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Abstract

Two important similarity measures between sequences are the longest common subsequence (LCS) and the dynamic time
warping distance (DTWD). The computations of these measures for two given sequences are central tasks in a variety of
applications. Simple dynamic programming algorithms solve these tasks in O(n2) time, and despite an extensive amount of
research, no algorithms with significantly better worst case upper bounds are known.

In this paper, we show that for any constant ε > 0, an O(n2−ε) time algorithm for computing the LCS or the DTWD of
two sequences of length n over a constant size alphabet, refutes the popular Strong Exponential Time Hypothesis (SETH).
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I. INTRODUCTION

Many applications require comparing long strings. For instance, in biology, DNA or protein sequences are frequently

compared using sequence alignment tools to identify regions of similarity that may be due to functional, structural, or

evolutionary relationships. In speech recognition, sequences may represent time-series of sounds. Sequences could also be

English text, computer viruses, points in the plane, and so on. Because of the large variety of applications, there are many

notions of sequence similarity. Some of the most important and widely used notions are the Longest Common Subsequence

(LCS), the Edit-Distance (also called Levenshtein distance), the Dynamic Time Warping Distance (DTWD) and the Frechet

distance measures.

LCS and Edit-Distance are defined in terms of the minimum number of changes that can be performed to obtain the second

string from the first. LCS allows symbol insertions and deletions, whereas Edit-Distance also allows symbol substitutions.

DTWD and Frechet distance assume a distance measure between any two symbols and are defined in terms of a “best”

joint traversal of the sequences. The traversal places a marker at the beginning of each sequence and during each step one

or both markers are moved forward one symbol, until the end of both sequences is reached. Each step aligns two symbols,

one from each sequence. Frechet defines the quality of the traversal to be the maximum distance between aligned symbols,

whereas DTWD defines it to be the sum of distances.

For each of these similarity measures on two sequences of length n there is a classical, folklore O(n2) time algorithm (see

e.g. [21]). This O(n2) time algorithm for LCS is typically taught as a first example of Dynamic Programming in introductory

computer science courses, and naturally leads to the question “Can LCS be solved in subquadratic time?”. As it is hard to

think of a simpler problem on two sequences than LCS for which a near-linear time algorithm is not known, this question

seems as fundamental as any. Needless to say, researchers have wondered about the possibility of a subquadratic algorithm

for decades, and in the early 1970s Knuth ( [20], Problem 35) posed this as an important problem in combinatorics. Besides

the obvious theoretical motivation, the question is of ever increasing relevance in practice, as quadratic time is prohibitive

for many important applications. For instance, the sequences in biological applications have length on the order of millions

and billions.

Unfortunately, despite substantial research, the current best algorithms for all four problems are only mildly subquadratic–

one can shave small polylogarithmic factors, but there is no known truly subquadratic, O(n2−ε) time algorithm, for ε > 0.

Due to the general lack of unconditional time lower bounds, a popular approach is to prove, via reductions, lower bounds

based on famous conjectures. In 1995, Gajentaan and Overmars [26] showed that the lack of progress on many O(n2) time

problems in computational geometry can be explained by the lack of progress on a simple problem called 3SUM. 3SUM

has since become a landmark problem to base conditional quadratic time hardness on: it has enjoyed tremendous success

within computational geometry (e.g. [7], [10], [19], [25], [26], [36]), graph algorithms (e.g. [5], [41]) and recently also for
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some sequence similarity problems [3], [6]. Nevertheless, the 3SUM hardness approach has so far failed for problems such

as LCS, Edit-Distance, Frechet distance and DTWD.

Besides 3SUM, a different conjecture, the Strong Exponential Time Hypothesis (SETH), has recently become popular for

proving conditional lower bounds for quadratic time problems (e.g. [2], [5], [46]). It asserts that for all ε > 0, there is some

k such that k-SAT on n variables requires essentially 2(1−ε)n time. Two recent papers [9], [15] explained the quadratic

bottleneck of Edit-Distance and Frechet distance by showing that any truly subquadratic algorithm for either problem would

refute SETH, and would thus present a breakthrough in the study of SAT algorithms. The techniques used in these two

reductions, however, did not seem to work for LCS and DTWD. In a certain sense this is because LCS and DTWD are

simpler looking problems. Here is some intuition:

LCS is a restricted version of Edit-Distance, as no substitutions are allowed. Intuitively, a reduction can encode more

in the more complex looking Edit-Distance problem. DTWD and Frechet distance only differ in that DTWD uses + and

Frechet uses max. However, some intuition from other problems seems to indicate that problems with + are easier than ones

with max. For instance, the convolution of two sequences (z[k] =
∑

i x[i] · y[k − i]) can be computed in O(n log n) time

using an FFT, whereas the corresponding max-convolution (z[k] = maxi x[i] · y[k− i]) seems to require n2−o(1) time [14]1.

Thus apriori it could be possible that DTWD is a substantially simpler problem and no reduction from k-SAT is possible.

The first contribution of this work is to prove that neither LCS nor DTWD admits truly subquadratic algorithms, unless

SETH fails. To do this, we overcome several technical hurdles with sophisticated gadgets. Our lower bounds hold even

when the input sequences are over a constant size alphabet. We complement the result for DTWD by providing a truly

subquadratic algorithm for DTWD on binary strings with cost function 0 if the symbols are equal and 1 otherwise. See the

full version for the algorithm. Our lower bounds also hold for the same distance function. In this paper we present a lower

bound for an alphabet of size 5; however, we believe that one can obtain the same lower bound for a ternary alphabet, so

that, modulo SETH, the runtime complexity of DTWD for this simple cost measure would be settled.

We extend our results for LCS to the version on k strings, k-LCS: find the longest string that is a subsequence of all

k given strings. k-LCS is a classical and well-studied problem. One of its biggest applications is in biology where one

needs to compute the most similar region of a set of DNA sequences. In fact, one of the most widely used textbook on

computational biology [28] calls the multiple alignment problem “the holy grail” of computational biology.

The fastest known algorithm for k-LCS runs in O(nk) time. We show that an O(nk−ε) time algorithm, for any ε > 0
would refute SETH, even for alphabet size O(k). Along the way, we show that k-LCS is W[2]-hard on small alphabets,

resolving an open problem in parameterized complexity.

A. Prior work and hypotheses

LCS: LCS has attracted an extensive amount of research, both due to its mathematical simplicity and to its large number

of important applications, including data comparison programs (e.g. diff in UNIX) and bioinformatics (e.g. [34]). There are

many algorithms for LCS, beyond the classical dynamic programming solution, in many different settings, e.g. [29], [30]

(see [11] for a survey). Nevertheless, the best algorithms on arbitrary strings are only slightly subquadratic and have an

O(n2/ log2 n) running time [38] if the alphabet size is constant, and O(n2(log logn)/ log2 n) otherwise [12], [27].

k-LCS: The k-LCS problem is a generalization of LCS to k strings. The classical dynamic programming solution to

k-LCS runs in O(knk) time. Maier [37] showed that k-LCS is NP-Complete even for binary strings. When k is a parameter,

the problem is W [1]-hard, even over a fixed size alphabet, by a reduction from Clique [40]. When the alphabet can be

polynomial in n, it is known that k-LCS is W [t]-hard for all t ≥ 1 [13]. The parameters of the reduction from [40]

imply that an no(k) algorithm for k-LCS would refute ETH 2, and an algorithm with running time sufficiently faster than

O(nk/7) would imply a new algorithm for k-Clique. However, no results ruling out O(nk−1) or even O(nk/2) upper bounds

were known. Furthermore, beyond the W [1]-hardness of [40] the parameterized complexity of k-LCS with an alphabet size

independent of n, say O(k), was unknown. Our results show that in this case, in fact, k-LCS is W [2]-hard.

DTWD: Dynamic time warping is useful in scenarios in which one needs to cope with differing speeds and time

deformations of time-dependent data. Because of its generality, DTWD has been successfully applied in a large variety of

domains: automatic speech recognition [43], music information retrieval [39] , bioinformatics [1], medicine [16], identifying

songs from humming [50], indexing of historical handwriting archives [45], databases [35], [44] and many more.

DTWD compares sequences over an arbitrary feature space, equipped with a distance function for any pair of symbols.

The sequences may represent time series or features sampled at equidistant points in time. The cost function differs with

1Bremner et al. [14] study (min,+)-convolution, but it is not hard to reduce it to (max, ·) with only a small increase in the bit complexity of the
integers.

2The exponential time hypothesis (ETH) is a weaker version of SETH: it asserts that there is some ε > 0 such that 3SAT on n variables requires
Ω(2εn) time.
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the application. For instance, if the features are real numbers, then the distance could be �p. A simple cost function which

is useful when comparing text is to have the cost between two letters be 1 if they are different and 0 if they are the same

(See Example 4.2. in [39] for this version).

A simple dynamic programming algorithm solves DTWD in O(n2) time and is the best known in terms of worst-case

running time, while many heuristics were designed in order to obtain faster runtimes in practice (see Wang et al. for a survey

[47]).

Hardness assumptions: The Strong Exponential Time Hypothesis (SETH) [32], [33] asserts that for any ε > 0 there

is an integer k > 3 such that k-SAT cannot be solved in 2(1−ε)n time. Recently, SETH has been shown to imply many

interesting lower bounds for polynomial time solvable problems [3], [5], [9], [15], [42], [46]. We will base our results on the

following conjecture, which is possibly more plausible than SETH: it is known to be implied by SETH (follows from [48]),

yet might still be true even if SETH turns out to be false. See Section II-B for a discussion.

Conjecture 1. Given two sets of n vectors A,B in {0, 1}d and an integer r ≥ 0, there is no ε > 0 and an algorithm that
can decide if there is a pair of vectors a ∈ A, b ∈ B such that

∑d
i=1 aibi ≤ r, in O(n2−ε · poly(d)) time.

