
A Dichotomy for Regular Expression Membership Testing

Karl Bringmann

Max Planck Institute for Informatics
Saarbrücken Informatics Campus

Saarbrücken, Germany
Email: kbringma@mpi-inf.mpg.de

Allan Grønlund†
Computer Science

Aarhus University,
Aarhus, Denmark

Email: jallan@cs.au.dk

Kasper Green Larsen†
Computer Science
Aarhus University
Aarhus, Denmark

Email: larsen@cs.au.dk

Abstract—We study regular expression membership testing:
Given a regular expression of size m and a string of size n,
decide whether the string is in the language described by the
regular expression. Its classic O(nm) algorithm is one of the
big success stories of the 70s, which allowed pattern matching
to develop into the standard tool that it is today.

Many special cases of pattern matching have been studied
that can be solved faster than in quadratic time. However, a
systematic study of tractable cases was made possible only
recently, with the first conditional lower bounds reported
by Backurs and Indyk [FOCS’16]. Restricted to any “type”
of homogeneous regular expressions of depth 2 or 3, they
either presented a near-linear time algorithm or a quadratic
conditional lower bound, with one exception known as the
Word Break problem.

In this paper we complete their work as follows:
• We present two almost-linear time algorithms that gener-

alize all known almost-linear time algorithms for special
cases of regular expression membership testing.

• We classify all types, except for the Word Break problem,
into almost-linear time or quadratic time assuming the
Strong Exponential Time Hypothesis. This extends the
classification from depth 2 and 3 to any constant depth.

• For the Word Break problem we give an improved
Õ(nm1/3 + m) algorithm. Surprisingly, we also prove
a matching conditional lower bound for combinatorial
algorithms. This establishes Word Break as the only
intermediate problem.

In total, we prove matching upper and lower bounds for
any type of bounded-depth homogeneous regular expressions,
which yields a full dichotomy for regular expression member-
ship testing.

Keywords-regular expressions; pattern matching; algo-
rithms; computational complexity; conditional hardness; im-
proved upper bounds;

I. INTRODUCTION

A regular expression is a term involving an alphabet Σ
and the operations concatenation ◦, union |, Kleene’s star �,

and Kleene’s plus +, see Section II. In regular expression

membership testing, we are given a regular expression R and

a string s and want to decide whether s is in the language

described by R. In regular expression pattern matching, we

†Supported by the Center for Massive Data Algorithmics, a Center of
the Danish National Research Foundation, grant DNRF84. KGL is also
supported by a Villum Young Investigator grant and an AUFF starting grant.

instead want to decide whether any substring of s is in the

language described by R. A big success story of the 70s was

to show that both problems have O(nm) time algorithms [1],

where n is the length of the string s and m is the size

of R. This quite efficient running time, coupled with the

great expressiveness of regular expressions, made pattern

matching the standard tool that it is today.

Despite the efficient running time of O(nm), it would

be desirable to have even faster algorithms. A large body

of work in the pattern matching community was devoted to

this goal, improving the running time by logarithmic factors

[2], [3] and even to near-linear for certain special cases [4],

[5], [6].

A systematic study of the complexity of various special

cases of pattern matching and membership testing was made

possible by the recent advances in the field of conditional

lower bounds, where tight running time lower bounds are

obtained via fine-grained reductions from certain core prob-

lems like satisfiability, all-pairs-shortest-paths, or 3SUM

(see, e.g., [7], [8], [9], [10]). Many of these conditional

lower bounds are based on the Strong Exponential Time

Hypothesis (SETH) [11] which asserts that k-satisfiability

has no O(2(1−ε)n) time algorithm for any ε > 0 and all

k ≥ 3.

The first conditional lower bounds for pattern match-

ing problems were presented by Backurs and Indyk [12].

Viewing a regular expression as a tree where the inner

nodes are labeled by ◦, |, �, and + and the leaves are

labeled by alphabet symbols, they call a regular expression

homogeneous of type t ∈ {◦, |, �,+}d if in each level i
of the tree all inner nodes have type ti, and the depth of

the tree is at most d. Note that leaves may appear in any

level, and the degrees are unbounded. This gives rise to

natural restrictions t-pattern matching and t-membership,

where we require the regular expression to be homogeneous

of type t. The main result of Backurs and Indyk [12] is

a characterization of t-pattern matching for all types t of

depth d ≤ 3: For each such problem they either design a

near-linear time algorithm or show a quadratic lower bound

based on SETH. We observed that the results by Backurs

and Indyk actually even yield a classification for all t, not

only for depth d ≤ 3. This is not explicitly stated in [12],

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.36

307

so for completeness we prove it in this paper, see the full

version [13]. This closes the case for t-pattern matching.

For t-membership, Backurs and Indyk also prove a clas-

sification into near-linear time and “SETH-hard” for depth

d ≤ 3, with the only exception being +|◦-membership. The

latter problem is also known as the Word Break problem,

since it can be rephrased as follows: Given a string s and

a dictionary D, can s be split into words contained in D?

Indeed, a regular expression of type ◦ represents a string,

so a regular expression of type |◦ represents a dictionary,

and type +|◦ then asks whether a given string can be split

into dictionary words. Word Break is a well known interview

and programming competition question [14] and a simplified

version of a word segmentation problem from Natural Lan-

guage Processing [15]. A relatively easy algorithm solves the

Word Break problem in randomized time Õ(nm1/2 + m),
which Backurs and Indyk improved to randomized time

Õ(nm1/2−1/18 + m). Thus, the Word Break problem is

the only studied special case of membership testing (or

pattern matching) for which no near-linear time algorithm

or quadratic time hardness is known. In particular, no other

special case is “intermediate”, i.e., in between near-linear

and quadratic running time. Besides the status of Word

Break, Backurs and Indyk also leave open a classification

for d > 3.

A. Our Results

In this paper, we complete the dichotomy started by

Backurs and Indyk [12] to a full dichotomy for any depth

d. In particular, we (conditionally) establish Word Break

as the only intermediate problem for (bounded-depth ho-

mogeneous) regular expression membership testing. More

precisely, our results are as follows.

Word Break Problem: We carefully study the only

depth-3 problem left unclassified by Backurs and Indyk.

Here we improve Backurs and Indyk’s Õ(nm1/2−1/18+m)
randomized algorithm to a deterministic Õ(nm1/3 + m)
algorithm.

Theorem 1. The Word Break problem can be solved in time
O(n(m logm)1/3 +m).

We remark that often running times of the form Õ(n
√
m)

stem from a tradeoff of two approaches to a problem.

Analogously, our time Õ(nm1/3+m) stems from trading off

three approaches. Moreover, our algorithm uses Fast Fourier

Transform to efficiently compute Boolean convolutions by

multiplication of big numbers.

Very surprisingly, we also prove a matching conditional

lower bound. Our result only holds for combinatorial algo-

rithms, which is a notion without agreed upon definition,

intuitively meaning that we forbid unpractical algorithms

such as fast matrix multiplication. We use the following

hypothesis. Recall that the k-Clique problem has a trivial

O(nk) time algorithm, an O(nk/ lgk n) combinatorial algo-

rithm [16], and all known faster algorithms use fast matrix

multiplication [17], [18].

Conjecture 1. For all k ≥ 3, any combinatorial algorithm
for k-Clique takes time nk−o(1).

In a conditional lower bound for context-free grammar

parsing, Abboud et al. [19] recently used a similar hypoth-

esis, which we prove to be equivalent to Conjecture 1. See

the full version [13]. We provide a (combinatorial) reduction

from k-Clique to the Word Break problem showing:

Theorem 2. Assuming Conjecture 1, the Word Break prob-
lem has no combinatorial algorithm in time (nm1/3−ε+m)
for any ε > 0.

This is a surprising result for multiple reasons. First,

nm1/3 is a very uncommon time complexity, specifically

we are not aware of any other problem where the fastest

known algorithm has this running time. Second, it shows

that the Word Break problem is an intermediate problem

for t-membership, as it is neither solvable in almost-linear

time nor does it need quadratic time. Our results below show

that the Word Break problem is, in fact, the only intermediate

problem for t-membership, which is quite fascinating.

