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Abstract—We show that, if truth assignments on n variables
reproduce through recombination so that satisfaction of a par-
ticular Boolean function confers a small evolutionary advan-
tage, then a polynomially large population over polynomially
many generations (polynomial in n and the inverse of the initial
satisfaction probability) will end up almost surely consisting
exclusively of satisfying truth assignments. We argue that this
theorem sheds light on the problem of the evolution of complex
adaptations.
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I. INTRODUCTION

The TCS community has a long history of applying its

perspectives and tools to better understand the processes

around us; from learning to multi-agent systems, game

theory and mechanism design. By and large, the efforts

to understand these areas from a rigorous and algorithmic

perspective have been very successful, leading to both rich

theories and practical contributions. Evolution is, perhaps,

one of the most blatantly algorithmic processes, yet our

computational understanding of it is still in its infancy

(see [16] for a pioneering study), and we currently lack

a computational theory explaining its apparent success.

Algorithmically, how plausible are the origins of evolution

and the emergence of self-replication? Is evolution sur-

prisingly efficient or surprisingly inefficient? What are the

necessary criteria for evolution-like algorithms to yield rich,

interesting, and diverse ecosystems? Why is recombination

(i.e., sexual reproduction) more successful than asexual

reproduction? Given the reshuffling of genomes that occurs

through recombination, how can complex traits that depend

on many different genes arise and spread in a population?

In this work, we begin to tackle this last question of

why complex traits that may depend on many different
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genes are able to efficiently arise in polynomial populations

with recombination. In the standard view of evolution, a

variant of a particular gene is more likely to spread across

a population if it makes its own contribution to the overall

fitness, independent of the contributions of variants of other

genes. How can complex, multi-gene traits spread in a

population? This may seem to be especially problematic

for multi-gene traits whose contribution to fitness does not

decompose into small additive components associated with

each gene variant —traits with the property that even if

one gene variant is different from the one that is needed

for the right combination, there is no benefit, or even a net

negative benefit. Here, we provide one rigorous argument for

how such complex traits can efficiently spread throughout

a population. While we consider this question in a model

that makes considerable (but justifiable) simplifications, this

model makes a theoretically rigorous contribution to the fun-

damental problem of how evolution can produce complexity.

Motivating example: Waddington’s experiment.: In

1953 the great experimentalist Conrad Waddington exposed

the pupae of a population of Drosophilia melanogaster
to a heat shock, and noticed that in some of the adults

that developed, the appearance of the wings had changed

(they lacked a complete posterior crossvein) [17]. He then

maintained a population of flies where only those with

altered wings were allowed to reproduce. By repeating the

procedure of heat shock and selection over the generations,

the percentage of flies with altered wings increased over time

to values close to one. Even more interestingly, beginning at

generation fourteen, some flies exhibited the new trait even

without having been treated with heat shock.

At first sight, this surprising phenomenon — known as

genetic assimilation — recalls Lamarck’s now discredited

belief that acquired traits can be inherited. However, Boolean

functions provide a purely genetic explanation, which ex-

tends the idea originally offered informally by Stern [15]

(see also [2], [5]): Suppose that the phenotype “altered

wings” is a Boolean function of n genes x1, . . . , xn with
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two alleles (variants) each, thought as {−1, 1} variables,

and of another {−1, 1} variable h (standing for “high

temperature”). 1

x1 + x2 + · · ·+ xn +
(1 + h)

2
· k ≥ n,

for some integer k (think of n ≈ 10 , and k ≈ n/3).

