Solving Optimization Problems with Diseconomies of Scale via Decoupling

Konstantin Makarychev
Microsoft Research

Maxim Sviridenko
Yahoo! Labs

Abstract

We present a new framework for solving optimization problems with a diseconomy of scale. In such problems, our goal is to minimize the cost of resources used to perform a certain task. The cost of resources grows superlinearly, as $x^{q}, q \geq 1$, with the amount x of resources used. We define a novel linear programming relaxation for such problems, and then show that the integrality gap of the relaxation is A_{q}, where A_{q} is the q-th moment of the Poisson random variable with parameter 1. Using our framework, we obtain approximation algorithms for the Minimum Energy Efficient Routing, Minimum Degree Balanced Spanning Tree, Load Balancing on Unrelated Parallel Machines, and Unrelated Parallel Machine Scheduling with Nonlinear Functions of Completion Times problems.

Our analysis relies on the decoupling inequality for nonnegative random variables. The inequality states that

$$
\left\|\sum_{i=1}^{n} X_{i}\right\|_{q} \leq C_{q}\left\|\sum_{i=1}^{n} Y_{i}\right\|_{q}
$$

where X_{i} are independent nonnegative random variables, Y_{i} are possibly dependent nonnegative random variable, and each Y_{i} has the same distribution as X_{i}. The inequality was proved by de la Peña in 1990. However, the optimal constant C_{q} was not known. We show that the optimal constant is $C_{q}=A_{q}^{1 / q}$.

I. Introduction

In this paper, we study combinatorial optimization problems with a diseconomy of scale. We consider problems in which we need to minimize the cost of resources used to accomplish a certain task. Often, the cost grows linearly with the amount of resources used. In some applications, the cost is sublinear e.g., if we can get a discount when we buy resources in bulk. Such phenomenon is known as "economy of scale". However, in many applications the cost is superlinear. In such cases, we say that the cost function exhibits a "diseconomy of scale". A good example of a diseconomy of scale is the cost of energy used for computing. Modern hardware can run at different processing speeds. As we increase the speed, the energy consumption grows superlinearly. It can be modeled as a function $P(s)=$ $c s^{q}$ of the processing speed s, where c and q are parameters that depend on the specific hardware. Typically, $q \in(1,3]$ (see e.g., [2], [20], [37]).

As a running example, consider the Minimum Power Routing problem studied by Andrews, Anta, Zhang, and Zhao [3]. We are given a graph $G=(V, E)$ and a set of demands $\mathcal{D}=\left\{\left(d_{i}, s_{i}, t_{i}\right)\right\}$. Our goal is to route $d_{i}\left(d_{i} \in \mathbb{N}\right)$ units of demand i from the source $s_{i} \in V$ to the destination $t_{i} \in V$ such that every demand i is routed along a single path p_{i} (i.e.

[^0]we want to find an unsplittable multi-commodity flow). We want to minimize the energy cost. Every link (edge) $e \in E$ uses $f_{e}\left(x_{e}\right)=c_{e} x_{e}^{q}$ units of power, where c_{e} is a scaling parameter depending on the link e, and x_{e} is the load on e.

The straightforward approach to solving this problem is as follows. We define a mathematical programming relaxation that routes demands fractionally. It sends $y_{i, p} d_{i}$ units of demand via the path p connecting s_{i} to t_{i}. We require that $\sum_{p} y_{i, p}=1$ for every demand i. The objective function is to minimize

$$
\min \sum_{e \in E} c_{e} x_{e}^{q}=\min \sum_{e \in E} c_{e}\left(\sum_{p: e \in p} y_{i, p} d_{i}\right)^{q},
$$

where $x_{e}=\sum_{p: e \in p} y_{i, p} d_{i}$ is the load on the link e. This relaxation can be solved in polynomial time, since the objective function is convex (for $q \geq 1$). But, unfortunately, the integrality gap of this relaxation is $\Omega\left(n^{q-1}\right)$ [3]. Andrews et al. [3] gave the following integrality gap example. Consider two vertices s and t connected via n disjoint paths. Our goal is to route 1 unit of flow integrally from s to t. The optimal solution pays 1 . The LP may cheat by routing $1 / n$ units of flow via n disjoint paths. Then, it pays only $n \times(1 / n)^{q}=n^{1-q}$.

For the case of uniform demands, i.e., for the case when all $d_{i}=d$, Andrews et al. [3] suggested a different objective function:

$$
\min \sum_{e \in E} c_{e} \max \left\{x_{e}^{q}, d^{q-1} x_{e}\right\}
$$

The objective function is valid, because in the integral case, x_{e} must be a multiple of d, and thus $x_{e}^{q} \geq d^{q-1} x_{e}$. Andrews et al. [3] proved that the integrality gap of this relaxation is a constant. Bampis et al. [9] improved the bound to the fractional Bell number A_{q} that is defined as follows: A_{q} is the q-th moment of the Poisson random variable P_{1} with parameter 1 (see Figure 2 in Appendix A). I.e.,

$$
\begin{equation*}
A_{q}=\mathbb{E}\left[P_{1}^{q}\right]=\sum_{t=1}^{+\infty} t^{\frac{e^{-1}}{}} \frac{t!}{t!} \tag{1}
\end{equation*}
$$

For the case of general demands no constant approximation was known. The best known approximation due to Andrews et al. [3] was $O\left(k+\log ^{q-1} \Delta\right)$ where $k=|\mathcal{D}|$ is the number of demands and $\Delta=\max _{i} d_{i}$ is the size of the largest demand (Theorem 8 in [3]).

In this work, we give an A_{q}-approximation algorithm for the general case and thus close the gap between the case of uniform and non-uniform demands. Our approximation
algorithm uses a general framework for solving problems with a diseconomy of scale which we present in this paper. We use this framework to obtain approximation algorithms for several other combinatorial optimization problems. We give $A_{q}^{1 / q}-$ approximation algorithm for Load Balancing on Unrelated Parallel Machines (see Section II-B), $2^{q} A_{q}$-approximation algorithm for Unrelated Parallel Machine Scheduling with Nonlinear Functions of Completion Times (see the full version of the paper) and A_{q}-approximation algorithm for the Minimum Degree Balanced Spanning Tree problem (see Section II-C). The best previously known bound for the first problem with $q \in[1,2]$ was $2^{1 / q}$ (see Figure 3 for comparison). The bound is due to Kumar, Marathe, Parthasarathy and Srinivasan [22]. There were no known approximation guarantees for the latter problems.

In the analysis, we use the de la Peña decoupling inequality [26], [27].

Theorem I. 1 (de la Peña [26], [27]). Let Y_{1}, \ldots, Y_{n} be jointly distributed nonnegative (non-independent) random variables, and let X_{1}, \ldots, X_{n} be independent random variables such that each X_{i} has the same distribution as Y_{i}. Then, for every $q \geq 1$,

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} X_{i}\right\|_{q} \leq C_{q}\left\|\sum_{i=1}^{n} Y_{i}\right\|_{q}, \tag{2}
\end{equation*}
$$

for some universal constant C_{q}.

The optimal value of the constant C_{q} was not known. The original proof of de la Peña relies on more general inequalities and does not give specific constants. We give a direct proof of this inequality. We show that the inequality holds for $C_{q}=$ $A_{q}^{1 / q}$ and moreover this bound is tight.
Theorem I.2. Inequality (2) holds for $C_{q}=A_{q}^{1 / q}$, where A_{q} is the fractional Bell number (see Equation (1) and Figure 2) Moreover, $A_{q}^{1 / q}$ is the optimal upper bound on C_{q}.

In Section VI (see Corollary VI.2), we extend this theorem to negatively associated random variables X_{i}.

