
The Dyck Language Edit Distance Problem in
Near-linear Time

Barna Saha
Dept. of Computer Science

University of Massachusetts, Amherst
Amherst, USA

barna@cs.umass.edu

Abstract—Given a string σ over alphabet Σ and a grammar
G defined over the same alphabet, how many minimum number
of repairs (insertions, deletions and substitutions) are required
to map σ into a valid member of G? The seminal work of Aho
and Peterson in 1972 initiated the study of this language edit
distance problem providing a dynamic programming algorithm
for context free languages that runs in O(|G|2n3) time, where
n is the string length and |G| is the grammar size. While later
improvements reduced the running time to O(|G|n3), the cubic
time complexity on the input length held a major bottleneck for
applying these algorithms to their multitude of applications.
In this paper, we study the language edit distance problem for

a fundamental context free language, DYCK(s) representing the
language of well-balanced parentheses of s different types, that
has been pivotal in the development of formal language theory.
We provide the very first near-linear time algorithm to tightly
approximate the DYCK(s) language edit distance problem for
any arbitrary s. DYCK(s) language edit distance significantly
generalizes the well-studied string edit distance problem, and
appears in most applications of language edit distance ranging
from data quality in databases, generating automated error-
correcting parsers in compiler optimization to structure pre-
diction problems in biological sequences. Its nondeterministic
counterpart is known as the hardest context free language.
Our main result is an algorithm for edit distance compu-

tation to DYCK(s) for any positive integer s that runs in
O(n1+εpolylog(n)) time and achieves an approximation factor
of O(1

ε
β(n) log |OPT |), for any ε > 0. Here OPT is the optimal

edit distance to DYCK(s) and β(n) is the best approximation
factor known for the simpler problem of string edit distance
running in analogous time. If we allow O(n1+ε+|OPT |2nε) time,
then the approximation factor can be reduced to O(1

ε
log |OPT |).

Since the best known near-linear time algorithm for the string
edit distance problem has β(n) = polylog(n), under near-linear
time computation model both DYCK(s) language and string edit
distance problems have polylog(n) approximation factors. This
comes as a surprise since the former is a significant general-
ization of the latter and their exact computations via dynamic
programming show a stark difference in time complexity.
Rather less surprisingly, we show that the framework for

efficiently approximating edit distance to DYCK(s) can be utilized
for many other languages. We illustrate this by considering
various memory checking languages (studied extensively un-
der distributed verification) such as STACK, QUEUE, PQ and
DEQUE which comprise of valid transcripts of stacks, queues,
priority queues and double-ended queues respectively. Therefore,
any language that can be recognized by these data structures,
can also be repaired efficiently by our algorithm.
Index Terms—edit distance; formal language; linear time

algorithm design; approximation algorithms;

I. INTRODUCTION

Given a string σ over alphabet Σ and a grammar G defined
over the same alphabet, how many minimum number of repairs
(insertions, deletions and substitutions) are required to map σ
into a valid member of G? In this work, we consider such
language edit distance problem with respect to DYCK(s),
where |Σ|= 2s. DYCK(s) is a fundamental context free gram-
mar representing the language of well-balanced parentheses
of s different types, and DYCK language edit distance is a
significant generalization of the string edit distance problem
which has been studied extensively in theoretical computer
science and beyond.
Dyck language appears in many contexts. These languages

often describe a property that should be held by commands
in most commonly used programming languages, as well as
various subsets of commands/symbols used in Latex. Vari-
ety of semi-structured data from XML documents to JSON
data interchange files to annotated linguistic corpora contain
open and close tags that must be properly nested. They are
frequently massive in size and exhibit complex structures
with arbitrary levels of nesting tags (an XML document often
encodes an entire database). For example, dblp.xml has current
size of 1.2 GB, is growing rapidly, with 2.3 million articles that
results in a string of parentheses of length more than 23 million
till date. In addition, Dyck language plays an important role
in DNA evolutionary languages and RNA structure modeling
where the base nucleotide pairs in DNA/RNA sequences
need to match up in a well-formed way. Deviations from
this well-formed matching reveal interesting properties of the
underlying biological sequences [17], [32]. Dyck language has
been pivotal in the development of the theory of context-free
languages (CFL). As stated by the Chomsky-Schotzenberger
Theorem, every CFL can be mapped to a restricted subset of
DYCK(s) [10]. A comprehensive description of context free
languages and Dyke languages can be found in [18], [21].
The study of language edit distance problem dates back to

early seventies. Such an algorithm for context free grammar
(CFG) was first proposed by Aho and Peterson that runs in
O(|G|2n3) time where |σ|= n is the string length and |G| is
the size of the grammar [1]. This was later improved by Myers
to O(|G|n3) time [27]. These works were motivated by de-
veloping automated parsers for compiler design. For DYCK(s)

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.71

611

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.71

611

a dynamic programming algorithm gives a running time of
O(n3) independent of s. Since a well-balanced string may
be composed of two well-balanced substrings, the optimum
edit distance computation for a substring from index i to j,
1 ≤ i < j ≤ n, requires checking all possible decompositions
of the substring at intermediate indices k = i, i + 1, ..., j.
This leads to the cubic dependency in the running time. It is
possible to improve this bound slightly to O(n3

logn) using the
Four-Russian technique [32].
Nearly two decades back, [26] reported these algorithms

with cubic running time to be prohibitively slow for parser
design. With modern data deluge, the issue of scalability
has become far more critical. Motivated by a concrete appli-
cation of repairing semi-structured documents where imbal-
anced parenthesis nesting is one of the major reported errors
(14% of XML errors on the web is due to malformedness
[16]) and lack of scalability of cubic time algorithms, the
authors in [20] study the problem of approximating edit
distance computation to DYCK(s). Given any string σ if σ′ =
minx∈Dyck(s) StrEdit(σ, x), they ask the question whether
it is possible to design an algorithm that runs in near-linear
time and returns σ′′ ∈ Dyck(s) such that StrEdit(σ, σ′′) ≤
αStrEdit(σ, σ′) for some α ≥ 1 where StrEdit is the normal
string edit distance function and α is the approximation factor.
Edit distance computation from a string of parentheses to
DYCK(s) is a significant generalization of string edit distance
computation 1. A prototypical dynamic programming for string
edit distance computation runs in quadratic time (as opposed
to cubic time for DYCK(s) edit distance problem). There is
a large body of works on designing scalable algorithms for
approximate string edit distance computation [4]–[7], [29].
Though basic in its appeal, nothing much is known for
approximately computing edit distance to DYCK(s).
In [20], the authors proposed fast greedy and branch and

bound methods with various pruning strategies to approxi-
mately answer the edit distance computation to DYCK(s), and
showed its applicability in practice over rule based heuristics
commonly employed by modern web browsers like Internet
Explorer, Firefox etc. However, either their algorithms have
worst-case approximation ratio as bad as Θ(n) or have running
time exponential in |OPT | (see [20] for worst case examples).
It is to be noted that for DYCK(1), there exists a simple
single pass algorithm to compute edit distance: just pair up
matching open and close parentheses and report the number
of parentheses that could not be matched in this fashion.
In this paper, we study the question of approximating

edit distance to DYCK(s) for any s ≥ 2 and give the
first near-linear time algorithm with nontrivial approximation

1For string edit distance computation, between string σ1 and σ2 over
alphabet C, create a new alphabet T ∪ T̄ by uniquely mapping each character
c ∈ C to a new type of open parenthesis, say tc, that now belongs to T .
Let t̄c be the matching close parenthesis for tc and we let t̄c ∈ T̄ . Now
create strings σ′

