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Abstract—We study the computational complexity of short
sentences in Presburger arithmetic (SHORT-PA). Here by
“short” we mean sentences with a bounded number of vari-
ables, quantifiers, inequalities and Boolean operations; the
input consists only of the integer coefficients involved in the
linear inequalities. We prove that satisfiability of SHORT-PA
sentences with m+2 alternating quantifiers is ΣP

m-complete or
ΠP

m-complete, when the first quantifier is ∃ or ∀, respectively.
Counting versions and restricted systems are also analyzed.
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I. INTRODUCTION

A. Outline of the results

We consider short Presburger sentences, defined as fol-
lows:

(Short-PAm) ∃x1 ∀x2 . . . ∀/∃xm : Φ
(
x1, . . . ,xm

)
,

where the quantifiers alternate, the variables xi ∈ Z
ni have

fixed dimensions n = (n1, . . . , nm), and Φ(x1, . . . ,xm) is
a fixed Boolean combination of integer linear systems of
fixed lengths (numbers of inequalities):

(∗) A1x1 + . . . + Akxm ≤ b.

In other words, everything is fixed in (Short-PAm), except
for the entries of the matrices Ai and of the vectors b in (∗).
We also call Φ a short Presburger expression.

The feasibility of short Presburger sentences is a well
known open problem which we resolve in this paper. Con-
nected to both Integer Programming and Computational
Logic, it was called a “fundamental question” by Barvinok
in a recent survey [5]. Many precursors to (Short-PAm) are
well known, including Integer Linear Programming:

(IP) ∃x : Ax ≤ b,

and Parametric Integer Programming:

(PIP) ∀y ∈ Q ∃x : Ax + By ≤ b,

where Q is a convex polyhedron given by K y ≤ u. In
both cases, the problems were shown to be in P, by Lenstra
in 1982 and Kannan in 1990, respectively (Theorem 6).
Traditionally, the lengths of the systems in both (IP) and

(PIP) are not restricted. However, it is known that they both
can be reduced to the case of a bounded length system (c.f.
Sec. 8.1 [27]).

Our main result is a complete solution of the problem.
We show that for a fixed m ≥ 3, deciding (Short-PAm) is
ΣP

m−2-complete (Theorem 5). This disproves1 a conjecture
by Woods [39, §5.3] (see also [40]), which claims that
decision is in P.

Let us emphasize that until this work even the following
special case remained open:

(GIP) ∃z ∈ R ∀y ∈ Q ∃x : Ax + By + C z ≤ b,

where Q and R are convex polyhedra given by K y ≤ u
and Lz ≤ v, respectively. We also show that (GIP) is NP-
complete (Theorem 2). This resolves an open problem by
Kannan [18].

Our reduction is parsimonious and also proves that the
corresponding counting problem is #P-complete:

(#GIP) #
{

z ∈ R : ∀y ∈ Q ∃x Ax+By+C z ≤ b
}
.

There is a natural geometric way to view these problems.
Problem (IP) asks whether a given rational polyhedron P ⊂
R

d contains an integer point. Problem (PIP) asks whether
the projection of P contains all integer points in some
polyhedron Q. Finally, problem (GIP) asks whether there
is an R-slice of a polyhedron P for which the projection
contains all integer points in some polyhedron Q.

B. Precise statements

For m = 3 alternating quantifiers, we have the first hard
instance of (Short-PAm) :

(Short-PA3) ∃z ∀y ∃x : Φ(x,y, z).

Here Φ is a short Presburger expression in x, y and z. We
can also define the counting problem

(#Short-PA3) #
{
z : ∀y ∃x Φ(x,y, z)

}
.

Theorem 1. Deciding (Short-PA3) is NP-complete, even for
a short Presburger expression Φ of at most 10 inequalities

1Assuming the polynomial hierarchy does not collapse.
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in 5 variables z ∈ Z, y ∈ Z
2, x ∈ Z

2. Similarly, computing
(#Short-PA3) in this case is #P-complete.

For systems of inequalities, we also get:

Theorem 2. Deciding (GIP) is NP-complete, even for a
system Ax+By +Cz ≤ b of at most 24 inequalities in 9
variables z ∈ Z, y ∈ Z

2, x ∈ Z
6, when R is an interval and

Q is a triangle. Similarly, computing (#GIP) in this case is
#P-complete.

The third dimension x ∈ Z
6 in the theorem can be

lowered to x ∈ Z
3 at the cost of increasing the length of

the linear system:

Theorem 3. Deciding (GIP) is NP-complete, even for a
system Ax+By+Cz ≤ b of at most 8400 inequalities in
6 variables z ∈ Z, y ∈ Z

2, x ∈ Z
3, when R is an interval

and Q is a triangle. Similarly, computing (#GIP) in this
case is #P-complete.

This substantially strengthens our earlier result [27],
which considers (GIP) with a “long system”, i.e., a system
arbitrarily many inequalities:

Theorem 4 ([27]). Deciding (GIP) is NP-complete, for
a system Ax + By + Cz ≤ b of unbounded length in 6
variables z ∈ Z, y ∈ Z

2, x ∈ Z
3.

At the time of proving Theorem 4, we thought it would
be the strongest negative result (see Section I-D below).
Nevertheless, the new results in theorems 1, 2 and 3 say that
at the level of three quantifiers, both Integer Programming
and Presburger Arithmetic quickly saturate to a high level
of complexity, even when all parameters are bounded.

The decision part of Theorem 1 can naturally be general-
ized to short Presburger sentences of more than 3 quantifiers:

Theorem 5 (Main result). Fix m ≥ 1. Let Q1, . . . , Qm+2 ∈
{∀, ∃} be m + 2 alternating quantifiers with Q1 = ∃ .
Deciding short Presburger sentences of the form

Q1z1 . . . Qm+1zm+1 Qm+2zm+2 : Φ(z1, . . . , zm+2)

is ΣP
m-complete. Similarly, when Q1 = ∀, deciding short

Presburger sentences as above is ΠP
m-complete. Here Φ

is a short Presburger expression of at most 10m inequal-
ities in 4m + 1 variables z1 ∈ Z, z2, zm+2 ∈ Z

2, and
z3, . . . , zm+1 ∈ Z

4.

