
Random Walks that Find Perfect Objects
and the Lovász Local Lemma

Dimitris Achlioptas
Deparment of Computer Science

University of California, Santa Cruz

Fotis Iliopoulos
Deparment of Electrical Engineering

National Technical University of Athens

Abstract—We give an algorithmic local lemma by establishing
a sufficient condition for the uniform random walk on a directed
graph to reach a sink quickly. Our work is inspired by Moser’s
entropic method proof of the Lovász Local Lemma (LLL) for
satisfiability and completely bypasses the Probabilistic Method
formulation of the LLL. In particular, our method works when
the underlying state space is entirely unstructured. Similarly to
Moser’s argument, the key point is that algorithmic progress
is measured in terms of entropy rather than energy (number
of violated constraints) so that termination can be established
even under the proliferation of states in which every step of the
algorithm (random walk) increases the total number of violated
constraints.

Index Terms—Lovász Local Lemma, Entropic Method, Ran-
dom Walks

I. INTRODUCTION

Let Ω be a (large) set of objects and let F be a collection

of subsets of Ω, each subset comprising objects sharing some

negative feature. For example, in a CNF formula on n variables

with clauses c1, c2, . . . , cm, each clause ci corresponds to the

subset of Ω = {0, 1}n, i.e., the subcube of truth assignments,

violating ci. We will refer to each subset f ∈ F as a flaw and,

following linguistic rather than mathematical convention, say

that f is present in σ if f � σ. We will say that an object

σ ∈ Ω is flawless (perfect) if no flaw is present in σ.

Given Ω and F we can often prove the existence of flawless

objects using the Probabilistic Method and in many interesting

cases this is the only way we know how to do so. In order to

employ the Probabilistic Method we introduce a probability

measure μ on Ω and consider the collection of (“bad”) events

A corresponding to the flaws (one event per flaw). The

existence of flawless objects is then equivalent to μ assigning

strictly positive measure to the intersection of the complements

of the bad events. Clearly, such positivity always holds if the

events in A are independent and none of them has measure 1.

One of the most powerful tools of the Probabilistic Method is

the Lovász Local Lemma (LLL) asserting that such positivity

also holds under a condition of limited dependence among the

events in A. Below we state a highly compact corollary of the

LLL which is nonetheless sufficient for most applications (we

discuss the LLL extensively in Section III).

Research supported by ERC Starting Grant 210743 and an Alfred P. Sloan
Research Fellowship. The research of DA was partially performed at CTI and
the Department of Informatics and Telecommunications, University of Athens.

Asymmetric LLL. Let A = {A1, A2, . . . , Am} be a set of
events, and let Di ⊆ A denote the dependency set of event
Ai, i.e., Ai is mutually independent of all events not in Di. If
for every event Ai, ∑

Aj∈Di

Pr[Aj ] ≤ 1

4
, (1)

then with positive probability none of the events in A occurs.

Remark 1. If Pr[Ai] < ε for all i, then 1/4 in (1) can be
replaced by 1/e− φ(ε), where φ→ 0 as ε→ 0.

As one can imagine, the amount of time between prov-

ing that flawless objects exist and asking whether they can

be found efficiently is short. In contrast, making the LLL

constructive has been a long quest, starting with the work

of Beck [3], with subsequent works of Alon [2], Molloy

and Reed [16], Czumaj and Scheideler [5], Srinivasan [22]

and others, each such work establishing a method for finding

flawless objects efficiently, but in all cases under significant ad-

ditional conditions beyond those required for existence by the

LLL. The breakthrough was made by Moser [17] who showed

that a shockingly simple algorithm nearly matches the LLL

condition for k-CNF formulas. Very shortly afterwards, Moser

and Tardos [18] established a general framework within which

the LLL is efficiently constructive. We discuss the framework

of [18] and its relationship to our work in Sections III and IV.

Inspired by the work of Moser [17] we take a more direct

approach to finding flawless objects, bypassing the probabilis-

tic formulation of the existence question. Without introducing

a measure on Ω we seek flawless objects as follows: start

with an arbitrary object in Ω; keep transforming it until it

(hopefully) becomes flawless by taking a random walk on Ω.

With this in mind, we will refer to the elements of Ω as states.

Each state transformation (step of the walk) σ → τ will be

taken to address a flaw present at σ. A step may eradicate other

flaws beyond the one addressed but may also introduce new

flaws (and, in fact, may fail to eradicate the addressed flaw).

Concretely, for each σ ∈ Ω, let U(σ) = {f ∈ F : σ ∈ f},
i.e., U(σ) is the set of flaws present in σ. For each σ ∈ Ω
and f ∈ U(σ), we require a non-empty A(f, σ) ⊆ Ω which

we will refer to as the set of possible actions for addressing

flaw f in state σ. To address flaw f in state σ we select

uniformly at random an element τ ∈ A(f, σ) and walk to state

τ , noting that possibly τ = σ ∈ A(f, σ). We note that the set

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.59

494

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.59

494



of actions, A(f, σ), for addressing a flaw f in each state σ
can depend arbitrarily on σ. As we discuss in Section IV, this

fact moves the Local Lemma from the Probabilistic Method

squarely within the purview of Algorithm Design.

We represent the set of all possible state transformations as a

multi-digraph D on Ω formed as follows: for each state σ, for

each flaw f ∈ U(σ), for each state τ ∈ A(f, σ) place an arc

σ
f−→ τ in D, i.e., an arc labeled by the flaw being addressed.

Thus, D may contain pairs of states σ, τ with multiple σ → τ
arcs, each such arc labeled by a different flaw, each such flaw

f having the property that moving to τ is one of the actions

for addressing f at σ, i.e., τ ∈ A(f, σ). Since we require that

the set A(f, σ) is non-empty for every flaw in U(σ) we see

that a vertex of D is a sink iff it is flawless.

We focus on digraphs satisfying the following condition.

Atomicity. D is atomic if for every flaw f and state τ there
is at most one arc incoming to τ labeled by f .

The purpose of atomicity is to capture “locality of action”.

In particular, note that if D is atomic, then every walk on D
can be reconstructed from its final state and the sequence of

labels on the arcs traversed, as atomicity allows one to trace the

walk backwards unambiguously. We want to emphasize that

atomicity does not represent an algorithmic limitation beyond

what is inherent in locality of action. A fruitful way to think

about this point is to consider the case where Ω has product

structure over a set of variables, e.g., a Constraint Satisfaction

Problem. In that case atomicity is equivalent to the following:

1) Each constraint (flaw) forbids exactly one joint value

assignment to its underlying variables.

2) Each state transition modifies only the variables of the

violated constraint (flaw) that it addresses.

Condition 1 expresses a syntactic requirement of break-

ing down compound constraints to constituent parts akin to

satisfiability constraints. So, for example, to encode graph

q-colorability we must write q constraints (flaws) per edge,

one for each color. This flattening enables a uniform treatment

and we do not pay any price for it. In fact, in many cases it is

strictly advantageous as it affords a more refined accounting of

conflict between constraints. Condition 2, a genuine restriction,

expresses the idea of “focusing” introduced by Papadimitriou

for 2-SAT [19], i.e., that every state transformation is the result

of attempting to eradicate some specific flaw.

Conditions 1, 2 are sufficient (and necessary) for atomicity.

