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Abstract—We consider the classical problem of minimizing
the total weighted flow-time for unrelated machines in the
online non-clairvoyant setting. In this problem, a set of jobs J
arrive over time to be scheduled on a set of M machines. Each
job j has processing length pj , weight wj , and is processed at a
rate of �ij when scheduled on machine i. The online scheduler
knows the values of wj and �ij upon arrival of the job, but
is not aware of the quantity pj . We present the first online
algorithm that is scalable ((1+ ε)-speed O( 1

ε2
)-competitive for

any constant ε > 0) for the total weighted flow-time objective.
No non-trivial results were known for this setting, except for
the most basic case of identical machines. Our result resolves a
major open problem in online scheduling theory. Moreover, we
also show that no job needs more than a logarithmic number
of migrations.

We further extend our result and give a scalable algorithm
for the objective of minimizing total weighted flow-time plus
energy cost for the case of unrelated machines. In this problem,
each machine can be sped up by a factor of f−1

i (P ) when
consuming power P , where fi is an arbitrary strictly convex
power function. In particular, we get an O(γ2)-competitive
algorithm when all power functions are of form sγ . These are
the first non-trivial non-clairvoyant results in any setting with
heterogeneous machines.

The key algorithmic idea is to let jobs migrate selfishly until
they converge to an equilibrium. Towards this end, we define
a game where each job’s utility which is closely tied to the
instantaneous increase in the objective the job is responsible
for, and each machine declares a policy that assigns priorities
to jobs based on when they migrate to it, and the execution
speeds. This has a spirit similar to coordination mechanisms
that attempt to achieve near optimum welfare in the presence
of selfish agents (jobs). To the best our knowledge, this is
the first work that demonstrates the usefulness of ideas from
coordination mechanisms and Nash equilibria for designing
and analyzing online algorithms.

I. INTRODUCTION

Many computer architects believe that architectures con-

sisting of heterogeneous processors will be the dominant

architectural design in the future: Simulation studies indicate

that, for a given area and power budget, heterogeneous

multiprocessors can offer an order of magnitude better

performance for typical workloads [10], [30], [32], [29].

Looking at the consequences of Moore’s Law even further in

the future, some computer architectures are projecting that

we will transition from the current era of multiprocessor

scaling to an era of “dark silicon”, in which switches become

so dense that it is not economically feasible to cool the

chip if all switches are simultaneously powered. [18]. One

possible architecture in the dark silicon era would be many

specialized processors, each designed for a particular type

of job. The processors that are on any point of time should

be those that are best suited for the current tasks.

It is recognized by the computer systems community [10]

and the algorithms community that scheduling these future

heterogeneous multiprocessor architectures is a major chal-

lenge. It is known that some of the standard scheduling al-

gorithms for single processors and homogeneous processors

can perform quite badly on heterogeneous processors [20].

A scalable algorithm (defined below) is known if somehow

the scheduler was clairvoyant (able to know the size of a job

when it arrives) [11]; however, this knowledge is generally

not available in general purpose computing settings. A

scalable algorithm is also known if all jobs were of equal

importance [25]; however, the whole raison d’être for hetero-

geneous architectures is that there is generally heterogeneity

among the jobs, most notably in their importance/priorities.

Therefore, a major open question in the area of online

scheduling, both in theory and practice, is the design of

scalable online algorithms for scheduling heterogeneous

processors with arbitrary power functions, when job sizes

are not known in advance (non-clairvoyant setting), and

jobs have different priorities (weighted setting). The typical

objective that has been studied in this context is minimizing

weighted delay, or weighted flow-time. This problem gen-

eralizes most previous work [3], [11], [15], [25], [20], [25]

in online single and multiple machine scheduling considered

recently by the algorithms community. As we discuss below,

the algorithmic techniques developed for these problems

(clairvoyant setting, unweighted setting, etc) do not extend

in any natural way to the most general setting with weights,
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non-clairvoyance, and energy, leading to a fundamental gap

in our understanding of classical scheduling algorithms. In

particular, we ask:

Do different variants of multiple machine schedul-

ing considered in literature require different algo-

rithmic techniques and analyses, or is there one

unifying technique for them all?

In this paper, we close this gap, and obtain one unifying al-
gorithmic technique for them all, achieving the first scalable

non-clairvoyant algorithms for scheduling jobs of varying

importance on heterogeneous machines, even with arbitrary

power functions. The interesting aspect of our work, as

we discuss in Section I-B below, is that it provides an

algorithmically simple and conceptually novel framework

for multiple machine scheduling as a coordination game

(see [14], [9]), where jobs have (virtual) utility functions for

machines based on delays they contribute to, and machines

announce scheduling policies, and treat migration of jobs

into them as new arrivals. In hindsight, we believe this

provides the correct, unifying way of viewing all recent

algorithmic results [3], [15], [25], [20] in related and simpler

models.

A. Our Results

We adopt the competitive analysis framework in online

algorithms. We say that an online schedule is s-speed c-
competitive if it is given s times faster machines and is

c-competitive when compared to the optimal scheduler with

no speed augmentation. The goal is to design a O(1)-
competitive algorithm with the smallest extra speed. In

particular, a scalable algorithm, which is (1 + ε)-speed

O(1)-competitive for any fixed ε > 0, is considered to be

essentially the best result one can hope for in the competitive

analysis framework for machine scheduling [28]. (It is

known that without resource augmentation no online algo-

rithm can have bounded competitive ratio for our problem

[19], [11].)