The proof of the above results uses a chain of reduc-
tions. We start with the AP-COVER problem on covering
intervals with arithmetic progressions. This problem is NP-
compete by a result of Stockmeyer and Meyer [35]. The
arithmetic progressions are encoded via continued fractions
by a single rational number p/q. We use the plane geom-
etry of continued fractions and “lift” the construction to a
Boolean combination of polyhedra in dimension 5, proving
Theorem 1. We then “lift” the construction further to convex

polytopes Q1 ⊂ R
9 and Q2 ⊂ R

6, which give proofs of
theorems 2 and 3, respectively. While both constructions are
explicit, the first construction gives a description of Q1 by
its 24 facets, while the second gives a description of Q2 by
its 40 vertices; the bound of 8400 facets then comes from
McMullen’s Upper bound theorem (Theorem 11). Finally,
we generalize the problem AP-COVER and the chain of
reductions to m ≥ 3 quantifiers.

C. Historical overview

Presburger Arithmetic was introduced by Presburger
in [30], where he proved it is a decidable theory. The
general theory allows unbounded numbers of quantifiers,
variables and Boolean operations. A quantifier elimination
(deterministic) algorithm was given by Cooper [9], and was
shown to be triply exponential by Oppen [28] (see also [31]).
A nondeterministic doubly exponential complexity lower
bound was obtained by Fischer and Rabin [13] for the
general theory. This pioneering result was further refined to
a triply exponential deterministic lower bound (with unary
output) in [38], and a simply exponential nondeterministic
lower bound for a bounded number of quantifier alterna-
tions [14] (see also [32]). Of course, in all these cases the
number of variables is unbounded.

In [34], Schöning proved NP-completeness for two quan-
tifiers ∃y∀x : Φ(x, y), where x, y ∈ Z and Φ(x, y)
is a Presburger expression in 2 variables, i.e., a Boolean
combination of arbitrarily many inequalities in x, y. This
improved on an earlier result by Grädel, who also established
that similar sentences with m+1 alternating quantifiers and
a bounded number of variables are complete for the m-th
level in the Polynomial Hierarchy [16]. Roughly speaking,
one can view our results as variations on Grädel’s result,
where we trade boundedness of Φ for an extra quantifier.

Let us emphasize that when the number of variables is
unbounded, even the most simple systems (IP) become NP-
complete. The examples include the KNAPSACK, one of
the oldest NP-complete problems [15]. Note also that even
when matrix A has at most two nonzero entries in each row,
the problem remains NP-complete [21].

In a positive direction, the progress has been limited. The
first breakthrough was made by Lenstra [22] (see also [33]),
who showed that (IP) can be solved in polynomial time
in a fixed dimension (see also [10] for better bounds).
Combined with a reduction by Scarpellini [32], this implies
that deciding (Short-PA1) is in P.

The next breakthrough was made by Kannan [17] (see
also [18]), who showed that (PIP) in fixed dimensions is
in P, even if the number s of inequalities is unbounded, i.e.
the matrices A and B can be “long”. This was a motivation
for our earlier Theorem 4 from [27], which ruled out “long”
systems for (GIP).

Theorem 6 (Kannan). Fix n1, n2. The formula (PIP) in
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variables x ∈ Z
n1 , y ∈ Z

n2 with s inequalities can be
decided in polynomial time, where s is part of the input.

Kannan’s Theorem was further strengthened by Eisen-
brand and Shmonin [12] (see §VIII-B). All of these greatly
contrast with the above hardness results by Schöning and
Grädel, because here only conjunctions of inequalities are
allowed.

The corresponding counting problems have also been
studied with great success. First, Barvinok [2] showed that
integer points in a convex polytope P ⊂ R

d can be counted
in polynomial time, for a fixed dimension n (see also [3],
[6]). He utilized the short generating function approach
pioneered by Brion, Vergne and others (see [4] for details
and references). Woods [39] extended this approach to
general Boolean formulas.

In the next breakthrough, Barvinok and Woods showed
how to count projections of integer points in a (single)
polytope in polynomial time [7]. Woods [39] extended this
approach to general Presburger expressions Φ with a fixed
number of inequalities (see also [40] and an alternative
proof in [25]). As a consequence, he showed that decid-
ing (Short-PA2) is in P. This represents the most general
positive result in this direction:

Theorem 7 (Woods). Fix n1, n2 and s. Given a short Pres-
burger expression Φ(x,y) in variables x ∈ Z

n1 ,y ∈ Z
n2

with at most s inequalities, the sentence

∀y ∃x : Φ(x,y)

can be decided in polynomial time. Moreover, the number
of solutions

#
{
y : ∃x Φ(x,y)

}
can be computed in polynomial time.

D. Kannan’s Partition Theorem

In [17], Kannan introduced the technology of test sets for
efficient solutions of (PIP). The Kannan Partition Theorem
(KPT), see Theorem 12 below, claims that one can find in
polynomial time a partition of the k-dimensional parameter
space W into polynomially many rational (co-)polyhedra

(◦) W = P1 
 P2 
 · · · 
 Pr ,

so that only a bounded number of tests need to be performed
(see §VIII-A for precise statement details).

In [25], we showed that KPT if valid would imply a
polynomial time decision algorithm for (Short-PAm), and in
particular (GIP) for a restricted system. Thus, at the time of
proving Theorem 4 in [27], we thought that [25] and [27]
together would completely characterize the complexity of
(GIP), depending on whether the system is restricted or not.

In view of our theorems 1, 2, 3 and 5, it strongly suggests
that KPT may actually be erroneous. However, we did not
expect this at the time of writing [25]. In fact, the prevailing

view was that (Short-PAm) would always be in P, which
neatly aligned with the results in [25] (conditional upon
KPT). Now that the hardness results are known, we are
actually able combine the current techniques with some of
those in [25] to obtain the following quantitative result,
which strongly contradicts KPT:

Theorem 8. Fix m,n and let k = 1. Let φ be the total
bit length of the matrix A ∈ Z

m×n in KPT. Then for the
number r of pieces in Kannan’s partition (◦), we must have
r > exp(εφ) for some constant ε = ε(n,m) > 0.

We conclude no polynomial size partition (◦) exists as
claimed by KPT. See Section VIII for more on KPT, §IX-A
for our point of view, and §IX-B for the gap in the original
proof of KPT.

