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I. INTRODUCTION

This paper is in the setting of propositional proof com-

plexity. We are given a propositional statement and some

reasoning rules. The most basic proof system is resolution.

In this proof system we study clauses, i.e. disjunctions of

literals and have a simple way to derive new clauses from

existing clauses. If we derive the empty clause we have

reached a contradiction refuting the original formula.

Resolution has been studied extensively and by now we

have a large body of work understanding the strengths

and limitations of resolution. In an early paper [1], Tseitin

defined the set of contradictions based on graphs studied in

this paper and proved that any regular resolution proof of this

contradiction requires exponential size proofs in general. A

later result by Haken [2] gave the first strong lower bound for

unrestricted resolution proving that the pigeon-hole principle

(PHP) requires exponential size proofs. As this paper is not

about resolution let us not discuss the many strong results

obtained, but only mention the famous paper of Ben-Sasson

and Wigderson [3] as a high point which among other results

showed the importance of width when studying resolution

proofs.

There are many proof systems that are more powerful

than resolution and in this paper we study the case when

each formula appearing in the proof is restricted to be a

Boolean formula of small depth d. Here d = 1 corresponds

to resolution. There are many alternatives for the reasoning

rules and what is said below applies to any constant size

set of reasoning rules that are consistent. The first strong

result was obtain by Ajtai [4] showing that the PHP cannot

be proved in constant depth and polynomial size.

Ajtai did not work out an explicit lower bound for the

depth of polynomial size proofs but in a later reformula-

tion by Bellantoni et al. [5], a lower bound of Ω(log∗ n)
was given. This was later strengthened [6], [7] to obtain

Ω(log log n) lower bounds for PHP. Similar bounds were

later proved by Urquhart and Fu [8] and Ben-Sasson [9] for

Tseitin formulas for the complete graph and for constant-

degree expander graphs, respectively.

On the positive side Buss [10] proved that there are

polynomial size O(log n)-depth proofs for the PHP and his

methods can be adopted to also yield similar proofs for the

Tseitin formulas for any constant-degree graph.

The exponential gap between the depth bounds log log n
and log n was recently partly closed by Pitassi et al. [11]

obtaining a Ω(
√
log n) lower bound for Tseitin formulas

on a certain 3-regular expander graph. It is curious to

note the the size lower bounds of [11] when considering

depth d is exponential in Ω((log n)2/d2) and thus only

weakly superpolynomial. For small values of d, this bound

is weaker then the bounds of the form exp(nc−d

) obtained

in previous paper but extends the range of d for which it is

superpolynomial.

In the current work we study the Tseitin formulas for the

2-dimensional grid and almost close the gap obtaining size

lower bounds exp(Ω(n1/58(d+1))) for depth d proofs and

hence the depth lower bound Ω(logn/log log n) for poly-

nomial size proofs. Our proofs follow the same paradigm as

earlier proofs and let us sketch the underlying mechanisms

at a semi high level to put our contribution in perspective.

When studying circuits of small depth it has turned out to

be profitable to study restrictions that fix most of the input

variables to constants. This is useful as for suitably chosen

restrictions it is possible to decrease the depth of almost

all small circuits by one. This was first used to prove lower

bounds for circuits size [12], [13], [14], [15] and the simplest

case is when proving lower bounds for the size of depth-d
circuits computing parity and let us briefly discuss this case.

In this situation one uses the simplest space of random

restrictions usually denoted by Rp. In such a restriction each

input variable is kept with probability p and otherwise set to

0 or 1 with equal probabilities. The key notion for decreasing

depth is a switching lemma which says that if you are given

a depth two circuit with bottom fanin t then, if you at the

same time apply a restriction, it can be switched to a depth

2 circuit of the other type of bottom fanin s, except with

probability at most (5pt)s.

Using this switching property for the two layers closest to

the inputs creates two adjacent layers of gates of the same
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type which makes it possible to decrease the depth of the

circuit by one. To prove a lower bound for parity one just

needs to make the trivial observation that the resulting circuit

must compute the parity (or its negation) of the remaining

variables. Applying d−1 restrictions we are able to make the

circuit simple enough to be analyzed directly. The number

of remaining variables is about pd−1n and we simply need

a large enough p to make this number non-trivial.

To prove lower bounds for the size of proofs for various

families of formulas one needs more subtle restrictions. We

are no longer computing a function but instead given a set

of axioms. We want that a restriction reduces the problem

to a smaller problem of the same type. This is more or less

equivalent to that each axiom is either reduced to an axiom

of the smaller instance or to something that is a tautology.

We must, at all cost, make sure that no axiom is made false

as this would imply that the contradiction we are trying

to prove cannot be produced efficiently is available as an

axiom. In most cases each axiom is of constant size and

this implies that we cannot use spaces of restrictions, such

as Rp, that treat the variables independently. Restrictions

that give values in a dependent way cause problems with the

proof (or even validity) of the switching lemma. The key is

thus finding a balance between the property of preserving

the axioms of the formula we are studying while still being

able to prove a switching lemma with good parameters.

On the high level, the strength of a switching lemma

is controlled by the size of the obtained problem (which

corresponds to the parameter p for independent restrictions)

and how the failure probability depends on the parameters

s and t. The switching lemma of [11] has failure bounds

on the form (cpt2t)s. The reason for this factor 2t is a bit

mysterious and [11] conjectures that it is not needed. The

paper by Mehta [16] describes similar situations where the

factor is indeed needed. The worse bounds force the proof

to work with small values of s and t (roughly (log n)/d)

and a p that is about 2−ct for a c > 1.

We improve the troublesome factor 2t of [11] to the

better, but probably not optimal, factor tc for a constant

c. This implies that the loss in one application of the

switching lemma roughly corresponds to c applications of

the lemma with the optimal parameters and thus we get this

multiplicative factor in front of d. As this is a constant we

get asymptotically sharp bounds for the depth of polynomial

size proofs.

A key point in the proof is the choice of the space of

restrictions. The high level picture is not that surprising.

Given a n×n grid we pick sub-squares of size T×T (where

T is poly-logarithmic when studying polynomial size proofs

and nΩ(1/d) in general) and in each sub-square we pick a

node and connect the picked nodes by paths. For each path

P we have a new variable xP and for each edge e on the path

it is either replaced by xP or its negation x̄P . This is done in

a way that irregardless of the values of these new variables

all constraints, except at the picked nodes are automatically

satisfied while the constraints at the picked nodes give the

constraints of the smaller instance. The essential new part

of the current paper is the choice of restrictions and the

proof of the switching lemma. The way to analyze how

restrictions make all sub-formulas be represented by small-

depth decision trees is similar to previous papers.