B. Results

Our main result is to show that a truly sub-quadratic algorithm for LCS or DTWD refutes Conjecture 1 (and SETH), and

should therefore be considered beyond the reach of current algorithmic techniques, if not impossible. Our results justify the

use of sub-quadratic time heuristics and approximations in practice, and add two important problems to the list of SETH-hard

problems.

Theorem 1. If there is an ε > 0 such that either
• LCS over an alphabet of size 7 can be computed in O(n2−ε) time, or
• DTWD over symbols from an alphabet of size 5 can be computed in O(n2−ε) time,

then Conjecture 1 is false.

Thus, quite remarkably, a slightly faster algorithm for the very innocent looking LCS would imply a breakthrough algorithm

for a notoriously hard satisfiability problem. Conditioned on SETH, in a certain sense, we give a negative answer to Knuth’s

question [20]. Moreover, our nearly tight lower bound for LCS can now be reported in undergraduate level courses along

with the Dynamic Programming solution.

We note that the non-existence of an O(n2−ε) algorithm for DTWD between two sequences of symbols over an alphabet

of size 5 implies that there is no O(n2−ε) time algorithm for DTWD between two sequences of points from �5p for any p,

or from �42 (4-dimensional Euclidean space). The latter follows because we can choose 5 points in 4-dimensional Euclidean

space so that any two points are at distance 1 from each other, i.e., choose the vertices of a regular 4-simplex.

Next, we consider the problem of computing the LCS of k > 2 strings, k-LCS.

In this work, we prove that even a slight improvement over the classical O(knk) time dynamic programming algorithm

is not possible under SETH when the alphabet is of size O(k).

Theorem 2. If there is a constant ε > 0, an integer k ≥ 2, and an algorithm that can solve k-LCS on strings of length n
over an alphabet of size O(k) in O(nk−ε) time, then SETH is false.

A main question we leave open is whether the same lower bound holds when the alphabet size is a constant independent

of k. In Section V we prove Theorem 2 and make a step towards resolving the latter question by proving that a problem

we call Local-k-LCS has such a tight nk−o(1) lower bound under Conjecture 1 even when the alphabet size is O(1).
Finally, we note that our reduction can be made to work from k-dominating set, thus showing W [2]-hardness for k-LCS

on small alphabets. Previously, the only known result for alphabet size independent of n was that the problem is W [1]-hard.

Theorem 3. k-LCS for alphabet of size O(k) is W [2]-hard.

C. Technical contribution

Our reductions build up on ideas from previous SETH-based hardness results for sequence alignment problems, and are

most similar to the Edit-Distance reduction of [9], with several new ideas in the constructions and the analysis. As in

previous reductions, we will need two kinds of gadgets: the vector or assignment gadgets, and the selection gadgets. Two

vector gadgets will be “similar” iff the two vectors satisfy the property we are interested in (we want to find a pair of vectors

that together satisfy some certain property). The selection gadget construction will make sure that the existence of a pair of

“similar” vector-gadgets (i.e., the existence of a pair of vectors with the property), determines the overall similarity between

the sequences. That is, if there is a pair of vectors satisfying the property, the sequences are more “similar” than if there
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is no such pair. Typically, the vector-gadgets are easier to analyze, while the selection-gadgets might require very careful

arguments.

There are multiple challenges in constructing and analyzing a reduction to LCS. Our first main contribution is to design a

reduction from a weighted version of LCS (WLCS) to LCS. In WLCS, different letters are more valuable than others in the

optimal solution. Reducing problems to WLCS is a significantly easier and cleaner task than reducing to LCS. Our second

main contribution is in the analysis of the selection gadgets. The approach of [9] to analyze the selection gadgets involves

a case-analysis which would have been extremely tedious if applied to LCS. Instead, we use an inductive argument that

decreases the number of cases significantly.

One way to show hardness of DTWD would be to reduce Edit-Distance to DTWD. While we are not able to show such

a reduction in general, we are still able to use the known reduction from k-SAT to Edit-Distance. Given a hard instance

of Edit-Distance given by the reduction in [9], consisting of two sequences x and y, we show that there is a mapping for

which EDIT(x, y) = DTWD(f(x), f(y)). This requires carefully checking that this equality holds for the specially structured

sequences coming from the prior reduction.

II. PRELIMINARIES

For an integer n, [n] stands for {1, 2, 3, ..., n}.
A. Formal definitions of the similarity measures

Definition 1 (Longest Common Subsequence). For two sequences P1 and P2 of length n over an alphabet Σ, the longest
sequence X that appears in both P1, P2 as a subsequence is the longest common subsequence (LCS) of P1, P2 and we say
that LCS(P1, P2) = |X|. The Longest Common Subsequence problem asks to output LCS(P1, P2).

Definition 2 (Dynamic time warping distance). For two sequences x and y of n points from a set Σ and a distance function
d : Σ × Σ → R

0+, the dynamic time warping distance, denoted by DTWD(x, y), is the minimum cost of a (monotone)
traversal of x and y.

A traversal of the two sequences x, y has the following form: We have two markers. Initially, one is located at the
beginning of x, and the other is located at the beginning of y. At every step, one or both of the markers simultaneously
move one point forward in their corresponding sequences. At the end, both markers must be located at the last point of
their corresponding sequence.

To determine the cost of a traversal, we consider all the O(n) steps of the traversal, and add up the following quantities
to the final cost. Let the configuration of a step be the pair of symbols s and t that the first and second markers are pointing
at, respectively, then the contribution of this step to the final cost is d(s, t).

The DTWD problems asks to output DTWD(x, y).

In particular, we will be interested in the following special case of DTWD.

Definition 3 (DTWD over symbols). The DTWD problem over sequences of symbols, is the special case of DTWD in which
the points come from an alphabet Σ and the distance function is such that for any two symbols s, t ∈ Σ, d(s, t) = 1 if s �= t
and d(s, t) = 0 otherwise.

Besides LCS and DTWD which are central to this work, the following two important measures will be referred to in

multiple places in the paper.

Definition 4 (Edit-Distance). For any two sequences x and y over an alphabet Σ, the edit distance EDIT(x, y) is equal
to the minimum number of symbol insertions, symbol deletions or symbol substitutions needed to transform x into y. The
Edit-Distance problem asks to output EDIT(x, y) for two given sequences x, y.

Definition 5 (The discrete Frechet distance). The definition of the Frechet distance between two sequences of points is
equivalent to the definition of the DTWD with the following difference. Instead of defining the cost of a traversal to be the
sum of d(s, t) for all the configurations of points s and t from the traversal, we define it to be the maximum such distance
d(s, t). The Frechet problem asks to compute the minimum achievable cost of a traversal of two given sequences.

B. Satisfiability and Orthogonal Vectors

To prove hardness based on Conjecture 1 and therefore SETH, we will show reductions from the following vector-finding

problems.

Definition 6 (Orthogonal Vectors). Given two lists {αi}i∈[n] and {βi}i∈[n] of vectors αi, βi ∈ {0, 1}d, is there a pair αi, βj

that is orthogonal,
∑d

h=1 αi[h] · βj [h] = 0?
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This problem is known under many names and equivalent formulations, e.g. Batched Partial Match, Disjoint Pair, and

Orthogonal Pair. Starting with the reduction of Williams [48], this problem or variants of it have been used in every hardness

result for a problem in P that is based on SETH, via the following theorem.

Theorem 4 (Williams [48]). If for some ε > 0, Orthogonal Vectors on n vectors in {0, 1}d for d = O(log n) can be solved
in O(n2−ε) time, then CNF-SAT on n variables and poly(n) clauses can be solved in O(2(1−ε/2)npoly(n)) time, and SETH
is false.

The proof of this theorem is via the split-and-list technique and will follow from the proof of Lemma 1 below. The

following is a more general version of the Orthogonal Vectors problem.

Definition 7 (Most-Orthogonal Vectors). Given two lists {αi}i∈[n] and {βi}i∈[n] of vectors αi, βi ∈ {0, 1}d and an integer
r ∈ {0, . . . , d}, is there a pair αi, βj that has inner product at most r,

∑d
h=1 αi[h] · βj [h] ≤ r? We call any two vectors

that satisfy this condition (r-)far, and (r-)close vectors otherwise.

Clearly, an O(n2−ε) algorithm for Most-Orthogonal Vectors on d dimensions implies a similar algorithm for Orthogonal

Vectors, while the other direction might not be true. In fact, while faster, mildly sub-quadratic algorithms are known for

Orthogonal Vectors when d is polylogarithmic, with O(n2/superpolylog(n)) running times [4], [17], [31], we are not aware

of any such algorithms for Most-Orthogonal Vectors.

Lemma 1 below shows that such algorithms would imply new O(2n/superpoly(n)) algorithms for MAX-CNF-SAT on a

polynomial number of clauses. While such upper bounds are known for CNF-SAT [4], [22], to our knowledge, o(2n) upper

bounds are known for MAX-CNF-SAT only when the number of clauses is linear in the number of variables [18], [23].

Together with the fact that the reductions from Most-Orthogonal Vectors to LCS, DTWD and Edit-Distance incur only a

polylogarithmic overhead, this implies that shaving a superpolylogarithmic factor over the quadratic running times for these

problems might be difficult. The possibility of such improvements for pattern matching problems like Edit-Distance was

recently suggested by Williams [49], as another potential application of his breakthrough technique for All-Pairs-Shortest-

Paths.

More importantly, Lemma 1 shows that refuting Conjecture 1 implies an O(2(1−ε)npoly(n)) algorithm for MAX-CNF-SAT

and therefore refutes SETH.

