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Abstract—Alternating minimization is a widely used and em-
pirically successful heuristic for matrix completion and related
low-rank optimization problems. Theoretical guarantees for
alternating minimization have been hard to come by and are
still poorly understood. This is in part because the heuristic is
iterative and non-convex in nature. We give a new algorithm
based on alternating minimization that provably recovers
an unknown low-rank matrix from a random subsample of
its entries under a standard incoherence assumption. Our
results reduce the sample size requirements of the alternating
minimization approach by at least a quartic factor in the
rank and the condition number of the unknown matrix. These
improvements apply even if the matrix is only close to low-rank
in the Frobenius norm. Our algorithm runs in nearly linear
time in the dimension of the matrix and, in a broad range
of parameters, gives the strongest sample bounds among all
subquadratic time algorithms that we are aware of.

Underlying our work is a new robust convergence analysis of
the well-known Power Method for computing the dominant sin-
gular vectors of a matrix. This viewpoint leads to a conceptually
simple understanding of alternating minimization. In addition,
we contribute a new technique for controlling the coherence of
intermediate solutions arising in iterative algorithms based on
a smoothed analysis of the QR factorization. These techniques
may be of interest beyond their application here.

I. INTRODUCTION

Alternating minimization is an empirically successful

heuristic for the matrix completion problem in which the

goal is to recover an unknown low-rank matrix from a

subsample of its entries. Matrix completion has received

a tremendous amount of attention over the past few years

due to its fundamental role as an optimization problem and

its applicability in number of areas including collaborative

filtering and quantum tomography. Alternating minimization

has been used early on in the context of matrix comple-

tion [1], [2] and continues to play an important role in

practical approaches to the problem. The approach also

formed an important component in the winning submission

for the Netflix Prize [3].

Given a subset Ω of entries drawn from an unknown

matrix A, Alternating minimization starts from a poor

approximation X0Y
�
0 to the target matrix and gradually

improves the approximation quality by fixing one of the

factors and minimizing a certain objective over the other

factor. Here, X0, Y0 each have k columns where k is the

target rank of the factorization. The least squares objective

is the typical choice. In this case, at step � we solve the

optimization problem

X� = argminX
∑

(i,j)∈Ω
[
Aij − (XY ��−1)ij

]2
.

This optimization step is then repeated with X� fixed in

order to determine Y� as

Y� = argminX
∑

(i,j)∈Ω
[
Aij − (X�Y

�)ij
]2

.

Separating the factors X� and Y� is what makes the op-

timization step tractable. This basic update step is usually

combined with an initialization procedure for finding X0, Y0,
as well as methods for modifying intermediate solutions,

e.g., truncating large entries. More than a specific algorithm

we think of alternating minimization as a framework for

solving a non-convex low-rank optimization problem.

A major advantage of alternating minimization over alter-

natives is that each update is computationally cheap and has

a small memory footprint as we only need to keep track of

2k vectors. In contrast, the nuclear norm approach to matrix

completion [4], [5], [6] requires solving a semidefinite

program. The advantage of the nuclear norm approach is

that it comes with strong theoretical guarantees under certain

assumptions on the unknown matrix and the subsample of its

entries. There are two (by now standard) assumptions which

together imply that nuclear norm minimization succeeds.

The first is that the subsample Ω includes each entry

of A uniformly at random with probability p. The second

assumption is that the first k singular vectors of A span

an incoherent subspace. Informally coherence measures the

correlation of the subspace with any standard basis vector.

More formally, the coherence of a k-dimensional subspace

of R
n is at most μ if the projection of each standard basis

vector has norm at most
√

μk/n. The space spanned by

the top k singular space of various random matrix models

typically satisfies this property with small μ. But also

real-world matrices tend to exhibit incoherence when k is

reasonably small.

Theoretical results on matrix completion primarily apply

to the nuclear norm semidefinite program which is pro-

hibitive to execute on realistic instance sizes. There certainly

has been progress on practical algorithms for solving related

convex programs [7], [8], [9], [10], [11]. Unfortunately,

these algorithms are not known to achieve the same type

of recovery guarantees attained by exact nuclear norm
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minimization. This raises the important question if there

are fast algorithms for matrix completion that come with

guarantees on the required sample size comparable to those

achieved by nuclear norm minimization. In this work we

make progress on this problem by proving strong sample

complexity bounds for alternating minimization. Along the

way our work helps to give a theoretical justification and

understanding for why alternating minimization works.

A. Our results
We begin with our result on the exact matrix completion

problem where the goal is to recover an unknown rank k
matrix M from a subsample Ω of its entries where each

entry is included independently with probability p. Here and

in the following we will always assume that M = UΛU� is

a symmetric n× n matrix with singular values σ1 � . . . �
σk. Our result generalizes straightforwardly to rectangular

matrices as we will see.
Our algorithm will output a pair of matrices (X,Y ) where

X is an orthonormal n × k matrix that approximates U in

the strong sense that ‖(I − UU�)X‖ � ε. Moreover, the

matrix XY � is close to M in Frobenius norm. To state the

theorem we formally define the coherence of U as μ(U)
def
=

maxi∈[n](n/k)‖e�i U‖22 where ei is the i-th standard basis

vector.

Theorem I.1. Given a sample of size Õ(pn2) drawn from an
unknown n×n matrix M = UΛU� of rank k by including
each entry with probability p, our algorithm outputs with
high probability a pair of matrices (X,Y ) such that ‖(I −
UU�)X‖ � ε and ‖M −XY �‖F � ε‖M‖F provided that

pn � k(k + log(n/ε))μ(U) (‖M‖F /σk)
2
. (1)

Our result should be compared with two remarkable

recent works by Jain, Netrapalli and Sanghavi [12] and

Keshavan [13] who gave rigorous sample complexity bounds

for alternating minimization. [12] obtained the bound pn �
k7(σ1/σk)

6μ(U)2 and Keshavan obtained the incomparable

bound pn � k(σ1/σk)
8μ(U) that is superior when the

matrix has small condition number σ1/σk. Since ‖M‖F �√
kσ1 our result improves upon [12] by at least a factor of

k4(σ1/σk)
4μ(U) and improves on [13] as soon as σ1/σk �

k1/3. The improvement is larger when ‖M‖F = O(σ1)
which we expect if the singular values decay rapidly.