To see how the percentage of flies with altered wings

increases in the population over time, we track the allele

frequencies from generation to generation. Let μt
i be the

average value of xi in the population at time t, and assume

the genotype frequencies at time t are distributed according

to a distribution μt (the reason for denoting the distribution

this way will become clear). If mating occurs at random

with free recombination2 then, in expectation, the average

value of each xi in the next generation is given by:

μt+1
i =

Eμt [f(x) · xi]

Eμt [f ]
, (1)

where f(x) = 1 exactly when a fly having genotype

x will develop altered wings (i.e., the above inequality

is satisfied) and f(x) = 0 otherwise. We then assume

that the next generation will be distributed according to a

product distribution μt+1, where each xi has expectation

μt+1
i . By approximating the genotype frequencies of the

population for each generation in this way, it can be shown

by calculation that a trait with this genotypic specification

(a) is very rare in the population under normal temperature

h = 1; (b) it becomes much more common under high

temperature h = 1; (c) jumps to just above 50% after the

first breeding under h = 1; (d) after successive breedings

with h = 1 it is nearly fixed; and (e) if after this h becomes

−1, the trait is still quite common.

Note: Our interpretation of Waddington’s experiment is

a simplification. First, we consider only the distribution of

genotypes in each generation to determine the distribution

of the next; instead, we could first take a finite sample

according to the present distribution and use that sample to

calculate the distribution of the next generation. Such an ap-

proximation can only become exact when the population size

is infinite, but it is a standard and useful one in population

genetics (and we shall eventually consider finite populations

for our main result). We also assumed that each individual

of the new generation is produced by sampling each gene

independently of the other genes, and with probability equal

to the frequencies of the two alleles of this gene in the

parent population (the adults of the previous generation with

altered wings). This assumption turns out to be justified in

the settings that we will consider, as will be discussed in the

following section.

1Here we assume for simplicity haploid organisms, that is, each individ-
ual has only one copy of each gene.

2See the next section for any unfamiliar terms and concepts from
evolution.

Populations of truth assignments

This way of looking at Waddington’s experiment brings

about a very natural question: Is this amplification of satis-

fying truth assignments (outcomes (c) and (d) of experiment

described above) a property of threshold functions, or is it

more general? Does it hold for all monotone functions, for

example? For all Boolean functions?
Consider any satisfiable Boolean function f : {−1, 1}n →

{0, 1} of n binary genes (in the absence of the environmental

variable h which was crucial in Waddington’s phenomenon).

What if genotypes satisfying this Boolean function had a

slight advantage under natural selection? (In Waddington’s

experiment, they had an absolute advantage because of the

experimental design.) For example, imagine that genotypes

satisfying f survive to adulthood more than the others,

in expectation, by a factor of (1 + ε), for some small

ε > 0. Would this trait (that is, satisfaction of the Boolean

function f ) be eventually fixed in the population? And, if so,

could this be a subtle mechanism for introducing complex

adaptation in a population?

To reflect our assumption that satisfaction of f confers

only an ε-advantage, we may take a function f : {−1, 1}n →
{1, 1 + ε}, where we regard the value 1 + ε as “satisfied”,

and the value 1 as “unsatisfied”. We track the allele fre-

quencies from generation to generation as in Waddington’s

experiment: Equation (1) gives us the average value μt+1
i

of each xi in the next generation, and we describe the next

generation by the product distribution μt+1.

Suppose that we continue this process, starting from

distribution μ0, and defining

{μ1
i }, {μ2

i }, . . . , {μt
i} . . . as above. Consider the average

fitness of the population at time t, defined as μt(f) =
Prμt [f(x) = 1 + ε]. The question is, when does μt(f)
approach one? Our first result states that, for monotone

functions, it does after O
(

n
εμ0(f)

)
steps:

Theorem 1. If f is monotone, then μt(f) ≥ 1− n(1+ε)
εtμ0(f) .

Note: This nontrivial result also serves to illustrate

one point: The work is not about satisfiability heuristics

(monotone functions are not an impressive benchmark in

this regard...). Heuristics are about finding good individuals
in a population. In contrast, evolution is about creating good

populations. This is our focus here.

Our ambition is to prove the same result for all Boolean

functions. Immediately we see that this is impossible if

we insist on an infinite population: Consider the function

f = x1 ⊕ x2: starting with the uniform distribution at time

t = 0, the above dynamics would leave the distribution

unchanged, for all time, and hence μt(f) = 1/2 for all

t. The parity function is not the only Boolean function with

this property: for example the function “
∑n

i=1 xi = k”, if

started at μi = k
n , will stay at that spot forever, and will
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always have μt(f) = O(1/
√
k). However, experimentation

shows that these “spurious fixpoints” are not absorbing,

and evolution pulls the distribution away from them and

towards satisfaction. That is, this disappointing phenomenon

is an artifact of the infinite population simplification. Indeed,

random genetic drift due to sampling effects has been

considered to be a significant component of evolution at the

molecular level (it is possible for an allele to become fixed

in the population even in the absence of selection). Thus,

we need to make the model more realistic.