II. NOTATIONS

• We use N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}
• Universal/existential quantifiers are denoted ∀/∃ .
• Unspecified quantifiers are denoted by Q1, Q2, etc.
• Unquantified Presburger expressions are denoted by
Φ,Ψ, etc.

• We use [ ab ] for a disjunction (a ∨ b) and { a
b } for a

conjunction (a ∧ b).
• All constant vectors are denoted n, b, α, ν, etc.
• We use 0 to denote both zero and the zero vector.
• All matrices are denoted A,B,C, etc.
• All integer variables are denoted x, y, z, etc.
• All vectors of integer variables are denoted x,y, z, etc.
• In a vector y = (y1, y2), we draw y2 as a vertical and

y1 as a horizontal coordinate.
• We use 
.� to denote the floor function.
• The the vector y with coordinates yi = 
xi� is denoted

by y = 
x�.
• Half-open intervals are denoted by [α, β), (α, β], etc.
• A polyhedron is an intersection of finitely many closed

half-spaces in R
n.

• A copolyhedron is a polyhedron with possibly some
open facets.

• A polytope is a bounded polyhedron.
• Subsets of N are denoted by Γ,Δ, etc.

III. BASIC PROPERTIES OF FINITE CONTINUED

FRACTIONS

Every rational number α > 1 can be written in the form:

α = [a0; a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an

,
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where a0, . . . , an ∈ Z+. If an > 1, we have another
representation α = [a0; a1, . . . , an − 1, 1], i.e.,:

α = a0 +
1

a1 +
1

. . . +
1

(an − 1) +
1

1

.

On the other hand, if an = 1, then we also have:

α = [a0; a1, . . . , an−1, 1] = [a0; a1, . . . , an−1 + 1].

It is well known that any rational α > 1 can be written
as a continued fraction as above in exactly two ways (see
e.g. [19], [20]), one with an odd number of terms and the
other one with an even number of terms.

If a continued fraction [a0; a1, . . . , an] evaluates to a
rational value p/q, we identify it with the integer point (q, p).
We write:

(q, p) ↔ [a0; a1, . . . , an].

From now on, we will only consider continued fractions
with an odd number of terms:

α = [a0; a1, . . . , a2k].

To facilitate later computations, we will relabel these 2k+1
terms as:

α = [a0; b0, a1, b1, . . . , ak−1, bk−1, ak].

The convergents of α are 2-dimensional integer vectors,
defined as:

C0 = (1, 0) , D0 = (0, 1),

Ci = ai−1Di−1 + Ci−1 , for i = 1, . . . , k + 1,

Di = bi−1Ci +Di−1 , for i = 1, . . . , k.

(1)

We call C0, D0, . . . , Ck, Dk, Ck+1 the convergents for α. If
Ci = (qi, pi) and Di = (si, ri) then we have the properties:

P1) p0 = 0, q0 = 1, r0 = 1, s0 = 0.
P2) pi = ai−1ri−1 + pi−1, qi = ai−1si−1 + qi−1.
P3) ri = bi−1pi + ri−1, si = bi−1qi + si−1.
P4) Ci+1 = (qi+1, pi+1)↔ [a0; b0, a1, b1, . . . , bi−1, ai].
P5) The quotients pi/qi form an increasing sequence, start-

ing with p0/q0 = 0 and ending with pk+1/qk+1 = α.
P6) Di+1 = (si+1, ri+1)↔ [a0; b0, a1, b1, . . . , ai, bi].
P7) The quotients ri/si form a decreasing sequence, start-

ing with r0/s0 = ∞, and ending with rk/sk =
[a0; b0, a1, b1, . . . , ak−1, bk−1].

Denote by O the origin in Z
2. The geometric properties of

these convergents are:

G1) Each vector
−−→
OCi and

−−→
ODi is primitive in Z

2, meaning
gcd(pi, qi) = gcd(ri, si) = 1.

G2) Each segment CiCi+1 contains exactly ai + 1 integer
points, since

−−−−→
CiCi+1 = ai

−−→
ODi.

C

C0

C1

C2

Ck+1

D0

D1

Dk

y1

y2

Figure 1. The curves C (bold) and D.

G3) Each segment DiDi+1 contains exactly bi + 1 integer
points, since

−−−−−→
DiDi+1 = bi

−−−−→
OCi+1.

G4) The curve C connecting C0, C1, . . . , Ck+1 is (strictly)
convex upward (see Figure 1).

G5) The curve D connecting D0, D1, . . . , Dk is (strictly)
convex downward.

G6) There are no interior integer points above C and below
−−−−→
OCk+1. In other words, C is the upper envelope of all
non-zero integer points between

−−→
OC0 and

−−−−→
OCk+1.

IV. FROM ARITHMETIC PROGRESSIONS TO SHORT

PRESBURGER SENTENCES

A. Covering with arithmetic progressions

For a triple (g, h, e) ∈ N
3, denote by AP(g, h, e) the

arithmetic progression:

AP(g, h, e) = {g + je : 0 ≤ j ≤ h}.

We reduce the following classical NP-complete problem to
(Short-PA3):

AP-COVER
Input: An interval J = [μ, ν] ⊂ Z and k triples

(gi, hi, ei) for i = 1, . . . , k.
Decide: Is there z ∈ J such that z /∈ AP1 ∪ · · · ∪ APk,

where APi = AP(gi, hi, ei)?

The problem AP-COVER was shown to be NP-complete
by Stockmeyer and Meyer. We remark that the inputs
μ, ν, gi, hi, ei to the problem are in binary. We can assume
that each hi ≥ 1, i.e., each APi contains more than 1 integer.
This is because we can always increase ν ← ν +1 and add
the last integer ν+1 to any progression APi that previously
had only a single element. Note that AP-COVER is also
invariant under translation, so we can assume that μ, ν and
all gi, hi, ei are positive integers.

Next, let:

M = 1 + ν

k∏
i=1

gi(gi + hiei).

We have:

M > ν and M > max
i
(gi + hiei).
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i.e., the interval [1,M−1] contains J and all APi. Moreover,
we have:

gcd(M, gi) = gcd(M, gi + hiei) = 1, i = 1, . . . , k. (2)

Note that M can be computed in polynomial time from the
input of AP-COVER, and

logM = O

(
k∑

i=1

log gi + log hi + log ei

)
.

