# Tight Hardness Results for LCS and other Sequence Similarity Measures 

Amir Abboud<br>Computer Science Department<br>Stanford University<br>Palo Alto, CA, USA<br>abboud@cs.stanford.edu

Arturs Backurs<br>EECS<br>MIT<br>Cambridge, MA, USA<br>backurs@mit.edu

Virginia Vassilevska Williams<br>Computer Science Department<br>Stanford University<br>Palo Alto, CA, USA<br>virgi@cs.stanford.edu


#### Abstract

Two important similarity measures between sequences are the longest common subsequence (LCS) and the dynamic time warping distance (DTWD). The computations of these measures for two given sequences are central tasks in a variety of applications. Simple dynamic programming algorithms solve these tasks in $O\left(n^{2}\right)$ time, and despite an extensive amount of research, no algorithms with significantly better worst case upper bounds are known.

In this paper, we show that for any constant $\varepsilon>0$, an $O\left(n^{2-\varepsilon}\right)$ time algorithm for computing the LCS or the DTWD of two sequences of length $n$ over a constant size alphabet, refutes the popular Strong Exponential Time Hypothesis (SETH).


## Keywords

SETH, lower bounds, sequence alignments, parameterized complexity, LCS, DTWD

## I. Introduction

Many applications require comparing long strings. For instance, in biology, DNA or protein sequences are frequently compared using sequence alignment tools to identify regions of similarity that may be due to functional, structural, or evolutionary relationships. In speech recognition, sequences may represent time-series of sounds. Sequences could also be English text, computer viruses, points in the plane, and so on. Because of the large variety of applications, there are many notions of sequence similarity. Some of the most important and widely used notions are the Longest Common Subsequence (LCS), the Edit-Distance (also called Levenshtein distance), the Dynamic Time Warping Distance (DTWD) and the Frechet distance measures.

LCS and Edit-Distance are defined in terms of the minimum number of changes that can be performed to obtain the second string from the first. LCS allows symbol insertions and deletions, whereas Edit-Distance also allows symbol substitutions. DTWD and Frechet distance assume a distance measure between any two symbols and are defined in terms of a "best" joint traversal of the sequences. The traversal places a marker at the beginning of each sequence and during each step one or both markers are moved forward one symbol, until the end of both sequences is reached. Each step aligns two symbols, one from each sequence. Frechet defines the quality of the traversal to be the maximum distance between aligned symbols, whereas DTWD defines it to be the sum of distances.

For each of these similarity measures on two sequences of length $n$ there is a classical, folklore $O\left(n^{2}\right)$ time algorithm (see e.g. [21]). This $O\left(n^{2}\right)$ time algorithm for LCS is typically taught as a first example of Dynamic Programming in introductory computer science courses, and naturally leads to the question "Can LCS be solved in subquadratic time?". As it is hard to think of a simpler problem on two sequences than LCS for which a near-linear time algorithm is not known, this question seems as fundamental as any. Needless to say, researchers have wondered about the possibility of a subquadratic algorithm for decades, and in the early 1970s Knuth ( [20], Problem 35) posed this as an important problem in combinatorics. Besides the obvious theoretical motivation, the question is of ever increasing relevance in practice, as quadratic time is prohibitive for many important applications. For instance, the sequences in biological applications have length on the order of millions and billions.

Unfortunately, despite substantial research, the current best algorithms for all four problems are only mildly subquadraticone can shave small polylogarithmic factors, but there is no known truly subquadratic, $O\left(n^{2-\varepsilon}\right)$ time algorithm, for $\varepsilon>0$. Due to the general lack of unconditional time lower bounds, a popular approach is to prove, via reductions, lower bounds based on famous conjectures. In 1995, Gajentaan and Overmars [26] showed that the lack of progress on many $O\left(n^{2}\right)$ time problems in computational geometry can be explained by the lack of progress on a simple problem called 3SUM. 3SUM has since become a landmark problem to base conditional quadratic time hardness on: it has enjoyed tremendous success within computational geometry (e.g. [7], [10], [19], [25], [26], [36]), graph algorithms (e.g. [5], [41]) and recently also for
some sequence similarity problems [3], [6]. Nevertheless, the 3SUM hardness approach has so far failed for problems such as LCS, Edit-Distance, Frechet distance and DTWD.

Besides 3SUM, a different conjecture, the Strong Exponential Time Hypothesis (SETH), has recently become popular for proving conditional lower bounds for quadratic time problems (e.g. [2], [5], [46]). It asserts that for all $\varepsilon>0$, there is some $k$ such that $k$-SAT on $n$ variables requires essentially $2^{(1-\varepsilon) n}$ time. Two recent papers [9], [15] explained the quadratic bottleneck of Edit-Distance and Frechet distance by showing that any truly subquadratic algorithm for either problem would refute SETH, and would thus present a breakthrough in the study of SAT algorithms. The techniques used in these two reductions, however, did not seem to work for LCS and DTWD. In a certain sense this is because LCS and DTWD are simpler looking problems. Here is some intuition:

LCS is a restricted version of Edit-Distance, as no substitutions are allowed. Intuitively, a reduction can encode more in the more complex looking Edit-Distance problem. DTWD and Frechet distance only differ in that DTWD uses + and Frechet uses max. However, some intuition from other problems seems to indicate that problems with + are easier than ones with max. For instance, the convolution of two sequences $\left(z[k]=\sum_{i} x[i] \cdot y[k-i]\right)$ can be computed in $O(n \log n)$ time using an FFT, whereas the corresponding max-convolution $\left(z[k]=\max _{i} x[i] \cdot y[k-i]\right)$ seems to require $n^{2-o(1)}$ time [14] . Thus apriori it could be possible that DTWD is a substantially simpler problem and no reduction from $k$-SAT is possible.

The first contribution of this work is to prove that neither LCS nor DTWD admits truly subquadratic algorithms, unless SETH fails. To do this, we overcome several technical hurdles with sophisticated gadgets. Our lower bounds hold even when the input sequences are over a constant size alphabet. We complement the result for DTWD by providing a truly subquadratic algorithm for DTWD on binary strings with cost function 0 if the symbols are equal and 1 otherwise. See the full version for the algorithm. Our lower bounds also hold for the same distance function. In this paper we present a lower bound for an alphabet of size 5 ; however, we believe that one can obtain the same lower bound for a ternary alphabet, so that, modulo SETH, the runtime complexity of DTWD for this simple cost measure would be settled.

We extend our results for LCS to the version on $k$ strings, $k$-LCS: find the longest string that is a subsequence of all $k$ given strings. $k$-LCS is a classical and well-studied problem. One of its biggest applications is in biology where one needs to compute the most similar region of a set of DNA sequences. In fact, one of the most widely used textbook on computational biology [28] calls the multiple alignment problem "the holy grail" of computational biology.

The fastest known algorithm for $k$-LCS runs in $O\left(n^{k}\right)$ time. We show that an $O\left(n^{k-\varepsilon}\right)$ time algorithm, for any $\varepsilon>0$ would refute SETH, even for alphabet size $O(k)$. Along the way, we show that $k$-LCS is W[2]-hard on small alphabets, resolving an open problem in parameterized complexity.

## A. Prior work and hypotheses

LCS: LCS has attracted an extensive amount of research, both due to its mathematical simplicity and to its large number of important applications, including data comparison programs (e.g. diff in UNIX) and bioinformatics (e.g. [34]). There are many algorithms for LCS, beyond the classical dynamic programming solution, in many different settings, e.g. [29], [30] (see [11] for a survey). Nevertheless, the best algorithms on arbitrary strings are only slightly subquadratic and have an $O\left(n^{2} / \log ^{2} n\right)$ running time [38] if the alphabet size is constant, and $O\left(n^{2}(\log \log n) / \log ^{2} n\right)$ otherwise [12], [27].
$k$-LCS: The $k$-LCS problem is a generalization of LCS to $k$ strings. The classical dynamic programming solution to $k$-LCS runs in $O\left(k n^{k}\right)$ time. Maier [37] showed that $k$-LCS is NP-Complete even for binary strings. When $k$ is a parameter, the problem is $W[1]$-hard, even over a fixed size alphabet, by a reduction from Clique [40]. When the alphabet can be polynomial in $n$, it is known that $k$-LCS is $W[t]$-hard for all $t \geq 1$ [13]. The parameters of the reduction from [40] imply that an $n^{o(k)}$ algorithm for $k$-LCS would refute ETH ${ }^{2}$, and an algorithm with running time sufficiently faster than $O\left(n^{k / 7}\right)$ would imply a new algorithm for $k$-Clique. However, no results ruling out $O\left(n^{k-1}\right)$ or even $O\left(n^{k / 2}\right)$ upper bounds were known. Furthermore, beyond the $W[1]$-hardness of [40] the parameterized complexity of $k$-LCS with an alphabet size independent of $n$, say $O(k)$, was unknown. Our results show that in this case, in fact, $k$-LCS is $W[2]$-hard.

DTWD: Dynamic time warping is useful in scenarios in which one needs to cope with differing speeds and time deformations of time-dependent data. Because of its generality, DTWD has been successfully applied in a large variety of domains: automatic speech recognition [43], music information retrieval [39], bioinformatics [1], medicine [16], identifying songs from humming [50], indexing of historical handwriting archives [45], databases [35], [44] and many more.

DTWD compares sequences over an arbitrary feature space, equipped with a distance function for any pair of symbols. The sequences may represent time series or features sampled at equidistant points in time. The cost function differs with

[^0]the application. For instance, if the features are real numbers, then the distance could be $\ell_{p}$. A simple cost function which is useful when comparing text is to have the cost between two letters be 1 if they are different and 0 if they are the same (See Example 4.2. in [39] for this version).

A simple dynamic programming algorithm solves DTWD in $O\left(n^{2}\right)$ time and is the best known in terms of worst-case running time, while many heuristics were designed in order to obtain faster runtimes in practice (see Wang et al. for a survey [47]).

Hardness assumptions: The Strong Exponential Time Hypothesis (SETH) [32], [33] asserts that for any $\varepsilon>0$ there is an integer $k>3$ such that $k$-SAT cannot be solved in $2^{(1-\varepsilon) n}$ time. Recently, SETH has been shown to imply many interesting lower bounds for polynomial time solvable problems [3], [5], [9], [15], [42], [46]. We will base our results on the following conjecture, which is possibly more plausible than SETH: it is known to be implied by SETH (follows from [48]), yet might still be true even if SETH turns out to be false. See Section II-B for a discussion.
Conjecture 1. Given two sets of $n$ vectors $A, B$ in $\{0,1\}^{d}$ and an integer $r \geq 0$, there is no $\varepsilon>0$ and an algorithm that can decide if there is a pair of vectors $a \in A, b \in B$ such that $\sum_{i=1}^{d} a_{i} b_{i} \leq r$, in $O\left(n^{2-\varepsilon} \cdot \operatorname{poly}(d)\right)$ time.

## B. Results

Our main result is to show that a truly sub-quadratic algorithm for LCS or DTWD refutes Conjecture 1 (and SETH), and should therefore be considered beyond the reach of current algorithmic techniques, if not impossible. Our results justify the use of sub-quadratic time heuristics and approximations in practice, and add two important problems to the list of SETH-hard problems.

## Theorem 1. If there is an $\varepsilon>0$ such that either

- LCS over an alphabet of size 7 can be computed in $O\left(n^{2-\varepsilon}\right)$ time, or
- DTWD over symbols from an alphabet of size 5 can be computed in $O\left(n^{2-\varepsilon}\right)$ time,
then Conjecture 1 is false.
Thus, quite remarkably, a slightly faster algorithm for the very innocent looking LCS would imply a breakthrough algorithm for a notoriously hard satisfiability problem. Conditioned on SETH, in a certain sense, we give a negative answer to Knuth's question [20]. Moreover, our nearly tight lower bound for LCS can now be reported in undergraduate level courses along with the Dynamic Programming solution.

We note that the non-existence of an $O\left(n^{2-\epsilon}\right)$ algorithm for DTWD between two sequences of symbols over an alphabet of size 5 implies that there is no $O\left(n^{2-\epsilon}\right)$ time algorithm for DTWD between two sequences of points from $\ell_{p}^{5}$ for any $p$, or from $\ell_{2}^{4}$ (4-dimensional Euclidean space). The latter follows because we can choose 5 points in 4-dimensional Euclidean space so that any two points are at distance 1 from each other, i.e., choose the vertices of a regular 4 -simplex.

Next, we consider the problem of computing the LCS of $k>2$ strings, $k$-LCS.
In this work, we prove that even a slight improvement over the classical $O\left(k n^{k}\right)$ time dynamic programming algorithm is not possible under SETH when the alphabet is of size $O(k)$.

Theorem 2. If there is a constant $\varepsilon>0$, an integer $k \geq 2$, and an algorithm that can solve $k$-LCS on strings of length $n$ over an alphabet of size $O(k)$ in $O\left(n^{k-\varepsilon}\right)$ time, then SETH is false.

A main question we leave open is whether the same lower bound holds when the alphabet size is a constant independent of $k$. In Section V we prove Theorem 2 and make a step towards resolving the latter question by proving that a problem we call Local- $k$-LCS has such a tight $n^{k-o(1)}$ lower bound under Conjecture 1 even when the alphabet size is $O(1)$.

Finally, we note that our reduction can be made to work from $k$-dominating set, thus showing $W[2]$-hardness for $k$-LCS on small alphabets. Previously, the only known result for alphabet size independent of $n$ was that the problem is $W$ [1]-hard.
Theorem 3. $k$-LCS for alphabet of size $O(k)$ is $W[2]$-hard.