Unrelated Machine Scheduling.

We first consider the general unrelated machine model

where each job j can be processed at rate �ij ≥ 0 on each

machine i; if �ij = 0, then job j cannot be processed on

machine i. In a feasible schedule, each job can be scheduled

by at most one machine at any point in time. Preemption is

allowed without incurring any cost, and so is migration to

a different machine. A job j’s flow-time Fj := Cj − rj
measures the length of time between when the job arrives at

time rj and when the job is completed at Cj . When each job

j has weight wj , the total weighted flow-time is
∑

j wjFj ;

the unweighted case is where all jobs weights are one. The

online scheduler does not know the job size pj until the job

completes. For a formal problem statement, please refer to

Section II.

Our first result is the following. For comparison, we

note that no constant speed, constant competitive result was

known for the weighted case, except when all machines are

identical.

Theorem I.1. [Section II.] For any ε > 0, there is a (1 +
ε)-speed O(1/ε2)-competitive non-clairvoyant algorithm for
the problem of minimizing the total weighted flow-time on
unrelated machines. Furthermore, each job migrates at most
O((logW + log n)/ε) times, where W denotes the ratio of
the maximum job weight to the minimum.

It is well known [20] that in the non-clairvoyant setting,

jobs need to be migrated to obtain O(1) competitive ratio.

Our algorithm migrates each job relatively small number of

times. Reducing the number of migrations is not only theo-

retically interesting but also highly desirable in practice [12],

[24].

Power Functions.

We further extend our result to unrelated machines with

arbitrary power functions. Each machine i is associated with

an arbitrary power function fi : [0,∞) → [0,∞) which is

strictly convex and has fi(0) = 0. When machine i uses

power P > 0, it runs f−1
i (P ) times faster than its original

speed – it processes job j at a rate of �ijf
−1
i (P ). This

model is widely studied [1], [7], [21], [11], [20], [15] and

we consider the standard objective of minimizing the total

weighted flow-time plus the total energy consumption [2].

Theorem I.2. [Section III.] For any ε > 0, there is a (1 +
ε)-speed O(1/ε2)-competitive non-clairvoyant algorithm for
the problem of minimizing the total weighted flow-time plus
total energy consumption on unrelated machines. This result
holds even when each machine i has an arbitrary strictly-
convex power function fi : [0,∞)→ [0,∞) with fi(0) = 0.

The same guarantee on the number of migrations by a job

stated in Theorem I.1 holds for this setting. The theorem

implies a O(γ2)-competitive algorithm (without resource

augmentation) when each machine i has a power function

f(s) = sγ for some γ > 1, perhaps most important power

functions in practice. Our result also implies a scalable al-

gorithm in the model where at each time instant a processor

i can either run at speed si consuming a power Pi, or be

shutdown and consume no energy.

We note that no O(1)-speed O(1)-competitive non-

clairvoyant algorithm was known prior to our work even

in the related machine setting for any nontrivial classes of

power functions.

B. Technical Contributions: Selfish Migration and Nash
Equilibrium

Our main technical contribution is a new conceptu-

ally simple game-theoretic framework for multiple machine

scheduling that unifies, simplifies and generalizes previous

work, both in terms of algorithm design as well as analysis
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using dual fitting. Before presenting this framework, we

present some difficulties an online scheduler has to over-

come in the non-clairvoyant settings we consider.

An online scheduler for multiple machines consists of two

scheduling components: A single-machine scheduling policy

on each machine, and the global machine assignment rule

which assigns jobs to machines. In the context of clairvoyant

scheduling [11], [3], the authors in [3] show via a dual

fitting analysis that the following algorithm is scalable: Each

machine runs a scalable single-machine scheduling policy

such as Highest Density First (HDF); this is coupled with

a simple greedy dispatch rule that assigns arriving jobs to

the machine on which they cause the least increase in flow-

time to previously assigned jobs. This simple yet elegant

algorithm has been very influential. In particular, the greedy

dispatch rule has become standard, and been used in various

scheduling settings [26], [22], [3], [34], [15]. The analysis

proceeds by setting dual variables corresponding to a job

to the marginal increase in total delay due to the arrival of

this job, and showing that this setting is not only feasible

but also extracts a constant fraction of the weighted flow-

time in the objective. The immediate-dispatch greedy rule is
necessary for analysis in all the aforementioned work, since

they require the algorithm to measure each job’s effect on

the system at the moment it arrives.

In a non-clairvoyant context, there are main two hurdles

that arise. First, to use the greedy dispatch rule, it is crucial

to measure how much a new job affects the overall delay,

that is, how much the job increases the objective. To measure

the increase, the scheduler must know the job size, which is

not allowed in the non-clairvoyant setting. Secondly, as men-

tioned before, jobs must migrate to get a O(1)-competitive

algorithm even with any O(1)-speed, and this makes it more

difficult to measure how much each job is responsible for

the overall delay. This difficulty appears in the two analysis

tools for online scheduling, potential function [27] and dual

fitting method [3], [23], [15]. Due to these difficulties, there

have been very few results for non-clairvoyant scheduling

on heterogeneous machines [21], [20], [25]. Further, there

has been no work in any heterogeneous machines setting for

the weighted flow-time objective.