Theorem I.1 is a special case of Theorem VI.1. We

remark that the number of least squares update steps is

bounded by O(log(n/ε) logn). The cost of performing these

update steps is up to a logarithmic factor what dominates

the worst-case running time of our algorithm. It can be

seen that the least squares problem can be solved in time

O
(
nk3 + |Ω| · k

)
which is is linear in n + |Ω| and poly-

nomial in k. The number of update steps enters the sample

complexity since we assume (as in previous work) that fresh

samples are used in each step. However, the logarithmic de-

pendence on 1/ε guarantees exponentially fast convergence

and allows us to obtain any inverse polynomial error with

only a constant factor overhead in sample complexity.

Noisy matrix completion: In noisy matrix completion

the unknown matrix is only close to low-rank, typically in

Frobenius norm. Our results apply to any matrix of the form

A = M +N, where M = UΛU� is a matrix of rank k as

before and N = (I−UU�)A is the part of A not captured by

the dominant singular vectors. Here, N can be an arbitrary

deterministic matrix that satisfies the following constraints:

max
i∈[n]
‖e�i N‖2 � μN

n
·σ2

k and max
ij∈[n]

|Nij | �
μN

n
·‖A‖F .

(2)

Here, ei denotes the i-th standard basis vector so that

‖e�i N‖ is the Euclidean norm of the i-th row of N. The

conditions state no entry and no row of N should be too

large compared to the Frobenius norm of N. We can think of

the parameter μN as an analog to the coherence parameter

μ(U) that we saw earlier. Since N could be close to full

rank, denoting by V the space spanned by the columns of

N, the parameter μ(V ) is no longer meaningful. If the rank

of V is k, then our assumptions roughly reduce to what

is implied by requiring μ(V ) � μN . From here on we let

μ∗ = max {μ(U), μN , log n} .
Theorem I.2. Given a sample of size Õ(pn2) drawn from
an unknown n×n matrix A = M +N where M = UΛU�

has rank k and N = (I − UU�)A satisfies (??), our
algorithm outputs with high probability (X,Y ) such that
‖(I−UU�)X‖ � ε and ‖M−XY �‖F � ε‖A‖F provided
that

pn � k(k + log(n/ε))μ∗

(1− σk+1/σk)5

(‖M‖F + ‖N‖F /ε
σk

)2

.

The theorem is a strict generalization of the noise-free

case which we recover by setting N = 0 in which case the

separation parameter γk := 1− σk+1/σk is equal to 1. The

result follows from Theorem VI.1 that gives a somewhat

stronger sample complexity bound. Compared to our noise-

free bound, there are two new parameters that enter the sam-

ple complexity. The first one is the separation parameter γk.
The second is the quantity ‖N‖F /ε. To interpret this quan-

tity, suppose that that A has a good low-rank approximation

in Frobenius norm, formally, ‖N‖F � ε‖A‖F for ε � 1/2,
then it must also be the case that ‖N‖F /ε � 2‖M‖F .
Our algorithm then finds a good rank k approximation with

at most Õ(k3(σ1/σk)
2μ∗n) samples assuming γk = Ω(1).

Hence, assuming that A has a good rank k approximation

in Frobenius norm and that σk and σk+1 are well-separated,

our bound recovers the noise-free bound up to a constant

factor.

Note that if we’re only interested in the second error

bound ‖M − XY �‖F � ε‖M‖F + ‖N‖F , we we can

eliminate the dependence on the condition number in the

sample complexity entirely. The reason is that any singular
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value smaller than εσ1/k can be treated as part of the

noise matrix. Assuming the condition number is at least k
to begin with we can always find two singular values that

have separation at least Ω(k). This ensures that the sample

requirement is polynomial in k without any dependence on

the condition number and gives us the following corollary.

Corollary I.3. Under the assumptions of Theorem I.2, if
σ1 � kσk/ε, then we can find X,Y such that ‖M −
XY �‖F � ε‖A‖F provided that pn � poly(k)μ∗.

The previous corollary is remarkable, because small error

in Frobenius norm is the most common error measure in

the literature on matrix completion. The result shows that in

this error measure, there is no dependence on the condition

number. The result is tight for k = O(1) up to constant

factors even information-theoretically as we will discuss

below.

The approach of Jain et al. was adapted to the noisy setting

by Gunasekar et al. [14] showing roughly same sample com-

plexity in the noisy setting under some assumptions on the

noise matrix. We achieve the same improvements over [14]

as we did compared to [12] in the noise-free case. Moreover,

our assumptions in (??) are substantially weaker than the

assumption of [14]. The latter work required the largest

entry of N in absolute value to be bounded by O(σk/n
√
k).

This directly implies that each row of N has norm at most

O(σk/
√
kn) and that ‖N‖F � O(σk/

√
k). Moreover under

this assumption we would have γk � 1− ok(1). Keshavan’s

result [13] also applies to the noisy setting, but it requires

‖N‖ � (σk/σ1)
3 and maxi ‖e�i N‖ �

√
μ(U)k/n‖N‖. In

particular this bound does not allow ‖N‖F to grow with

‖M‖F . Since neither result allows arbitrarily small singular

value separation, we cannot use these results to eliminate the

dependence on the condition number as is possible using our

technique.

Remark on required sample complexity and assump-
tions: It is known that information-theoretically Ω(kμ(U)n)
measurements are necessary to recover the unknown ma-

trix [6] and this bound is achieved (up to log-factors) by

the nuclear norm semidefinite program. Compared with the

information-theoretic optimum our bound suffers a factor

O(k(‖M‖F /σk)
2) loss. While we do not know if this loss

is necessary, there is a natural barrier. If we denote by

PΩ(A) the matrix in which all unobserved entries are 0 and

the others are scaled by 1/p, then Ω(kμ(U)(‖M‖F /σk)
2n)

samples are necessary to ensure that PΩ(A) preserves the k-

th singular value to within constant relative error. Formally,

‖PΩ(A) − A‖2 � 0.1σk. While this is not a necessary

requirement for alternating least squares, it represents the

current bottleneck for finding a good initial matrix.