An overview of the paper is as follows. We start with

some preliminaries in Section II and proceed with some

properties of the grid and assignments that satisfies some

parity conditions in Section III. We define our restriction

in Section IV. We proceed to recall the formalism of

t-evaluations in Section VI after having described some

basic properties of consistent decision trees in Section V.

Assuming the switching lemma we are able to complete the

proof of our main theorem also in Section VI and we end

by the proof of the switching lemma in Section VII.

II. SOME PRELIMINARIES

The Tseitin contradiction for a graph G is a statement on

a set of variables xe where e ranges over all edges of G. It is

usually stated for a small degree graph and in our case G is

what is usually, and also here, called “the grid” but in fact it

is the torus. In other words we have nodes indexed by (i, j),
for 0 ≤ i, j ≤ n− 1 where n is an odd integer and a node

(i, j) is connected to the four nodes at distance 1, i.e. where

one coordinate is identical and the other has moved up or

down by 1 modulo n. The constraint at node v is that the

number of edges, e, incident to v with xe = 1 is odd. This

is a contradiction as can be seen by summing the constraints

over all nodes. Each edge appears in two equations while

the right hand sides sum to 1 modulo 2. The contradiction

can be formulated as a 4-CNF formula by having 8 clauses

of length four for each node.

Our formulas only contain ∨-gates and negations. We

simulate ∧ in the obvious way and depth is the number

of alternations of ∨ and ¬.

III. PROPERTIES OF ASSIGNMENTS ON THE GRID AND

DYNAMIC MATCHINGS

We are interested in assignments to some of the variables

on the grid and to what extent they satisfy the parity

constraints that the variables around any vertex sum to 1

modulo 2. Of course we cannot have a total assignment that

satisfies all constraints simultaneously but we have plenty

of assignments that satisfy all constraints in some particular

area of the grid.

On a set X of nodes we say that a partial assignment is

complete if it gives values to exactly all variable with at least

one endpoint in X . The support of a partial assignment is the

set of nodes adjacent to a variable given a value. Note that

the support of a complete assignment on X also includes

the neighbors of X .

98



In our proof we consider assignments to small sets of

variables and in particular we are interested in cases where

the size of the set X is o(n) and hence a small part of the

grid. Let Xc denote the complement of X .

In the situation when X is small, Xc contains a giant

component containing almost all nodes of the grid. This

follows as there are at least n − o(n) complete rows and

columns in Xc and the nodes of these rows and columns are

all connected. For a set X let the closure of X , c(X) denote

all nodes either in X or in small connected components of

Xc. Note that c(X)c is exactly the giant component of Xc.

Definition 3.1: An assignment α supported on a set X
is locally consistent if it can be extended to a complete

assignment on c(X) that satisfies all parity constraints on

this set.

We extend this definition to say that two assignments are

consistent with each other if they do not give different values

to the same variable and when you look at the union of the

two assignment this gives a locally consistent assignment.

Let us prove a simple but useful lemma.

Lemma 3.2: Suppose α is a locally consistent assignment

supported on a set of size o(n) and xe a variable not in the

support of α. Then there is a locally consistent assignment

α′ that extends α and gives a value to xe.

Proof: Suppose the support of α is X and let X+ be

X with the endpoints of e added. First extend α to be an

assignment that satisfies the constraints on c(X) and then

take any further extension that gives values to all variables

touching c(X+). Suppose this assignment violates the parity

constraint at a node v. Take a path that starts at v and ends

in c(X+)c and does not pass through any node in c(X).
This is possible as c(X)c is connected. Negate the variables

corresponding to edges on this path. The new assignment

satisfies the constraint at v, still extends α and does not cause

any new violations on c(X+). Repeating this procedure for

any v ∈ c(X+) that has its constraint violated creates a

locally consistent assignment that extends α and gives a

value to xe.

The technique used in this proof of taking a path be-

tween two nodes and flipping the values along this path

is extremely useful for thinking about assignments under

the Tseitin conditions. This changes the validity of the

constraints at the endpoints but preserves the constraints at

all other nodes. Next we discuss a dynamic matching game

needed by our analysis.

We have two players, one adversarial player that supplies

nodes while the other, matching player PM , is supposed to

dynamically create a matching that contains the nodes given

by the adversarial player. As the full grid is of odd size

and hence does not have a perfect matching the adversarial

player will eventually win, but clearly PM can survive for

a while and this is sufficient for us. To be more precise

we have the below lemma proved in the full version of the

paper.

Lemma 3.3: When the dynamic matching game is played

on the n× n grid, PM can survive for at least n/2 moves.

IV. RESTRICTIONS

The plan is to make a probabilistic assignment to variables

of the grid that reduces the Tseitin contradiction to a smaller

contradiction of the same type in a way that enables us

to simplify all formulas appearing in an attempted proof.

As the final product is a rather rigid object we utilize

an intermediate partial restriction that leaves slightly more

variables unset but has better independence properties. We

start by defining the full restrictions.

A. Full restrictions

In an n × n grid we make sub-squares of size T × T
where we assume that the number of sub-squares is odd.

In each sub-square we choose1 Δ =
√
T/2 of the nodes

and call them centers. These are located evenly spaced on

the diagonal of the 3T/4 × 3T/4 central sub-square. This

implies that they have separation 3
√
T/2 in both dimension.

The centers in neighboring sub-squares are connected by

paths that are edge-disjoint except close to the endpoints. Let

us describe how to connect a given center to a center in the

sub-square on top, the sideways case being analogous. There

are T/4 rows between the two central areas. For each pair

of centers (one in the top sub-square and one in the bottom)

we can hence designate a unique row in this middle area.

Now for the jth center in the lower sub-square to connect

to the ith center above we first go i steps to the right and

then straight up to the designated row. This is completed by

starting at the upper center and then going j steps to the

left and then down to the designated row. We finally use the

appropriate segment from the designated row to complete

the path.

These paths have the property that the Δ first and last

edges belong to several paths, always starting at the same

center and going in the same direction while the rest of the

edges on a path uniquely identifies the entire path and hence

both endpoints. The “direction” is here and elsewhere in the

paper counted as the relative position of the sub-squares and

is thus one of “up”, “down”, “left” or “right”. It is important

for us that for any edge there is a unique center that is the

closest endpoint of all paths going through this edge and all

paths that go through that edge are in the same direction.

A restriction is defined by first picking one center in

each T × T sub-square and then the paths described above

connecting these centers. Note that these paths are edge-

disjoint. The picked centers naturally form a n/T×n/T grid

if we interpret the paths between the chosen centers as edges.

1For simplicity we assume that some arithmetical expressions that are
supposed to be integers are in fact exact as integers. By a careful choice of
parameters this can be achieved but for the time being we leave this detail
to the reader.

99



We proceed to make the correspondence more complete by

assigning values to variables.