## C. Technical contribution

Our reductions build up on ideas from previous SETH-based hardness results for sequence alignment problems, and are most similar to the Edit-Distance reduction of [9], with several new ideas in the constructions and the analysis. As in previous reductions, we will need two kinds of gadgets: the vector or assignment gadgets, and the selection gadgets. Two vector gadgets will be "similar" iff the two vectors satisfy the property we are interested in (we want to find a pair of vectors that together satisfy some certain property). The selection gadget construction will make sure that the existence of a pair of "similar" vector-gadgets (i.e., the existence of a pair of vectors with the property), determines the overall similarity between the sequences. That is, if there is a pair of vectors satisfying the property, the sequences are more "similar" than if there
is no such pair. Typically, the vector-gadgets are easier to analyze, while the selection-gadgets might require very careful arguments.

There are multiple challenges in constructing and analyzing a reduction to LCS. Our first main contribution is to design a reduction from a weighted version of LCS (WLCS) to LCS. In WLCS, different letters are more valuable than others in the optimal solution. Reducing problems to WLCS is a significantly easier and cleaner task than reducing to LCS. Our second main contribution is in the analysis of the selection gadgets. The approach of [9] to analyze the selection gadgets involves a case-analysis which would have been extremely tedious if applied to LCS. Instead, we use an inductive argument that decreases the number of cases significantly.

One way to show hardness of DTWD would be to reduce Edit-Distance to DTWD. While we are not able to show such a reduction in general, we are still able to use the known reduction from $k$-SAT to Edit-Distance. Given a hard instance of Edit-Distance given by the reduction in [9], consisting of two sequences $x$ and $y$, we show that there is a mapping for which $\operatorname{EDIT}(x, y)=\operatorname{DTWD}(f(x), f(y))$. This requires carefully checking that this equality holds for the specially structured sequences coming from the prior reduction.

## II. Preliminaries

For an integer $n,[n]$ stands for $\{1,2,3, \ldots, n\}$.

## A. Formal definitions of the similarity measures

Definition 1 (Longest Common Subsequence). For two sequences $P_{1}$ and $P_{2}$ of length $n$ over an alphabet $\Sigma$, the longest sequence $X$ that appears in both $P_{1}, P_{2}$ as a subsequence is the longest common subsequence (LCS) of $P_{1}, P_{2}$ and we say that $\operatorname{LCS}\left(P_{1}, P_{2}\right)=|X|$. The Longest Common Subsequence problem asks to output $\operatorname{LCS}\left(P_{1}, P_{2}\right)$.
Definition 2 (Dynamic time warping distance). For two sequences $x$ and $y$ of $n$ points from a set $\Sigma$ and a distance function $d: \Sigma \times \Sigma \rightarrow \mathbb{R}^{0+}$, the dynamic time warping distance, denoted by $\operatorname{DTWD}(x, y)$, is the minimum cost of a (monotone) traversal of $x$ and $y$.

A traversal of the two sequences $x, y$ has the following form: We have two markers. Initially, one is located at the beginning of $x$, and the other is located at the beginning of $y$. At every step, one or both of the markers simultaneously move one point forward in their corresponding sequences. At the end, both markers must be located at the last point of their corresponding sequence.

To determine the cost of a traversal, we consider all the $O(n)$ steps of the traversal, and add up the following quantities to the final cost. Let the configuration of a step be the pair of symbols $s$ and $t$ that the first and second markers are pointing at, respectively, then the contribution of this step to the final cost is $d(s, t)$.

The DTWD problems asks to output $D T W D(x, y)$.
In particular, we will be interested in the following special case of DTWD.
Definition 3 (DTWD over symbols). The DTWD problem over sequences of symbols, is the special case of DTWD in which the points come from an alphabet $\Sigma$ and the distance function is such that for any two symbols $s, t \in \Sigma, d(s, t)=1$ if $s \neq t$ and $d(s, t)=0$ otherwise.

Besides LCS and DTWD which are central to this work, the following two important measures will be referred to in multiple places in the paper.

Definition 4 (Edit-Distance). For any two sequences $x$ and $y$ over an alphabet $\Sigma$, the edit distance EDIT( $x, y$ ) is equal to the minimum number of symbol insertions, symbol deletions or symbol substitutions needed to transform $x$ into $y$. The Edit-Distance problem asks to output EDIT $(x, y)$ for two given sequences $x, y$.
Definition 5 (The discrete Frechet distance). The definition of the Frechet distance between two sequences of points is equivalent to the definition of the DTWD with the following difference. Instead of defining the cost of a traversal to be the sum of $d(s, t)$ for all the configurations of points $s$ and $t$ from the traversal, we define it to be the maximum such distance $d(s, t)$. The Frechet problem asks to compute the minimum achievable cost of a traversal of two given sequences.

## B. Satisfiability and Orthogonal Vectors

To prove hardness based on Conjecture 1 and therefore SETH, we will show reductions from the following vector-finding problems.
Definition 6 (Orthogonal Vectors). Given two lists $\left\{\alpha_{i}\right\}_{i \in[n]}$ and $\left\{\beta_{i}\right\}_{i \in[n]}$ of vectors $\alpha_{i}, \beta_{i} \in\{0,1\}^{d}$, is there a pair $\alpha_{i}, \beta_{j}$ that is orthogonal, $\sum_{h=1}^{d} \alpha_{i}[h] \cdot \beta_{j}[h]=0$ ?

This problem is known under many names and equivalent formulations, e.g. Batched Partial Match, Disjoint Pair, and Orthogonal Pair. Starting with the reduction of Williams [48], this problem or variants of it have been used in every hardness result for a problem in P that is based on SETH, via the following theorem.

Theorem 4 (Williams [48]). If for some $\varepsilon>0$, Orthogonal Vectors on $n$ vectors in $\{0,1\}^{d}$ for $d=O(\log n)$ can be solved in $O\left(n^{2-\varepsilon}\right)$ time, then CNF-SAT on $n$ variables and poly $(n)$ clauses can be solved in $O\left(2^{(1-\varepsilon / 2) n}\right.$ poly $\left.(n)\right)$ time, and SETH is false.

The proof of this theorem is via the split-and-list technique and will follow from the proof of Lemma 1 below. The following is a more general version of the Orthogonal Vectors problem.

Definition 7 (Most-Orthogonal Vectors). Given two lists $\left\{\alpha_{i}\right\}_{i \in[n]}$ and $\left\{\beta_{i}\right\}_{i \in[n]}$ of vectors $\alpha_{i}, \beta_{i} \in\{0,1\}^{d}$ and an integer $r \in\{0, \ldots, d\}$, is there a pair $\alpha_{i}, \beta_{j}$ that has inner product at most $r, \sum_{h=1}^{d} \alpha_{i}[h] \cdot \beta_{j}[h] \leq r$ ? We call any two vectors that satisfy this condition ( $r$-)far, and ( $r$-)close vectors otherwise.

Clearly, an $O\left(n^{2-\varepsilon}\right)$ algorithm for Most-Orthogonal Vectors on $d$ dimensions implies a similar algorithm for Orthogonal Vectors, while the other direction might not be true. In fact, while faster, mildly sub-quadratic algorithms are known for Orthogonal Vectors when $d$ is polylogarithmic, with $O\left(n^{2} / \operatorname{superpoly} \log (n)\right)$ running times [4], [17], [31], we are not aware of any such algorithms for Most-Orthogonal Vectors.

Lemma 1 below shows that such algorithms would imply new $O\left(2^{n} / \operatorname{superpoly}(n)\right)$ algorithms for MAX-CNF-SAT on a polynomial number of clauses. While such upper bounds are known for CNF-SAT [4], [22], to our knowledge, o( $2^{n}$ ) upper bounds are known for MAX-CNF-SAT only when the number of clauses is linear in the number of variables [18], [23]. Together with the fact that the reductions from Most-Orthogonal Vectors to LCS, DTWD and Edit-Distance incur only a polylogarithmic overhead, this implies that shaving a superpolylogarithmic factor over the quadratic running times for these problems might be difficult. The possibility of such improvements for pattern matching problems like Edit-Distance was recently suggested by Williams [49], as another potential application of his breakthrough technique for All-Pairs-ShortestPaths.

More importantly, Lemma 1 shows that refuting Conjecture 1 implies an $O\left(2^{(1-\varepsilon) n}\right.$ poly $\left.(n)\right)$ algorithm for MAX-CNF-SAT and therefore refutes SETH.

Lemma 1. If Most-Orthogonal Vectors on $n$ vectors in $\{0,1\}^{d}$ can be solved in $T(n, d)$ time, then given a CNF formula on $n$ variables and $M$ clauses, we can compute the maximum number of satisfiable clauses (MAX-CNF-SAT), in $O\left(T\left(2^{n / 2}, M\right)\right.$. $\log M)$ time.

Proof: Given a CNF formula on $n$ variables and $M$ clauses, split the variables into two sets of size $n / 2$ and list all $2^{n / 2}$ partial assignments to each set. Define a vector $v(\alpha)$ for each partial assignment $\alpha$ which contains a 0 at coordinate $j \in[M]$ if $\alpha$ sets any of the literals of the $j^{\text {th }}$ clause of the formula to true, and 1 otherwise. In other words, it contains a 0 if the partial assignment satisfies the clause and 1 otherwise. Now, observe that if $\alpha, \beta$ are a pair of partial assignments for the first and second set of variables, then the inner product of $v(\alpha)$ and $v(\beta)$ is equal to the number of clauses that the combined assignment $(\alpha, \beta)$ does not satisfy. Therefore, to find the assignment that maximizes the number of satisfied clauses, it is enough to find a pair of partial assignments $\alpha, \beta$ such that the inner product of $v(\alpha), v(\beta)$ is minimized. The latter can be easily reduced to $O(\log M)$ calls to an oracle for Most-Orthogonal Vectors on $N=2^{n / 2}$ vectors in $\{0,1\}^{M}$ with a standard binary search.

By the above discussion, a lower bound that is based on Most-Orthogonal Vectors can be considered stronger than one that is only based on SETH.

## III. Hardness for LCS

In this section we provide evidence for the hardness of the Longest Common Subsequence problem, and prove the first item in Theorem 1.

As an intermediate step, we first show evidence that solving a more general version of the problem in strongly subquadratic time is impossible under Conjecture 1.

Definition 8 (Weighted Longest Common Subsequence (WLCS)). For two sequences $P_{1}$ and $P_{2}$ of length $n$ over an alphabet $\Sigma$ and a weight function $w: \Sigma \rightarrow[K]$, let $X$ be the sequence that appears in both $P_{1}, P_{2}$ as a subsequence and maximizes the expression $W(X)=\sum_{i=1}^{|X|} w(x[i])$. We say that $X$ is the $W L C S$ of $P_{1}, P_{2}$ and write $W L C S\left(P_{1}, P_{2}\right)=W(X)$. The Weighted Longest Common Subsequence problem asks to output $\operatorname{WLCS}\left(P_{1}, P_{2}\right)$.

Note that a common subsequence $X$ of two sequences $P_{1}, P_{2}$ can be thought of as an alignment or a matching $A=$ $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{|X|}$ between the two sequences, so that for all $i \in[|X|]: P_{1}\left[a_{i}\right]=P_{2}\left[b_{i}\right]$, and $a_{1}<\cdots<a_{|X|}$ and $b_{1}<\cdots<b_{|X|}$. Clearly, the weight $\sum_{i=1}^{|X|} P_{1}\left[a_{i}\right]=\sum_{i=1}^{|X|} P_{2}\left[b_{i}\right]$ of the matching $A$ correspond to the length $W(X)$ of the weighted length of the common subsequence $X$.

In our proofs, we will find useful the following relation between pairs of indices. For a pair $(x, y)$ and a pair $\left(x^{\prime}, y^{\prime}\right)$ of indices we say that they are in conflict or they cross if $x<x^{\prime}$ and $y>y^{\prime}$ or $x>x^{\prime}$ and $y<y^{\prime}$.

## A. Reducing WLCS to LCS

The following simple reduction from WLCS to LCS gives a way to translate a lower bound for WLCS to a lower bound for LCS, and allows us to simplify our proofs.

Lemma 2. Computing the WLCS of two sequences of length $n$ over $\Sigma$ with weights $w: \Sigma \rightarrow[K]$ can be reduced to computing the LCS of two sequences of length $O(K n)$ over $\Sigma$.

Proof: The reduction simply copies each symbol $\ell \in \Sigma$ in each of the sequences $w(\ell)$ times. That is, we define a mapping $f$ from symbols in $\Sigma$ to sequences of length up to $K$ so that for any $\ell \in \Sigma, f(\ell)=\left[\ell^{w(\ell)}\right] \in \Sigma^{w(\ell)}$.

For a sequence $P$ of length $n$ over $\Sigma$, let $f(P)=\bigcirc_{i=1}^{n} f(P[i])$. That is, replace the $i^{t h}$ symbol $P[i]$ with the sequence $f(P[i])$ defined above.