Lemma 1. If Most-Orthogonal Vectors on n vectors in {0, 1}d can be solved in T (n, d) time, then given a CNF formula on n
variables and M clauses, we can compute the maximum number of satisfiable clauses (MAX-CNF-SAT), in O(T (2n/2,M) ·
logM) time.

Proof: Given a CNF formula on n variables and M clauses, split the variables into two sets of size n/2 and list all

2n/2 partial assignments to each set. Define a vector v(α) for each partial assignment α which contains a 0 at coordinate

j ∈ [M ] if α sets any of the literals of the jth clause of the formula to true, and 1 otherwise. In other words, it contains a

0 if the partial assignment satisfies the clause and 1 otherwise. Now, observe that if α, β are a pair of partial assignments

for the first and second set of variables, then the inner product of v(α) and v(β) is equal to the number of clauses that

the combined assignment (α, β) does not satisfy. Therefore, to find the assignment that maximizes the number of satisfied

clauses, it is enough to find a pair of partial assignments α, β such that the inner product of v(α), v(β) is minimized. The

latter can be easily reduced to O(logM) calls to an oracle for Most-Orthogonal Vectors on N = 2n/2 vectors in {0, 1}M
with a standard binary search.

By the above discussion, a lower bound that is based on Most-Orthogonal Vectors can be considered stronger than one

that is only based on SETH.

III. HARDNESS FOR LCS

In this section we provide evidence for the hardness of the Longest Common Subsequence problem, and prove the first

item in Theorem 1.

As an intermediate step, we first show evidence that solving a more general version of the problem in strongly subquadratic

time is impossible under Conjecture 1.

Definition 8 (Weighted Longest Common Subsequence (WLCS)). For two sequences P1 and P2 of length n over an alphabet
Σ and a weight function w : Σ→ [K], let X be the sequence that appears in both P1, P2 as a subsequence and maximizes
the expression W (X) =

∑|X|
i=1 w(x[i]). We say that X is the WLCS of P1, P2 and write WLCS(P1, P2) = W (X). The

Weighted Longest Common Subsequence problem asks to output WLCS(P1, P2).
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Note that a common subsequence X of two sequences P1, P2 can be thought of as an alignment or a matching A =

{(ai, bi)}|X|i=1 between the two sequences, so that for all i ∈ [|X|] : P1[ai] = P2[bi], and a1 < · · · < a|X| and b1 < · · · < b|X|.
Clearly, the weight

∑|X|
i=1 P1[ai] =

∑|X|
i=1 P2[bi] of the matching A correspond to the length W (X) of the weighted length

of the common subsequence X .

In our proofs, we will find useful the following relation between pairs of indices. For a pair (x, y) and a pair (x′, y′) of

indices we say that they are in conflict or they cross if x < x′ and y > y′ or x > x′ and y < y′.

A. Reducing WLCS to LCS

The following simple reduction from WLCS to LCS gives a way to translate a lower bound for WLCS to a lower bound

for LCS, and allows us to simplify our proofs.

Lemma 2. Computing the WLCS of two sequences of length n over Σ with weights w : Σ → [K] can be reduced to
computing the LCS of two sequences of length O(Kn) over Σ.

Proof: The reduction simply copies each symbol � ∈ Σ in each of the sequences w(�) times. That is, we define a

mapping f from symbols in Σ to sequences of length up to K so that for any � ∈ Σ, f(�) = [�w(�)] ∈ Σw(�).

For a sequence P of length n over Σ, let f(P ) =©n
i=1f(P [i]). That is, replace the ith symbol P [i] with the sequence

f(P [i]) defined above.

Note that |f(P )| ≤ K|P | and the reduction follows from the next claim.

Claim 1. For any two sequences P1, P2 of length n over Σ, the mapping f satisfies:

WLCS(P1, P2) = LCS(f(P1), f(P2)).

Proof: For brevity of notation, we let P ′1 = f(P1) and P ′2 = f(P2).
First, observe that WLCS(P1, P2) ≤ LCS(P ′1, P

′
2), since for any common subsequence X of P1, P2, the sequence f(X)

is a common subsequence of P ′1, P
′
2 and has length |f(X)| = ∑n

i=1 |f(X[i])| = ∑n
i=1 w(X[i]) = W (X).

In the remainder of this proof, we show that WLCS(P1, P2) ≥ LCS(P ′1, P
′
2). Let X be the LCS of P ′1, P

′
2 and consider

a corresponding matching A.

Let x ∈ {1, 2}. We say that a symbol � in P ′x at index i ≤ Kn belongs to interval Ix(i) ∈ [n], iff this symbol was

generated when mapping Px[Ix(i)] to the subsequence f(�). Moreover, we say that it is at index Jx(i) ∈ [w(�)] in interval

Ix(i), iff it is the Jx(i)
th symbol in that interval.

We will go over the symbols � ∈ Σ of the alphabet in an arbitrary order, and perform the following modifications to X
and the matching A for each such symbol in turn.

Go over the indices i of P ′1 that are matched in A to some index j of P ′2, and for which P ′1[i] = �, in increasing order.

Consider the intervals I1(i) and I2(j), both of which contain the symbol �, w(�) times. Throughout our scan, we maintain

the invariant that: i is the first index to be matched to the interval I2(j).
If J1(i) = J2(j) = 1, and the next w(�) − 1 pairs in our matching A are matching the rest of the interval I1(i) to the

interval I2(j), we do not need to modify anything, and we move on to the next index i′ that is not a part of this interval

I1(i) and is matched to some index j′ - note that at this point, i′ satisfies the invariant, since it cannot also be matched to

the interval I2(j) by the pigeonhole principal, and therefore I2(j
′) > I2(j) and i′ is the first index to be matched to this

interval.

Otherwise, we modify A so that now the whole intervals I1(i) and I2(j) are matched to one another: for each i′, j′ such

that I1(i
′) = I1(i), I2(j

′) = I2(j), and J1(i
′) = J2(j

′), we add pair (i′, j′) to the matching A, and remove any conflicting

pairs from A. We claim that we obtain a matching of at least the original size, since we add w(�) pairs and we remove only

up to w(�) pairs. To see this, note that for a pair (x, y) to be in conflict with one of the pairs we added, it must be one of

the following three types: (1) I1(x) = I1(i) and I2(y) = I2(j), or (2) I1(x) = I1(i) but I2(y) > I2(j), or (3) I2(y) = I2(j)
but I1(x) > I1(i). Here, we use the invariant to rule out pairs for which I1(x) < I1(i) or I2(y) < I2(j). However, in any

matching A, there cannot be both pairs of type (2) and pairs of type (3), since any such two pairs would cross. Therefore,

we conclude that all conflicting pairs either come from the interval I1(i) or they all come from the interval I2(j), and in

any case, there are only w(�) of them. After this modification, we move on to the next index i′ that is not a part of this

interval I1(i) and is matched (in the new matching A) to some index j′ - as before, this i′ satisfies the invariant.

After we are done with all these modifications, we end up with a matching A of size at least |X| in which complete

intervals are aligned to each other. Now, we can define a matching A′ between P1 and P2 that contains all pairs (I1(i), I2(j))
for which (i, j) ∈ A. In words, we contract the intervals of P ′1, P

′
2 to the original symbols of P1, P2. Finally, A′ corresponds
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to a common subsequence X ′ of P1, P2, and W (X ′) = |A| ≥ |X| since each matched interval corresponds to some symbol

� and contributes w(�) matches to A and a single match of weight w(�) to A′.

B. Reducing Most-Orthogonal Vectors to LCS

We are now ready to present our main reduction, proving our hardness result for LCS.

Theorem 5. Most-Orthogonal Vectors on two lists {αi}i∈[n] and {βi}i∈[n] of n binary vectors in d dimensions (αi, βi ∈
{0, 1}d) can be reduced to LCS problem on two sequences of length n · dO(1) over an alphabet of size 7.

Proof: We will proceed in two steps. First, we will show that WLCS is at least as hard as the Most-Orthogonal Vectors

problem. Second, given that the symbols in the constructed WLCS instance will have small weights, an application of

Lemma 2 will allow as to conclude that LCS is at least as hard as the Most-Orthogonal Vectors problem. Our alphabet will

be Σ = {0, 1, 2, 3, 4, 5, 6}.
We start with the reduction to WLCS. Let α, β denote two vectors from the Most-Orthogonal Vectors instance, from the

first and the second set, respectively.

We construct our coordinate gadgets as follows. For i ∈ [d] we define,

CG1(α, i) =

{
5465 if α[i] = 0

545 otherwise

CG2(β, i) =

{
5645 if β[i] = 0

565 otherwise

Setting the weight function so that w(4) = w(6) = 1, w(5) = X = 100d.

These gadgets satisfy the following equalities:

WLCS(CG1(α, i), CG2(β, i)) =

{
2X + 1 if α[i] · β[i] = 0

2X otherwise

Now, we define the vector gadgets as a concatenation of the coordinate gadgets. Let R1(α) =©d
i=1CG1(α, i) and R2(β) =

©d
i=1CG2(β, i).

V G1(α) = 1 ◦R1(α)

V G2(β) = R2(β) ◦ 1
The weight of the symbol 1 is w(1) = A = (r + 1)2X + (d− (r + 1))(2X + 1). It is now easy to prove the following

claims.

Claim 2. If two vectors α, β, are r-far, then:

WLCS(V G1(α), V G2(β)) ≥ A+ 1 = r · 2X + (d− r)(2X + 1).

Proof: For each i ∈ [d], match CG2(β, i) to CG1(α, i) optimally to get a weight at least A+1 = r·2X+(d−r)(2X+1).

Claim 3. If two vectors α, β, are r-close, then:

WLCS(V G1(α), V G2(β)) = A.

