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Abstract—Expander graphs have been a focus of attention
in computer science in the last four decades. In recent
years a high dimensional theory of expanders is emerging.
There are several possible generalizations of the theory
of expansion to simplicial complexes, among them stand
out coboundary expansion and topological expanders. It
is known that for every 𝑑 there are unbounded degree
simplicial complexes of dimension 𝑑 with these properties.
However, a major open problem, formulated by Gromov,
is whether bounded degree high dimensional expanders,
according to these definitions, exist for 𝑑 ≥ 2. We present
an explicit construction of bounded degree complexes of
dimension 𝑑 = 2 which are high dimensional expanders.
More precisely, our main result says that the 2-skeletons of
the 3-dimensional Ramanujan complexes are topological
expanders. Assuming a conjecture of Serre on the congru-
ence subgroup property, infinitely many of them are also
coboundary expanders.

Keywords-high dimensional expanders, topological ex-
panders, topological overlapping, Ramanujan complexes.

I. INTRODUCTION

In the last four decades expander graphs have played
an important role in computer science (see [9] and
the references therein) and more recently also in pure
mathematics (see [14]). In the last few years a high-
dimensional theory of expanders is starting to emerge
(see [15] and the references therein). This theory has
already found some applications in computer science
(e.g. property testing [11]), combinatorics (e.g. random
simplicial complexes [13], [22]), computational geome-
try ([23]) and in topology (overlapping properties [7]).
Among the possible extensions of the notion of ex-
panders to high dimensional simplicial complexes stand
out the notions of topological expanders and cobound-
ary expansion (whose definition is a bit technical and
needs the language of cohomology, but it has already
been proven to be useful in all these areas.).

Let us elaborate on coboundary expanders, on the
topological overlapping and on the connection between

them. The notations and terminology used below will
be explained in details in Sections II and III.

Recall that a simplicial complex 𝑋 on a set of vertices
𝑉 is a collection of finite subsets of 𝑉 (called faces)
closed under inclusion, i.e., if 𝐺 ⊆ 𝐹 ∈ 𝑋 then
𝐺 ∈ 𝑋 . For 𝐹 ∈ 𝑋 , dim(𝐹 ) := ∣𝐹 ∣ − 1 and 𝑋
is of dimension 𝑑, if max{dim(𝐹 ) ∣ 𝐹 ∈ 𝑋} = 𝑑.
It is a pure simplicial complex of dimension 𝑑 if all
maximal faces (called facets) of 𝑋 are of cardinality
𝑑+1. Given such a simplicial complex one can associate
with it a hypergraph 𝐻 = �̃� with the set of vertices
𝑉 and the (hyper) edges of 𝐻 are the facets of 𝑋 . So,
𝐻 is a (𝑑 + 1)-uniform hypergraph. Given a (𝑑 + 1)-
uniform hypergraph 𝐻 , one can associate with it a
pure simplicial complex 𝑋 of dimension 𝑑: 𝑋 will
be the collection of all subsets of the (hyper) edges
of 𝐻 . We see, therefore, that uniform hypergraphs and
pure simplicial complexes are actually the same. It will
be more convenient for us to work with simplicial
complexes.

Given a finite simplicial complex of dimension 𝑑, we
denote by 𝑋(𝑖) the set of its faces of dimension 𝑖, for
𝑖 = −1, 0, 1, ⋅ ⋅ ⋅ , 𝑑. So, 𝑋(−1) = {∅}, 𝑋(0) = 𝑉 -
the vertices, 𝑋(1) - the edges, 𝑋(2) - the triangles etc.
Given 𝜎 ∈ 𝑋(𝑖), let 𝑐(𝜎) = #{𝜏 ∈ 𝑋(𝑑) ∣ 𝜎 ⊆ 𝜏} and
𝑤𝑡(𝜎) = 𝑐(𝜎)

(𝑑+1
𝑖+1)∣𝑋(𝑑)∣ , so

∑
𝜎∈𝑋(𝑖) 𝑤𝑡(𝜎) = 1.