1) SELFISHMIGRATE Framework

We demonstrate a simple framework SELFISHMIGRATE

that addresses the above two issues in one shot. Our algo-

rithm can be best viewed in a game theoretic setting where

jobs are selfish agents, and machines declare their scheduling

policies in advance.

Machine Behavior.

Each machine maintains a virtual queue on the current

set of jobs assigned to it; newly arriving jobs are appended

to the tail of this queue. In a significant departure from

previous work [3], [15], [21], [20], [25], each machine treats

a migration of a job to it as an arrival, and a migration out of

it as a departure. This means a job migrating to a machine

is placed at the tail of the virtual queue.

Each machine runs a scheduling policy that is a modifica-

tion of weighted round robin (WRR) that smoothly assigns

larger speed to jobs in the tail of the queue, taking weights

into account. This is a smooth extension of the algorithm

Latest Arrival Processor Sharing (LAPS or WLAPS) [17],

[16]. We note that the entire analysis also goes through

with WRR, albeit with (2+ε)-speed augmentation. The nice

aspect of our smooth policies (unlike WLAPS) is that we

can approximate the instantaneous delay introduced by this

job to jobs ahead of it in its virtual queue, even without
knowing job sizes. This will be critical for our analysis.

Job Behavior.

Each job j has a virtual utility function, which roughly

corresponds to the inverse of the instantaneous weighted

delay introduced by j to jobs ahead of it in its virtual queue,

and their contribution to j’s weighted delay. Using these

virtual utilities, jobs perform sequential best response (SBR)

dynamics, migrating to machines (and get placed in the tail

of their virtual queue) if doing so leads to larger virtual

utility. Therefore, at each time instant, the job migration

achieves a Nash equilibrium of the SBR dynamics on the

virtual utilities. We show that our definition of the virtual

utilities implies they never decrease due to migrations,

arrivals, or departures, so that at any time instant the Nash

equilibrium exists and is computable. (We note that at each

time step, we simulate SBR dynamics and migrate each

job directly to the machine that is predicted by the Nash

equilibrium.)

When a job migrates to a machine, the virtual utility starts

off being the same as the real speed the job receives. As time

goes by, the virtual queue ahead of this job shrinks, and

that behind it increases. This lowers the real speed the job

receives, but its virtual utility, which measures the inverse

of the impact to jobs ahead in the queue and vice versa,

does not decrease. Our key contribution is to define the

coordination game on the virtual utilities, rather than on the

actual speed improvement jobs receive on migration. A game

on the latter quantities (utility equals actual speed) need not

even admit to a Nash equilibrium.

Given the above framework, our analysis proceeds by

setting the dual variable for a job to the increase in overall

weighted delay it causes on jobs ahead of it in its virtual

queue. Our key insight is to show that Nash dynamics on

virtual utilities directly corresponds to our setting of dual

variables being feasible for the dual constraints, implying

the desired competitive ratio. This overall approach is quite

general, even extending to energy constraints, and requires

two key properties from the virtual utility:

• The virtual utility should correspond roughly to the
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inverse of the instantaneous delay induced by a job on

jobs ahead of it in its virtual queue.

• SBR dynamics should monotonically improve virtual

utility, leading to a Nash equilibrium that corresponds

exactly to satisfying the dual constraints.

Our main (and perhaps quite surprising) contribution is

to show the existence of such a virtual utility function for

WRR and its scalable modifications, when coupled with the

right notion of virtual queues. In hindsight, we believe this

framework is the right way to generalize the greedy dispatch

rules and dual fitting analysis from previous works [3],

[25], and we hope it finds more applications in complex

scheduling settings.

2) Comparison with Previous Techniques

As mentioned above, the algorithmic idea based on co-

ordination games is very different from the previous greedy

dispatch rules [11], [3], [15] for clairvoyant scheduling, and

also from previous work on non-clairvoyant scheduling [21],

[20], [25]. We contrast our algorithm with these, highlighting

the necessity of new techniques.

It is instructive to compare this framework with the

scalable non-clairvoyant algorithm for unweighted flow-

time [25]. This algorithm has the seeds of several ideas we

develop here – it introduces virtual queues, a smooth variant

of LAPS [17], [16] for single-machine scheduling, as well

as migration based on the delay a job contributes to jobs

ahead in its queue. However, this algorithm always assigns

priorities to jobs in order of original arrival times, and mi-

grates jobs to machines preserving this ordering. In essence,

this algorithm mimics the clairvoyant algorithms [11], [3]

that account for delay a job contributes to those that arrived

ahead in time. This idea of arrival time ordering is specific to

unweighted jobs, and does not extend to the weighted case or

to energy constraints. In contrast, we let each machine treat

migrations as new arrivals, leading us to view job migration

through a game-theoretic lens. This leads to a more natural

framework via instantaneous Nash equilibria, with a simple

dual fitting analysis. The simplicity makes the framework

extend easily to energy constraints. The resulting accounting

using the delay a job j induces to those ahead of it in its

virtual queue is novel – in contrast to previous work [3],

[15], [21], [20], [25], the virtual queue changes with time

and could possibly include jobs whose original arrival time

rj′ is later than that of job j.