Note that $|f(P)| \leq K|P|$ and the reduction follows from the next claim.
Claim 1. For any two sequences $P_{1}, P_{2}$ of length $n$ over $\Sigma$, the mapping $f$ satisfies:

$$
W \operatorname{LCS}\left(P_{1}, P_{2}\right)=\operatorname{LCS}\left(f\left(P_{1}\right), f\left(P_{2}\right)\right)
$$

Proof: For brevity of notation, we let $P_{1}^{\prime}=f\left(P_{1}\right)$ and $P_{2}^{\prime}=f\left(P_{2}\right)$.
First, observe that $W \operatorname{LCS}\left(P_{1}, P_{2}\right) \leq \operatorname{LCS}\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$, since for any common subsequence $X$ of $P_{1}, P_{2}$, the sequence $f(X)$ is a common subsequence of $P_{1}^{\prime}, P_{2}^{\prime}$ and has length $|f(X)|=\sum_{i=1}^{n}|f(X[i])|=\sum_{i=1}^{n} w(X[i])=W(X)$.

In the remainder of this proof, we show that $W \operatorname{LCS}\left(P_{1}, P_{2}\right) \geq \operatorname{LCS}\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$. Let $X$ be the LCS of $P_{1}^{\prime}, P_{2}^{\prime}$ and consider a corresponding matching $A$.

Let $x \in\{1,2\}$. We say that a symbol $\ell$ in $P_{x}^{\prime}$ at index $i \leq K n$ belongs to interval $I_{x}(i) \in[n]$, iff this symbol was generated when mapping $P_{x}\left[I_{x}(i)\right]$ to the subsequence $f(\ell)$. Moreover, we say that it is at index $J_{x}(i) \in[w(\ell)]$ in interval $I_{x}(i)$, iff it is the $J_{x}(i)^{t h}$ symbol in that interval.

We will go over the symbols $\ell \in \Sigma$ of the alphabet in an arbitrary order, and perform the following modifications to $X$ and the matching $A$ for each such symbol in turn.

Go over the indices $i$ of $P_{1}^{\prime}$ that are matched in $A$ to some index $j$ of $P_{2}^{\prime}$, and for which $P_{1}^{\prime}[i]=\ell$, in increasing order. Consider the intervals $I_{1}(i)$ and $I_{2}(j)$, both of which contain the symbol $\ell, w(\ell)$ times. Throughout our scan, we maintain the invariant that: $i$ is the first index to be matched to the interval $I_{2}(j)$.

If $J_{1}(i)=J_{2}(j)=1$, and the next $w(\ell)-1$ pairs in our matching $A$ are matching the rest of the interval $I_{1}(i)$ to the interval $I_{2}(j)$, we do not need to modify anything, and we move on to the next index $i^{\prime}$ that is not a part of this interval $I_{1}(i)$ and is matched to some index $j^{\prime}$ - note that at this point, $i^{\prime}$ satisfies the invariant, since it cannot also be matched to the interval $I_{2}(j)$ by the pigeonhole principal, and therefore $I_{2}\left(j^{\prime}\right)>I_{2}(j)$ and $i^{\prime}$ is the first index to be matched to this interval.

Otherwise, we modify $A$ so that now the whole intervals $I_{1}(i)$ and $I_{2}(j)$ are matched to one another: for each $i^{\prime}, j^{\prime}$ such that $I_{1}\left(i^{\prime}\right)=I_{1}(i), I_{2}\left(j^{\prime}\right)=I_{2}(j)$, and $J_{1}\left(i^{\prime}\right)=J_{2}\left(j^{\prime}\right)$, we add pair $\left(i^{\prime}, j^{\prime}\right)$ to the matching $A$, and remove any conflicting pairs from $A$. We claim that we obtain a matching of at least the original size, since we add $w(\ell)$ pairs and we remove only up to $w(\ell)$ pairs. To see this, note that for a pair $(x, y)$ to be in conflict with one of the pairs we added, it must be one of the following three types: (1) $I_{1}(x)=I_{1}(i)$ and $I_{2}(y)=I_{2}(j)$, or (2) $I_{1}(x)=I_{1}(i)$ but $I_{2}(y)>I_{2}(j)$, or (3) $I_{2}(y)=I_{2}(j)$ but $I_{1}(x)>I_{1}(i)$. Here, we use the invariant to rule out pairs for which $I_{1}(x)<I_{1}(i)$ or $I_{2}(y)<I_{2}(j)$. However, in any matching $A$, there cannot be both pairs of type (2) and pairs of type (3), since any such two pairs would cross. Therefore, we conclude that all conflicting pairs either come from the interval $I_{1}(i)$ or they all come from the interval $I_{2}(j)$, and in any case, there are only $w(\ell)$ of them. After this modification, we move on to the next index $i^{\prime}$ that is not a part of this interval $I_{1}(i)$ and is matched (in the new matching $A$ ) to some index $j^{\prime}$ - as before, this $i^{\prime}$ satisfies the invariant.

After we are done with all these modifications, we end up with a matching $A$ of size at least $|X|$ in which complete intervals are aligned to each other. Now, we can define a matching $A^{\prime}$ between $P_{1}$ and $P_{2}$ that contains all pairs $\left(I_{1}(i), I_{2}(j)\right)$ for which $(i, j) \in A$. In words, we contract the intervals of $P_{1}^{\prime}, P_{2}^{\prime}$ to the original symbols of $P_{1}, P_{2}$. Finally, $A^{\prime}$ corresponds
to a common subsequence $X^{\prime}$ of $P_{1}, P_{2}$, and $W\left(X^{\prime}\right)=|A| \geq|X|$ since each matched interval corresponds to some symbol $\ell$ and contributes $w(\ell)$ matches to $A$ and a single match of weight $w(\ell)$ to $A^{\prime}$.

## B. Reducing Most-Orthogonal Vectors to LCS

We are now ready to present our main reduction, proving our hardness result for LCS.
Theorem 5. Most-Orthogonal Vectors on two lists $\left\{\alpha_{i}\right\}_{i \in[n]}$ and $\left\{\beta_{i}\right\}_{i \in[n]}$ of $n$ binary vectors in d dimensions $\left(\alpha_{i}, \beta_{i} \in\right.$ $\{0,1\}^{d}$ ) can be reduced to LCS problem on two sequences of length $n \cdot d^{O(1)}$ over an alphabet of size 7 .

Proof: We will proceed in two steps. First, we will show that WLCS is at least as hard as the Most-Orthogonal Vectors problem. Second, given that the symbols in the constructed WLCS instance will have small weights, an application of Lemma 2 will allow as to conclude that LCS is at least as hard as the Most-Orthogonal Vectors problem. Our alphabet will be $\Sigma=\{0,1,2,3,4,5,6\}$.

We start with the reduction to WLCS. Let $\alpha, \beta$ denote two vectors from the Most-Orthogonal Vectors instance, from the first and the second set, respectively.

We construct our coordinate gadgets as follows. For $i \in[d]$ we define,

$$
\begin{aligned}
& C G_{1}(\alpha, i)= \begin{cases}5465 & \text { if } \alpha[i]=0 \\
545 & \text { otherwise }\end{cases} \\
& C G_{2}(\beta, i)= \begin{cases}5645 & \text { if } \beta[i]=0 \\
565 & \text { otherwise }\end{cases}
\end{aligned}
$$

Setting the weight function so that $w(4)=w(6)=1, w(5)=X=100 d$.
These gadgets satisfy the following equalities:

$$
W \operatorname{LCS}\left(C G_{1}(\alpha, i), C G_{2}(\beta, i)\right)= \begin{cases}2 X+1 & \text { if } \alpha[i] \cdot \beta[i]=0 \\ 2 X & \text { otherwise }\end{cases}
$$

Now, we define the vector gadgets as a concatenation of the coordinate gadgets. Let $R_{1}(\alpha)=\bigcirc_{i=1}^{d} C G_{1}(\alpha, i)$ and $R_{2}(\beta)=$ $\bigcirc_{i=1}^{d} C G_{2}(\beta, i)$.

$$
\begin{aligned}
& V G_{1}(\alpha)=1 \circ R_{1}(\alpha) \\
& V G_{2}(\beta)=R_{2}(\beta) \circ 1
\end{aligned}
$$

The weight of the symbol 1 is $w(1)=A=(r+1) 2 X+(d-(r+1))(2 X+1)$. It is now easy to prove the following claims.

Claim 2. If two vectors $\alpha, \beta$, are $r$-far, then:

$$
W L C S\left(V G_{1}(\alpha), V G_{2}(\beta)\right) \geq A+1=r \cdot 2 X+(d-r)(2 X+1)
$$

Proof: For each $i \in[d]$, match $C G_{2}(\beta, i)$ to $C G_{1}(\alpha, i)$ optimally to get a weight at least $A+1=r \cdot 2 X+(d-r)(2 X+1)$.

Claim 3. If two vectors $\alpha, \beta$, are $r$-close, then:

$$
W L C S\left(V G_{1}(\alpha), V G_{2}(\beta)\right)=A
$$

Proof: WLCS $\left(V G_{1}(\alpha), V G_{2}(\beta)\right) \geq A$ is true because we can match the 1 symbols, which gives cost $A$.
Now we prove that $\operatorname{WLCS}\left(V G_{1}(\alpha), V G_{2}(\beta)\right) \leq A$. If we match any of the 1 symbols, then we cannot match any non- 1 symbols and the inequality is true. Thus, we assume that the 1 symbols are not matched.

Now we can check that, if there is a 5 symbol in $\mathrm{VG}_{1}(\alpha)$ or $\mathrm{VG}_{2}(\beta)$ that is not matched to a 5 symbol, then we cannot achieve weight $A$ even if we match all the other symbols (except for the 1 symbols). Therefore, we assume that all the 5 symbols are matched. The required inequality follows from the fact that there are at least $r+1$ coordinates where $\alpha$ and $\beta$ both are 1 (the vectors are $r$-close), and the construction of the coordinate gadgets.

Finally, we combine the vector gadgets into two sequences. Let $V G_{1}^{\prime}(\alpha)=0 \circ V G_{1}(\alpha) \circ 2$ and $V G_{2}^{\prime}(\beta)=0 \circ V G_{2}(\beta) \circ 2 \circ 3$. Let $f$ be a dummy vector of length $d$ that is all 1 .

$$
\begin{gathered}
P_{1}=3^{\left|P_{2}\right|} \circ \bigcirc_{i=1}^{n} V G_{1}^{\prime}\left(\alpha_{i}\right) \circ 3^{\left|P_{2}\right|} \\
P_{2}=3 \circ \bigcirc_{i=1}^{n-1} V G_{2}^{\prime}(f) \circ \bigcirc_{i=1}^{n} V G_{2}^{\prime}\left(\beta_{i}\right) \circ \bigcirc_{i=1}^{n-1} V G_{2}^{\prime}(f)
\end{gathered}
$$

And set the weights so that $w(3)=B=A^{2}$ and $w(0)=w(2)=C=B^{2}$.
Let $E_{U}=2 C+A$, and $E_{G}=n \cdot E_{U}+2 n \cdot B$.
The following two lemmas prove that there is a gap in the WLCS of our two sequences when there is a pair of vectors that are $r$-far as opposed to when there is none.
Lemma 3. If there is a pair of vectors that are r-far, then $\operatorname{WLCS}\left(P_{1}, P_{2}\right) \geq E_{G}+1$.
Proof: Let $i, j$ be such that $\alpha_{i}, \beta_{j}$ are $r$-far. Match $V G_{1}^{\prime}\left(\alpha_{i}\right)$ and $V G_{2}^{\prime}\left(\beta_{j}\right)$ to get a weight of at least $2 C+r \cdot 2 X+$ $(d-r)(2 X+1) \geq E_{U}+1$. Match the $i-1$ vector gadgets to the left of $V G_{1}^{\prime}\left(\alpha_{i}\right)$ to the $i-1$ vector gadgets immediately to the left of $V G_{2}^{\prime}\left(\beta_{j}\right)$, and similarly, match the $n-i$ gadgets to the right. The total additional weight we get is at least $(n-1) \cdot E_{U}$. Finally, note that after the above matches, only $(n-1)$ out of the $(3 n-1) 3$-symbols in $P_{2}$ are surrounded by matched symbols. The remaining $2 n 3$-symbols can be matched, giving an additional weight of $2 n \cdot B$. The total weight is at least $E_{U}+1+(n-1) \cdot E_{U}+2 n \cdot B=E_{G}+1$.

Lemma 4. If there is no pair of vectors that are r-far, then $\operatorname{WLCS}\left(P_{1}, P_{2}\right) \leq E_{G}$.
Proof: The main part of the proof will be dedicated to showing that if the $n$ vector gadgets in $P_{1}$ are matched to a substring of $n^{\prime}$ vector gadgets from $P_{2}$, then $n^{\prime}$ must be equal to $n$. This will follow since: if $n^{\prime}<n$, then at least one of the $0 / 2$ symbols in $P_{1}$ will remain unmatched, and, if $n^{\prime}>n$, then less than $2 n$ of the 3 symbols in $P_{2}$ can be matched. The large weights we gave $0 / 2$ and 3 make this impossible in an optimal matching. It will be easy to see that in any matching in which $n=n^{\prime}$, the total weight is at most $E_{G}$.