To see sufficiency, imagine that there exist two arcs σ1
f−→ τ

and σ2
f−→ τ , i.e., two state transformations involving only

variables of f , leading to state τ . Since f must be present

in both σ1 and σ2, Condition 1 implies that if σ1 �= σ2, then

there exists at least one variable v not bound by f which takes

different values in σ1, σ2. In that case, though, Condition 2

implies that v will have the same value before and after each

of the two transformations, leading to a contradiction.

Having defined the multi-digraph D on Ω we will now

define a digraph C on the set of flaws F , reflecting some

of the structure of D.

Causality Digraph. Given a multi-digraph D on Ω with arcs
labeled by elements of F , let C ′ = C ′(Ω, F,D) be the multi-
digraph on F formed by mapping each arc σ

f−→ τ of D as
follows:
• If f ∈ U(τ), then add a self-loop f → f in C ′.
• For each g ∈ U(τ) \ U(σ) add an arc f → g in C ′.

The causality digraph C = C(Ω, F,D) is the simple digraph
that results by retaining one occurrence of each arc in C ′. The
neighborhood of a flaw f is Γ(f) = {g : f → g exists in C}.

In other words, C captures “potential causality”, where f

causes g in σ
f−→ τ if g is present in τ but was not present in

σ, or if g = f is (still) present in τ , i.e., the action failed to

eradicate the flaw it addressed. It is important to note that C
contains an arc f → g if there exists even one state transition

aimed at addressing f that causes g to appear in the new state.

In that sense, C is a “pessimistic” estimator of causality (or,

alternatively, a lossy compression of D). This pessimism is

both the strength and the weakness of our approach (and of

the entropic method in general). On one hand, it makes it

possible to extract results about algorithmic progress without

tracking state evolution. On the other hand, it only gives good

results when C can remain sparse even in the presence of such

stringent arc inclusion. We feel that this tension is meaningful:

maintaining sparsity requires that the actions for addressing

each flaw across different states are coherent with respect to

the flaws they cause.

Without loss of generality (and to avoid certain trivialities),

we can assume that C is strongly connected. To see this, let

C1, . . . , Ck be the strongly connected components of C and

consider the DAG with vertices c1, . . . , ck, where for i �= j,

ci points to cj iff there exist f ∈ Ci and g ∈ Cj such that

f → g exists in C. If ci is a source vertex in the DAG, we can

first only address flaws in Ci until we reach a state σi ∈ Ω in

which no such flaws are present. If σi is flawed, we remove ci
from the DAG, select a new source vertex cj , and repeat the

same idea continuing from σi. The actions that will be taken

to address flaws in Cj will never introduce flaws in Ci etc.

So far we have avoided discussing which flaw to address in

each flawed state, demanding instead a non-empty set A(f, σ)
of actions for each flaw f present in a state σ. We will discuss

the motivation for this in Section II. For now, suffice it to

say that we consider algorithms which employ an arbitrary
ordering π of F and in each flawed state address the greatest

flaw present according to π. Formally, we define the following.

Definition 1. If π is any ordering of F , let Iπ : 2F → F be
the function mapping each subset of F to its greatest element
according to π, with Iπ(∅) = ∅. We will sometimes abuse
notation and for a state σ ∈ Ω, write Iπ(σ) for Iπ(U(σ)) and
also write I for Iπ when π is clear from context.
Dπ ⊆ D is the result of retaining for each state σ only the

outgoing arcs with label Iπ(σ).

The next definition reflects that since actions are selected

uniformly, the number of actions available to address a flaw,

i.e., the breadth of the “repertoire”, is important.

495495



Definition 2. For each flaw f ∈ F , let

Af = min
σ∈f

|A(f, σ)| . (2)

Specifically, Af will be used to bound from below the

amount of randomness consumed every time f is addressed.

(The minimum in (2) is often inoperative with |A(f, σ)| being

the same for all σ ∈ F .)

Last is our key definition, strongly reminiscent of (1) in the

asymmetric LLL.

Amenability. D is amenable if for every f ∈ F ,∑
g∈Γ(f)

1

Ag
<
1

e
. (3)

We are now ready to state our main result.

Theorem 1 (Main result). Fix any ordering π of F and any
σ1 ∈ Ω. If D is amenable, then the uniform random walk on
Dπ started from σ1 reaches a sink within O(|F | + log |Ω|)
steps with high probability. Specifically, the probability that a
sink is not reached within t = (T0 + s)/δ steps is 2−s, where

T0 = log2 |Ω|+ 2|U(σ1)| ,
δ = 1−max

f∈F

∑
g∈Γ(f)

e

Ag
.

If Af is the same for all f ∈ F , then T0 = log2 |Ω|+ |U(σ1)|.
Theorem 1 has a few features worth noting. The first is

that since the initial state of the walk can be arbitrary, any

foothold on Ω suffices to apply the theorem, in contrast to the

requirement of being able to sample from Ω according to some

distribution. While being able to sample from Ω is generally

a non-issue in existing applications of the LLL, this is only

true precisely because Ω has been a highly structured set and

μ a very simple measure on Ω, as we discuss in Section IV.

The second feature is that the running time depends only

on the number of flaws present in the initial state, rather than

on |F |. This has an implication conceptually analogous to the

work of Hauepler, Saha, and Srinivasan [11] on core events:

it is possible to get an efficient algorithm even when |F | is

very large, e.g., super-polynomial in the problem’s encoding,

if we can show that |U(σ1)| is small, e.g., by proving that

in every state only polynomially many flaws may be present.

This feature provides great flexibility in the design of flaws,

which we promptly explore in one of our first applications [1].

Lastly, the bound on the running-time is sharper than a

typical high probability bound, being instead akin to cutoff

bounds for Markov chains [6] (wherein the distance to the

stationary distribution drops from near 1 to near 0 in a very

small number of steps past a critical point). Here the walk

first makes T0/δ steps without any guarantee of progress but

from that point on every single step has constant probability

of being the last step. While, pragmatically, a high probability

bound would be just as useful, the fact that our bound naturally

takes this form suggests a potential deeper connection between

amenability and Markov chains.

II. FLAW SELECTION

The astute reader will notice that the definition of amenabil-

ity does not entail any element of flaw choice. As a result,

Theorem 1 asserts that if D is amenable, a uniform random

walk on Dπ reaches a sink quickly for every permutation π
of the flaws. As this is an unnecessarily luxurious conclusion,

it is natural to try to sharpen our result by selecting the flaw

order π first, so that the causality digraph defining amenability

is the image of the (much) sparser Dπ instead of D. However,

since an arc f → g exists in the causality digraph C as long

as there is even one transition addressing f that causes g in

D, it is not at all clear that sparsifying D using a generic π
helps significantly. Moreover, when a “special” π does help

significantly, coming up with π is non-trivial.

For example, in the setting of satisfiability, if f, g are clauses

that share variable v with opposite signs, then not having the

arc f → g in C requires either that addressing f should never

involve flipping v, cutting Af by half, or finding a permutation

of the clauses such that in every state in which f is the greatest

violated clause, g is satisfied by some variable other than v.

The only non-trivial case we know where the latter can be

done is when F is satisfiable by the pure literal heuristic.

As far as we know, the method by which a bad event (flaw)

is selected in each step does not affect the performance of any

of the algorithmic extensions of the LLL even though in the

setting of [18] this choice can be arbitrary. The only use we

know of this freedom lies in enabling parallelization when Ω
is a structured set [18], [13], [14], [4]. Since we allow Ω to be

completely amorphous, it is not readily clear how to approach

parallelization in our setting.