Proof: WLCS(V G1(α), V G2(β)) ≥ A is true because we can match the 1 symbols, which gives cost A.

Now we prove that WLCS(V G1(α), V G2(β)) ≤ A. If we match any of the 1 symbols, then we cannot match any non-1
symbols and the inequality is true. Thus, we assume that the 1 symbols are not matched.

Now we can check that, if there is a 5 symbol in VG1(α) or VG2(β) that is not matched to a 5 symbol, then we cannot

achieve weight A even if we match all the other symbols (except for the 1 symbols). Therefore, we assume that all the 5
symbols are matched. The required inequality follows from the fact that there are at least r+ 1 coordinates where α and β
both are 1 (the vectors are r-close), and the construction of the coordinate gadgets.
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Finally, we combine the vector gadgets into two sequences. Let V G′1(α) = 0◦V G1(α)◦2 and V G′2(β) = 0◦V G2(β)◦2◦3.

Let f be a dummy vector of length d that is all 1.

P1 = 3|P2| ◦©n
i=1V G′1(αi) ◦ 3|P2|

P2 = 3 ◦©n−1
i=1 V G′2(f) ◦©n

i=1V G′2(βi) ◦©n−1
i=1 V G′2(f)

And set the weights so that w(3) = B = A2 and w(0) = w(2) = C = B2.

Let EU = 2C +A, and EG = n · EU + 2n ·B.

The following two lemmas prove that there is a gap in the WLCS of our two sequences when there is a pair of vectors

that are r-far as opposed to when there is none.

Lemma 3. If there is a pair of vectors that are r-far, then WLCS(P1, P2) ≥ EG + 1.

Proof: Let i, j be such that αi, βj are r-far. Match V G′1(αi) and V G′2(βj) to get a weight of at least 2C + r · 2X +
(d− r)(2X + 1) ≥ EU + 1. Match the i− 1 vector gadgets to the left of V G′1(αi) to the i− 1 vector gadgets immediately

to the left of V G′2(βj), and similarly, match the n − i gadgets to the right. The total additional weight we get is at least

(n− 1) · EU . Finally, note that after the above matches, only (n− 1) out of the (3n− 1) 3-symbols in P2 are surrounded

by matched symbols. The remaining 2n 3-symbols can be matched, giving an additional weight of 2n ·B. The total weight

is at least EU + 1 + (n− 1) · EU + 2n ·B = EG + 1.

Lemma 4. If there is no pair of vectors that are r-far, then WLCS(P1, P2) ≤ EG.

Proof: The main part of the proof will be dedicated to showing that if the n vector gadgets in P1 are matched to a

substring of n′ vector gadgets from P2, then n′ must be equal to n. This will follow since: if n′ < n, then at least one of

the 0/2 symbols in P1 will remain unmatched, and, if n′ > n, then less than 2n of the 3 symbols in P2 can be matched. The

large weights we gave 0/2 and 3 make this impossible in an optimal matching. It will be easy to see that in any matching

in which n = n′, the total weight is at most EG.

Now, we introduce some notation. Let L ≤ L′ and define W (L,L′) to be the optimal score of matching two sequence

T, T ′ where T is composed of L vector gadgets V G′1(α) and T ′ is composed of L′ vector gadgets V G′2(β), where no pair

α, β are r-far. Define W0(L,L
′) similarly, except that we restrict the matchings so that all 0 or 2 symbols in T (the shorter

sequence) must be matched. In the following two claims we prove an upper bound on W (L,L′), via an upper bound on

W0(L,L
′).

Claim 4. For any integers 1 ≤ L ≤ L′, we can upper bound W0(L,L
′) ≤ L · EU + (L′ − L) · (B − 1).

Proof: Let T, T ′ be two sequences with L,L′ vector gadgets, respectively. We will refer to these “vector gadgets” as

intervals. Consider an optimal matching of T and T ′ in which all the 0 and 2 symbols of T are matched, i.e., a matching

that achieves weight W0(L,L
′) - we will upper bound its weight EF by L · EU + (L′ − L) · (B − 1). Note that in such a

matching, each interval of T must be matched completely within one or more intervals of T ′, and each interval of T ′ has

matches to at most one interval from T (otherwise, it must be the case that some 0 or 2 symbol in T is not matched).

Let x be the number of intervals of T that contribute at most EU to the weight of our optimal matching. Note that any of

the L− x other intervals must be matched to a substring of T ′ that contains at least two intervals for the following reason.

The 0 and 2 symbols of the interval of T ′ must be matched, and, if the matching stays within a single interval of T ′ and

has more than EU weight, then we have a pair which is r-far because of Claim 3. Thus, using the fact that there are only

L′ intervals in T ′, we get the condition,

x+ 2(L− x) ≤ L′.

We now give an upper bound on the weight of our matching, by summing the contributions of each interval of T : there

are x intervals contributing ≤ EU weight, and there are (L− x) intervals matched to T ′ with unbounded contribution, but

we know that even if all the symbols of an interval are matched, it can contribute at most EB = 2C + A + d(2X + 2).
Therefore, the total weight of the matching can be upper bounded by

EF ≤ (L− x) · EB + x · EU

We claim that no matter what x is, as long as the above condition holds, this expression is less than L·EU+(L′−L)·(B−1).
To maximize this expression, we choose the smallest possible x that satisfies the above condition, since EB > EU ,

which implies that x = max{0, 2L− L′}. A key inequality, which we will use multiple times in the proof, following from

the fact that the 0/2/3 symbols are much more important than the rest, is that EB < EU + B − 1, which follows since

EB − EU < A+ d(2X + 2) < 1000d2 < B.
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First, consider the case where L ≤ L′/2, and therefore x = 0, which means that all the intervals of T might be fully

matched. Using that EB < EU +B − 1 and that L′ − L ≥ L′/2 ≥ L, we get the desired upper bound:

EF ≤ L · EB ≤ L · (EU +B − 1) ≤ L · EU + (L′ − L) · (B − 1).

Now, assume that L > L′/2, and therefore x = 2L − L′. In this case, when setting x as small as possible, the upper

bound becomes:

EF ≤ (L′ − L) · EB + (2L− L′) · EU = L · EU + (L′ − L) · (EB − EU ),

which is less than L · EU + (L′ − L) · (B − 1), since EB < EU +B − 1.

Next, we prove by induction that leaving 0/2 symbols in the shorter sequence unmatched will only worsen the weight of

the optimal matching.

Claim 5. For any integers 1 ≤ L ≤ L′, we can upper bound W (L,L′) ≤ L · EU + (L′ − L) · (B − 1).

Proof: We will prove by induction on i ≥ 2 that: for all L′ ≥ L ≥ 1 such that L+L′ ≤ i, W (L,L′) ≤ L ·EU +(L′−
L) · (B − 1).

The base case is when i = 2 and L = L′ = 1. Then W (1, 1) = EU and we are done.

For the inductive step, assume that the statement is true for all i′ ≤ i− 1 and we will prove it for i. Let L,L′ be so that

1 ≤ L ≤ L′ and L+L′ = i and let T, T ′ be sequences with L,L′ intervals (assignment gadgets), respectively. Consider the

optimal (unrestricted) matching of T and T ′, denote its weight by EF . Our goal is to show that EF ≤ L·EU+(L′−L)·(B−1).
If every 0/2 symbol in T is matched then, by definition, the weight cannot be more than W0(L,L

′), and by Claim 4 we

are done. Otherwise, consider the first unmatched 0/2 symbol, call it x, and there are two cases.

The x = 0 case: If x is the first 0 in T , then the first 0 in T ′ must be matched to some 0 after x (otherwise we can add

this pair to the matching without violating any other pairs) which implies that none of the symbols in the interval starting

at x can be matched, since such matches will be in conflict with the pair containing this first 0. Otherwise, consider the 2
that appears right before x and note that it must be matched to some y = 2 in T ′, by our choice of x as the first unmatched

0/2. Now, there are two possibilities: either there are no more intervals in T ′ after y, or there is a 0 right after y in T ′ that

is matched to a 0 in T that is after x (from a later interval in T ). Note that in either case, the interval starting at x (and

ending at the 2 after it) is completely unmatched in our matching. Therefore, in this case, we let T1 be the sequence with

(L − 1) intervals which is obtained from T by removing the interval starting at x. The weight of our matching will not

change if we look at it as a matching between T ′ and T1 instead of T , which implies that EF ≤W (L− 1, L′). Using our

inductive hypothesis we conclude that EF ≤ (L− 1) · EU + (L′ − L+ 1) · (B − 1) ≤ L · EU + (L′ − L) · (B − 1), since

EU > B, and we are done.

The x = 2 case: The 0 at the start of x’s interval must have been matched to some y = 0. Let z be the 2 at the end

of y’s interval. Note that z must be matched to some w = 2 in T after x, since otherwise, we can add the pair (x, z) to

the matching, gaining a cost of C, and the only possible conflicts we would create will be with pairs containing a symbol

inside the y → z interval or inside x’s interval, and if we remove all such pairs, we would lose at most (A+ d(2X + 2))
which is much less than the gain of C - implying that our matching could not have been optimal. Therefore, there are c ≥ 2
intervals in T that are matched to a single interval in T ′: all the intervals starting at the 0 right before x and ending at w are

matched to the y → z interval. Let T1 be the sequence obtained from T by removing all these c intervals and let T2 be the

sequence obtained from T ′ by removing the y → z interval. Our matching can be split into two parts: a matching between

T1 and T2, and the matching of the y → z interval to the removed interval. The contribution of the latter part to the weight

of the matching can be at most the weight of all the symbols in an interval, which is EB . By the inductive hypothesis, we

know that any matching of T1 and T2 can have weight at most W (L− c, L′−1) ≤ (L− c) ·EU +(L′−1−L+ c) · (B−1).
Summing up the two bounds on the contributions, we get that the total weight of the matching is at most:

EF ≤ EB + (L− c) · EU + (L′ − L+ c− 1) · (B − 1) ≤ L · EU + (L′ − L) · (B − 1) + (c− 1) · (B − 1) + EB − c · EU

However, note that EB < 1.1EU and that (c − 1.1)EU > 10(c − 1.1)B > (c − 1)B, which implies that EF can be upper

bounded by L · EU + (L′ − L) · (B − 1), and we are done.