1
by replacing each character of σ1 with its corresponding

open parenthesis in T , and create string σ′

2
by replacing each character of σ2

with its corresponding close parenthesis in T̄ . Obtain σ by appending σ′

1 with
reverse of σ′

2
. It is easy to check the edit distance between σ and DYCK(s)

is exactly equal to string edit distance between σ1 and σ2.

guarantees. Our main result is an algorithm for edit distance
computation to DYCK(s) language for any positive integer
s that runs in O(n1+εpolylog(n)) time and achieves an
approximation factor of O(1εβ(n) log |OPT |), for any ε > 0.
Here OPT is the optimal edit distance to DYCK(s) and
β(n) is the best approximation factor known for the simpler
problem of string edit distance running in analogous time. If
we allow O(n1+ε + |OPT |2nε) time, then the approximation
factor can be reduced to O(log |OPT |). Since the best known
near-linear time algorithm for the string edit distance problem
has β(n) = polylog(n), under near-linear time computation
model both the string edit distance and the DYCK(s) language
edit distance problems have polylog(n) approximation factors.
This comes as a surprise since edit distance to DYCK(s) is a
significant generalization of the string edit distance problem
and their exact computations via dynamic programming show
a marked difference in time complexity.
Any parentheses string σ can be viewed as

Y1X1Y2X2....YzXz for some z ≥ 0 where Yis and Xis
respectively consist of only consecutive open and close
parentheses. The special case of string edit distance problem
can be cast as having z = 1. The approximation factor of our
algorithm is in fact depends only on log z, and not log |OPT |.
It is possible to ensure z ≤ OPT by a simple preprocessing.
Our algorithm is based on a judicious combination of random
walks in multiple phases that guide selection of subsequences
having a single sequence of open parentheses followed by
a single sequence of close parentheses. These subsequences
are then repaired each by employing subroutine for STREDIT
computation. The general framework of our algorithm and
its analysis applies to languages far beyond DYCK(s). We
discuss this connection with respect to the memory checking
languages whose study was initiated in the seminal work of
Blum, Evans, Gemmell, Kannan and Naor [8] with numerous
follow-up works [2], [9], [11], [13], [28]. We consider basic
languages such as STACK, QUEUE, PQ, DEQUE etc. They
comprise of valid transcripts of stacks, queues, priority queues
and double-ended queues respectively. Given a transcript
of any such memory-checking language, we consider the
problem of finding the minimum number of edits required to
make the transcript error-free and show that the algorithm for
DYCK(s) can be adapted to return a valid transcript efficiently
with the same approximation bound. Therefore, any language
that can be recognized by these data structures, can also be
repaired efficiently by our algorithm. We believe our novel
multi-phase random walk based technique can be useful for
any generic sequence alignment type problems and may lead
to a systematic way of speeding up dynamic programming
algorithms for this large class of problems.

A. Related Work
Early works on edit distance to grammar [1], [27] was

motivated by the problem of correcting and recovering from
syntax error during context-free parsing and have received
significant attention in the realm of compiler optimization [14],
[15], [19], [26]. Many of these works focus on designing time-

612612

efficient parsers using local recovery [15], [19], [26] rather
than global dynamic programming based algorithms [1], [27],
but to the best of our knowledge, none of these methods
provide approximation guarantee on edit distance in sub-cubic
time. Approximating edit distance to DYCK(s) has recently
been studied in [20] for repairing XML documents, and in
[32] for RNA folding. But either the proposed algorithms have
running time very close to cubic [32], or the proposed subcubic
algorithms all have worst case approximation factorΘ(n) [20].
Recognizing a grammar is a much simpler task than repair-

ing, and DYCK language recognition has attracted consider-
able attention before. Using a stack, it is straightforward to
recognize DYCK(s) in a single pass-a prototypical example
of a stack-based algorithm. When there is a space restriction,
Magniez, Mathieu and Nayak [25] considered the streaming
complexity of recognizing DYCK(s) showing an Ω(

√
n) lower

bound and a matching upper bound within a logn factor.
Even with multiple one-directional passes, the lower bound
remains at Ω(

√
n) [9], surprisingly with two passes in opposite

directions the space complexity reduces to O(log2 n). This
exhibits a curious phenomenon of streaming complexity of
recognizing DYCK(s). Krebs et al. extended the work of
[25] to consider very restricted cases of errors, where an
open (close) parenthesis can only be changed into another
open (close) parenthesis [22]. Again with only such edits,
computing edit distance in linear time is trivial: whenever
an open parenthesis at the stack top cannot be matched with
the current close parenthesis, change one of them to match.
Allowing arbitrary insertions, deletions and substitutions is
what makes the problem significantly harder. In the property
testing framework, in the seminal paper Alon, Krivelevich,
Newman and Szegedy [3] showed that DYCK(1) is testable in
time independent of n, however DYCK(2) requires Ω(logn)
queries. This lower bound was further strengthened to n1/11

by Parnas, Ron and Rubinfeld [30] where they also give a
testing algorithm using n2/3/ε3 queries. These algorithms can
only distinguish between the case of 0 error with εn errors, and
therefore, are not applicable to the problem of approximating
edit-distance to DYCK(s).
Edit distance to DYCK(s) is a significant generalization of

string edit distance problem. String edit distance enjoys the
special property that if the optimal edit distance is d then
a symbol at the ith position in one string must be matched
with a symbol at a position between (i− d) to (i+ d) in the
other string, if d is the optimum string edit distance. Using this
“local” property, prototypical quadratic dynamic programming
algorithm can be improved to run in time O(dn) which was
latter improved to O(n+d7) [31] to O(n+d4) [12] and then to
O(n+ d2) [23]. The later result implies a

√
n-approximation

for string edit distance problem. However, all of these crucially
use the locality property, which does not hold for parenthesis
strings: two parentheses far apart can match as well. Also,
it is known that parsing arbitrary CFG is as hard as boolean
matrix multiplication [24] and a nondeterministic version of
DYCK is the hardest CFG [10]. Therefore, exactly computing
edit distance to DYCK(s) in time much less than subcubic

would be a significant accomplishment. For string edit dis-
tance, the current best approximation ratio of (log n)O(1

ε
) in

O(n1+εpolylog(n)) running time for any fixed ε > 0 is due
to Andoni, Krauthgamer and Onak [4]. This result is preceded
by a series of works which improved the approximation ratio
from

√
n [23] to n 3

7 [6], then to n 1
3
+o(1) [7], all of which run

in linear time and finally to 2
√
logn log log n that run in time

n2
√
logn log log n [5].

B. Techniques & RoadMap
Definition 1. The congruent of a parenthesis x is defined as its
symmetric opposite parenthesis, denoted x̄. The congruent of
a set of parentheses X , denoted X̄ , is defined as {x̄ | x ∈ X}.
We use T to denote the set of open parentheses and T̄ to

denote the set of close parentheses. (Each x ∈ T has exactly
one congruent x̄ ∈ T̄ that it matches to and vice versa.) The
alphabet Σ = T ∪ T̄ .

Definition 2. A string over some parenthesis alphabet Σ =
T ∪ T̄ is called well-balanced if it obeys the context-free
grammar DYCK(s), s = |T | with productions S → SS,
S → φ (empty string) and S → aSā for all a ∈ T .