Let us construct a continued fraction

α = [a0; b0, a1, b1, . . . , a2k−2, b2k−2, a2k−1]

with the following properties:

1) All ai, bj ∈ [1,M ].
2) For each 1 ≤ i < k, we have a2i = 1.
3) For each 1 ≤ i ≤ k, we have a2i−1 = hi.
4) For each 1 ≤ i ≤ k, if

C2i−1 := (q2i−1, p2i−1)↔ [a0; b0, . . . , a2i−2]

then we have p2i−1 ≡ gi (mod M).
5) For each 1 ≤ i ≤ k, if

C2i := (q2i, p2i)↔ [a0; b0, . . . , a2i−1]

then we have p2i ≡ gi + hiei (mod M).
6) For each 1 ≤ i ≤ k, the segment C2i−1C2i contains

exactly hi + 1 integer points. Moreover, the set

Ai := {y2 mod M : (y1, y2) ∈ C2i−1C2i}

is exactly APi.
7) For each 1 ≤ i < k, the segment C2iC2i+1 contains no

integer points apart from the two end points.

We construct α iteratively as follows. We say an integer
vector Y = (y1, y2) is congruent to z mod M , denoted
Y ≡ z (mod M), if y2 ≡ z (mod M). As in (1), let
C0 = (1, 0) and D0 = (0, 1).

Step 1: Let a0 = g1. Then

C1 = a0D0 + C0 = (1, g1) and C1 ≡ g1 (mod M).

Step 2: Take b0 so that

D1 = b0C1 +D0 = (b0, b0g1) + (0, 1) ≡ e1 (mod M),

i.e.,
b0g1 + 1 ≡ e1 (mod M).

We can solve for b0 mod M because gcd(M, g1) = 1
from (2). So there exists b0 ∈ [1,M ] s.t. D1 ≡ e1 (mod M).

Step 3: Take a1 = h1. This implies

C2 = a1D1 + C1 ≡ h1e1 + g1 (mod M).

By Property (G2), we also have exactly h1+1 integer points
on C1C2.

Observation: After these steps, we have h1+1 integer points
on C1C2. Every two such consecutive points differ by

−−→
OD1.

Reduced mod M , they give:

C1 ≡ g1, g1 + e1, . . . , g1 + h1e1 ≡ C2 (mod M).

Thus, we have A1 = AP1. Conditions (1)–(7) hold so far.

Step 4: Take b1 so that D2 ≡ g2 − (g1 + h1e1) (mod M).
Since we have the recurrence

D2 = b1C2 +D1 ≡ b1(g1 + h1e1) + e1 (mod M)

this is equivalent to solving

b1(g1 + h1e1) + e1 ≡ g2 − (g1 + h1e1) (mod M).

Again we can solve for b1 mod M because gcd(M, g1 +
h1e1) = 1 from (2). So there exists b1 ∈ [1,M ] s.t. D2 ≡
g2 − (g1 + h1e1) (mod M).

Step 5: Take a2 = 1. This implies

C3 = a2D2 + C2 ≡ g2 − (g1 + h1e1) + g1 + h1e1

≡ g2 (mod M).

This satisfies condition (4) for i = 2. Now we can start
encoding AP2 with C3 (mod M).

Observation: One can see that b1 in Step 4 was appropri-
ately set up to facilitate Step 5. It is conceptually easier to
start with Step 5 and retrace to get the appropriate condition
for b1. Taking a2 = 1 also implies that there are no other
integer points on C2C3 apart from the two endpoints.

Step 6: Take b2 so that D3 = b2C3 +D2 ≡ e2 (mod M).
This is similar to Step 2. Again we use condition (2).

Step 7: Take a3 = h2, which implies

C4 = a3D3 + C3 ≡ g2 + h2e2 (mod M).

After this, we again get exactly h2 + 1 integer points on
C3C4. Reduced mod M , they give A2 = AP2. Note that
conditions (1)–(7) still hold.

The rest proceeds similarly to Steps 4–7, for 2 ≤ j ≤ k−1:

Step 4j: Take b2j−1 so that

D2j ≡ gj+1 − (gj + hjej) (mod M).

Step 4j+1: Take a2j = 1, which implies

C2j+1 = D2j + C2j ≡ gj+1 (mod M).

Step 4j+2: Take b2j so that D2j+1 ≡ ej+1 (mod M).

Step 4j+3: Take a2j+1 = hj+1, which implies

C2j+2 ≡ gj+1 + hj+1ej+1 (mod M).

The segment C2j+1C2j+2 contains exactly hj+1+1 integer
points.

Observation: After these four steps, we get Aj+1 = APj+1.
Conditions (1)–(7) hold throughout.
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All modular arithmetic mod M in the above procedure
can be performed in polynomial time. The last Step 4k− 1
gives:

C2k = (q2k, p2k) ↔ [a0; b0, a1, b1, . . . , a2k−1].

All terms ai and bj are in the range [1,M ], so the final
quotient p2k/q2k can be computed in polynomial time using
the recurrence (1). This implies that p2k and q2k have poly-
nomial binary lengths compared to the input μ, ν, gi, hi, ei
of AP-COVER. The curve C connecting C0, C1, . . . , C2k is
shown in Figure 2.

O
C0

C1

C2

C3

C4

C2k

Figure 2. The curve C.

Here each bold segment C2i−1C2i contains hi+1 integer
points. Each thin black segment C2iC2i+1 contains no
interior integer points. The dotted segment C0C1 contains
g1+1 integer points, the first g1 of which we will not need.
Let C′ be C minus the first g1 integer points on C0C1. For
brevity, we also denote C2k = (q2k, p2k) = (q, p).

B. Analysis of the construction

We define:

Δ =
{
z : ∃(y1, y2) ∈ C

′ z ≡ y2 (mod M)
}
. (3)

By condition (7), every integer point y = (y1, y2) ∈ C′

lies on one of the segments C1C2, C3C4, . . . , C2k−1C2k.
Moreover, by condition (6), for 1 ≤ i ≤ k we have:

APi = Ai =
{
z : ∃y ∈ C2i−1C2i z ≡ y2 (mod M)

}
Therefore, we have:

AP1 ∪ · · · ∪APk = A1 ∪ · · · ∪ Ak = Δ.

Recall that AP-COVER asks whether:

∃z ∈ J z /∈ AP1 ∪ · · · ∪ APk ⇐⇒ ∃z ∈ J z /∈ Δ.

