Zi ← MoM ε

3 ,δ
(ν, V (μi))

6: until |Zi − μi| ≤ c · μi or i > 72 log(1/τ)
2α .

7: Output: if i ≤ 72 log(1/τ)
2α return Zi else return 0.

Lemma 4. Given a V -bounded estimator Z ∼ ν, let
Zi := MoM ε

3
(ν, V (μi)), with μi ∈ [0, 1] then

(i) for all i such that μi ≥ (1− (c+ ε))−1μ, it holds
that P[|Zi − μi| ≤ c · μi] ≤ δ.

(ii) for all 1+ ε
3

1+c μ ≤ μi ≤ μ, it holds that P[|Zi−μi| ≤
c · μi] ≥ 1− δ.

In fact, there is no need for the samples used in

different calls of the MoM routine to be independent

and we can implement the MoM routing by keeping

L(δ) = �3 log(1/δ)� running sums. We call the result-

ing algorithm AMR*.

Theorem 6 (Mean Relaxation). Let Z ∼ ν be a V -
bounded estimator with E[Z] = μ ∈ [0, 1] and Ẑ
be the output of the AMR* algorithm with parameters
(α, τ, χ). If μ ≥ τ then P[|Ẑ−μ| ≤ αμ] ≥ 1−χ other-
wise if μ < τ , P[Ẑ = 0] ≥ 1− χ. The total number of
samples used is bounded by O(α−3 log(1/χ))·V ((μ)τ ).

With this algorithm in hand we are ready to state our

main result in the abstract setting of HBE.

Theorem 7 (Main Result). Given a V -bounded HBE
with complexity T , there exists a data structure that can
answer any query in time O( 1

ε2V ((μ)τ ) log(
1
χ )T ) using

space O( 1
ε2V (τ) log( 1χ ) · nT ) with success probability

at least 1− χ.

Proof: We begin by describing the preprocessing

phase. We sample N = O(log(1/χ) 1
ε2V (τ)) hash

functions h1, . . . , hN
i.i.d.∼ ν from H and evaluate

them on the dataset P . This can be done in NT · n
time and space. The query algorithm interacts with

the data-structure by making calls to hash functions.

The data-structure always keeps the index of the last

hash function called and increments it in a cyclic

fashion after each call, thus for a given query it never

evaluates the same hash function twice and the samples

obtained are independent. When the query arrives, the

query algorithm first runs a stage of the adaptive mean

relaxation algorithm with α = 1 and probability χ/2.

Every time a sample is needed a call is made to the

data-structure. After O(V ((μ)τ log(1/χ))) calls with

probability at least 1 − χ/2 we either have a constant

factor approximation or we know that μ < τ (if AMR*

outputs 0). In the first case, we apply one level of

MoM algorithm using an underestimate of μ that uses

O( 1
ε2 log(1/χ)V ((μ)τ )) more calls and gets a (1 ± ε)

multiplicative approximation with probability at least

1− χ. In the latter, case we simply output 0.

The proof of Theorem 4 follows by invoking Theo-

rem 7 for specific V -bounded estimators that we derive

in the next two sections.

V. KDE THROUGH EUCLIDEAN LSH

In this section, we instantiate the framework of HBE

for the problem of KDE using Euclidean LSH of Datar

et al. [11]. At a high level, given a kernel k, the goal

is to design a hashing scheme such that the probability

that two points hash at the same bucket is as similar

as possible to k(x, y). We consider three such kernels:

the Exponential, the Generalized t-Student (polynomial)

and the Gaussian kernel. We show that this specific LSH

scheme can be used to construct scale-free estimators

for the first two, while for the Gaussian case, although

we cannot get a scale-free estimator, we are still able

to analyze the variance of the estimator using Theorem

1. The family of hash functions is given by:

H1(w) :=

{
h(x) =

⌈
g�x+ β

w

⌉∣∣∣∣ g ∈ R
d, β ∈ [0, w]

}

for some fixed w > 0. We define a distribution ν1 over

H1 by sampling g ∼ N (0, Id) and β ∼ U [0, w]. The

important quantity to control is the collision probability

p1(c) := Ph∼ν [h(x) = h(y)] of two points x, y at
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distance ‖x− y‖ = cw and is given by [11]:

p1(c) = 1− 2Φ(c−1)−
√

2

π
c

(
1− exp{−c−2

2
}
)

(5)

Lemma 5 (Pointwise bounds). For all c > 0

p1(c) =

√
2

π

∞∑
k=0

(−1)k
2kk!(2k + 2)(2k + 1)

1

c2k+1
(6)

while for δ ≤ 1
2 and c ≤ min

{
δ, 1√

2 ln(1/δ)

}

e−
√

2
π (1+δ)·c ≤ p1(c) ≤ e−

√
2
π (1−δ3)·c (7)

We see that this family gives bounds exponentially

decreasing with the distance. This leads naturally to our

first result for this scheme.