Definition 3. The DYCK Language Edit Distance Problem,
given string σ = σ1...σn over alphabet Σ = T ∪ T̄ , is to find
argminσ′ StrEdit(σ, σ′) such that σ′ ∈ DYCK(s), s = |T |.
A Simple Algorithm (Section II): We start with a very simple

algorithm that acts as a stepping stone for the subsequent
refinements. The algorithm is as simple as it gets, and is
referred to as Random-deletion.
Initialize a stack to empty. Scan the parenthesis string σ left

to right. If the current symbol is an open parenthesis, insert
it into the stack. If the current symbol is a close parenthesis,
check the symbol at top of the stack. If both the symbols can be
matched, match them. If the stack is empty, delete the current
symbol. Else delete one of them independently with equal
probability 1

2 . If the stack is nonempty when the scan has
ended, delete all symbols from the stack.
Let d be the optimum edit distance to DYCK(s). Each

deletion accounts for one edit. We show

Theorem 1. Random-deletion obtains a 4d-approximation
for edit distance computation to DYCK(s) for any s ≥ 2 in
linear time with constant probability.

The probability can be boosted by running the algorithm
Θ(logn) times and considering the iteration which results in
the minimum number of edits. In the worst case, when d =√
n, the approximation factor can be 4

√
n. This also gives

a very simple algorithm for string edit distance problem that
achieves a O(

√
n) approximation.

The analysis of even such a simple algorithm is nontrivial
and proceeds as follows. First, we allow the optimal algorithm
to consider only deletion and allow it to process the string
using a stack; this increases the edit distance by a factor of
2 (Lemma 6, Lemma 7). We then define for each comparison
where an open and close parenthesis cannot be matched, a

613613

corresponding correct and wrong move. If an optimal algo-
rithm also compares exactly the two symbols and decides to
delete one, then we can simply define the parenthesis that
is deleted by the optimal algorithm as the correct move and
the other as a wrong move. However, after the “first” wrong
move, the comparisons performed by our procedure vs the
optimal algorithm can become very different. Yet, we can label
one of the two possible deletions as a correct move in some
sense of decreasing distance to an optimal state. Consider a
toy example, cbāb̄c̄. An optimal algorithm deletes ā to make
the string well-formed. The first comparison performed by our
algorithm may take a wrong move by deleting b instead of ā.
While comparing c and ā, it still can recover from this earlier
error without a big penalty on the edit cost if it deletes ā-the
correct move. We show that if up to time t, the algorithm has
takenWt wrong moves then it is possible to get a well-formed
string using a total of 2(d+ 2Wt) edit operations. These two
properties help us to map the process of deletions to a one
dimensional random walk-the GAMBLER’S RUIN problem.
In the considered gambler’s ruin problem, a gambler enters

a casino with $d (remember d is the optimum edit distance
to DYCK(s)) and starts playing a game where he wins with
probability 1/2 and loses with probability 1/2 independently.
The gambler plays the game repeatedly betting $1 in each
round. He leaves if he runs out of money or gets $n. We
can show that the number of edit operations performed by
our algorithm can not be more than the number of steps
taken by the gambler to be ruined. However, on expectation,
the gambler takes O(n) steps to be ruined, and this bound
is not useful for our purpose. Interestingly, the underlying
probability distribution of the number of steps taken by the
gambler is heavy-tailed and using that property, one can still
show that there is considerable probability (∼ 1

5) that gambler
is ruined in O(d2) steps. Therefore the total number of edits
of our algorithm is bounded by O(d2) leading to an O(d)
approximation.
A Refined Algorithm (Section III): We now refine our algo-

rithm as follows. Given string σ, we can delete any prefix of
close parentheses, delete any suffix of open parentheses and
match well-formed substrings without affecting the optimal
solution. After that, σ can be written as Y1X1Y2X2....YzXz

where each Yi is a sequence of open parentheses, each Xi is
a sequence of close parentheses and z ≤ d. In the optimal
solution X1 is matched with some suffix of Y1 possibly after
doing edits. Let us denote this suffix by Z1. If we can find
the left boundary of Z1, then we can employ STREDIT to
compute string edit distance between Z1 and X1 (we need to
consider reverse of X1 and convert each t ∈ X1 to t̄–this is
what is meant when we refer STREDIT between a sequence of
open and a sequence of close parentheses), as Z1X1 consists
of only a single sequence of open parentheses followed by a
single sequence of close parentheses. If we can identify Z1

correctly, then in the optimal solution X2 is matched with a
suffix of Y res

1 Y2 where Y res
1 = Y1 \ Z1. Let us denote it by

Z2. If we can again find the left boundary of Z2, then we can
employ STREDIT between Z2 and X2 and so on. The question

is how do we compute these boundaries?
The key trick is to use Random-deletion again (repeat it

appropriately ∼ logn times) to find these boundaries ap-
proximately (see Section III). We consider the suffix of Y1

which Random-deletion matches against X1 possibly after
multiple deletions (call it Z ′1) and use Z ′1 to approximate
Z1. We show again using the mapping of Random-deletion
to random walk, that the error in estimating the left boundary
is bounded (Lemma 9, Lemma 16, Lemma 17). Specifically,
if StrEdit(Z1, X1) = d1, then the error in estimating the
boundaries is at most d1

√
2 log d1 and StrEdit(Z ′1, X1) ≤

2d1
√
2 lnd1. But, the error that we make in estimating Z1

may propagate and affect the estimation of Z2. Hence the
gap between optimal Z2 and estimated Z ′2 becomes wider.
If StrEdit(Z2, X2) = d2, then we get StrEdit(Z ′2, X2) ≤
2(d1+d2)

√
2 ln (d1 + d2). Proceeding, in this fashion, we get

the following theorem.

Theorem 2. The refined algorithm obtains an
O(zβ(n)

√
ln d)-approximation factor for edit distance

computation from strings to DYCK(s) for any s ≥ 2 in
O(n logn+α(n)) time with probability at least

(
1− 1

n − 1
d

)
,

where there exists an algorithm for STREDIT running in
α(n) time that achieves an approximation factor of β(n).

Further Refinement: Main Algorithm (Section IV): Is it possi-
ble to compute subsequences of σ such that each subsequence
contains a single sequence of open and close parentheses
in order to apply STREDIT, yet propagational error can be
avoided? This leads to our main algorithm.
Example. Consider σ = Y1X1Y2X2Y3X3...YzXz , and let
the optimal algorithm matches X1 with Z1,1, matches X2

with Z1,2Y2, matches X3 with Z1,3Y3, and so on, where
Y1 = Z1,zZ1,z−1...Z1,2Z1,1. In the refined algorithm, when
Random-deletion finishes processing X1 and tries to estimate
the left boundary of Z1,1, it might have already deleted some
symbols of Z1,2. It is possible that it deletes Θ(d1

√
log d1)

symbols from Z1,2. Therefore, when computing STREDIT be-
tween X1 and Z ′1, the portion of Z1,2 in Z ′1 may not have any
matching symbols and results in an increased STREDIT com-
putation. More severely, the Random-deletion process gets
affected when processing X2. Random-deletion does not find
the already deleted symbols in Z1,2 which ought to be matched
with some subsequence of X2. As a result, it may start
comparing Z1,3 with X2, and in the process may delete up
to Θ((d1 + d2)

√
log (d1 + d2)) symbols from Z1,3, and so

on. To remedy this, view X2 = X2,inX2,out where X2,in

is the prefix of X2 that is matched with Y2 and X2,out is
matched with Z1,2. Consider pausing the random deletion
process when it finishes Y2 and thus attempt to find X2,in.
Suppose, Random-deletion matches X ′