To further illustrate the technical difficulty of the weighted

case, let us consider Round-Robin (RR) and its variants. The

work of [21] consider unweighted jobs, and gives (2 + ε)-
speed O(1)-competitive algorithm for the total (unweighted)

flow-time on related machines. The work of [20] improves

this to a scalable algorithm, but for simpler illustration,

we focus on RR. In the RR used in [21], each of n
fastest machines is distributed to all n jobs uniformly. It

is not difficult to see that this fractional schedule can be

decomposed into a convex combination of feasible actual

schedules. Hence, RR allows us to view multiple machines

as a more powerful single machine, and this is the crux of

the analysis in [21]. In contrast, the work of [20] argues

that the weighted case is not as simple: in fact, they show

that natural extensions of weighted round robin for related

machines fail to be competitive.

C. Other Related Work

For a survey on online scheduling, please see [33]. As

alluded to above, for weighted flow-time on unrelated ma-

chines, the best clairvoyant result is a (1+ε)-speed O(1/ε)-
competitive algorithm [3], [15]. For the version with power

functions, the best corresponding clairvoyant result is a

(1+ε)-speed O(1/ε)-competitive algorithm [15]. In the most

basic setting of multiple machines where machines are all

identical, the work of [13] gives the first analysis of scalable

algorithms for weighted flow-time. Intuitively, machine as-

signment rule should have a spirit of load balancing. Indeed,

the work of [13] shows two machine assignment rules can be

combined with various single machine scheduling policies to

yield a scalable algorithm. One is random assignment rule,

and the other is based on volume of each job class.

For the problem of non-clairvoyantly scheduling a single

machine, the WLAPS (Weighted Latest Arrival Processor

Sharing) algorithm [17], [5], [16] is scalable for the to-

tal weighted flow even when jobs have arbitrary speedup

curves. Other non-clairvoyant scalalble algorithms for the

unweighted case include Shorted Elapsed Time First (SETF)

and Multi-level Feedback [28]. The work of [6] extends

SETF to its weighted version. While Shortest Remaining

Procesing Time (SRPT) is optimal for the total flow time ob-

jective on a single machine with clairvoyance, even slightly

more general settings (non-clairvoyant or weighted or mul-

tiple machine settings) do not admit a O(1)-competitive

algorithm without resource augmentation [8], [4], [31].

II. UNRELATED MACHINE SCHEDULING

In this problem, there are m unrelated machines. Job j
is processed at rate �ij ∈ [0,∞) on each machine i. Each

job has processing length pj and weight wj . The online

algorithm is allowed to preempt and migrate jobs at any

time with no penalty. The important constraint is that at any

instantaneous time, a job can be processed only on a single

machine. Job j is released at time rj . In the non-clairvoyant

online scheduling model we consider, the scheduler knows

the values of �ij and wj when the job arrives, but is

not aware of the processing length pj .1 Without loss of

generality we assume that weights wj are integers.

Fix some scheduling policy P . At each time instant t, each

active job j with rj ≤ t is assigned to some machine i. Let

1It is easy to show that if �ij values are not known, then no online
algorithm can have a bounded competitive ratio even with any constant
speed augmentation.

534534



Ji(t) denote the set of jobs assigned to machine i. Machine i
splits its processing power among the jobs in Ji(t). Let νj(t)
denote the processing power assigned to job j ∈ Ji(t). We

enforce that
∑

j∈Ji(t)
νj(t) ≤ 1 for all i, t. Then, j ∈ Ji(t)

executes at rate qj(t) = �ijνj(t). The completion time Cj

is defined as the earliest time tj such that

Cj = argmintj

(∫ tj

t=rj

qj(t)dt ≥ pj

)

At this time, the job finishes processing and departs from

the system. The objective is to find a scheduling policy that

minimizes the sum of weighted flow-times
∑

j wjFj , where

Fj = Cj − rj is the flow-time of job j.

In the speed augmentation setting, we assume the online

algorithm can process job j at rate (1 + ε)�ij on machine

i, where ε > 0. We will compare the resulting flow-time

against an offline optimum that knows pj and rj at time

0, but is not allowed the extra speed. Our main result

is a scalable algorithm that, for any ε > 0, is O(1/ε2)
competitive with speed augmentation of (1 + ε).

A. The SELFISHMIGRATE Algorithm

Our algorithm can be best viewed as a coordination mech-

anism between the machines and the jobs. Each machine

declares a single machine policy that it uses to prioritize

and assign rates to arriving jobs. Given these policies, jobs

migrate to machines that give them the most instantaneous

utility (in a certain virtual sense). We will now define the

single machine scheduling policy, and the utility function

for jobs.

1) Single Machine Policy: Weighted Ranked Processor
Sharing, WRPS (k)

This policy is parametrized by an integer k (that we

will later set to 1/ε) and η > 1 that captures the speed

augmentation (and that we set later to 1 + 3ε). Fix some

machine i and time instant t. Recall that Ji(t) denotes the

set of jobs assigned to this machine at time t. Let W (i, t)
denote their total weight, i.e., W (i, t) =

∑
j∈Ji(t)

wj . The

machine maintains a virtual queue on these jobs.

We now introduce some notation based on these virtual

queues. Let σ(j, t) denote the machine to which job j is

assigned at time t. Therefore, i = σ(j, t) if and only if

j ∈ Ji(t). Let πj(t) denote the rank of j in the virtual

queue of i = σ(j, t), where the head of the virtual queue

has rank 1 and the tail of the queue has rank |Ji(t)|. Let

Jj(t) denote the set of jobs ahead of job j ∈ Ji(t) in the

virtual queue of machine i. In other words

Jj(t) = {j′ | σ(j′, t) = σ(j, t) and πj′(t) < πj(t)}
Let Wj(t) =

∑
j′∈Jj(t)

wj′ denote the total weight of jobs

ahead of job j in its virtual queue.