Theorem 8 (Exponential Kernel). For β ∈ (0, 1] there
exists a (β,

√
e)-scale free HBE for the exponential

kernel e−‖x−y‖ that has complexity O(dR2).

Proof: Set D = 3�R2�, w = D

β
√

π
2

and consider

the HBE resulting from the family H⊗D
1 (w) with prob-

ability measure ν⊗D
1 . We first see that for a pair of

points that are distance ‖x−y‖ = r apart, we have that

c = r
w = β

√
π
2

r
3
R2� ≤

β
√

π
2

3R ≤ √
π
18 ≤ 1

2 . Where

we used the fact the maximum distance of interest is

bounded by R ≥ 1. Additionally, for these parameters

it holds that e−
√

2
π cD = e−β·r. Using the second part

of Lemma 5 with δ =
β
√

π
2

3R we get

e−
√

2
π (

β
√

π
2

3R )2D ≤ pD1 (c)

e−β·r ≤ e+
√

2
π (

β
√

π
2

3R )4D (8)

Which gives us that 1√
e
· e−βr ≤ pD1 (c) ≤ √e · e−βr.

To implement the estimator we require O(R2) hash

functions that each can be evaluate in time O(d) and

requires space O(d+ n).
Although, this is to be expected given the derived

pointwise bounds on the collision probabilities, and

seems to suggest a correspondence between kernels and

hashing schemes, we show next that one can construct

a scale-free estimator for another very different kernel
using the same LSH scheme.

Theorem 9 (Generalized t-Student Kernel). For inte-
gers p, q ≥ 1, there exists a ( qp , 3

q)-scale free HBE for
the kernel 1

1+‖x−y‖p that has complexity T = O(dp).

Proof: Set w =
√
2π and consider the HBE

resulting from the family H⊗p
1 (w). We obtain bounds

for the collision probabilities for two points at distance

‖x − y‖ = r = c · w apart. For c > 1, using the first

part of Lemma 5 and dropping terms appropriately

1√
2π

(1− 1

12c2
)
1

c
≤ p1(c) ≤ 1√

2π

1

c
(9)

Setting β = q
p and raising to the q-th power we get

that for all c > 1:(
11

12

)q
(1 + rp)β

rq
≤ pq1(c)

1
(1+rp)β

≤ (1 + rp)β

rq
(10)

whereas for c ≤ 1 we have from (9) and monotonicity

of p1(c):(
11

12
√
2π

)q

(1 + rp)β ≤ pq1(c)
1

(1+rp)β

≤ (1 + rp)β (11)

Since 2−1 ≥ 11/(12
√
2π) ≥ 3−1 this shows that the

resulting estimator is ( qp , 3
q)-scale-free for the Gener-

alized t-student Kernel for all distances.

These two results combined with Theorem 5 and

Theorem 7 can be used to construct a data structure for

the KDE problem under the exponential or t-Student

kernel. More importantly, this is done effortlessly by

appealing to the the general case of HBE and only

required showing that our hashing schemes produces

scale-free estimators.

We show next that the framework of HBE can be

useful beyond the ideal scenarios where a scale-free

estimator can be derived. We do so by showing that

one can use the exponential drop-off of the collision

probabilities to simulate the Gaussian kernel and then

appeal to the more general Theorem 1 to bound its

variance.

Theorem 10. For any t ∈ [1, R] there exists a HBE Zt

for the Gaussian kernel e−‖x−y‖2 with E[Z2
t ] ≤ μ2 ·

4e
3
2μ−γ2+γ−1 where γ(t, μ) := t/

√
log(1/μ), that has

complexity T = O(dt2R2).

Proof Sketch: Fix t ≥ 1 and set D = 3�(tR)2�,
w = D

√
2
π . We consider once more the HBE resulting

from HD
1 (w) and probability measure v⊗D

1 . For a pair

of points at distance r = c · w ≤ R we have that c ≤
δ = R

w ≤ R
3t2R2

√
π
2 ≤ 1

2 . By utilizing Lemma 5 one

again we obtain 1√
e
· e−r·t ≤ pD1 (c) ≤ √

e · e−r·. To

bound the variance due to Theorem 1 we only need to

consider what happens for datasets supported only on

two points. It will be useful to consider that one point

is at distance r1 =
√

α log(1/μ) away from the query

and the other at r2 =
√

α′ log(1/μ) with 0 ≤ α ≤
α
′
. Setting γ(t, μ) = t√

log(1/μ)
the pointwise bounds
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become

1√
e
· μγ

√
α ≤ pD1 (c) ≤ √e · μγ

√
α (12)

A case analysis of the upper bound given by Theorem

1 reveals that the worst-case distances of the two points

are given by picking α = γ2 and α
′
= 1. For which,

the upper bound on the second moment becomes μ2 ·
4e

3
2 · μ−γ2+γ−1.