2,in with Y2, then com-
pute StrEdit(Y2, X

′
2,in). While there could still be a mistake

in computing X ′
2,in, the mistake does not affect Z1,3. Else

if Random-deletion process finishes X2 before finishing Y2,
then of course it affected Z1,3. In that case Z ′2 is a suffix
of Y2 and we compute StrEdit(Z ′2, X2). Similarly, when
processing X3, we pause whenever X3 or Y3 is exhausted and

614614

create an instance of STREDIT accordingly. Suppose, for the
sake of this example, Y2, Y3, .., Yz are finished before finishing
X2, X3, ..., Xz respectively and X1 is finished before Y1.
Then, after creating the instances of STREDITs as described,
we are left with a sequence of open parenthesis corresponding
to a prefix of Y1 and a sequence of close parenthesis, which is a
combination of suffixes from X2, X3, ..., Xz . We can compute
STREDIT between them. Since most of Z1,zZ1,z−1...Z1,2

exists in this remaining prefix of Y1 and their matching
parentheses in the constructed sequence of close parentheses,
the computed STREDIT distance remains small.
Let us call each XiYi a block. As the example illustrates,

we create STREDIT instances corresponding to what Random-
deletion does locally inside each block. After the first phase,
from each block we are either left with a sequence of open
parentheses (call it a block of type O), or a sequence of close
parentheses (call it a block of type C), or the block is empty.
This creates new sequences of open and close parentheses
by combining all the consecutive O blocks together (remove
empty blocks) and similarly combining all consecutive C
blocks together (remove empty blocks). We get at most 	 z

2

new blocks in the remaining string after deleting any prefix of
close and any suffix of open parentheses. We now repeat the
process on this new string. This process can continue at most
�log z�+1 phases, since the number of blocks reduces at least
by a factor of 2 going from one phase to the next. This entire
process is repeated O(log n) time and the final outcome is the
minimum of the edit distances computed over these repetitions.
The following theorem summarizes the performance of this
algorithm.

Theorem 3. There exists an algorithm that obtains an
O(β(n) log z

√
ln d)-approximation factor for edit distance

computation to DYCK(s) for any s ≥ 2 in O(n logn+ α(n))
time with probability at least

(
1− 1

n − 1
d

)
, where there exists

an algorithm for STREDIT running in α(n) time that achieves
an approximation factor of β(n), and z is the number of
blocks.

The
√
log d factor in the approximation can be avoided if

we consider iterating O(nε logn) times. Since, the best known
near-linear time algorithm for STREDIT anyway has α(n) =
n1+ε and β = (logn)

1
ε , we obtain the following theorem.

Theorem 4. For any ε > 0, there exists an algorithm that
obtains an O(1ε log z(logn)

1
ε)-approximation factor for edit

distance computation to DYCK(s) for any s ≥ 2 in O(n1+ε)
time with high probability, and z is the number of blocks.

If instead we apply the string edit distance computation
algorithm [23] in Thereom 3 and Thereom 4, we get the
corollary

Corollary 5. (i) There exists an algorithm that obtains an
O(log z

√
ln d)-approximation factor for edit distance compu-

tation to DYCK(s) for any s ≥ 2 in O(n+ d2) time with high
probability, and also compute the edits.
(ii) There exists an algorithm that obtains an O(1ε log z)-

approximation factor for edit distance computation to
DYCK(s) for any s ≥ 2 in O(n1+ε + d2nε) time with high
probability, and also compute the edits.

The algorithm and its analysis gives a general frame-
work which can be applied to many other languages beyond
DYCK(s). Employing this algorithm one can repair foot-
prints of several memory checking languages such as STACK,
QUEUE, PQ and DEQUE efficiently. This extension can be
found in the full version.

II. ANALYSIS OF Random-deletion

Here we analyse the performance of Random-deletion and
prove Theorem 1.
We consider only deletion as a viable edit operation and

under deletion-only model, assume that the optimal algorithm
is stack based, and matches well-formed substrings greedily.
The following two lemmas state that we lose only a factor 2
in the approximation by doing so. Note that all the missing
proofs can be found in the full version.

Lemma 6. For any string σ ∈ (T ∪ T̄)∗, OPT (σ) ≤
OPTd(σ) ≤ 2OPT (σ), where OPT (σ) is the minimum
number of edits: insertions, deletions, substitutions required
and OPTd(σ) is the minimum number of deletions required
to make σ well-formed.

Lemma 7. There exists an optimal algorithm that makes a
single scan over the input pushing open parentheses to stack
and on observing a close parenthesis, the algorithm compares
it with the stack top. If the symbols match, then both are
removed from further consideration, otherwise one of the two
symbols is deleted.

From now onward we fix a specific optimal stack based
algorithm, and refer that as the optimal algorithm.
Let us initiate time t = 0. At every step in Random-

deletion when we either match two parentheses (current close
parenthesis in the string with open parenthesis at the stack top)
or delete one of them, we increment time t by 1.
We define two sets At and AOPT

t for each time t.

Definition 4. For every time t ≥ 0, At is defined as all
the indices of the symbols that are matched or deleted by
Random-deletion up to and including time t.

Definition 5. For every time t ≥ 0, AOPT
t = {i | i ∈ At

or i is matched by the optimal algorithm with some symbol
with index in At}.
Clearly at all time t ≥ 0, AOPT

t ⊇ At. We now define a
correct and wrong move.

Definition 6. A comparison at time t in the algorithm leading
to a deletion is a correct move if |AOPT

t \At|≤ |AOPT
t−1 \At−1|

and is a wrong move if |AOPT
t \At|> |AOPT

t−1 \At−1|.
Lemma 8. At any time t, there is always a correct move, and
hence Random-deletion always takes a correct move with
probability at least 1

2 .

615615

Proofsketch. Suppose the algorithm compares an open paren-
thesis σ[i] with a close parenthesis σ[j], i < j at time t,
and they do not match. If possible, suppose that there is
no correct move. Since Random-deletion is stack-based, At

contains all indices in [i, j]. It may also contain intervals
of indices [i1, j1], [i2, j2], ... because there can be multiple
blocks. It must hold [1, j− 1] \At does not contain any close
parenthesis. Now for both the two possible deletions to be
wrong, the optimal algorithm must match σ[i] with some σ[j′],
j′ > j, and also match σ[j] with σ[i′], i′ < i, i′ /∈ At. But,
this is not possible due to the property of well-formedness.
Similarly, it can be argued that a correct move exists if at
time t either the stack is empty or the string is exhausted.

Lemma 9. If at time t (up to and including time t), the number
of indices in AOPT

t that the optimal algorithm deletes is dt
and the number of correct and wrong moves are respectively
ct and wt then |AOPT

t \At|≤ dt + wt − ct.

The proof considers various possible states of the algorithm
at time t, and compares AOPT

t with At to obtain the bound.
Let St denote the string σ at time t after removing all the
symbols that were deleted by Random-deletion up to and
including time t.

Lemma 10. Consider d to be the optimal edit distance to
DYCK(s). If at time t (up to and including t), the number of
indices in AOPT

t that the optimal algorithm deletes be dt and
|AOPT

t \ At|= rt, at most rt + (d − dt) edits is sufficient to
convert St into a well-balanced string.