We are now ready to complete the proof of the Lemma. Consider the optimal matching of P1 and P2. Let x and y be

the first and last 3 symbols in P2 that are not matched, respectively. Note that there cannot be any matched 3 symbols

between x and y, since otherwise we could match either x or y and gain extra weight without incurring any loss. Moreover,

note that x cannot be the first symbol in P2 and y cannot be the last one, since those must be matched in an optimal

alignment. The substring between the 3 preceding x, and the 3 following y, contains n′ intervals (vector gadgets) for some
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1 ≤ n′ ≤ 3n − 2. If all the 3’s are matched, we let n′ = 1, and focus on the only interval (vector gadget) of P2 that has

matched non-3-symbols.

We can now bound the total weight of the matching by the sum of the maximum possible contribution of these n′ intervals,

and the contribution of the rest of P2. The substring before and including the 3 symbol preceding x and the substring after

and including the 3 symbol following y can only contribute 3’s to the matching, and they contain exactly (3n−1− (n′−1))
such 3 symbols, giving a contribution of (3n−n′) ·B. To bound the contribution of the n′ intervals, we use Claim 5: since

no 3 symbols are matched in this part, we can “remove” those symbols for the analysis, to obtain two sequences T, T ′

composed of n, n′ vector gadgets, respectively, in which no pair is r-far. The contribution of the T, T ′ part, depends on

n, n′:
If n′ ≤ n, then by Claim 5, when setting L = n′, L′ = n, the contribution is at most (n′ · EU + (n− n′) · (B − 1)) and

the total weight of our matching can be upper bounded by

(3n− n′) ·B + (n′ · EU + (n− n′) · (B − 1)),

which is maximized when n′ is as large as possible, since EU > (2B − 1). Thus, setting n′ = n, we get the upper bound:

(3n− n) ·B + n · EU = EG.

Otherwise, if n′ > n, we apply Claim 5 with L = n, L′ = n′, and get that the contribution is at most (n · EU + (n′ −
n) · (B − 1)), and the total weight of our matching can be upper bounded by

(3n− n′) ·B + (n · EU + (n′ − n) · (B − 1)) = n · EU + 2n ·B − (n′ − n) < EG.

To conclude our reduction, we note that the largest weight used in our weight function is polynomial in d, and therefore

the reduction of Lemma 2 gives two unweighted sequences f(P1), f(P2) of length n · dO(1), for which the LCS equals the

WLCS of our P1, P2.

IV. HARDNESS FOR DTWD

In this section, we complete the proof of Theorem 1 by showing that a truly sub-quadratic algorithm for DTWD implies

a truly sub-quadratic algorithm for the Most-Orthogonal Vectors problem.

We first show that we can modify the reduction from CNF-SAT to Edit-Distance from [9] so that we get a reduction from

Most-Orthogonal Vectors to Edit-Distance. We will later use some properties of the two sequences produced in this reduction,

call them P ′1, P
′
2. In particular, we will show that there is an easy transformation of P ′1 into a sequence S1 and of P ′2 into

a sequence S2 so that EDIT(P ′1, P
′
2) = DTWD(S1, S2). This will give the desired reduction from Most-Orthogonal Vectors

to DTWD.

A. Reducing Most-Orthogonal Vectors to Edit-Distance

Before showing the reduction from Most-Orthogonal Vectors to Edit-Distance, let us recast the reduction of [9] as a

reduction from Orthogonal Vectors instead of CNF-SAT.

Reducing Orthogonal Vectors to Edit-Distance: Instead of having 2N/2 partial assignments for the first half of the

variables and 2N/2 partial assignments for the second half of the variables, we have n vectors in the first and the second set

of vectors (we replace 2N/2 by n in the argument). Instead of having M clauses, we have d coordinates for every vector

(we replace M by d in the argument).

Instead of having clause gadgets, we have coordinate gadgets. For a vector α from the first set of vectors {αi}i∈[n] and

j ∈ [d], we define a coordinate gadget,

CG1(α, j) =

{
0l10l01l01l01l00l1 if α[j] = 0,

0l10l00l00l01l00l1 otherwise.

For a vector β from the second set of vectors {βi}i∈[n] and j ∈ [d],

CG2(β, j) =

{
0l10l00l01l01l00l1 if β[j] = 0,

0l11l01l01l01l00l1 otherwise.

We leave g the same: g = 0
l1
2 −110

l1
2 0l01l01l01l00l1 .

Instead of assignment gadgets, we have vector gadgets.

VG1(αi) = Z1LV0RZ2 and VG2(βi) = V1DV2,
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where R =©j∈[d]CG1(αi, j), D =©j∈[d]CG2(βi, j).
Then, we replace the statement “ϕ is satisfied by a1 ∨ a2” with “vectors αi1 and βi2 are orthogonal” and the statement

“ϕ is satisfiable” with “there is a vector from the first set of variables and a vector from the second set of variables that are

orthogonal”.

For a vector v and k ∈ {1, 2}, we have VG′k(v) = 2T VGk(v)2
T , instead of AG′k. We set f ∈ {0, 1}d to have f [i] = 1

for all i ∈ [d].
We define the sequences as

P1 =©α∈{αi}i∈[n]
VG′1(α),

P2 =
(©n−1

i=1 VG′2(f)
) (©β∈{βi}i∈[n]

VG′2(β)
) (©n−1

i=1 VG′2(f)
)
.

This completes the modification of the argument. We can check that we never use any property of CNF-SAT that

Orthogonal Vectors does not have.

Reducing Most-Orthogonal Vectors to Edit-Distance: Next, we modify the construction to show that Edit-Distance is a

hard problem under a weaker assumption, i.e., that the Most-Orthogonal Vectors problem does not have a truly sub-quadratic

algorithm (Conjecture 1).

Theorem 6. Edit-Distance does not have strongly a subquadratic time algorithm unless Most-Orthogonal Vectors problem
has a strongly subquadratic algorithm.

Proof: We describe how to change the arguments from [9] to get the necessary reduction. We make all the modifications

from the discussion above, as well as the following.

We change g as follows,

g = 0
l1
2 −(1+ r

d 2l0)11+
r
d 2l00

l1
2 0l01l01l01l00l1 .

We replace Lemma 1 from [9] with the following lemma.

Lemma 5. If αi1 and βi2 are r-far, then

EDIT(VG1(αi1),VG2(βi2)) ≤ 2l2 + l + dl0 + k2l0 =: Es.

Proof: We do the same transformations of sequences as in Lemma 1 from [9] except that we get upper bound Es on

the cost.

We replace Lemma 2 from [9] with the following lemma.

Lemma 6. If αi1 and βi2 are r-close, then

EDIT(VG1(αi1),VG2(βi2)) = 2l2 + l + dl0 + k2l0 + d =: Eu.

Proof: The proof proceeds along the same lines as the one for Lemma 2 from [9].

This finishes the description of the necessary changes.

B. Reducing Most-Orthogonal Vectors to DTWD

We are now ready to present our main reduction to DTWD.

Theorem 7. If DTWD over sequences of symbols from an alphabet of size 5 can be solved in strongly sub-quadratic time,
then Most-Orthogonal Vectors can also be solved in truly sub-quadratic time.

Proof: The main arguments in this proof are provided in Lemmas 7 and 8 below. Here we explain why these two

lemmas complete the proof of our theorem.

Consider arbitrary sequences of symbols, Q1 and Q2. On the one hand, in Lemma 7 we will show that for a simple

transformation f ,

EDIT(Q1, Q2) ≤ DTWD(f(Q1), f(Q2)).

On the other hand, in Lemma 8 below we will show that

EDIT(P ′1, P
′
2) ≥ DTWD(f(P ′1), f(P

′
2)),

if P ′1 and P ′2 are the sequences constructed in Theorem 6.
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Together, the two inequalities imply that EDIT(P ′1, P
′
2) = DTWD(f(P ′1), f(P

′
2)). This implies that we have the same

hardness result for DTWD that we had for Edit-Distance, under the assumption that f is a simple transformation. We will

see that f is indeed a very simple transformation, i.e., f(P ′1) and f(P ′2) can be computed in time O(|P ′1|) and O(|P ′2|).
P ′1 and P ′2 are sequences of symbols over an alphabet of size 4. The transformation f introduces an extra symbol. Thus,

the final sequences are over an alphabet of size 5.

For an alphabet Σ, a symbol a �∈ Σ, a sequence Q = q1q2...qp ∈ Σp of length p, and a vector r of p+1 positive integers,

we define the operation

Ar
a(Q) := ar1q1a

r2q2a
r3 ...arpqpa

rp+1 .

Lemma 7. For any two sequences Q1 ∈ Σm and Q2 ∈ Σn of length m and n, respectively,

EDIT(Q1, Q2) ≤ DTWD(Ar1
a (Q1), A

r2
a (Q2))

holds for any two positive integer vectors r1 and r2.

Proof: In this proof, we will use use the following equivalent definition of Edit-Distance that will simplify the analysis.

Observation 1. [9]. For any two sequences x, y, EDIT(x, y) is equal to the minimum, over all sequences z, of the number
of deletions and substitutions needed to transform x into z, and y into z.

Below we will write A instead of Ar
a.