At the same time it is clear that in practice the choice of

which flaw to address in each step matters. Inspired by the

so-called LeftHanded version of the Local Lemma introduced

by Pedgen [20], in Theorem 2 (see Section VI) we give a

condition under which the flaw order π can be chosen in a

provably beneficial way, by organizing the flaws in an order

akin to an elimination sequence. Specifically, we show that

when one or more flaws fail the amenability condition (3),

we can seek a permutation π and a “responsibility digraph” R
derived from C to model a “shift of responsibility” from flaws

failing the condition to flaws that have slack. While R need

not be a sparsification of C, if all flaws satisfy (3) with ΓR(f)
replacing Γ(f) = ΓC(f), our result asserts that a flawless

object can be found quickly. Interestingly, to reap this benefit

we must employ a recursive, i.e., non-Markovian, process

to select which flaw to address in each step. In particular,

different flaws present in a state may be addressed in different

steps. This is why we required a non-empty set of actions for

every flaw present in a state, and why the definition of the

causality digraph ignores the effect of clause choice.

Finally, we note that flaw choice in our framework is not

really restricted to using a single permutation. For example,

in the non-recursive setting, before beginning the walk we can

select an arbitrary infinite sequence of permutations π1, π2, . . .
of F and in the i-th step of the walk address the greatest flaw

496496



present according to πi. If π1 = π2 = · · · we are back to the

single-permutation setting, while if, for example, each πi is

an independent uniformly random permutation, the algorithm

addresses a uniformly random flaw present in each step. At the

same time, we must make clear that our framework does not
accomodate arbitrary flaw selection functions and, in fact, we

do not see how to extend it beyond permutation-based choice.

To keep the presentation of our results uniform (and compact)

we have stated both Theorems 1 and 2 in terms of a single

permutation. We do point out the one place in our proofs that

changes (trivially) to handle multiple permutations.

III. THE LOVÁSZ LOCAL LEMMA

The idea of the Local Lemma was first circulated by Lovász

in the early 1970s in an unpublished note. It was published

by Erdős and Lovász in [9]. The general form, also due in

unpublished form to Lovász, was given by Spencer in [21].

General LLL ([9], [21]). Let A = {A1, A2, . . . , Am} be a
set of m events, and let Di ⊆ A denote the dependency set
of Ai, i.e., Ai is mutually independent of all events not in Di.
If there exist x1, . . . , xm ∈ [0, 1) such that for all i ∈ [m],
Pr(Ai) ≤ xi

∏
Aj∈Di

(1− xj), then the probability that none
of the events in A occur is at least

∏m
i=1(1− xi) > 0.

The main value of the LLL lies in that it can deliver strong

results even when μ is chosen without any consideration of

the flaws/events, rendering it indistinguishable from magic.

For example, when Ω has product structure over a set V ,

such as when coloring the vertices of a graph, μ is typically

taken to be the product measure in which for each v ∈ V ,

the measure μ(v) is uniform over the the domain of v. Such

choice also greatly simplifies the search for suitable {xi}, to

the point that corollaries offering “pre-packaged” {xi}, such

as the Asymmetric LLL in (1), suffice for most applications.

In [10], Erdős and Spencer noted that one can replace

the LLL’s requirement that each bad event is dependent with

few other bad events with the weaker requirement that each

bad event is negatively correlated with few other bad events.

That is, the non-occurrence of a bad event may boost the

probability of a few bad events, but all other bad events should

be either unaffected, or become less likely. One can represent

the boosting relationships as a so-called lopsided dependence
digraph, wherein each event points to the events it may boost.

For v a vertex in a digraph L, we let Γ(v) = ΓL(v) denote

the out-neighbourhood of v in L.

Lopsided LLL ([10]). Let A = {A1, A2, . . . , Am} be a set
of m events and let L be a digraph on [m]. If there exist
x1, . . . , xm ∈ [0, 1) such that for all i ∈ [m] and all S ⊆
[m] \ Γ(i),

Pr

⎛
⎝Ai

∣∣∣∣∣∣
⋂
j∈S

Aj

⎞
⎠ ≤ xi

∏
j∈Γ(i)

(1− xj),

then the probability that none of the events in A occur is at
least

∏m
i=1(1− xi) > 0.

A natural setting for the lopsided LLL arises when one seeks

a collection of permutations satisfying a set of constraints and

considers the uniform measure on them. While the bad events

(constraint violations) are now typically heavily dependent

(since all elements of each permutation affect one another),

one can often establish sufficient negative correlation among

the bad events to apply the lopsided LLL.

A. Constructive Versions

In a landmark paper [18], Moser and Tardos made the

General LLL efficiently constructive for the case of product
measures over explicitly presented variables. In this so-called

variable setting, each event Ai is associated with the set of

variables vbl(Ai) that determine it, and Ai, Aj are dependent

whenever vbl(Ai) ∩ vbl(Aj) �= ∅. They proved that if the

condition of the general LLL holds, then repeatedly selecting

any occurring event in A (flaw present) and (addressing it by)

resampling every variable in it independently of all others,

leads to an elementary event where no event in A holds

(flawless object) after a polynomial number of resamplings.

Since the dependence relationship in the variable setting is

inherently symmetric, the results of [18] do not apply for the

lopsided LLL (with the notable exception of CNF-SAT).

More recently, Harris and Srinivasan [13] made the lopsided

LLL constructive for the uniform measure on [Cartesian

products of] permutations, by far the most common use case.

Pointing out that the lopsided LLL has been gainfully applied

to other measures as well, they asked if their results can be

extended beyond permutations, leaving as a canonical open

problem whether the results of Dudek, Frieze and Ruciński [8]

regarding Hamilton Cycles in edge colored hypergraphs can

be made constructive.

In Section VII we show how our framework yields efficient

algorithms for the results of [8] with minimal effort.

IV. COMPARISON TO OUR WORK

Besides dispensing with the need for Ω to have product

structure (variables) or symmetry (permutations), our setting

has two additional benefits.

A. State-dependent Transformations

The LLL, framed as a result in probability, begins with

a measure μ. Its algorithmic versions amount to moving

within Ω by applying probabilistic transformations consistent
with μ. Specifically, in the variable setting of [18], the only

transformation allowed is resampling all variables of a bad

event according to the measure’s projection on them. As μ
must be a product measure, this means that each variable

is resampled independently of all others and using the same

distribution every time it is resampled, i.e., obliviously to the

current state. In the partial resampling framework of [12] one

can resample a subset of a bad event’s variables, but again

only in the fashion of [18]. Similarly, when μ is the uniform

measure on permutations [13], the elements whose images

form a violated constraint must be reshuffled in a very specific

way, again without regard for the violation of other constraints.

497497



In contrast, our framework allows the set of transformations

for addressing each flaw present in a state σ to depend

arbitrarily on σ. As a fundamental example, we can recover the

(elementary) fact that a graph G with maximum degree Δ can

be colored with q = Δ+ 1 colors, overcoming a well-known

shortcoming of the LLL (see the survey of Szegedy [23]).