Rate Assignment.

At time instant t, the total processing rate of the machine

i is divided among the jobs in Ji(t) as follows. Job j ∈ Ji(t)
is assigned processing power νj(t) as follows:

νj(t) := η · (Wj(t) + wj)
k+1 −Wk+1

j

W (i, t)k+1
(1)

The rate at which job j ∈ Ji(t) is processed at time

t is therefore �ij νj(t). Note that
∑

j∈Ji(t)
νj(t) = η at

all time instants t and for all machines i. Note that if

k = 0, this is exactly weighted round robin. As k becomes

larger, this gives higher rate to jobs in the tail of the queue,

taking the weights wj into account. This ensures that small

jobs arriving later do not contribute too much to the flow-

time, hence reducing the speed augmentation. One important

property of WRPS (k) is that if a new job is added to the tail

of the virtual queue, then all the old jobs are slowed down by

the same factor. This is one of the important characteristics

of weighted round robin which ensures that for a pair of

jobs weighted delay induced by each other is exactly same.

WRPS(k) preserves this property to a factor of O(k), and

this will be crucial to our analysis.

Our policy is weighted version of the single machine

scheduling policy introduced in [25]. We note that using

the natural setting of k = 0 (weighted round robin) gives

a competitive algorithm with speedup (2 + ε), and this is

tight even for a single machine. We use a larger value of k
to reduce the amount of speed augmentation needed. (We

believe that WRPS(k) gives a black-box reduction from

any (2 + ε)-speed algorithm using WRR into a scalable

algorithm.)

Arrival Policy.

The behavior of the policy is the same when a job j either

arrives to the system and chooses machine i, or migrates

from some other machine to machine i at time t. In either

case, the job j is placed at the tail of the virtual queue. In

other words, if Ji(t
−) is the set of jobs just before the arrival

of job j, then we set σ(j, t) = i and πj(t) = |Ji(t−)| + 1.

Therefore, the virtual queue sorts the jobs in order in which

they arrive onto this machine. Since a job could also arrive

due to a migration, this is not the same as ordering on the

rj – a job with smaller rj that migrates at a latter point onto

machine i will occupy a relatively later position in its virtual

queue.

Departure Policy.

If job j departs from machine i either due to completion

or due to migrating to a different machine, the job simply

deletes itself from i’s virtual queue, keeping the ordering of

other jobs the same. In other words, for all jobs j′ ∈ Ji(t)
with πj′(t) > πj(t), the value πj′(t) decreases by 1.
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2) Virtual Utility of Jobs and Selfish Migration

The virtual queues define a virtual utility of job as follows.

Let j ∈ Ji(t) at time t. Then its virtual utility is defined as:

φ(j, t) =
�ij

Wj(t) + wj

We interpret this utility as follows: The inverse of this

quantity will be roughly in proportion to the marginal

increase in instantaneous weighted delay that job j induces

on jobs Jj(t) that are ahead of it in its virtual queue,

and their contribution to the weighted delay of j. We will

establish this in the Delay Lemmas below. This marginal

increase is exactly what we need in order to define dual

variables in our proof, and in some sense, the virtual utility is

defined keeping this in mind. This utility function is similar

to the utility function used for the unweighted case in [25].

At every time instant, job j ∈ Ji(t) behaves as follows:

If it were to migrate to machine d �= i, it would be placed

at the tail of d’s queue and would obtain virtual utility
�dj

W (d,t)+wj
. If this quantity is larger than φ(j, t), then job

j migrates to machine d. This leads to the corresponding

changes to the virtual queues of machine i (job j is deleted),

machine d (job j is added to the tail), and the virtual utility

φ(j, t) of job j (which is set to
�dj

W (d,t)+wj
). At every time

instant t, this defines a game on the jobs, and starting with

the configuration at the previous step, the jobs simulate

sequential best response dynamics, where they sequentially

migrate to improve virtual utility, till the system reaches a

Nash equilibrium. In this configuration, each job is on a

machine that is locally optimal for φ(j, t).

Note that if a job departs from a machine, the virtual

utilities of other jobs on that machine either stay the same or

increase. Further, if a job migrates to a machine, it is placed

on the tail of the virtual queue, so that the virtual utilities

of other jobs on the machine remain the same. This shows

that sequential best response dynamics guarantees that the

virtual utilities of all jobs are monotonically non-decreasing

with time, converging to a Nash equilibrium. (Note that jobs

don’t actually need to execute best response dynamics since

they can directly migrate to the machines corresponding to

the resulting Nash equilibrium.)

When a new job arrives to the system, it simply chooses

the machine i which maximizes its virtual utility,
�ij

W (i,t)+wj
,

where W (i, t) is the weight of jobs assigned to i just before

the arrival of job j. This completes the description of the

algorithm.

The following lemma is an easy consequence of the

description of the algorithm.

Lemma II.1. For all jobs j, φ(j, t) is non-decreasing over
the interval t ∈ [rj , Cj ].

B. Analysis of SELFISHMIGRATE

We first write a linear programming relaxation of the

problem LPprimal described below which was first given

by [3], [19]. It has a variable xijt for each machine i ∈ [m],
each job j ∈ [n] and each unit time slot t ≥ rj . If the

machine i processes the job j during the whole time slot

t, then this variable is set to 1. The first constraint says

that every job has to be completely processed. The second

constraint says that a machine cannot process more than

one unit of jobs during any time slot. Note that the LP

allows a job to be processed simultaneously across different

machines.