Proof. Since |AOPT
t \At|= rt, there exists exactly rt indices

in St such that if those indices are deleted, the resultant string
is same as what the optimal algorithm obtains after process-
ing the symbols in AOPT

t . For the symbols in remaining
{1, 2, ..., n}\AOPT

t , the optimal algorithm does at most d−dt
edits. Therefore a total of rt + (d − dt) edits is sufficient to
convert St into a well-balanced string.

Lemma 11. The edit distance between the final string Sn and
σ is at most d+ 2wn.

Proof. Consider any time t ≥ 0, if at t, the number of
deletions by the optimal algorithm in AOPT

t is dt, the num-
ber of correct moves and wrong moves are respectively ct
and wt, then we have |AOPT

t \ At|≤ dt + wt − ct. The
number of edits that have been performed to get St from
S0 is ct + wt. Denote this by E(0, t). The number of edits
that are required to transform St to well-formed is at most
(d−dt)+dt+wt−ct = d+wt−ct (by Lemma 10). Denote it
by E′(t, n). Hence the minimum total number of edits required
(including those already performed) considering state at time
t is E(0, t)+E′(t, n) = d+2wt. Since this holds for all time
t, the lemma is established.

In order to bound the edit distance, we need a bound on
wn. To do so we map the process of deletions by Random-
deletion to a random walk.

A. Mapping into Random Walk

We consider the following one dimensional random walk.
The random walk starts at coordinate d, at each step, it moves
one step right (+1) with probability 1

2 and moves one step
left (−1) with probability 1

2 . We count the number of steps
required by the random walk to hit the origin.
We now associate a modified random walk with the dele-

tions performed by Random-deletion as follows. Every time
Random-deletion needs to take a move (performs one dele-
tion), we consider one step of the modified random walk. If
Random-deletion takes a wrong move, we let this random
walk make a right (away from origin) step. On the other
hand if Random-deletion takes a correct move, we let this
random walk take a left step (towards origin move). If the
random walk takes W right steps, then Random-deletion
also makes W wrong moves. If the random walk takes W
right steps before hitting the origin, then it takes in total a
d + 2W steps, and Random-deletion also deletes d + 2W
times. Therefore, hitting time of this modified random walk
starting from d characterizes the number of edit operations
performed by Random-deletion. In this random walk, left steps
(towards origin) are taken with probability ≥ 1

2 (sometimes
with probability 1). Therefore, hitting time of this modified
random walk is always less than the hitting time of an one-
dimensional random walk starting at d and taking right and
left step independently with equal probability.
We therefore calculate the probability of a one-dimensional

random walk taking right or left steps with equal probability
to have a hitting time D starting from d. The computed
probability serves as a lower bound on the probability that
Random-deletion takes D edit operations to transform σ to
well-formed. This one dimensional random walk is known as
GAMBLER’S RUIN problem. We are interested in the probabil-
ity that gambler gets ruined.
We now calculate the probability that the gambler is ruined

in D steps precisely. Let Pd denote the law of a random
walk starting in d ≥ 0, let {Yi}∞0 be the i.i.d. steps of the
random walk, let SD = d+Y1 +Y2+ ...+YD be the position
of random walk starting in position d after D steps, and let
T0 = inf D : SD = 0 denotes the walks first hitting time of
the origin. Clearly T0 = 0 for P0. Then we can show

Lemma 12. For the GAMBLER’S RUIN problem Pd(T0 =

D) = d
D

(
D

D−d
2

)
1
2D
.

We now calculate the probability that a gambler starting
with $d hits 0 within cd steps. Our goal will be to minimize
c as much as possible, yet achieving a significant probability
of hitting 0.

Lemma 13. In GAMBLER’S RUIN, the gambler starting with
$d hits 0 within 2d2 steps with probability at least 0.194.

Corollary 14. In GAMBLER’S RUIN, the gambler starting
with $d hits 0 within 1

ε
d2

log d steps for any constant ε > 0 with
probability at least

√
ε log d
dε .

616616

Theorem [1] follows from the mapping that the edit distance
computed by Random-deletion is at most the number of steps
taken by gambler’s ruin to hit the origin starting from $d and
then applying Lemma 13 and noting that we are only using
deletions (Lemma 6 and Lemma 7) .

III. ANALYSIS OF THE REFINED ALGORITHM

The algorithm proceeds as follows. It continues Random-
deletion process as before, but now it keeps track of the
substring with which each Xa, a = 1, 2, .., z is matched (pos-
sibly through multiple deletions) during this random deletion
process. While processing X1, the random deletion process is
restarted 3 logb n times, b = 1

(1−0.194) = 1.24 and at each
time the algorithm keeps a count on how many deletions
are necessary to complete processing of X1. It then selects
the particular iteration in which the number of deletions is
minimum. We let Z1,min to denote the substring to which X1

is matched in that iteration. The algorithm then continues the
random deletion process. It next stops when processing on
X2 finishes. Again, the portion of random deletion process
between completion of processing X1 and completion of
processing X2 is repeated 3 logb n times and the iteration
that results in minimum number of deletions is picked. We
define Z2,min accordingly. The algorithm keeps proceeding in
a similar manner until the string is exhausted. In the process,
Za,min is matched with Xa for a = 1, 2, .., z. But, instead
of using the edits that the random deletion process makes to
match Za,min to Xa, our algorithm invokes the best string
edit distance algorithm StrEdit(Za,min, Xa) which converts
Za,min to Ra and Xa to Ta such that RaTa is well-formed.
Clearly, at the end we have a well-formed string.

A. Analysis

We first analyze its running time.

Lemma 15. The expected running time of the refined algo-
rithm is O(n log n+α(n)) where α(n) is the running time of
STREDIT to approximate string edit distance of input string
of length n within factor β(n).

We now proceed to analyze the approximation factor. For
that we assume that the optimal distance d is at least 3
(otherwise employ the algorithm of the previous section). Let
the optimal edit distance to convert ZaXa into well-formed
be da for a = 1, 2, .., z where Za = Z1,aZ2,a...Za,a.
While computing the set Za,min, it is possible that our

algorithm inserts symbols outside of Za to it or leaves out
some symbols of Za. In the former case, among the extra
symbols that are added, if the optimal algorithm deletes some
of these symbols as part of some other Za′ , a′ �= a, then
these deletions are “harmless”. If we only include these extra
symbols to Za,min, then we can as well pretend that those
symbols are included in Za too. The edit distance of the
remaining substrings are not affected by this modification.
Therefore, for analysis purpose, both for this algorithm and
for the main algorithm in the next section, we always

assume w.l.o.g that the optimal algorithm does not delete any
of the extra symbols that are added.

Lemma 16. The number of deletions made by random deletion
process to finish processing X1, X2, ..Xl, for l = 1, 2, .., z,
that is to match Za,min, Xa, a ≤ l, is at most 2(

∑l
a=1 da)

2

with probability at least
(
1− 1

n3

)l.
Let us denote by Cl and Wl the number of correct and

wrong moves taken by the random deletion process when
processing of X1, X2, ..., Xl finishes. Since at each deletion,
correct move has been taken with probability at least 1

2 then
by the standard Chernoff bound argument followed by union
bound we have the following lemma.

Lemma 17. When the processing of X1, X2, ..., Xl finishes
Wl − Cl ≤ (2

∑l
a=1 da)

√
2 ln d with probability at least(

1− 1
n − 1

d

)
.