Specifically, imagine that to recolor a monochromatic edge e
we select an endpoint v of e arbitrarily and assign v a new

color c. When the choice of c must be uniform among all
colors, as mandated when using the uniform measure in the

Moser-Tardos variable setting [18], the obliviousness of the

choice necessitates the use of many colors relative to Δ for

collisions to become rare. Specifically, the LLL can only work

when q > eΔ. On the other hand, in our setting, the color c
can be selected uniformly among the colors available for v,

i.e., the colors not appearing in v’s neighborhood, by taking

the set of actions A(f, σ) to be precisely the set of states that

result by assigning available colors to v in σ. Thus, as soon

as q ≥ Δ+1, every A(f, σ) �= ∅ and Γ(f) = ∅ for all f ∈ F ,

trivializing the amenability condition (3).

B. Dependencies vs. Actions

Unlike the general LLL and the variable setting of Moser

and Tardos [18] where the (dependency) relation between

events is symmetric, our (causality) relation, similarly to the

lopsided LLL, is not. We consider asymmetry a significant

structural feature of our work as it can yield strictly sparser

relations, as demonstrated in [23]. Asymmetry is also essential

in our development of structured clause choice in Section VI.

To enable asymmetry our setting replaces the limited neg-

ative dependence condition of the lopsided LLL, which can

be highly non-trivial to establish [15], with limited causality

under atomicity, a condition that is not only far less restrictive,

but also much easier to check. Moreover, to our pleasant

surprise, in all applications we have considered so far [1], we

have found atomicity to be a very valuable aid in the design

of flaws and actions, i.e., “a feature not a bug”.

V. PROOF OF THEOREM 1

A. Versions of Flaws

For any ordering π of the flaws atomicity implies that the

digraph Dπ is simple, since for every state σ we only retain

the outgoing arcs in D labeled by Iπ(σ) = I(σ). For the

purposes of the proof it will be convenient to turn Dπ to a

multidigraph D∗π as described below. We emphasize that this

transformation is trivial from an algorithmic point of view, but

helps with the associated eventual counting, leading to a more

compact proof. Let Z ≥ 1 be the least common multiple of

the integers {Af : f ∈ F}.
We replace each arc σ

f−→ τ in Dπ with Z/Af new arcs from

σ to τ , carrying labels f1, f2, . . . , fZ/Af
. We refer to each such

label as a version of flaw f . Observe that since all arcs leaving

each σ ∈ Dπ have the same label, all arcs leaving a state σ
are replaced by the same number Z/AI(σ) of versioned arcs.

Therefore, the uniform random walk on the versioned graph

started at σ1 induces exactly the same probability distribution

on sequences of vertices as the uniform walk on Dπ (indeed

the two walks can be coupled so that the sequence of vertices

visited is the same). For the purposes of the analysis it will be

convenient to also connect each sink vertex of D∗π to σ1 using

Z distinct, parallel arcs (not labeled by elements of F ), so that

the walk continues even after it reaches a flawless state.

Definition 3. A walk Σ = σ1
w1−−→ σ2

w2−−→ σ3 · · ·σt
wt−→ σt+1

is called a t-trajectory. A t-trajectory is bad if it only goes
through flawed states.

Intuitively, in order to move away from a flawed state σ
the uniform random walk on D∗π first choses τ ∈ A(I(σ), σ)
uniformly at random, i.e., the next state, and then consumes

an additional amount of randomness to “choose a version” of

I(σ), i.e., to chose one of the Z/AI(σ) arcs from σ to τ . Based

on this view, we will typically speak of the flaw f addressed

by the algorithm at each step, rather than of the version of f .

Note that to move from any flawed state σ to the next state,

the walk must select among

|A (I(σ), σ) | · Z

AI(σ)
≥ Z

possibilities. Also, any step from a flawless state to σ1
requires choosing amongst exactly Z possibilities. Therefore,

the probability of any t-trajectory is at most 1/Zt. Having

a uniform upper bound on the probability of each trajectory

as a function of its length was precisely why we introduced

versioned flaws.

To prove Theorem 1 we will give T0 = T0(|Ω|, |U(σ1)|)
such that the probability that a (T0 + s)-trajectory on D∗π is

bad is exponentially small in s. To do this, let Bad(t) be the

set of bad t-trajectories starting from σ1 and notice that, per

our discussion above, each such trajectory has probability at

most 1/Zt. Therefore, it suffices to bound |Bad(t)|/Zt.

Our first step is the same as Moser’s [17] for SAT, gen-

eralized to the notion of atomicity, and amounts to defining

an almost-1-to-1 map from bad t-trajectories to sequences of

t flaws. A crucial point is that while the map is not 1-1, it

becomes 1-1 with the addition of a piece of information whose

size is independent of t. Specifically, Claim 1 below implies

that |Bad(t)| is bounded by the number of possible witnesses

of bad t-trajectories multiplied by |Ω|.
Definition 4. If Σ = σ1

w1−−→ σ2
w2−−→ σ3 · · ·σt

wt−→ σt+1 is a
bad t-trajectory, the sequence W (Σ) = w1, w2, . . . , wt, i.e.,
the sequence of versioned flaws labeling the arcs Σ, is the
witness of Σ.

Claim 1. If D is atomic then the map from bad t-trajectories
Σ→ 〈W (Σ), σt+1〉 is one-to-one.

Proof. Let ft be the flaw of which wt is a version. The

atomicity of D implies that σt is the unique state in D with

an arc σt
ft−→ σt+1. Etc.

The next step, which is novel, amounts to representing the

witness (stripped of version information) as a sequence of sets

in a way that reflects causality.

498498



B. Break Sequences

To strip a bad t-trajectory Σ of its version information we

let qi = I(σi), i.e., qi is the (unversioned) flaw of which wi

is a version. We define the Version Sequence, V (Σ), of Σ to

be the sequence of t integers in [maxf∈F Z/Af ] whose i-th
element is the version of I(σi). So, if wi = fj , then qi = f
and the i-th element of V is j. Clearly, given the sequence

q1, q2, . . . , qt and V (Σ) it is trivial to reconstruct W (Σ).

Definition 5. Let B0 = U(σ1). For all 1 ≤ i ≤ t − 1, let
Bi = U(σi+1) \ (U(σi) \ I(σi)).

Thus, Bi is the set of flaws “introduced” by the i-th step of

the algorithm, where a flaw f “introduces itself” if it remains

present after an action from A(f, σi) is taken (per our earlier

discussion note that we are referring to flaws not versions

thereof). Let B∗i ⊆ Bi comprise the flaws in Bi addressed by

the walk, i.e., Bi \ B∗i consists of the flaws in Bi eradicated

“collaterally” by an action taken to address some other flaw

(comprising set Oi below), and the flaws in Bi which remained

present in every subsequent state without being addressed

(comprising set Ni below).

Definition 6. For 0 ≤ i ≤ t− 1, let

Oi = {f ∈ Bi | ∃j ∈ [i+ 1, t] :

f /∈ U(σj+1) ∧ ∀� ∈ [i+ 1, j] : f �= q�}
Ni = {f ∈ Bi | ∀j ∈ [i+ 1, t] :

f ∈ U(σj+1) ∧ ∀� ∈ [i+ 1, t] : f �= q�}
B∗i = Bi \ {Oi ∪Ni} .