Each variable is given a value such that, at any node which

is not chosen, the parity of the sum of the adjacent variables

is one while the same parity at chosen centers is zero. As the

number of chosen centers is odd there is such an assignment.

For variables not on the chosen paths these are the final

values while for variables on the chosen paths we call them

suggested values.

For each path P between two chosen centers we have a

new variable xP and for each variable xe on the path it

is replaced by xP if the suggested value of xe is 0 and

otherwise it is replaced by x̄P .

We claim that with these substitutions we have reduced

the Tseitin problem on an n × n grid to the same problem

on an n/T × n/T grid. This is true in the sense that we

have an induced grid when we interpret paths as new edges

and we need to see what happens to the axioms.

Given a formula F we can apply a restriction to it in the

natural way. Variables given constant values are replaced

by constants while surviving variables are replaced by the

appropriate negation of the corresponding path variable. A

restriction has a natural effect on the Tseitin contradiction

as follows.

• The axioms for nodes not on a chosen paths are all

reduced to true as all variables occurring in them are

fixed in such a way that the axioms are true.

• The axioms for interior nodes of a chosen path are

reduced to tautologies as the axiom is true independent

of the value of the involved variable(s) xP . This is

true as flipping a single xP changes the value of two

variables next to any such node.

• The axioms at the chosen centers turn into the axioms

of the smaller instance.

These just defined restrictions are called full restrictions
as they completely reduce a full size problem to a smaller

problem. A typical full restriction is denoted by σ. We

construct such a full restriction by first making a partial

restriction and we turn to defining these next.

B. Partial restrictions and pairings

A typical partial restriction is called ρ and as we mostly

discuss partial restrictions we simply call the them restric-

tions while we use the term “full restrictions” when that

is what we have in mind. At the same time as describing

partial restrictions we give a probability distribution on such

restrictions.

Let k be an odd integer of the form Cs(n/T )2 for a

constant C. The first step of constructing ρ is picking k
centers uniformly at random from the set of all Δ(n/T )2

centers. These are the alive centers. In the future we only

consider the case when the number of live centers in each

sub-square is between a factor .99 and 1.01 of its expected

value Cs. The probability of this being false is O(n2e−Ω(s))
and this is simply added to other failure probabilities.

For all variables not on any path between live centers we

fix these to random values respecting the parity constraints

at these nodes.

We now randomly pick preferred values for all remaining

variables. These preferred values satisfy all parity con-

straints, except at the live centers where they all violate

the parity constraint. As the number of live centers is odd,

there is one, and indeed many, such assignments of fixed

and preferred values.

The choice of the centers together with the fixed and

preferred variables is denoted by ρ. The choice of ρ is the

main probabilistic event. Note that the number of possible

values for fixed and preferred values is independent of which

centers are alive and even of k as long as it is odd. This is

true as the values (fixed and preferred) are selected to satisfy

a number of linear equations. The left hand sides of these

equations are always the same as we sum variables over

all edges adjacent to a node while the right hand sides do

change. Any choice for the right hand side for which there

is some solution has the same number of solutions as this

only depends on the number of variables and the rank of the

linear system of equations.

A partial restriction ρ is, for the analysis, preferable to

a full restriction σ as it behaves more independently. A

drawback is, however, that as soon as a live center v is

discovered then we have many paths leaving v in ρ and this

could result in a deep decision tree if they all corresponded

to a live variable. In order to avoid this we add a second step,

a pairing π, turning a partial restriction into a full restriction.

Choose one center to survive in each sub-square. These

are called the chosen centers and paths between such centers

correspond to the variables that remain and are called chosen

paths. Centers that were alive through the first part of

the process but are not chosen are called non-chosen. The

centers killed already by ρ are simply called dead.

The simplest way to eliminate the non-chosen centers

would be if we were able to pair them up in such a way

that the two centers in a pair are in adjacent sub-squares and

hence connected by a path. In such a case we could negate

the preferred values along any such path and after this make

the preferred values permanent outside the chosen paths. For

variables on the chosen paths we turn the preferred values

into suggested values completing the full restriction.

It might be that there is such a pairing with high proba-

bility but we allow a more general way of eliminating non-

chosen centers as this is easier to find. We still call the

process a pairing as it is not too far from the truth and gives

the right intuition.

Let us consider a graph on the non-chosen centers where

two centers are connected if there is a path between them

(which is true iff they are in neighboring sub-squares).

As the original grid is also a graph with edges we from
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now on use the term “grid-edges” to refer to edges in the

original grid. The chosen centers form a smaller grid and

this also has edges and we call these “new grid-edges”. We

only consider paths in the grid and we keep the shorter

term “path” for these. Thus from now on an “edge” is a

connection between two live centers and corresponds to a

path in the grid-graph. A “new grid-edge” corresponds to a

chosen path and is thus also an edge in the graph of the live

centers.

Some edges are conflicting in that they cannot be present

in the graph at the same time. This is because we allow at

most one path in each of the four directions from a center.

Our second part of the full restriction is an odd degree

sub-graph π that covers all non-chosen centers such that

each connected component of π is either an edge or a star

with four nodes. A proof of the below lemma is given in

the full paper.

Lemma 4.1: If each sub-square has between .99Cs and

1.01Cs non-chosen centers such a pairing π exists.

As stated above π makes it possible to turn ρ into σ.

Variables not on live paths take their fixed values. Variables

on live paths but not on chosen paths take their preferred

values unless they are on a path chosen by π in which

case these values are negated. On the chosen paths the

preferred values now becomes suggested and this completes

the description of σ.

We use the term “preferred values” as a vast majority

of the variables will eventually be fixed to these values as

very few variables appear on the paths of π. On the other

hand “suggested values” are much less certain as the path

variables should be thought of as equally likely to be 0 and

1 and thus these variables are equally likely to take also the

non-suggested value.

As an intermediate between ρ and the full restriction σ
we have ρ and some information in the form of edges and

“non-edges” which says that there is no edge from a certain

center in a certain direction. We call such an edge or non-

edge a piece of information and we let an information set
I be a collection of pieces of information. An information

set is consistent if it does not have two different pieces of

information from the same center in one fixed direction and

furthermore, if it has the information in all four directions

from a center v then it has an odd number of edges. Note

that here, as opposed to the grid, we do not have a problem

of small connected components in the complement of a

set of nodes. A center has a potential edge to all centers

in neighboring sub-squares and thus this is much more

connected graph than the grid. We need the notion of a

closed information set.

Definition 4.2: An information set I is closed if it is

supported on a set X of centers such that for any v ∈ X
the set I contains the information in all four directions and

any edge in I is between two centers of X .

It follows that the size of X must be even and I contains

a non-edge from any v in a direction where X does not have

an element. When considered as a graph such an information

set is an odd-degree graph (with degrees one and three) on

the centers of X . One more definition.