We adopt a model, consisting of the following process: At

each generation t we create a large population of N individ-

uals (we call this the “sampling” step) by sampling N times

from the product distribution μt to obtain y(1), . . . , y(N) (N
is assumed to remain constant from one generation to the

next, which is a standard assumption in population genetics

[6]). The empirical allele frequencies of the sample are given

by a vector νt, where for each i we have:

νti =
1

N

N∑
j=1

y
(j)
i .

We write νt ∼ B(μt) to denote a draw from this distribution

and use νt to denote the implied Bernoulli distribution.

We then enforce the assumed selection advantage of

satisfaction to obtain the “in-expectation” frequencies of the

subsequent generation:

μt+1
i =

Eνt [f(x) · xi]

Eνt [f ]
. (2)

We show that when selection is weak, any satisfiable

Boolean function will almost surely be always satisfied after

polynomially many time steps.

Theorem 2. (informal statement) For any satisfiable
Boolean function f of n variables and any sufficiently small
ε > 0, after T generations of N individuals μT (f) = 1
with probability arbitrarily close to one, where T and N
are polynomial functions of n, 1

ε , and 1
μ0(f) .

The proof of Theorem 2 shows why the population does

not become stuck at the previously discussed “spurious fix-

points;” sampling effects ensure movement over sufficiently

many generations, and selection ensures movement is made

towards satisfaction.

Outline of the paper

In the next section we introduce some basic concepts from

population genetics, we define and justify our simplified

model, and we present a result due to Nagylaki [12] implying

that, if selection is weak, then one can assume that the

genotype distribution is a product distribution. In Section III,

we show Theorem 1 on monotone functions. Our main result

is given in Section IV, and its proof outlined; the full proof

is detailed in the Appendix. In Section V, we conclude with

a discussion of our result, and a number of open problems.

II. EVOLUTION BACKGROUND AND OUR MODEL

The genetic makeup of an organism is its genotype, which

specifies one allele (gene variant) for each genetic site,

or “locus,” in the haploid case. We shall be focusing on

n specific genes of interest (say, a few dozen out of the

many thousands of genes of the species). At each locus,

we assume that there are two alleles segregating in the

population (hence the relevance of Boolean functions). Thus,

a genotype will be a vector in {±1}n. We assume the species

reproduces sexually (this is crucial, see the discussion in

the last section). In a sexual species reproduction proceeds

through recombination, that is, the formation of a new

genotype by choosing alleles from two parental genotypes

in the previous generation. To produce each generation, the

individuals mate at random (we also assume no bipartition

into sexes) and there is no generation overlap (that is, the

new generation is produced en masse just before death of the

previous one). We assume that the population size is constant

at some large number N (expressed as a function of n, the

number of genes of interest, which is the basic parameter).

Each genotype g ∈ {±1}n is assumed to have a fitness value
equal to the expected number of offsprings this genotype will

produce. We also assume that the genes recombine freely,

that is, for any two genes i, j of an offspring, the probability

that the alleles come from the same parent is exactly half

(and not larger, as is the case if the two genes are linked).

These assumptions are simplifications of the standard

model of population genetics used broadly in the literature,

and generally trusted to preserve the essence of selection

in sexual populations. The Boolean assumption is of course

meant to bring into play mathematical insights from that

field, but we believe that it is not restrictive (for example,

allele −1 could stand for “any allele other than allele 1”).

In this paper we shall make two more assumptions. The

first additional assumption is that the fitness values of our

genotypes are either 1 or 1 + ε, where ε > 0 is very small:

the organism will reproduce slightly more in expectation if

an underlying Boolean function is satisfied.We discuss this

restriction in Section V.