A. General Framework

We now describe the general framework for solving problems with a diseconomy of scale. We consider optimization problems with n decision variables $y_{1}, \ldots, y_{n} \in\{0,1\}$. We assume that the objective function equals the sum of k terms, where the j-th term is of the form

$$
c_{j}\left(\sum_{i=1}^{n} d_{i j} y_{i}\right)^{q_{j}}
$$

here $c_{j} \geq 0, d_{i j} \geq 0$ and $q_{j} \geq 1$ are parameters. The vector $y=\left(y_{1}, \ldots, y_{n}\right)$ must satisfy the constraint $y \in \mathcal{P}$ for some polytope $\mathcal{P} \subset[0,1]^{n}$. Therefore, the optimization problem can
be written as the following boolean convex program (IP):

$$
\min \quad \begin{array}{ll}
& \sum_{j \in[k]} c_{j}\left(\sum_{i \in[n]} d_{i j} y_{i}\right)^{q_{j}} \\
& y \in \mathcal{P} \\
& y \in\{0,1\}^{n} \tag{5}
\end{array}
$$

We assume that we can optimize any linear function over the polytope \mathcal{P} in polynomial time (e.g., \mathcal{P} is defined by polynomially many linear inequalities, or there exists a separation oracle for \mathcal{P}). Thus, if we replace the integrality constraint (5) with the relaxed constraint $y \in[0,1]^{n}$ (which is redundant, since $\mathcal{P} \subset[0,1]^{n}$), we will get a convex programming problem that can be solved in polynomial time (see [11]). However, as we have seen in the example of Minimum Power Routing, the integrality gap of the relaxation can be as large as $\Omega\left(n^{q-1}\right)$.

In this work, we introduce a linear programming relaxation of (3)-(5) that has an integrality gap of A_{q} (where $q=\max _{j} q_{j}$) under certain assumptions on the polytope \mathcal{P}. We define auxiliary variables $z_{j S}$ for all $S \subset[n]$ and $j \in[k]$. In the integral solution, $z_{j S}=1$ if and only if $y_{i}=1$ for $i \in S$ and $y_{i}=0$ for $i \notin S$.

$$
\begin{array}{cr}
\min \sum_{j \in[k]} \sum_{S \subseteq[n]} c_{j}\left(\sum_{i \in S} d_{i j}\right)^{q_{j}} z_{j S} \\
y \in \mathcal{P}, & \forall j \in[k] \\
\sum_{S \subseteq[n]} z_{j S}=1, & \forall i \in[n], j \in[k] \\
\sum_{S: i \in S} z_{j S}=y_{i}, & \forall S \subseteq[n], j \in[k]
\end{array}
$$

Remark I.3. In the integral solution, $z_{j^{\prime} S}=z_{j^{\prime \prime} S}$ for all j^{\prime} and $j^{\prime \prime}$. The reason why we introduced many copies of the same integral variable z_{S} to the $L P$ is that the $L P$ above is easier to solve than the $L P$ with an extra constraint $z_{j^{\prime} S}=$ $z_{j^{\prime \prime} S}$.

Optimization problem (6)-(10) is a relaxation of the original problem (3)-(5). The LP has exponentially many variables. We show, however, that the optimal solution to this LP can be found in polynomial time up to an arbitrary accuracy $(1+\varepsilon)$. We say that y is a $(1+\varepsilon)$-approximately optimal solution if the cost of the solution is at most $(1+\varepsilon) O P T$, where $O P T$ is the cost of the optimal solution.

Theorem I.4. Suppose that there exists a polynomial time separation oracle for the polytope \mathcal{P}. Then, for every ε and q, there exists a polynomial time algorithm that finds a $(1+\varepsilon)$ approximately optimal solution to $L P$ (6)-(10).

We then prove the following theorem.
Theorem I.5. Let $D_{j}=\left\{i: d_{i j} \neq 0\right\}$. Assume that there exists a randomized algorithm R that given a $y \in \mathcal{P}$, returns a random integral point $R(y)$ in $\mathcal{P} \cap\{0,1\}^{n}$ such that

1) $\operatorname{Pr}\left(R_{i}(y)=1\right)=y_{i}$ for all i (where $R_{i}(y)$ is the i-th coordinate of $R(y)$);
2) Random variables $\left\{R_{i}(y)\right\}_{i \in D_{j}}$ are independent or negatively associated (see Section VI for the definition) for every j.
Then, for every feasible solution $\left(y^{*}, z^{*}\right)$ to $L P(6)-(10)$, we have

$$
\begin{align*}
& \mathbb{E}\left[\sum _ { j \in [k] } c _ { j } \left(\sum_{i \in[n]}\right.\right.\left.\left.d_{i j} R_{i}\left(y^{*}\right)\right)^{q_{j}}\right] \leq \\
& \leq A_{q} \sum_{j \in[k]} \sum_{S \subseteq[n]} c_{j}\left(\sum_{i \in S} d_{i j}\right)^{q_{j}} z_{j S}^{*}, \tag{11}
\end{align*}
$$

where $q=\max _{j} q_{j}$ and A_{q} is the fractional Bell number (see (1)). Particularly, since LP (6)-(10) is a relaxation for IP (3)-(5), if $\left(y^{*}, z^{*}\right)$ is a $(1+\varepsilon)$-approximately optimal solution to LP (6)-(10), then

$$
\mathbb{E}\left[\sum_{j \in[k]} c_{j}\left(\sum_{i \in[n]} d_{i j} R_{i}\left(y^{*}\right)\right)^{q_{j}}\right] \leq(1+\varepsilon) A_{q} I P
$$

where IP is the optimal cost of the boolean convex program (3)-(5).

This theorem guarantees that an algorithm R satisfying conditions (1) and (2) has an approximation ratio of $(1+\varepsilon) A_{q}$.

In the next section, Section II, we show how to use the framework to obtain A_{q} approximation algorithms for four different combinatorial optimization problems. Then, in Section III, we give an efficient algorithm for solving LP (6)-(10). In Section IV, we prove the main theorem - Theorem I.5. The proof easily follows from the decoupling inequality, which we prove in Section V. Finally, in Section VII, we describe some generalizations of our framework.

II. Applications

In this section, we show applications of our general technique. We start with the problem discussed in the introduction - Energy Efficient Routing. Recall, that Andrews et al. [3] gave an $O\left(k+\log ^{q-1} \Delta\right)$-approximation algorithm for this problem where $k=|\mathcal{D}|$ and $\Delta=\max _{i \in \mathcal{D}} d_{i}$ (Theorem 8 in [3]). We give an A_{q}-approximation algorithm.

A. Energy Efficient Routing

We write a standard integer program. Each variable $y_{i, e} \in$ $\{0,1\}$ indicates whether the edge e is used to route the flow from s_{i} to t_{i}. Below, $\Gamma^{+}(u)$ denotes the set of edges outgoing from $u ; \Gamma^{-}(u)$ denotes the set of edges incoming to u.

$$
\begin{equation*}
\min \sum_{e \in E} c_{e}\left(\sum_{i \in \mathcal{D}} d_{i} y_{i, e}\right)^{q_{e}} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
\sum_{e \in \Gamma^{+}(u)} y_{i, e} & =\sum_{e \in \Gamma^{-}(u)} y_{i, e}, & \forall i, u \in V \backslash\left\{s_{i}, t_{i}\right\} \tag{13}\\
\sum_{e \in \Gamma^{+}\left(s_{i}\right)} y_{i, e} & =1, & \forall i \tag{14}\\
\sum_{e \in \Gamma^{-}\left(t_{i}\right)} y_{i, e} & =1, & \forall i \tag{15}\\
y_{i, e} & \in\{0,1\}, & \forall i, e \in E \tag{16}
\end{align*}
$$

Using Theorem I.4, we obtain an almost optimal fractional solution (y, z) of LP relaxation (6)-(10) of IP (12)-(16). We apply randomized rounding in order to select a path for each demand. Specifically, for each demand $i \in \mathcal{D}$, we consider the standard flow decomposition into paths: In the decomposition, each path p connecting s_{i} to t_{i} has a weight $\lambda_{i, p} \in \mathbb{R}^{+}$. For every edge $e, \sum_{p: e \in p} \lambda_{i, p}=d_{i} y_{i, e}$; and $\sum_{p} \lambda_{i, p}=d_{i}$. For each i, the approximation algorithm picks one path p connecting s_{i} to t_{i} at random with probability $\lambda_{i, p} / d_{i}$, and routes all demands from s_{i} to p_{i} via p. Thus, the algorithm always obtains a feasible solution.