Definition 4.3: Let ρ be a restriction and I an information

set. A variable xe is considered forced by (ρ, I) iff either its

closest endpoint, v, is not live in ρ or if the information of

v in the direction of e is contained in I . It is forced to its

preferred value unless the information states that there is an

edge from v in the direction of e that corresponds to path

that passes through e in which case it takes the opposite

value.

There are other situations where the value of a variable

might be determined by ρ and I , such as the lack, or scarcity,

of live centers in a sub-square but it is not allowed to use

this information.

Note that if we have a closed information set I then if we

consider all variables forced by (ρ, I) this can be described

by a restriction where the centers in the support of I are

killed. We simply negate the values of any preferred variable

on any path in I and then forget that the centers in the

support of I were alive.

If we let such a closed information set operate on a

restriction ρ we get a restriction with fewer live centers

where the number of killed centers is exactly the number

nodes in the support of the corresponding graph.

V. DECISION TREES

We have decision trees where each internal node is marked

with a variable xe and the outgoing edges are marked with

0 and 1. The leaves of a decision tree are labeled by 0 and

1.

All decision trees considered in this paper have a depth

that is smaller than the dimension of the grid we are

currently considering. For each path in a decision tree there

is partial assignment that forces an input to follow this

branch. As the branch is short we call it consistent if

the corresponding assignment is consistent in the sense of

Definition 3.1. In this paper it is always the case that all

branches of a decision tree are consistent. This is achieved

by simply erasing inconsistent branches.

We are interested in what happens to a decision tree T
when subject to a (full) restriction σ or a partial assignment

τ and the results are denoted by T �σ and T �τ , respectively.

There is no essential difference between the two cases as

in each case we have a decision tree where the values of

some variables are already fixed and we just keep the paths

consistent with these values.

Let us first state this in an operative manner. We start at

the root of T and at each node we have a variable under

consideration. If the value of this variables is forced by σ
(or τ , respectively), the values along the path so far, and

consistency, we choose the sub-tree with the consistent value

and otherwise we explore both sub-trees in the natural way.
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A more static way is to consider all paths of T from

the root to a leaf and see which of the corresponding

assignments are consistent with σ (or τ ). The paths that

are consistent remain and those not consistent are erased. It

is easy to see that the remaining paths (possibly after some

contractions) nicely fit into a decision tree and in fact the

decision tree defined above.

When considering consistency with σ we of course make

use of the information that all old variables that are governed

by the same new variables must take equal or opposite values

as governed by the negations of the new path variable xP .

Lemma 5.1: If n1 + n2 ≤ o(n) where n is the size of

the current grid, then if T is a decision tree of depth n1

and τ is a partial assignment that gives values to at most n2

variables then T �τ is a non-empty decision tree.

Proof: This follows from Lemma 3.2.

Lemma 5.2: Suppose σ is full restriction whose output is

an instance of size n and let T be a decision tree of depth

o(n). Then T �σ is a non-empty decision tree.

Proof: At each step going down a path on a decision

tree at least one of the two values of a variable is consistent

with σ and the path so far.

Lemma 5.3: If T is a decision tree of depth n3 and let

τ1 and τ2 are assignments that gives values to at most n1

and n2 variables, respectively, that are consistent with each

other. Then, provided that n1 + n2 + n3 ≤ o(n) we have

T �τ1�τ2= T �τ2�τ1 and both are non-empty decision trees.

Proof: Taking the static view of restricted decision trees

both contain all paths of T that are consistent with τ1 ∪ τ2.

We let a 1-tree be a decision tree where all leaves are

labeled 1 and define a 0-tree analogously. Special cases of

such trees are trees of depth 0. Next we turn to a procedure

of representing formulas by decision trees of small depth.

VI. t-EVALUATIONS

We have a supposed proof and we have the set of formulas

that appear in the proof. We also have each sub-formula in

each of these formulas and this gives a set of formulas Γ. We

use t-evaluations ϕ, a concept introduced by [8], that map

formulas to decision trees of depth at most t. Such mappings

will not be total and we are interested in finding t-evaluations

defined over as large set of formulas as possible. This is

made possible by, at the same time as extending the range,

applying a restriction. Let us define the desired properties

required of t-evaluations.

1) The constant true is represented by a 1-tree and the

constant 0 is represented by a 0-tree.

2) If F is an axiom of the Tseitin contradiction then ϕ(F )
is a 1-tree.

3) If ϕ(F ) = T then ϕ(¬F ) is a decision tree with the

same topology as T but where the value at each leaf

is negated.

4) Suppose F = ∨Fi. Consider a leaf in ϕ(F ) and the

assignment, τ leading to this leaf. If the leaf is labeled

0 then for each i ϕ(Fi)�τ is a 0-tree and if the leaf is

labeled 1 then for some i, ϕ(Fi)�τ is a 1-tree.

The intuitive role of ϕ(F ) is that it represents the formula F
as a function on all assignments that satisfy2 “the relevant”

local Tseitin constraints. Let us explicitly give the represen-

tation of the axioms and take (xe1 ∨ xe2 ∨ xe3 ∨ xe4) where

ei are the four edges incident to a center v. Naturally each

variable is represented by a decision tree of depth one. This

clause is represented by a decision tree of depth three with

all leaves labeled 1 asking the variables xe1 , xe2 , and xe3

in order. The only leaf that requires a little bit of thought to

see that it is labeled 1 is the node where all three variables

are zero. In this leaf xe4 is reduced to a decision tree of

depth 0 with label 1 as the only value of xe4 consistent the

three 0s is 1.

Note that we cannot represent this formula by a smaller

tree as, by rule 4, for each 1-leaf, we must have an

assignment that forces one of the decision trees for xei to

be a 1-tree.

Another example is the conjunction of all the axioms.

As we do not have any ∧-gates this is represented as the

negation of the disjunction of the negations of all axioms. As

we just saw, each axiom is represented by a 1-tree of depth

3 and hence its negation is a 0-tree of the same depth. Any

disjunction of such trees can be represented by a decision

tree of depth zero where the only leaf has label 0 and hence

the representation of the negation of such a disjunction is a

tree of depth 0 with label 1.

Thus we have constant one as a representation for a

formula that, when interpreted in the natural way, evaluates

to false on each input. The reason is that each sub-formula

looks true in the local sense.

For a general set of formulas we cannot hope to have a t-
evaluation for a small t and our plan is to proceed as follows

for i = 0, 1, 2 . . . d.

• We have a t-evaluation for all formulas of Γ that were

originally of depth i.
• Pick a random restriction σi and extend the t-evaluation

to all formulas of Γ�σi of original depth at most i+1.

At the starting point, i = 0, each formula is a literal or a

constant which is represented by a natural decision tree of

depth at most 1 and we start by proving that t-evaluations

are compatible with restrictions.