Even though that we were not able to get the ideal be-

havior using this hashing scheme for the Gaussian Ker-

nel, still the estimator has improved variance compared

to random sampling for all 0 < γ < 1 and achieves it’s

best performance when t = 1
2

√
log(1/μ)⇒ γ = 1

2 .

VI. SCALE-FREE ESTIMATOR BASED ON

ANDONI-INDYK LSH

Our framework of scale-free esimators is a natu-

ral desideratum when trying to approximate the ideal

function for importance sampling. In this section, we

show how to use the “Ball-Carving” LSH introduced

by Andoni-Indyk [4] for Euclidean distance to get a

scale-free estimator for the Gaussian Kernel.

Andoni and Indyk [4] introduced a family of hash

functions Ht(w) parametrized by an integer t ≥ 2,

and a width w > 0 such that the evaluation cost is

bounded by Ut = d2O(t log t) log n and space usage

by O(Ut + dn). Essentially their scheme partitions the

space by randomly projecting into t-dimensions and

then carving out balls of radius w centered at random

points. We refer to the resulting probability measure

as νt. Using a similar analysis as the one in [4] we

show the following bounds on the collision probability

pt(c) := Ph∼νt
[h(x) = h(y)] of two points x, y at

distance cw.

Lemma 6 (Pointwise Bounds). The function pt(c) is
non-increasing for all c ≥ 0, t ≥ 1. Furthermore, for
all t ≥ 12 and 16

t ≤ c2 ≤ 1

pt(c) ≥ 1

4
√
t

1

c
(1− 2e−

t
4 )e

− t−1
8

1
2−c2

c4
e−

t−1
8 c2 (13)

pt(c) ≤ 3√
t

1

c

(
1 +

√
tc

3
e−

9
64 t

)
e

t−1

82
c4e−

t−1
8 c2 (14)

Observe that for small c = O(1/poly(log n)) and

large enough t = poly(log n), the dominant term is

e−
t−1
8 c2 and drops exponentially with the squared of the

distance as desired. However, in order for the time Ut

to compute the hash function on query to be no(1), we

must have t = o(log(n)). This is the main bottleneck

that complicates a bit the application of the Andoni-

Indyk hashing scheme for our purposes.

Theorem 11 (Gaussian Kernel). For all β ∈ (0, 1]

there exists a (β, eO(R
4
3 log logn))-scale free HBE for

the Gaussian kernel e−‖x−y‖2 that has complexity T =

eO(R
4
3 log logn).

Proof: Let t := max{R 4
3 , 12}, w = 4

√
tR,D =

� 8w2

t−1β� and consider the HBE resulting from using

the family HD
t (w). The HBE can be evaluated in time

D2O(t log log(n)) and takes space D2O(t log log(n)) · n.

Next, we will show that for this selection of parameters

we get a scale-free estimator for the Gaussian kernel.

Consider two points at distance r = c · w. First, we

see that c = r
w ≤ R

w ≤ 1
4√t

≤ 1. For distances

r ≥ 4
4√t
R ⇒ c2 ≥ 16

t , our selection of D results in

the dominant term of the bounds given by Lemma 6

being e−
t−1

8w2 D·r2 = e−βr2 . Moreover,

e−Θ(D log(t))e−βr2 ≤ pDt (c) ≤ eΘ(D log(t))e−βr2 (15)

Thus, we see that for the range 4R/ 4
√
t ≤ r ≤ R we

have a scale-free estimator with M = eO(D log(t)). To

get a bound for 0 ≤ r ≤ R/ 4
√
t we use monotonicity

of pt(c) to obtain:

M−1 · e−16β R2√
t < pDt (c) ≤ eβr

2 · e−βr2 (16)

Since D = Θ(R2/
√
t) we see that we have con-

structed an (β, eO(log log(n)R2/
√
t))-scale free estimator.

Our selection of t = R4/3 balances the complexity of

evaluating the hashing function with the deviation from

the ideal collision probabilities.