Let 𝐶𝑖 = 𝐶𝑖(𝑋,𝔽2) be the 𝑖-cochains of 𝑋 over 𝔽2,
i.e., the 𝔽2 vector space of all functions 𝑓 : 𝑋(𝑖)→ 𝔽2.
Every such an 𝑓 can be considered also as a subset of
𝑋(𝑖). Let 𝛿𝑖 : 𝐶𝑖 → 𝐶𝑖+1 be the 𝑖-coboundary map,

𝛿𝑖(𝑓)(𝜏) =
∑

𝜎⊆𝜏,𝜎∈𝑋(𝑖)

𝑓(𝜎), for 𝜏 ∈ 𝑋(𝑖+ 1).

It is well known (and easy to prove) that 𝛿𝑖 ∘ 𝛿𝑖−1 = 0,
hence 𝐵𝑖(𝑋,𝔽2) = Image(𝛿𝑖−1), the 𝑖-coboundary
space, is contained in 𝑍𝑖(𝑋,𝔽2) = Ker(𝛿𝑖), the 𝑖-
cocycle space. The quotient space 𝐻𝑖 = 𝑍𝑖/𝐵𝑖 is the
𝑖-cohomology group of 𝑋 .
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If 𝑋 is of dimension 1, i.e., 𝑋 is a graph, one can
easily check that 𝐵0 = {0,1} (where 1 is the constant
function) and 𝐻0 = 0 if and only if 𝑋 is connected.
Moreover, 𝐵1 is exactly the collections of ”cuts” of 𝑋 ,
namely, if 𝑓 ∈ 𝐶0 (so 𝑓 can be thought of as a subset
𝐴 of 𝑉 = 𝑋(0)), 𝛿(𝑓) is 𝐸(𝐴,𝐴), the set of edges
from 𝐴 to its complement.

Finally, observe that the weight function on 𝑋(𝑖) in-
duces a ”norm” on 𝐶𝑖(𝑋,𝔽2) defined by: ∣∣𝑓 ∣∣ :=∑

𝜎∈𝑓 𝑤𝑡(𝜎). If 𝑓 ∈ 𝐶𝑖(𝑋,𝔽2), we denote [𝑓 ] :=

𝑓 + 𝐵𝑖(𝑋,𝔽2), i.e., the coset of 𝑓 modulo 𝐵𝑖(𝑋,𝔽2)
and the norm of the coset ∣∣[𝑓 ]∣∣ := min{∣∣𝑔∣∣ ∣ 𝑔 ∈ [𝑓 ]}.
One can easily checks that ∣∣[𝑓 ]∣∣ is actually equal to
”the distance” between 𝑓 and 𝐵𝑖(𝑋,𝔽2) in terms of
the norm ∣∣ ⋅ ∣∣.
Definition I.1. Let 𝑋 be a finite 𝑑-dimensional simpli-
cial complex and 0 ≤ 𝑖 ≤ 𝑑−1. The 𝑖-th 𝔽2-coboundary
expansion 𝜖𝑖 of 𝑋 is defined as

𝜖𝑖 = min{ ∣∣𝛿𝑖𝑓 ∣∣∣∣[𝑓 ]∣∣ ∣𝑓 ∈ 𝐶𝑖 ∖𝐵𝑖},

A family {𝑋𝑎}𝑎∈𝐴 of 𝑑-dimensional pure complexes is
called 𝜖-coboundary expander(s) if there exists 𝜖 > 0
such that 𝜖𝑖(𝑋𝑎) ≥ 𝜖 for every 0 ≤ 𝑖 ≤ 𝑑−1 and every
𝑎 ∈ 𝐴.

The reader is encouraged to check the case in which 𝑋
is a 1-dimensional simplicial complex, i.e., a graph. In
this case 𝜖0 is equal to the normalized Cheeger constant
of the graph.