We verify that the integral solution corresponding to this combinatorial solution satisfies the conditions of Theorem I.5. Let $R_{i, e}(y)$ be the integral solution, i.e., let $R_{i, e}(y)=1$ if the edge e is chosen in the path connecting s_{i} and t_{i}. First, $R_{i, e}(y)=1$ if the path connecting s_{i} and t_{i} contains e, thus

$$
\operatorname{Pr}\left(R_{i, e}(y)=1\right)=\sum_{p: e \in p} \lambda_{i, p} / d_{i}=y_{i, e} .
$$

Second, the paths for all demands are chosen independently. Each $R_{i, e}(y)$ depends only on paths that connect s_{i} to t_{i}. Thus all random variables $R_{i, e}(y)$ (for a fixed e) are independent. Therefore, by Theorem I.5, the cost of the solution obtained by the algorithm is bounded by $(1+\varepsilon) A_{q} O P T$, where $O P T$ is the cost of the optimal solution to the integer program which is exactly equivalent to the Minimum Energy Efficient Routing problem.

B. Load Balancing on Unrelated Parallel Machines

We are given n jobs and m machines. The processing time of the job $j \in[n]$ assigned to the machine $i \in[m]$ is $p_{i j} \geq 0$. The goal is to assign jobs to machines to minimize the ℓ_{q}-norm of machines loads. Formally, we partition the set of jobs into into m sets S_{1}, \ldots, S_{m} to mini$\operatorname{mize}\left(\sum_{i \in[m]}\left(\sum_{j \in S_{i}} p_{i j}\right)^{q}\right)^{1 / q}$. This is a classical scheduling problem which is used to model load balancing in practice ${ }^{1}$. It was previously studied by Azar and Epstein [6] and by Kumar, Marathe, Parthasarathy and Srinivasan [22]. Particular, for $q \in(1,2]$ the best known approximation algorithm has performance guarantee $2^{1 / q}$ [22] (Theorem 4.4). We give
${ }^{1} \mathrm{~A}$ slight modification of the problem, where the objective is $\min \sum_{i \in[m]}\left(\sum_{j \in S_{i}} p_{i j}\right)^{q}$, can be used for energy efficient scheduling. Imaging that we need to assign n jobs to m processors/cores so that all jobs are completed by a certain deadline D. We can run processors at different speeds s_{i}. To meet the deadlines we must set $s_{i}=D^{-1} \sum_{j \in S_{i}} p_{i j}$. The total power consumption is proportional to $D \times \sum_{i=1}^{m} s_{i}^{q}=D^{1-q} \times$ $\sum_{\text {mation. }}^{m}\left(\sum_{j \in S_{i}} p_{i j}\right)^{q}$. For this problem, our algorithm gives A_{q} approximation.
$\sqrt[q]{A_{q}}$-approximation algorithm substantially improving upon previous results (see Figure 3).

We formulate the unrelated parallel machine scheduling problem as a boolean nonlinear program:

$$
\begin{array}{rlr}
\min \sum_{i \in[m]}\left(\sum_{j \in[n]} p_{i j} x_{i j}\right)^{q} & \\
\sum_{i \in[m]} x_{i j} & =1, & \forall j \in[n] \\
x_{i j} & \in\{0,1\}, \quad \forall i \in[m], j \in[n] \tag{19}
\end{array}
$$

Using Theorem I.4, we obtain an almost optimal fractional solution (x, z) of the LP relaxation (6)-(10) corresponding to the IP (17)-(19). We use the straightforward randomized rounding: we assign each job j to machine i with probability $x_{i j}$. We claim that, by Theorem I.5, the expected cost of our integral solution is upper bounded by A_{q} times the value of the fractional solution (x, z). Indeed, the probability that we assign a job j to machine i is exactly equal to $x_{i j}$; and we assign job j to machine i independently of other jobs. That implies that our approximation algorithm has a performance guarantee of $\sqrt[q]{A_{q}}$ for the ℓ_{q}-norm objective.

C. Degree Balanced Spanning Tree Problem

We are given an undirected graph $G=(V, E)$ with edge weights $w_{e} \geq 0$. The goal is to find a spanning tree T minimizing the objective function

$$
\begin{equation*}
f(T)=\sum_{v \in V}\left(\sum_{e \in \delta(v) \cap T} w_{e}\right)^{q} \tag{20}
\end{equation*}
$$

where $\delta(v)$ is the set of edges in E incident to the vertex v. For $q=2$, a more general problem was considered before in the Operations Research literature [5], [23], [25], [28] under the name of Adjacent Only Quadratic Spanning Tree Problem. A related problem, known as Degree Bounded Spanning Tree, recieved a lot of attention in Theoretical Computer Science [33], [16]. We are not aware of any previous work on Degree Balanced Spanning Tree Problem.

Let x_{e} be a boolean decision variable such that $x_{e}=1$ if we choose edge $e \in E$ to be in our solution (tree) T. We formulate our problem as the following convex boolean optimization problem

$$
\min \sum_{v \in V}\left(\sum_{e \in \delta(v)} w_{e} x_{e}\right)^{q} \quad \text { } \quad \text { x } \quad \text { B(M) } \quad \forall e \in E,
$$

where $\mathcal{B}(\mathcal{M})$ is the base polymatroid polytope of the graphic matroid in graph G. We refer the reader to Schrijver's book [30] for the definition of the matroid. Using Theorem I.4, we obtain an almost optimal fractional solution x^{*} of LP relaxation (6)-(10) corresponding to the above integer problem.

Following Calinescu et al. [7], we define the continuous extension of the objective function (20) for any fractional solution x^{\prime}

$$
F\left(x^{\prime}\right)=\sum_{S \subseteq[n]} f(S) \prod_{e \in S} x_{e}^{\prime} \prod_{e \notin S}\left(1-x_{e}^{\prime}\right)
$$

i.e. $F\left(x^{\prime}\right)$ is equal to the expected value of the objective function (20) for the set of edges sampled independently at random with probabilities $x_{e}^{\prime}, e \in E$. The function F cannot be computed exactly, but it can be approximated up to any factor $(1+\varepsilon)$ via sampling. By Theorem I.5, we get the bound $F\left(x^{*}\right) \leq A_{q} \cdot L P^{*}$, where $L P^{*}$ is the value of the LP relaxation (6)-(10) on the fractional solution x^{*}.

The rounding phase of the algorithm implements the pipage rounding technique [1] adopted to polymatroid polytopes by Calinescu et al. [7]. Calinescu et al. [7] showed that given a matroid \mathcal{M} and a fractional solution $x \in \mathcal{B}(\mathcal{M})$, one can efficiently find two elements, or two edges in our case, e^{\prime} and $e^{\prime \prime}$ such that the new fractional solution $\tilde{x}(\varepsilon)$ defined as $\tilde{x}_{e^{\prime}}(\varepsilon)=x_{e^{\prime}}+\varepsilon, \tilde{x}_{e^{\prime \prime}}(\varepsilon)=x_{e^{\prime \prime}}-\varepsilon$ and $\tilde{x}_{e}(\varepsilon)=x_{e}$ for $e \notin\left\{e^{\prime}, e^{\prime \prime}\right\}$ is feasible in the base polymatroid polytope for small positive and for small negative values of ε.

They also showed that if the objective function $f(S)$ is submodular then the function of one variable $F(\tilde{x}(\varepsilon))$ is convex. In our case, the objective function $f(S)$ is supermodular which follows from a more general folklore statement.

Fact II.1. The function $f(S)=g\left(\sum_{i \in S} w_{i}\right)$ is supermodular if $w_{i} \geq 0$ for $i \in[n]$ and $g(x)$ is a convex function of one variable.

Therefore, the function $F(\tilde{x}(\varepsilon))$ is concave. Hence, we can apply the pipage rounding directly: We start with the fractional solution x^{*}. At every step, we pick e^{\prime} and $e^{\prime \prime}$ (using the algorithm from [7]) and move to $\tilde{x}(\varepsilon)$ with $\varepsilon=$ $\varepsilon_{1}=-\min \left\{x_{e^{\prime}}, 1-x_{e^{\prime \prime}}\right\}$ or $\varepsilon=\varepsilon_{2}=\min \left\{1-x_{e^{\prime}}, x_{e^{\prime \prime}}\right\}$ whichever minimizes the concave function $F(\tilde{x}(\varepsilon))$ on the interval $\left[\varepsilon_{1}, \varepsilon_{2}\right]$. We stop when the current solution \tilde{x} is integral.