We will show how to convert a traversal of A(Q1) and A(Q2) achieving DTWD cost DTWD(A(Q1), A(Q2)), into a

transformation of Q1 and Q2 into the same sequence. Using Observation 1, we will conclude that the edit cost of the

resulting transformations will be at most DTWD(A(Q1), A(Q2)), which is what we need to complete the proof.

Consider an optimal DTWD traversal of A(Q1) and A(Q2). At any moment, we say that a marker in A(Q1) or in A(Q2)
is of Σ type iff the symbol it points to is in Σ, i.e., it is not equal to a. We say that a symbol is of Σ type iff it is in Σ.

From now on we consider only moments during the traversal of A(Q1) and A(Q2) when one or the other, or both markers

change their type. We can assume that, whenever both markers change their type, it is not the case that before the change,

the markers have different type. Indeed, if this happens, we can replace the simultaneous change of type by two consecutive

changes of type, and this modification will not change the cost. Consider any maximal contiguous subsequence of the

sequence of moments during which only one of the markers changes its type (the marker might change its type during the

subsequence more than one time). We claim that any such contiguous subsequence of moments must have an even length.

Assume that this in not the case and consider the earliest such subsequence that has an odd length. Consider the type of

the markers immediately before the last moment in the subsequence. Because we considered the first subsequence with an

odd length, and both sequences start with symbols that are not of Σ type, we get that immediately before the last moment,

both markers must have the same type. WLOG, assume that the last change of type happens to the first marker and note

that immediately after the last change the markers have different type. At the next moment from the sequence, either both

markers change type (which, by our observation that before a simultaneous change of type both markers must of the same

type, is impossible) or only the second marker changes its type. Thus, we have found two consecutive moments from the

sequence of moments in which the type changes, with the following three properties.

1) None of the two changes of type are simultaneous for both markers;

2) Both changes of type are not made by the same marker;

3) Before the first change of type, the markers have the same type.

We count DTWD cost of any traversal as follows. Every jump (performed by one of the markers or performed by both

markers simultaneously), contributes 1 to the final cost of the traversal iff the symbols that the markers point at immediately

after the jump are different (contribution is 0 if the symbols are the same). For two symbols x and y, 1x �=y is equal to 1 if

x �= y and is equal to 0 otherwise. We set x to be equal to the symbol that the marker that participates in the first change

of type points at after the jump. We set y to be equal to the symbol that the marker that participates in the second change

of type points at after the jump.

The first change of the type contributes 1 to the final cost of DTWD(A(Q1), A(Q2)) (we consider the corresponding jump

to the change of the type and its contribution) and the second change of the type contributes 1x �=y to the final cost. We can

check that the two changes can be replaced by a single simultaneous change in both sequences by changing the traversal

of A(Q1) and A(Q2) (the fact that we can to this follows from the definition of A). The simultaneous change costs 1x �=y

and, therefore, we decrease the cost of DTWD by 1. This contradicts the assumption that we consider an optimal traversal.

Therefore, the assumption that there exists a maximal contiguous subsequence of moments during which only one of the

markers changes type and the subsequence is of odd length, is wrong.
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Now we can partition the entire sequence of changes of type into two kinds of contiguous subsequences that do not

overlap.

1) A simultaneous change of type by both markers;

2) Two changes of type following one another made by the same marker. None of the two changes are simultaneous.

We will now show the promised conversion of the DTWD traversal of A(Q1) and A(Q2) into an Edit-Distance transfor-

mation of Q1 and Q2 into the same sequence (as in Observation 1) such that the cost only decreases. This will finish the

proof that EDIT(Q1, Q2) ≤ DTWD(A(Q1), A(Q2)).
We analyze both types of subsequences.

1) From the properties of the partition and the fact that both A(Q1) and A(Q2) start with a symbol of Σ type, we get

that before and after the change of type both markers are of the same type.

Case 1. Both markers before the simultaneous change are of Σ type. Suppose that the markers point to symbols x ∈ Σ
and y ∈ Σ. In this case we perform substitution of x with y when transforming Q1 and Q2 into the same sequence.

Case 2. Both markers before the simultaneous change are not of Σ type. In this case we do not have a corresponding

substitution or deletion when transforming Q1 and Q2 into the same sequence.

We see that in both cases the performed actions before (contribution to DTWD(A(Q1), A(Q2))) and after (contribution

to EDIT(Q1, Q2)) the conversion cost the same.

2) Similarly as in the previous kind of subsequence, we conclude that before the first change of type, the markers are of

the same type. We consider both possible cases.

Case 1. Both markers before the first change of type are of Σ type. Suppose that the markers point to symbols x ∈ Σ
and y ∈ Σ. If x �= y, we perform a substitution of x with y when transforming Q1 and Q2 into the same sequence.

If x = y, we don’t do anything.

Case 2. Both markers before the first change of type are not of Σ type. WLOG, the first marker changes the type

twice. Before the second change, the first marker points to x ∈ Σ. We delete x when performing the transformation

of Q1 and Q2 into the same sequence.

We can check that in the first case the cost after the conversion can only be smaller than before the conversion. In the

second case the costs before (contribution to DTWD) and after (contribution to Edit-Distance) the conversion are the

same.

From now on, Σ = {0, 1, 2, 3} and a = 4.

Lemma 8. For some vectors r1 and r2 with positive, bounded integer coordinates,

EDIT(P ′1, P
′
2) ≥ DTWD(Ar1(P ′1), A

r2(P ′2)),

where P ′1 and P ′2 are the sequences defined in Theorem 6.

Proof: We use notation from Theorem 6. By A′ we will denote a transformation Ar with ri = 1 for all i.
Let r3 be such that for all k ∈ {1, 2},

Ar3(VG′k(a)) = A′(2T )A′(VGk(a))A
′(2T ).

We set

Ar1(P ′1) = A′(3|P
′
2|)Ar′1(P1)A

′(3|P
′
2|),

where r′1 is such that

Ar′1(P1) =©a1∈A1A
r3(VG′1(a1)).

We set

Ar2(P ′2) = Ar2(P2)

=
(
©2N/2−1

i=1 Ar3(VG′2(f))
) (©a2∈A2

Ar3(VG′2(a2))
) (©2N/2−1

i=1 Ar3(VG′2(f))
)
.

We will use the following lemma (see the full version for the proof) to prove the inequality.

Lemma 9. For vectors α, β ∈ {0, 1}d,

EDIT(VG1(α),VG2(β)) ≥ DTWD(A′(VG1(α)), A
′(VG2(β))).
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We are now ready to prove that

EDIT(P ′1, P
′
2) ≥ DTWD(Ar1(P ′1), A

r2(P ′2)).

We are going to show a DTWD traversal of Ar1(P ′1) and Ar2(P ′2) that achieves DTWD cost equal to EDIT(P ′1, P
′
2). This

will imply the inequality and will finish the proof.

We proceed by considering two cases.

Case 1. There are two vectors αi1 and βi2 from their respective sets that are r-far. We traverse A′(VG1(αi1)) and

A′(VG2(βi2)) as in Lemma 9 achieving cost Es. We traverse the rest of vector gadgets of Ar′1(P1) with their counterparts

from Ar2(P ′2) as in Lemma 9. When traversing the sequences A′(2T ), we do that in parallel. When traversing A′(2T ) in

parallel, it contributes nothing to the DTWD cost.

We traverse the vector gadgets of Ar2(P ′2) that are not traversed yet, as follows. We traverse the symbols that have Σ type

from Ar2(P ′2) with the 3 symbols from Ar1(P ′1) in parallel. We notice that we can do that in a way so that the 4 symbols

never contribute towards the final DTWD cost. Some of the 3 symbols from Ar1(P ′1) will still remain untraversed. We can

traverse them while the second marker is on the last symbol of Ar2(P ′2) (it does not have Σ type).

By computing the cost of the traversal we get that it is equal to EDIT(P ′1, P
′
2).

Case 2. There is no pair of r-far vectors. This case is analogous to Case 1. The only difference is that we do not have

two vectors αi1 and βi2 to match. We choose them arbitrarily and then proceed as in the previous case. This finishes the

analysis of this case.

V. HARDNESS FOR k-LCS

In this section we prove Theorem 2, along with another interesting lower bound for a variant of k-LCS (Theorem 8).

As in the reduction to LCS, it will be much more convenient to reduce to the weighted version of the problem, defined

below, as an intermediate step.

Definition 9 (k-LCS and k-WLCS). An algorithm for k-LCS problem outputs the answer to the following question. Given k
strings of length n over alphabet Σ, what is the length of the longest sequence that appears in all k strings as a subsequence?
In k-WLCS we are also given a scoring function w : Σ→ [K] and the goal is to find the common subsequence X of all k
strings that maximizes the sum

∑|X|
i=1 w(X[i]).

As before, we can think of the common subsequence as a matching of the strings. We can also adapt the previous proof

to show a reduction from the weighted version to the unweighted version. The proof is given in the full version.

Lemma 10. Computing the k-WLCS of k strings of length n over Σ with weights w : Σ→ [K] can be reduced to computing
the k-LCS of k strings of length O(Kn) over Σ.

A. k-Orthogonal-Vectors

We will prove SETH-based lower bounds for problems on k sequences via the orthogonal vectors problem on k lists (see

Lemma 11 below).

Definition 10 (k-Orthogonal-Vectors). Given k lists {αt
i}i∈[n] (t ∈ [k]) of vectors αt

i ∈ {0, 1}d, are there k vectors
α1
i1
, α2

i2
, ..., αk

ik
that satisfy,

∑d
h=1

∏
t∈[k] α

t
it
[h] = 0? Any collection of vectors (αt

it
)t∈[k] with this property will be called

orthogonal.