By (3), this is equivalent to:

∃z ∈ J ∀y ∈ C′ z �≡ y2 (mod M),

which can be rewritten as:

∃z ∈ J ∀y z �≡ y2 (mod M) ∨ y /∈ C′. (4)

Next, we express the condition y = (y1, y2) ∈ C
′ in short

Presburger arithmetic. Let v = (p,−q) and θ be the cone
between

−−→
OC0 and

−−−→
OC2k , i.e.,

θ =
{
y ∈ R

2 : y2 ≥ 0 , v · y ≥ 0
}
.

For each y = (y1, y2) ∈ θ, denote by Py the parallelogram
with two opposite vertices O and y and sides parallel to

−−→
OC0

and
−−−→
OC2k (see Figure 3). We also require that horizontal

edges in Py are open, i.e.,

Py =

{
x ∈ R

2 :
v · y ≥ v · x ≥ 0
y2 > x2 > 0

}
. (5)

O

y

Py

p

q

y1

y2

C2k

Figure 3. The parallelogram Py. The upper and lower edges of Py are
open (dotted). Here we denote C2k = (q2k, p2k) = (q, p).

Lemma 9. For y ∈ Z
2, we have:

y ∈ C′ ⇐⇒ v · y ≥ 0 ∧ y2 ≥ g1 ∧ Py ∩ Z
2 = ∅. (6)

Proof: First, assume y := (y1, y2) ∈ C
′. Recall that C′

is C minus the first g1 integer points on C0C1. Therefore,
we have y2 ≥ g1. Since C sits inside θ, we also have y ∈ θ,
which implies v ·y ≥ 0. Let R be the concave region above
C and below

−−−→
OC2k . By property (G6),R contains no interior

integer points. Since y ∈ C, we have Py ⊂ R. Therefore,
the parallelogram Py in (5) contains no integer points. We
conclude that y satisfies the RHS in (6).

Conversely, assume y satisfies the RHS in (6) but y /∈
C′. The following argument is illustrated in Figure 4. First,
v ·y ≥ 0 ∧ y2 ≥ g1 implies y ∈ θ. Also, the parallelogram
Py contains no integer points. By property (G6), if y /∈ C′, it
must lie strictly below C′. Let x and x′ be the integer points
on C that are immediately above and below y (see Figure 4).
In other words, x ∈ C is the integer point immediately above
the intersection of C with the upper edge of Py , and x′ ∈ C
is the integer point immediately below the intersection of
C with the right edge of Py . Since Py contains no integer
points, particularly those on C, the points x and x′ must be
adjacent on C, i.e., they form a segment on C.2 Now we draw
a parallelogram D with two opposite vertices x,x′ and edges
parallel to those of Py (the dashed bold parallelogram in

2Note that x and x
′ are not necessarily two consecutive vertices Ci

and Ci+1 of C. They could be two consecutive points on some segment
CiCi+1.
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Figure 4). It is clear that D lies inside θ and also contains y.
Take y′ to be the reflection of y across the midpoint of xx′.
Since x,x′ and y are integer points, so is y′. We also have
y′ ∈ D ⊂ θ. Note also that y′ lies on the opposite side of
C compared to y. Therefore, we have y′ ∈ R, contradicting
property (G6).

C

y

y′

x

x′

Py

O

D

Figure 4. y
′ is the reflection of y across the midpoint of xx

′.

Remark 10. There is a subtle point about the existence of
x′ in the above proof. It is clear that x exists because y lies
below C. However, if y lies too low, the right edge Py might
not intersect C. For example, in Figure 5, we have g1 = 1
and y lies on the line y2 = 1. This this case, Py contains no
integer points and its right edge does not intersect C. Thus,
we have no x′ and the geometric argument in Figure 4 does
not work. However, this can be easily fixed by requiring
a0 = g1 ≥ 2, noting that AP-COVER is invariant under a
simultaneous translation of J and all APi.

C

C0

C1

C2k

y

Py

O
y1

y2

Figure 5. Here g1 = 1, y /∈ C, and yet Py contains no integer points
(dotted edges are open).

C. Proof of Theorem 1 (decision part)

Combining (4), (5) and (6), the negation of AP-COVER
is equivalent to:

∃z ∈ J ∀y

[
z �≡ y2 (mod M) ∨ v · y < 0

∨ y2 < g1 ∨ ∃x

{
v · y ≥ v · x ≥ 0
y2 > x2 > 0

}]
.

(7)

The condition z �≡ y2 (mod M) can be expressed as:

∃t 0 < z − y2 −Mt < M.

This existential quantifier ∃t can be absorbed into ∃x
because they are connected by a disjunction. The restricted

quantifier ∃z ∈ J with J = [μ, ν] is just

∃z μ ≤ z ≤ ν.

Overall, we can rewrite (7) in prenex normal form:

∃z ∀y ∃x μ ≤ z ≤ ν ∧

[
0 < z − y2 −Mx1 < M

∨ v · y < 0 ∨ y2 < g1 ∨

{
v · y ≥ v · x ≥ 0
y2 > x2 > 0

}]
. (8)

All strict inequalities with integer variables can be sharp-
ened. For example y2 > x2 is equivalent to y2 − 1 ≥ x2.
This final form contains 5 variables and 10 inequalities.

In summary, we have reduced (the negation of)
AP-COVER to (8). This shows that (8) is NP-hard, and
so is (Short-PA3). For NP-completeness, by Theorem 3.8
in [16], if (Short-PA3) is true, there must be a satisfying
z with binary length bounded polynomially in the binary
length of Φ. Given such a polynomial length certificate z,
one can substitute it into (Short-PA3) and verify the rest
of the sentence, which has the form ∀y ∃x Ψ(x,y). Here
Ψ is again a short Presburger expression. By Corollary 7,
this can be checked in polynomial time. Thus, the whole
sentence (Short-PA3) is in NP. This concludes the proof of
the decision part of Theorem 1. �

V. PROOF OF THEOREMS 2 AND 3 (DECISION PART)

We will recast (8) into the form (GIP). For the polytopes
R and Q in (GIP), let R = J = [μ, ν] and

Q =
{
y ∈ R

2 : y2 ≥ g1, y1 ≤ q, v · y ≥ 0
}
, (9)

see Figure 6.