It is also known that without an incoherence assumption

the matrix completion problem can be ill-posed and recov-

ery becomes infeasible even information-theoretically [6].

Moreover, even on incoherent matrices it was recently shown

that already the exact matrix completion problem remains

computationally hard to approximate in a strong sense [15].

This shows that additional assumptions are needed beyond

incoherence to make the problem tractable.

II. PROOF OVERVIEW AND TECHNIQUES

Robust convergence of subspace iteration: An impor-

tant observation of [12] is that the update rule in alternating

minimization can be analyzed as a noisy update step of the

well known power method for computing eigenvectors, also

called subspace iteration when applied to multiple vectors

simultaneously. The noise term that arises depends on the

sampling error induced by the subsample of the entries. We

further develop this point of view by giving a new robust

convergence analysis of the power method.

To illustrate the technique, consider a model of numerical

linear algebra in which an input matrix A can only be

accessed through noisy matrix vector products of the form

Ax + g, where x is a chosen vector and g is a possibly

adversarial noise term. Our goal is to compute the domi-

nant singular vectors u1, . . . , uk of the matrix A. Subspace

iteration starts with an initial guess, an orthonormal matrix

X0 ∈ R
n×k typically chosen at random. The algorithm then

repeatedly computes Y� = AX�−1 + G�, followed by an

orthonormalization step in order to obtain X� from Y�. Here,

G� is the noise variable added to the computation.

Theorem III.8 characterizes the convergence behavior of

this general algorithm. An important component of our

analysis is the choice of a suitable potential function that

decreases at each step. Here we make use of the tangent

of the largest principal angle between the subspace U
spanned by the first k singular vectors of the input matrix

and the k-dimensional space spanned by the columns of

the iterate X�. Principal angles are a very useful tool in

numerical analysis that we briefly recap in Section III. Our

analysis shows that the algorithm essentially converges at

the rate of (σk+1 +Δ)/(σk −Δ) for some Δ� σk under

suitable conditions on the noise matrix G�.
Least squares update: The least squares update works

as follows:

Y� = argmin
Y
‖PΩ(A−X�−1Y

�)‖2F . (3)

Since we can focus on symmetric matrices without loss

of generality, there is no need for an alternating update in

which the left and right factor are flipped. We therefore drop

the term “alternating”. We can express the optimal Y� as

Y� = AX�−1 + G� using gradient information about the

least squares objective. The error term G� has an intriguing

property. Its norm ‖G�‖ depends on the quantity
∥∥V �X�−1

∥∥
which coincides with the sine of the largest principal angle

between U and X�−1. This property ensures that as the al-

gorithm begins to converge the norm of the error term starts

to diminish. Near exact recovery is now possible (assuming

the matrix has rank at most k). A novelty in our approach
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is that we obtain strong bounds on ‖G�‖ by computing

O(log n) independent copies of Y� (using fresh samples) and

taking the componentwise median of the resulting matrices.

The resulting procedure called MEDIANLS is analyzed in

Section IV.

A difficulty with iterating the least squares update in

general is that it is unclear how well it converges from

a random initial matrix X0. In our analysis we therefore

use an initialization procedure that finds a matrix X0 that

satisfies
∥∥V �X0

∥∥ � 1/4. Our initialization procedure is

based on (approximately) computing the first k singular

vectors of PΩ(A). To rule out large entries in the vectors we

truncate the resulting vectors. While this general approach

is standard, our truncation procedure first applies a random

rotation to the vectors that leads to a tighter analysis than

the naive approach.

Smooth orthonormalization: A key novelty in our ap-

proach is the way we argue about the coherence of each

iterate X�. Ideally, we would like to argue that μ(X�) =
O(μ∗). A direct approach would be to argue that X�

was obtained from Y� using the QR-factorization and so

X� = Y�R
−1 for some invertible R. This gives the bound

‖e�i X�‖ � ‖e�i Y�‖ · ‖R−1‖ that unfortunately is quite lossy

and leads to a dependence on the condition number.

We avoid this problem using an idea that’s closely related

to the smoothed analysis of the QR-factorization. Sankar,

Spielman and Teng [16] showed that while the perturbation

stability of QR can be quadratic, it is constant after adding

a sufficiently large amount of Gaussian noise. In the context

of smoothed analysis this is usually interpreted as saying

that there are “few bad inputs” for the QR factorization. In

our context, the matrix Y� is already the outcome of a noisy

operation Y� = AX�−1 + G� and so there is no harm in

actually adding a Gaussian noise matrix H� to Y� provided

that the norm of that matrix is no larger than that of G�.
Roughly speaking, this will allow us to argue that there is no

dependence on the condition number when applying the QR-

factorization to Y�. There are some important complications.

The magnitude of Y� may be too large to apply the smoothed

analysis argument directly to Y�. Instead we observe that

the columns of X� are contained in the range S of the

n × 2k matrix [U | (NX�−1 + G� +H�)]. This is because

Y� = AX�−1 +G� +H� and AX�−1 = MX�−1 +NX�−1

where M = UΛU� and N = (I − UU�)A. Since S has

dimension at most 2k it suffices to argue that this space

has small coherence. Moreover we can choose H� to be

roughly on the same order as NX�−1 and G� so that the

smoothed analysis argument leads to an excellent bound

bound on the smallest singular value of NX�−1+G�+H�.
To prove that the coherence is small we need to exhibit

a basis for S. This requires us to argue about the related

matrix (I − UU�)(NX�−1 + G + H�) since we need to

orthonormalize the last k vectors against the first when

constructing a basis. Another minor complication is that we

don’t know the magnitude of G� so we need to find the right

scaling of H� on the fly. We call the resulting procedure that

SMOOTHQR and analyze its guarantees in Section V.

Putting things together: The final algorithm that we

analyze is quite simple to describe as shown in Figure 1.

The algorithm makes use of an initialization procedure

INITIALIZE that we defer to Section VII. In Section VI

we prove our main theorem. At a high-level, the theorem

is proved by induction. The main inductive hypothesis is

that the coherence of the �-th solution X� is small, i.e.,

bounded in terms of the coherence parameter μ∗. Given that

the the coherence is small we can control the magnitude of

the noise term G�+1 using matrix concentration inequalities.