At every step, we decrease the number of fractional variables x_{e} by at least 1 . Thus, we terminate the algorithm in at most $|E|$ iterations. The value of the function $F(\tilde{x})$ never increases. So the cost of the final integral solution is at most the cost of the initial fractional solution x^{*}, which, in turn, is at most $A_{q} \cdot L P^{*}$.

Note, that we have not used any special properties of graphic matroids. The algorithm from [7] works for general matroids accessible through oracle calls. So we can apply our technique to more general problems where the objective is to minimize a function like (20) subject to base matroid constraints.

III. Proof of Theorem I. 4

We now give an efficient algorithm for finding $(1+\varepsilon)$ approximately optimal solution to LP (6)-(10).

Proof of Theorem I.4: We first transform our instance to make all $d_{i j}$'s integral and polynomially bounded in $n k / \varepsilon$. This can be done using the standard scaling technique: round
down all $d_{i j}$ to be multiples of $\varepsilon^{\prime}=d \varepsilon /(3 k q n)$, where $d=$ $\max d_{i j}$. By doing so we may decrease the optimal value of the program by a factor of at most $(1+\varepsilon)$. Then, we rescale all $d_{i j}$ by $1 / \varepsilon^{\prime}$ to make them integral. So, from now on, we will assume that all $d_{i j}$ are integral and polynomially bounded.

Observe that for every $y \in \mathcal{P}$, there exists a z such that the pair (y, z) is a feasible solution to LP (6)-(10). For example, one such z is defined as $z_{j S}=\prod_{i \in S} y_{i} \prod_{i \notin S}\left(1-y_{i}\right)$. Of course, this particular z may be suboptimal. However, it turns out, as we show below, that for every y, we can find the optimal z efficiently. Let us denote the minimal cost of the j-th term in (6) for a given $y \in \mathcal{P}$ by $F_{j}(y)$. That is, $F_{j}(y)$ is the cost of the following LP. The variables of the LP are $z_{j S}$. The parameters $y \in \mathcal{P}$ and $j \in[k]$ are fixed.

$$
\begin{align*}
& \min \sum_{S \subseteq[n]}\left(\sum_{i \in S} d_{i j}\right)^{q_{j}} z_{j S} \tag{21}\\
& \sum_{S \subseteq[n]} z_{j S}=1 \tag{22}\\
& \sum_{S: i \in S} z_{j S}=y_{i}, \quad \forall i \in[n] \tag{23}\\
& \quad z_{j S} \geq 0, \quad \forall S \subseteq[n] \tag{24}
\end{align*}
$$

Now, LP (6)-(10) can be equivalently rewritten as (below y is the variable).

$$
\begin{array}{r}
\min \sum_{j \in[k]} F_{j}(y) \\
y \in \mathcal{P} \tag{26}
\end{array}
$$

The functions $F_{j}(y)$ are convex ${ }^{2}$. In Lemma III. 1 (see below), we prove that LP (21)-(24) can be solved in polynomial time, and thus the functions $F_{j}(y)$ can be computed efficiently. The algorithm for finding $F_{j}(y)$ also returns a subgradient of F_{j} at y. Hence, the minimum of convex problem (25)-(26) can be found using the ellipsoid method. Once the optimal y^{*} is found, we find z^{*} by solving LP (21)-(24) for y^{*}.

Lemma III.1. There exists a polynomial time algorithm for computing F_{j} and finding a subgradient of F_{j}.

Proof: We need to solve LP (21)-(24). We write the dual LP. We introduce a variable ξ for constraint (22) and variables η_{i} for constraints (23).

$$
\begin{align*}
& \max \xi+\sum_{i} \eta_{i} y_{i} \tag{27}\\
& \xi+\sum_{i \in S} \eta_{i} \leq\left(\sum_{i \in S} d_{i j}\right)^{q_{j}}, \quad \forall S \subset[n] \tag{28}
\end{align*}
$$

The LP has exponentially many constraints. However, finding a violated constraint is easy. To do so, we guess $B^{*}=$ $\sum_{i \in S^{*}} d_{i j}$ for the set S^{*} violating the constraint. That is

[^1]possible, since all $d_{i j}$ are polynomially bounded, and so is B^{*}. Then we solve the maximum knapsack problem
\[

$$
\begin{array}{r}
\max _{S \subseteq[n]} \sum_{i \in S} \eta_{i} \\
\sum_{i \in S} d_{i j}=B^{*}
\end{array}
$$
\]

using the standard dynamic programming algorithm and obtain the optimal set S. The knapsack problem is polynomially solvable, since B^{*} is polynomially bounded. If $\xi+\sum_{i \in S} \eta_{i} \leq$ $\left(B^{*}\right)^{q_{j}}$, then constraint (28) is violated for the set S; otherwise all constraints (28) are satisfied.

Let $\left(\xi^{*}, \eta^{*}\right)$ be the optimal solution of the dual LP. The value of the function $F_{j}(y)$ equals the objective value of the dual LP. A subgradient of F_{j} at y is given by the equation

$$
\begin{equation*}
\tilde{y} \mapsto \xi^{*}+\sum_{i} \eta_{i}^{*} \tilde{y}_{i} \tag{29}
\end{equation*}
$$

This is a subgradient of F_{j}, since $\left(\xi^{*}, \eta^{*}\right)$ is a feasible solution of the dual LP for every \tilde{y} (note that constraint (28) does not depend on y), and, hence, (29) is a lower bound on $F_{j}(\tilde{y})$.

IV. Proof of Theorem I. 5

In this section, we prove the main theorem - Theorem I.5.
Proof of Theorem I.5: The theorem easily follows from the decoupling inequality (Theorem I. 2 and Corollary VI.2). Consider a feasible solution $\left(y^{*}, z^{*}\right)$ to IP (3)-(5). We prove inequality (11) term by term. That is, for every j we show that

$$
\begin{equation*}
\mathbb{E}\left[\left(\sum_{i \in D_{j}} d_{i j} R_{i}\left(y^{*}\right)\right)^{q_{j}}\right] \leq A_{q_{j}} \sum_{S \subseteq[n]}\left(\sum_{i \in S \cap D_{j}} d_{i j}\right)^{q_{j}} z_{j S}^{*} \tag{30}
\end{equation*}
$$

Recall that $D_{j}=\left\{i: d_{i j} \neq 0\right\}$. Above, we dropped terms with $i \notin D_{j}$, since if $i \notin D_{j}$, then $d_{i j}=0$.

Fix a $j \in[n]$. Define random variables Y_{i} for $i \in D_{j}$ as follows: Pick a random set $S \subset[n]$ with probability $z_{j S}$, and let $Y_{i}=d_{i j}$ if $i \in S$, and $Y_{i}=0$ otherwise. Note that random variables Y_{i} are dependent. We have

$$
\operatorname{Pr}\left(Y_{i}=d_{i j}\right)=\sum_{S: i \in S} \operatorname{Pr}(S)=\sum_{S: i \in S} z_{j S}^{*}=y_{i}^{*}
$$

It is easy to see that

$$
\mathbb{E}\left[\left(\sum_{i \in[n]} Y_{i}\right)^{q_{j}}\right]=\sum_{S \subseteq[n]}\left(\sum_{i \in S} d_{i j}\right)^{q_{j}} z_{j S}
$$

The right hand side is simply the definition of the expectation on the left hand side. Now, let $X_{i}=d_{i j} R_{i}\left(y^{*}\right)$ for $i \in D_{j}$. Note that by conditions of the theorem, $\operatorname{Pr}\left(X_{i}=d_{i j}\right)=$ $y_{i}^{*}=\operatorname{Pr}\left(Y_{i}=d_{i j}\right)$ (by condition (1)). Thus, each X_{i} has the same distribution as Y_{i}. Furthermore, X_{i} 's are independent or negatively associated (by condition (2)). Therefore, we can apply the decoupling inequality

$$
\mathbb{E}\left[\left(\sum_{i \in D_{j}} X_{i}\right)^{q_{j}}\right] \leq A_{q_{j}} \mathbb{E}\left[\left(\sum_{i \in D_{j}} Y_{i}\right)^{q_{j}}\right]
$$

The left hand side of the inequality equals the left hand side of (30), the right hand side of the inequality equals the right hand side of (30). Hence, inequality (30) holds.