O y1

y2

C
′

C0

C1

C2k = (q, p)

g1

Q

Figure 6. The triangle Q (shaded).

Since R ⊃ C′, (4) is equivalent to:

∃z ∈ R ∀y ∈ Q z �≡ y2 (mod M) ∨ y /∈ C′.

By condition (6), for y ∈ Q, we have

y /∈ C′ ⇐⇒ ∃x ∈ Py .

Thus, the sentence (8) is equivalent to:

∃z ∈ R ∀y ∈ Q ∃x

0 < z − y2 −Mx1 < M ∨ x ∈ Py .
(10)
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The remaining step is to covert the expression

1 ≤ z− y2−Mx1 ≤M − 1 ∨

{
v · y ≥ v · x ≥ 0
y2 − 1 ≥ x2 ≥ 1

}
(11)

into a single system. Here we expanded x ∈ Py and also
sharpened all inequalities.

First, observe that for z ∈ R and y ∈ Q, there exists x

satisfying (11) if and only if there exists such an x within
some bounded range. Indeed, both R and Q are bounded,
and (11) imply boundedness for x. Therefore, we can take
an N large enough so that

−N ≤ z, y1, y2, x1, x2 ≤ N. (12)

For instance, N = (M + p+ q)3 suffices.
Now we convert (11) into a single system. This can be

done in two slightly different ways, leading to theorems 2
and 3.

A. Proof of Theorem 2 (decision part)

Applying the distributive law on (11), we get an equivalent
expression:[

1 ≤ z − y2 −Mx1 ≤ M − 1
v · x ≤ v · y

]
∧

∧

[
1 ≤ z − y2 −Mx1 ≤ M − 1

0 ≤ v · x

]
∧ . . .

(13)

Here each [ ab ] stands for a disjunction a ∨ b of two terms.
In total, there are four such disjunctions.

Now we convert each of the above disjunctions into a
conjunction. WLOG, consider the first one in (13). By the
bounds (12), it is equivalent to:[

1 ≤ z − y2 −Mx1 ≤ M − 1
0 ≤ v · y − v · x ≤ 2N(p+ q)

]
. (14)

Let t1 = z − y2 −Mx1 and t2 = v · y− v · x. By (12), we
always have

|t1| ≤ 2N +MN, |t2| ≤ 2N(p+ q).

Define two polygons in R
2:

P1 =
{
(t1, t2) : 1 ≤ t1 ≤M − 1, |t2| ≤ 2N(p+ q)

}
,

P2 =
{
(t1, t2) : |t1| ≤ 2N+MN, 0 ≤ t2 ≤ 2N(p+1)

}
.

Then (14) can be rewritten as:

(t1, t2) ∈ P1 ∪ P2 . (15)

Next, define:

P ′1 = (P1, 0), P ′2 = (P2, 1) and P = conv(P ′1, P
′

2).

In other words, we embed P1 into the plane t3 = 0 and
P2 into the plane t3 = 1, all inside R

3. As 3-dimensional
polytopes, the convex hull of P ′1 and P ′2 is another polytope
P ⊂ R

3. It is easy to see that P has 6 facets, whose

equations can be found from the vertices of P1 and P2.
Also observe that for (t1, t2, t3) ∈ Z

3, we have:

(t1, t2, t3) ∈ P ⇐⇒
(t1, t2) ∈ P1 , t3 = 0 , or

(t1, t2) ∈ P2 , t3 = 1 .

From this, we have:

(t1, t2) ∈ P1 ∪ P2 ⇐⇒ ∃t3 : (t1, t2, t3) ∈ P. (16)

Combined with (15), it implies that (14) is equivalent to:

∃t : (z − y2 −Mx1, py1 − qy2 − px1 + qx2, t) ∈ P.

The above condition is a linear system with 6 equations.
Doing this for each disjunction in (13), we get four new
variables t ∈ Z

4 and a combined system of 24 inequalities.
Thus, the original disjunction (11) is equivalent to a system:

∃t ∈ Z
4 : Ax + By + Cz +Dt ≤ b.

The inner existential quantifiers ∃x ∈ Z
2 and ∃t ∈ Z

4

can be combined into ∃x ∈ Z
6. Substituting everything

into (10), we obtain the decision part of Theorem 2. �

B. Proof of Theorem 3 (decision part)

Another way to convert (11) into a system is to directly in-
terpret its two clauses and two separate polytopes. The same
bounds (12) still apply. We will need the following special
case of the Upper Bound Theorem (see e.g. Theorem 8.23
and Exercise 0.9 in [41]).

Theorem 11 (McMullen). A polytope P ⊂ R
d with n

vertices has at most

f(d, n) :=

(
n− �d/2�
n− d

)
+

(
n− 
d/2� − 1

n− d

)
facets.

Similarly, a polytope Q ⊂ R
d with n facets has at most

f(d, n) vertices.

The first polytope we consider is given by:{
(x1, y2, z) : 1 ≤ z − y2 −Mx1 ≤ M − 1,

−N ≤ x1, y2, z ≤ N
}
.

This is a 3-dimensional polytope with 8 facets. Applying
Theorem 11, we see that it has at most 12 vertices. To
interpret it as a polytope in z,y and x we need to form
its direct product with the interval −N ≤ y2 ≤ N also
embed it in the hyperplane x2 = 0. This produces a polytope
P1 ⊂ R

5 with 24 vertices.
The second polytope we consider is given by:{

(x,y) : v · y ≥ v · x ≥ 0,

y2 − 1 ≥ x2 ≥ 1, y ∈ Q
}
.

As a 4-dimensional polytope it has only 8 vertices. These
8 vertices correspond to the cases when y lies at one of
the three vertices of Q. Two of these vertices give two
degenerate parallelograms Py , each of which is a segment
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with 2 vertices. The lower right vertex of Q gives a non-
degenerate parallelogram Py with 4 vertices. To interpret
this as a 5-dimensional polytope in z,y and x, we need to
form its direct product with the polytope R = [μ, ν] for z.
This results in a polytope P2 ⊂ R

5 with 16 vertices.
Altogether, we have two polytopes P1, P2 ⊂ R

5 with 40
vertices in total. We reapply the “lifting” trick in (16) to
produce another polytope P ⊂ R

6 with 40 vertices so that:

(z,y,x) ∈ P1 ∪ P2 ⇐⇒ ∃t : (z,y,x, t) ∈ P.