Lemma 6.1: Given a set of formulas Γ′ and a t-evaluation

ϕ whose range includes Γ′ and let σ be a full restriction

whose output is a grid of size n. Then, provided that t < n,

ϕ(F )�σ is a t-evaluation whose range includes Γ′�σ .

Proof: This is an easy consequence of the definition but

let us go over the various possibilities. To start with, hitting

2This is achieved since we only consider paths in decision trees with are
consistent.
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a decision tree with a restriction can never increase the depth

of the decision tree and hence all representations are decision

trees of depth at most t. Note also that as t < n the resulting

tree is non-empty. We need to check the properties of a t-
evaluation.

The first and second properties are obvious as a restriction

does not change the fact that something is 1-tree or a 0-tree.

The third property is also rather obvious. The decision

trees for F and ¬F are effected the same way and there is

nothing that can change that the corresponding leaves have

labels that are the negations of each other.

For the fourth property consider any path in T that appears

in T �σ and the corresponding assignment τ which thus is

consistent with σ. As already τ reduces the Ti in a good way,

we need only observe that Ti�σ�τ is a non-empty decision

tree and hence it is a 1-tree or a 0-tree as desired.

Now we eventually come to the key lemma of the entire

argument.

Lemma 6.2: Let s′ be an integer and s = max(s′, t), then

there is a constant A such that the following holds. Suppose

there is a t-evaluation whose range includes Fi, 1 ≤ i ≤ m
and let F = ∨m

i=1Fi. Let σ be a random restriction from

the space of restrictions defined in Section IV. Then the

probability that F �σ cannot be represented by a decision

tree of depth at most s′ is at most

(As27tΔ−1)s
′/27.

We postpone the proof of this lemma to Section VII

and see how to use it. We apply it with s′ = t = s =
1
2n

1/(58(d+1)) and Δ = s29 (and hence T = 4s58).

We start with the original Tseitin contradiction on the

n × n grid. Let ni = nT−i. We are going to choose a

sequence of full restrictions σi mapping a grid of size ni to

a grid of size ni+1 randomly. Let σ∗i be the composition of

σ0, σ1, . . . σi. As stated above, Γ is the set of sub-formulas

that appear in an alleged proof and we let

Γi = {F �σ∗
i
|F ∈ Γ ∧ depth(F ) ≤ i}.

Let fi be the number of sub-formulas of depth at most i in

Γ.

Lemma 6.3: With probability 1−fi(s/A)
−s/27 there is a

t-evaluation ϕi whose range includes Γi.

Proof: We prove the lemma by induction over i. For

i = 0 we have the t-evaluation that maps each literal to its

natural decision tree of depth 1 and constants to decision

trees of depth 0.

When going from depth i to depth i+1 we need to define

ϕi+1 on all formulas originally of depth at most i + 1 and

consider any such F .

1) For each F of depth i it is, by induction, in the range

of ϕi and we can appeal to Lemma 6.1.

2) If F is of depth i then ϕi+1(¬F ) is defined from

ϕi+1(F ) negating the leaves.

3) For F = ∨Fi where each Fi is of depth i we apply

Lemma 6.2.

The only place where the extension might fail is under

step three but, by Lemma 6.2, the probability of failure for

any individual formula is at most (s/A)−s/27 and as we have

at most fi− fi−1 formulas of depth exactly i, the induction

is complete.

As a final piece we establish that all formulas appearing

in a short proof must be represented by 1-trees and as the

constant false is represented by a 0-tree this is a contradic-

tion. In order to prove this we must go over the derivation

rules of our proof system. The details are not important and

we choose the same rules as [11] and these are as follows.

• (Excluded middle) (p ∨ ¬p)
• (Expansion rule) (p→ p ∨ q)
• (Contraction rule) (p ∨ p)→ p
• (Association rule) p ∨ (q ∨ r)→ (p ∨ q) ∨ r
• (Cut rule) p ∨ q,¬p ∨ r → q ∨ r.

The below lemma is essentially a verification and the

proof of it can be found in the full version of this paper.

Lemma 6.4: Suppose we have derivation using the above

rules and using the Tseitin conditions in the n × n grid

as axioms. Let Γ be the set of formulas appearing as sub-

formulas of any formula in the given derivation and suppose

that we have a t-evaluation whose range includes Γ where

t = o(n). Then each line in the derivation is mapped to a

1-tree. In particular we do not reach a contradiction.

We are now ready for the main theorem.

Theorem 6.5: Suppose that d ≤ logn
59 log logn , then, for

sufficiently large n, any depth-d Frege refutation of the

Tseitin contradiction on the n × n grid requires size

exp(Ω(n1/58(d+1))).
Proof: Suppose we have a refutation of size S and

consider the corresponding set of sub-formulas Γ.

With the given choice of Δ we have T ≤ n1/(d+1)

and hence we have a nT−d ≥ T sized grid remaining

after σ∗d . The probability that we fail to have t-evaluation

of all formulas in Γ after σ∗d is, by Lemma 6.2 bounded

by S(s/A)−s/27. The probability that we at any stage of

the process we do not have between .99Cs and 1.01Cs
alive centers in a sub-square is bounded by n2e−Ω(s). As

s = ω(log n), the sum of these two failure probabilities, for

sufficiently large n, is smaller than 1 and hence there exists

a σ∗d which makes all sub-formulas in the proof have a t-
evaluation and such that the final restriction gives a grid of

size at least T . As t = o(T ) we can appeal to Lemma 6.4

and the proof is complete.

We have an immediate corollary.

Corollary 6.6: Any polynomial size Frege refutation of

the Tseitin contradiction on the n×n grid requires formulas

of depth Ω( logn
log logn ).

Finally we turn to the proof of the switching lemma which

is the heart of the argument.
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VII. PROOF OF THE SWITCHING LEMMA

Let Ti = ϕ(Fi). We create an extended canonical decision

tree for F �σ by going over the trees Ti one by one. If there

is a path in Ti to a leaf with label 1 that is consistent with

the information we have so far, we explore the variables of

this path (and some extra variables). Let us proceed.

It is important that the constructed decision tree does not

depend on the preferred values along the chosen paths but we

may, and indeed we will, let it depend on other parameters

and in particular we make use of the knowledge of the non-

chosen centers.

As we go over the Ti’s we have a set S of exposed centers

and an information set I that, jointly with ρ, guides the

construction of the decision tree.

For non-chosen centers in S we know their connected

components in π and if one center in such a connected

component belongs to S then so does the entire component.

For chosen centers in S we have asked for the values of

all remaining variables adjacent to these centers and this

information is present in I . The one-answers are recorded in

the form of a path while the zero answers as two non-edges

supported at the two chosen centers that are the endpoints

of the chosen path.