Given that G�+1 is small in spectral norm, our results on

the noisy power method show that the algorithm makes

progress towards convergence. To ensure that the inductive

hypothesis continues to hold we use our analysis of the

smooth orthonormalization.

The generalization of our result to rectangular matrices

follows from a standard “dilation” argument available in the

full version. The description of the algorithm also uses a

helper function called SPLIT that’s used to split the sub-

sample into independent pieces of roughly equal size while

preserving the distributional assumption that our theorems

use.

Input: Observed set of indices Ω ⊆ [n] × [n] of an un-

known symmetric matrix A ∈ R
n×n with entries PΩ(A),

number of iterations L ∈ N, error parameter ε > 0, target

dimension k, coherence parameter μ.
Algorithm SALTLS(PΩ(A),Ω, L, k, ε, μ) :

1) (Ω0,Ω
′) ← SPLIT(Ω, 2), (Ω1, . . . ,ΩL) ←

SPLIT(Ω′, L)
2) X0 ← INITIALIZE(PΩ0(A),Ω0, k, μ)
3) For � = 1 to L:

a) Y� ← MEDIANLS(PΩ�
(A),Ω�, X�−1, L, k)

b) X� ← SMOOTHQR(Y�, ε, μ)

Output: Pair of matrices (XL−1, YL)

Figure 1: Smoothed alternating least squares (SALTLS)

A. Further discussion of related work

There is a vast literature on the topic that we cannot

completely survey here. Most closely related is the work

of Jain et al. [12] that suggested the idea of thinking of

alternating least squares as a noisy update step in the Power

Method. Our approach takes inspiration from this work

by analyzing least squares using the noisy power method.

However, our analysis is substantially different in both how

convergence and low coherence is argued. The approach of

Keshavan [13] uses a rather different argument.

As an alternative to the nuclear norm approach, Keshavan,

Montanari and Oh [17], [18] present two approaches, a
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spectral approach and an algorithm called OPTSPACE. The

spectral approach roughly corresponds to our initialization

procedure and gives similar guarantees. OPTSPACE requires

a stronger incoherence assumption, has larger sample com-

plexity in terms of the condition number, namely (σ1/σk)
6,

and requires optimizing over the Grassmanian manifold.

However, the requirement on N achieved by OPTSPACE

can be weaker than ours in the noisy setting. In the exact

case, our algorithm has a much faster convergence rate

(logarithmic dependence on 1/ε rather than polynomial).

There are a number of fast algorithms for matrix com-

pletion based on either (stochastic) gradient descent [19] or

(online) Frank-Wolfe [9], [20]. These algorithms generally

minimize squared loss on the observed entries subject to

a nuclear norm constraint and in general do not produce

a matrix that is close to the true unknown matrix on all

entries. In contrast, our algorithm guarantees convergence

in domain, that is, to the unknown matrix itself. Moreover,

our dependence on the error is logarithmic whereas in these

algorithms it is polynomial.
Privacy-preserving spectral analysis: Our work is also

closely related to a line of work on differentially private

singular vector computation [21], [22], [23]. These papers

each consider algorithms based on the power method where

noise is injected to achieve a privacy guarantee called

Differential Privacy. Hardt and Roth [21], [22], [23] ob-

served that incoherence could be used to obtain improved

guarantees. This requires controlling the coherence of the

iterates produced by the noisy power method which leads

to similar problems as the ones faced here. What’s simpler

in the privacy setting is that the noise term is typically

Gaussian leading to a cleaner analysis. Our work uses a

similar convergence analysis for noisy subspace iteration that

was used in a concurrent work by the author [22].

B. Preliminaries and Notation

We denote by A� the transpose of a matrix (or vector)

A. We use the notation x � y do denote that the relation

x � Cy holds for a sufficiently large absolute constant C >
0 independent of x and y. We let R(A) denote the range of

the matrix A.

Definition II.1 (Coherence). The μ-coherence of a k-

dimensional subspace U of R
n is defined as μ(U)

def
=

maxi∈[n] n
k ‖PUei‖22 , where ei denotes the i-th standard

basis vector.

III. ROBUST CONVERGENCE OF SUBSPACE ITERATION

Figure 2 presents our basic template algorithm. The algo-

rithm is identical to the standard subspace iteration algorithm

except that in each iteration �, the computation is perturbed

by a matrix G�. The matrix G� can be adversarially and

adaptively chosen in each round. We will analyze under

which conditions on the perturbation we can expect the

algorithm to converge rapidly.

Input: Matrix A ∈ R
n×n, number of iterations L ∈ N,

target dimension k

1) Let X0 ∈ R
n×k be an orthonormal matrix.

2) For � = 1 to L:

a) Let G� ∈ R
n×k be a perturbation.

b) Y� ← AX�−1 +G�

c) X� ← GS(Y�)

Output: Matrix XL with k orthonormal columns

Figure 2: Noisy Subspace Iteration (NSI)

Principal angles are a useful tool in analyzing the conver-

gence behavior of numerical eigenvalue methods. We will

use the largest principal angle between two subspaces as a

potential function in our convergence analysis.

Definition III.1. Let X,Y ∈ R
n×k be orthonormal bases

for subspaces X ,Y, respectively. Then, the sine of the

largest principal angle between X and Y is defined as

sin θ(X ,Y) def
=

∥∥(I −XX�)Y
∥∥ .

We use some standard properties of the largest principal

angle.

Proposition III.2 ([24]). Let X ,Y, X, Y be as in Defi-
nition III.1 and let X⊥ be an orthonormal basis for the
orthogonal complement of X . Then, we have cos θ(X ,Y) =
σk(X

�Y ). and assuming X�Y is invertible, tan θ(X ,Y) =
‖X�

⊥Y (X�Y )−1‖
From here on we will always assume that A has the

spectral decomposition A = UΛUU
� + V ΛV V

� , where

U ∈ R
n×k, V ∈ R

n×(n−k) corresponding to the first

k and last n − k eigenvectors respectively. We will let

σ1 � . . . � σn denote the singular values of A which

coincide with the absolute eigenvalues of A sorted in non-

increasing order.