Definition 11 (k-Most-Orthogonal-Vectors). Given k lists {αt
i}i∈[n] (t ∈ [k]) of vectors αt

i ∈ {0, 1}d and an integer
r ∈ {1, 2, ..., d}, are there k vectors α1

i1
, α2

i2
, ..., αk

ik
that satisfy,

∑d
h=1

∏
t∈[k] α

t
it
[h] ≤ r? The LHS of the latter expression

will be called the inner product of the k vectors. A collection of vectors that satisfies the property will be called (r-)far, and
otherwise it will be called (r-)close.

Lemma 11. If k-Most-Orthogonal-Vectors on can be solved in T (n, k, d) time, then given a CNF formula on n variables
and M clauses, we can compute the maximum number of satisfiable clauses (MAX-CNF-SAT), in O(T (2n/k, k,M) · logM)
time.

The proof is given in the full version.

B. Adapting the reduction

There are two challenges in adapting the hardness proof for problem of computing LCS between two sequences to the

problem of computing LCS between k > 2 sequences: constructing the vector gadgets, and combining the gadgets in a way

that implements a selection-gadget. We will start with the vector gadgets.
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Vector gadgets: We will need symbols a, b, c, d with w(a) = w(b) = w(c) = 1 and w(d) = 4k. For an integer

p ∈ {0, 1, 2, ..., 2k − 1} we define vp ∈ {0, 1}k to be a vector containing the binary expansion of p, i.e., (vp)t is tth bit in

the binary expansion of p, for t ∈ [k]. Let function f satisfy f(0) = a and f(1) = b. For x ∈ {0, 1}, x := 1− x.

For the t-th set of vectors {αt
i}i∈[n] (t ∈ [k]) and i ∈ [n], and j ∈ [d] we define the coordinate gadget

CGt(α
t
i, j) =

{
dcd©2k−2

p=0 (f((vp)t) ◦ d) if (αt
i)j = 0

dd©2k−2
p=0 (f((vp)t) ◦ d) otherwise.

Claim 6. Let Ec
o = 2 + 2k · w(d) and Ec

n = Ec
o − 1. For j ∈ [d] and i1, i2, ..., ik ∈ [n],

WLCS(CG1(α
1
i1 , j),CG2(α

2
i2 , j), ...,CGk(α

k
ik
, j)) =

{
Ec

n if (αt
it
)j = 1 for all t ∈ [k],

Ec
o otherwise.

The proof is given in the full version.

Let e be a symbol with w(e) = 100 · Ec
o.

For the t-th set of vectors {αt
i}i∈[n] (t ∈ [k]) and i ∈ [n] we define the vector gadget

VG′t(α
t
i) = e ◦©j∈[d](CGt(α

t
i, j) ◦ e).

Let Eo = (d− r) · Ec
o + r · Ec

n and En = Eo − 1.

Claim 7. For i1, ..., ik ∈ [n],

WLCS(VG′1(α
1
i1),VG′2(α

2
i2), ...,VG′k(α

k
ik
)) =

{
≥ Eo if α1

i1
, α2

i2
, ..., αk

ik
are r-far,

≤ En otherwise.

The proof is given in the full version.

Let f be a symbol with w(f) = En. For a vector α we define

VG1(α) = f ◦ VG′1(α),

VGt(α) = VG′t(α) ◦ f,
for t ∈ {2, 3, ..., k}.
Claim 8. For i1, ..., ik ∈ [n],

WLCS(VG1(α
1
i1),VG2(α

2
i2), ...,VGk(α

k
ik
)) =

{
≥ Eo if α1

i1
, α2

i2
, ..., αk

ik
are r-far,

En otherwise.

The proof is given in the full version.

Combining the vector gadgets: A very simple padding strategy implies the lower bound for a variant of k-LCS.

Definition 12 (Local-k-LCS). Given k strings of length n over an alphabet Σ and an integer L, what is the length of longest
sequence X such that there are k substrings of length L, one of each input string, such that X is a common subsequence
of each one of these substrings.

In words, we are looking for substrings of length L for which the LCS score is maximized.

Theorem 8. If Local-k-LCS on strings of length n over an alphabet of size O(1) can be solved in O(nk−ε) time, for some
ε > 0, then SETH is false.

Theorem 8 follows from the following reduction. We note that in the constructed instances, L is always polylogarithmic

in the lengths of the sequences, and therefore the problem can easily be solved in Õ(nk) time. This problem is closely

related to the Normalized-LCS problem which was studied in [8], [24] and for which an n2−o(1) lower bound based on

SETH was shown in [3]. The proof is given in the full version.

Lemma 12. k-Most-Orthogonal Vectors on k lists of N vectors in {0, 1}M can be reduced to Local-k-LCS on k strings of
length 2k ·N ·MO(1) over an alphabet of size O(1).

Next, we focus on the classic k-LCS problem and show how to implement the selection-gadget while making the existence

of orthogonal vector influence the LCS in a manageable way. Unfortunately, we are not able to do this without introducing

O(k) new symbols to the alphabet.
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Our lower bound for k-LCS (Theorem 2) follows from the following reduction.

Lemma 13. For any k ≥ 2, k-Most-Orthogonal Vectors on k lists of n vectors in {0, 1}d can be reduced to k-LCS on k
strings of length kO(k) · n · dO(1) over an alphabet of size O(k).

Before we prove the above lemma, let us discuss how it implies that k-LCS on an alphabet of size O(k) is W [2] hard. To

do this, we give a simple reduction from k-dominating set, a W [2]-complete problem, to n-dimensional k-Most-Orthogonal

Vectors. By Lemma 13 this implies a reduction to k-LCS on strings of length kO(k)poly(n) over an alphabet of size O(k).

Lemma 14. k-Dominating Set in a graph on n nodes can be reduced to k-Most-Orthogonal Vectors on k lists of n vectors
in {0, 1}n in O(n2) time. Hence k-LCS on a O(k) size alphabet is W [2]-hard.

Proof: Let G = (V,E) be an instance of k-Dominating Set. For each node v ∈ V add an n-dimensional vector vi to

each list i of the k lists. vi[u] = 1 if and only if u �= v and u is not a neighbor of v. This completes the reduction.

A set of k-Orthogonal vectors v11 , . . . v
k
k implies that for all u ∈ V , some vj has vj [u] = 0, and hence every u ∈ V either

is in {v1, . . . , vk}, or u has a neighbor in {v1, . . . , vk}, and {v1, . . . , vk} is a k-dominating set. (We note that if the vi are

not distinct, we can add an arbitrary set of other nodes to complete the set to k distinct nodes.)

Now we prove Lemma 13.

Proof: We will show a reduction to k-WLCS and use Lemma 10 to conclude the proof.

We construct k lists of vector gadgets from our k lists of vectors as in the above discussion. Let D be the maximum

possible sum of weights of all symbols in any vector gadget, and note that D = poly(2k, d) and that D > Eo. For

i ∈ {2, . . . , k} we will introduce a new symbol 3i to the alphabet, and set Bk = B = (10kD)2 and for 2 ≤ i ≤ k set

w(3i) = Bi = 2k · Bi+1. Finally, add two new symbols 0, 2 and set w(0) = w(2) = C = 10k2B2. The weights achieve

C >> B2 >> · · · >> Bk = B >> D >> Eo.

Our k strings are defined as follows. For i ∈ [k],

Pi = (3i+1 · · · 3k)Q ◦ (32 · · · 3i) ◦ (V G′i(f))
(i−1)N ◦©N

t=1V G′i(α
i
t) ◦ (V G′i(f))

(i−1)N ◦ (3i+1 · · · 3k)Q

where V G′1(x) = 0 ◦ V G1(x) ◦ 2, V G′i(x) = 0 ◦ V Gi(x) ◦ 2 ◦ (32 · · · 3i) if i ≥ 2, and Q = |Pk|.
The intuition behind this padding is that we want to force any optimal matching to match all n vector gadgets of the

first string to precisely n vector gadgets from each other string. This is achieved since: if at least one vector gadget from

Pi is not matched, we will lose some 0 or 2 symbols that we could have matched, while if more than n vector gadgets are

matched, we will lose at least one 3i symbol. In addition, as long as we match consecutive n intervals from each string,

we will get the same score from the padding, and therefore the optimal matching will be determined by the existence of an

r-far set of vectors. The WLCS will be E if there are no r-far vectors, and E + 1 if there are, for an appropriately defined

E.

To make this argument more formal, we can follow the steps in the proof of Lemma 4 for LCS of two strings. First, we

can prove an analog of Claim 5, stating that matching n′ intervals (vector gadgets) in some Pt for some n′ > n can only

contribute up to (n′ − n)(B − 1) to the score. Then, we observe that by the padding construction, if n′ > n then we will

not be able to match at least (n′ − n) of the 3t symbols that we could have matched if n′ was equal to n, which incurs a

loss much greater than (n′−n)B. Therefore, in an optimal matching, exactly n intervals will be matched in each sequence,

and it is easy to see that the score is then determined by the existence of an r-far set of vectors.

Let EU = 2C + En and EG = n · EU +B2 + (2n+ 1) ·∑k
i=2 Bi. The following two lemmas prove that there is a gap

in the WLCS of our k sequences when there is a collection of k vectors that are r-far as opposed to when there is none.

Lemma 15. If there is a collection of k vectors that are far, then WLCS(P1, . . . , Pk) ≥ EG + 1.

The proof is given in the full version. The hard part is upper bounding the score when there is no collection of r-far

vectors, and we will spend the rest of the proof towards this end.

Lemma 16. If there is no collection of k vectors that are far, then WLCS(P1, . . . , Pk) ≤ EG.

Proof: Consider any optimal matching of our k strings. The goal is to bound its score by EG. Our plan will be to divide

the contribution to the score into two: (a) the contribution of the vector gadgets, and (b) the contribution from the padding,

i.e. the 3i symbols. In any matching, there is a tradeoff between the scores from (a) and (b): the more vector gadgets we

align, the fewer 3i’s we can match, and vice versa. We will prove upper bounds for both contributions and show that they

imply an upper bound of EG on the total score.