We go over the decision trees one by one and let us see

what happens when we consider Ti. Take the first (in some

fixed order) path in Ti that leads to a leaf labeled 1. For

the variables appearing on this path we have unique values

required to reach this leaf. We let the forcing information,

J , be a set of edges and non-edges that, jointly with I and

ρ, forces3 all variables on this path, from now on called “the

forceable path” to take these unique values. Furthermore we

require.

1) If J contains a non-edge from a chosen center it also

contains a non-edge in the “reverse direction”. As

an example if it contains a non-edge going left from

chosen center v then J contains a non-edge going right

from the chosen center in the sub-square to the left of

v.

2) Neither I nor J contains a path between a chosen

center and a non-chosen center.

3) The information sets I and J are jointly consistent

with ρ and disjoint.

At any point in the above procedure, the information

I comes from information in π and from queries in the

decision tree with answers τ . Let us first see that the lack

of forcing information implies that Ti is in fact reduced to

a 0-tree.

Lemma 7.1: If there is no forcing information for Ti then

Ti�στ is a 0-tree.

Proof: Suppose indeed that there is a path in Ti that

leads to a 1-leaf and is consistent with σ and τ . This implies

3Please remember, by Definition 4.3 for a variable to be forced we need
to know the relevant information at its closest endpoint.

that we can extend τ to τ1 such that we reach this leaf. In

other words, σ and τ1 jointly determines the value of each

variable on this path.

We proceed to construct some forcing information J . Let

us consider a variable xe on the path. For e whose closest

endpoint is not chosen we include the information from π on

this closest endpoint in direction of e. If the closest endpoint

of e is chosen then e may or may not be on the chosen path

in its direction.

If e is on the chosen path then the information τ1 must

contain the value of the corresponding path-variable and we

include that information in the form of an edge or two non-

edges in J . If e is not on the chosen path then we choose

some value to the path-variable in its direction from its

closest endpoint that is consistent with τ1 and choices for

previous variable set in the current process. Given the value

of this variable we include this in J either as an edge or

two non-edges. We need to check that J is a valid forcing

information.

The first property that it forces the input to follow the path

is true by construction and we turn to the other properties

needed.

As π only contains paths between two non-chosen centers

and τ1 and its extension only paths between two chosen

center, we cannot have a path between a chosen and non-

chosen center in J and we need to check consistency with

I .

On the non-chosen centers, I contains some information

from π and as the information in J on the non-chosen part

is also from π this is consistent (any duplicated information

can simply be dropped from J).

On the chosen centers we know that τ1 is an extension

of τ , the information obtained in the decision tree up to

this point. As the information in I on the chosen centers

is exactly given by τ and the information in J , which is

consistent with τ1, which is an extension of τ we conclude

that J is consistent with I . As we did not give this forcing

information in the construction of the extended canonical

decision tree we can conclude that the assumed 1-path does

not exist and the lemma follows.

If there is forcing information J we expose all centers in

the support of J but also some additional centers as follows.

• For any non-chosen center v in the support of J we

expose the centers in its connected component in π.

• We let the chosen centers in the support of J be the

nodes supplied by the adversary in the matching game

described in Section III. We apply Lemma 3.3 and

expose also the partners of these nodes in the matching

provided by PM .

We note that if the support of the forcing set J is of size

r then the number of exposed centers is at most 4r as we

expose at most 3 more nodes for any non-chosen center and

at most one extra node for any chosen center.

104



We now extend the information I by including the

connected component from π of the non-chosen exposed

centers. For the chosen centers we ask all variables adjacent

to any exposed center. We record one-answers as an edge

in I and zero-answers as two non-edges including the other

endpoint of a potential chosen path, i.e. the chosen center

in the adjacent sub-square in the given direction.

Given this extended I it is possible to tell whether the

forceable path in Ti is traversed. This follows as for any

variable on the path the closest endpoint is now exposed

and for each exposed node we have information pieces in

all four directions. If this path is indeed followed, the process

is ended as Ti�στ is a 1-tree and the path of the decision

tree can be terminated with label 1.

If the forceable path is not followed we continue the

process by first looking at Ti under this new extended infor-

mation I and searching for some new forcing information

of a different 1-path and then looking at Ti′ for i′ > i.
Finally, if all Ti’s have been processed we terminate the

path in the decision tree and label the leaf 0. This ends the

description of the creation of the extended canonical decision

tree for F �σ . We observe that we have created a decision

tree that is a legitimate choice for ϕ(F ). Indeed at any leaf

labeled 1 we have found a Ti that is reduced to a 1-tree and

if all Ti have been processed then, by Lemma 7.1, this leaf

in the decision tree is correctly labeled 0.

Note that this process depends on ρ and π but not, in a

serious way, on the negations of the preferred values along

the paths between the chosen centers. As we have no paths

between chosen and non-chosen centers the only difference

is that for variables on chosen paths in one case is forced

by the path and in the other case by two non-edges and this

does not cause any difference as the supports are identical.

As this is of key importance let us record this as a lemma.

Lemma 7.2: Let σ1 be obtained from ρ1 and π and σ2

from ρ2 and π where ρ1 and ρ2 pick the same set of centers

and fixed values. Assume furthermore that there for each

chosen path P there is a bit cP such that for each grid-

edge e on P the preferred values of xe differ by cP in

ρ1 and ρ2. Then the only difference between the extended

canonical decision trees of F �σ1
and F �σ2

is the labeling

of the internal edges.

In the decision tree, at round j, we ask all questions to a

set of variables touching the chosen centers of the set S. We

say that the answers are closed iff the answer to a query is

one iff it corresponds to an edge in the dynamic matching

created by PM . The resulting information set is then closed

in the already defined sense. The following lemma is now a

consequence of Lemma 7.2.

Lemma 7.3: If the probability that F �σ needs a decision

tree of depth s′ is at least q, then the probability that the

extended canonical decision tree of F �σ contains a closed

path of length at least s′ it at least 2−s′q.

In view of this lemma we complete the proof by analyzing

the probability of such a closed path. This analysis is done

using the labeling technique of Razborov [17]. In other

words we take a ρ that contributes to the above event and

create a ρ∗ which is also a restriction but with fewer live

centers. We then establish that given ρ∗ and some extra

information it is possible to reconstruct ρ. Noting that there

are many fewer ρ∗ than ρ and the extra information can

be limited in size we get the desired conclusion. Thus we

assume that we have such a closed path and we proceed to

construct ρ∗.
For technical reasons we stop the creation of the extended

canonical decision tree once we have exposed at least s′

centers and we analyze the probability that we ever reach

this point. Suppose this happens after the gth stage, where

g ≤ s′ as we expose at least one center in each stage.