Now, we introduce some notation. Let $L \leq L^{\prime}$ and define $W\left(L, L^{\prime}\right)$ to be the optimal score of matching two sequence $T, T^{\prime}$ where $T$ is composed of $L$ vector gadgets $V G_{1}^{\prime}(\alpha)$ and $T^{\prime}$ is composed of $L^{\prime}$ vector gadgets $V G_{2}^{\prime}(\beta)$, where no pair $\alpha, \beta$ are $r$-far. Define $W_{0}\left(L, L^{\prime}\right)$ similarly, except that we restrict the matchings so that all 0 or 2 symbols in $T$ (the shorter sequence) must be matched. In the following two claims we prove an upper bound on $W\left(L, L^{\prime}\right)$, via an upper bound on $W_{0}\left(L, L^{\prime}\right)$.
Claim 4. For any integers $1 \leq L \leq L^{\prime}$, we can upper bound $W_{0}\left(L, L^{\prime}\right) \leq L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$.
Proof: Let $T, T^{\prime}$ be two sequences with $L, L^{\prime}$ vector gadgets, respectively. We will refer to these "vector gadgets" as intervals. Consider an optimal matching of $T$ and $T^{\prime}$ in which all the 0 and 2 symbols of $T$ are matched, i.e., a matching that achieves weight $W_{0}\left(L, L^{\prime}\right)$ - we will upper bound its weight $E_{F}$ by $L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$. Note that in such a matching, each interval of $T$ must be matched completely within one or more intervals of $T^{\prime}$, and each interval of $T^{\prime}$ has matches to at most one interval from $T$ (otherwise, it must be the case that some 0 or 2 symbol in $T$ is not matched).

Let $x$ be the number of intervals of $T$ that contribute at most $E_{U}$ to the weight of our optimal matching. Note that any of the $L-x$ other intervals must be matched to a substring of $T^{\prime}$ that contains at least two intervals for the following reason. The 0 and 2 symbols of the interval of $T^{\prime}$ must be matched, and, if the matching stays within a single interval of $T^{\prime}$ and has more than $E_{U}$ weight, then we have a pair which is $r$-far because of Claim 3. Thus, using the fact that there are only $L^{\prime}$ intervals in $T^{\prime}$, we get the condition,

$$
x+2(L-x) \leq L^{\prime}
$$

We now give an upper bound on the weight of our matching, by summing the contributions of each interval of $T$ : there are $x$ intervals contributing $\leq E_{U}$ weight, and there are $(L-x)$ intervals matched to $T^{\prime}$ with unbounded contribution, but we know that even if all the symbols of an interval are matched, it can contribute at most $E_{B}=2 C+A+d(2 X+2)$. Therefore, the total weight of the matching can be upper bounded by

$$
E_{F} \leq(L-x) \cdot E_{B}+x \cdot E_{U}
$$

We claim that no matter what $x$ is, as long as the above condition holds, this expression is less than $L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$.
To maximize this expression, we choose the smallest possible $x$ that satisfies the above condition, since $E_{B}>E_{U}$, which implies that $x=\max \left\{0,2 L-L^{\prime}\right\}$. A key inequality, which we will use multiple times in the proof, following from the fact that the $0 / 2 / 3$ symbols are much more important than the rest, is that $E_{B}<E_{U}+B-1$, which follows since $E_{B}-E_{U}<A+d(2 X+2)<1000 d^{2}<B$.

First, consider the case where $L \leq L^{\prime} / 2$, and therefore $x=0$, which means that all the intervals of $T$ might be fully matched. Using that $E_{B}<E_{U}+B-1$ and that $L^{\prime}-L \geq L^{\prime} / 2 \geq L$, we get the desired upper bound:

$$
E_{F} \leq L \cdot E_{B} \leq L \cdot\left(E_{U}+B-1\right) \leq L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)
$$

Now, assume that $L>L^{\prime} / 2$, and therefore $x=2 L-L^{\prime}$. In this case, when setting $x$ as small as possible, the upper bound becomes:

$$
E_{F} \leq\left(L^{\prime}-L\right) \cdot E_{B}+\left(2 L-L^{\prime}\right) \cdot E_{U}=L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot\left(E_{B}-E_{U}\right)
$$

which is less than $L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$, since $E_{B}<E_{U}+B-1$.
Next, we prove by induction that leaving $0 / 2$ symbols in the shorter sequence unmatched will only worsen the weight of the optimal matching.
Claim 5. For any integers $1 \leq L \leq L^{\prime}$, we can upper bound $W\left(L, L^{\prime}\right) \leq L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$.
Proof: We will prove by induction on $i \geq 2$ that: for all $L^{\prime} \geq L \geq 1$ such that $L+L^{\prime} \leq i, W\left(L, L^{\prime}\right) \leq L \cdot E_{U}+\left(L^{\prime}-\right.$ $L) \cdot(B-1)$.

The base case is when $i=2$ and $L=L^{\prime}=1$. Then $W(1,1)=E_{U}$ and we are done.
For the inductive step, assume that the statement is true for all $i^{\prime} \leq i-1$ and we will prove it for $i$. Let $L, L^{\prime}$ be so that $1 \leq L \leq L^{\prime}$ and $L+L^{\prime}=i$ and let $T, T^{\prime}$ be sequences with $L, L^{\prime}$ intervals (assignment gadgets), respectively. Consider the optimal (unrestricted) matching of $T$ and $T^{\prime}$, denote its weight by $E_{F}$. Our goal is to show that $E_{F} \leq L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$.

If every $0 / 2$ symbol in $T$ is matched then, by definition, the weight cannot be more than $W_{0}\left(L, L^{\prime}\right)$, and by Claim 4 we are done. Otherwise, consider the first unmatched $0 / 2$ symbol, call it $x$, and there are two cases.

The $x=0$ case: If $x$ is the first 0 in $T$, then the first 0 in $T^{\prime}$ must be matched to some 0 after $x$ (otherwise we can add this pair to the matching without violating any other pairs) which implies that none of the symbols in the interval starting at $x$ can be matched, since such matches will be in conflict with the pair containing this first 0 . Otherwise, consider the 2 that appears right before $x$ and note that it must be matched to some $y=2$ in $T^{\prime}$, by our choice of $x$ as the first unmatched $0 / 2$. Now, there are two possibilities: either there are no more intervals in $T^{\prime}$ after $y$, or there is a 0 right after $y$ in $T^{\prime}$ that is matched to a 0 in $T$ that is after $x$ (from a later interval in $T$ ). Note that in either case, the interval starting at $x$ (and ending at the 2 after it) is completely unmatched in our matching. Therefore, in this case, we let $T_{1}$ be the sequence with $(L-1)$ intervals which is obtained from $T$ by removing the interval starting at $x$. The weight of our matching will not change if we look at it as a matching between $T^{\prime}$ and $T_{1}$ instead of $T$, which implies that $E_{F} \leq W\left(L-1, L^{\prime}\right)$. Using our inductive hypothesis we conclude that $E_{F} \leq(L-1) \cdot E_{U}+\left(L^{\prime}-L+1\right) \cdot(B-1) \leq L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$, since $E_{U}>B$, and we are done.

The $x=2$ case: The 0 at the start of $x$ 's interval must have been matched to some $y=0$. Let $z$ be the 2 at the end of $y$ 's interval. Note that $z$ must be matched to some $w=2$ in $T$ after $x$, since otherwise, we can add the pair $(x, z)$ to the matching, gaining a cost of $C$, and the only possible conflicts we would create will be with pairs containing a symbol inside the $y \rightarrow z$ interval or inside $x$ 's interval, and if we remove all such pairs, we would lose at most $(A+d(2 X+2))$ which is much less than the gain of $C$ - implying that our matching could not have been optimal. Therefore, there are $c \geq 2$ intervals in $T$ that are matched to a single interval in $T^{\prime}$ : all the intervals starting at the 0 right before $x$ and ending at $w$ are matched to the $y \rightarrow z$ interval. Let $T_{1}$ be the sequence obtained from $T$ by removing all these $c$ intervals and let $T_{2}$ be the sequence obtained from $T^{\prime}$ by removing the $y \rightarrow z$ interval. Our matching can be split into two parts: a matching between $T_{1}$ and $T_{2}$, and the matching of the $y \rightarrow z$ interval to the removed interval. The contribution of the latter part to the weight of the matching can be at most the weight of all the symbols in an interval, which is $E_{B}$. By the inductive hypothesis, we know that any matching of $T_{1}$ and $T_{2}$ can have weight at most $W\left(L-c, L^{\prime}-1\right) \leq(L-c) \cdot E_{U}+\left(L^{\prime}-1-L+c\right) \cdot(B-1)$. Summing up the two bounds on the contributions, we get that the total weight of the matching is at most:
$E_{F} \leq E_{B}+(L-c) \cdot E_{U}+\left(L^{\prime}-L+c-1\right) \cdot(B-1) \leq L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)+(c-1) \cdot(B-1)+E_{B}-c \cdot E_{U}$
However, note that $E_{B}<1.1 E_{U}$ and that $(c-1.1) E_{U}>10(c-1.1) B>(c-1) B$, which implies that $E_{F}$ can be upper bounded by $L \cdot E_{U}+\left(L^{\prime}-L\right) \cdot(B-1)$, and we are done.

We are now ready to complete the proof of the Lemma. Consider the optimal matching of $P_{1}$ and $P_{2}$. Let $x$ and $y$ be the first and last 3 symbols in $P_{2}$ that are not matched, respectively. Note that there cannot be any matched 3 symbols between $x$ and $y$, since otherwise we could match either $x$ or $y$ and gain extra weight without incurring any loss. Moreover, note that $x$ cannot be the first symbol in $P_{2}$ and $y$ cannot be the last one, since those must be matched in an optimal alignment. The substring between the 3 preceding $x$, and the 3 following $y$, contains $n^{\prime}$ intervals (vector gadgets) for some
$1 \leq n^{\prime} \leq 3 n-2$. If all the 3 's are matched, we let $n^{\prime}=1$, and focus on the only interval (vector gadget) of $P_{2}$ that has matched non-3-symbols.

We can now bound the total weight of the matching by the sum of the maximum possible contribution of these $n^{\prime}$ intervals, and the contribution of the rest of $P_{2}$. The substring before and including the 3 symbol preceding $x$ and the substring after and including the 3 symbol following $y$ can only contribute 3 's to the matching, and they contain exactly $\left(3 n-1-\left(n^{\prime}-1\right)\right.$ ) such 3 symbols, giving a contribution of $\left(3 n-n^{\prime}\right) \cdot B$. To bound the contribution of the $n^{\prime}$ intervals, we use Claim 5: since no 3 symbols are matched in this part, we can "remove" those symbols for the analysis, to obtain two sequences $T, T^{\prime}$ composed of $n, n^{\prime}$ vector gadgets, respectively, in which no pair is $r$-far. The contribution of the $T, T^{\prime}$ part, depends on $n, n^{\prime}$ :

If $n^{\prime} \leq n$, then by Claim 5 , when setting $L=n^{\prime}, L^{\prime}=n$, the contribution is at most $\left(n^{\prime} \cdot E_{U}+\left(n-n^{\prime}\right) \cdot(B-1)\right)$ and the total weight of our matching can be upper bounded by

$$
\left(3 n-n^{\prime}\right) \cdot B+\left(n^{\prime} \cdot E_{U}+\left(n-n^{\prime}\right) \cdot(B-1)\right)
$$

which is maximized when $n^{\prime}$ is as large as possible, since $E_{U}>(2 B-1)$. Thus, setting $n^{\prime}=n$, we get the upper bound: $(3 n-n) \cdot B+n \cdot E_{U}=E_{G}$.

Otherwise, if $n^{\prime}>n$, we apply Claim 5 with $L=n, L^{\prime}=n^{\prime}$, and get that the contribution is at most $\left(n \cdot E_{U}+\left(n^{\prime}-\right.\right.$ $n) \cdot(B-1))$, and the total weight of our matching can be upper bounded by

$$
\left(3 n-n^{\prime}\right) \cdot B+\left(n \cdot E_{U}+\left(n^{\prime}-n\right) \cdot(B-1)\right)=n \cdot E_{U}+2 n \cdot B-\left(n^{\prime}-n\right)<E_{G} .
$$

To conclude our reduction, we note that the largest weight used in our weight function is polynomial in $d$, and therefore the reduction of Lemma 2 gives two unweighted sequences $f\left(P_{1}\right), f\left(P_{2}\right)$ of length $n \cdot d^{O(1)}$, for which the LCS equals the WLCS of our $P_{1}, P_{2}$.

## IV. Hardness for DTWD

In this section, we complete the proof of Theorem 1 by showing that a truly sub-quadratic algorithm for DTWD implies a truly sub-quadratic algorithm for the Most-Orthogonal Vectors problem.

We first show that we can modify the reduction from CNF-SAT to Edit-Distance from [9] so that we get a reduction from Most-Orthogonal Vectors to Edit-Distance. We will later use some properties of the two sequences produced in this reduction, call them $P_{1}^{\prime}, P_{2}^{\prime}$. In particular, we will show that there is an easy transformation of $P_{1}^{\prime}$ into a sequence $S_{1}$ and of $P_{2}^{\prime}$ into a sequence $S_{2}$ so that $\operatorname{EDIT}\left(P_{1}^{\prime}, P_{2}^{\prime}\right)=\operatorname{DTWD}\left(S_{1}, S_{2}\right)$. This will give the desired reduction from Most-Orthogonal Vectors to DTWD.

## A. Reducing Most-Orthogonal Vectors to Edit-Distance

Before showing the reduction from Most-Orthogonal Vectors to Edit-Distance, let us recast the reduction of [9] as a reduction from Orthogonal Vectors instead of CNF-SAT.

Reducing Orthogonal Vectors to Edit-Distance: Instead of having $2^{N / 2}$ partial assignments for the first half of the variables and $2^{N / 2}$ partial assignments for the second half of the variables, we have $n$ vectors in the first and the second set of vectors (we replace $2^{N / 2}$ by $n$ in the argument). Instead of having $M$ clauses, we have $d$ coordinates for every vector (we replace $M$ by $d$ in the argument).