Given B∗0 , B
∗
1 , . . . , B

∗
i−1 we can determine q1, q2, . . . , qi

inductively, as follows. Let E1 = B∗0 , while for i ≥ 1 let

Ei+1 = (Ei − qi) ∪B∗i . (4)

By construction, the set Ei ⊆ U(σi) is guaranteed to contain

qi = I(σi) = I(U(σi)). Since I = Iπ returns1 the greatest

flaw in its input according to π, it must be that Iπ(Ei) = qi.
We note that this is the only place we ever use that the function

I is derived by an ordering of the flaws, thus guaranteeing that

for every f ∈ F and S ⊆ F , if I(S) �= f then I(S\f) = I(S).
We refer to the sequence B∗ = B∗0 , B

∗
1 , . . . , B

∗
t−1 as the Break

Sequence of Σ and note that, as described above, it suffices

to reconstruct the sequence q1, q2, . . . , qt.

C. Break Forests

Next we give another 1-to-1 map, showing how to represent

the Break Sequence of a bad t-trajectory as a labelled forest

with t nodes, called the Break Forest of Σ.

The Break Forest of a bad t-trajectory Σ has precisely one

vertex per step of Σ, labelled by the flaw addressed by the step.

The set B∗0 will provide the labels for the roots of the trees

of the forest, while for each i ≥ 1, the children of the vertex

corresponding to the i-th step are labelled with the flaws in B∗i .

So, for example, if B∗i = ∅, then the vertex corresponding to

1If instead of π we had a sequence of permutations π1, π2, . . ., we would
simply use Iπi to determine qi from Ei.

the i-th step will be a leaf in the forest. Thus, the Break Forest

φ = (Φ, lφ) of a bad t-trajectory is a finite, rooted, forest Φ
with exactly t vertices, organized into no more than |U(σ1)|
trees, together with a function (labeling) lφ : V (Φ) → F .

Formally, if B∗0 , B
∗
1 , . . . , B

∗
t−1 is the Break Sequence of Σ,

then φ = φ(Σ) consists of:

• |B∗0 | trees, the roots of which are labelled by distinct

elements of |B∗0 |.
• If v is the vertex of φ corresponding to the i-th step, then

v has |B∗i | children labelled by the elements of B∗i .

Observe that while neither the trees, nor the nodes inside

each tree of the Break Forest are ordered, we can still recon-

struct the sequence q1, q2, . . . , qt from φ(Σ), by the following

simple procedure:

1: j ← 1
2: E ← The set of labels of the roots of φ
3: while E �= ∅ do
4: q′j = I(E)
5: Let B be the set of labels of the children of q′j in φ.

6: Let E ← (E \ {q′j}) ∪B
7: j ← j + 1

By induction, whenever j = i in the above procedure, the set

E equals the set Ei in (4) and, as a result, q′i = qi.

D. Counting

We are now ready to conclude the proof by bounding the

number of possible 〈Break Forest, Version Sequence〉 pairs.

Recall that neither the trees, nor the nodes inside each tree in

a Break Forests are ordered. To proceed with the count we fix

an arbitrary ordering of F , not necessarily π, and first convert

the Break Forest into an ordered forest by ordering the trees

according to their roots and similarly ordering the children

of each vertex. Having induced this ordering, for the purpose

of the counting it will be helpful to incorporate the Version

Sequence by relabeling the vertices of the Break Forest so as

to carry not only the flaw flaw addressed, but also the integer

denoting its version. We refer to the resulting object as the

(ordered) versioned Break Forest.

We will map each tree T of the versioned Break Forest to

a sequence of |T | arrays, each array representing the progeny

of exactly one vertex of T , the first array representing the

progeny of the root, the second array (if it exists) representing

the progeny of the root’s leftmost child, etc. in breadth first

order. To define the arrays we recall that each node in the

Break Forest that is labelled by a flaw f has children labelled

by distinct flaws in B∗i ⊆ Γ(f). As each such flaw g ∈ Γ(f)
has precisely Z/Ag versions, we can represent the progeny of

any node of T as a binary array of size d, setting to one the

array entry for each versioned flaw in the progeny, where

d := max
f∈F

∑
g∈Γ(f)

Z

Ag
≥ max

f∈F
max
g∈Γ(f)

Z

Ag
= max

f∈F
Z

Af
:= γ ,

the equality above following from the fact that, since the

causality graph C is strongly connected, for every flaw f there

exists at least one flaw g such that f ∈ Γ(g).

499499



We call the above map Array(T ) and observe that:

• The total number of ones in Array(T ) is |T | − 1 since

we don’t write a one for the root.

• The Array map is self-terminating, termination occurring

the first time the quantity “ones seen minus arrays read”

becomes negative (initially being 0).

• Given the unversioned root of T and Array(T ) we can

recover T up to the version of its root.

Therefore, we can recover the versioned Break Forest from its

versioned roots and the concatenation of the Array mappings

of its trees. Moreover, observe that when the forest has r roots,

the concatenation of the Array mappings is a string in {0, 1}td
with exactly t−r ones. Writing |U(σ1)| = m, we see that the

number of versioned Break Forests is bounded by

m∑
r=0

(
m

r

)
γr

(
td

t− r

)
. (5)

To estimate (5) we distinguish between d = 1 and d ≥ 2.

For d ≥ 2, we have (t− i)/(td− t+ r − i) ≤ 1/(d− 1) for

all 0 ≤ i ≤ r − 1 in (6) below and, therefore,

γr

(
td
t−r

)
(
td
t

) = γr t!

(t− r)!

(td− t)!

(td− t+ r)!

=
γrt(r)

(td− t+ r)(r)
(6)

≤
(

γ

d− 1

)r

.

Thus, for d ≥ 2, the number of versioned Break Forests is

bounded by(
td

t

) m∑
r=0

(
m

r

)(
γ

d− 1

)r

=

(
td

t

)(
1 +

γ

d− 1

)m

.

Let h(x) = −x log2 x − (1 − x) log2(1 − x) be the binary

entropy function. For d ≥ 2, Stirling’s approximation yields

log2
(
td
t

) ≤ tdh(1/d). Thus, the binary logarithm of the

probability that the walk has not encountered a flawless state

after t steps is at most

log2 |Bad(t)| − t log2 Z

≤ log2 |Ω|+ tdh(1/d) +m log2

(
1 +

γ

d− 1

)
− t log2 Z

≤ T0 − (log2 Z − dh(1/d))t , (7)

where T0 ≤ log2 |Ω| + 2m for all d ≥ 2 and γ ∈ [d]. When

γ = 1, in particular, note that we can take T0 = log2 |Ω|+m.

From (7) we see that if log2 Z − dh(1/d) > 0, we can

make the probability of failure arbitrarily small by making t
sufficiently large. The definition of δ yields (8) below and thus

log2 Z − dh(1/d) ≥ log2 Z − log2(d · e)

= − log2

⎛
⎝max

f∈F

∑
g∈F

e

Ag

⎞
⎠

= − log2(1− δ) (8)

> δ .

Therefore, we can conclude for t = (T0+s)/δ, the probability

that the uniform random walk on Dπ does not reach a flawless

state within t step is less than 2−s, as desired.

To deal with the case d = 1 we first note that since for every

flaw f there exists at least one flaw g such that f ∈ Γ(g),
since C is strongly connected, if Af ≤ 2 for every f ∈ F ,

the amenability condition (3) can only be satisfied if C is

empty (in which case, anyhow, the result follows trivially:

each step of the walk deterministically eradicates the flaw

addressed without introducing any other flaws). Therefore, we

can assume that Af ≥ 3 for some f , implying Z ≥ 3. We

also note that if d = 1 then δ = 1− e/Z.