V. Decoupling Inequality

In this section, we prove the decoupling inequality (Theorem I.2) with the optimal constant $C_{q}=A_{q}^{1 / q}$.
Theorem I.2. Let Y_{1}, \ldots, Y_{n} be jointly distributed nonnegative (non-independent) random variables, and let X_{1}, \ldots, X_{n} be independent random variables such that each X_{i} has the same distribution as Y_{i}. Then, for every $q \geq 1$,

$$
\left\|\sum_{i=1}^{n} X_{i}\right\|_{q} \leq A_{q}^{1 / q}\left\|\sum_{i=1}^{n} Y_{i}\right\|_{q}
$$

where A_{q} is the fractional Bell number which equals the q th moment of the Poisson random variable with parameter 1 (see (1)). The constant $A_{q}^{1 / q}$ is the optimal constant.

Proof: We first show that we cannot replace A_{q} with a smaller constant. Consider the following example. Let $Y_{i}^{(n)}, i \in[n]$ be random variables taking value 1 with probability $1 / n$, and 0 with probability $1-1 / n$. We generate $Y_{i}^{(n)}$,s as follows. We pick a random $j \in[n]$ and let $Y_{j}=1$ and $Y_{i}=0$ for $i \neq j$. Random variables $X_{i}^{(n)}$ are i.i.d. Bernoulli random variables with $\mathbb{E}\left[X_{i}^{(n)}\right]=1 / n$. Then, the sum $\sum_{i=1}^{n} Y_{i}^{(n)}$ always equals 1, and $\left\|\sum_{i=1}^{n} Y_{i}^{(n)}\right\|_{q}=1$. As $n \rightarrow \infty$, the sum $\sum_{i=1}^{n} X_{i}^{(n)}$ converges in distribution to a Poisson random variable with parameter 1 . Thus, $\left\|\sum_{i=1}^{n} X_{i}^{(n)}\right\|_{q} \rightarrow A_{q}^{1 / q}$, and, hence, the constant $A_{q}^{1 / q}$ cannot be improved.

Our proof is motivated by the example above. We prove the result for discrete finite random variables. The general case can be obtained using a standard argument by approximating random variables Y_{1}, \ldots, Y_{n} with discrete random variables ${ }^{3}$.

Consider the finite probability space $(\Omega, \operatorname{Pr})$ on which the random variables $Y_{1}, \ldots Y_{n}$ are defined. Without loss of generality we may assume that $\Omega=\mathcal{Y}_{1} \times \cdots \times \mathcal{Y}_{n}$, where \mathcal{Y}_{i} is the range of the random variable Y_{i}. Then every elementary event is a vector $\omega=\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{Y}_{1} \times \cdots \times \mathcal{Y}_{n}$. The probability of the event $\omega=\left(y_{1}, \ldots, y_{n}\right)$ equals

$$
\operatorname{Pr}(\omega)=\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) .
$$

Let $f_{i}(\omega)$ be the i-th coordinate of ω (or, more generally, the value the random variable Y_{i} takes when the elementary event $\omega \in \Omega$ occurs).
Let χ_{ω} be the indicator random variable of the event ω. Then, $\sum_{i=1}^{n} Y_{i}=\sum_{\omega \in \Omega} \sum_{i=1}^{n} \chi_{\omega} f_{i}(\omega)$. Each random variable χ_{ω} is a Bernoulli random variable with parameter $\operatorname{Pr}(\omega)$ i.e. $\operatorname{Pr}\left(\chi_{\omega}=1\right)=\operatorname{Pr}(\omega)$. The random variables χ_{ω} are dependent: one and only one χ_{ω} equals 1 for any random outcome. As in the example above, we want to replace χ_{ω} 's

[^2]with independent copies ψ_{ω} and, then, show that
\[

$$
\begin{aligned}
\left\|\sum_{\omega \in \Omega} \psi_{\omega} \sum_{i=1}^{n} f_{i}(\omega)\right\|_{q} & \leq A_{q}^{1 / q}\left\|\sum_{\omega \in \Omega} \chi_{\omega} \sum_{i=1}^{n} f_{i}(\omega)\right\|_{q} \\
& \equiv\left\|\sum_{i=1}^{n} Y_{i}\right\|_{q}
\end{aligned}
$$
\]

For technical reasons, we consider Poisson random variable instead of Bernoulli random variables. For each $\omega \in \Omega$, we define $n+1$ independent random variables $P_{\omega}^{i}, i \in[n]$ and P_{ω} on a new probability space Ω^{\prime}. Each P_{ω}^{i} and P_{ω} is a Poisson random variable with parameter $\lambda_{\omega}=\operatorname{Pr}(\omega)$. Then, $\mathbb{E}\left[P_{\omega}^{i}\right]=$ $\mathbb{E}\left[P_{\omega}\right]=\operatorname{Pr}(\omega)$.

We prove the following inequalities that imply the theorem.

1. $\left\|\sum_{i=1}^{n} X_{i}\right\|_{q} \leq\left\|\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}^{i}\right\|_{q}$;
2. $\left\|\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}^{i}\right\|_{q} \leq\left\|\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}\right\|_{q}$;
3. $\left\|\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}\right\|_{q} \leq A_{q}^{1 / q}\left\|\sum_{i=1}^{n} Y_{i}\right\|_{q}$.

We split the proof into three main lemmas.

Lemma V.1. Inequality 1 holds.

Proof: We prove by induction on n the following inequality: for every $B \geq 0$,

$$
\left\|B+\sum_{i=1}^{n} X_{i}\right\|_{q} \leq\left\|B+\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}^{i}\right\|_{q}
$$

For $n=0$ this inequality trivially holds. For $n \geq 1$, we write

$$
\begin{aligned}
\| B & +\sum_{i=1}^{n} X_{i} \|_{q}^{q}=\mathbb{E}\left[\left(B+\sum_{i=1}^{n} X_{i}\right)^{q}\right] \\
& =\mathbb{E}_{X_{n}} \mathbb{E}\left[\left(\left(B+X_{n}\right)+\sum_{i=1}^{n-1} X_{i}\right)^{q} \quad \mid \quad X_{n}\right] \\
& \leq \mathbb{E}_{X_{n}} \mathbb{E}\left[\left(\left(B+X_{n}\right)+\sum_{i=1}^{n-1} \sum_{\omega \in \Omega} f_{i}(\omega) P_{\omega}^{i}\right)^{q} \mid X_{n}\right] \\
& =\mathbb{E}\left[\left(\left(B+X_{n}\right)+\sum_{i=1}^{n-1} \sum_{\omega \in \Omega} f_{i}(\omega) P_{\omega}^{i}\right)^{q}\right] .
\end{aligned}
$$

Here, we used the inductive hypothesis with $B_{*}=B+X_{n}$. Let

$$
S_{n-1}=\sum_{i=1}^{n-1} \sum_{\omega \in \Omega} f_{i}(\omega) P_{\omega}^{i}
$$

We need to show that
$\mathbb{E}\left[\left(B+S_{n-1}+X_{n}\right)^{q}\right] \leq \mathbb{E}\left[\left(B+S_{n-1}+\sum_{\omega \in \Omega} f_{n}(\omega) P_{\omega}^{n}\right)^{q}\right]$.
We condition on S_{n-1} and prove that this inequality holds for every fixed value S_{n-1}^{\prime} of the random variable S_{n-1}. Note that X_{n} and P_{ω}^{n} are independent from S_{n-1}. Let $B_{\circ}=B+$
S_{n-1}^{\prime}. Since X_{n} and Y_{n} are identically distributed, we can replace X_{n} with Y_{n}. Thus, the inequality above follows from the inequality

$$
\mathbb{E}\left[\left(B_{\circ}+Y_{n}\right)^{q}\right] \leq \mathbb{E}\left[\left(B_{\circ}+\sum_{\omega \in \Omega} f_{n}(\omega) P_{\omega}^{n}\right)^{q}\right]
$$