The final assumption is more problematic in general, but

justified in the current context: We assume that generating an

individual of the next generation is tantamount to selecting,

independently, an allele for each of the n genes, with

probability equal to the probability of occurrence of that

allele in the parent generation. That is, we assume that the

distribution of the genotypes in a generation is a product
distribution. This situation is called in the population ge-

netics literature linkage equilibrium, or the Wright manifold
[19], [20]. In general, genotype frequencies are known to

be correlated, and this correlation — the distance from the

product distribution — is called linkage disequilibrium [7]

and is of importance and interest in the study of evolution.

However, in the absence of selection, a standard argument
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shows that the distribution of a population quickly reaches

linkage equilibrium (arguments exist both for finite and

infinite populations). Our previous assumption places our

experiment in a regime known as weak selection. Weak

selection means that the fitness values are in a small interval

[1 − ε, 1 + ε], where ε is called the selection strength.

An elegant and powerful result due to Thomas Nagylaki

[12] states that, under weak selection, evolution proceeds

to a point very close to linkage equilibrium. In particular,

assume that a population evolves as we described above

in a regime of weak selection of strength ε, and let m
be the total number of alleles (this is 2n in our case;

actually, Nagylaki’s Theorem also holds under diploid and

partial recombination). By linkage disequilibrium we mean

formally the L∞ distance between the genotype distribution

and the product distribution:

Theorem 3. (Nagylaki’s Theorem, see [12]) Under weak
selection, and after O(logm · log 1/ε) generations, linkage
disequilibrium is O(ε).

In our setting ε is minuscule, so Nagylaki’s Theorem

motivates our assumption that populations are formed “by

independent sampling of the genetic soup.” We strongly

believe that our theorem is true for large ε as well, but this

remains open, as discussed in the last section.

III. WEAK SELECTION ON MONOTONE FUNCTIONS

In this section we give a self-contained proof of Theorem

1. The proof is simple, once a connection is made to discrete

Fourier analysis. In what follows, we assume familiarity with

Fourier analysis over the Boolean cube for product distribu-

tions. We briefly review some basic facts and describe the

notation used in our proofs.

For μ = (μ1, . . . , μn) ∈ [−1, 1]n and a function f :
{−1, 1}nμ → R, where {−1, 1}nμ denotes the Boolean cube

endowed with the product distribution given by μi = E[xi],
we consider the μ-biased Fourier decomposition of f . Let

σ2
i = 1− μ2

i be the variance of each bit. We denote the μ-

biased Fourier coefficients by f̂(S;μ) = Eμ[f · φμ
S ], where

φμ
S =

∏
i∈S

xi−μi

σi
. Let D

(μ)
i f = σi

2 (fi=1 − fi=−1) be the

difference operator for Boolean functions over {−1, 1}nμ. We

have that

D
(μ)
i f =

∑
S�i

f̂(S;μ)φμ
S\{i}, (3)

and in particular, Eμ[D
(μ)
i f ] = f̂(i;μ), which we will use

repeatedly throughout our proofs.

Our first step will be to observe that the change in

allele frequencies from one generation to the next may be

expressed in terms of f ’s linear Fourier coefficients. Let μ
be the vector which specifies the allele frequency of the

population at time t. Then, letting μ′ be the allele frequency

vector at time t + 1 and using the selection specified by

Equation (1), we have that

μ′i − μi = σi
f̂(i;μ)

Eμ[f ]
. (4)

This follows immediately from the definitions:

σi · f̂(i;μ) = σi ·Eμ[f · φμ
i ]

= Eμ[f · xi]−Eμ[f ] · μi

= Eμ[f ] · μ′i −Eμ[f ] · μi.

Our proof uses the following well-known facts, which

are easily derived from the basic notions (see Chapter 2.3,

[13] ). First, we have that the influences of a monotone

function are given by its linear coefficients. (For a function

f : {−1, 1}nμ → R, we denote its influence in direction i

by
∑

S�i f̂(S;μ)
2.) Next, the inequality of Poincaré lower

bounds the total influence of a function by its variance. The

versions below have been scaled to our setting and can be

obtained by applying the original facts to a Boolean function

g : {−1, 1}n → {−1, 1} and setting f(x) = 1 + ε
2 (1 + g).