We start by formally defining (a) and upper bounding it.
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For each string Pi, let si and ti be the first 0 symbol and the last 2 symbol from Pi that are matched in our optimal

matching, if they exist, respectively. A simple observation is that if some 0 symbol is matched in the optimal matching

(si exists for all i ∈ [k]), then there must exist some 2 symbol that is also matched: otherwise, match the 2 immediately

following that 0 and note that any conflicting matches must come from inside the vector gadgets and therefore removing all

of them will decrease the score by much less than w(2). Thus, we can define Ni to be the number of vector gadgets that

lie between si and ti, and if such si, ti do not exist, we set Ni = 0. By construction, Ni ≤ 2(i− 1)n+ n, for all i ∈ [k].
Note that (s1, . . . , sk) and (t1, . . . , tk) must be in our matching.

We will assume that Ni ≥ 1 for all i, since the only other case is that ∀i ∈ [k] : Ni = 0, which can easily be seen to

be sub-optimal: in this case, only 3i symbols are matched, and there cannot be more than (2(i − 1)n + n + 1) matched

3i symbols for any i ∈ {2, . . . , k} which implies the following upper bound on the score:
∑k

i=2(2(i − 1)n + n + 1)Bi ≤
3kn

∑k
i=2 Bi ≤ 3knB2 < n · C < EG.

By construction, there are no 3i symbols between s1 and t1, which implies that the matching in between (s1, . . . , sk)
and (t1, . . . , tk) does not contain any 3i symbols. The total contribution of this part is what we call (a) above. On the other

hand, the matching to the left of (s1, . . . , sk) and to the right of (t1, . . . , tk) cannot contain anything besides 3i symbols: If

some symbol σ /∈ {0, 32, . . . , 3k} appears in Pi before si and is matched, then the 0’s that appear right before the matched

σ’s could have been matched together without any conflicts, which contradicts the optimality of the matching. An analogous

argument shows that ti is to the right of any matched σ /∈ {2, 32, . . . , 3k}. Thus, the contribution of part (b) only comes

from 3i symbols.

This motivates the following definitions. From now on, we will refer to the sequences composed of the vector gadgets

that are surrounded by 0, 2 as “intervals”, i.e. sequences of the form 0 ◦ V Gi(x) ◦ 2. Consider the substrings between si
and ti in each string Pi and remove any 3i symbols in them - since they are not matched anyway - and note that we obtain

a concatenation of Ni intervals. Moreover, by our assumption that there is no satisfying assignment, we know that for any

choice of one interval from each string, the k-LCS is upper bounded by EU = 2C+En, by Claim 8. The main quantity we

will be interested in is W (L1, . . . , Lk) which is defined to be the maximum score of a matching of any k strings T1, . . . , Tk

such that Ti is the concatenation of Li intervals, and for any choice of one interval from each Ti, the optimal score is EU .

By the symmetry of k-LCS, we can assume WLOG that L1 ≤ · · · ≤ Lk, and otherwise we reorder. To get the desired upper

bound on W (L1, . . . , Lk) it will be convenient to first upper bound W0(L1, . . . , Lk), which is defined in a similar way,

except that we require the matching to match all 0 and 2 symbols from T1, i.e. the string string with fewest intervals.

Define EB = 2C +D which is an upper bound on the maximum possible total weight of all the symbols in an interval.

A key inequality, which we will use multiple times in the proof, following from the fact that the 0/2 symbols are much

more important than the rest, is the following.

Fact 1. Our parameters satisfy EB < EU + (B − 1)/(k − 1).

Proof: Follows since (k − 1)(EB − EU ) < (k − 1)D < B, by our choice of parameters.

Claim 9. For any integers 1 ≤ L1 ≤ . . . ≤ Lk, we can upper bound W0(L1, . . . , Lk) ≤ L1 · EU + (Lk − L1) · (B − 1).

The proof is given in the full version. We are now ready to upper bound the more general W (L1, . . . , Lk).

Claim 10. For any integers 1 ≤ L1 ≤ . . . ≤ Lk, we can upper bound W (L1, . . . , Lk) ≤ L1 · EU + (Lk − L1) · (B − 1).

The proof is given in the full version.

We now turn to bounding (b). Recall the definition of Ni above, as the number of intervals from Pi that are matched. Let

us also define xi− as the number of 3i symbols from Pi that appear before si and are matched in our optimal matching,

and define xi+ to be the number of such 3i symbols that appear after ti. Then, the contribution of (b) to the score can be

bounded by
∑k

i=2(xi− + xi+)Bi. A simple but key observation is the following.

Claim 11. For every i ∈ {2, . . . , k},

xi− + xi+ ≤ 2(i− 1)n+ n+ 2−
i−1∑
j=2

(xj− + xj+ − 1)−Ni

Proof: Focus on Pi and note that there are only (2(i− 1)n+ n+ 1) 3i-symbols in it. To make the counting easier, let

us define a set U that is initially empty, and we will add unmatchable 3i symbols, from Pi, to U . In the end, we will argue

that |U |+ xi− + xi+ must be at most (2(i− 1)n+ n+ 1).
First, we add the (Ni − 1) 3i symbols that lie between si and ti to U , since those are clearly unmatchable.
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Second, we will focus on the prefix of Pi that ends at si, call it Qi. For 2 ≤ j < i, note that there must be xj− 3j-symbols

in Qi that are matched and let qj be the first such 3j symbol. Since qj is matched to the first 3j symbol in Pj that is

matched, and that in Pj there are no 3h symbols, for any h > j between that 3j symbol and sj , we can conclude that: for

any j < h < i, all the xh− 3h-symbols in Qi that are matched are in the subsequence of Qi starting at qh and ending at

qj . In fact, this implies that all the xh− 3h-symbols in Qi that are matched are in the subsequence of Qi starting at qh and

ending right before qh−1. Thus, for each 2 ≤ h < i, we can add xh− new 3i symbols to our unmatchable U - the ones in

the latter subsequence.

Finally, we focus on the suffix of Pi that starts at ti, and using a similar reasoning we conclude that for each 2 ≤ h < i,
we can add (xh+ − 1) new 3i symbols to our unmatchable U .

Thus, we conclude that (Ni − 1) +
∑i−1

j=2(xj− + xj+ − 1) + xi− + xi+ ≤ (2(i− 1)n+ n+ 1), which proves the claim.

For any fixed values for N1, . . . , Nk satisfying 1 ≤ Ni ≤ 2(i−1)n+n, we can compute the largest possible contribution of

part (b). Since if i < j then Bi is much larger than Bj , the optimal score is achieved when setting (xi−+xi+) to be as large

as possible, regardless of the 3j symbols we make unmatchable for j > i. That is, we claim that the optimal score is achieved

when each of the inequalities in Claim 11 are saturated, i.e. xi− + xi+ = 2(i− 1)n+ n+2−∑i−1
j=2(xj− + xj+ − 1)−Ni.

This is true, since if any inequality is not saturated, say for i, then we can always add at least one 3i symbol to the matching

(gaining Bi weight) and remove at most one 3j symbol for each j ∈ {i + 1, . . . , k} (losing less than (k − 1)Bi+1 < Bi

weight) and obtain a valid matching with larger cost, contradicting the optimality of our matching. Therefore, the number

of matched 3i symbols is precisely,

xi− + xi+ = 2(i− 1)n+ n+ 2−
i−1∑
j=2

(xj− + xj+ − 1)−Ni.

We can now formally analyze the tradeoff between (a) and (b), and prove that the optimal matching matches exactly n
intervals from each sequence.

Claim 12. In the optimal matching, N1 = · · · = Nk = n.

The proof is given in the full version.

Finally, after we proved that N1 = · · · = Nk = n, we know the exact contribution of both parts: For part (b), by Claim 11

and the optimality conditions on the xi−, xi+ values, we get that x2− + x2+ = 2n + 2 and for i ∈ {2, . . . , k} we have

xi− + xi+ = 2n + 1, and the total contribution is exactly B2 + (2n + 1) ·∑k
i=2 Bi. For part (a), by Claim 10, the total

contribution is n ·EU . Combined, the total score of our optimal matching is exactly n ·EU +B2+(2n+1) ·∑k
i=2 Bi = EG.

Note that the length of the sequences is O(n · dO(1)) while the largest weight used is O(kO(k)dO(1)) and thus Lemma 10

implies the claimed bound.

ACKNOWLEDGMENTS

We would like to thank Piotr Indyk for many useful discussions, Szymon Grabowski for introducing us to important

prior work and Ryan Williams for his useful comments. A.B. was supported by NSF and Simons Foundation. A.A. and

V.V.W. were supported by a Stanford School of Engineering Hoover Fellowship, NSF Grant CCF-1417238, NSF Grant

CCF-1514339, and BSF Grant BSF:2012338.

REFERENCES

[1] J. Aach and G. Church. Aligning gene expression time series with time warping algorithms. Bioinformatics, 17(6):495–508, 2001.

[2] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences between graph centrality problems,
apsp and diameter. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1681–1697.
SIAM, 2015.

[3] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of sequences. In Automata,
Languages, and Programming (ICALP’14), volume 8572 of Lecture Notes in Computer Science, pages 39–51, 2014.

[4] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to algorithm design. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 218–230. SIAM, 2015.

76



[5] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 434–443. IEEE, 2014.

[6] Amihood Amir, Timothy M Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness of jumbled indexing. In Automata,
Languages, and Programming (ICALP’14), pages 114–125. Springer, 2014.

[7] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM Journal on Computing, 38(3):899–921,
2008.
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