Proof. Probability that the number of deletions made by
Random-deletion process is at most 2(

∑l
a=1 da)

2 is ≥(
1− 1

n3

)l. Let us denote the number of these deletions by
Dl, for l = 1, 2, ..., z. Hence Dl = Wl + Cl. We use the
following version of Azuma’s inequality for simple coin flips
to bound Wl − Cl.
Azuma’s inequality for coin flips. Let Fi be a sequence

of independent and identically distributed random coin flips
taking values −1 or 1. Defining Xi =

∑i
j=1 Fj yields a

martingale with |Xk−Xk1|≤ 1, and Azuma’s inequality states
Pr [XN > t] ≤ exp

(
−t2

2N

)
.

We are only interested to bound Wl − Cl (and not the
absolute difference), and the worst case bound occurs when
wrong and correct moves are taken with equal probability.
Hence Pr

[
Wl − Cl > (2

∑l
a=1 da)

√
2 ln d|D1 ≤ 2d21

]
is at most exp

(
− 8(

∑l
a=1

da)
2 ln d

4(
∑

l
a=1

da)2

)
= 1

d2 . We have

Pr

[
Wl − Cl > (2

∑l
a=1 da)

√
2 ln d

]
≤ Pr

[
D1 > 2d21

]
+

Pr

[
Wl − Cl > (2

∑l
a=1 da)

√
2 ln d|D1 ≤ 2d21

]
Pr

[
D1 ≤ 2d21

]
≤ 1− (

1− 1
n3

)l
+

(
1− 1

n3

)l 1
d2 ≤ l

n3 + 1
d2 . Hence

Pr

[
∃l ∈ [1, z]s.t.Wl − Cl > (2

l∑
a=1

da)
√
2 lnd

]
≤ z2

n3
+

z

d2
≤ 1

n
+
1

d
.

Now we define AOPT
l and Al in a similar manner as in

the previous section. We only consider the iterations that
correspond to computing Za,min, a = 1, 2, .., z to define the
final random deletion process.

Definition 7. Al is defined as all the indices of the symbols
that are matched or deleted by Random-deletion process up
to and including time when processing of Xl finishes.

Definition 8. For every time l ∈ [1, z], AOPT
l = {i | i ∈ Al

or i is matched by the optimal algorithm with some symbol
with index in Al}.
We have the following corollary.

617617

Corollary 18. For all l ∈ [1, z], |AOPT
l \ Al|≤

∑l
a=1 da +

(2
∑l

a=1 da)
√
2 ln d with probability at least

(
1− 1

n − 1
d

)
.

Proof. Proof follows from Lemma 9 and Lemma 17.

Lemma 19. For all a ∈ [1, z], StrEdit(Za,min, Xa) ≤ da +
|AOPT

a−1 \Aa−1|+|AOPT
a \Aa|.

Proof. Let D(Xa) denote the symbols from Xa for which the
matching open parentheses have already been deleted before
processing on Xa started. Let D′(Xa) denote the symbols
from Xa for which the matching open parentheses are not
included in Za,min. Let E(Za,min) denote open parentheses
in Za,min such that their matching close parentheses are in
X ′

a, a′ < a, that is they are already deleted. Let E′(Za,min)
denote open parentheses in Za,min such that their matching
close parentheses are in X ′

a, a′ > a, that is they are extra
symbols from higher blocks.
StrEdit(Za,min, Xa) ≤ StrEdit(Za, Xa) + |D(Xa)|+

|D′(Xa)|+|E(Za,min)|+|E′(Za,min)|. Now all the indices of
D(Xa) ∪ E(Za,min) are in AOPT

a−1 , but none of them are in
Aa−1. Hence |D(Xa)|+|E(Za,min)|≤ |AOPT

a−1 \Aa−1|. Also,
the indices corresponding to matching close parentheses of
E′(Za,min) and D′(Xa) are in AOPT

a but not in Aa. Hence
|D′(Xa)|+|E′(Za,min)|≤ |AOPT

a \Aa|. Therefore, the lemma
follows.

Since the edit distance computed by the refined algorithm is
at most

∑z
a=1 StrEdit(Za,min, Xa), we get Theorem 2 using

Lemma 19 and Corollary 18.

IV. FURTHER REFINEMENT: MAIN ALGORITHM &
ANALYSIS

As before, we first run the process of Random-deletion.
For each run of Random-deletion, the algorithm proceeds in
phases with at most �log2 z�+1 phases. We repeat this entire
procedure 3 logb n times, b = 1.24 (as before) and return
the minimum edit distance computed over these runs and
the corresponding well-formed string. We now describe the
algorithm corresponding to a single run of random-deletion
Let us use X1

a = Xa, Y
1
a = Ya to denote the blocks in

the first phase. Consider the part of Random-deletion from the
start of processing X1

a to finish either X1
a or Y 1

a whichever
happens first. Since this part of the random deletion (from the
start of X1

a to the completion of either X1
a or Y 1

a) is contained
entirely within block Y 1

a X
1
a , we call this part local1 to block

a. Let Alocal1

a denote the indices of all the symbols that are
matched or deleted during the local1 steps in block a. Let
AOPT,local1

a be the union of Alocal1

a and the indices of symbols
that are matched with some symbol with indices in Alocal1

a in
the optimal solution. We call AOPT,local1

a \Alocal1

a the local1
error, denoted local-error1(Y 1

a , X
1
a).

Create substrings L1
a corresponding to local1 moves in

block a, a = 1, .., z. Compute STREDIT between L1
a ∩ Y 1

a

to L1
a ∩X1

a . Remove all these substrings from further consid-
eration. The phase 1 ends here.
We can now view the remaining string as

Y 2
1 X

2
1Y

2
2 X

2
2 ...Y

2
z2X2

z2 , after deleting any prefix of

open parentheses and any suffix of close parentheses.
Consider any Y 2

a , X
2
a . Let they span the original blocks

Ya1
Xa1

Ya1+1Xa1+1...Ya2
Xa2

. Consider the part of Random-
deletion from the start of processing Xa1

to the completion
of either Ya1

or Xa2
whichever happens first. Since this part

of the random deletion remains confined within block Y 2
a X

2
a ,

we call this part local2 to block a. Let Alocal2

a denote the
indices of all the symbols that are matched or deleted during
the local2 steps in block a. Let AOPT,local2

a be the union
of Alocal2

a and the indices of symbols that are matched with
some symbol with indices in Alocal2

a in the optimal solution.
We call AOPT,local2

a \ Alocal2

a the local2 error, denoted
local-error2(Y 2

a , X
2
a).

Create substrings L2
a corresponding to local2 moves in

block a, a = 1, .., z2. Compute STREDIT between L2
a∩Y 2

a to
L2
a ∩X2

a . Remove all these substrings from further consider-
ation.
We continue in this fashion until the remaining string

becomes empty. We can define locali moves, Alocali

a ,
AOPT,locali

a and local-errori(Y i
a , X

i
a) accordingly.

Definition 9. For ith phase blocks Y i
aX

i
a, if they span original

blocks Ya1
Xa1

Ya1+1Xa1+1...Ya2
Xa2

, then part of random
deletion from the start of processingXa1

to finish either Ya1
or

Xa2
whichever happens first, remains confined in block Y i

aX
i
a

and is defined as locali move.

Definition 10. For any i ∈ N, Alocali

a denote the indices of
all the symbols that are matched or deleted during the locali
steps in block a.

Definition 11. For any i ∈ N, AOPT,locali

a denote the union of
Alocali

a and the indices of symbols matched with some symbol
in Alocali

a .