At the end of the process we have a set, Sg , of exposed

centers which is of cardinality at least s′ and at most s′+8t,
as we at each stage expose at most 8t centers. This follows

as J contains at most 2t centers as the length of each path

in Tij is at most t and we add at most 2 centers for each

variable on the path. We later expose at most three more

centers for each element in the support of J .

Let us look at the forcing information in stage j and

introduce some notation. The forceable path appears in Tij

and let Jj be the forcing information set. As we continue

processing the same Ti after a stage is completed it might

be the case that Tij = Tij+1
, but then the forceable paths

are different.

Consider any center v in the support Jj . It has information

in some of its directions coming from I and Jj . If it has

information in all four directions nothing needs to be done.

Otherwise, take one direction for which the information is

not known. If there are more directions in which there is no

information, add a non-edge in any other such direction.

If we already have an odd number of edges next to v
we add a non-edge in the final direction and otherwise we

add an edge to a fresh center in the suitable sub-square. By

a fresh center we mean a non-chosen center that is not an

element of Sg and has not been used for an earlier Jj . As

we use at most one fresh center for each element in Sg the

number of non-fresh centers is at most 2|Sg| ≤ 2s′ + 16t.
As there are .99Cs non-chosen centers in any sub-square

there is always a fresh center to add provided that C is a

large enough constant.

When we have processed all centers of Jj we have created

a closed graph which extends the information set Jj and

which we denote γj . This follows as for each even degree

center we have added a fresh center that is of degree one.

As discussed previously, closed graphs can be used to define

restrictions with fewer live centers and we define ρ∗ to be the

restriction defined by ρ together with the graph γ = ∪g
j=1γj .

This is a standard restriction where all centers in the support

of γ are now dead. We call these the disappearing centers.

Before we turn to the reconstruction process let us intro-
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duce some notation for the information sets of the decision

tree process. Let us see what happens at stage j.
On the non-chosen centers there is the information of

some connected components of π, namely all the exposed

centers and let Ij,n denote the union of these components

discovered in stage j. For the chosen centers the information

is obtained by the decision tree. As the decision tree is closed

this is given by a matching on the exposed chosen centers.

On top of this we have the information of non-edges of non-

exposed chosen centers in the direction of exposed chosen

centers. Call this information on the chosen centers Ij,c and

let Ij be the union of Ij,n and Ij,c. Furthermore let I∗j denote

∪j−1
i=1 Ii, the information set gathered during the first j − 1

rounds. It turns out to be convenient to consider ∪g
i=jγi, the

graphs added after stage j, and we let γ∗j denote this graph.
The high level plan is now as follows. As γj extends the

forcing information Jj we have that (ρ, I∗j ∪ γj) and hence

(ρ, I∗j ∪γ∗j ) forces the input to traverse the jth forceable path.

This path should enable us to find a good fraction of the

elements of γj as the closest endpoints of some variable(s)

on this path. We then use some external information to find

the rest of the elements of γj (as well as its graph structure).

Finally we then use external information to reconstruct Ij
and proceed with stage j + 1.

As I∗1 is the empty set and γ∗1 = γ the starting point of

the decision process is (ρ, γ) which forces exactly the same

variables as ρ∗ and thus we know where to start. Although

these two objects force the same variables the information

content is different in that (ρ, γ) contains the information we

are trying to recreate, the identity of the disappeared centers.
We let ρ∗j be the restriction obtained from applying γ∗j to

ρ and at stage j we will be working with (ρ∗j , I
∗
j ) instead

of (ρ, I∗j ∪ γ∗j ). Again these two objects force the same set

of variables but have different information contents.
It is important to identify Tij and the forceable path

but unfortunately it might not be the first 1-path traversed

by (ρ∗j , I
∗
j ). The reason for this is that we might reach a

1-leaf by a path using variables that would give forcing

information that is not allowed. For instance when we make

sure that γj is closed we add paths between chosen and non-

chosen centers and this is not allowed as forcing information.

Another more subtle problem is that of requiring the other

endpoint of non-edges on chosen centers when used as

forcing information. It turns out that it is difficult to make

sure that the information at the other endpoint is consistent

with the rest of the information.
Let I∗−j be the information pieces of I∗j with any piece

supported on γ∗j removed and let I−j be Ij with the same

type of pieces taken away. The removed pieces are simple

to describe.
Lemma 7.4: An information piece in I∗j that is on a center

in the support of γ∗j is in the form of a non-edge from a

chosen center in the direction of an exposed chosen center.
Proof: The information set I∗j consists of a closed graph

jointly with non-edge information on chosen centers of the

type allowed in the lemma. Since any information set Ji for

i ≥ j is disjoint with I∗j no γi with i ≥ j can intersect the

closed graph part of I∗j .

We get a direct consequence of Lemma 7.4.

Lemma 7.5: Any variable forced by (ρ, I∗j ) is forced also

by (ρ∗j , I
∗−
j ).

Proof: The removed pieces of I∗j are, by Lemma 7.4, on

centers that have disappeared in ρ∗j and hence any variable

forced by such a piece is fixed in ρ∗j . As the piece of

information is a non-edge in both I∗j and γ∗j it is forced

to the same value.

As stated above we might have some 1-path before the

forceable path of stage j. This is, in some vague sense be

good, in that it reveals some element of γ. As we cannot

count on this happening, however, this possibility is only

a problem and we have to be careful to make sure that

the reconstruction process is not fooled. Towards this end

we introduce the signature of any disappearing center, v, as

follows.

1) The value of j such that v ∈ γj .

2) The information of whether it is a closest endpoint to

any variable on the forceable path and in such a case

in which direction(s) it has variables appearing on this

path.

Let us now describe the reconstruction procedure for-

mally. It has the following information.

1) A counter j of the current stage to be reconstructed.

Initially j = 1.

2) The restriction ρ∗j . Initially ρ∗1 = ρ∗ and we describe

below how to update.

3) The information set I∗−j . Initially this is empty and

we describe below how to update.

4) A set E of disappearing centers together with their

signatures. Initially E is empty.

In the reconstruction process we need to find the identity

of some centers. Let us discuss different contexts where

this happens and how much external information is needed.

For some disappearing centers we also specify the signature

which amounts to O(s) possibilities for each center. We have

the following cases.

1) A disappearing center that is the closest endpoint of

a variables on a discovered 1-path. This can be found

by giving the distance from the root on the path at

cost t.
2) A disappearing center that is not the closest endpoint

of a variable on a path but we know the sub-square

where it is located. This can be specified at cost Δ.