Since γ ≤ d, when d = 1 we must have γ = 1, in which

case (5) equals
(
m+t
t

)
. Thus, for d = 1, the binary logarithm

of the number of versioned Break Forests is bounded by m+t.
Letting T0 = log2 |Ω| +m we see that the binary logarithm

of the probability that the walk has not encountered a flawless

state after t = (T0 + s)/δ steps is at most

log2 |Ω|+m+ t− t log2 Z

≤ log2 |Ω|+m+ (T0 + s)
1− log2 Z

1− e/Z
(9)

< log2 |Ω|+m− T0 − s

≤ −s ,

since for Z ≥ 3 the fraction in (9) is at most −2/ ln 2.

VI. STRUCTURED FLAW SELECTION VIA

RESPONSIBILITY DIGRAPHS

Let C = C(Ω, D, F ) be the causality digraph for a set

of objects Ω, multi-digraph D, and set of flaws F . Let π be

an ordering of F , inducing an ordering of the vertices of C.

For an ordered set of vertices v1 < v2 · · · < vn, say that arc

vi → vj is forward if i < j and backward if i > j. Let R be

a digraph on the same π-ordered vertices as C. We say that

R is a responsibility digraph for D with respect to π if:

1) Every forward arc of C is a forward arc of R. Also

every self-loop of C is a self-loop of R.

2) If a backward arc vj → vi of C does not exist in R,

then for each k such that vk → vj exists in R, vk → vi
exists in R as well.

The neighbourhood of a flaw f in a responsibility graph

R is ΓR(f) = {g ∈ F : f → g exists in R}. Recall that

Iπ : 2F → F is the function that maps each set of flaws to

its greatest element according to π, with Iπ(∅) = ∅. Consider

now the following recursive algorithm, noting that for R = C
the algorithm is simply the uniform random walk on Dπ .

500500



Recursive Walk
1: procedure ELIMINATE

2: Let σ ← σ1
3: while U(σ) �= ∅ do
4: ADDRESS (Iπ(U(σ)), σ)

5: return σ
6: procedure ADDRESS(f, σ)

7: σ ← A uniformly random element of A(f, σ)
8: g ← Iπ(U(σ) ∩ ΓR(f)) 
 When R = C this is the

9: while g �= ∅ do 
 same as g ← Iπ(U(σ))
10: ADDRESS(g, σ) 
 trivializing recursion

Definition 7. D is amenable under R if for every f ∈ F ,∑
g∈ΓR(f)

1

Ag
<
1

e
. (10)

Theorem 2. Fix any ordering π of the elements of F and any
σ1 ∈ Ω. If R is a responsibility digraph for D with respect to
π and D is amenable under R, then the probability that the
Recursive Walk on D started at σ1 does not reach a sink within
t = (T0+ s)/δ steps is 2−s, where T0 = log2 |Ω|+2|U(σ1)|.
A. Proof of Theorem 2

The following captures the correctness of Recursive Walk.

Lemma 1. For a set of flaws F , an ordering π of F , and
a flaw f ∈ F , let Sf denote the set of flaws strictly greater
than f according to π. For a state σ and a flaw f ∈ U(σ),
let W (σ, f) = U(σ) ∩ Sf .

If we invoke ADDRESS(f, σ) and it terminates at state σ′,
then W (σ′, f) ⊆W (σ, f) and f /∈ U(σ′).

Given Lemma 1 we show termination by a proof very

similar to the one in Section V for the uniform random walk.

As in that proof, for the purposes of the analysis, we create a

graph D∗ in which each arc with label f is replaced by Z/Af

parallel arcs labeled by equally many versions of f . Similarly,

we connect each sink vertex of D to σ1 using Z distinct,

parallel arcs (not labeled by elements of F ) in order to make

the walk ceaseless. Specifically, we require that whenever (the

walk on D induced by) the Recursive Walk algorithm reaches

a flawless state, rather than terminating it selects one of the Z
distinct arcs to σ1 uniformly and continues from σ1 by running

the Recursive Walk algorithm (with fresh randomness). Thus,

exactly as in the proof for the uniform random walk, the

probability of each t-trajectory is at most Z−t.

To bound the number of bad t-trajectories of the Recursive

Walk we represent each trajectory Σ as a pair (φ, V ), where

φ = φ(Σ) is the Recursive Forest of the trajectory and

V = V (Σ) is its Version Sequence. The Recursive Forest

is a labelled, ordered forest with one tree per invocation of

procedure ELIMINATE. It has t nodes, one for each invocation

of the procedure ADDRESS, each node labeled by the flaw

of the invocation. The children of a node v are the nodes

that correspond to invocations of ADDRESS made by the

invocation corresponding to v. Thus, the preorder traversal of

the Recursive Forest outputs the sequence of (non-versioned)

flaws addressed in Σ. Identically to the proof for the uniform

walk, V (Σ) is a sequence of integers in [maxf∈F Z/Af ],
the i-th integer corresponding to the version of the i-th flaw

addressed in Σ. Thus, from (φ(Σ), V (Σ)) we can trivially

reconstruct the witness W (Σ).
We will prove that the root labels in a Recursive Forest that

corresponds to a bad t-trajectory are distinct and, similarly,

that the children of each node in the forest are distinct (both

properties were automatically true for Break Forests). If we

can do that then each 〈Recursive Forest, Version Sequence〉
pair can be represented as a versioned Break Forest with

d′ = maxf∈F
∑

u∈ΓR(f)
Z/Au. The rest of the proof is then

identical to that for Break Forests and therefore omitted.

To establish the distinctness of the root labels, observe that

each time procedure ELIMINATE is invoked at a state σ, by

definition of Iπ , we have SIπ(σ) = ∅. By Lemma 1, if the

invocation returns at state σ′, then neither Iπ(σ) nor any of the

fauls greater than it are present in σ′. Therefore, ELIMINATE is

invoked at most once for each f ∈ F . To see the distinctness

of the labels of the children of each node, consider a node v of

the Recursion Forest corresponding to an invocation of proce-

dure ADDRESS(f, σ). Whenever this invocation of ADDRESS

recursively invokes ADDRESS(g, σ′), where g ∈ ΓR(f), by

definition of Iπ , every flaw in Sg ∩ ΓR(f) is absent from σ′.
Whenever each such invocation returns neither g, nor any of

the flaws in Sg∩ΓR(f) are present, and thus Lemma 1 implies

that ADDRESS(f, σ) invokes ADDRESS(g, σ′) at most once for

each g ∈ ΓR(f), proving the statement.

Proof of Lemma 1. The execution of ADDRESS(f, σ) gener-

ates a recursion tree, each node labeled by the flaw of the

invocation. Thus, the root is labelled by f , while each child

of the root is labelled by a flaw in ΓR(f). Assume, for the sake

of contradiction, that flaw f∗ ∈ (W (σ′, f) \W (σ, f)) ∪ {f}
is present at σ′.

Since ADDRESS(f, σ) terminates, f∗ /∈ ΓR(f). Let S+f =

Sf ∪ {f} and observe that Γ(f) ∩ S+f ⊆ ΓR(f) ∩ S+f since

the forward edges and the self-loops of C are a subset of the

forward edges and self-loops of R. Therefore, f∗ cannot have

been introduced by the action taken to address f at the original

invocation. For a state τ , let Q(f, τ) be the set of flaws in

S+f \ΓR(f) that are present in τ . We claim that if g ∈ ΓR(f)
and ADDRESS(g, τ) terminates at τ ′, then Q(f, τ ′) ⊆ Q(f, τ).
This suffices to prove the lemma since it implies that when

each subtree of the root of the recursion tree returns, no flaws

in Sf \ΓR(f) that were not present in σ will be present in σ′

and neither is f . In particular f∗ can not be present.