The notion of coboundary expanders is (essentially) due
to Linial-Meshulam [13] and Gromov [7] (see also [22]
and [4]). But, there are other ways to generalize ex-
pander graphs to hypergraphs.

We pass now to ”overlapping properties” and to geo-
metric and topological expanders.

Definition I.2. Let 𝑋 be a finite 𝑑-dimensional pure
simplicial complex.

1) We say that 𝑋 has the 𝜖-geometric overlapping
property if for every map 𝑓 : 𝑋(0) → ℝ𝑑, there
exists a point 𝑧 ∈ ℝ𝑑 which is covered by at least
𝜖-fraction of the images of the faces in 𝑋(𝑑) under
𝑓 , where 𝑓 is the unique affine extension of 𝑓 to a
map from 𝑋 to ℝ𝑑.

2) We say that 𝑋 has the 𝜖-topological overlapping
property if the same conclusion holds for every 𝑓
and every 𝑓 , where this time 𝑓 is any continuous

extension of 𝑓 to a map from 𝑋 to ℝ𝑑.

A family of 𝑑-dimensional pure simplicial complexes is
a family of geometric (resp. topological) expanders if
they have the 𝜖-geometric (resp. topological) overlap-
ping property for the same 𝜖 > 0.

Clearly topological expanders are geometric expanders.

Expander graphs have the topological overlapping prop-
erty. Indeed, if 𝑓 : 𝑉 → ℝ maps the vertices of 𝑉 into
the real line, then a point 𝑧 ∈ ℝ which is chosen so
that half of 𝑓(𝑉 ) is above 𝑧 and half below, is covered
by a constant fraction of the images of the edges.
Thus, the overlapping property can also be considered
as an extension of expansion from graphs to simplicial
complexes.

A classical result of Boros and Füredi [2] (for 𝑑 = 2)
and Bárány [1] (for general 𝑑 ≥ 2) asserts that there
exists 𝜖𝑑 > 0 such that given any set 𝑃 of 𝑛 points
in ℝ𝑑, there exists 𝑧 ∈ ℝ𝑑 which is contained in at
least 𝜖𝑑-fraction of the

(
𝑛

𝑑+1

)
simplicies determined by

𝑃 . So, Barany’s theorem is the statement that Δ(𝑑)
𝑛 -

the complete 𝑑 - dimensional simplicial complex on
𝑛 vertices of dimension 𝑑-are geometric expanders.
Gromov proved the remarkable result, that they also
have the topological overlapping property! (The reader
is encouraged to think about the case 𝑑 = 2 to see
how non-trivial is this result and even somewhat counter
intuitive!)

There are several methods to show ”geometric overlap-
ping”. On the other hand, all the results on ”topological
overlapping” are derived via the following theorem of
Gromov, which makes a connection between cobound-
ary expansion and topological expanders.

Theorem I.3 (coboundary expanders are topological
expanders). ([7], see [12] for a simplified proof) If
𝑋 is a finite simplicial complex of dimension 𝑑, with
𝜖𝑖(𝑋) ≥ 𝜖 > 0 for every 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑑− 1, then 𝑋 has
𝜖′-topological overlapping property for some 𝜖′ > 0
depending on 𝑑 and 𝜖.

So, coboundary expanders are topological expanders
(and hence also geometric expanders). The complete 𝑑-
dimensional complexes on 𝑛 vertices (𝑑 fixed, 𝑛→∞)
are coboundary expanders (this was proved in [22]
and [7] independently). Similarly, the finite spherical
buildings are coboundary expanders ([7], see [18] for a
proof and a generalization to base-transitive matroids).
In [17] a random model of 2-dimensional simplicial
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complexes is given, with a complete 1-skeleton, based
on latin squares. This gives coboundary expanders of
bounded edges degree. But all the known examples so
far have unbounded vertex degree.

This raise the very basic question of the existence of
high dimensional bounded degree expanders. It is
interesting to compare this with the one dimensional
case, i.e., graphs.