As mentioned, our new upper bound relies on the Fast

Fourier Transform and may be considered as not combina-

torial. On the other hand, while fast matrix multiplication

is often considered impractical, Fast Fourier Transform and

Boolean convolution have very efficient implementations. In

other words, restricted to algorithms avoiding fast matrix
multiplication our bounds are tight. We leave it as an

open problem to prove a matching lower bound without

the assumptions of “combinatorial” or “avoiding fast matrix

multiplication”.

Related to this question, note that the currently fastest

algorithm for 4-Clique is based on fast rectangular matrix

multiplication and runs in time O(n3.256689) [18], [20]. If

this bound is close to optimal, then we can still establish

Word Break as an intermediate problem (without any re-

striction to combinatorial algorithms).

Theorem 3. For any δ > 0, if 4-Clique has no O(n3+δ)
algorithm, then Word Break has no O(n1+δ/3) algorithm
for n = m.

We remark that this situation of having matching con-

ditional lower bounds only for combinatorial algorithms

is not uncommon, see, e.g., Sliding Window Hamming

Distance [21].

New Almost-Linear Time Algorithms: We establish two

more types for which the membership problem is in almost-

linear time.

Theorem 4. There is a deterministic Õ(n) + O(m) al-
gorithm for | + ◦+-membership and an expected time

308

n1+o(1) + O(m) algorithm for | + ◦|-membership. These
algorithms also work for t-membership for any subsequence
t of |+ ◦+ or |+ ◦|, respectively.

This generalizes all previously known almost-linear time

algorithms for any t-membership problem, as all such types

t are proper subsequences of | + ◦+ or | + ◦|. Moreover,

no further generalization of our algorithms is possible, as

shown below.

New Hardness Results: We prove SETH-based lower

bounds for t-membership for types +| ◦+, +| ◦ |, and |+ |◦.
Theorem 5. For types +| ◦+, +| ◦ |, and |+ |◦ membership
takes time (nm)1−o(1) unless SETH fails.

Due to lack of space these proofs can only be found in

the full version [13].

Dichotomy: We complement the classification for t-
membership started by Backurs and Indyk for d ≤ 3 to give

a complete dichotomy for all types t. To this end, we first

establish the following simplification rules.

Lemma 1. For any type t, applying any of the follow-
ing rules yields a type t′ such that t-membership and t′-
membership are equivalent under linear-time reductions:

1) replace any substring pp, for any p ∈ {◦, |, �,+}, by
p,

2) replace any substring +|+ by +|,
3) replace prefix r� by r+ for any r ∈ {+, |}∗.

We say that t-membership simplifies if one of these rules
applies. Applying these rules in any order will eventually
lead to an unsimplifiable type.

We show the following dichotomy. Note that we do not

have to consider simplifying types, as they are equivalent to

some unsimplifiable type.

Theorem 6. For any t ∈ {◦, |, �,+}∗ one of the following
holds:
• t-membership simplifies,
• t is a subsequence of | + ◦+ or | + ◦|, and thus t-

membership is in almost-linear time (by Theorem 4),
• t = +|◦, and thus t-membership is the Word Break

problem taking time (nm1/3+m)1±o(1) (by Theorems 1
and 2, assuming Conjecture 1), or

• t-membership takes time (nm)1−o(1), assuming SETH.

This yields a complete dichotomy for any constant depth

d. We discussed the algorithmic results and the results

for Word Break before. Regarding the hardness results,

Backurs and Indyk [12] gave SETH-hardness proofs for t-
membership on types ◦�, ◦|◦, ◦ + ◦, ◦|+, and ◦ + |. We

provide further SETH-hardness for types +| ◦+, +| ◦ |, and

|+ |◦. To get from these (hard) core types to all remaining

hard types, we would like to argue that all hard types contain

one of the core types as a subsequence and thus are at least as

hard. However, arguing about subsequences fails in general,

since the definition of “homogeneous with type t” does not

allow to leave out layers. This makes it necessary to proceed

in a more ad-hoc way.

In summary, we provide matching upper and lower bounds

for any type of bounded-depth homogeneous regular expres-

sions, which yields a full dichotomy for the membership

problem.

II. PRELIMINARIES

A regular expression is a tree with leaves labelled by

symbols in an alphabet Σ and inner nodes labelled by ◦
(at least one child), | (at least one child), + (exactly one

child), or � (exactly one child).1 The size of a regular

expression is the number of tree nodes, and its depth is

the length of the longest root-to-leaf path. The language

described by a regular expression is recursively defined as

follows. A leaf v labelled by c ∈ Σ describes the language

L(v) := {c}, consisting of one word of length 1. Consider

an inner node v with children v1, . . . , v�. If v is labelled

by ◦ then it describes the language {s1 . . . s� | s1 ∈
L(v1), . . . , sk ∈ L(v�)}, i.e., all concatenations of strings in

the children’s languages. If v is labelled by | then it describes

the language L(v) := L(v1) ∪ . . . L(v�). If v is labelled +,

then its degree � must be 1 and it describes the language

L(v) := {s1 . . . sk | k ≥ 1 and s1, . . . , sk ∈ L(v1)}, and if

v is labelled � then the same statement holds with “k ≥ 1”

replaced by “k ≥ 0”. we say that a string s matches a regular

expression R if s is in the language described by R.

We use the following definition given in [12]. We

let {◦, |, �,+}∗ be the set of all finite sequences over

{◦, |, �,+}; we also call this the set of types. For any

t ∈ {◦, |, �,+}∗ we denote its length by |t| and its i-th entry

by ti. We say that a regular expression is homogeneous of
type t if it has depth at most |t|+1 (i.e., any inner node has

level in {1, . . . , |t|}), and for any i, any inner node in level

i is labelled by ti. We also say that the type of any inner

node at level i is ti. This does not restrict the appearance of

leaves in any level.

Definition 1. A linear-time reduction from t-membership
to t′-membership is an algorithm that, given a regular
expression R of type t and length m and a string s of length
n, in total time O(n+m) outputs a regular expression R′

of type t′ and size O(m), and a string s′ of length O(n)
such that s matches R if and only if s′ matches R′.

The Strong Exponential Time Hypothesis (SETH) was

introduced by Impagliazzo, Paturi, and Zane [22] and is

defined as follows.

1All our algorithms work in the general case where ◦ and | may have
degree 1. For the conditional lower bounds, it may be unnatural to allow
degree 1 for these operations. If we restrict to degrees at least 2, it is
possible to adapt our proofs to prove the same results, but this is tedious
and we think that the required changes would be obscuring the overall
point.

309

Conjecture 2. For no ε > 0, k-SAT on N variables can be
solved in time O(2(1−ε)N) for all k ≥ 3.

Very often it is easier to show SETH-hardness based on

the intermediate problem Orthogonal Vectors (OV): Given

two sets of d-dimensinal vectors A,B ⊆ {0, 1}d with |A| =
|B| = n, determine if there exist vectors a ∈ A, b ∈ B
such that

∑d
i=1 a[i] · b[i] = 0. The following OV-conjecture

follows from SETH [23].

Conjecture 3. For any ε > 0 there is no algorithm for OV
that runs in time O(n2−εpoly(d)).

To start off the proof for the dichotomy, we have the

following hardness results from [12].

Theorem 7. For any type t among ◦�, ◦|◦, ◦+ ◦, ◦|+, and
◦+|, any algorithm for t-membership takes time (nm)1−o(1)

unless SETH fails.

III. CONDITIONAL LOWER BOUND FOR WORD BREAK

In this section we prove our conditional lower bounds for

the Word Break problem, Theorems 2 and 3. Both theorems

follow from the following reduction.

Theorem 8. For any k ≥ 4, given a k-Clique instance
on n vertices, we can construct an equivalent Word Break
instance on a string of length O(nk−1) and a dictionary D
of total size ‖D‖ =

∑
d∈D |d| = O(n3). The reduction is

combinatorial and runs in linear time in the output size.

First lets us see why this implies Theorems 2 and 3.

Proof of Theorem 2: Suppose for the sake of contradic-

tion that Word Break can be solved combinatorially in time

O(nm1/3−ε+m). Then our reduction yields a combinatorial

algorithm for k-Clique in time O(nk−1 · (n3)1/3−ε) =
O(nk−3ε), contradicting Conjecture 1.