To prove the above claim, consider the recursion tree of

ADDRESS(g, τ). If h ∈ Q(f, τ ′) and h /∈ Q(f, τ), then there

has to be a path g1 = g, g2, . . . , gi from the root of the

recursion tree of ADDRESS(g, τ) to a node gi such that:

• h ∈ Γ(gi), Notice we are referring to Γ not ΓR(gi)

• h /∈ ΓR(gj) for each j ∈ [i].
To see this, notice that since h was absent in τ but is present

in τ ′, it must have been introduced by some flaw gi addressed

501501



during the execution of ADDRESS(g, τ). But if h belonged in

the neighborhood (with respect to R) of any of the flaws on

the path from the root to gi, the algorithm would have not

terminated.

However, such a path can not exist. Assume that i = 1.

Then it must be that all of the following hold, violating the

second condition in the definition of responsibility digraphs:

• h ∈ Γ(g1), The arc g1 → h exists in C
• h /∈ ΓR(g1), The arc g1 → h does not exist in R
• g1 ∈ ΓR(f), The arc f → g1 exists in R
• h /∈ ΓR(f). The arc f → h does not exist in R

Similarly, for i > 1, we need to have h ∈ Γ(gi), h /∈ ΓR(gi),
gi ∈ ΓR(gi−1) but h /∈ ΓR(gi−1), violating once again the

second property of the responsibility digraphs.

VII. A FIRST APPLICATION

HAMILTON CYCLES IN HYPERGRAPHS

A. Preliminaries

An edge coloring of a hypergraph H(V,E) is a function

φ : E → N assigning natural numbers (colors) to its edges.

We will say that e1 �= e2 ∈ E are adjacent if e1 ∩ e2 �= ∅.
A subhypergraph S is properly colored if every two adjacent

edges of S receive different colors. If, further, every edge of

S receives a different colorwe will say that S is rainbow.

For a coloring φ and a color i ∈ N, let Hi
φ = H[φ−1(i)]

denote the hypergraph induced by the edges of color i in φ.

We say that φ is r-degree bounded if Hi
φ has maximum degree

at most r, for all i ∈ N. If Hi
φ has at most r edges, for all

i ∈ N, we say that φ is r-bounded.

We investigate properly colored and rainbow Hamilton

cycles in colored k-uniform complete hypergraphs for k ≥ 3.

(A hypergraph is k-uniform if every edge has size k; it is

complete if all k-element subsets of the vertices form edges).

For 1 ≤ � < k, an �-overlapping cycle is a k-uniform

hypergraph in which, for some cyclic ordering of its vertices,

every edge consists of k consecutive vertices and every two

consecutive edges share exactly � vertices. Thus, the number of

edges in an �-overlapping cycle with s vertices is �s/(k− �)�.
The two extreme cases � = 1 and � = k − 1 are referred to

as, respectively, loose and tight cycles.

Remark 2. If k− � divides s, then a tight cycle on s vertices
contains an �-overlapping cycle on the same vertex set.

Given a k-uniform hypergraph H on n vertices where k−�
divides n, an �-overlapping cycle is called Hamilton if it goes

through every vertex of H , that is, if s = n. We denote such

a Hamilton cycle by C
(k)
n (�). Let K

(k)
n denote the complete

k-uniform hypergraph on n vertices.

In [8], Dudek, Frieze and Ruciński proved the following.

Theorem 3 ([8]). For every 1 ≤ � < k there is c = c(k, �)
such that if n is sufficiently large and k−� divides n, then any
cnk−�-bounded coloring of K(k)

n contains a rainbow copy of
C
(k)
n (�).

Theorem 4 ([8]). For every 1 ≤ � < k there is d = d(k, �)
such that if n is sufficiently large and k−� divides n, then any
dnk−�-degree bounded coloring of K(k)

n contains a properly
colored copy of C(k)

n (�).

In [7], Dudek and Ferrara strengthened Theorems 3, 4 as

follows. Say that a coloring is (a, r)-bounded if for each color

i, every set of a vertices is contained in at most r edges of

color i. A r-degree bounded coloring is, thus, (1, r)-bounded

and an r-bounded coloring is (0, r)-bounded (as it has at most

r edges of color i). Thus, Theorem 3 follows from Theorem 5

since for every 1 ≤ � ≤ k, every cnk−�-bounded coloring is

both (0, cnk−1)-bounded and (�, cnk−�)-bounded. Similarly,

Theorem 4 follows from Theorem 6 since for every 1 ≤ � ≤ k,

every dnk−�-degree-bounded coloring is (�, dnk−�)-bounded.

Theorem 5 ([7]). For every 1 ≤ � < k there is a constant
c = c(k, �) such that if n is sufficiently large and k−� divides
n, then any (�, cnk−�)-bounded coloring of K

(k)
n that is

(0, cnk−1)-bounded contains a rainbow copy of C(k)
n (�).

Theorem 6 ([7]). For every 1 ≤ � < k there is a constant
d = d(k, �) such that if n is sufficiently large and k−� divides
n, then any (�, dnk−�)-bounded coloring of K(k)

n contains a
properly colored of C(k)

n (�).

We make Theorems 5 and 6 constructive while also improv-

ing the constants from [7].

Theorem 7. The Hamilton cycles guaranteed by Theorems 5,
6 can be found in time O(kn6k+1 log n).

B. Proof of Theorem 7

The following proposition follows from results in [8].

Proposition 1. Fix 1 ≤ � < k. Let {e, f} be any pair of edges
of K(k)

n with |e∩f | = α ≤ �. Let X be any set of pairs {g, h}
of edges of K(k)

n satisfying (e ∪ f) ∩ (g ∪ h) = ∅.
• Let C(X) be the set of all copies C of C

(k)
n (k − 1) in

K
(k)
n such that {g, h} � C for all {g, h} ∈ X .

• Let Ce,f (X) = {C ∈ C(X) : {e, f} ⊂ C}.
There is δ = δ(k, �) > 0 such that if Ce,f (X) �= ∅, one can

find a disjoint family {SC : C ∈ Ce,f (X)} of sets of copies of
C
(k)
n (k− 1) from C(X) (indexed by the copies C ∈ Ce,f (X))

such that for all C ∈ Ce,f (X):

1) SC ∩ Ce,f (X) = ∅.
2) |SC | ≥ δn2k−2, if α = 0.
3) |SC | ≥ δn2k−α−1, if 1 ≤ α ≤ �.

Furthermore, a uniformly random element of each set SC can
be sampled in time O(n2k).

Constructive Proof of Theorem 5. Fix 1 ≤ � < k and let φ be

a coloring of K
(k)
n . Let M consist of all pairs of edges that

have the same color and share at most � vertices, i.e.,

M = {{e1, e2} : e1, e2 ∈ K(k)
n , φ(e1) = φ(e2), |e1∩e2| ≤ �}.

502502



Let Ω be the set of copies of C
(k)
n (k−1) in K

(k)
n . For each

pair of edges {e, f} ∈M we define the flaw

Fe,f = {C ⊂ K(k)
n : C ∼ C(k)

n (k − 1) and {e, f} ⊂ C} .