Min
∑
j

∑
i

∑
t≥rj

(
�ij(t− rj)

pj
+ 1

)
· wj · xijt

(LPprimal)∑
i

∑
t≥rj

�ij · xijt

pj
≥ 1 ∀j

∑
j : t≥rj

xijt ≤ 1 ∀i, t

xijt ≥ 0 ∀i, j, t : t ≥ rj

It is easy to show that the above LP lower bounds the

optimal flow-time of a feasible schedule within factor 2. We

use the dual fitting framework to analyze SELFISHMIGRATE.

We write the dual of LPprimal as,

Max
∑
j

αj −
∑
i

∑
t

βit (LPdual)

�ij · αj

pj
− βit ≤ wj�ij(t− rj)

pj
+ wj ∀i, j, t : t ≥ rj

αj ≥ 0 ∀j
βit ≥ 0 ∀i, t

We will show that there is a feasible solution to LPdual that

has objective O(ε2) times the total weighted flow-time of

SELFISHMIGRATE, provided we augment the speed by η =
(1+3ε). From now on, we will assume that each processor in

SELFISHMIGRATE has η extra speed when processing jobs.

1) Instantaneous Delay and Setting Dual Variables

Recall that each machine runs WRPS (k) with k = 1/ε,
and we assume without loss of generality that 1/ε is an

integer. We define the instantaneous weighted delay induced

by job j on jobs ahead of j in its virtual queue (the set Jj(t))
as follows:

δj(t) =
1

η

⎛
⎝ ∑

j′∈Jj(t)

(wj′ · νj(t) + wj · νj′(t)) + wj · νj(t)
⎞
⎠

This quantity sums the instantaneous weighted delay that

j′ ∈ Jj(t) induces on j and vice versa, plus the de-

lay seen by j due to itself. Note that δj(t) is equal to
1
η

(
(Wj(t) + wj) · νj(t) + wj ·

∑
j′∈Jj(t)

νj′(t)
)

.
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Define,

Δj =

∫ Cj

t=rj

δj(t)dt

as the cumulative weighted delay induced by j on jobs

ahead of it in its virtual queue and vice versa. Note that

the set Jj(t) changes with t and can include jobs that are

released after job j. It is an easy exercise to check that∑
j wjFj =

∑
j Δj . Our way of accounting for weighted

delay is therefore a significant departure from previous

work that either keeps Jj(t) the same for all t (clairvoyant

algorithms), or preserves orderings based on arrival time.

We now perform the dual fitting. We set the variables of

the LPdual as follows. We set βit proportional to the total

weight of jobs alive on machine i at time t, i.e., βit =
1

k+3W (i, t). We set αj = 1
k+2Δj , i.e., proportional to the

cumulative weighted delay induced by j on jobs ahead of it

in its virtual queue.
We first bound the dual objective as follows (noting k =

1/ε and η = 1 + 3ε):∑
j

αj −
∑
i,t

βit =
∑
j

Δj

k + 2
−
∑
i,t

W (i, t)

k + 3

= ε

⎛
⎝∑

j

Δj

1 + 2ε
−
∑
i,t

W (i, t)

1 + 3ε

⎞
⎠

= ε ·
∑
j

wjFj ·
(

1

1 + 2ε
− 1

1 + 3ε

)

= O(ε2)
∑
j

wjFj (2)

In the rest of the analysis, we show that this setting of

dual variables satisfies the dual constraints.

2) Delay Lemmas

The dual constraints need us to argue about the weighted

delay induced by j till any point t. For this purpose, we

define for any t∗ ∈ [rj , Cj ] the following:

Δ1
j (t
∗) =

∫ t∗

t=rj

δj(t)dt and Δ2
j (t
∗) =

∫ Cj

t=t∗
δj(t)dt

The following propositions have elementary proofs which

have been omitted.

Proposition II.2. Consider any integer k ≥ 0, and 0 ≤ w ≤
1, then (1− w)k ≥ 1− kw.

Proposition II.3. Consider any integer k ≥ 0, and w,w′ ≥
0, then (w + w′)k ≥ wk + kwk−1w′.

The first Delay Lemma bounds the quantity Δ1
j (t
∗) as

follows:

Lemma II.4 (First Delay Lemma). For any time instant
t∗ ∈ [rj , Cj ] and for any job j,

Δ1
j (t
∗) ≤ (k + 2) · wj · (t∗ − rj)

Proof:

Δ1
j (t
∗)

=
1

η

∫ t∗

t=rj

⎛
⎝νj(t) · (Wj(t) + wj) + wj ·

⎛
⎝ ∑

j′∈Jj(t)

νj′(t)

⎞
⎠
⎞
⎠ dt

≤ 1

η

∫ t∗

t=rj

(
η · (Wj(t) + wj)

k+1 −Wj(t)
k+1

W (σ(j, t), t)k+1
· (Wj(t) + wj) + wj · η

)
dt

[Definition of ν]

≤
∫ t∗

t=rj

(
(Wj(t) + wj)

k+1 −Wj(t)
k+1

(Wj(t) + wj)k+1
· (Wj(t) + wj) + wj

)
dt

[Since W (σ(j, t), t) ≥ Wj(t)+wj]