Proof of Theorem 3: Assuming that 4-Clique has no

O(n3+δ) algorithm for some δ > 0, we want to show that

Word Break has no O(n1+δ/3) algorithm for n = m.

Setting k = 4 in the above reduction yields a string and a

dictionary, both of size O(n3) (which can be padded to the

same size). Thus, an O(n1+δ/3) algorithm for Word Break

with n = m would yield an O(n3+δ) algorithm for 4-Clique,

contradicting the assumption.

It remains to prove Theorem 8. Let G = (V,E) be an

n-node graph on which we want to determine whether there

is a k-clique. The main idea of our reduction is to construct

a gadget that for any (k − 2)-clique S ⊂ V can determine

whether there are two nodes u, v ∈ V \S such that (u, v) ∈
E and both u and v are connected to all nodes in S, i.e.,

S ∪ {u, v} forms a k-clique in G. For intuition, we first

present a simplified version of our gadgets and then show

how to modify them to obtain the final reduction.

Simplified Neighborhood Gadget: Given a (k − 2)-
clique S, the purpose of our first gadget is to test whether

there is a node u ∈ V that is connected to all nodes

in S. Assume the nodes in V are denoted v1, . . . , vn.

The alphabet Σ over which we construct strings has a

symbol i for each vi. Furthermore, we assume Σ has special

symbols # and $. The simplified neighborhood gadget for

S = {vi1 , . . . , vik−2
} has the text T being

$123 · · ·n#i1#123 · · ·n#i2#123 · · ·#ik−2#123 · · ·n$

and the dictionary D contains for every edge (vi, vj) ∈ E,

the string:

i(i+ 1) · · ·n#j#123 · · · (i− 2)(i− 1)

and for every node vi, the two strings

$123 · · · (i− 2)(i− 1) i(i+ 1) · · ·n$

The idea of the above construction is as follows: Assume we

want to break T into words. The crucial observation is that to

match T using D, we have to start with $123 · · · (i−2)(i−1)
for some node vi. The only way we can possibly match

the following part i(i+ 1) · · ·n#i1# is if D has the string

i(i+1) · · ·n#i1#123 · · · (i− 2)(i− 1). But this is the case

if and only if (vi, vi1) ∈ E, i.e. vi is a neighbor of vi1 .

If indeed this is the case, we have now matched the prefix

#i1#123 · · · (i−2)(i−1) of the next block. This means that

we can still only use strings starting with i(i+ 1) · · · from

D. Repeating this argument for all vij ∈ S, we conclude

that we can break T into words from D if and only if there

is some node vi that is a neighbor of every node vij ∈ S.

Simplified k-Clique Gadget: With our neighborhood

gadget in mind, we now describe the main ideas of our

gadget that for a given (k − 2)-clique S can test whether

there are two nodes vi, vj such that (vi, vj) ∈ E and vi and

vj are both connected to all nodes of S, i.e., S ∪ {vi, vj}
forms a k-clique.

Let TS denote the text used in the neighborhood gadget

for S, i.e.

$123 · · ·n#i1#123 · · ·n#i2#123 · · ·#ik−2#123 · · ·n$

Our k-clique gadget for S has the following text T :

TSγTS

where γ is a special symbol in Σ. The dictionary D has the

strings mentioned in the neighborhood gadget, as well as the

string

i(i+ 1) · · ·n$γ$123 · · · (j − 1)

for every edge (vi, vj) ∈ E. The idea of this gadget is as

follows: Assume we want to break T into words. We have

to start using the dictionary string $123 · · · (i− 1) for some

node vi. For such a candidate node vi, we can match the

prefix

$123 · · ·n#i1#123 · · ·n#i2#123 · · ·n# · · ·n#ik−2#

310

of TSγTS if and only if vi is a neighbor of every node in S.

Furthermore, the only way to match this prefix (if we start

with $123 · · · (i− 1)) covers precisely the part:

$123 · · ·n#i1#123 · · ·n#i2 · · ·#ik−2#123 · · · (i−2)(i−1)

Thus if we want to also match the γ, we can only use strings

i(i+ 1) · · ·n$γ$123 · · · (j − 1)

for an edge (vi, vj) ∈ E. Finally, by the second neigh-

borhood gadget, we can match the whole string TSγTS if

and only if there are some nodes vi, vj such that vi is a

neighbor of every node in S (we can match the first TS),

and (vi, vj) ∈ E (we can match the γ) and vj is a neighbor

of every node in S (we can match the second TS), i.e.,

S ∪ {vi, vj} forms a k-clique.

Combining it all: The above gadget allows us to test

for a given (k − 2)-clique S whether there are some two

nodes vi and vj we can add to S to get a k-clique. Thus,

our next step is to find a way to combine such gadgets for

all the (k − 2)-cliques in the input graph. The challenge is

to compute an OR over all of them, i.e. testing whether at

least one can be extended to a k-clique. For this, our idea is

to replace every symbol in the above constructions with 3

symbols and then carefully concatenate the gadgets. When

we start matching the string T against the dictionary, we

are matching against the first symbol of the first (k − 2)-
clique gadget, i.e. we start at an offset of zero. We want to

add strings to the dictionary that always allow us to match

a clique gadget if we have an offset of zero. These strings

will then leave us at offset zero in the next gadget. Next, we

will add a string that allow us to change from offset zero to

offset one. We will then ensure that if we have an offset of

one when starting to match a (k− 2)-clique gadget, we can

only match it if that clique can be extended to a k-clique. If

so, we ensure that we will start at an offset of two in the next

gadget. Next, we will also add strings to the dictionary that

allow us to match any gadget if we start at an offset of two,

and these strings will ensure we continue to have an offset

of two. Finally, we append symbols at the end of the text

that can only be matched if we have an offset of two after

matching the last gadget. To summarize: Any breaking of T
into words will start by using an offset of zero and simply

skipping over (k − 2)-cliques that cannot be extended to a

k-clique. Then once a proper (k−2)-clique is found, a string

of the dictionary is used to change the start offset from zero

to one. Finally, the clique is matched and leaves us at an

offset of two, after which the remaining string is matched

while maintaining the offset of two.

We now give the final details of the reduction. Let G =
(V,E) be the n-node input graph to k-clique. We do as

follows:

1) Start by iterating over every set of (k − 2) nodes S
in G. For each such set of nodes, test whether they

form a (k− 2)-clique in O(k2) time. Add each found

(k − 2)-clique S to a list L.

2) Let α, β, γ, μ,# and $ be special symbols in the

alphabet. For a string T = t1t2t3 · · · tm, let

[T]
(0)
α,β = αt1βαt2β · · ·αtmβ

and

[T]
(1)
α,β = t1βαt2βαt3β · · ·αtmβα

For each node vi ∈ V , add the following two strings

to the dictionary D:

[$123 · · · (i− 2)(i− 1)]
(1)
α,β [i(i+ 1) · · ·n](1)α,β

3) For each edge (vi, vj) ∈ E, add the following two

strings to the dictionary:

[i(i+ 1) · · ·n#j#123 · · · (i− 2)(i− 1)]
(1)
α,β

and

[i(i+ 1) · · ·n$γ$123 · · · (j − 1)]
(1)
α,β

4) For each symbol σ amongst {1, . . . , n, $,#, γ, μ}, add

the following two string to D:

ασβ βασ

Intuitively, the first of these strings is used for skipping

a gadget if we have an offset of zero, and the second

is used for skipping a gadget if we have an offset of

two.

5) Also add the three strings

αμβα $βαμ βμμ

to the dictionary. The first is intuitively used for

changing from an offset of zero to an offset of one

(begin matching a clique gadget), the second is used

for changing from an offset of one to an offset of two

in case a clique gadget could be matched, and the last

string is used for matching the end of T if an offset

of two has been achieved.

6) We are finally ready to describe the text T . For a

(k − 2)-clique S = {vi1 , . . . , vik−2
}, let TS be the

neighborhood gadget from above, i.e.