Our convergence analysis tracks the tangent of the largest

principal angles between the subspaces R(U) and R(X�).
The next lemma shows a natural condition under which

the potential decreases multiplicatively in step �. We think

of this lemma as a local convergence guarantee, since

it assumes that the cosine of the largest principal angle

between R(U) and R(X�−1) is already lower bounded by

a constant.

Lemma III.3 (One Step Local Convergence). Let � ∈
{1, . . . , L} . Assume that cos θk(U,X�−1) � 1

2 > ‖U�G�‖
σk

.
Then,

tan θ(U,X�) � tan θ(U,X�−1) ·
σk+1 +

2‖V �G�‖
tan θ(U,X�−1)

σk − 2‖U�G�‖
.

The next lemma essentially follows by iterating the pre-

vious lemma.
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Lemma III.4 (Local Convergence). Let 0 � ε � 1/4. Let
Δ = max1���L ‖G�‖ and γk = 1− σk+1/σk. Assume that
‖V �X0‖ � 1/4 and σk � 8Δ/γkε . Then,∥∥V �XL

∥∥ � max
{
ε, 2 ·

∥∥V �X0

∥∥ · exp(−γkL/2)} .

Proof: Our first claim shows that once the potential

function is below ε at step �− 1, it cannot increase beyond

ε.

Claim III.5. Let � � 1. Suppose that tan θ(U,X�−1) � ε.
Then, tan θ(U,X�) � ε.

Proof: By our assumption, cos θk(U,X�−1) �√
1− ε2 � 15/16. Together with the lower bound on σk,

the assumptions for Lemma III.3 are met. Hence, using our

assumptions,

tan θ(U,X�) �
(1− γk)σkε+ 2Δ

σk − 2Δ
� ε .

Our second claim shows that if the potential is at least ε
at step �− 1, it will decrease by a factor 1− γk/2.

Claim III.6. Let � � 1 Suppose that tan θ(U,X�−1) ∈
[ε, 1/2]. Then,

tan θ(U,X�) � (1− γk/2) tan θ(U,X�−1) .

Proof: Using the assumption of the claim we have

cos θ(U,X�−1) � 1
tan θ(U,X�−1)

� 1/2 > Δ/σk. We can

therefore apply Lemma III.3 to conclude

tan θ(U,X�) � tan θ(U,X�−1) ·
(1− γk)σk + 2Δ

σk − 2Δ

� tan θ(U,X�−1) ·
(1− γk)(1 + γk/4)

1− γk/4

� tan θ(U,X�−1)(1− γk/2)

The two previous claims together imply that

tan θ(U,XL) � max
{
tan θ(U,X0)(1− γk/2)

L, ε
}
,

provided that tan θ(U,X0) � 1/2. This is the case since we

assumed that sin θ(U,X0) � 1/4. Note that (1− γk/2)
L �

exp(−γkL/2). It remains to observe that
∥∥V �XL

∥∥ �
tan θ(U,XL) and further tan θ(U,X0) � 2

∥∥V �X0

∥∥ by our

assumption on X0.
In our application later on the error terms ‖G�‖ decrease

as � increases and the algorithm starts to converge. We need

a convergence bound for this type of shrinking error. The

next definition expresses a condition on G� that allows for

a useful convergence bound.

Definition III.7 (Admissible). Let γk = 1 − σk+1/σk. We

say that the pair of matrices (X�−1, G�) is ε-admissible for
NSI if

‖G�‖ �
1

32
γkσk‖V �X�−1‖+

ε

32
γkσk. (4)

We say that a family of matrices {(X�−1, G�)}L�=1 is

ε-admissible for NSI if each member of the set is ε-

admissible. We will use the notation {G�} as a shorthand

for {(X�−1, G�)}L�=1 .

We have the following convergence guarantee for admis-

sible noise matrices.

Theorem III.8. Let γk = 1 − σk+1/σk. Let ε � 1/2.
Assume that the family of noise matrices {G�} is (ε/2)-
admissible for NSI and that

∥∥V �X0

∥∥ � 1/4. Then, we
have

∥∥V �XL

∥∥ � ε for any L � 4γ−1
k log(1/ε).

Proof: We prove by induction that for every

t � 0 after Lt = 4tγ−1
k steps, we have∥∥V �XLt

∥∥ � max
{
2−(t+1), ε

}
. The base case

(t = 0) follows directly from the assumption that∥∥V �X0

∥∥ � 1/4. We turn to the inductive step. By induction

hypothesis, we have
∥∥V �XLt

∥∥ � max
{
2−(t+1), ε

}
.

We apply Lemma III.4 with “X0 = XLt
” and error

parameter max
{
2−t+2, ε

}
and L = Lt+1 − Lt.

The conditions of the lemma are satisfied as can be

easily checked using the assumption that {G�} is ε/2-

admissible. Using the fact that Lt+1 − Lt = 4/γk,
the conclusion of the lemma gives

∥∥V �XLt+1

∥∥ �
max

{
ε, 2 ·max

{
ε, 2−(t+1)

}
exp

(
−γk(Lt+1−Lt)

2

)}
�

max
{
ε, 2−(t+2)

}
.

IV. LEAST SQUARES UPDATE RULE

Input: Target dimension k, observed set of indices Ω ⊆
[n]×[n] of an unknown symmetric matrix A ∈ R

n×n with

entries PΩ(A), orthonormal matrix X ∈ R
n×k.

Algorithm LS(PΩ(A),Ω, X, L, k) :

Y ← argminY ∈Rn×k

∥∥PΩ(A−XY �)
∥∥2

F

Output: Pair of matrices (X,Y )

Figure 3: Least squares update

Figure 4 describes the least squares update step spe-

cialized to the case of a symmetric matrix. Our goal is

to express this update step as an update step of the form

Y = AX + G so that we may apply our analysis of noisy

subspace iteration. This syntactic transformation is explained

in Section IV-A followed by a bound on the norm of the error

term G in Section IV-B.

A. From alternating least squares to noisy subspace itera-
tion

The optimizer Y satisfies a set of linear equations that we

derive from the gradient of the objective function.