Proposition 4. Let f : {−1, 1}nμ → {1, 1+ ε} be monotone.
Then for all i ∈ [n] :∑

S�i
f̂(S;μ)2 =

εσi

2
· f̂(i;μ).

Proposition 5. Let f : {−1, 1}nμ → {1, 1+ε} and Var[f ] =

Eμ[f
2]−Eμ[f ]

2. Then∑
i∈[n]

∑
S�i

f̂(S;μ)2 =
∑
S⊆[n]

|S|f̂(S;μ)2 ≥ Var[f ].

Equation (4) tells us that the bias of each bit i increases

according to the corresponding coefficient f̂(i). Proposition

4 tells us that for monotone f , the linear coefficients

correspond to the influences of f . Finally, the inequality of

Poincaré tells us that the linear coefficients must be large.
We may now prove Theorem 1.

Theorem 1. Let f : {−1, 1}n → {1, 1 + ε} be monotone.

Then μt(f) ≥ 1− n(1+ε)
εtμ0(f) .

Proof: Combining Equation (4) with Propositions 4 and

5 tells us that the sum of the biases increases at each step:∑
i∈[n]

(μ′i − μi) =
2

ε ·Eμ[f ]

∑
i∈[n]

∑
S�i

f̂(S;μ)2

≥ 2

ε ·Eμ[f ]
Var[f ]

=
2

ε ·Eμ[f ]
ε2μ(f)(1− μ(f))

Let μt(f) = 1−δ. Then for all t′ ≤ t, the sum of the biases

increases at each step:
n∑

i=1

μt′+1
i −

n∑
i=1

μt′
i ≥

2εμt′(f)(1− μt′(f))

Et′
μ [f ]

≥ 2εμt′(f)δ

1 + ε
≥ 2δεμ0(f)

1 + ε
.
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On the other hand, we know that −n ≤ ∑n
i=1 μ

t′
i ≤ n

for all t′, so t ≤ n(1+ε)
δεμ0(f) .

We remark that Theorem 1 (with worse parameters) can

also be proven using a generalization of the Russo-Margulis

lemma to product distributions, which states that the gradient

of Eμ[f ] (as a function of μ) corresponds to the influences

of f (see appendix of the full version).

IV. THE MAIN RESULT

For a function f : {−1, 1}n → {1, 1 + ε}, consider the

multilinear extension f̃ : [−1, 1]n → [1, 1 + ε] defined by

f̃(μ) = Ex∼μ[f(x)]. Our goal is to understand when f̃(μ) =
1+ ε. We start with the precise statement of the main result

(compare with Theorem 2):

Theorem 6. Let β =
√

ε
N(1−nε) . If

f̃
(
μ0

)
> 1 +

√
2β ln

2

β

then there is some constant C such that for any T ≥ C ·
εn8·N4

1−nε :

Pr
[
f̃
(
μ(T )

)
= 1 + ε

]
≥ 1− 2β − 2/n.

Note that the conditions in Theorem 6 imply restrictions

on the initial probability of satisfaction and the strength of

selection. In particular, the selection coefficient must be in

the range 1/N1/3 < ε < 1/n (we discuss this restriction in

the next section), and the initial probability of satisfaction

must be at least N−1/4. The full proof of the theorem is

given in the appendix of the full version; in this section we

sketch its salient points.

One first difficulty in the proof is this: The convergence

proof gauges the improvement in average population fitness

obtained during the second of the two steps per generation

(the fitness step). However, the first of the two steps (the

sampling step) introduces variance, and we must establish

that this variance is insignificant in comparison with the

increase in fitness. Our first step is to establish that the

difference between the average fitness of the sample and

the average fitness, squared (that is to say, the variance

introduced), is bounded from above by the increase in

average fitness obtained in the fitness step:

Eν∼B [(f̃(ν)− f̃(μ))2] ≤
Eν∼B [f̃(μ

′)− f̃(ν)]/[(N − 1) · (1− nε)]. (5)

Here we focus on one generation, so μ denotes the product

distribution from which the sampling is made, ν the em-

pirical product distribution of the sample (note that f̃(ν)
is a random variable with expectation f̃(μ)), and μ′ the

product distribution resulting from the selection (or fitness)

step. Thus, μ′ is the initial product distribution in the next

generation.