Definition 12. For any i ∈ N, AOPT,locali

a \Alocali

a is defined
as the locali error, local-errori .

We now summarize the algorithm below.
Algorithm:
Given the input σ = Y1X1Y2X2...YzXz , the algorithm is

as follows
• MinEdit = ∞,
• For iteration = 1, iteration ≤ 3 logb n, iteration++

– Run Random-deletion process.
– Set i = 1, z1 = z, edit = 0, and for a = 1, 2, ..., z1,

X1
a = Xa, Y

1
a = Ya.

– While σ is not empty
∗ Consider the part of random-deletion from the
start of processing X i

a to finish either X i
a or Y i

a

whichever happens first.
∗ Create substrings Li

a, a = 1, 2, .., zi which corre-
spond to locali moves. Compute StrEdit(Li

a ∩
Y i
a , L

i
a ∩X i

a) to match Li
a ∩ Y i

a to Li
a ∩X i

a and
add the required number of edits to edit.

∗ Remove Li
a, a = 1, 2, .., zi from

σ, write the remaining string as
Y i+1
1 X i+1

1 Y i+1
2 X i+1

2 ...Y i+1
zi+1X

i+1
zi+1 , possibly

618618

by deleting any prefix of close parentheses and
any suffix of open parentheses. The number of
such deletions is also added to edit. Set i = i+1

– End While
– If (edit < MinEdit) set MinEdit = edit
– End For

• Return MinEdit as the computed edit distance.
Of course, the algorithm can compute the well-formed string

by editing the parentheses that have been modified in the
process through STREDIT operations.

Lemma 20. There exists at least one iteration among 3 logb n,
such that for all a′ ≤ b′, (P1) the number of deletions made
by random deletion process between the start of processing
Xa′ and finishing either Xb′ or Ya′ whichever happens first is
at most 2d(a′, b′)2, where d(a′, b′) is the number of deletions
the optimal algorithm performs starting from the beginning
of Xa′ to complete either Xb′ or Ya′ whichever happens first
with probability at least

(
1− 1

n

)
.

A. Analysis of Approximation Factor
Lemma 21. Considering phase l which has zl blocks, the
total edit cost paid in phase l of the returned solution is∑zl

a=1 StrEdit(Ll
a ∩ Y l

a , L
l
a ∩X l

a) ≤ β(n)(d+ l∗d
√
24 lnd)

with probability at least 1− 1
n − 1

d .

Proof. Consider the iteration in which Lemma 20 holds, that
is we have property (P1). We again fix an optimal stack based
algorithm and refer to it as the optimal algorithm.
Phase 1. Consider Y 1

a , X
1
a . We know Y 1

a = Ya and X1
a = Xa.

If no symbols of either of Ya or Xa is matched by the optimal
algorithm outside of block a (that is they are matched to each
other), then let d1a denote the optimal edit distance to match
Ya with Xa. Consider d1a ≥ 2.
By Lemma 20, the random deletion process takes at most

2(d1a)
2 steps within local1a moves. Now from Lemma 9,

local error, AOPT,local1

a \ Alocal1

a ≤ d1a + W local1

a − Clocal1

a

where W local1

a is the number of wrong moves taken during
local1 steps in block a and similarly Clocal1

a is the number
of correct steps taken during the local1 steps in block a.
Since the total number of local steps is at most 2(d1a)2 and
wrong steps are taken with probability at most 1

2 , hence by
a standard application of the Chernoff bound or by Azuma’s
inequality for simple coin flips as in Lemma 17, local error,
local-error1(Y 1

a , X
1
a) ≤ d1a + d1a

√
12 lnd1a ≤ d1a

√
24 lnd1a

with probability at least 1− 1
d3 .

Hence StrEdit(L1
a ∩ Y 1

a , L
1
a ∩X1

a) ≤ da +
local-error1(Y 1

a , X
1
a) ≤ d1a + d1a

√
24 log d1a. If

d1a = 1, then local-error1(Y 1
a , X

1
a) ≤ 2 and

StrEdit(L1
a ∩ Y 1

a , L
1
a ∩X1

a) ≤ 3da.
If some suffix of X1

a is matched outside of block a, then let
X1,p

a be the prefix of X1
a which is matched inside. Consider

Y 1
a X

1,p
a . Let d1a denote the optimal edit distance to match Ya

with Xp
a . Follow the same argument as above.

Hence again StrEdit(L1
a ∩ Y 1

a , L
1
a ∩X1

a) ≤ da +
local-error1(Y 1

a , X
1
a) ≤ d1a + d1a

√
24 lnd1a.

Similarly if some prefix of Y 1
a is matched outside of block a,

then let Y 1,s
a be the suffix of Y 1

a which is matched inside, and
carry out the argument considering Y 1,a

a X1
a .

Hence due to phase 1, the total edit cost paid is at
most

∑z
a=1 StrEdit(L1

a ∩ Y 1
a , L

1
a ∩X1

a) ≤ ∑z
a=1 d

1
a +

d1a
√
24 lnd1a ≤ d + d

√
24 lnd. This also holds when d1a or

d is small.
Phase l. Let Y l

a andX l
a contain blocks from index [gl−1, hl−1]

of level l−1, all of which together contain blocks [gl−2, hl−2]
from level l − 2 and so on, finally [g1, h1] = [g, h] of blocks
from level 1. Let dhg denote the optimal edit distance to match
Y l
a and X l

a excluding the symbols that are matched outside
of blocks [g, h] by the optimal algorithm, and again assume
dhg ≥ 2. dhg = 1 is easy and can be handled exactly as in phase
1 when d1a was 1.
Suppose, Random-deletion selects R ⊂ Y l

a and T ⊂ X l
a to

match. Note that either R = Y l
a or T = X l

a. Let D(R, T)
denote all the symbols in R, T such that their matching
parentheses belong to blocks either outside of index [g, h] or
they exist at phase l but are not included. Let E(R, T) denote
all the symbols in R, T such that their matching parentheses
belong to blocks [g, h] but have already been deleted in phases
1, 2, .., l− 1.
Then StrEdit(Ll

a ∩ Y l
a , L

l
a ∩ Y l

a) ≤ dhg + |D(R, T)|+
|E(R, T)|. Now, |D(R, T)|≤ local-errorl(Y l

a , X
l
a) =

AOPT,locall

a \Alocall

a ≤ dhg + dhg

√
12 lndhg ≤ dhg

√
20 lndhg .

For each x ∈ E(R, T), consider the largest phase η ∈
[1, 2, .., l − 1] such that its matching parenthesis y existed
before start of the ηth phase but does not exist after the end
of the ηth phase. It is possible, either y belongs to the same
block in phase η, say r ∈ [gη, hη], or in different blocks, say
r and s ∈ [gη, hη]. In the first case, x can be charged to y
which contributes 1 to local-errorη(Y η

r , X
η
r). In the second

case, x can again be charged to y which contributes 1 to
local-errorη(Y η

s , X
η
s).

Hence, |E(R, T)|≤ ∑1
j=l−1

∑hj

i=gj local-errorj(Y j
i , X

j
i).

StrEdit(Ll
a ∩ Y l

a , L
l
a ∩ Y l

a) ≤ dhg + local-errorl(Y l
a , X

l
a) +∑1

j=l−1

∑hj

i=gj local-errorj(Y j
i , X

j
i) ≤ dhg + dhg

√
24 lndhg

+ (l − 1) ∗ dhg
√
24 lndhg ≤ dhg + ldhg

√
24 lndhg .