Define a linear function $l: \mathbb{R}^{\Omega} \rightarrow \mathbb{R}$ and a non-linear function $g: \mathbb{R}^{\Omega} \rightarrow \mathbb{R}$ as follows: for $v \in \mathbb{R}^{\Omega}$ (the coordinates of v are indexed by $\omega \in \Omega$),

$$
\begin{aligned}
& l(v)=B_{\circ}^{q}+\sum_{\omega \in \Omega}\left(\left(f_{n}(\omega)+B_{\circ}\right)^{q}-B_{\circ}^{q}\right) v_{\omega} ; \\
& g(v)=\left(B_{\circ}+\sum_{\omega \in \Omega} f_{n}(\omega) v_{\omega}\right)^{q} .
\end{aligned}
$$

Note that if exactly one coordinate of v equals 1 , and all other coordinates equal 0 , then $l(v)=g(v)$. By Lemma V. 2 (see below), if all coordinates of v are nonnegative integers then $g(v) \geq l(v)$. Let χ_{ω} be the indicator random variable of the elementary event ω; and $\chi \in \mathbb{R}^{\Omega}$ be the vector with coordinates χ_{ω}. Observe that for any random outcome, exactly one coordinate of χ equals 1 . Hence, $l(v)=g(v)$. Then,

$$
\left(B_{\circ}+Y_{n}\right)^{q} \equiv\left(B_{\circ}+\sum_{\omega \in \Omega} f_{n}(\omega) \chi_{\omega}\right)^{q}=g(\chi)=l(\chi)
$$

For $\chi=\left(\chi_{\omega}\right)$ and $P^{n}=\left(P_{\omega}^{n}\right)$, we have

$$
\mathbb{E}\left[\left(B_{\circ}+X_{n}\right)^{q}\right]=\mathbb{E}\left[\left(B_{\circ}+Y_{n}\right)^{q}\right]=\mathbb{E}[l(\chi)]=l(\mathbb{E}[\chi]) ;
$$

and

$$
\begin{aligned}
\mathbb{E}\left[\left(B_{\circ}+\sum_{\omega \in \Omega} f_{n}(\omega) P_{\omega}^{n}\right)^{q}\right] & =\mathbb{E}\left[g\left(P^{n}\right)\right] \geq \mathbb{E}\left[l\left(P^{n}\right)\right] \\
& =l\left(\mathbb{E}\left[P^{n}\right]\right)
\end{aligned}
$$

However, $\mathbb{E}\left[\chi_{\omega}\right]=\operatorname{Pr}(\omega)=\mathbb{E}\left[P_{\omega}^{n}\right]$. Hence, $\mathbb{E}[\chi]=\mathbb{E}\left[P^{n}\right]$, and

$$
\mathbb{E}\left[\left(B_{\circ}+X_{n}\right)^{q}\right] \leq \mathbb{E}\left[\left(B_{\circ}+\sum_{\omega \in \Omega} f_{n}(\omega) P_{\omega}^{n}\right)^{q}\right]
$$

This finishes the proof.
Lemma V.2. If all coordinates of v are nonnegative integers then $g(v) \geq l(v)$.

Proof: Suppose that $g(v) \geq l(v)$ for some v. Fix a coordinate $\omega^{*} \in \Omega$, and let $\tilde{v}_{\omega}=v_{\omega}$ for $\omega \neq \omega^{*}$ and $\tilde{v}_{\omega^{*}}=v_{\omega^{*}}+1$. That is, \tilde{v} alters from v only in the coordinate ω^{*}. We show that $g(\tilde{v}) \geq l(\tilde{v})$. Consider the function $h(t)=\left(t+f_{n}\left(\omega^{*}\right)\right)^{q}-t^{q}$. This function is increasing for $t \geq 0$:

$$
\begin{aligned}
h^{\prime}(t) & =\left(\left(t+f_{n}\left(\omega^{*}\right)\right)^{q}-t^{q}\right)^{\prime} \\
& =q\left(\left(t+f_{n}\left(\omega^{*}\right)\right)^{q-1}-t^{q-1}\right)>0 .
\end{aligned}
$$

We have

$$
\begin{aligned}
g(\tilde{v})-g(v) & =h\left(B_{\circ}+\sum_{\omega \in \Omega} f_{n}(\omega) v_{\omega}\right) \geq h\left(B_{\circ}\right) \\
& =\left(B_{\circ}+f_{n}\left(\omega^{*}\right)\right)^{q}-B_{\circ}^{q}=l(\tilde{v})-l(v) .
\end{aligned}
$$

Hence, $g(\tilde{v}) \geq l(\tilde{v})$.

For the zero vector $v=0, g(v)=l(v)$. We can reach any nonnegative integer vector v, if we start from the zero vector and increment by 1 one coordinate at a time. Thus, $g(v) \geq l(v)$ for all nonnegative integer vectors v.

Lemma V.3. Inequality 2 holds.
We prove a slightly more general statement.
Lemma V.4. Let P_{j}^{i}, P_{j} be independent nonnegative random variables (for $i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}$), let f_{j}^{i} be a sequence of nonnegative real numbers; and let $B \in \mathbb{R}^{+}$be a nonnegative real number. Suppose that each P_{j}^{i} has the same distribution as P_{j} and $q \geq 1$. Then

$$
\mathbb{E}\left[\left(B+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{j}^{i} P_{j}^{i}\right)^{q}\right] \leq \mathbb{E}\left[\left(B+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{j}^{i} P_{j}\right)^{q}\right]
$$

To get Lemma V. 3 we apply Lemma V. 4 with $f_{j}^{i}=f_{i}\left(\omega_{j}\right)$, $P_{j}^{i}=P_{\omega_{j}}^{i}, B=0$, where $\omega_{1}, \ldots, \omega_{m}$ is an arbitrary ordering of elementary events in Ω.

Proof: We prove Lemma V. 4 by induction on m. For $m=0$, the inequality trivially holds. Denote $F_{j}=\sum_{i=1}^{n} f_{j}^{i}$. We need to prove that

$$
\mathbb{E}\left[\left(B+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{j}^{i} P_{j}^{i}\right)^{q}\right] \leq \mathbb{E}\left[\left(B+\sum_{j=1}^{m} F_{j} P_{j}\right)^{q}\right]
$$

Write

$$
\begin{aligned}
\mathbb{E} & {\left[\left(B+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{j}^{i} P_{j}^{i}\right)^{q}\right]=} \\
& =\mathbb{E} \mathbb{E}\left[\left(\left(B+\sum_{i=1}^{n} f_{m}^{i} P_{m}^{i}\right)+\sum_{j=1}^{m-1} \sum_{i=1}^{n} f_{j}^{i} P_{j}^{i}\right)^{q} \mid P_{m}^{1}, \ldots, P_{m}^{n}\right] \\
& \leq \mathbb{E} \mathbb{E}\left[\left(\left(B+\sum_{i=1}^{n} f_{m}^{i} P_{m}^{i}\right)+\sum_{j=1}^{m-1} F_{j} P_{j}\right)^{q} \mid P_{m}^{1}, \ldots, P_{m}^{n}\right] \\
& =\mathbb{E}\left[\left(\left(B+\sum_{i=1}^{n} f_{m}^{i} P_{m}^{i}\right)+\sum_{j=1}^{m-1} F_{j} P_{j}\right)^{q}\right] .
\end{aligned}
$$

Here, we used the inductive hypothesis with $B_{*}=(B+$ $\sum_{i=1}^{n} f_{m}^{i} P_{m}^{i}$). Denote by $B \circ$ the random variable $B+$ $\sum_{j=1}^{m-1} F_{j} P_{j}$. Then,

$$
\mathbb{E}\left[\left(B+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{j}^{i} P_{j}^{i}\right)^{q}\right] \leq \mathbb{E}\left[\left(B_{\circ}+\sum_{i=1}^{n} f_{m}^{i} P_{m}^{i}\right)^{q}\right]
$$

Using convexity of the function $t \mapsto t^{q}$ for $q \geq 1$, we get

$$
\begin{aligned}
\left(B_{\circ}+\sum_{i=1}^{n} f_{m}^{i} P_{m}^{i}\right)^{q} & =\left(\sum_{i=1}^{n} \frac{f_{m}^{i}}{F_{m}}\left(B_{\circ}+F_{m} P_{m}^{i}\right)\right)^{q} \\
& \leq \sum_{i=1}^{n} \frac{f_{m}^{i}}{F_{m}}\left(B_{\circ}+F_{m} P_{m}^{i}\right)^{q}
\end{aligned}
$$

Each term $\left(B_{\circ}+F_{m} P_{m}^{i}\right)$ is distributed as $\left(B_{\circ}+F_{m} P_{m}\right)$, hence $\mathbb{E}\left[\left(B_{\circ}+F_{m} P_{m}^{i}\right)^{q}\right]=\mathbb{E}\left[\left(B_{\circ}+F_{m} P_{m}\right)^{q}\right]$, and

$$
\begin{aligned}
\mathbb{E}\left[\left(B+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{j}^{i} P_{j}^{i}\right)^{q}\right] & \leq \mathbb{E}\left[\left(B_{\circ}+\sum_{i=1}^{n} f_{m}^{i} P_{m}\right)^{q}\right] \\
& \leq \sum_{i=1}^{n} \frac{f_{m}^{i}}{F_{m}} \mathbb{E}\left[\left(B_{\circ}+F_{m} P_{m}^{i}\right)^{q}\right] \\
& =\mathbb{E}\left[\left(B_{\circ}+F_{m} P_{m}\right)^{q}\right] \\
& =\mathbb{E}\left[\left(B+\sum_{j=1}^{m} F_{j} P_{j}\right)^{q}\right]
\end{aligned}
$$

This concludes the proof.