$123 · · ·n#i1#123 · · ·n#i2# · · ·#ik−2#123 · · ·n$
For each S ∈ L (in some arbitrary order), we append

the string:

[μTSγTSμ]
(0)
α,β

to the text T . Finally, once all these strings have been

appended, append another two μ’s to T . That is, the

text T is:

T :=
(
◦S∈L[μTSγTSμ]

(0)
α,β

)
μμ

We want to show that the text T can be broken into words

from the dictionary D iff there is a k-clique in the input

311

graph. Assume first there is a k-clique S in G = (V,E).
Let S′ be an arbitrary subset of k − 2 nodes from S.

Since these form a (k − 2)-clique, it follows that T has

the substring [μTS′γTS′μ]
(0)
α,β . To match T using D, do as

follows: For each S′′ preceeding S′ in L, keep using the

strings ασβ from step 4 above to match. This allows us to

match everything preceeding [μTS′γTS′μ]
(0)
α,β in T . Then use

the string αμβα to match the beginning of [μTS′γTS′μ]
(0)
α,β .

Now let vi and vj be the two nodes in S \ S′. Use the

string [$123 · · · (i− 2)(i− 1)]
(1)
α,β to match the next part of

[μTS′γTS′μ]
(0)
α,β . Then since S is a k-clique, we have the

string [i(i + 1) · · ·n#h#123 · · · (i − 2)(i − 1)]
(1)
α,β in the

dictionary for every vh ∈ S′. Use these strings for each

vh ∈ S′. Again, since S is a k-clique, we also have the

edge (vi, vj) ∈ E. Thus we can use the string

[i(i+ 1) · · ·n$γ$123 · · · (j − 1)]
(1)
α,β

to match across the γ in [μTS′γTS′μ]
(0)
α,β . We then re-

peat the argument for vj and repeatedly use the strings

[j(j + 1) · · ·n#h#123 · · · (j − 2)(j − 1)]
(1)
α,β to match the

second TS′ . We finish by using the string [j(j+1) · · ·n](1)α,β

followed by using $βαμ. We are now at an offset where

we can repeatedly use βασ to match across all remaining

[μTS′′γTS′′μ]
(0)
α,β . Finally, we can finish the match by using

βμμ after the last substring [μTS′′γTS′′μ]
(0)
α,β .

For the other direction, assume it is possible to break

T into words from D. By construction, the last word used

has to be βμμ. Now follow the matching backwards until

a string not of the form βασ was used. This must happend

eventually since T starts with α. We are now at a position in

T where the suffix can be matched by repeatedly using βασ,

and then ending with βμμ. By construction, T has ασ just

before this suffix for some σ ∈ {1, . . . , n, $,#, γ, μ}. The

only string in D that could match this without being of the

form βασ is the one string $βαμ. It follows that we must

be at the end of some substring [μTS′γTS′μ]
(0)
α,β and used

$βαμ for matching the last μ. To match the preceeding n in

the last TS′ , we must have used a string [j(j + 1) · · ·n](1)α,β

for some vj . The only strings that can be used preceeding

this are strings of the form [j(j + 1) · · ·n#h#123 · · · (j −
2)(j − 1)]

(1)
α,β . Since we have matched T , it follows that

(vj , vh) is in E for every vh ∈ S′. Having traced back

the match across the last TS′ in [μTS′γTS′μ]
(0)
α,β , let vi be

the node such that the string [i(i + 1) · · ·n$γ$123 · · · (j −
1)]

(1)
α,β was used to match the γ. It follows that we must

have (vi, vj) ∈ E. Tracing the matching through the first

TS′ in [μTS′γTS′μ]
(0)
α,β , we conclude that we must also have

(vi, vh) ∈ E for every vh ∈ S′. This establishes that S′ ∪
{vi, vj} forms a k-clique in G.

Finishing the proof: From the input graph G, we

constructed the Word Break instance in time O(nk−2k2)

plus the time needed to output the text and the dictionary.

For every edge (vi, vj) ∈ E, we added two strings to D,

both of length O(n). Furthermore, D had two O(n) length

strings for each node vi ∈ V and another O(n) strings

of constant length. Thus the total length of the strings in

D is M = O(|E|n + n) = O(n3). The text T has the

substring [μTS′γTS′μ]
(0)
α,β for every (k − 2)-clique S. Thus

T has length N = O(nk−1) (assuming k is constant). The

entire reduction takes O(nk−1 + n3) time for constant k.

This finishes the reduction and proves Theorem 8.

IV. ALGORITHM FOR WORD BREAK

In this section we present an Õ(nm1/3+m) algorithm for

the Word Break problem, proving Theorem 1. Our algorithm

uses many ideas of the randomized Õ(nm1/2−1/18 + m)
algorithm by Backurs and Indyk [12], in fact, it can be seen

as a cleaner execution of their main ideas. Recall that in

the Word Break Problem we are given a set of strings D =
{d1, . . . , dk} (the dictionary) and a string s (the text) and

we want to decide whether s can be (D-)partitioned, i.e.,

whether we can write s = s1 . . . sr such that si ∈ D for all

i. We denote the length of s by n and the total size of D
by m := ‖D‖ := ∑k

i=1 |di|.
We say that we can (D-)jump from j to i if the substring

s[j+1..i] is in D. Note that if s[1..j] can be partitioned and

we can jump from j to i then also s[1..i] can be partitioned.

Moreover, s[1..i] can be partitioned if and only if there exists

0 ≤ j < i such that s[1..j] can be partitioned and we can

jump from j to i. For any power of two q ≥ 1, we let

Dq := {d ∈ D | q ≤ |d| < 2q}.
In the algorithm we want to compute the set T of all

indices i such that s[1..i] can be partitioned (where 0 ∈ T ,

since the empty string can be partitioned). The trivial O(nm)
algorithm computes T ∩{0, . . . , i} one by one, by checking

for each i whether for some string d in the dictionary we

have s[i−|d|+1..i] = d and i−|d| ∈ T , since then we can

extend the existing partitioning of s[1..i− |d|] by the string

d to a partitioning of s.

In our algorithm, when we have computed the set T ∩
{0, . . . , x}, we want to compute all possible “jumps” from

a point before x to a point after x using dictionary words

with length in [q, 2q) (for any power of two q). This gives

rise to the following query problem.

Lemma 2. On dictionary D and string s, consider the
following queries:
• Jump-Query: Given a power of two q ≥ 1, an index x

in s, and a set S ⊆ {x− 2q + 1, . . . , x}, compute the
set of all x < i ≤ x + 2q such that we can Dq-jump
from some j ∈ S to i.

We can preprocess D, s in time O(n logm + m) such
that queries of the above form can be answered in time
O(min{q2,√qm log q}), where m is the total size of D and
n = |s|.

312

Before we prove that jump-queries can be answered in

the claimed running time, let us show that this implies an

Õ(nm1/3+m)-time algorithm for the Word Break problem.

Proof of Theorem 1: The algorithm works as follows.

After initializing T := {0}, we iterate over x = 0, . . . , n−1.

For any x, and any power of two q ≤ n dividing x, define

S := T∩{x−2q+1, . . . , x}. Solve a jump-query on (q, x, S)
to obtain a set R ⊆ {x+ 1..x+ 2q}, and set T := T ∪R.

To show correctness of the resulting set T , we have to

show that i ∈ {0, . . . , n} is in T if and only if s[1..i] can be

partitioned. Note that whenever we add i to T then s[1..i]
can be partitioned, since this only happens when there is a

jump to i from some j ∈ T , j < i, which inductively yields

a partitioning of s[1..i]. For the other direction, we have

to show that whenever s[1..i] can be partitioned then we

eventually add i to T . This is trivially true for the empty

string (i = 0). For any i > 0 such that s[1..i] can be

partitioned, consider any 0 ≤ j < i such that s[1..j] can

be partitioned and we can jump from j to i. Round down

i − j to a power of two q, and consider any multiple x of

q with j ≤ x < i. Inductively, we correctly have j ∈ T .

Moreover, this holds already in iteration x, since after this

time we only add indices larger than x to T . Consider the

jump-query for q, x, and S := T ∩ {x − 2q + 1, . . . , x}
in the above algorithm. In this query, we have j ∈ S and

we can jump from j to i, so by correctness of Lemma 2

the returned set R contains i. Hence, we add i to T , and

correctness follows.