It is trivial to show that the complete graphs are ex-
panders. Barany’s theorem is exactly the statement that
the complete complexes are geometric expanders, and
Gromov’s deep result gives that they are also topological
expanders. It is less trivial that there are families of
expander graphs of bounded degree, but by now, there is
a good number of methods to show that: random meth-
ods, property (𝑇 ), Ramanujan conjecture, the zig-zag
product and interlacing polynomials (see [16], [9] [21]
and the references therein).

In the higher dimensional case the situation is much
more difficult and very little is known in this direction.
The only case in which there are satisfactory answers is
the case of geometric expanders: In [6] it is shown by
random and explicit methods that geometric expanders
of bounded degree do exist. But the examples there
are not coboundary expanders and it is not known if
they are topological expanders. The following two basic
problems were left open:

Question I.4. (Gromov [7]) For a fixed 𝑑 ≥ 2, is there
an infinite family of 𝑑-dimensional bounded degree
topological expanders?

Question I.5. (see [4]) For a fixed 𝑑 ≥ 2, is there an
infinite family of 𝑑-dimensional bounded degree 𝔽2-
coboundary expanders?

Here by bounded degree we always mean that every
vertex is contained in a bounded number of faces.

Of course, Theorem I.3 shows that a positive answer
to Question I.5 implies also an affirmative answer to
Question I.4. The questions have been completely open
even for random methods.

The main goal of this paper is to announce and to sketch
a proof for a positive answer to Question I.4 for 𝑑 =
2. This gives the first examples of high dimensional
bounded degree topological expanders. Along the way
we will also see that if one accepts a special case of
Serre’s conjecture on the congruence subgroup property,
then we get also an affirmative answer to Question I.5

for 𝑑 = 2. More details will be given in Section IV and
Section V. Let us now give only the main points.

In [7], Gromov suggested that the Ramanujan com-
plexes (see [19]) of dimension 2 have the topological
overlapping property, and proved a partial result in this
direction. (To be more precise, he proved this property
when 𝑓 in Definition I.1 is assumed to be at most 𝑘 to
1, for bounded 𝑘). We fell short from proving this, but
we prove:

Theorem I.6. Let 𝑞 be a sufficiently large prime power,
and let 𝐹 = 𝔽𝑞((𝑡)), the field of Laurent power series
over the finite field 𝔽𝑞. Let {𝑌𝑎}𝑎∈𝐴 be the family of 3-
dimensional non-partite Ramanujan complexes obtained
from the Bruhat-Tits building associated with 𝑃𝐺𝐿4(𝐹 )

(see [19], [20]). For each such 𝑌𝑎, let 𝑋𝑎 = 𝑌
(2)
𝑎 -

the 2-skeleton of 𝑌𝑎. Then, the family of 2-dimensional
simplicial complexes {𝑋𝑎}𝑎∈𝐴 is an infinite family of
topological expanders of degree 𝑂(𝑞5) (i.e., every vertex
is contained in at most 𝑂(𝑞5) simplicies).

In spite of the fairly abstract formulation of Theo-
rem I.6, let us stress that it gives an explicit construc-
tion of examples of topological expanders. A detailed
description of the Ramanujan complexes 𝑌𝑎’s of the the-
orem, as Cayley complexes of dimension 3 of specific
finite groups (𝑃𝑆𝐿4(𝑞

𝑒) in our case) with explicit sets
of generators, is given in [20, Section 9]. Recall that a 𝑑-
dimensional Cayley complex of a group 𝐺 with respect
to a symmetric set of generators 𝑆, is the simplicial
complex whose set of vertices is 𝐺 and for 𝑖 ≤ 𝑑,
{𝑔0, ⋅ ⋅ ⋅ , 𝑔𝑖} forms an 𝑖-face if for every 0 ≤ 𝑡 ∕= 𝑠 ≤ 𝑖,
𝑔−1
𝑡 𝑔𝑠 ∈ 𝑆. This is a clique complex of the Cayley

graph 𝐶𝑎𝑦(𝐺 : 𝑆), of dimension 𝑑. The 𝑋𝑎’s are simply
the 2-skeletons of 𝑌𝑎’s, i.e., ignoring the 3 simplices.
So, the 𝑋𝑎’s are Cayley complexes of dimension 2.
Presenting the details of the exact construction requires
a lot of notation, so we refer the reader to [20].