Lemma V.5. Inequality 3 holds.

Proof: Let

$$
P=\sum_{\omega \in \Omega} P_{\omega}
$$

The random variable P has the Poisson distribution with parameter 1 , since random variables $P_{\omega}, \omega \in \Omega$, are independent and $\sum_{\omega} \mathbb{E}\left[P_{\omega}\right]=\sum_{\omega} \operatorname{Pr}(\omega)=1$. We have

$$
\begin{aligned}
& \left\|\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}\right\|_{q}^{q}=\mathbb{E}\left[\left(\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}\right)^{q}\right] \\
& \quad=\sum_{k=1}^{\infty} \mathbb{E}\left[\left(\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}\right)^{q} \mid P=k\right] \cdot \operatorname{Pr}(P=k) \\
& \quad=\sum_{k=1}^{\infty} \mathbb{E}\left[\left.\left(\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) \frac{P_{\omega}}{k}\right)^{q} \right\rvert\, P=k\right] \cdot\left(k^{q} \cdot \operatorname{Pr}(P=k)\right)
\end{aligned}
$$

Using convexity of the function $t \mapsto t^{q}$ for $q \geq 1$, we upper bound each term in the sum as follows:

$$
\begin{aligned}
\mathbb{E}\left[\left.\left(\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) \frac{P_{\omega}}{k}\right)^{q} \right\rvert\, P=k\right] \leq \\
\leq \mathbb{E}\left[\left.\sum_{\omega \in \Omega} \frac{P_{\omega}}{k}\left(\sum_{i=1}^{n} f_{i}(\omega)\right)^{q} \right\rvert\, P=k\right] \\
\quad=\sum_{\omega \in \Omega} \mathbb{E}\left[\left.\frac{P_{\omega}}{k} \right\rvert\, P=k\right] \cdot\left(\sum_{i=1}^{n} f_{i}(\omega)\right)^{q}
\end{aligned}
$$

We observe that $\mathbb{E}\left[P_{\omega} \mid P=k\right]=k \operatorname{Pr}(\omega)$, which follows from the following well known fact (see e.g., Feller [14], Section IX.9, Problem 6(b), p. 237).

Fact V.6. Suppose P_{1} and P_{2} are independent Poisson random variables with parameters λ_{1} and λ_{2}. Then, for every $k \in \mathbb{N}$,

$$
\mathbb{E}\left[P_{1} \mid P_{1}+P_{2}=k\right]=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} k
$$

In our case, $P_{1}=P_{\omega}, P_{2}=\sum_{\omega^{\prime} \neq \omega} P_{\omega^{\prime}}, P_{1}+P_{2}=P$. Therefore, we have
$\mathbb{E}\left[\left.\left(\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) \frac{P_{\omega}}{k}\right)^{q} \right\rvert\, P=k\right] \leq \sum_{\omega \in \Omega} \operatorname{Pr}(\omega)\left(\sum_{i=1}^{n} f_{i}(\omega)\right)^{q}$.

Plugging this inequality in (31), we obtain the desired bound

$$
\begin{aligned}
& \left\|\sum_{\omega \in \Omega} \sum_{i=1}^{n} f_{i}(\omega) P_{\omega}\right\|_{q}^{q} \leq \\
& \quad \leq \sum_{\omega \in \Omega} \operatorname{Pr}(\omega)\left(\sum_{i=1}^{n} f_{i}(\omega)\right)^{q} \cdot \sum_{k=1}^{\infty} k^{q} \cdot \operatorname{Pr}(P=k) \\
& \quad=\mathbb{E}\left[\left(\sum_{i=1}^{n} Y_{i}\right)^{q}\right] \cdot \mathbb{E}\left[P^{q}\right]=\left\|\sum_{i=1}^{n} Y_{i}\right\|_{q}^{q} \cdot\|P\|_{q}^{q}
\end{aligned}
$$

VI. Negatively Associated Random Variables

The decoupling inequality (2) can be extended to negatively associated random variables X_{1}, \ldots, X_{n}. The notion of negative association is defined as follows.
Definition VI. 1 (Joag-Dev and Proschan [21]). Random variables X_{1}, \ldots, X_{n} are negatively associated if for all disjoint sets $I, J \subset[n]$ and all non-decreasing functions $f: \mathbb{R}^{I} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{J} \rightarrow \mathbb{R}$ the following inequality holds:

$$
\begin{aligned}
& \mathbb{E}\left[f\left(X_{i}, i \in I\right) \cdot g\left(X_{j}, j \in J\right)\right] \leq \\
& \quad \leq \mathbb{E}\left[f\left(X_{i}, i \in I\right)\right] \cdot \mathbb{E}\left[g\left(X_{j}, j \in J\right)\right]
\end{aligned}
$$

Shao [31] showed that if X_{1}, \ldots, X_{n} are negatively associated random variables, and $X_{1}^{*}, \ldots, X_{n}^{*}$ are independent random variables such that each X_{i}^{*} is distributed as X_{i}, then for every convex function $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[h\left(X_{1}+\cdots+X_{n}\right)\right] \leq \mathbb{E}\left[h\left(X_{1}^{*}+\cdots+X_{n}^{*}\right)\right]
$$

As an immediate corollary, for $h(x)=x^{q}$ (where $q \geq 1$), we have

$$
\left\|\sum_{i=1}^{n} X_{i}\right\|_{q} \leq\left\|\sum_{i=1}^{n} X_{i}^{*}\right\|_{q}
$$

Therefore, the following corollary of Theorem I. 2 holds.
Corollary VI.2. Let Y_{1}, \ldots, Y_{n} be jointly distributed nonnegative (non-independent) random variables, and let X_{1}, \ldots, X_{n} be negatively associated random variables such that each X_{i} has the same distribution as Y_{i}. Then, for every $q \geq 1$,

$$
\left\|\sum_{i=1}^{n} X_{i}\right\|_{q} \leq A_{q}^{1 / q}\left\|\sum_{i=1}^{n} Y_{i}\right\|_{q}
$$

where A_{q} is the fractional Bell number.

VII. Generalizations

We can extend our results to a more general class of objective functions. Using our framework, we can solve combinatorial optimization problems with the objective function

$$
\begin{equation*}
\sum_{j \in[k]} f_{j}\left(\sum_{i \in[n]} d_{i j} y_{i}\right), \tag{32}
\end{equation*}
$$

where f_{j} 's are arbitrary increasing convex functions satisfying $f_{j}(0)=0$. In this case, the approximation ratio equals $A_{\{f\}}=\mathbb{E}\left[a_{\{f\}}\left(P_{1}\right)\right]$, where P_{1} is a Poisson random variable
with parameter 1 , and the function $a_{\{f\}}(t)$ is defined as $a_{\{f\}}(t)=\max \left\{f_{j}(t x) / f_{j}(x): x>0, j \in[k]\right\}$ for $t \in \mathbb{N}$. Note, that for $f(s)=c s^{q}, a_{f}(t)=t^{q}$ in Theorem I.2.