The above theorem shows that as long as R =
O(logγ(n)) with 0 < γ < 3

4 the estimator is

(β, no(1))-scale free. The regime of most interest is

when γ = 1/2, where polynomially small values of

μ = n−Ω(1) are permissible. In this case, our estimator

is (β, eO(log
2
3 (n) log logn))-scale free.

VII. FAST KERNEL-MATRIX VECTOR

MULTIPLICATION

Given a kernel function k and a set of points

P = {x1, . . . , xn}, let K = {K(xi, xj)}i,j≤n denote

the matrix of the pairwise evaluations of the kernel.

Given a vector z ∈ R
n, the problem of Approxi-

mate Kernel-Matrix Vector Multiplication is to obtain

an approximation ŷ to y∗ = Kz. Due to linearity,

we can always rescale the vectors without changing

the problem, thus we may assume that ‖z‖1 = 1.

This problem is important as many machine learning

applications involve the multiplication of a vector with a

dense Kernel matrix and very often this operation is the

computational bottleneck. We show how one can adapt
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the techniques from this paper to provide a solution to

this problem.

Theorem 12. Given a V -bounded HBE for a kernel k
with complexity T , there exists an algorithm that given
a dataset P and a weight vector z can compute a vector
ŷ in time Õ( 1

ε2V (ετ)·nT ) using space Õ( 1
ε2V (ετ)·nT )

such that with probability at least 1−n−1 for all i ∈ [n]
it holds |ŷi − y∗i | ≤ 3ετ + ε|y∗i | and

‖ŷ − y∗‖p ≤ ε · (3τn1/p + ‖y∗‖p) (17)

Proof Sketch: We may assume that all elements

of z are positive otherwise we apply our algorithm to

z+ and z− separately. Set τ
′
= ετ , L = log2(n/τ

′
)

and χ = n−1. We then geometrically partition the

vector z in groups S1, . . . , SL such that all elements

in each group differ by at most a factor of two. For

coordinates that are too small (less than τ
′
/n) we just

ignore them. This can be done with a linear pass over the

vector and in this manner we may express our problem

as a weighted version of L KDE problems, where

the �-th problem asks to compute an approximation to

KDEz
S�
(x) = 1

Z�

∑
i∈S�

k(x, xi)zi with Z� =
∑

i∈S�
zi

for all x ∈ P . Given a hashing scheme H with collision

probabilities pi we evaluate the hash function during the

preprocessing step only on S� and then for a query point

x ∈ P we define the following estimator.

Zh,� =
zI
Z�

k(x, xI)

pI
|H(x)| (18)

where as before I is a random index from H(x) ⊆ S�.

It is easy to see that his estimator is unbiased and

that the variance is at most 4 times larger than if

we would be trying to estimate KDES�
(x). Hence,

given any V -bounded HBE for the kernel k and set

S� we can use the above modification to get a 4V -

bounded HBE for KDEz
S�
(x). Invoking Theorem 7 with

parameters (ε, τ
′
, χ/(nL)) we can get a data structure

that can estimate KDEz
S�
(xi) with probability at least

1 − χ
nL either within multiplicative accuracy ε (when

AMR* has non-zero output) or with absolute accuracy

τ
′

(when AMR* outputs 0) for all i ∈ [n] (by union

bound). Let L denote the set of indices of [L] such

that Z� ≥ τ
′

|L| . For all � ∈ L we instantiate the

data structure given by Theorem 7 for the set S� and

use it to query all points in P . The overhead per-

query of the whole process is at most a multiplicative

factor L = O(log(n/τ
′
)) compared to the case that

we were creating a single data-structure for the same

problem. A straightforward analysis of the estimation

error of the algorithm givers that for all i ∈ [n] with

probability at least 1−χ it holds |ŷi−y∗i | ≤ 3ετ+ε|y∗i |.

Summing over all indices and using triangle inequality

gives ‖ŷ − y∗‖p ≤ ε · (3τn1/p + ‖y∗‖p).
VIII. LOWER BOUND FOR KERNEL DENSITY

ESTIMATION

Our upper bounds on the KDE problem seem to sug-

gest that the complexity of the problem should depend

inverse polynomially with μ and ε. In this section, we

give evidence that this type of dependence is necessary.

The basic observation that motivates our lower bound

is that the Gaussian kernel is rapidly decreasing and

can be thought of as being an approximation to the

indicator function I
{‖x− y‖2 ≤ σ2

}
. In particular, for

two distances r1 = σ, r2 >
√
Cσ the kernel value varies

from e−1 = Ω(1) to e−C = o(1) for any C = ω(1).
Thus, our strategy is to reduce the Approximate Nearest
Neighbor Search (ANNS) problem to the KDE problem.