For the running time, since there are O(n/q) multiples

of 1 ≤ q ≤ n in {0, . . . , n − 1}, there are O(n/q)
invocations of the query algorithm with power of two q ≤ n.

Thus, the total time of all queries is up to constant factors

bounded by
∑logn

�=0
n
2�
· min

{
(2�)2,

√
2�m log(2�)

}
= n ·

∑logn
�=0 min

{
2�,

√
m�/2�

}
. We split the sum at a point �∗

where 2�
∗
= Θ((m logm)1/3) and use the first term for

smaller � and the second for larger. Using
∑b

i=a 2
i = O(2b)

and
∑b

i=a

√
i/2i = O(

√
a/2a), we obtain the upper bound

≤ n · ∑�∗

�=0 2
� + n · ∑logn

�=�∗+1

√
m�/2� = O

(
n2�

∗
+

n
√
m�∗/2�∗

)
= O

(
n(m logm)1/3

)
, since �∗ = O(logm)

by choice of 2�
∗

= Θ((m logm)1/3). Together with the

preprocessing time O(n logm+m) of Lemma 2, we obtain

the desired running time O(n(m logm)1/3 +m).
It remains to design an algorithm for jump-queries. We

present two methods, one with query time O(q2) and one

with query time O(
√
qm log q). The combined algorithm,

where we first run the preprocessing of both methods, and

then for each query run the method with the better guarantee

on the query time, proves Lemma 2.

A. Jump-Queries in Time O(q2)

The dictionary matching algorithm by Aho and Cora-

sick [6] yields the following statement.

Lemma 3. Given a set of strings D′, in time O(‖D′‖) one
can build a data structure allowing the following queries.
Given a string s′ of length n′, we compute the set Z of all
substrings of s′ that are contained in D′, in time O(n′ +
|Z|) ≤ O(n′2).

With this lemma, we design an algorithm for jump-queries

as follows. In the preprocessing, we simply build the data

structure of the above lemma for each Dq , in total time

O(m).
For a jump-query (q, x, S), we run the query of the above

lemma on the substring s[x − 2q + 1..x + 2q] of s. This

yields all pairs (j, i), x − 2q < j < i ≤ x + 2q, such

that we can Dq-jump from j to i. Iterating over these pairs

and checking whether j ∈ S gives a simple algorithm for

solving the jump-query. The running time is O(q2), since

the query of Lemma 3 runs in time quadratic in the length

of the substring s[x− 2q + 1..x+ 2q].

B. Jump-Queries in Time O(
√
qm log q)

The second algorithm for jump-queries is more involved.

Note that if q > m then Dq = ∅ and the jump-query is

trivial. Hence, we may assume q ≤ m, in addition to q ≤ n.

Preprocessing: We denote the reverse of a string d by

drev, and let Drev
q := {drev | d ∈ Dq}. We build a trie Tq for

each Drev
q . Recall that a trie on a set of strings is a rooted

tree with each edge labeled by an alphabet symbol, such that

if we orient edges away from the root then no node has two

outgoing edges with the same labels. We say that a node v
in the trie spells the word that is formed by concatenating

all symbols on the path from the root to v. The set of strings

spelled by the nodes in Tq is exactly the set of all prefixes

of strings in Drev
q . Finally, we say that the nodes spelling

strings in Drev
q are marked. We further annotate the trie Tq

by storing for each node v the lowest marked ancestor mv .

In the preprocessing we also run the algorithm of the

following lemma.

Lemma 4. The following problem can be solved in total time
O(n logm+m). For each power of two q ≤ min{n,m} and
each index i in string s, compute the minimal j = j(i) such
that s[j..i] is a suffix of a string in Dq . Furthermore, compute
the node v(q, i) in Tq spelling the string s[j(i)..i]

rev.

Note that the second part of the problem is well-defined:

Tq stores the reversed strings Drev
q , so for each suffix x of

a string in Dq there is a node in Tq spelling xrev.

Proof: First note that the problem decomposes over q.

Indeed, if we solve the problem for each q in time O(‖Dq‖+
n), then over all q the total time is O(m+n logm), as the Dq

partition D and there are O(logm) powers of two q ≤ m.

Thus, fix a power of two q ≤ min{n,m}. It is natural to

reverse all involved strings, i.e., we instead want to compute

for each i the maximal j such that srev[i..j] is a prefix of a

string in Drev
q .

313

Recall that a suffix tree is a compressed trie containing

all suffixes of a given string s′. In particular, “compressed”

means that if the trie would contain a path of degree 1 nodes,

labeled by the symbols of a substring s′[i..j], then this path

is replaced by an edge, which is succinctly labeled by the

pair (i, j). We call each node of the uncompressed trie a

position in the compressed trie, in other words, a position

in a compressed trie is either one of its nodes or a pair

(e, k), where e is one of the edges, labeled by (i, j), and

i < k < j. A position p is an ancestor of a position p′

if the corresponding nodes in the uncompressed tries have

this relation, i.e., if we can reach p from p′ by going up

the uncompressed trie. It is well-known that suffix trees

have linear size and can be computed in linear time [24].

In particular, iterating over all nodes of a suffix tree takes

linear time, while iterating over all positions can take up to

quadratic time (as each of the n suffixes may give rise to

Ω(n) positions on average).

We compute a suffix tree S of srev. Now we determine

for each node v in Tq the position pv in S spelling the

same string as v, if it exists. This task is easily solved by

simultaneously traversing Tq and S, for each edge in Tq
making a corresponding move in S, if possible. During this

procedure, we store for each node in S the corresponding

node in Tq , if it exists. Moreover, for each edge e in S
we store (if it exists) the pair (v, k), where k is the lowest

position (e, k) corresponding to some node in Tq , and v is

the corresponding node in Tq . Note that this procedure runs

in time O(‖Dq‖), as we can charge all operations to nodes

in Tq .

Since S is a suffix tree of srev, each leaf u of S cor-

responds to some suffix srev[i..n] of srev. With the above

annotations of S, iterating over all nodes in S we can

determine for each leaf u the lowest ancestor position p
of u corresponding to some node v in Tq . It is easy to see

that the string spelled by v is the longest prefix shared by

srev[i..n] and any string in Drev
q . In other words, denoting by

� the length of the string spelled by v (which is the depth

of v in Tq), the index j := i + � − 1 is maximal such that

srev[i..j] is a prefix of a string in Drev
q . Undoing the reversing,

j′ := n + 1 − j is minimal such that s[j′..n + 1 − i] is a

suffix of a string in Dq . Hence, setting v(q, n+ 1− i) := v
solves the problem.

This second part of this algorithm performs one iteration

over all nodes in S , taking time O(n), while we charged the

first part to the nodes in Tq , taking time linear in the size of

Dq . In total over all q, we thus obtain the desired running

time O(n logm+m).

For each Tq , we also compute a maximal packing of

paths with many marked nodes, as is made precise in the

following lemma. Recall that in the trie T ′ for dictionary

D′ the marked nodes are the ones spelling the strings in D′.

Lemma 5. Given any trie T and a parameter λ, a λ-packing

is a family B of pairwise disjoint subsets of V (T) such that
(1) each B ∈ B is a directed path in T , i.e., it is a path
from some node rB to some descendant vB of rB , (2) rB
and vB are marked for any B ∈ B, and (3) each B ∈ B
contains exactly λ marked nodes.

In time O(|V (T)|) we can compute a maximal (i.e., non-
extendable) λ-packing.

Proof: We initialize B = ∅. We perform a depth first

search on T , remembering the number �v of marked nodes

on the path from the root to the current node v. When v is a

leaf and �v < λ, then v is not contained in any directed path

containing λ marked nodes, so we can backtrack. When we

reach a node v with �v = λ, then from the path from the

root to v we delete the (possibly empty) prefix of unmarked

nodes to obtain a new set B that we add to B. Then we

restart the algorithm on all unvisited subtrees of the path

from the root to v. Correctness is immediate.