By Theorem 11, the resulting polytope P has at most

f(6, 40) =

(
37

34

)
+

(
36

34

)
= 8400

facets, which can all be found in polynomial time from the
vertices. Therefore, the disjunction (11) is equivalent to a
system:

∃t : Ax + By + Cz +Dt ≤ b

with at most 8400 inequalities. The existential quantifiers ∃t
and ∃x ∈ Z

2 can be combined into ∃x ∈ Z
3. Substituting

all into (10), we obtain the decision part of Theorem 3. �

VI. PROOF OF THEOREMS 1, 2 AND 3 (COUNTING PART)

Notice that the above reduction from AP-COVER to (8) is
parsimonious, i.e., z lies in J \(AP1∪· · ·∪APk) if and only
if μ ≤ z ≤ ν and

∀y ∃x

[
0 < z − y2 −Mx1 < M ∨ v · y < 0

∨ y2 < g1 ∨

{
v · y ≥ v · x ≥ 0
y2 > x2 > 0

}]
.

(17)

At the same time, the reduction from 3SAT to
AP-COVER given in [35]. Since #3SAT is #P-complete
(see e.g. [1], [24], [29]), so is counting the number of z
satisfying (17). This proves the second part of Theorem 1.

The counting parts of theorems 2 and 3 can be proved
with a similar argument to Section V. �

VII. PROOF OF THEOREM 5

Consider the following m-generalization of the problem
AP-COVER:

m-AP-COVER
Input: The following elements:

•m intervals J1 = [μ1, ν1] , . . . , Jm = [μm, νm],
• k1 triples (g1i, h1i, e1i), with 1 ≤ i ≤ k1,
. . .

• km triples (gmi, hmi, emi), with 1 ≤ i ≤ km,
• m integers τ1, . . . , τm ∈ Z.

Decide: The truth of the sentence:

Q1(z1 ∈ J1\Δ1) . . . Qm−1(zm−1 ∈ Jm−1\Δm−1)

. . . Qm(zm ∈ Jm) : τ1z1 + . . .+ τmzm /∈ Δm.

Here Q1, . . . , Qm ∈ {∀, ∃} are m alternating
quantifiers with Qm = ∃ . The sets Δ1, . . . ,Δm

are defined as:

Δt = APt1 ∪ · · · ∪ APtkt
, 1 ≤ t ≤ m

where

APti = AP(gti, hti, eti), 1 ≤ i ≤ kt.

By a similar argument to [35], it is not hard to show
that m-AP-COVER is ΣP

m/ΠP
m-complete, depending on

the parity of m. We prove Theorem 5 by reducing
m-AP-COVER to short Presburger arithmetic. Theorem 1
is the special case when m = 1 (ΣP

1 ≡ NP). For simplicity,
we show the reduction for the case m = 2. The same
argument works for m > 2.

Consider 2-AP-COVER, which is ΠP
2 -complete. We can

rewrite 2-AP-COVER as:

∀z2 ∈ J2
[
z2 ∈ Δ2 ∨

∨ ∃z1 ∈ J1 τ1z1 + τ2z2 /∈ Δ1

]
.

(18)

Replacing z with τ1z1 + τ2z2 in (17), we can express
the condition τ1z1 + τ2z2 /∈ Δ1 by a short formula
∀y ∃x Φ1(x,y, τ1z1 + τ2z2) with 4 extra variables x,y ∈
Z
2 and 8 linear inequalities. Similarly, the condition z2 ∈ Δ2

can be expressed as ∃w ∀t Φ2(t,w, z2) with another 4
variables w, t ∈ Z

2 and also 8 inequalities.
Overall, (18) is equivalent to:

∀z2 ∈ J2

[
∃w ∀t Φ2(t,w, z2) ∨

∨ ∃z1 ∈ J1 ∀y ∃x Φ1(x,y, τ1z1 + τ2z2)

]
.

Each of the restricted quantifiers ∀z2 ∈ J2 and ∃z1 ∈ J1
contributes 2 more inequalities. Note that the two quantifier
groups ∃w ∀t and ∃z1 ∀y ∃x can be merged through the
disjunction into ∃w ∀y′ ∃x. This results in new variables
w ∈ Z

2, y′ = (t,y) ∈ Z
4 and x ∈ Z

2. The final sentence
takes the form

∀z2 ∃w ∀y′ ∃x Φ(x,y′,w, z2)

with 20 inequalities and 9 variables (z1 has been absorbed
into w).
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The same reduction works for m > 2. We omit the details.
�

VIII. ON KANNAN’S PARTITION THEOREM (KPT)

A. Validity of KPT

By Parametric Integer Programming (PIP), we mean the
following problem. Given an integer matrix A ∈ Z

m×n

and a k-dimensional polyhedron W ⊂ R
m, is the following

sentence true:

∀ b ∈ W ∃x ∈ Z
n : Ax ≤ b. (19)

We think of b as a parameter varying over W . For every
fixed b, this gives an Integer Programming problem in fixed
dimension n. In [17, Theorem 3.1], Kannan claimed the
following result, which implies a polynomial time algorithm
to decide (19). From here on, we use RA to denote rational
affine transformations. Also let Kb := {x ∈ R

n : Ax ≤ b}
for every b ∈W .

Theorem 12 (Kannan’s Partition Theorem). Fix n and k.
Given a PIP problem, we can find in polynomial time a
partition

W = P1 
 P2 
 · · · 
 Pr, (20)

where each Pi is a rational copolyhedron3, so that the
partition satisfies the following properties. For each Pi, we
can find in polynomial time a finite set Ti = {(Sij , Tij)} of
pairs of RAs Tij : R

m → R
n and Sij : Z

n → Z
n, so that

for every b ∈ Pi we have:

Kb ∩ Z
n �= ∅ ⇐⇒ ∃(Sij , Tij) ∈ Ti : Sij
Tijb� ∈ Kb.

Furthermore, for each Pi, the set Ti contains at most n4n

pairs (Sij , Tij). The number of all Pi is r ≤ (mnφ)kn
δn

,
where φ is the binary length of A and δ is a universal
constant.