The (r, c)-ANNS problem asks, for a dataset P and

query x in some metric space, to distinguish between

two cases: (A) there is a point at distance at most r > 0
from the query and (B) all points are at distance at least

c · r with c > 1. The complexity of ANNS has been a

topic of ongoing research over the past two decades.

The most popular model of computation to prove lower

bounds for is the cell-probe model.

In this model, we are allowed an arbitrary amount of

preprocessing but can only store m cells each with w
bits of information. The query algorithm then queries

(adaptively) t cells and is required to produce the

output. We refer to this model as the (m,w, t)-cell
probe model. For ANNS, lower bounds in this model

impose constraints on m,w, t depending on n, c. The

most general result in this area is given by the following

theorem proved by Panigrahy, Talwar and Wieder [28],

whose estimates where improved by Andoni et al. [5].

Theorem 13 ([28], [5]). There exists a distribution over
(r, c)-ANNS instances and γ ∈ [0, 1] such that any
randomized algorithm in the (m,w, t)-cell probe model
which is correct with probability at least a half on these
instances, satisfies:

mtw

n
≥ sup

(q−1)(p−1)=(1− 1
c )

2,p,q≥1

{
(
γ

t
)qmt(1+ q

p−q)
}

The distribution over ANNS instances is defined by

picking n points uniformly at random from the d-

dimensional boolean hypercube and then generating a

query by picking one of the n points and keeping each

bit with probability ρ = 1 − 1
c . We show that for the

specific distribution one can use an algorithm for KDE

that would solve the corresponding ANNS problem with

more than 1/2 probability.
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Theorem 14. Any algorithm that solves the (μ, ε, δ)-
KDE problem solves also the hard instances of (r, c)-
ANNS with n = 1

μ , d = Θ(log3(n)), and c =

Θ( log(n/ε)log(1/ε) ) as long as ε ∈ [ 1n ,
1
4 ) and δ < 1

2 − 2n−1.

Proof Sketch: Let ε1 = ε, ε2 = 2ε, r =
log( n√

(1−ε1)(1−ε2)
). Using this parametrization we de-

fine: σ2 = 9 log(n)

log2
(√

1−ε1
1−ε2

) · r, d = 2σ2 · r, u =
√

6 log(n)
σ2

and c = (1+u)
log(1/4ε) log(n/

√
ε1ε2). Using Chernoff bounds

we can show that a no-instance of ANNS has KD less

than (1 − ε)μ and a yes-instance has KD more than

(1+ε)μ with probability at least 1−2n−1. We therefore,

get that any data structure for the (μ, ε, δ)-KDE problem

can also solve the c-ANN problem for random instances

with probability at least 1− δ − 2n−1.

The quality of the bounds obtained by Theorem 13

deteriorate as t increases. Nevertheless, the bound for

t = 1 is optimal and captures ANNS algorithms such as

ones based on data-independent LSH. In our setting, the

(m, 1, w)-probe model encompasses an interesting class

of estimation algorithms, that we call adaptive coresets.

Given P , such algorithms may perform an arbitrary

amount of preprocessing and store m sets S1, . . . , Sm

(of arbirary points) each of size at most w/d. Given

a query x, the algorithm picks one of those sets i =
i(x) ∈ [m] and produces an approximation to kernel

density as a function of (Si, x). This includes estimates

such as KDESi
(x) or weighted versions thereof.

Corollary 1. Any algorithm that solves the (μ, ε, δ)-
KDE problem in the (m, 1, w)-cell probe model must

satisfy: (m · w) ≥ e−O(1) 1
μ

(
1
4ε

)2(1− log(w)

log( 1
μ

)
)(1−o(1))

.

Proof Sketch: Using the parameters defined in

Theorem 14 where n = 1/μ, we invoke Theorem 13

with p = 1

1− log(1/γ)
log(1/wμ)ζ

, q = 1 + ρ2

log(1/γ) (log(
n
w )ζ −

ln(1/γ)) and ζ = 1
ρ2

√
log(1/γ)(1−ρ2)

log(1/wμ) . The final bound

follows by plugging the above parameters and using

standard inequalities like 1
1−x ≥ 1 + x.

The above lower bound shows that either we must

have many such sets (large space) or each set must be

large itself (query time). Of particular interest is the case

m = 1 where there is a single set. In that case, we have

a lower bound on the size of coresets that shows that

random sampling has the optimal dependence in terms

of μ in the 1-cell probe model.
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