To establish inequality (5), we first show that the right-

hand side is lower bounded by the total mass of the singleton

Fourier coefficients of the biased transform:

f̃(μ′)− f̃(ν) ≥ (1− nε)
n∑

i=1

f̂(i; ν)2. (6)

The intuition in the proof of (6) is that the fitness step

is very close to an ε-long step of the gradient ascent of

the average fitness function (this intuition is very accurate

away from the boundary of the hypercube). Gradient as-

cent in each coordinate is captured by the corresponding

singleton coefficient squared. But then there is an analytical

complication of approximating the overall ascent by the sum

of sequential coordinate-wise ascents; the difficulty is, of

course, that the partial derivatives change after each small

ascent, and the change must be bounded.

This establishes that the fitness increase in the selection

step is larger than the linear Fourier mass, and hence

nonnegative when ε is small. However, the linear Fourier

mass may be zero, as is the case for the exclusive-or function

under the uniform distribution (recall the discussion a few

lines after Theorem 1). Here, sampling effects will ensure

that progress is made in expectation. We show that, on

average, the linear Fourier mass is much larger than the

variance:

Eν∼B

[
(f̃(μ)− f̃(ν))2

]
≤

1

N − 1
Eν∼B

[
n∑

i=1

f̂(i; ν)2

]
(7)

The rather involved proof of (7) takes place entirely within

the biased Fourier domain. Now notice that (7), combined

with (6), completes the proof of inequality (5).

Note that the upper bound on the variance in (5) includes

in the denominator a factor of (1−εn)·N . This immediately

tells us that our technique is sharpest when the population N
is large and the selection strength ε is small — in particular,

it must be smaller than 1
n . This latter point is a rather

puzzling limitation of our result: Why does a theorem about

the effectiveness of natural selection become harder to prove

when selection is stronger? One intuitive explanation is that

in this case selection works very much like gradient ascent,

and it is well known that the convergence of gradient ascent

is harder to establish when the ascent step is large, as a

large step can “skip over” the stationary point sought. Is

this upper limit on ε necessary? This is an intriguing open

question discussed in the last section.

Next, we establish that the total effect of the sampling

steps is small: For any α >
√

2β ln 2β−1,

Pr[|
T∑

t=1

f̃(νt)− f̃(μt−1)| ≥ α] ≤ 2β,

where β =
(

ε
N(1−nε)

)1/2

.
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It is not hard to see that the sum
∑T

t=1 f̃(ν
t)− f̃(μt−1)

constitutes a martingale, albeit one with no obvious upper

bound on each step. We bound the total effect of the

sampling step by resorting to a rather exotic martingale

inequality derived from a generalization of Bernstein’s in-

equality to martingales with unbounded jumps and proved

in [4] (we provide a statement of the inequality in the full

version).

Incidentally, notice that this is the place where it is

proved, quite indirectly, that the sampling step succeeds in

getting the process unstuck from spurious fixpoints such as

( 12 ,
1
2 , . . . ,

1
2 ) for the exclusive-or function: Since the total

effect of sampling is limited, the increase in average fitness

must eventually prevail.

Finally, when the process is near a vertex of the hy-

percube, fitness increases are too small to help finish the

argument, but here we rely on the fact that the process is

very likely to drift so close to a vertex that it will eventually

get stuck there , completing the proof of the main result.

V. DISCUSSION

We proved a novel and highly nontrivial aspect of Boolean

satisfiability: By randomly crossing assignments and fa-

voring satisfaction slightly, one can breed a population of

pure satisfying truth assignments. We argued that this rather

curious property seems important in understanding one

intriguing aspect of evolution: how complex traits controlled

by many genes can emerge.