Instead of having clause gadgets, we have coordinate gadgets. For a vector $\alpha$ from the first set of vectors $\left\{\alpha_{i}\right\}_{i \in[n]}$ and $j \in[d]$, we define a coordinate gadget,

$$
\mathrm{CG}_{1}(\alpha, j)= \begin{cases}0^{l_{1}} 0^{l_{0}} 1^{l_{0}} 1^{l_{0}} 1^{l_{0}} 0^{l_{1}} & \text { if } \alpha[j]=0 \\ 0^{l_{1}} 0^{l_{0}} 0^{l_{0}} 0^{l_{0}} 1^{l_{0}} 0^{l_{1}} & \text { otherwise }\end{cases}
$$

For a vector $\beta$ from the second set of vectors $\left\{\beta_{i}\right\}_{i \in[n]}$ and $j \in[d]$,

$$
\mathrm{CG}_{2}(\beta, j)= \begin{cases}0^{l_{1}} 0^{l_{0}} 0^{l_{0}} 1^{l_{0}} 1^{l_{0}} 0^{l_{1}} & \text { if } \beta[j]=0 \\ 0^{l_{1}} 1^{l_{0}} 1^{l_{0}} 1^{l_{0}} 1^{l_{0}} 0^{l_{1}} & \text { otherwise }\end{cases}
$$

We leave $g$ the same: $g=0^{\frac{l_{1}}{2}-1} 10^{\frac{l_{1}}{2}} 0^{l_{0}} 1^{l_{0}} 1^{l_{0}} 1^{l_{0}} 0^{l_{1}}$.
Instead of assignment gadgets, we have vector gadgets.

$$
\mathrm{VG}_{1}\left(\alpha_{i}\right)=Z_{1} L V_{0} R Z_{2} \text { and } \mathrm{VG}_{2}\left(\beta_{i}\right)=V_{1} D V_{2}
$$

where $R=\bigcirc_{j \in[d]} \mathrm{CG}_{1}\left(\alpha_{i}, j\right), D=\bigcirc_{j \in[d]} \mathrm{CG}_{2}\left(\beta_{i}, j\right)$.
Then, we replace the statement " $\varphi$ is satisfied by $a_{1} \vee a_{2}$ " with "vectors $\alpha_{i_{1}}$ and $\beta_{i_{2}}$ are orthogonal" and the statement " $\varphi$ is satisfiable" with "there is a vector from the first set of variables and a vector from the second set of variables that are orthogonal".

For a vector $v$ and $k \in\{1,2\}$, we have $\mathrm{VG}_{k}^{\prime}(v)=2^{T} \mathrm{VG}_{k}(v) 2^{T}$, instead of $\mathrm{AG}_{k}^{\prime}$. We set $f \in\{0,1\}^{d}$ to have $f[i]=1$ for all $i \in[d]$.

We define the sequences as

$$
\begin{gathered}
P_{1}=\bigcirc_{\alpha \in\left\{\alpha_{i}\right\}_{i \in[n]}} \mathrm{VG}_{1}^{\prime}(\alpha), \\
P_{2}=\left(\bigcirc_{i=1}^{n-1} \mathrm{VG}_{2}^{\prime}(f)\right)\left(\bigcirc_{\beta \in\left\{\beta_{i}\right\}_{i \in[n]}} \mathrm{VG}_{2}^{\prime}(\beta)\right)\left(\bigcirc_{i=1}^{n-1} \mathrm{VG}_{2}^{\prime}(f)\right) .
\end{gathered}
$$

This completes the modification of the argument. We can check that we never use any property of CNF-SAT that Orthogonal Vectors does not have.

Reducing Most-Orthogonal Vectors to Edit-Distance: Next, we modify the construction to show that Edit-Distance is a hard problem under a weaker assumption, i.e., that the Most-Orthogonal Vectors problem does not have a truly sub-quadratic algorithm (Conjecture 1).
Theorem 6. Edit-Distance does not have strongly a subquadratic time algorithm unless Most-Orthogonal Vectors problem has a strongly subquadratic algorithm.

Proof: We describe how to change the arguments from [9] to get the necessary reduction. We make all the modifications from the discussion above, as well as the following.

We change $g$ as follows,

$$
g=0^{\frac{l_{1}}{2}-\left(1+\frac{r}{d} 2 l_{0}\right)} 1^{1+\frac{r}{d} 2 l_{0}} 0^{\frac{l_{1}}{2}} 0^{l_{0}} 1^{l_{0}} 1^{l_{0}} 1^{l_{0}} 0^{l_{1}} .
$$

We replace Lemma 1 from [9] with the following lemma.
Lemma 5. If $\alpha_{i_{1}}$ and $\beta_{i_{2}}$ are $r$-far, then

$$
\operatorname{EDIT}\left(V G_{1}\left(\alpha_{i_{1}}\right), V G_{2}\left(\beta_{i_{2}}\right)\right) \leq 2 l_{2}+l+d l_{0}+k 2 l_{0}=: E_{s}
$$

Proof: We do the same transformations of sequences as in Lemma 1 from [9] except that we get upper bound $E_{s}$ on the cost.

We replace Lemma 2 from [9] with the following lemma.
Lemma 6. If $\alpha_{i_{1}}$ and $\beta_{i_{2}}$ are r-close, then

$$
E D I T\left(V G_{1}\left(\alpha_{i_{1}}\right), V G_{2}\left(\beta_{i_{2}}\right)\right)=2 l_{2}+l+d l_{0}+k 2 l_{0}+d=: E_{u} .
$$

Proof: The proof proceeds along the same lines as the one for Lemma 2 from [9].
This finishes the description of the necessary changes.

## B. Reducing Most-Orthogonal Vectors to DTWD

We are now ready to present our main reduction to DTWD.
Theorem 7. If DTWD over sequences of symbols from an alphabet of size 5 can be solved in strongly sub-quadratic time, then Most-Orthogonal Vectors can also be solved in truly sub-quadratic time.

Proof: The main arguments in this proof are provided in Lemmas 7 and 8 below. Here we explain why these two lemmas complete the proof of our theorem.

Consider arbitrary sequences of symbols, $Q_{1}$ and $Q_{2}$. On the one hand, in Lemma 7 we will show that for a simple transformation $f$,

$$
\operatorname{EDIT}\left(Q_{1}, Q_{2}\right) \leq \operatorname{DTWD}\left(f\left(Q_{1}\right), f\left(Q_{2}\right)\right) .
$$

On the other hand, in Lemma 8 below we will show that

$$
\operatorname{EDIT}\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \geq \operatorname{DTWD}\left(f\left(P_{1}^{\prime}\right), f\left(P_{2}^{\prime}\right)\right)
$$

if $P_{1}^{\prime}$ and $P_{2}^{\prime}$ are the sequences constructed in Theorem 6.

Together, the two inequalities imply that $\operatorname{EDIT}\left(P_{1}^{\prime}, P_{2}^{\prime}\right)=\operatorname{DTWD}\left(f\left(P_{1}^{\prime}\right), f\left(P_{2}^{\prime}\right)\right)$. This implies that we have the same hardness result for DTWD that we had for Edit-Distance, under the assumption that $f$ is a simple transformation. We will see that $f$ is indeed a very simple transformation, i.e., $f\left(P_{1}^{\prime}\right)$ and $f\left(P_{2}^{\prime}\right)$ can be computed in time $O\left(\left|P_{1}^{\prime}\right|\right)$ and $O\left(\left|P_{2}^{\prime}\right|\right)$.
$P_{1}^{\prime}$ and $P_{2}^{\prime}$ are sequences of symbols over an alphabet of size 4 . The transformation $f$ introduces an extra symbol. Thus, the final sequences are over an alphabet of size 5 .

For an alphabet $\Sigma$, a symbol $a \notin \Sigma$, a sequence $Q=q_{1} q_{2} \ldots q_{p} \in \Sigma^{p}$ of length $p$, and a vector $r$ of $p+1$ positive integers, we define the operation

$$
A_{a}^{r}(Q):=a^{r_{1}} q_{1} a^{r_{2}} q_{2} a^{r_{3}} \ldots a^{r_{p}} q_{p} a^{r_{p+1}}
$$

Lemma 7. For any two sequences $Q_{1} \in \Sigma^{m}$ and $Q_{2} \in \Sigma^{n}$ of length $m$ and $n$, respectively,

$$
\operatorname{EDIT}\left(Q_{1}, Q_{2}\right) \leq D T W D\left(A_{a}^{r_{1}}\left(Q_{1}\right), A_{a}^{r_{2}}\left(Q_{2}\right)\right)
$$

holds for any two positive integer vectors $r_{1}$ and $r_{2}$.
Proof: In this proof, we will use use the following equivalent definition of Edit-Distance that will simplify the analysis.
Observation 1. [9]. For any two sequences $x, y, \operatorname{EDIT}(x, y)$ is equal to the minimum, over all sequences $z$, of the number of deletions and substitutions needed to transform $x$ into $z$, and $y$ into $z$.

Below we will write $A$ instead of $A_{a}^{r}$.
We will show how to convert a traversal of $A\left(Q_{1}\right)$ and $A\left(Q_{2}\right)$ achieving DTWD cost DTWD $\left(A\left(Q_{1}\right), A\left(Q_{2}\right)\right)$, into a transformation of $Q_{1}$ and $Q_{2}$ into the same sequence. Using Observation 1, we will conclude that the edit cost of the resulting transformations will be at most $\operatorname{DTWD}\left(A\left(Q_{1}\right), A\left(Q_{2}\right)\right)$, which is what we need to complete the proof.

Consider an optimal DTWD traversal of $A\left(Q_{1}\right)$ and $A\left(Q_{2}\right)$. At any moment, we say that a marker in $A\left(Q_{1}\right)$ or in $A\left(Q_{2}\right)$ is of $\Sigma$ type iff the symbol it points to is in $\Sigma$, i.e., it is not equal to $a$. We say that a symbol is of $\Sigma$ type iff it is in $\Sigma$.

From now on we consider only moments during the traversal of $A\left(Q_{1}\right)$ and $A\left(Q_{2}\right)$ when one or the other, or both markers change their type. We can assume that, whenever both markers change their type, it is not the case that before the change, the markers have different type. Indeed, if this happens, we can replace the simultaneous change of type by two consecutive changes of type, and this modification will not change the cost. Consider any maximal contiguous subsequence of the sequence of moments during which only one of the markers changes its type (the marker might change its type during the subsequence more than one time). We claim that any such contiguous subsequence of moments must have an even length. Assume that this in not the case and consider the earliest such subsequence that has an odd length. Consider the type of the markers immediately before the last moment in the subsequence. Because we considered the first subsequence with an odd length, and both sequences start with symbols that are not of $\Sigma$ type, we get that immediately before the last moment, both markers must have the same type. WLOG, assume that the last change of type happens to the first marker and note that immediately after the last change the markers have different type. At the next moment from the sequence, either both markers change type (which, by our observation that before a simultaneous change of type both markers must of the same type, is impossible) or only the second marker changes its type. Thus, we have found two consecutive moments from the sequence of moments in which the type changes, with the following three properties.

1) None of the two changes of type are simultaneous for both markers;
2) Both changes of type are not made by the same marker;
3) Before the first change of type, the markers have the same type.

We count DTWD cost of any traversal as follows. Every jump (performed by one of the markers or performed by both markers simultaneously), contributes 1 to the final cost of the traversal iff the symbols that the markers point at immediately after the jump are different (contribution is 0 if the symbols are the same). For two symbols $x$ and $y, 1_{x \neq y}$ is equal to 1 if $x \neq y$ and is equal to 0 otherwise. We set $x$ to be equal to the symbol that the marker that participates in the first change of type points at after the jump. We set $y$ to be equal to the symbol that the marker that participates in the second change of type points at after the jump.

The first change of the type contributes 1 to the final cost of $\operatorname{DTWD}\left(A\left(Q_{1}\right), A\left(Q_{2}\right)\right)$ (we consider the corresponding jump to the change of the type and its contribution) and the second change of the type contributes $1_{x \neq y}$ to the final cost. We can check that the two changes can be replaced by a single simultaneous change in both sequences by changing the traversal of $A\left(Q_{1}\right)$ and $A\left(Q_{2}\right)$ (the fact that we can to this follows from the definition of $A$ ). The simultaneous change costs $1_{x \neq y}$ and, therefore, we decrease the cost of DTWD by 1 . This contradicts the assumption that we consider an optimal traversal. Therefore, the assumption that there exists a maximal contiguous subsequence of moments during which only one of the markers changes type and the subsequence is of odd length, is wrong.

Now we can partition the entire sequence of changes of type into two kinds of contiguous subsequences that do not overlap.

1) A simultaneous change of type by both markers;
2) Two changes of type following one another made by the same marker. None of the two changes are simultaneous.

We will now show the promised conversion of the DTWD traversal of $A\left(Q_{1}\right)$ and $A\left(Q_{2}\right)$ into an Edit-Distance transformation of $Q_{1}$ and $Q_{2}$ into the same sequence (as in Observation 1) such that the cost only decreases. This will finish the proof that $\operatorname{EDIT}\left(Q_{1}, Q_{2}\right) \leq \operatorname{DTWD}\left(A\left(Q_{1}\right), A\left(Q_{2}\right)\right)$.

We analyze both types of subsequences.