That is, Fe,f consists of all tight Hamilton cycles containing

both e and f which, since φ(e) = φ(f)), means they are

improperly colored. A flawless C ∈ Ω is, thus, a tight

Hamilton cycle whose edges have distinct colors. As k − �
divides n, Remark 2 implies that any such cycle C contains

a rainbow copy of C
(k)
n (�).

Next we define actions for each flaw. To that end, for each

pair {e, f} ∈M and each integer 0 ≤ α ≤ �, we define

Ye,f (α) = {{e′, f ′} ∈M : {e′, f ′} �= {e, f}, |e′ ∩ f ′| = α,

and (e ∪ f) ∩ (e′ ∪ f ′) �= ∅} .

Let Ye,f =
�⋃

α=0

Ye,f (α) and Xe,f =M \ (Ye,f ∪ {e, f}).
For each Hamilton cycle C ∈ Ω, for each pair of edges

{e, f} ∈ M such that flaw Fe,f is present in C, we invoke

Proposition 1 with e, f and X = Xe,f . Let SC be the

set of Hamilton cycles guaranteed by Proposition 1. We let

A(Fe,f , C) = SC . To lighten notation, we let Ae,f := AFe,f
=

minC∈Ω |A(Fe,f , C)|. By Proposition 1 we thus have:

• D is atomic since for each flaw we have a disjoint family

of sets of cycles (actions).

• If |e∩f | = α, then Ae,f ≥
{
δn2k−2 if α = 0,

δn2k−α−1 if 1 ≤ α ≤ �.
• If Fg,h ∈ Γ(Fe,f ) then {g, h} ∈ Ye,f since {g, h} /∈ Xe,f

and {g, h} �= {e, f}.
To bound |Ye,f | we use the following fact, established in [7].

For every c > 0, if φ is (�, cnk−�)-bounded and (0, cnk−1)-
bounded, then there exists n0 = n0(c) such that for all n ≥ n0,

max
{e,f}∈M

|Ye,f (α)| ≤
{
2ckn2k−2 if α = 0,

2ck�+1n2k−α−1 if 1 ≤ α ≤ � .

Therefore, if c = δ(2ek(1+ �k�))−1, for each pair of edges

{e, f} ∈M with |e ∩ f | = α, we have

∑
Fg,h∈Γ(Fe,f )

1

Ag,h
=

�∑
α=0

∑
{g,h}∈Ye,f (α)

1

Ag,h
≤

2ckn2k−2

δn2k−2
+

�∑
α=1

2ck�+1n2k−α−1

δn2k−α−1 =
2ck

δ
(1 + �k�) <

1

e
.

Thus, by Theorem 1 the uniform random walk on D
terminates after O(|M |2 log |Ω|)) steps with high probability.

Further, we know that log2 |Ω| ≤ log2
(
n
k

)n ≤ nk log2 n and

that |M | ≤ n2k. Since at each step of the algorithm we need

O(n2k) time to find the greatest flaw and O(n2k) time to

choose an action for it, we have proven the theorem.

Constructive Proof of Theorem 6 (sketch). Modify the defini-

tion of set M in the proof of Theorem 5 so that it contains

no pair of disjoint edges. Analogously, define the sets Ye,f (α)
only for α ∈ [�], and consequently Ye,f = ∪�

a=1Ye,f (α). Now

for d = δ(2e�k�+1)−1 Theorem 1 applies.

ACKNOWLEGEMENTS

DA thanks Christos Papadimitriou for introducing him to the

Probabilistic Method a quarter century ago and Mario Szegedy

for inspiration to shun the lowest common denominator (Z).

We are also grateful to the anonymous reviewers for comments

that improved the presentation.

REFERENCES

[1] D. Achlioptas and F. Iliopoulos. The Lovász Local Lemma as a Random
Walk. ArXiv e-prints, June 2014, 1406.0242.

[2] Noga Alon. A parallel algorithmic version of the local lemma. Random
Struct. Algorithms, 2(4):367–378, 1991.

[3] József Beck. An algorithmic approach to the Lovász local lemma. I.
Random Structures Algorithms, 2(4):343–365, 1991.

[4] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler.
Deterministic algorithms for the Lovász local lemma. In SODA, pages
992–1004. SIAM, 2010.

[5] Artur Czumaj and Christian Scheideler. Coloring non-uniform hy-
pergraphs: a new algorithmic approach to the general Lovász local
lemma. In Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms (San Francisco, CA, 2000), pages 30–39, 2000.

[6] P Diaconis. The cutoff phenomenon in finite markov chains. Proceed-
ings of the National Academy of Sciences, 93(4):1659–1664, 1996.

[7] Andrzej Dudek and Michael Ferrara. Extensions of results on rainbow
hamilton cycles in uniform hypergraphs. Graphs and Combinatorics,
pages 1–7, 2013.

[8] Andrzej Dudek, Alan M. Frieze, and Andrzej Rucinski. Rainbow
hamilton cycles in uniform hypergraphs. Electr. J. Comb., 19(1):P46,
2012.

[9] Paul Erdős and László Lovász. Problems and results on 3-chromatic
hypergraphs and some related questions. In Infinite and finite sets
(Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday),
Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. North-
Holland, Amsterdam, 1975.

[10] Paul Erdös and Joel Spencer. Lopsided Lovász local lemma and latin
transversals. Discrete Applied Mathematics, 30(2-3):151–154, 1991.

[11] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New con-
structive aspects of the Lovász local lemma. In FOCS, pages 397–406,
2010.

[12] David G. Harris and Aravind Srinivasan. The Moser-Tardos framework
with partial resampling. In FOCS, pages 469–478, 2013.

[13] David G. Harris and Aravind Srinivasan. A constructive algorithm for
the Lovász local lemma on permutations. In SODA, pages 907–925.
SIAM, 2014.

[14] Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos
meet Lovász. In STOC, pages 235–244. ACM, 2011.

[15] Linyuan Lu, Austin Mohr, and László Székely. Quest for negative
dependency graphs. In Recent Advances in Harmonic Analysis and
Applications, pages 243–258. Springer, 2013.

[16] Michael Molloy and Bruce Reed. Further algorithmic aspects of the
local lemma. In STOC ’98 (Dallas, TX), pages 524–529. 1999.

[17] Robin A. Moser. A constructive proof of the Lovász local lemma. In
STOC’09—Proceedings of the 2009 ACM International Symposium on
Theory of Computing, pages 343–350. ACM, New York, 2009.

[18] Robin A. Moser and Gábor Tardos. A constructive proof of the general
Lovász local lemma. J. ACM, 57(2):Art. 11, 15, 2010.

[19] Christos H. Papadimitriou. On selecting a satisfying truth assignment.
In FOCS, pages 163–169. IEEE Computer Society, 1991.

[20] Wesley Pegden. Highly nonrepetitive sequences: Winning strategies
from the local lemma. Random Struct. Algorithms, 38(1-2):140–161,
2011.

[21] Joel Spencer. Asymptotic lower bounds for ramsey functions. Discrete
Mathematics, 20(0):69 – 76, 1977.

[22] Aravind Srinivasan. Improved algorithmic versions of the Lovász local
lemma. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 611–620, New York, 2008. ACM.

[23] Mario Szegedy. The Lovász local lemma - a survey. In Andrei A.
Bulatov and Arseny M. Shur, editors, CSR, volume 7913 of Lecture
Notes in Computer Science, pages 1–11. Springer, 2013.

503503