For any power of two q ≤ min{n,m}, we set λq :=(
m
q log q

)1/2
and compute a λq-packing Bq of Tq , in total

time O(m). In Tq , we annotate the highest node rB of each

path B ∈ B as being the root of B. This concludes the

preprocessing.

Query Algorithm: Consider a jump-query (q, x, S) as

in Lemma 2. For any B ∈ B let dB
rev be the string spelled

by the root rB of B in Tq , and let πB = (u1, . . . , uk) be

the path from the root of T to the root rB of B (note that

the labels of πB form dB
rev). We set SB := {1 ≤ i ≤

k | ui is marked}, which is the set containing the length of

any prefix of dB
rev (corresponding to a suffix of dB) that is

contained in Drev
q , as the marked nodes in Tq correspond to

the strings in Drev
q .

As the first part of the query algorithm, we compute the

sumsets S + SB := {i+ j | i ∈ S, j ∈ SB} for all B ∈ B.

Now consider any x < i ≤ x+ 2q. By the preprocessing

(Lemma 4), we know the minimal j such that s[j..i] is a

suffix of some d ∈ Dq , and we know the node v := v(q, i)
in Tq spelling s[j..i]

rev
. The path σ from the root to v in Tq

spells the reverse of s[j..i]. It follows that the strings d ∈ Dq

such that s[i − |d| + 1..i] = d correspond to the marked

nodes on σ. To solve the jump-query (for i) it would thus

be sufficient to check for each marked node u on σ whether

for the depth j of u we have i − j ∈ S, as then we can

Dq-jump from i − j to j and have i − j ∈ S. Note that

we can efficiently enumerate the marked nodes on σ, since

each node in Tq is annotated with its lowest marked ancestor.

However, there may be up to Ω(q) marked nodes on σ, so

this method would again result in running time Θ(q) for

each i, or Θ(q2) in total.

Hence, we change this procedure as follows. Starting in

v = v(q, i), we repeatedly go the lowest marked ancestor

and check whether it gives rise to a partitioning of s[1..i],
until we reach the root rB of some B ∈ B. Note that by

maximality of B we can visit less than λq marked ancestors

314

before we meet any node of some B ∈ B, and it takes less

than λq more steps to lowest marked ancestors to reach the

root rB . Thus, this part of the query algorithm takes time

O(λq). Observe that the remainder of the path σ equals πB .

We thus can make use of the sumset S+SB as follows. The

sumset S + SB contains i if and only if for some 1 ≤ j ≤
|πB | we have i− j ∈ S and we can Dq-jump from i− j to

i. Hence, we simply need to check whether i ∈ S + SB to

finish the jump-query for i.
Running Time: As argued above, the second part of the

query algorithm takes time O(λq) for each i, which yields

O(q · λq) in total.

For the first part of computing the sumsets, first note that

Dq contains at most m/q strings, since its total size is at

most m and each string has length at least q. Thus, the total

number of marked nodes in Tq is at most m/q. As each

B ∈ B contains exactly λq marked nodes, we have

|B| ≤ m/(q · λq). (1)

For each B ∈ B we compute a sumset S + SB . Note

that S and SB both live in universes of size O(q), since

S ⊆ {x − 2q + 1, . . . , x} by definition of jump-queries,

and all strings in Dq have length less than 2q and thus

|SB | ⊆ {1, . . . , 2q}. After translation, we can even as-

sume that S, SB ⊆ {1, . . . , O(q)}. It is well-known that

computing the sumset of X,Y ⊆ {1, . . . , U} is equivalent

to computing the Boolean convolution of their indicator

vectors of length U . The latter in turn can be reduced

to multiplication of O(U logU)-bit numbers, by padding

every bit of an indicator vector with O(logU) zero bits

and concatenating all padded bits. Since multiplication is in

linear time on the Word RAM, this yields an O(U logU)
algorithm for sumset computation. Hence, performing a

sumset computation S + SB can be performed in time

O(q log q). Over all B ∈ B, we obtain a running time of

O(|B| · q log q) = O((m log q)/λq), by the bound (1).

Summing up both parts of the query algorithm yields

running time O(q ·λq +(m log q)/λq). Note that our choice

of λq =
(
m
q log q

)1/2
minimizes this time bound and yields

the desired query time O(
√
qm log q). This finishes the proof

of Lemma 2.

V. ALMOST-LINEAR TIME ALGORITHMS

In this section we prove the second part of Theorem 4, i.e.

we present our expected n1+o(1)+O(m) time algorithm for

|+ ◦|-membership. Due to lack of space, our Õ(n)+O(m)
time algorithm for |+◦+-membership can be found only in

the full version [13].

A. Almost-linear Time for |+ ◦|
For a given length-n string T and length-m regular ex-

pression R of type |+◦|, over an alphabet Σ, let R1, . . . , Rk

denote the regular expressions of type ◦| such that R =
R+

1 |R+
2 | · · · |R+

k |σ1| · · · |σj . Here the σj’s are characters

from Σ (recall that in the definition of homogenous regular

expressions we allow leaves in any depth, so we can have

the single characters σi in R). Since the σi’s are trivial to

handle, we ignore them in the remainder.

For convenience, we index the characters of T by

T [0], . . . , T [n−1]. For R to match T , it must be the case that

R+
i matches T for some index i. Letting �i be the number

of ◦’s in Ri, we define Si,j ⊆ Σ for j = 0, . . . , �i as the set

of characters from Σ such that

Ri = (|σ∈Si,0σ) ◦ (|σ∈Si,1σ) ◦ · · · ◦ (|σ∈Si,�i
σ).

Note that if a leaf appears in the |-level, then the set Si,j is

simply a singleton set.

We observe that T matches R+
i iff (�i+1) divides |T | = n

and T [j] ∈ Si,j mod(�i+1) for all j = 0, . . . , n − 1. In other

words, if (�i +1) divides n and we define sets T �i
j ⊆ Σ for

j = 0, . . . , �i, such that

T �i
j =

n/(�i+1)−1⋃
h=0

{T [h(�i + 1) + j]},

then we see that T matches R+
i iff Tj ⊆ Si,j for j =

0, . . . , �i.
Note that the sets T �i

j depend only on T and �i, i.e.

the number of ◦’s in Ri. We therefore start by partitioning

the expressions Ri into groups having the same number of

◦’s � = �i. This takes time O(m). We can immediately

discard all groups where (� + 1) does not divide n. The

crucial property we will use is that an integer n can have no

more than 2O(lgn/ lg lgn) distinct divisors [25], so we have

to consider at most 2O(lgn/ lg lgn) groups.

Now let Ri1 , . . . , Rik be the regular expressions in a

group, i.e., � = �i1 = �i2 = · · · = �ik . By a linear

scan through T , we compute in O(n) time the sets T �
j for

j = 0, . . . , �. We store the sets in a hash table for expected

constant time lookups, and we store the sizes |T �
j |. We then

check whether there is an Rih such that T �
j ⊆ Sih,j for

all j. This is done by examining each Rih in turn. For

each such expression, we check whether T �
j ⊆ Sih,j for

all j. For one Sih,j , this is done by taking each character

of Sih,j and testing for membership in T �
j . From this, we

can compute |T �
j ∩ Sih,j |. We conclude that T �

j ⊆ Sih,j iff

|T �
j ∩ Sih,j | = |T �

j |.
All the membership testings, summed over the entire

execution of the algorithm, take expected O(m) time as we

make at most one query per symbol of the input regular

expression. Computing the sets T �
j for each divisor (�+ 1)

of n takes n2O(lgn/ lg lgn) time. Thus, we conclude that

| + ◦|-membership testing can be solved in expected time

n1+o(1) +O(m).
Sub-types: We argue that the above algorithm also

solves any type t where t is a subsequence of | + ◦|. Type

+ ◦ | simply corresponds to the case of just one Ri and is

thus handled by our algorithm above. Moreover, since there

315

is only one Ri and thus only one divisor �i+1, the running

time of our algorithm improves to O(n+m). Type | ◦ | can

be solved by first discarding all Ri with �i
= n − 1 and

then running the above algorithm. Again this leaves only

one value of �i and thus the above algorithm runs in time

O(n + m). The type | + | corresponds to the case where

each �i = 0 and is thus also handled by the above algorithm.