In Section IV we will elaborate on Ramanujan com-
plexes and in Sections V and VI we sketch the proof.
Crucial ingredients in the proofs are the facts that the
1-skeleton of 𝑌𝑎 is nearly a Ramanujan graph and the
links of 𝑌𝑎 are coboundary expanders.

We only mention here that the main technical tools are
new 𝔽2 isoperimetric inequalities. Such inequalities are
relevant to classical and quantum error correcting codes
(compare with [25] and [8]). In fact, our first motivation
to study these inequalities came from coding theory. We
hope to come back to this direction in future works.

486486



Here we should stress that in general the 𝑋𝑎’s in the
theorem are not 𝔽2-coboundary expanders. This is due
to the fact (see [10] for a proof) that it is possible that
𝐻1(𝑋𝑎,𝔽2) ∕= 0, while for coboundary expanders 𝑋 ,
the 𝑖-cohomology group over 𝔽2 of 𝑋 must vanish for
0 ≤ 𝑖 < dim𝑋 . On the other hand, our proof will show
that this is the only obstacle for our complexes 𝑋𝑎 to
be coboundary expanders.

Now, if the arithmetic lattices used in [20] to construct
the Rammanujan complexes 𝑌𝑎 in Theorem I.6 (the so
called ”Cartwright-Steger lattices”) satisfy the congru-
ence subgroup property, then one can deduce that for
infinitely many of the 𝑋𝑎’s, 𝐻1(𝑋𝑎,𝔽2) does vanish.
These 𝑋𝑎’s are therefore also coboundary expanders
of dimension 2. According to a well known general
conjecture of Serre [24, p.489], the Cartwright-Steger
arithmetic groups, being lattices in high rank Lie groups,
should indeed satisfy the congruence subgroup property.
The general conjecture of Serre has been proven in
most cases, but unfortunately, not yet for the Cartwright-
Steger lattices. So, in summary, assuming Serre’s con-
jecture (in fact, a very special case of it and furthermore,
a weak form of it for this special case-see [10]) our
work gives a positive answer also to Question I.5 for
𝑑 = 2. Unconditionally, we give a positive answer to
Question I.4 for 𝑑 = 2. More details are given in Section
5 and a full proof in [10].

II. 𝔽2-COBOUNDARY EXPANSION

To any finite simplicial complex one associates a geo-
metric realization, which is obtained by gluing the affine
simplicies along common faces. So one can talk about
affine and continuous functions on 𝑋 .

The 𝑖-skeleton of 𝑋 is the sub-complex 𝑋(𝑖) :=
∪−1≤𝑗≤𝑖𝑋(𝑗). Given 𝜏 ∈ 𝑋(𝑖), the link of 𝑋 at 𝜏
denoted 𝑋𝜏 is the collection of all sets of the form
𝜎 ∖ 𝜏 , where 𝜎 ∈ 𝑋 and 𝜏 ⊆ 𝜎. Thus, 𝑋𝜏 is a
complex of dimension dim(𝑋)−dim(𝜏)−1 = 𝑑−𝑖−1.
In particular, for a vertex 𝑣, the link 𝑋𝑣 of 𝑣 is of
dimension 𝑑 − 1. A cochain 𝛼 ∈ 𝐶𝑖(𝑋,𝔽2) defines a
cochain 𝛼𝑣 ∈ 𝐶𝑖−1(𝑋𝑣,𝔽2) by 𝛼𝑣(𝜎 ∖ {𝑣}) := 𝛼(𝜎)
for 𝜎 ∈ 𝑋(𝑖) containing 𝑣.