Lemma IV.1 (Optimality Condition). Let Pi : R
n → R

n

be the linear projection onto the coordinates in Ωi =
{j : (i, j) ∈ Ω} scaled by p−1 = n2/(E |Ω|), i.e., Pi =
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p−1
∑

j∈Ωi
eje

�
j . Further, define the matrix Bi ∈ R

k×k

as Bi = X�PiX and assume that Bi is invertible. Then,
for every i ∈ [n], the i-th row of Y satisfies e�i Y =
e�i APiXB−1

i .

The assumption that Bi is invertible is essentially without

loss of generality. Indeed, we will later see that Bi is

invertible (and in fact close to the identity matrix) with

very high probability. We can now express the least squares

update as Y = AX + G where we derive some useful

expression for G.

Lemma IV.2. Let E = (I−XX�)U. We have Y = AX+G
where G = GM +GN and the matrices GM and GN satisfy
for each row i ∈ [n] if Bi is invertible then

e�i G
M = e�i UΛUE

�PiXB−1
i

e�i G
N = e�i (NPiXB−1

i −NX) .

B. Deviation bounds for the least squares update
In this section we analyze the norm of the error term

G from the previous section. More specifically, we prove a

bound on the norm of each row of G. Our bound uses the

fact that the matrix E appearing in the expression for the

error term satisfies ‖E‖ =
∥∥V �X∥∥ . This gives us a bound

in terms of the quantity
∥∥V �X∥∥ .

Lemma IV.3. Let δ ∈ (0, 1). Assume that each entry is
included in Ω independently with probability

p � kμ(X) log n

δ2n
. (5)

Then, for every i ∈ [n],
P
{∥∥e�i G∥∥ > δ ·

(
‖e�i M‖ ·

∥∥V �X∥∥+ ‖e�i N‖
)}

� 1
5 .

C. Median least squares update
Given the previous error bound we can achieve a strong

concentration bound by taking the component-wise median

of multiple independent samples of the error term.

Lemma IV.4. Let G1, . . . , Gt be i.i.d. copies of G. Let
G = median(G1, . . . , Gt) be the component-wise median
of G1, . . . , Gt and assume p satisfies (??). Then, for every
i ∈ [n], P

{∥∥e�i G∥∥ > δ
(
‖e�i M‖ ·

∥∥V �X∥∥+ ‖e�i N‖
)}

�
exp(−Ω(t)) .

We can now conclude a strong concentration bound for

the median of multiple independent solutions to the least

squares minimization step. This way we can obtain the

desired error bound for all rows simultaneously. This leads

to the following extension of the least squares update rule.

Lemma IV.5. Let Ω be a sample in which each entry is
included independently with probability p � kμ(X) log2 n

δ2n .
Let Y ← MEDIANLS(PΩ(A),Ω, X, L, k). Then, we have
with probability 1−1/n3 that Y = AX+G and G satisfies
for every i ∈ [n] the bound

∥∥e�i G∥∥ � δ
∥∥e�i M∥∥ ·∥∥V �X∥∥+

δ
∥∥e�i N∥∥ .

Input: Target dimension k, observed set of indices Ω ⊆
[n]×[n] of an unknown symmetric matrix A ∈ R

n×n with

entries PΩ(A), orthonormal matrix X ∈ R
n×k.

Algorithm MEDIANLS(PΩ(A),Ω, X, L, k) :

1) (Ω1, . . . ,Ωt)← SPLIT(Ω, t) for t = O(log n).
2) Yi ← LS(PΩi

(A),Ωi, X, L, k)

Output: Pair of matrices (X,median(Y1, . . . , Yt))

Figure 4: Median least squares update

V. INCOHERENCE VIA SMOOTH QR FACTORIZATION

As part of our analysis of alternating minimization we

need to show that the intermediate solutions X� have small

coherence. For this purpose we propose an idea inspired

by Smoothed Analysis of the QR factorization [16]. The

problem with applying the QR factorization directly to Y� is

that Y� might be ill-conditioned. This can lead to a matrix

X� (via QR-factorization) that has large coordinates and

whose coherence is therefore no longer as small as we

desire. A naive bound on the condition number of Y� would

lead to a large loss in sample complexity. What we show

instead is that a small Gaussian perturbation to Y� leads

to a sufficiently well-conditioned matrix Ỹ� = Y� + H�.
Orthonormalizing Ỹ� now leads to a matrix of small co-

herence. Intuitively, since the computation of Y� is already

noisy the additional noise term has little effect so long as

its norm is bounded by that of G�. Since we don’t know the

norm of G�, we have to search for the right noise parameter

using a simple binary search. We call the resulting procedure

SMOOTHQR and describe in in Figure 5.

Input: Matrix Y ∈ R
n×k, parameters μ, ε > 0.

Algorithm SMOOTHQR(Y, ε, μ) :

1) X ← QR(Y ), H ← 0, σ ← ε‖Y ‖/n.
2) While μ(X) > μ and σ � ‖Y ‖:

a) X ← GS(Y +H) where H ∼ N(0, σ2/n)n×k

b) σ ← 2σ

Output: Pair of matrices (X,H)

Figure 5: Smooth Orthonormalization (SMOOTHQR)

To analyze the algorithm we begin with a lemma that

analyzes the smallest singular value under a Gaussian per-

turbation. What makes the analysis easier is the fact that

the matrices we’re interested in are rectangular. The square

case was considered in [16] and requires more involved

arguments.

Lemma V.1. Let G ∈ R
n×k be any matrix with ‖G‖ � 1

and let V be a n−k dimensional subspace with orthogonal
projection PV . Let H ∼ N(0, τ2/n)n×k be a random Gaus-
sian matrix. Assume k = o(n/ log n). Then, with probability
1− exp(−Ω(n)), we have σk (PV (G+H)) � Ω(τ) .
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The proof follows from standard concentration arguments

and is contained in the full version. To use this lemma in our

context we’ll introduce a variant of μ-coherence that applies

to matrices rather than subspaces.

Definition V.2 (ρ-coherence). Given a matrix G ∈ R
n×k

we let ρ(G)
def
= n

k maxi∈[n] ‖e�i G‖2 .
The next lemma is our main technical tool in this section.

It shows that adding a Gaussian noise term leads to a bound

on the coherence after applying the QR-factorization.