3) A non-disappearing and live center where we know

the sub-square. This can be specified at cost 1.01Cs
as these are the number of live centers in any sub-

square.
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The two first situations appear when finding centers in

γj while the last situation appears when finding centers in

Ij . Identifying a disappearing center has “profit” (as will be

seen in the final calculation of counting the number of ρ∗

compared to the number of ρ) of Ω(Δ/s) and thus there is

a huge profit in the first case and the moderate loss in the

second. For the third case there is no associated profit but

on other hand only a moderate cost. The key for the final

analysis is to bound the number of costly step by a constant

times the number of profitable steps of the first kind. Let us

now formally define the reconstruction process.

1) Find the next 1-path traversed by (ρ∗j , I
∗−
j ).

2) Locate the closest endpoints of all variables on this

path. If any such center belongs to E and its signature

does not match the current path, go to the next 1-

path. By “not matching” we mean that the stage

information is incorrect or that the direction(s) of the

edges involved does not exactly match the signature.

3) Read a bit b to determine if there are more disap-

pearing centers to be found as the closest endpoint to

variables on this path.

4) If b = 1 read one integer that is at most t to determine

a disappearing center that is the closest endpoint of

a variable on this path. Read its signature. If this

signature agrees with the current path repeat step 3

and otherwise include it in E and go to the next path.

5) If b = 0 we have found the forceable path. We

read some external information to determine γj and

I−j (details below). Update ρ∗j to ρ∗j+1 and I∗−j to

I∗−j+1, drop any disappearing center of stage j from E,

increase j and repeat from 1.

The are a few details and facts about this reconstruction

procedure to sort out. Let us start with establishing that we

are indeed correctly identifying the forceable path.

Lemma 7.6: If a 1-path is the first path to be forced

by (ρ∗j , I
∗−
j ) and the signatures of all closest endpoints of

all variables on this path match, then this path is the jth

forceable path.

Proof: As all variables on the path are forced we must

have the information of their closest endpoints in the correct

direction. As none of the variables have a closest endpoint

of a stage later than j, and the signatures are correct, the

path is forced by (ρ, I∗−j ∪ Jj) jointly possibly with a non-

edge in γj contained in I∗j . This implies that the forcing

information Jj is valid for this path and being the first such

path it must be the jth forceable path.

Let us now see how to reconstruct γj . We have already

identified all the closest endpoints of variables on the force-

able path and we know, by their signature which directions

they need a neighbor. We read the identity of these centers

at a cost4 of at most Δ for each center. This identifies Jj .

To finalize the description of γj we read the identity of the

fresh centers used to make γj closed at a cost of Δ for each

such center. Having identified γj we turn to I−j .
We have a bit for each element in γj to indicate whether

it is also an element of Ij and we proceed to identify the rest

of Ij . We first reconstruct the missing non-chosen centers.

For each non-chosen center in Jj using O(1) bits we first

find out the size of the connected component in π and the

directions of each edge. Then we identify each such center

at cost 1.01Cs. Here we use the fact that as these variables

are part of Ij they cannot be included in the support γ∗j+1

and hence they are alive in ρ∗j .
For the chosen centers we can again discover the graph

part with O(1) bits per center for structure and an integer of

size 1.01Cs for the identity (as also these are alive in ρ∗. The

non-edges not supported on γ∗j are also reconstructed at cost

1.01Cs for identity and O(1) bits per center for direction.
Finally for any center in γj we have 4 bits to describe

whether the piece of information in the form of non-edge in

any direction(s) should be added in I∗−j+1.
This terminates the description of the reconstruction and

let us sum up the external information needed. Let aj be the

number of disappearing centers that are discovered through

being the closest endpoint of a discovered variable and are

part of the jth forceable path and let bj the number of

additional centers in γj . Furthermore let cj the the number

of centers needed to be discovered in I−j after γj was

discovered.
Lemma 7.7: We have bj + cj ≤ 25aj .
The fact that there is some constant such that the above

lemma is true is, hopefully, quite believable but getting the

best constant requires some case analysis. We leave the proof

of this lemma for the full version of the paper.
Now we are ready to make the final calculation. Letting

a =
∑g

j=1 aj and defining b and c similarly we can add up

the extra information as follows.

• The disappearing centers that are discovered as closest

endpoints contribute a factor ta.

• The other disappearing centers a contribute a factor at

most Δb (or less as discussed in the footnote).

• The signatures contribute at most (As′)a for a constant

A as signatures are only needed for disappearing cen-

ters discovered as closest endpoints.

• The centers discovered to be part of I contribute a

factor (1.01Cs)c.

• The graph structure of γ and I as well as the informa-

tion which elements of γj are included in Ij contributes

a factor Ba+b+c, for some constant B.

• The bits b contribute 2s
′+8t+s′ . This follows as we can

have at most s′ + 8t bits that are 1 (as each time a

4It might be the case that some of these centers are uniquely determined
and/or found previously and are part of E. In such a case the cost, including
the signature is O(st) which is much lower.
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disappearing variable is discovered) and at most s′ bits

that are 0 (as each time a stage is ended).

Let m = Δ(n/T )2 be the total number of centers.

The number of ways to choose ρ∗ is 2r1
(

m
k−(b+a)

)
where

2r1 is the number of possibilities for the choice of fixed

and preferred variables once the choice of centers is fixed.

Similarly the number of choices for ρ is 2r1
(
m
k

)
. This

implies that the probability of having a described closed

path is bounded by

taΔbsascAa+b+c2r1
(

m
k−(a+b)

)
2r1

(
m
k

) (1)

for some (modified) absolute constant A. The quotient of

the the binomial coefficients equals

a+b−1∏
i=0

k − i

m+ i− k
≤

(
k

m− k

)a+b

=

(
Cs

Δ− Cs

)a+b

(2)

≤ Δ−(a+b)sa+bAa+b, (3)

for some (again different) constant A. We conclude that the

probability of the closed path in the decision tree we are

analyzing is at most

Δ−as2a+b+ctaAa+b+c, (4)

for again a new constant A. Applying Lemma 7.7 and

modifying A we have that this is bounded by

Δ−as27ataAa = (As27tΔ−1)a. (5)

Finally as the number of exposed centers is at most a +
b + c we have a + b + c ≥ s′ and hence a ≥ s′/27 and

this concludes that analysis of the probability of a closed

path. Lemma 6.2 now follows from Lemma 7.3 and a final

modification of the constant A.
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[15] J. Håstad, “Almost optimal lower bounds for small depth
circuits,” in Proceedings of the eighteenth annual ACM sym-
posium on Theory of computing, ser. STOC ’86. New York,
NY, USA: ACM, 1986, pp. 6–20.

[16] J. Mehta, “Tree tribes and lower bounds for switching
lemmas,” CoRR, vol. abs/1703.00043, 2017. [Online].
Available: http://arxiv.org/abs/1703.00043

[17] A. A. Razborov, Bounded Arithmetic and Lower Bounds in
Boolean Complexity. Boston, MA: Birkhäuser Boston, 1995,
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