Similarly, we can solve maximization problems with the objective function (32) if f_{j} 's are arbitrary non-decreasing concave functions satisfying $f_{j}(0)=0$. The approximation ratio equals $B_{\{f\}}=\mathbb{E}\left[b_{\{f\}}\left(P_{1}\right)\right]$, where $b_{\{f\}}(t)=$ $\min \left\{f_{j}(t x) / f_{j}(x): x>0, j \in[k]\right\}$ for $t \in \mathbb{N}$. It is not hard to see that $B_{\{f\}} \geq(e-1) / e$. Indeed, in the worst case, $b_{\{f\}}(t)=1$ for $t \geq 1$ and $b_{\{f\}}(t)=0$ for $t=0$, then $\mathbb{E}\left[b_{\{f\}}\left(P_{1}\right)\right]=\operatorname{Pr}\left(P_{1} \geq 1\right)=1-1 / e$. This happens e.g., for the function $f(s)=\min \{s, 1\}$. Note that the approximation ratio of $(e-1) / e \approx 0.632$ for maximization problems of this form was previously known (see Calinescu et al. [7]). However, for some concave functions f we get a better approximation. For example, for $f(s)=\sqrt{s}$, we get an approximation ratio of $B_{\sqrt{s}} \approx 0.773$.

Acknowledgment

We would like to thank the anonymous referees for valuable comments.

REFERENCES

[1] Alexander A. Ageev and Maxim Sviridenko. Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee. J. Comb. Optim. 8(3): 307-328, (2004).
[2] S. Albers. Energy-efficient algorithms. Commun. ACM 53(5), 86-96 (2010).
[3] Matthew Andrews, Antonio Fernandez Anta, Lisa Zhang, Wenbo Zhao. Routing for Power Minimization in the Speed Scaling Model. IEEE/ACM Trans. Netw. 20(1): 285-294 (2012).
[4] Matthew Andrews, Spyridon Antonakopoulos, Lisa Zhang. MinimumCost Network Design with (Dis)economies of Scale. FOCS 2010, pp. 585592.
[5] A. Assad and W. Xu. The quadratic minimum spanning tree problem. Naval Research Logistics v39. (1992), pp. 399-417.
[6] Yossi Azar, Amir Epstein. Convex programming for scheduling unrelated parallel machines. STOC 2005, pp. 331-337.
[7] Gruia Calinescu, Chandra Chekuri, Martin Pal and Jan Vondrak. Maximizing a submodular set function subject to a matroid constraint. SIAM Journal on Computing 40:6 (2011), pp. 1740-1766.
[8] V. Chvatal. On certain polytopes associated with graphs. J. Combinatorial Theory Ser. B, 18 (1975), pp. 138-154.
[9] Evripidis Bampis, Alexander Kononov, Dimitrios Letsios, Giorgio Lucarelli and Maxim Sviridenko. Energy Efficient Scheduling and Routing via Randomized Rounding. FSTTCS 2013, pp. 449-460.
[10] Nikhil Bansal and Kirk Pruhs. The Geometry of Scheduling. FOCS 2010, pp. 407-414.
[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[12] C. Durr and O. Vasquez. Order constraints for single machine scheduling with non-linear cost. The 16th Workshop on Algorithm Engineering and Experiments (ALENEX), 2014.
[13] M. Grotschel, L. Lovasz and A. Schrijver. Geometric algorithms and combinatorial optimization. Springer-Verlag, Berlin, 1988.
[14] W. Feller. An Introduction to Probability Theory and its Applications (3rd edition). John Wiley \& Sons, New York (1968).
[15] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Math. Programming, 1 (1971), pp. 168-194.
[16] Michel X. Goemans. Minimum Bounded Degree Spanning Trees. FOCS 2006, 273-282.
[17] W. Hohn and T. Jacobs. An experimental and analytical study of order constraints for single machine scheduling with quadratic cost. 14th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 103-117, SIAM, 2012.
[18] W. Hohn and T. Jacobs. On the performance of Smith's rule in singlemachine scheduling with nonlinear cost. LATIN 2012, pp. 482-493.
[19] Han Hoogeveen, Petra Schuurman, Gerhard J. Woeginger. NonApproximability Results for Scheduling Problems with Minsum Criteria. INFORMS Journal on Computing 13(2), pp. 157-168 (2001).
[20] S. Irani and K. Pruhs. Algorithmic problems in power management. ACM SIGACT News 36 (2), 63-76.
[21] Kumar Joag-Dev and Frank Proschan. Negative Association of Random Variables with Applications. The Annals of Statistics 11 (1983), no. 1, 286-295.
[22] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy and A. Srinivasan. A Unified Approach to Scheduling on Unrelated Parallel Machines. Journal of the ACM, Vol. 56, 2009.
[23] S. Maia, E. Goldbarg, and M. Goldbarg. On the biobjective adjacent only quadratic spanning tree problem. Electronic Notes in Discrete Mathematics, 41, (2013), 535-542.
[24] Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, 1987.
[25] T. Oncan and A. Punnen. The quadratic minimum spanning tree problem: A lower bounding procedure and an efficient search algorithm. Computers and Operations Research v.37, (2010), 1762-1773.
[26] Victor de la Peña. Bounds on the expectation of functions of martingales and sums of positive RVs in terms of norms of sums of independent random variables. Proceedings of the American Mathematical Society 108.1 (1990): 233-239.
[27] Victor de la Peña and E. Giné. Decoupling: from dependence to independence. Springer, 1999.
[28] D. Pereira, M. Gendreau, A. Cunha. Stronger lower bounds for the quadratic minimum spanning tree problem with adjacency costs. Electronic Notes in Discrete Mathematics, 41, (2013), 229-236.
[29] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.
[30] A. Schrijver. Combinatorial Optimization. Springer, 2002.
[31] Qi-Man Shao. A comparison theorem on moment inequalities between negatively associated and independent random variables. Journal of Theoretical Probability 13, no. 2 (2000): 343-356.
[32] Andreas S. Schulz and Martin Skutella. Scheduling Unrelated Machines by Randomized Rounding. SIAM J. Discrete Math, 15(4), pp. 450-469 (2002).
[33] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to within one of optimal. STOC 2007: 661-670.
[34] Martin Skutella. Convex quadratic and semidefinite programming relaxations in scheduling. J. ACM 48(2), 206-242 (2001).
[35] Martin Skutella. Approximation and randomization in scheduling. Technische Universitat Berlin, Germany, 1998.
[36] S. Stiller and A. Wiese. Increasing Speed Scheduling and Flow Scheduling. ISAAC (2) 2010, pp.279-290.
[37] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing systems. INFOCOM 2009, pp. 2007-2015.

Appendix A
 Figures

$q=$	1	1.25	1.5	1.75	2
$A_{q}=$	1	1.163	1.373	1.645	2

Fig. 1. The values of A_{q} for some $q \in[1,2]$. All values are rounded up to three decimal places.

Fig. 2. Graph of A_{q} for $q \in[1,2]$. Note that the function $q \mapsto A_{q}$ is convex; $A_{1}=1$ and $A_{2}=2$. Thus, $A_{q} \leq q$ for $q \in[1,2]$.

Fig. 3. Approximation factor of our algorithm for Load Balancing on Unrelated Parallel Machines $-A_{q}^{1 / q}-$ is plotted in red (below). Approximation factor of the algorithm due to Kumar, Marathe, Parthasarathy and Srinivasan [22] - $2^{1 / q}$ - is plotted in blue (above). The function $A_{q}^{1 / q}$ can be well approximated by the linear function $1+(\sqrt{2}-1)(q-1)$ in the interval $q \in[1,2]$.

[^0]: The full version of the paper is available at http://arxiv.org/abs/1404.3248.

[^1]: ${ }^{2}$ If z^{*} and $z^{* *}$ are the optimal solutions for vectors y^{*} and $y^{* *}$, then $\lambda z^{*}+(1-\lambda) z^{* *}$ is a feasible solution for $\lambda y^{*}+(1-\lambda) y^{* *}$. Hence, $F_{j}\left(\lambda y^{*}+(1-\lambda) y^{* *}\right) \leq \lambda F_{j}\left(y^{*}\right)+(1-\lambda) F_{j}\left(y^{* *}\right)$. See the full version of the paper for more details.

[^2]: ${ }^{3}$ In this paper, we only use the discrete version of this inequality.