Lemma V.3. Let k = o(n/ log n) and τ ∈ (0, 1). Let U ∈
R

n×k be an orthonormal matrix. Let G ∈ R
n×k be a matrix

such that ‖G‖ � 1. Let H ∼ N(0, τ2/n)k×n be a random
Gaussian matrix. Then, with probability 1− exp(−Ω(n))−
n−5, there is an orthonormal matrix Q ∈ R

n×2k such that:

1) R(Q) = R([U | G + H]) where R(Q) denotes the
range of Q,

2) μ(Q) � O
(

1
τ2 · (ρ(G) + μ(U) + log n)

)
.

Proof: First note that R([U | G + H]) = R([U |
(I − UU�)(G + H)]). Let B = (I − UU�)(G + H).
Applying the QR-factorization to [U | B], we can find two

orthonormal matrices Q1, Q2 ∈ R
n×k such that have that

[Q1 | Q2] = [U | BR−1] where R ∈ R
k×k. That is Q1 = U

since U is already orthonormal. Moreover, the columns of

B are orthogonal to U and therefore we can apply the

QR-factorization to U and B independently. We can now

apply Lemma V.1 to the (n− k)-dimensional subspace U⊥

and the matrix G + H. It follows that with probability

1 − exp(−Ω(n)), we have σk(B) � Ω(τ). Assume that

this event occurs.

Also, observe that σk(B) = σk(R). The second

condition is now easy to verify n
k

∥∥e�i Q∥∥2
=

n
k

∥∥e�i U∥∥2
+ n

k

∥∥e�i BR−1
∥∥2

= μ(U)+ n
k

∥∥e�i BR−1
∥∥2

. On

the other hand, n
k

∥∥e�i BR−1
∥∥2 � n

k

∥∥e�i B∥∥2 ∥∥R−1
∥∥2 �

O
(

n
kτ2

∥∥e�i B∥∥2
)
, where we used the fact that∥∥R−1

∥∥ = 1/σk(R) = O(1/τ). Moreover,
n
k

∥∥e�i B∥∥2 � 2n
k

∥∥e�i (I − UU�)G
∥∥2

+2ρ((I−UU�)H) �
2ρ(G) + 2ρ(UU�G) + 2ρ((I − UU�)H) . Finally,

ρ(UU�G) � μ(U)‖U�G‖2 � μ(U) and, by Lemma V.4

below, we have ρ((I − UU�)H) � O(log n) with

probability 1 − 1/n5. The lemma follows with a union

bound over the failure probabilities.

Lemma V.4. Let P be the projection onto an (n − k)-
dimensional subspace. Let H ∼ N(0, 1/n)n×k. Then,
ρ(PH) � O(log n) with probability 1− 1/n5.

The next lemma states that when SMOOTHQR is invoked

on an input of the form AX +G with suitable parameters,

the algorithm outputs a matrix of the form X ′ = QR(AX+
G+H) whose coherence is bounded in terms of μ(U) and

ρ(G) and moreover H satisfies a bound on its norm. The

lemma also permits to trade-off the amount of additional

noise introduced with the resulting coherence parameter.

Lemma V.5. Let τ > 0 and assume k = o(n/ log n).
There is an absolute constant CV.5 > 0 such that the
following claim holds. Let G ∈ R

n×k. Let X ∈ R
n×k be

an orthonormal matrix such that ν � max {‖G‖, ‖NX‖} .
Assume that

μ � CV.5

τ2

(
μ(U) +

ρ(G) + ρ(NX)

ν2
+ log n

)
.

Then, for every ε � τν satisfying log(n/ε) � n and every
μ � n, we have with probability 1−O(n−4), the algorithm
SMOOTHQR(AX+G, ε, μ) terminates in O(log(n/ε)) steps
and outputs (X ′, H) such that μ(X ′) � μ and where H
satisfies ‖H‖ � τν.

VI. MAIN THEOREM

The total sample complexity we achieve is the sum

of two terms. The first one is used by the initialization

step that we discuss in Section VII. The second term

specifies the sample requirements for iterating the least

squares algorithm. It therefore makes sense to define the

following two quantities: pinit =
k2μ∗‖A‖2F logn

γ2
kσ

2
kn

and pLS =
kμ∗(‖M‖2F+‖N‖2F /ε2) log(n/ε) log2 n

γ5
kσ

2
kn

. While the first term has a

quadratic dependence on k it does not depend on ε at all and

it has single logarithmic factor. The second term features a

linear dependence on k. Our main theorem shows that if

the sampling probability is larger than the sum of these two

terms, the algorithm converges rapidly to the true unknown

matrix.

Theorem VI.1 (Main). Let k, ε > 0. Let A = M +N be a
symmetric n×n matrix where M is a matrix of rank k with
the spectral decomposition M = UΛUU

� and N = (I −
UU�)A = V ΛV V

� satisfies (??). Let γk = 1 − σk+1/σk

where σk is the smallest singular value of M and σk+1 is
the largest singular value of N.

Then, there are parameters μ = Θ(γ−2
k k(μ∗ + log n))

and L = Θ(γ−1
k log(n/ε)) such that the output (X,Y ) of

SALTLS(PΩ(A),Ω, k, L, ε, μ) satisfies ‖(I −UU�)XL‖ �
ε with probability 9/10.

Before we prove the theorem in Section VI-A, we will

state an immediate corollary that gives bounds on the

reconstruction error in the Frobenius norm.

Corollary VI.2 (Reconstruction error). Under the assump-
tions of Theorem VI.1, we have that the output (X,Y ) of
SALTLS satisfies

∥∥M −XY �
∥∥
F
� ε ‖A‖F with probabil-

ity 9/10.