For 𝜎 ∈ 𝑋(𝑖), denote 𝑐(𝜎) := ∣{𝜏 ∈ 𝑋(𝑑) ∣ 𝜎 ⊆
𝜏}∣ and 𝑤𝑡(𝜎) := 𝑐(𝜎)

(𝑑+1
𝑖+1)∣𝑋(𝑑)∣ , so

∑
𝜎∈𝑋(𝑖) 𝑤𝑡(𝜎) =

1. For 𝛼 ∈ 𝐶𝑖(𝑋,𝔽2) we define ∣∣𝛼∣∣ :=∑
𝜎∈𝑋(𝑖),𝛼(𝜎) ∕=0 𝑤𝑡(𝜎). One easily checks that ∣∣.∣∣ is a

”norm” such that ∣∣𝛼∣∣ = 0 iff 𝛼 = 0 and ∣∣𝛼1 +𝛼2∣∣ ≤
∣∣𝛼1∣∣+ ∣∣𝛼2∣∣ for 𝛼1, 𝛼2 ∈ 𝐶𝑖(𝑋,𝔽2).

A cochain 𝛼 ∈ 𝐶𝑖(𝑋,𝔽2) is called minimal if it is of
minimal norm within its class [𝛼] modulo 𝐵𝑖(𝑋,𝔽2),
i.e., ∣∣𝛼∣∣ = ∣∣[𝛼]∣∣. It is called locally minimal if
for every 𝑣 ∈ 𝑋(0), 𝛼𝑣 is a minimal cochain in
𝐶𝑖−1(𝑋𝑣,𝔽2). A minimal cochain is always locally
minimal, but not vice versa.

The coboundary map 𝛿 = 𝛿𝑖 : 𝐶
𝑖 → 𝐶𝑖+1 is defined as

𝛿(𝛼)(𝐹 ) :=
∑

𝐺⊆𝐹,∣𝐺∣=∣𝐹 ∣−1

𝛼(𝐺)

when 𝛼 ∈ 𝐶𝑖 and 𝐹 ∈ 𝐶𝑖+1. It is easy to check that
𝛿𝑖+1 ∘ 𝛿𝑖 = 0. Hence, 𝐵𝑖 = Im(𝛿𝑖−1) ⊂ 𝑍𝑖 = Ker(𝛿𝑖).
The quotient group 𝑍𝑖/𝐵𝑖 = 𝐻𝑖(𝑋,𝔽2) is the 𝑖-th
cohomology group of 𝑋 . The elements of 𝐵𝑖 (resp.
𝑍𝑖) are called 𝑖-coboundaries (resp. 𝑖-cocycles).

We can now define the 𝑖-expansion 𝜖𝑖(𝑋) of 𝑋 with
respect to the norm ∣∣.∣∣.
Definition II.1. .

1) (𝔽2-coboundary expansion) For 𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑑−1,
denote

𝜖𝑖(𝑋) := min{ ∣∣𝛿𝑖𝛼∣∣∣∣[𝛼]∣∣ ∣ 𝛼 ∈ 𝐶𝑖 ∖𝐵𝑖}

When [𝛼] = 𝛼 + 𝐵𝑖 and ∣∣[𝛼]∣∣ = min{∣∣𝛾∣∣ ∣ 𝛾 ∈
[𝛼]}.

2) (𝔽2-cocycle expansion) For 𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑑 − 1,
denote

𝜖𝑖(𝑋) := min{ ∣∣𝛿𝑖𝛼∣∣∣∣{𝛼}∣∣ ∣ 𝛼 ∈ 𝐶𝑖 ∖ 𝑍𝑖}

When {𝛼} = 𝛼+𝑍𝑖 and ∣∣{𝛼}∣∣ = min{∣∣𝛾∣∣ ∣ 𝛾 ∈
{𝛼}}.