Hence due to phase l, the total edit cost paid is at most∑zl

a=1 StrEdit(Ll
a ∩ Y l

a , L
l
a ∩X l

a) ≤ d+ l ∗ d√24 lnd.
Now, since we are using a β(n)-approximation algorithm

for STREDIT, we get the total edit cost paid during phase
l is at most β(n)(d + l ∗ d

√
24 lnd). For this bound to be

correct, all the local-error estimates have to be correct. The
number of blocks reduces by 1

2 from one phase to the next.
Hence, the total number of local error estimates is Θ(z). We
have considered the iteration such that property (P1) holds for
all sequence of blocks (see Lemma 20). Given (P1) holds,
since there are a total of Θ(z) blocks over all the phases, with
probability at least 1 − Θ(z)

d3 > 1 − 1
d , all the local-error

bounds used in the analysis are correct. Since, (P1) holds
with probability at least (1 − 1

n), with probability at least(
1− 1

n

) (
1− 1

d

)
> 1− 1

n − 1
d , we get the total edit cost paid

619619

during phase l is at most β(n)(d + l ∗ d√24 lnd).

Noting that the number of phases can be at most �log z�+1,
and summing the edit cost over phases, we get

Lemma 22. The total edit cost paid is at most
O((log z)2β(n)

√
ln d) with probability at least 1− 1

n − 1
d .

Since, for a particular iteration, each STREDIT is run on a
disjoint subsequence, the following theorem is obtained.

Theorem 23. There exists an algorithm that obtains an
O(β(n)

√
ln d(log z)2)-approximation factor for edit distance

computation to DYCK(s) for any s ≥ 2 in O(n logn+ α(n))
time with probability at least

(
1− 1

n − 1
d

)
, where there exists

an algorithm for STREDIT running in α(n) time that achieves
an approximation factor of β(n).

A more careful charging argument improves the approxi-
mation factor to O(β(n)

√
ln d log z) (Theorem 3).

Finally, the approximation factor can be further improved
to O(β(n) log z), if we consider O(nε logn) iterations instead
of O(log n). This enables us to use the stronger Corollary 14
over Lemma 13 leading to the improvement.
Note. Due to local computations, it is possible to parallelize
this algorithm.

V. FUTURE DIRECTIONS

This work raises several open questions.
(1) Is it possible to characterize the general class of grammars
for which Random-deletion and/or its subsequent refinements
can be applied?
(2) The lower bound result of Lee [24] precludes an exact
algorithm (as well as one with nontrivial multiplicative ap-
proximation factor) for language edit distance problem for
general context free grammars in time less than boolean matrix
multiplication. Does this lower bound also hold for DYCK(s)?
Is boolean matrix multiplication time enough to compute
language edit distance for any arbitrary context free grammar?
Is it possible to achieve nontrivial approximation guarantees
when the time required for parsing a grammar is allowed?
(3) Currently there is a gap of log z in the approximation
factors of string and DYCK(s) edit distance problems. Is it
possible to get rid off this gap, or establish the necessity of it?
What happens in other computation models such as streaming?
(4) Finally, our multi-phase random walk technique can be
very useful to provide a systematic way to speed up dynamic
programming algorithms for sequence alignment type prob-
lems. It will be interesting to understand whether this method
can lead to a better bound for string edit distance computation.

VI. ACKNOWLEDGMENT

The author would like to thank Divesh Srivastava and Flip
Korn for asking this nice question which led to their joint
work [20], Arya Mazumdar for many helpful discussions and
Mikkel Thorup for comments at an early stage of this work.

REFERENCES
[1] Alfred V. Aho and Thomas G. Peterson. A minimum distance error-

correcting parser for context-free languages. SIAM J. Comput., 1(4),
1972.

[2] Miklós Ajtai. The invasiveness of off-line memory checking. STOC,
2002.

[3] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy.
Regular languages are testable with a constant number of queries. SIAM
J. Comput., 30(6), December 2001.

[4] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Poly-
logarithmic approximation for edit distance and the asymmetric query
complexity. In FOCS. IEEE, 2010.

[5] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in
near-linear time. STOC, pages 199–204, 2009.

[6] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar.
Approximating edit distance efficiently. FOCS, 2004.

[7] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string
embeddings and edit distance approximations. SODA, 2006.

[8] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni
Naor. Checking the correctness of memories. FOCS, 1991.

[9] Amit Chakrabarti, Graham Cormode, Ranganath Kondapally, and An-
drew McGregor. Information cost tradeoffs for augmented index and
streaming language recognition. FOCS, 2010.

[10] Noam Chomsky and Marcel Paul Schützenberger. The Algebraic Theory
of Context-Free Languages. Studies in Logic. North-Holland Publishing,
Amsterdam, 1963.

[11] Matthew Chu, Sampath Kannan, and Andrew McGregor. Checking and
spot-checking the correctness of priority queues. ICALP, 2007.

[12] Richard Cole and Ramesh Hariharan. Approximate string matching: A
simpler faster algorithm. SIAM J. Comput., 31(6), June 2002.

[13] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikun-
tanathan. How efficient can memory checking be? TCC, 2009.

[14] C. N. Fischer and J. Mauney. On the role of error productions in
syntactic error correction. Comput. Lang., 5(3-4), January 1980.

[15] Charles N. Fischer and Jon Mauney. A simple, fast, and effective ll(1)
error repair algorithm. Acta Inf., 29(2), April 1992.

[16] Steven Grijzenhout and Maarten Marx. The quality of the xml web.
Web Semant., 19, March 2013.

[17] R.R Gutell, J.J. Cannone, Z Shang, Y Du, and M.J Serra. A story:
unpaired adenosine bases in ribosomal rnas. J Mol Biol, 2010.

[18] M. A. Harrison. Introduction to Formal Language Theory. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1978.

[19] Ik-Soon Kim and Kwang-Moo Choe. Error repair with validation in
lr-based parsing. ACM Trans. Program. Lang. Syst., 23(4), July 2001.

[20] Flip Korn, Barna Saha, Divesh Srivastava, and Shanshan Ying. On
repairing structural problems in semi-structured data. VLDB, 2013.

[21] Dexter C. Kozen. Automata and Computability. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1st edition, 1997.

[22] Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming al-
gorithms for recognizing nearly well-parenthesized expressions. MFCS,
2011.

[23] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental
string comparison. SIAM J. Comput., 27(2), April 1998.

[24] Lillian Lee. Fast context-free grammar parsing requires fast boolean
matrix multiplication. J. ACM, 49(1), January 2002.

[25] Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing
well-parenthesized expressions in the streaming model. STOC ’10, 2010.

[26] Bruce McKenzie, Corey Yeatman, and Lorraine De Vere. Error repair
in shift-reduce parsers. ACM Transactions on Programming Languages
and Systems, 17, 1995.

[27] Gene Myers. Approximately matching context-free languages. Informa-
tion Processing Letters, 54, 1995.

[28] Moni Naor and Guy N. Rothblum. The complexity of online memory
checking. J. ACM, 56(1), February 2009.

[29] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit
distance. J. ACM, 54(5), October 2007.

[30] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Testing membership in
parenthesis languages. Random Struct. Algorithms, 22(1), January 2003.

[31] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic
matching of patterns using a labeling paradigm. FOCS, 1996.

[32] Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster algorithms
for rna-folding using the four-russians method. In WABI, 2013.

620620