A. Proof of Theorem VI.1

Proof: We first apply Theorem VII.1 (shown below) to

conclude that with probability 19/20, the initial matrix X0

satisfies
∥∥V �X0

∥∥ � 1/4 and μ(X0) � 32μ(U) log n.
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Assume that this event occurs. Our goal is now to ap-

ply Theorem III.8. Consider the sequence of matrices{
(X�−1, G̃�)

}L

�=1
obtained by the execution of SALTLS

starting from X0 and letting G̃� = G� + H� where G� is

the error term corresponding to the �-step of MEDIANLS,

and H� is the error term introduced by the application of

SMOOTHQR at step �. To apply Theorem III.8, we need

to show that this sequence of matrices is (ε/2)-admissible

for NSI with probability 19/20. The theorem then directly

gives that ‖V �XL‖ � ε and this would conclude our proof

by summing up the error probabilities.
Let τ = γk

128 and μ̂ = CV.5

τ2 (20μ∗ + log n) . Let μ be any

number satisfying μ � μ̂. Since μ̂ = Θ(γ−2
k k(μ∗ + log n)),

this satisfies the requirement in the theorem. We prove that

with probability 9/20, the following three claims hold:

1) {(X�−1, G�)}L�=1 is (ε/4)-admissible,

2) {(X�−1, H�)}L�=1 is (ε/4)-admissible,

3) for all � ∈ {0, . . . , L− 1}, we have μ(X�) � μ.

This implies the claim that we want using a triangle inequal-

ity since G̃� = G� +H�.
The proof of these three claims is by mutual induction.

For � = 0, we only need to check the third claim which

follows form the fact that X0 satisfies the coherence bound.

Now assume that all three claims hold at step �−1, we will

argue that the with probability 1 − n/100, all three claims

hold at step �. Since L � n, this is sufficient.
The first claim follows from Lemma IV.4 using the in-

duction hypothesis that μ(X�−1) � μ̂. Specifically, we apply

the lemma with δ = cmin{γkσk/‖M‖F , εγkσk/‖N‖F } for

sufficiently small constant c > 0. The lemma requires the

lower bound p � kμ∗ log2 n
δ2n . We can easily verify that the

right hand side is a factor L = Θ(γ−1
k log(n/ε)) smaller

than what is provided by the assumption of the theorem.

This is because new samples are used in each of the L
steps so that we need to divide the given bound by L.
Lemma IV.4 now gives with probability 1− 1/n3 the upper

bound ‖G�‖F � 1
4

(
1
32γkσk

∥∥V �X�−1

∥∥+ ε
32γkσk

)
. In

particular, this satisfies the definition of ε/4-admissibility.

We proceed assuming that this event occurs as the error

probability is small enough to ignore.
The remaining two claims follow from Lemma V.5.

We will apply the lemma to AX� + G� with

ν = σk(
∥∥V �X�−1

∥∥ + ε) and τ as above. Note

that ‖NX�−1‖ � σk

∥∥V �X�−1

∥∥ . Hence we have

ν � max{‖G�‖, ‖NX�−1‖} as required by the lemma.

The lemma also requires a lower bound μ. To satisfy the

lower bound we invoke Lemma VI.3 showing that with

probability 1−1/n2, we have 1
ν2 (ρ(G) + ρ(NX)) � 10μ∗.

We remark that this is the lemma that uses the assumption

on N provided by (??). Again we assume this event

occurs. In this case we have μ � μ̂ = CV.5

τ2 (20μ∗ + log n)
and so we see that μ satisfies the requirement of

Lemma V.5. It follows that SMOOTHQR produces

with probability 1 − 1/n4 a matrix H� such that

‖H�‖ � τν � γkν
128 � 1

4

(
1
32γkσk

∥∥V �X�−1

∥∥
F
+ ε

32γkσk

)
.

In particular, H� satisfies the requirement of (ε/4)-
admissibility. Moreover, the lemma gives that μ(X�) � μ.
This shows that also the second and third claim of our

inductive claim continue to hold. All error probabilities

we incurred were o(1/n) and we can sum up the error

probabilities over all L � n steps to concludes the proof of

the theorem.

The following technical lemma was needed in the proof

of Theorem VI.1.

Lemma VI.3. Under the assumptions of Theorem VI.1, we
have for every � ∈ [L] and ν = σk

32 (
∥∥V �X�−1

∥∥ + ε) with
probability 1− 1/n2, 1

ν2 (ρ(G) + ρ(NX�−1)) � 3μ∗ .

We also needed a procedure SPLIT(Ω, t) that takes a

sample Ω and splits it into t independent samples that

preserve the distributional assumption that we need. The next

lemma is standard.

Lemma VI.4. There is a procedure SPLIT(Ω, t) such that if
Ω is sampled by including each element independently with
probability p, then SPLIT(Ω, t) outputs independent random
variables Ω1, . . . ,Ωt such that each set Ωi includes each
element independently with probability pi � p/t.

VII. FINDING A GOOD STARTING POINT

Figure 6 describes an algorithm that computes the top k
singular vectors of PΩ(A) and truncates them in order to en-

sure incoherence. The algorithm serves as a fast initialization

procedure for our main algorithm. This general approach is

relatively standard in the literature. However, our truncation

argument differs from previous approaches. Specifically, we

use a random orthonormal transformation to spread out the

entries of the singular vectors before truncation. This leads

to a tighter bound on the coherence.

Input: Target dimension k, observed set of indices Ω ⊆
[n]×[n] of an unknown symmetric matrix A ∈ R

n×n with

entries PΩ(A), coherence parameter μ ∈ R.
Algorithm INITIALIZE(PΩ(A),Ω, k, μ) :

1) Compute the first k singular vectors W ∈ R
n×k of

PΩ(A).

2) W̃ ←WO where O ∈ R
k×k is a random orthonor-

mal matrix.

3) T ← Tμ′(W̃ ) with μ′ =
√

8μ log(n)/n where Tc
replaces each entry of its input with the nearest

number in the interval [−c, c].
4) X ← QR(T )

Output: Orthonormal matrix X ∈ R
n×k.

Figure 6: Initialization Procedure (INITIALIZE)
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Theorem VII.1 (Initialization). Let A = M + N be a
symmetric n × n matrix where M is a matrix of rank k
with the spectral decomposition M = UΛUU

� and N =
(I − UU�)A satisfies (??). Assume that each entry is
included in Ω independently probability

p � Ck(kμ(U) + μN )(‖A‖F /γkσk)
2 log n

n
(6)

for a sufficiently large constant C > 0. Then, the algorithm
INITIALIZE returns an orthonormal matrix X ∈ R

n×k such
that with probability 9/10, ‖V �X‖F � 1/4 and μ(X) �
32μ(U) log n.
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