There are many roads of mathematical inquiry opened

by this theorem. First, can the limitations/restrictions of our

model be relaxed so that it better reflects the realities of

life? Some of the assumptions in our model are arguably

unrealistic (haploidy, fixed population size, random mating,

partly in-expectation fitness calculation), but these follow

widely accepted practices in population genetics needed for

mathematical simplification. We also make the assumption

of weak selection, but this is also a very defensible one for

unlinked loci.

There are, however, a few further restrictions of our model

that call for discussion:

• Two alleles per gene. The motivation is, of course,

that this assumption ushers in the powerful analytical

toolbox of Boolean functions. We have no doubt that

similar results hold for more alleles, but would require

a great number of technical adjustments.

• Fitness landscape. We assumed a very specialized fit-

ness landscape with values 1 and 1 + ε only. This is

a natural simplification that facilitates the connection

to Boolean functions, but we do not believe it is

an essential one. We believe that this result can be

extended to much richer landscapes with a small gap,

for example to situations in which fitness values are in

[1− δ, 1] ∪ [1 + ε, 1 + ε+ δ] for some small δ > 0.

A harder question is, what happens if the fitness gap ε is

larger? As we have mentioned, this is an analytical challenge

with roots in the difficulty of the analysis of gradient descent.

Of course, a constant gap would bring us outside the realm

of weak selection, and render our approximation by product

distribution baseless. There are two ways we can proceed:

One is to prove that the exact recurrence equations of

genotype frequencies yield eventual satisfaction. This seems

possible but challenging.

Another avenue, which we have followed for some time,

is to work with product distributions anyway. In particular,

what if the fitness landscape has values {0, 1} — that

is to say, non-satisfying truth assignments are removed

from the population, as in Waddington’s experiment? This

is a realistic approximation if, for example, this selection

does not happen in every generation but every O(log n)
generations (because breeding without selection is known

to take you close to the Wright manifold). In such a

setting, our quadratic bound for the in-expectation process of

monotone functions no longer requires any dependence on

the initial probability of satisfaction μ0(f). For the process

with sampling, we have the following conjecture.

Conjecture: If the fitness landscape has values {0, 1},
then the process reaches near universal satisfaction with
probability approaching 1 as the population size goes to
infinity.

We now want to point out an obvious and yet surprising

aspect of our work: In the traditional framework of adaptive

evolution, each allele spreads in the population mainly either

due to an additive contribution to fitness that it makes in and

of itself (let us call this “traditional propagation”) or due

to random genetic drift [1], [19], [20], [18]. In our model,

however, alleles at different genes are spreading in the popu-

lation as governed by the complex interactions between them

that are continually subject to selection. Thus, a population

can change dramatically through a novel process involving

subtle changes in genetic statistics and simultaneous gradual

emergence in the whole population [8], [11], and not by

traditional propagation.

Furthermore, notice that since recombination is a crucial

ingredient of our analysis, our results inform the question of

the role of sex in evolution. In this regard they add to recent

works that have begun to examine the role of sex while

giving full weight to the importance of genetic interactions

[3], [9].

Finally, can our bounds be improved? For the monotone

case, it is easy to see that the TRIBES function with

appropriate fan-in provides a matching lower bound. As for

the general case, we feel that the very generous bounds of the

main result can be improved substantially. For example, the

assumed time bound is only necessary in order to finish the

last part of the argument (convergence to a vertex) once the

vast majority of the population is already satisfying; more
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analysis is needed to investigate this subtle phenomenon.

Our proof that the population converges to a single

satisfying truth assignment may seem a troubling aspect of

our result. Two remarks: First, the loss of genetic diversity

should not be surprising in itself. With drift alone, for each

locus, one allele will become fixed eventually (where the

probability that a particular allele will be the fixed allele

is proportional to its current frequency in the population).

Second, in our process many satisfying truth assignments

are likely to survive for a very long time before the random

walk clears the picture. This fact may be more relevant than

the characteristics of eqilibrium; after all, evolution happens

in the transient.
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