=

∫ t∗

t=rj

((
1−

(
1− wj

Wj(t) + wj

)k+1
)
· (Wj(t) + wj) + wj

)
dt

≤
∫ t∗

t=rj

(
wj · (k + 1)

(Wj(t) + wj)
· (Wj(t) + wj) + wj

)
dt

[Proposition II.2]

=(k + 2) · wj · (t∗ − rj)

Let pj(t
∗) =

∫ Cj

t=t∗ �σ(j,t)j ·νj(t)dt denote the residual size

of job j at time t∗. The second Delay Lemma states that total

marginal increase in the algorithm’s cost due to job j till its

completion is upper bounded by the marginal increase in the

algorithm’s cost if the job j stays on machine σ(j, t∗) till

its completion. However, as noted before, marginal increase

in the cost of the algorithm on a single machine is inversely

proportional to the job’virtual speed. The proof of the second

Delay Lemma hinges crucially on the fact that a job selfishly

migrates to a new machine only if its virtual utility increases.

In fact, the statement of this lemma implies the correctness

of our setting of virtual utility.

Lemma II.5 (Second Delay Lemma). For any time instant
t∗ ∈ [rj , Cj ] and for any job j, let i∗ = σ(j, t∗) denote the
machine to which job j is assigned at time t∗. Then:

Δ2
j (t
∗) ≤ 1

η
· k + 2

k + 1
· pj(t

∗)
φ(j, t∗)

≤ 1

η
· k + 2

k + 1
·pj · Wj(t

∗) + wj

li∗j

Proof:

Δ2
j (t
∗)

=
1

η

∫ Cj

t=t∗

⎛
⎝νj(t) · (Wj(t) + wj) + wj ·

⎛
⎝ ∑

j′∈Jj(t)

νj′(t)

⎞
⎠
⎞
⎠ dt

=
1

η

∫ Cj

t=t∗

(
νj(t) · (Wj(t) + wj) + η · wj · Wj(t)

k+1

W (σ(j, t), t)k+1

)
dt

=
1

η

∫ Cj

t=t∗
νj(t) ·(

Wj(t) + wj + wj · Wj(t)
k+1

(Wj(t) + wj)k+1 −Wj(t)k+1

)
dt

≤ 1

η

∫ Cj

t=t∗
νj(t) ·

(
Wj(t) + wj +

Wj(t) + wj

k + 1

)
dt

[Proposition II.3]
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=
1

η
· k + 2

k + 1
·
∫ Cj

t=t∗
�σ(j,t)j · νj(t) · 1

φ(j, t)
dt

≤ 1

η
· k + 2

k + 1
· 1

φ(j, t∗)
·
∫ Cj

t=t∗
�σ(j,t)j · νj(t)dt

[Lemma II.1]

=
1

η
· k + 2

k + 1
· pj(t

∗)
φ(j, t∗)

≤ 1

η
· k + 2

k + 1
· pj · Wj(t

∗) + wj

li∗j

Note that the previous two lemmas imply the following

by summation:

Lemma II.6. For any time instant t ∈ [rj , Cj ] and job j
that is assigned to machine i∗ = σ(j, t), we have:

Δj = Δ1
j (t) + Δ2

j (t)

≤ (k + 2) · wj · (t− rj) +
1

η
· k + 2

k + 1
· pj · Wj(t) + wj

li∗j

3) Checking the Feasibility of Constraints

Now it remains to prove that constraints of LPdual are

satisfied. To see this, fix job j and time instant t. We consider

two cases.

Case 1: Machine i = σ(j, t). Then

αj − pj
�ij

βit

=
Δj

k + 2
− pj

�ij
· W (i, t)

k + 3

≤ wj · (t− rj) +
pj

η · (k + 1)
· Wj(t) + wj

�ij

− pj
�ij
· W (i, t)

k + 3
[Lemma II.6]

≤ wj · (t− rj) [since η = 1 + 3ε, k = 1/ε]

Case 2: Machine i �= σ(j, t). Then

αj − pj
�ij

βit

=
Δj

k + 2
− pj

�ij
· W (i, t)

k + 3

≤ wj · (t− rj) +
1

η
· pj
k + 1

· Wj(t) + wj

�σ(j,t)j
− pj

�ij
· W (i, t)

k + 3

[Lemma II.6]

≤ wj · (t− rj)

+

(
pj

η · (k + 1)

W (i, t) + wj

�ij
− pj

k + 3
· W (i, t)

�ij

)

≤ wj · (t− rj) +
wjpj
�ij

[since η = 1 + 3ε, k = 1/ε]

The penultimate inequality follows since the machine

σ(j, t) maximizes the virtual utility of job j at time t. There-

fore, the dual constraints are satisfied for all time instants

t and all jobs j, and we derive that SELFISHMIGRATE is

(1 + ε)-speed augmentation, O(1/ε2)-competitive against

LPprimal, completing the proof of the first part of Theorem

I.1.

Polynomial Time Algorithm and Minimizing Reassign-
ments. A careful observation of the analysis reveals that

to satisfy dual constraints, each job need not be on the

machine which gives the highest virtual utility. We can

change the policy SELFISHMIGRATE so that a job migrates

to a different machine only if its virtual utility increases

by a factor of at least (1 + ε). Note that this does not

change the monotonicity properties of the virtual utility of

a job, hence the entire analysis follows (with the speed

augmentation η increased by a factor of 1 + ε). This also

implies that for any job j, the total number of migrations

is at most (log(1+ε) W + log(1+ε) n), where W is the

ratio of the maximum weight of all jobs to the minimum

weight. Omitting the simple details, we complete the proof

of Theorem I.1.