1) From the properties of the partition and the fact that both $A\left(Q_{1}\right)$ and $A\left(Q_{2}\right)$ start with a symbol of $\Sigma$ type, we get that before and after the change of type both markers are of the same type.
Case 1. Both markers before the simultaneous change are of $\Sigma$ type. Suppose that the markers point to symbols $x \in \Sigma$ and $y \in \Sigma$. In this case we perform substitution of $x$ with $y$ when transforming $Q_{1}$ and $Q_{2}$ into the same sequence.
Case 2. Both markers before the simultaneous change are not of $\Sigma$ type. In this case we do not have a corresponding substitution or deletion when transforming $Q_{1}$ and $Q_{2}$ into the same sequence.
We see that in both cases the performed actions before (contribution to DTWD $\left(A\left(Q_{1}\right), A\left(Q_{2}\right)\right)$ ) and after (contribution to $\operatorname{EDIT}\left(Q_{1}, Q_{2}\right)$ ) the conversion cost the same.
2) Similarly as in the previous kind of subsequence, we conclude that before the first change of type, the markers are of the same type. We consider both possible cases.
Case 1. Both markers before the first change of type are of $\Sigma$ type. Suppose that the markers point to symbols $x \in \Sigma$ and $y \in \Sigma$. If $x \neq y$, we perform a substitution of $x$ with $y$ when transforming $Q_{1}$ and $Q_{2}$ into the same sequence. If $x=y$, we don't do anything.
Case 2. Both markers before the first change of type are not of $\Sigma$ type. WLOG, the first marker changes the type twice. Before the second change, the first marker points to $x \in \Sigma$. We delete $x$ when performing the transformation of $Q_{1}$ and $Q_{2}$ into the same sequence.
We can check that in the first case the cost after the conversion can only be smaller than before the conversion. In the second case the costs before (contribution to DTWD) and after (contribution to Edit-Distance) the conversion are the same.

From now on, $\Sigma=\{0,1,2,3\}$ and $a=4$.
Lemma 8. For some vectors $r_{1}$ and $r_{2}$ with positive, bounded integer coordinates,

$$
\operatorname{EDIT}\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \geq D T W D\left(A^{r_{1}}\left(P_{1}^{\prime}\right), A^{r_{2}}\left(P_{2}^{\prime}\right)\right)
$$

where $P_{1}^{\prime}$ and $P_{2}^{\prime}$ are the sequences defined in Theorem 6.
Proof: We use notation from Theorem 6. By $A^{\prime}$ we will denote a transformation $A^{r}$ with $r_{i}=1$ for all $i$. Let $r_{3}$ be such that for all $k \in\{1,2\}$,

$$
A^{r_{3}}\left(\mathrm{VG}_{k}^{\prime}(a)\right)=A^{\prime}\left(2^{T}\right) A^{\prime}\left(\mathrm{VG}_{k}(a)\right) A^{\prime}\left(2^{T}\right)
$$

We set

$$
A^{r_{1}}\left(P_{1}^{\prime}\right)=A^{\prime}\left(3^{\left|P_{2}^{\prime}\right|}\right) A^{r_{1}^{\prime}}\left(P_{1}\right) A^{\prime}\left(3^{\left|P_{2}^{\prime}\right|}\right),
$$

where $r_{1}^{\prime}$ is such that

$$
A^{r_{1}^{\prime}}\left(P_{1}\right)=\bigcirc_{a_{1} \in A_{1}} A^{r_{3}}\left(\mathrm{VG}_{1}^{\prime}\left(a_{1}\right)\right) .
$$

We set

$$
\begin{gathered}
A^{r_{2}}\left(P_{2}^{\prime}\right)=A^{r_{2}}\left(P_{2}\right) \\
=\left(\bigcirc_{i=1}^{2^{N / 2}-1} A^{r_{3}}\left(\mathrm{VG}_{2}^{\prime}(f)\right)\right)\left(\bigcirc_{a_{2} \in A_{2}} A^{r_{3}}\left(\mathrm{VG}_{2}^{\prime}\left(a_{2}\right)\right)\right)\left(\bigcirc_{i=1}^{2^{N / 2}-1} A^{r_{3}}\left(\mathrm{VG}_{2}^{\prime}(f)\right)\right) .
\end{gathered}
$$

We will use the following lemma (see the full version for the proof) to prove the inequality.
Lemma 9. For vectors $\alpha, \beta \in\{0,1\}^{d}$,

$$
\operatorname{EDIT}\left(V G_{1}(\alpha), V G_{2}(\beta)\right) \geq \operatorname{DTWD}\left(A^{\prime}\left(V G_{1}(\alpha)\right), A^{\prime}\left(V G_{2}(\beta)\right)\right)
$$

We are now ready to prove that

$$
\operatorname{EDIT}\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \geq \operatorname{DTWD}\left(A^{r_{1}}\left(P_{1}^{\prime}\right), A^{r_{2}}\left(P_{2}^{\prime}\right)\right)
$$

We are going to show a DTWD traversal of $A^{r_{1}}\left(P_{1}^{\prime}\right)$ and $A^{r_{2}}\left(P_{2}^{\prime}\right)$ that achieves DTWD cost equal to EDIT $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$. This will imply the inequality and will finish the proof.

We proceed by considering two cases.
Case 1. There are two vectors $\alpha_{i_{1}}$ and $\beta_{i_{2}}$ from their respective sets that are $r$-far. We traverse $A^{\prime}\left(\mathrm{VG}_{1}\left(\alpha_{i_{1}}\right)\right)$ and $A^{\prime}\left(\mathrm{VG}_{2}\left(\beta_{i_{2}}\right)\right)$ as in Lemma 9 achieving cost $E_{s}$. We traverse the rest of vector gadgets of $A^{r_{1}^{\prime}}\left(P_{1}\right)$ with their counterparts from $A^{r_{2}}\left(P_{2}^{\prime}\right)$ as in Lemma 9. When traversing the sequences $A^{\prime}\left(2^{T}\right)$, we do that in parallel. When traversing $A^{\prime}\left(2^{T}\right)$ in parallel, it contributes nothing to the DTWD cost.

We traverse the vector gadgets of $A^{r_{2}}\left(P_{2}^{\prime}\right)$ that are not traversed yet, as follows. We traverse the symbols that have $\Sigma$ type from $A^{r_{2}}\left(P_{2}^{\prime}\right)$ with the 3 symbols from $A^{r_{1}}\left(P_{1}^{\prime}\right)$ in parallel. We notice that we can do that in a way so that the 4 symbols never contribute towards the final DTWD cost. Some of the 3 symbols from $A^{r_{1}}\left(P_{1}^{\prime}\right)$ will still remain untraversed. We can traverse them while the second marker is on the last symbol of $A^{r_{2}}\left(P_{2}^{\prime}\right)$ (it does not have $\Sigma$ type).

By computing the cost of the traversal we get that it is equal to $\operatorname{EDIT}\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$.
Case 2. There is no pair of $r$-far vectors. This case is analogous to Case 1. The only difference is that we do not have two vectors $\alpha_{i_{1}}$ and $\beta_{i_{2}}$ to match. We choose them arbitrarily and then proceed as in the previous case. This finishes the analysis of this case.

## V. Hardness for $k$-LCS

In this section we prove Theorem 2, along with another interesting lower bound for a variant of $k$-LCS (Theorem 8).
As in the reduction to LCS, it will be much more convenient to reduce to the weighted version of the problem, defined below, as an intermediate step.
Definition 9 ( $k$-LCS and $k$-WLCS). An algorithm for $k$-LCS problem outputs the answer to the following question. Given $k$ strings of length $n$ over alphabet $\Sigma$, what is the length of the longest sequence that appears in all $k$ strings as a subsequence? In $k$-WLCS we are also given a scoring function $w: \Sigma \rightarrow[K]$ and the goal is to find the common subsequence $X$ of all $k$ strings that maximizes the sum $\sum_{i=1}^{|X|} w(X[i])$.

As before, we can think of the common subsequence as a matching of the strings. We can also adapt the previous proof to show a reduction from the weighted version to the unweighted version. The proof is given in the full version.

Lemma 10. Computing the $k$-WLCS of $k$ strings of length $n$ over $\Sigma$ with weights $w: \Sigma \rightarrow[K]$ can be reduced to computing the $k$-LCS of $k$ strings of length $O(K n)$ over $\Sigma$.

## A. k-Orthogonal-Vectors

We will prove SETH-based lower bounds for problems on $k$ sequences via the orthogonal vectors problem on $k$ lists (see Lemma 11 below).
Definition 10 (k-Orthogonal-Vectors). Given $k$ lists $\left\{\alpha_{i}^{t}\right\}_{i \in[n]}(t \in[k])$ of vectors $\alpha_{i}^{t} \in\{0,1\}^{d}$, are there $k$ vectors $\alpha_{i_{1}}^{1}, \alpha_{i_{2}}^{2}, \ldots, \alpha_{i_{k}}^{k}$ that satisfy, $\sum_{h=1}^{d} \prod_{t \in[k]} \alpha_{i_{t}}^{t}[h]=0$ ? Any collection of vectors $\left(\alpha_{i_{t}}^{t}\right)_{t \in[k]}$ with this property will be called orthogonal.
Definition 11 (k-Most-Orthogonal-Vectors). Given $k$ lists $\left\{\alpha_{i}^{t}\right\}_{i \in[n]}(t \in[k])$ of vectors $\alpha_{i}^{t} \in\{0,1\}^{d}$ and an integer $r \in\{1,2, \ldots, d\}$, are there $k$ vectors $\alpha_{i_{1}}^{1}, \alpha_{i_{2}}^{2}, \ldots, \alpha_{i_{k}}^{k}$ that satisfy, $\sum_{h=1}^{d} \prod_{t \in[k]} \alpha_{i_{t}}^{t}[h] \leq r$ ? The LHS of the latter expression will be called the inner product of the $k$ vectors. A collection of vectors that satisfies the property will be called (r-)far, and otherwise it will be called ( $r$-)close.

Lemma 11. If $k$-Most-Orthogonal-Vectors on can be solved in $T(n, k, d)$ time, then given a CNF formula on $n$ variables and $M$ clauses, we can compute the maximum number of satisfiable clauses $(M A X-C N F-S A T)$, in $O\left(T\left(2^{n / k}, k, M\right) \cdot \log M\right)$ time.

The proof is given in the full version.

## B. Adapting the reduction

There are two challenges in adapting the hardness proof for problem of computing LCS between two sequences to the problem of computing LCS between $k>2$ sequences: constructing the vector gadgets, and combining the gadgets in a way that implements a selection-gadget. We will start with the vector gadgets.

Vector gadgets: We will need symbols $a, b, c, d$ with $w(a)=w(b)=w(c)=1$ and $w(d)=4^{k}$. For an integer $p \in\left\{0,1,2, \ldots, 2^{k}-1\right\}$ we define $v_{p} \in\{0,1\}^{k}$ to be a vector containing the binary expansion of $p$, i.e., $\left(v_{p}\right)_{t}$ is $t^{t h}$ bit in the binary expansion of $p$, for $t \in[k]$. Let function $f$ satisfy $f(0)=a$ and $f(1)=b$. For $x \in\{0,1\}, \bar{x}:=1-x$.

For the $t$-th set of vectors $\left\{\alpha_{i}^{t}\right\}_{i \in[n]}(t \in[k])$ and $i \in[n]$, and $j \in[d]$ we define the coordinate gadget

$$
\mathrm{CG}_{t}\left(\alpha_{i}^{t}, j\right)= \begin{cases}d c d \bigcirc_{p=0}^{2^{k}-2}\left(f\left(\left(v_{p}\right)_{t}\right) \circ d\right) & \text { if }\left(\alpha_{i}^{t}\right)_{j}=0 \\ d d \bigcirc_{p=0}^{2^{k}-2}\left(f\left(\overline{\left(v_{p}\right)_{t}}\right) \circ d\right) & \text { otherwise }\end{cases}
$$

Claim 6. Let $E_{o}^{c}=2+2^{k} \cdot w(d)$ and $E_{n}^{c}=E_{o}^{c}-1$. For $j \in[d]$ and $i_{1}, i_{2}, \ldots, i_{k} \in[n]$,

$$
W L C S\left(C G_{1}\left(\alpha_{i_{1}}^{1}, j\right), C G_{2}\left(\alpha_{i_{2}}^{2}, j\right), \ldots, C G_{k}\left(\alpha_{i_{k}}^{k}, j\right)\right)= \begin{cases}E_{n}^{c} & \text { if }\left(\alpha_{i_{t}}^{t}\right)_{j}=1 \text { for all } t \in[k] \\ E_{o}^{c} & \text { otherwise }\end{cases}
$$

The proof is given in the full version.
Let $e$ be a symbol with $w(e)=100 \cdot E_{o}^{c}$.
For the $t$-th set of vectors $\left\{\alpha_{i}^{t}\right\}_{i \in[n]}(t \in[k])$ and $i \in[n]$ we define the vector gadget

$$
\operatorname{VG}_{t}^{\prime}\left(\alpha_{i}^{t}\right)=e \circ \bigcirc_{j \in[d]}\left(\mathrm{CG}_{t}\left(\alpha_{i}^{t}, j\right) \circ e\right)
$$

Let $E_{o}=(d-r) \cdot E_{o}^{c}+r \cdot E_{n}^{c}$ and $E_{n}=E_{o}-1$.
Claim 7. For $i_{1}, \ldots, i_{k} \in[n]$,

$$
W \operatorname{LCS}\left(V G_{1}^{\prime}\left(\alpha_{i_{1}}^{1}\right), V G_{2}^{\prime}\left(\alpha_{i_{2}}^{2}\right), \ldots, V G_{k}^{\prime}\left(\alpha_{i_{k}}^{k}\right)\right)= \begin{cases}\geq E_{o} \quad \text { if } \alpha_{i_{1}}^{1}, \alpha_{i_{2}}^{2}, \ldots, \alpha_{i_{k}}^{k} \text { are } r-f a r, \\ \leq E_{n} & \text { otherwise }\end{cases}
$$

The proof is given in the full version.
Let $f$ be a symbol with $w(f)=E_{n}$. For a vector $\alpha$ we define

$$
\begin{aligned}
& \mathrm{VG}_{1}(\alpha)=f \circ \mathrm{VG}_{1}^{\prime}(\alpha), \\
& \operatorname{VG}_{t}(\alpha)=\mathrm{VG}_{t}^{\prime}(\alpha) \circ f,
\end{aligned}
$$

for $t \in\{2,3, \ldots, k\}$.
Claim 8. For $i_{1}, \ldots, i_{k} \in[n]$,

$$
W L C S\left(V G_{1}\left(\alpha_{i_{1}}^{1}\right), V G_{2}\left(\alpha_{i_{2}}^{2}\right), \ldots, V G_{k}\left(\alpha_{i_{k}}^{k}\right)\right)= \begin{cases}\geq E_{o} & \text { if } \alpha_{i_{1}}^{1}, \alpha_{i_{2}}^{2}, \ldots, \alpha_{i_{k}}^{k} \text { are } r \text {-far } \\ E_{n} & \text { otherwise } .\end{cases}
$$

The proof is given in the full version.
Combining the vector gadgets: A very simple padding strategy implies the lower bound for a variant of $k$-LCS.
Definition 12 (Local- $k$-LCS). Given $k$ strings of length $n$ over an alphabet $\Sigma$ and an integer $L$, what is the length of longest sequence $X$ such that there are $k$ substrings of length $L$, one of each input string, such that $X$ is a common subsequence of each one of these substrings.