KPT claims that in order to solve for an x ∈ Z
n satisfying

Ax ≤ b with b varying over W , we only need to preprocess
the matrix A in polynomial time and obtain a polynomial
number of regions Pi. When queried with b ∈ Pi, we only
need to check for a fixed number (n4n) of candidates of the
form x = Sij
Tijb� to get an integer solution in Kb (if any
exists).

As mentioned in Section I-D, combining the current
techniques with those in [25], we obtained Theorem 8. This
strongly contradicts KPT, even for the case k = 1 (b is 1-
dimensional). The proof of Theorem 8 is omitted here due
to its length. It can be found in full journal version of the
paper.

3A copolyhedron is a convex polyhedron with possibly some open facets.

B. Implications

To summarize, Theorem 8 shows that a polynomial size
decomposition into polyhedral pieces as in (20) does not
exist. If one is willing to sacrifice the polyhedral structure
of the pieces, then a polynomial size partition similar to (20)
does in fact exist [12] (see also [11]):

Theorem 13 (Eisenbrand and Shmonin). Fix n and k. Let
Ax ≤ b be a PIP problem with a k-dimensional parameter
space W . Then we can find in polynomial time a partition

W = S1 
 S2 
 · · · 
 Sr , (21)

where each Si is an integer projection of another polyhedron
S′i ⊆ R

m+�, defined as:

Si =
{
b ∈ R

m : ∃t ∈ Z
� (b, t) ∈ S′i

}
.

Here 
 = 
(n) is a constant that depends only on n. All
polyhedra S′i can be found in polynomial time. The parti-
tion (21) satisfies all other properties as claimed in KPT.

Note that the integer projection of a polyhedron defined in
the theorem is not necessarily a polyhedron as the following
example shows.

Example 14. Consider the polytope S′ =
{
(y1, y2) ∈ R

2 :
0 ≤ y2 ≤ 1, 0 ≤ y1 − 3y2 ≤ 2

}
. The integer projection of

S′ on the coordinate y1 is S = [0, 2]∪ [3, 4] (see Figure 7).

y1

y2

O

1

2 3 4

S′

Figure 7. A polytope S′ (shaded) and is integer projection (bold).

We emphasize that the proofs of theorems 6 and 7 still
hold if KPT is substituted by Theorem 13 (see [12]). Overall,
the only discrepancy between KPT and Theorem 13 is about
the structures of the pieces in the partition. This does not at
all affect all known results about decision with 2 quantifiers
or less. Worth mentioning is the polynomial time algorithm
by Barvinok and Woods [7] on counting integer points in
the integer projection of a single polytope. This algorithm
uses a weaker (valid) partitioning procedure also due to
Kannan [18, Lemma 3.1]. However, as we pointed out in
Section I-D, for three quantifiers or more, this structural
discrepancy between KPT and Theorem 13 is of crucial
importance.

IX. FINAL REMARKS AND OPEN PROBLEMS

A. Niels Bohr, the inventor of quantum theory, is quoted
saying:
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“It is the hallmark of any deep truth that its negation
is also a deep truth.”

This roughly reflects our attitude towards KPT. A pioneer
result at the time, it only slightly overstated the truth com-
pared to the Eisenbrand–Shmonin theorem (Theorem 13). In
fact, for many applications, including Kannan’s Theorem 6
and Barvinok–Woods algorithm [7], Kannan’s weaker result
in [18] is sufficient.

Let us emphasize that, of course, it would be natural
to have a partition into convex (co-)polyhedra rather than
general semilinear sets, since convex polyhedra are much
easier to work with. The fact that it took nearly 30 years
until KPT was disproved, shows both the delicacy and the
technical difficulty of the issue.

B. The gap in the proof of KPT (Theorem 3.1 in [17]) could
be traced to the following lines:

“. . . for each (b, x) ∈ Si (with b ∈ P , x ∈ Z
n), there is

a unique y ∈ Z
� so that (b, x, y) belongs to S′i. In fact,

each component of y is of the form F ′
Fx�, where
F ′, F are affine transformations. This is easily proved
by induction on n, noting that (4.5) of [8], the z is in
fact forced to be 
α+ 1− β�.”

Here [8] refers to the conference proceedings version of
paper [18]. In equation (4.5) of [18], variable z is in fact
forced to be 
α+ 1− β�. However, the quantity α in (4.5)
actually depends on b, which makes 
α+1− β� a function
of b instead of a constant. This implies that y in the above
quoted paragraph could also depend on b. This technical
error was perhaps due to the unclear notation α, which does
not reflect its dependence on b, or due to the complicated
cross referencing between [17] and [18].

C. There is a delicate difference between the treatment of
(PIP) in Section VIII-A versus that in the integer program-
ming literature (see e.g. [8], [36], [37]). In the latter, the
parameter space W is also partitioned into convex polyhedra
Pi, and over each Pi the number of solutions x is given
by a quasi-polynomial pi(b) in b. However, since there are
no test sets, this does not allow us to solve (PIP) for all
b. In other words, even though a quasi-polynomial pi(b) is
obtained, which evaluates to |Kb ∩ Z

n|, there is no easy
way to test whether pi(b) �= 0 for all b within Pi. In
general, we prove in [26] that there are strong obstacles
in using (short) generating functions to decide feasibility of
Presburger sentences.

D. Now that we have Theorem 1, one can ask if the
dimension 5 is tight. Observe that for three variables and
three quantifiers, there is essentially a unique form of short
Presburger sentence:

∃z ∀y ∃x : Φ(x, y, z).

Despite Theorem 8, KPT actually holds for a PIP problem
ax ≤ f(y, z) with a single variable x, i.e., when n = 1.

Therefore, this sentence can be decided by the approach
in [25]. The only remaining special case of (Short-PA3) is

∃z ∀y ∃x : Φ(x, y, z), where x ∈ Z
2.

It would be interesting to see if this case is also NP-
complete.

Similarly, for sentences (GIP), one can ask if dimension
6 in Theorem 3 can be lowered. We believe it can be, at
least for the counting part (cf. [27]).

E. Motivated in part by the Hilbert’s tenth problem, Man-
ders and Adleman [23] (see also [15, §A7.2]) proved the
following classical result: feasibility over N of

ax2 + by = c

is NP-complete, given a, b, c ∈ Z. One can view our
Theorem 2 as a related result, where a single quadratic
equation and two linear inequalities x, y ≥ 0 (over Z) are
replaced with a system of 24 linear inequalities.
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