III. WEIGHTED FLOW-TIME AND ENERGY FOR

ARBITARY POWER FUNCTIONS

In this section we present a simple extension to SELF-

ISHMIGRATE to get a scalable algorithm for minimizing

the sum of weighted flow-time and energy for arbitrary

power functions. The problem formulation is the same as

in Section II, with an added feature. Each machine i can

be run at a variable rate S(i, t) by paying an energy cost

of fi(S(i, t)), where fi is a machine dependent, convex

increasing function (also called as power function). The

rate S(i, t) can be partitioned among the jobs Ji(t), so that∑
j∈Ji(t)

νj(t) ≤ S(i, t). As before, job j ∈ Ji(t) runs at

speed qj(t) = νj(t)× �ij .

As in Section II, we define the completion time Cj of job

j to satisfy
∫ Cj

t=rj
qj(t)dt = pj . As before, preemption and

migration of jobs are allowed without any penalty, but each

job must be assigned to a single m’achine at every instant of

time. The scheduler is not aware of the processing lengths

pj . Our objective is to minimize sum of weighted flow-time

and energy consumed:

Objective =
∑
j

wjFj +
∑
i

∫
t

fi(S(i, t))dt

In a resource augmentation analysis, we assume that

the online algorithm gets (1 + ε) more speed, for any

ε > 0, for consuming the same energy. Alternatively, the

offline benchmark has to pay a cost of fi((1 + ε)s) if

it runs machine i at a rate of s. Speed augmentation is

required to achieve meaningful competitive ratios for the

case of arbitrary power functions. To elaborate on this point,

consider a function f(s) that takes an infinitesimal value in

the interval 0 ≤ s ≤ 1 and sharply increases when s > 1. For

such a power function, any competitive online scheduler has

to be optimal at each instant of time unless we give it more

resources. A scalable algorithm in the speed augmentation

setting implies algorithms with small competitive ratios

when the energy cost function can be approximated by
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polynomials. In particular, the result translates to an O(γ2)-
competitive algorithm (without any resource augmentation)

when the power function is fi(s) = sγ .

Let gi be the inverse of power function fi. Note that

g is an increasing concave function. Before we describe

our algorithm, we make the following simple observation

regarding concave functions.

Proposition III.1. For any increasing concave function g
with g(0) = 0, g(w)

w is decreasing in w.

A. The SELFISHMIGRATE-ENERGY Algorithm

Our algorithm SELFISHMIGRATE-ENERGY, is very simi-

lar to the algorithm SELFISHMIGRATE, and we only outline

the differences with Section II. The most important differ-

ence is the policy that sets the speeds of the machines.

Speed Scaling Policy:

We set the speed of machine i at time t, denoted by S(i, t),
such that the total energy cost is equal to the total weight

of jobs at time t.

fi(S(i, t)) = W (i, t) or equivalenetly,

S(i, t) = gi(W (i, t)) (3)

This is same as the speed scaling policy used in [7], [3].

Single Machine Policy.

The remaining components of the algorithm remain simi-

lar to SELFISHMIGRATE algorithm. We briefly mention the

differences.

Each machine runs WRPS (k) where k = 1
ε . In this

policy, the notions of virtual queues, rank of a job, and the

arrival and departure policies (with associated notation) –

remain the same. In particular, a job that arrives or migrates

to a machine are placed at the tail of the virtual queue and

assigned the highest rank on the machine. At time instant t,
the total processing rate S(i, t) = gi(W (i, t)) of the machine

i is divided among the jobs in Ji(t) as follows.

νj(t) := gi(W (i, t)) · (Wj(t) + wj)
k+1 −Wk+1

j

W (i, t)k+1
(4)

As before, this implies job j ∈ Ji(t) is processed at rate

�ij νj(t).

Virtual Utility of Jobs and Selfish Migration.

Consider a job j ∈ Ji(t) at time t. Its virtual utility is

defined as:

φ(j, t) = gi(Wj(t) + wj) · �ij
Wj(t) + wj

Using this virtual utility, the jobs perform sequential best re-

sponse dynamics, migrating to other machines if it improves

its virtual utility. As before, this leads to a Nash equilibrium

every step.2 If a job moves out of a machine, the weights

Wj′(t) of other jobs on the machine either stay the same

or decrease. Using Proposition III.1, this implies the virtual

utility of other jobs on the machine either remains the same

or increases. Therefore, similar to Lemma II.1, we easily get

the monotonicity of the virtual utilities of jobs.

Lemma III.2. For all jobs j, φ(j, t) is non-decreasing over
the interval t ∈ [rj , Cj ].

Due to space constraints we omit the analysis of Theo-

rem I.2. The analysis uses a convex programming relaxation

due to [3], [15], but the overall flow of the analysis remains

very similar. In particular, the monotonicity property of

φ(j, t) again plays a crucial role in the dual fitting. We

note that Theorem I.2 immediately implies the following

corollary.

Corollary III.3. There is O(γ2)-competitive non-
clairvoyant algorithm for minimizing weighted flow-time
plus energy, when each machine follows a polynomial
power function f(s) = sγ .

We will include the complete analysis in the full version

of this paper.
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