In words, we are looking for substrings of length $L$ for which the LCS score is maximized.
Theorem 8. If Local-k-LCS on strings of length $n$ over an alphabet of size $O(1)$ can be solved in $O\left(n^{k-\varepsilon}\right)$ time, for some $\varepsilon>0$, then SETH is false.

Theorem 8 follows from the following reduction. We note that in the constructed instances, $L$ is always polylogarithmic in the lengths of the sequences, and therefore the problem can easily be solved in $\tilde{O}\left(n^{k}\right)$ time. This problem is closely related to the Normalized-LCS problem which was studied in [8], [24] and for which an $n^{2-o(1)}$ lower bound based on SETH was shown in [3]. The proof is given in the full version.
Lemma 12. $k$-Most-Orthogonal Vectors on $k$ lists of $N$ vectors in $\{0,1\}^{M}$ can be reduced to Local- $k$-LCS on $k$ strings of length $2^{k} \cdot N \cdot M^{O(1)}$ over an alphabet of size $O(1)$.

Next, we focus on the classic $k$-LCS problem and show how to implement the selection-gadget while making the existence of orthogonal vector influence the LCS in a manageable way. Unfortunately, we are not able to do this without introducing $O(k)$ new symbols to the alphabet.

Our lower bound for $k$-LCS (Theorem 2) follows from the following reduction.
Lemma 13. For any $k \geq 2$, $k$-Most-Orthogonal Vectors on $k$ lists of $n$ vectors in $\{0,1\}^{d}$ can be reduced to $k$-LCS on $k$ strings of length $k^{O(k)} \cdot n \cdot d^{O(1)}$ over an alphabet of size $O(k)$.

Before we prove the above lemma, let us discuss how it implies that $k$-LCS on an alphabet of size $O(k)$ is $W[2]$ hard. To do this, we give a simple reduction from $k$-dominating set, a $W$ [2]-complete problem, to $n$-dimensional $k$-Most-Orthogonal Vectors. By Lemma 13 this implies a reduction to $k$-LCS on strings of length $k^{O(k)}$ poly $(n)$ over an alphabet of size $O(k)$.
Lemma 14. $k$-Dominating Set in a graph on $n$ nodes can be reduced to $k$-Most-Orthogonal Vectors on $k$ lists of $n$ vectors in $\{0,1\}^{n}$ in $O\left(n^{2}\right)$ time. Hence $k$-LCS on a $O(k)$ size alphabet is $W[2]$-hard.

Proof: Let $G=(V, E)$ be an instance of $k$-Dominating Set. For each node $v \in V$ add an $n$-dimensional vector $v^{i}$ to each list $i$ of the $k$ lists. $v^{i}[u]=1$ if and only if $u \neq v$ and $u$ is not a neighbor of $v$. This completes the reduction.

A set of $k$-Orthogonal vectors $v_{1}^{1}, \ldots v_{k}^{k}$ implies that for all $u \in V$, some $v_{j}$ has $v^{j}[u]=0$, and hence every $u \in V$ either is in $\left\{v_{1}, \ldots, v_{k}\right\}$, or $u$ has a neighbor in $\left\{v_{1}, \ldots, v_{k}\right\}$, and $\left\{v_{1}, \ldots, v_{k}\right\}$ is a $k$-dominating set. (We note that if the $v_{i}$ are not distinct, we can add an arbitrary set of other nodes to complete the set to $k$ distinct nodes.)

Now we prove Lemma 13.
Proof: We will show a reduction to $k$-WLCS and use Lemma 10 to conclude the proof.
We construct $k$ lists of vector gadgets from our $k$ lists of vectors as in the above discussion. Let $D$ be the maximum possible sum of weights of all symbols in any vector gadget, and note that $D=\operatorname{poly}\left(2^{k}, d\right)$ and that $D>E_{o}$. For $i \in\{2, \ldots, k\}$ we will introduce a new symbol $3_{i}$ to the alphabet, and set $B_{k}=B=(10 k D)^{2}$ and for $2 \leq i \leq k$ set $w\left(3_{i}\right)=B_{i}=2 k \cdot B_{i+1}$. Finally, add two new symbols 0,2 and set $w(0)=w(2)=C=10 k^{2} B_{2}$. The weights achieve $C \gg B_{2} \gg \cdots \gg B_{k}=B \gg D \gg E_{o}$.

Our $k$ strings are defined as follows. For $i \in[k]$,

$$
P_{i}=\left(3_{i+1} \cdots 3_{k}\right)^{Q} \circ\left(3_{2} \cdots 3_{i}\right) \circ\left(V G_{i}^{\prime}(f)\right)^{(i-1) N} \circ \bigcirc_{t=1}^{N} V G_{i}^{\prime}\left(\alpha_{t}^{i}\right) \circ\left(V G_{i}^{\prime}(f)\right)^{(i-1) N} \circ\left(3_{i+1} \cdots 3_{k}\right)^{Q}
$$

where $V G_{1}^{\prime}(x)=0 \circ V G_{1}(x) \circ 2, V G_{i}^{\prime}(x)=0 \circ V G_{i}(x) \circ 2 \circ\left(3_{2} \cdots 3_{i}\right)$ if $i \geq 2$, and $Q=\left|P_{k}\right|$.
The intuition behind this padding is that we want to force any optimal matching to match all $n$ vector gadgets of the first string to precisely $n$ vector gadgets from each other string. This is achieved since: if at least one vector gadget from $P_{i}$ is not matched, we will lose some 0 or 2 symbols that we could have matched, while if more than $n$ vector gadgets are matched, we will lose at least one $3_{i}$ symbol. In addition, as long as we match consecutive $n$ intervals from each string, we will get the same score from the padding, and therefore the optimal matching will be determined by the existence of an $r$-far set of vectors. The WLCS will be $E$ if there are no $r$-far vectors, and $E+1$ if there are, for an appropriately defined E.

To make this argument more formal, we can follow the steps in the proof of Lemma 4 for LCS of two strings. First, we can prove an analog of Claim 5, stating that matching $n^{\prime}$ intervals (vector gadgets) in some $P_{t}$ for some $n^{\prime}>n$ can only contribute up to $\left(n^{\prime}-n\right)(B-1)$ to the score. Then, we observe that by the padding construction, if $n^{\prime}>n$ then we will not be able to match at least $\left(n^{\prime}-n\right)$ of the $3_{t}$ symbols that we could have matched if $n^{\prime}$ was equal to $n$, which incurs a loss much greater than $\left(n^{\prime}-n\right) B$. Therefore, in an optimal matching, exactly $n$ intervals will be matched in each sequence, and it is easy to see that the score is then determined by the existence of an $r$-far set of vectors.

Let $E_{U}=2 C+E_{n}$ and $E_{G}=n \cdot E_{U}+B_{2}+(2 n+1) \cdot \sum_{i=2}^{k} B_{i}$. The following two lemmas prove that there is a gap in the WLCS of our $k$ sequences when there is a collection of $k$ vectors that are $r$-far as opposed to when there is none.
Lemma 15. If there is a collection of $k$ vectors that are far, then $\operatorname{WLCS}\left(P_{1}, \ldots, P_{k}\right) \geq E_{G}+1$.
The proof is given in the full version. The hard part is upper bounding the score when there is no collection of $r$-far vectors, and we will spend the rest of the proof towards this end.

Lemma 16. If there is no collection of $k$ vectors that are far, then $W L C S\left(P_{1}, \ldots, P_{k}\right) \leq E_{G}$.
Proof: Consider any optimal matching of our $k$ strings. The goal is to bound its score by $E_{G}$. Our plan will be to divide the contribution to the score into two: (a) the contribution of the vector gadgets, and (b) the contribution from the padding, i.e. the $3_{i}$ symbols. In any matching, there is a tradeoff between the scores from (a) and (b): the more vector gadgets we align, the fewer $3_{i}$ 's we can match, and vice versa. We will prove upper bounds for both contributions and show that they imply an upper bound of $E_{G}$ on the total score.

We start by formally defining (a) and upper bounding it.

For each string $P_{i}$, let $s_{i}$ and $t_{i}$ be the first 0 symbol and the last 2 symbol from $P_{i}$ that are matched in our optimal matching, if they exist, respectively. A simple observation is that if some 0 symbol is matched in the optimal matching ( $s_{i}$ exists for all $i \in[k]$ ), then there must exist some 2 symbol that is also matched: otherwise, match the 2 immediately following that 0 and note that any conflicting matches must come from inside the vector gadgets and therefore removing all of them will decrease the score by much less than $w(2)$. Thus, we can define $N_{i}$ to be the number of vector gadgets that lie between $s_{i}$ and $t_{i}$, and if such $s_{i}, t_{i}$ do not exist, we set $N_{i}=0$. By construction, $N_{i} \leq 2(i-1) n+n$, for all $i \in[k]$. Note that $\left(s_{1}, \ldots, s_{k}\right)$ and $\left(t_{1}, \ldots, t_{k}\right)$ must be in our matching.

We will assume that $N_{i} \geq 1$ for all $i$, since the only other case is that $\forall i \in[k]: N_{i}=0$, which can easily be seen to be sub-optimal: in this case, only $3_{i}$ symbols are matched, and there cannot be more than $(2(i-1) n+n+1)$ matched $3_{i}$ symbols for any $i \in\{2, \ldots, k\}$ which implies the following upper bound on the score: $\sum_{i=2}^{k}(2(i-1) n+n+1) B_{i} \leq$ $3 k n \sum_{i=2}^{k} B_{i} \leq 3 k n B_{2}<n \cdot C<E_{G}$.

By construction, there are no $3_{i}$ symbols between $s_{1}$ and $t_{1}$, which implies that the matching in between $\left(s_{1}, \ldots, s_{k}\right)$ and $\left(t_{1}, \ldots, t_{k}\right)$ does not contain any $3_{i}$ symbols. The total contribution of this part is what we call (a) above. On the other hand, the matching to the left of $\left(s_{1}, \ldots, s_{k}\right)$ and to the right of $\left(t_{1}, \ldots, t_{k}\right)$ cannot contain anything besides $3_{i}$ symbols: If some symbol $\sigma \notin\left\{0,3_{2}, \ldots, 3_{k}\right\}$ appears in $P_{i}$ before $s_{i}$ and is matched, then the 0 's that appear right before the matched $\sigma$ 's could have been matched together without any conflicts, which contradicts the optimality of the matching. An analogous argument shows that $t_{i}$ is to the right of any matched $\sigma \notin\left\{2,3_{2}, \ldots, 3_{k}\right\}$. Thus, the contribution of part (b) only comes from $3_{i}$ symbols.

This motivates the following definitions. From now on, we will refer to the sequences composed of the vector gadgets that are surrounded by 0,2 as "intervals", i.e. sequences of the form $0 \circ V G_{i}(x) \circ 2$. Consider the substrings between $s_{i}$ and $t_{i}$ in each string $P_{i}$ and remove any $3_{i}$ symbols in them - since they are not matched anyway - and note that we obtain a concatenation of $N_{i}$ intervals. Moreover, by our assumption that there is no satisfying assignment, we know that for any choice of one interval from each string, the $k$-LCS is upper bounded by $E_{U}=2 C+E_{n}$, by Claim 8 . The main quantity we will be interested in is $W\left(L_{1}, \ldots, L_{k}\right)$ which is defined to be the maximum score of a matching of any $k$ strings $T_{1}, \ldots, T_{k}$ such that $T_{i}$ is the concatenation of $L_{i}$ intervals, and for any choice of one interval from each $T_{i}$, the optimal score is $E_{U}$. By the symmetry of $k$-LCS, we can assume WLOG that $L_{1} \leq \cdots \leq L_{k}$, and otherwise we reorder. To get the desired upper bound on $W\left(L_{1}, \ldots, L_{k}\right)$ it will be convenient to first upper bound $W_{0}\left(L_{1}, \ldots, L_{k}\right)$, which is defined in a similar way, except that we require the matching to match all 0 and 2 symbols from $T_{1}$, i.e. the string string with fewest intervals.