Again the running time becomes O(n+m) as there is only

one value of �i. Type | + ◦ is the case where all sets Si,j

are singleton sets and is thus also handled by the above

algorithm. However, this type is also a subsequence of |+◦+
and using the algorithm developed in the next section, we

get a faster algorithm for |+ ◦ than using the one above.

Type ||, |◦, |+ are trivial. Type +| corresponds to the case

of just one Ri having �i = 0 and is thus solved in O(n+m)
time using our algorithm. Type +◦ corresponds to just one

Ri and only singleton sets Si,j and thus is also solved in

O(n +m) time by the above algorithm. The type ◦| is the

special case of | ◦ | in which there is only one set Ri and

is thus also solved in O(n +m) time. Types with just one

operator are trivial.

VI. DICHOTOMY

In this section we prove Theorem 6, i.e., we show that the

remaining results in this paper yield a complete dichotomy.

We first provide a proof of Lemma 1.

Proof of Lemma 1: Let t ∈ {◦, |, �,+}∗ and let R be a

homogeneous regular expression of type t. For each claimed

simplification rule (from t to some type t′) we show that

there is an easy transformation of R into a regular expression

R′ which is homogeneous of type t′ and describes the

same language as R (except for rule 3, where the language

is slightly changed by removing the empty string). This

transformation can be performed in linear time. Together

with a similar transformation in the opposite direction, this

yields an equivalence of t-membership and t′-membership

under linear-time reductions.

(1) Suppose that t contains a substring pp, say ti =
ti+1 = p ∈ {◦, |, �,+}, and denote by t′ the simplified

type, resulting from t by deleting the entry ti+1. In R, for

any node on level i put a direct edge to any descendant

in level i + 2 and then delete all internal nodes in level

i+1. This yields a regular expression R′ of type t′. For any

p ∈ {◦, |, �,+} it is easy to see that both regular expressions

descibe the same language. In particular, this follows from

the facts (E�)� = E� for any regular expression E (and

similarly for +) and (E1,1 ◦ . . . ◦E1,k(1)) ◦ . . . ◦ (E�,1 ◦ . . . ◦
E�,k(�)) = E1,1◦ . . .◦E1,k(1)◦ . . .◦E�,1◦ . . .◦E�,k(�) for any

regular expressions Ei,j (and similarly for |). This yields a

linear-time reduction from t-membership to t′-membership.

For the opposite direction, if the i-th layer is labeled p
then we may introduce a new layer between i − 1 and i
containing only degree 1 nodes, labelled by p. This means

we replace E� by (E�)�, and similarly for +. For ◦ and |

the degree 1 vertices are not visible in the written form of

regular expressions2.

(2) For any regular expressions E1, . . . , Ek, the expres-

sion
(
(E+

1)| . . . |(E+
k)

)+
describes the same language as(

E1| . . . |Ek

)+
. Thus, the inner +-operation is redundant

and can be removed. Specifically, for a homogeneous regular

expression of type t with ti, ti+1, ti+2 = +|+ we may

contract all edges between layer i+ 1 and i+ 2 to obtain a

homogeneous regular expression R′ of type t′ describing the

same language as R. This yields a linear-time reduction from

t-membership to t′-membership. For the opposite direction,

we may introduce a redundant +-layer below any +|-layers

without changing the language.

(3) Note that for any regular expression E we can check in

linear time whether it describes the empty string, by a simple

recursive algorithm: No leaf describes the empty string. Any

�-node describes the empty string. A +-node describes the

empty string if its child does so. A |-node describes the

empty string if at least one of its children does so. A ◦-
node describes the empty string if all of its children do so.

Perform this recursive algorithm to decide whether the root

describes the empty string.

Now suppose that t has prefix r� for some r ∈ {+, |}∗,
and denote by t′ the type where we replaced the prefix r�
by r+. Let R be homogeneous of type t, and s a string

for which we want to decide whether it is described by R.

If s is the empty string, then as described above we can

solve the instance in linear time. Otherwise, we adapt R by

labeling any internal node in layer |r| + 1 by +, obtaining

a homogeneous regular expression R′ of type t′. Then R
describes s if and only R′ describes s. Indeed, since � allows

more strings than +, R describes a superset of R′. Moreover,

if R describes s, then we trace the definitions of | and + as

follows. We initialize node v as the root and string x as s. If

the current vertex v is labelled |, then the language of v is the

union over the children’s languages, so the current string x
is contained in the language of at least one child v′, and we

recursively trace (v′, x). If v is labelled +, then we can write

x as a concatenation x1 . . . xk for some k ≥ 1 and all xi in

the language of the child v′ of v. Note that we may remove

all x� which equal the empty string. For each remaining

x� we trace (v′, x�). Running this traceback procedure until

layer |r|+1 yields trace calls (vi, xi) such that vi describes

xi for all i, and the xi partition s. Since by construction

each xi is non-empty, xi is still in the language of vi if we

relabel vi by +. This shows that s is also described by R′,
where we relabeled each node in layer |r|+ 1 by +.

Finally, applying these rules eventually leads to an unsim-

plifiable type, since rules 1 and 2 reduce the length of the

type and rule 3 reduces the number of �-operations. Thus,

2This is the only place where we need to use degree 1 vertices; all other
proofs in this paper also work with the additional requirement that each |-
or ◦-node has degree at least 2 (cf. footnote 1 on page 3).

316

each rule reduces the sum of these two non-negative integers.

Lemma 6. For types t, t′, there is a linear-time reduction
from t′-membership to t-membership if one of the following
sufficient conditions holds:

1) t′ is a prefix of t,
2) we may obtain t from the sequence t′ by inserting a |

at any position,
3) we may obtain t from the sequence t′ by replacing a

� by +�, or
4) t′ starts with ◦ and we may obtain t from the sequence

t′ by prepending a +.

Proof: (1) The definition of “homogeneous with type

t” does not restrict the appearance of leaves in any level.

Thus, any homogeneous regular expression of type t′ (i.e.,

the prefix) can be seen as a homogeneous regular expression

of type t (i.e., the longer string) where all leaves appear in

levels at most |t′|+ 1.

(2) Let t be obtained from t′ by inserting a | at position i.
Consider any homogeneous regular expression R′ of type t′.
Viewed as a tree, in R we subdivide any edge from a node in

layer i− 1 to a node in layer i, and mark the newly created

nodes by |. This yields a regular expression R of type t.
Since a | with degree 1 is trivial, the language described by

R is the same as for R′.3

(3) Let R′ be a homogeneous regular expression of type

t′ with t′i = �. Subdivide any edge in R′ from a node in

layer i − 1 to an internal node in layer i, and label the

newly created nodes by +. This yields a regular expression

R of type t. (Note that by this construction any leaf of

R′ in layer i stays a leaf of R in layer i.) Consider any

newly created node v with child u. Since u is an internal

node, it is labeled by � and (its subtree) represents a regular

expression E�. The newly created node v thus represents the

regular expression (E�)+. Using the fact (E�)+ = E� for

any regular expression E, it follows that R and R′ describe

the same language.

(4) Let R′ = E1 ◦ . . . ◦ Ek be a homogeneous regular

expression of type t′. Let s′ be the input string for which

we want to know whether it matches R′, and let x be a

fresh symbol not occuring in s′. We construct the expression

R := (x◦E1 ◦ . . .◦Ek ◦x)+ and the string s := xs′x. Note

that R is homogeneous of type t. Moreover, there are exactly

two occurences of x in s, and thus s matches R if and only

if s′ matches E1 ◦ . . . ◦ Ek = R′.

Proof Sketch of Theorem 6: We refer to the full version

3An alternative to using |-nodes of degree 1 is as follows: Let x be a
fresh symbol, not occuring in the input string s′ for which we want to know
whether it matches R′. For each newly created node v by the subdivision
process, add a new leaf node �v marked by x and connect it to v. This
again yields a regular expression of type t. Since x is a fresh symbol, the
newly added leaves cannot match any symbol in s′, and thus s′ matches
R′ if and only if s′ matches R.