Define $E_{B}=2 C+D$ which is an upper bound on the maximum possible total weight of all the symbols in an interval. A key inequality, which we will use multiple times in the proof, following from the fact that the $0 / 2$ symbols are much more important than the rest, is the following.

Fact 1. Our parameters satisfy $E_{B}<E_{U}+(B-1) /(k-1)$.
Proof: Follows since $(k-1)\left(E_{B}-E_{U}\right)<(k-1) D<B$, by our choice of parameters.
Claim 9. For any integers $1 \leq L_{1} \leq \ldots \leq L_{k}$, we can upper bound $W_{0}\left(L_{1}, \ldots, L_{k}\right) \leq L_{1} \cdot E_{U}+\left(L_{k}-L_{1}\right) \cdot(B-1)$.
The proof is given in the full version. We are now ready to upper bound the more general $W\left(L_{1}, \ldots, L_{k}\right)$.
Claim 10. For any integers $1 \leq L_{1} \leq \ldots \leq L_{k}$, we can upper bound $W\left(L_{1}, \ldots, L_{k}\right) \leq L_{1} \cdot E_{U}+\left(L_{k}-L_{1}\right) \cdot(B-1)$.
The proof is given in the full version.
We now turn to bounding (b). Recall the definition of $N_{i}$ above, as the number of intervals from $P_{i}$ that are matched. Let us also define $x_{i-}$ as the number of $3_{i}$ symbols from $P_{i}$ that appear before $s_{i}$ and are matched in our optimal matching, and define $x_{i+}$ to be the number of such $3_{i}$ symbols that appear after $t_{i}$. Then, the contribution of (b) to the score can be bounded by $\sum_{i=2}^{k}\left(x_{i-}+x_{i+}\right) B_{i}$. A simple but key observation is the following.
Claim 11. For every $i \in\{2, \ldots, k\}$,

$$
x_{i-}+x_{i+} \leq 2(i-1) n+n+2-\sum_{j=2}^{i-1}\left(x_{j-}+x_{j+}-1\right)-N_{i}
$$

Proof: Focus on $P_{i}$ and note that there are only $(2(i-1) n+n+1) 3_{i}$-symbols in it. To make the counting easier, let us define a set $U$ that is initially empty, and we will add unmatchable $3_{i}$ symbols, from $P_{i}$, to $U$. In the end, we will argue that $|U|+x_{i-}+x_{i+}$ must be at most $(2(i-1) n+n+1)$.

First, we add the $\left(N_{i}-1\right) 3_{i}$ symbols that lie between $s_{i}$ and $t_{i}$ to $U$, since those are clearly unmatchable.

Second, we will focus on the prefix of $P_{i}$ that ends at $s_{i}$, call it $Q_{i}$. For $2 \leq j<i$, note that there must be $x_{j-} 3_{j}$-symbols in $Q_{i}$ that are matched and let $q_{j}$ be the first such $3_{j}$ symbol. Since $q_{j}$ is matched to the first $3_{j}$ symbol in $P_{j}$ that is matched, and that in $P_{j}$ there are no $3_{h}$ symbols, for any $h>j$ between that $3_{j}$ symbol and $s_{j}$, we can conclude that: for any $j<h<i$, all the $x_{h-} 3_{h}$-symbols in $Q_{i}$ that are matched are in the subsequence of $Q_{i}$ starting at $q_{h}$ and ending at $q_{j}$. In fact, this implies that all the $x_{h-} 3_{h}$-symbols in $Q_{i}$ that are matched are in the subsequence of $Q_{i}$ starting at $q_{h}$ and ending right before $q_{h-1}$. Thus, for each $2 \leq h<i$, we can add $x_{h-}$ new $3_{i}$ symbols to our unmatchable $U$ - the ones in the latter subsequence.

Finally, we focus on the suffix of $P_{i}$ that starts at $t_{i}$, and using a similar reasoning we conclude that for each $2 \leq h<i$, we can add $\left(x_{h+}-1\right)$ new $3_{i}$ symbols to our unmatchable $U$.

Thus, we conclude that $\left(N_{i}-1\right)+\sum_{j=2}^{i-1}\left(x_{j-}+x_{j+}-1\right)+x_{i-}+x_{i+} \leq(2(i-1) n+n+1)$, which proves the claim.
For any fixed values for $N_{1}, \ldots, N_{k}$ satisfying $1 \leq N_{i} \leq 2(i-1) n+n$, we can compute the largest possible contribution of part (b). Since if $i<j$ then $B_{i}$ is much larger than $B_{j}$, the optimal score is achieved when setting $\left(x_{i-}+x_{i+}\right)$ to be as large as possible, regardless of the $3_{j}$ symbols we make unmatchable for $j>i$. That is, we claim that the optimal score is achieved when each of the inequalities in Claim 11 are saturated, i.e. $x_{i-}+x_{i+}=2(i-1) n+n+2-\sum_{j=2}^{i-1}\left(x_{j-}+x_{j+}-1\right)-N_{i}$. This is true, since if any inequality is not saturated, say for $i$, then we can always add at least one $3_{i}$ symbol to the matching (gaining $B_{i}$ weight) and remove at most one $3_{j}$ symbol for each $j \in\{i+1, \ldots, k\}$ (losing less than $(k-1) B_{i+1}<B_{i}$ weight) and obtain a valid matching with larger cost, contradicting the optimality of our matching. Therefore, the number of matched $3_{i}$ symbols is precisely,

$$
x_{i-}+x_{i+}=2(i-1) n+n+2-\sum_{j=2}^{i-1}\left(x_{j-}+x_{j+}-1\right)-N_{i} .
$$

We can now formally analyze the tradeoff between (a) and (b), and prove that the optimal matching matches exactly $n$ intervals from each sequence.

Claim 12. In the optimal matching, $N_{1}=\cdots=N_{k}=n$.
The proof is given in the full version.
Finally, after we proved that $N_{1}=\cdots=N_{k}=n$, we know the exact contribution of both parts: For part (b), by Claim 11 and the optimality conditions on the $x_{i-}, x_{i+}$ values, we get that $x_{2-}+x_{2+}=2 n+2$ and for $i \in\{2, \ldots, k\}$ we have $x_{i-}+x_{i+}=2 n+1$, and the total contribution is exactly $B_{2}+(2 n+1) \cdot \sum_{i=2}^{k} B_{i}$. For part (a), by Claim 10, the total contribution is $n \cdot E_{U}$. Combined, the total score of our optimal matching is exactly $n \cdot E_{U}+B_{2}+(2 n+1) \cdot \sum_{i=2}^{k} B_{i}=E_{G}$.

Note that the length of the sequences is $O\left(n \cdot d^{O(1)}\right)$ while the largest weight used is $O\left(k^{O(k)} d^{O(1)}\right)$ and thus Lemma 10 implies the claimed bound.

## ACKNOWLEDGMENTS

We would like to thank Piotr Indyk for many useful discussions, Szymon Grabowski for introducing us to important prior work and Ryan Williams for his useful comments. A.B. was supported by NSF and Simons Foundation. A.A. and V.V.W. were supported by a Stanford School of Engineering Hoover Fellowship, NSF Grant CCF-1417238, NSF Grant CCF-1514339, and BSF Grant BSF:2012338.

## REFERENCES

[1] J. Aach and G. Church. Aligning gene expression time series with time warping algorithms. Bioinformatics, 17(6):495-508, 2001.
[2] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences between graph centrality problems, apsp and diameter. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1681-1697. SIAM, 2015.
[3] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of sequences. In Automata, Languages, and Programming (ICALP'14), volume 8572 of Lecture Notes in Computer Science, pages 39-51, 2014.
[4] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 218-230. SIAM, 2015.
[5] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 434-443. IEEE, 2014.
[6] Amihood Amir, Timothy M Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness of jumbled indexing. In Automata, Languages, and Programming (ICALP’14), pages 114-125. Springer, 2014.
[7] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM Journal on Computing, 38(3):899-921, 2008.
[8] A.N. Arslan, Ö. Eğecioğlu, and P.A. Pevzner. A new approach to sequence comparison: Normalized sequence alignment. Bioinformatics, 17(4):327-337, 2001.
[9] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC '15, pages 51-58, New York, NY, USA, 2015. ACM.
[10] Gill Barequet and Sariel Har-Peled. Some variants of polygonal containment and minimum Hausdorff distance under translation are 3SUM-hard. In Proc. SODA, pages 862-863, 1999.
[11] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence algorithms. In String Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium on, pages 39-48. IEEE, 2000.
[12] Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theoretical Computer Science, 409(3):486 496, 2008.
[13] H. Bodlaender, R. G. Downey, M. Fellows, and H. T. Wareham. The parameterized complexity of sequence alignment and consensus. In Combinatorial Pattern Matching, pages 15-30, 1994.
[14] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Mihai Pătraşcu, and Perouz Taslakian. Necklaces, convolutions, and X+Y. Algorithmica, 69(2):294-314, 2014.
[15] K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 661-670, 2014.
[16] E.G. Caiani, A. Porta, G. Baselli, M. Turiel, S. Muzzupappa, F. Pieruzzi, C. Crema, A. Malliani, and S. Cerutti. Warped-average template technique to track on a cycle-by-cycle basis the cardiac filling phases on left ventricular volume. In Computers in Cardiology 1998, pages 73-76, 1998.
[17] Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query, partial match, orthogonal range searching, and related problems. In ICALP, pages 451-462, 2002.
[18] Jianer Chen and Iyad A. Kanj. Improved exact algorithms for MAX-SAT. Discrete Applied Mathematics, 142(1-3):17-27, 2004.
[19] Otfried Cheong, Alon Efrat, and Sariel Har-Peled. On finding a guard that sees most and a shop that sells most. In Proc. SODA, pages 1098-1107, 2004.
[20] V. Chvatal, D. Klarner, and D. E. Knuth. Selected combinatorial research problems. Technical Report STAN-CS-72-292, Computer Science Department, Stanford University, 1972.
[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
[22] Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Handbook of Satisfiability, pages 403-424. IOS Press, 2009.
[23] Evgeny Dantsin and Alexander Wolpert. MAX-SAT for formulas with constant clause density can be solved faster than in o( $\mathrm{s}^{2}$ ) time. In Theory and Applications of Satisfiability Testing - SAT 2006, Proceedings, pages 266-276.
[24] N. Efraty and G.M. Landau. Sparse normalized local alignment. In CPM, pages 333-346, 2004.
[25] J. Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM Journal on Computing, 28(4):1198-1214, 1999.
[26] A. Gajentaan and M. H. Overmars. On a class of $o\left(n^{2}\right)$ problems in computational geometry. Comput. Geom. Theory Appl., 45(4):140-152, 2012.
[27] Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for sequence similarity problems. In Stringology, pages 202-211, 2014.
[28] Dan Gusfield. Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press, 1997.
[29] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Commun. ACM, 18(6):341-343, June 1975.
[30] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest subsequences. Commun. ACM, 20(5):350-353, 1977.
[31] Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider. 0-1 integer linear programming with a linear number of constraints. CoRR, abs/1401.5512, 2014.
[32] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and System Sciences, 62(2):367-375, 2001.
[33] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63:512-530, 2001.
[34] N.D. Jones and P. Pevzner. An introduction to bioinformatics algorithms. Cambridge, Mass: MIT Press., 2004.
[35] E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowl. Inf. Syst., 7(3):358-386, 2005.
[36] J. Erickson M. Soss and M. H. Overmars. Preprocessing chains for fast dihedral rotations is hard or even impossible. Computational Geometry: Theory and Applications, 26(3):235-246, 2002.
[37] David Maier. The complexity of some problems on subsequences and supersequences. J. ACM, 25(2):322-336, April 1978.
[38] William J Masek and Michael S Paterson. A faster algorithm computing string edit distances. Journal of Computer and System sciences, 20(1):18-31, 1980.
[39] M. Müller. Information Retrieval for Music and Motion. Springer Berlin Heidelberg, 2007.
[40] Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences, 67(4):757-771, 2003.
[41] M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In STOC, pages 603-610, 2010.
[42] Mihai Pǎtraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In SODA, volume 10, pages 1065-1075. SIAM, 2010.
[43] L. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.
[44] Chotirat (Ann) Ratanamahatana and Eamonn J. Keogh. Three myths about dynamic time warping data mining. In Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, pages 506-510, 2005.
[45] Toni M. Rath and R. Manmatha. Word image matching using dynamic time warping. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2003, pages 521-527, 2003.
[46] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 515-524. ACM, 2013.
[47] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2):275-309, 2013.
[48] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer Science, 348(2):357365, 2005.
[49] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 664-673. ACM, 2014.
[50] Y. Zhu and D. Shasha. Warping indexes with envelope transforms for query by humming. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD '03, pages 181-192, 2003.


[^0]:    ${ }^{1}$ Bremner et al. [14] study ( $\min ,+$ )-convolution, but it is not hard to reduce it to ( $\max , \cdot$ ) with only a small increase in the bit complexity of the integers.
    ${ }^{2}$ The exponential time hypothesis (ETH) is a weaker version of SETH: it asserts that there is some $\varepsilon>0$ such that 3SAT on $n$ variables requires $\Omega\left(2^{\varepsilon n}\right)$ time.