[13] for the full proof and figures.
The natural way of enumerating all types yields a tree with

vertex set {◦, |, �,+}∗, where types t and t′ are connected

by an edge if we obtain t from t′ by appending one of the

operations ◦, |, �,+. To keep this tree simple, we directly

apply the simplification rule Lemma 1 (1), i.e., we do not

consider types with consecutive equal operations. Split this

tree into the three according to the first operation ◦/�,+, |.
Due to space limitations, we only show one of these three

trees, corresponging to first operation +, see Figure 1.

+ �

|

◦

Simplifies

O(n+m) Simplifies

Simplifies

Lem. 1 (3)

Lem. 1 (2)

Word Break
Θ(nm1/3 +m)
Thm. 1 ,Thm. 2

Hard (◦�)
Lem. 6 (2,4), [12]

Hard

Hard
Thm. 5

Thm. 5

�

◦

+

�

+

|

O(n+m) Hard (◦�)
Lem. 6 (4), [12]

O(n+m)

O(n+m)

|

+

�

Hard (◦+ ◦)

Hard (◦�)

Hard (◦|+)

Lem. 6 (4), [12]

Lem. 6 (2,4), [12]

Lem. 6 (4), [12]

Hard (◦�)

Hard (◦+ |)

Hard (◦+ ◦)

Lem. 6 (3,4), [12]

Lem. 6 (4), [12]

�

◦

�

+

◦
[12]

[12]

Lem. 1 (3)

Lem. 6 (4), [12]

|

[12]

[12]

Figure 1. Tree diagram for t-membership with first operation +. For
details see the proof of Theorem 6.

In the following we describe this figure. If t-membership

is solvable in almost-linear time, then in the figure we mark

the node corresponding to t by the fastest known running

time, and we refer to [12] or our Theorem 4. We remark

that most O(n + m) algorithms are immediate, but for

completeness we refer to [12].
If t-membership simplifies, then t-membership is equiva-

lent to t′-membership for some different, non-simplifying

type t′ in the tree. In this case, we mark t by the cor-

responding simplification rule of Lemma 1. Note that the

simplification rules have the property that if t simplifies then

any descendant of t in the tree also simplifies. Thus, we may

ignore the subtree of any simplifying type t.
If we can show that any algorithm for t-membership

takes time (nm)1−o(1) unless SETH fails, then in the figure

we mark t as “hard”. Note that by Lemma 6 (1), if t is

hard then any descendant of t in the tree is also hard.

Thus, we may ignore the subtree of t, and we only mark

minimal hardness results. From the results by Backurs and

Indyk [12] (Theorem 7) we know that t-membership takes

317

time (nm)1−o(1) under SETH for the types ◦�, ◦|◦, ◦ + ◦,
◦|+, and ◦ + |. In the full version of this paper, we add

hardness for the types +|◦+, +|◦|, and |+|◦. If there is such

a direct hardness proof of t-membership, then in the figure

we refer to the corresponding theorem. In all other minimal

hard cases, there is a combination of the reduction rules,

Lemma 6 (2–4), resulting in a type t′ such that hardness of

t′-membership follows from Theorem 7 and t′-membership

has a linear time reduction to t-membership. In this case, in

the figure we additionally mark the node corresponding to

t by t′. E.g., | ◦ |�-membership contains ◦�-membership as

a special case (since by Lemma 6 (2) we may remove any

| operations) and ◦�-membership is hard by Theorem 7, so

we mark the node corresponding to | ◦ |� by “hard ◦�”.

It is easy to check that our Figure 1 indeed enumerates all

cases starting with + and thus contains all maximal algo-

rithmic results and minimal hardness results. The claimed

dichotomy of Theorem 6 now follows by inspecting the

figure, as well as the two remaining figures that can be found

in the full version.

REFERENCES

[1] K. Thompson, “Programming techniques: Regular expression
search algorithm,” Commun. ACM, vol. 11, no. 6, pp. 419–
422, Jun. 1968.

[2] G. Myers, “A four russians algorithm for regular expression
pattern matching,” J. ACM, vol. 39, no. 2, pp. 432–448, Apr.
1992.

[3] P. Bille and M. Thorup, “Faster regular expression matching,”
in 36th International Colloquium on Automata, Languages
and Programming, 2009, pp. 171–182.

[4] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern
matching in strings,” SIAM Journal on Computing, vol. 6,
pp. 323–350, 1977.

[5] R. Cole and R. Hariharan, “Verifying candidate matches
in sparse and wildcard matching,” in 34th Annual ACM
Symposium on Theory of Computing, 2002, pp. 592–601.

[6] A. V. Aho and M. J. Corasick, “Efficient string matching: An
aid to bibliographic search,” Commun. ACM, vol. 18, no. 6,
pp. 333–340, Jun. 1975.

[7] A. Gajentaan and M. H. Overmars, “On a class of O(N2)
problems in computational geometry,” Comput. Geom. Theory
Appl., vol. 5, no. 3, pp. 165–185, Oct. 1995.

[8] V. V. Williams and R. Williams, “Subcubic equivalences
between path, matrix and triangle problems,” in 51st Annual
IEEE Symposium on Foundations of Computer Science, 2010,
pp. 645–654.

[9] A. Abboud and V. V. Williams, “Popular conjectures imply
strong lower bounds for dynamic problems,” in P55th Annual
IEEE Symposium on Foundations of Computer Science, 2014,
pp. 434–443.

[10] M. Pătraşcu and R. Williams, “On the possibility of faster sat
algorithms,” in 21st Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 2010, pp. 1065–1075. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1873601.1873687

[11] R. Impagliazzo and R. Paturi, “On the complexity of k-sat,” J.
Computer and System Sciences, vol. 62, no. 2, pp. 367–375,
Mar. 2001.

[12] A. Backurs and P. Indyk, “Which regular expression patterns
are hard to match?” in 57th Annual IEEE Symposium on
Foundations of Computer Science, 2016.

[13] K. Bringmann, A. Grønlund, and K. G. Larsen, “A
dichotomy for regular expression membership testing,”
CoRR, vol. abs/1611.00918, 2016. [Online]. Available:
http://arxiv.org/abs/1611.00918

[14] D. Tunkelang, “Retiring a great interview problem,”
2011, http://thenoisychannel.com/2011/08/08/retiring-a-great-
interview-problem.

[15] P. Norvig, “Natural language corpus data,” in Beautiful Data.
The Stories Behind Elegant Data Solutions, 2009.

[16] V. Vassilevska, “Efficient algorithms for clique problems,” Inf.
Process. Lett., vol. 109, no. 4, pp. 254–257, Jan. 2009.

[17] J. Nešetřil and S. Poljak, “On the complexity of the subgraph
problem,” Commentationes Math. Universitatis Carolinae,
vol. 026, no. 2, pp. 415–419, 1985.

[18] F. Eisenbrand and F. Grandoni, “On the complexity of fixed
parameter clique and dominating set,” Theoretical Computer
Science, vol. 326, no. 1, pp. 57–67, 2004.

[19] A. Abboud, A. Backurs, and V. Vassilevska Williams, “If the
current clique algorithms are optimal, so is Valiant’s parser,”
in 56th Annual IEEE Symposium on Foundations of Computer
Science, 2015.

[20] F. L. Gall, “Faster algorithms for rectangular matrix multipli-
cation,” in 53rd Annual IEEE Symposium on Foundations of
Computer Science, 2012, pp. 514–523.

[21] R. Clifford, “Matrix multiplication and pattern matching
under hamming norm.”

[22] R. Impagliazzo, R. Paturi, and F. Zane, “Which problems have
strongly exponential complexity?” J. Computer and System
Sciences, vol. 63, no. 4, pp. 512–530, 2001.

[23] R. Williams, “A new algorithm for optimal 2-constraint satis-
faction and its implications,” Theoretical Computer Science,
vol. 348, no. 2, pp. 357–365, Dec. 2005.

[24] P. Weiner, “Linear pattern matching algorithms,” in 14th
Annual Symposium on Switching and Automata Theory, 1973,
pp. 1–11.

[25] S. Wigert, “Sur l’ordre de grandeur du nombre des diviseurs
d’un entier,” Ark. Math. Astron. Fys., vol. 3, pp. 113–140,
1906-07.

318