3) (cofilling constant) The 𝑖-th cofilling constant of
𝑋 , 0 ≤ 𝑖 ≤ 𝑑 is

𝜇𝑖(𝑋) := max0∕=𝛽∈𝐵𝑖+1{ 1

∣∣𝛽∣∣min𝛼∈𝐶𝑖,𝛿𝛼=𝛽 ∣∣𝛼∣∣}
.

If {𝑋𝑗}𝑗∈𝐽 is a family of 𝑑-dimensional simplicial
complexes with 𝜖𝑖(𝑋𝑗) ≥ 𝜖 (resp. 𝜖𝑖(𝑋𝑗) ≥ 𝜖) for some
𝜖 > 0 and every 0 ≤ 𝑖 ≤ 𝑑 − 1 and every 𝑗 ∈ 𝐽 , we
say that this is a family of coboundary expanders (resp.
cocycle expanders). Note that {𝑋𝑗}𝑗∈𝐽 is a family of
cocycle expanders iff there exists 𝑀 ∈ ℝ such that
𝜇𝑖(𝑋𝑗) ≤𝑀 for every 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑑− 1 and 𝑗 ∈ 𝐽 .

We believe (see below) that Ramanujan complexes are
cocycle expanders but it is shown in [10] that in general
they are not coboundary expanders.
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Note also that for 𝑖 = −1, 𝑋(−1) = {∅} and hence
𝐵0 = {0,1}, where 1 is the constant function. On the
other hand 𝐵1 is the set of all ”cuts” in the 1-skeleton of
𝑋 . Indeed, if 𝛼 ∈ 𝐶0, then 𝛼 is a characteristic function
of some subset 𝐴 of 𝑉 = 𝑋(0) and one easily see that
𝛿(𝛼) ∈ 𝐶1 is exactly the set of edges from 𝐴 to 𝐴.
Moreover, the coset of 𝛼 modulo 𝐵0, namely 𝛼 + 𝐵0

consists of two elements: 𝛼 and 𝛼 + 1 or in terms of
subsets, 𝐴 and 𝐴. Recall that the Cheeger constant of
a graph is, by definition,

ℎ(𝑋) := min∅∕=𝐴⊂𝑉,∣𝐴∣≤ ∣𝑉 ∣2
∣𝐸(𝐴,𝐴)∣
∣𝐴∣ .

One can now easily check:

Proposition II.2. The following hold:

1) For 0 ≤ 𝑖 ≤ 𝑑 − 1, 𝜖𝑖 > 0 iff 𝐻 𝑖(𝑋,𝔽2) = 0. In
particular, 𝐻𝑖 = 0 for coboundary expanders.

2) Always 𝜇𝑖 =
1
𝜖𝑖

. So if 𝐻𝑖(𝑋,𝔽2) = 0 then 𝜖𝑖 = 𝜖𝑖
and 𝜇𝑖 =

1
𝜖𝑖

.

3) For a regular graph 𝑋 , 𝜖0(𝑋) =
∣𝑋(0)∣
∣𝑋(1)∣min∅∕=𝐴⊂𝑉,∣𝐴∣≤ ∣𝑉 ∣2

∣𝐸(𝐴,𝐴)∣
∣𝐴∣ = ℎ(𝑋) ∣𝑋(0)∣

∣𝑋(1)∣ ,
where 𝐸(𝐴,𝐴) is the set of edges from 𝐴 to 𝐴.
So, 𝜖0(𝑋) is the normalized Cheeger constant.

Proposition II.2 explains why we can consider the 𝜖𝑖’s
as expansion constants of 𝑋 . In a way 𝜖𝑖 capture a
situation which for graphs means that the graph is not
necessarily connected, but each connected component
is an expander.

III. TOPOLOGICAL OVERLAPPING

In Section I we saw Gromov’s Theorem I.3 saying that
coboundary expanders are topological expanders. For
Ramanujan complexes, it is possible that 𝐻𝑖 ∕= 0, and
so they are in general not coboundary expanders. It was
noted by Kaufman and Wagner [12] that one may give
a more general version of Gromov’s Theorem that will
also work when 𝐻 𝑖 ∕= 0. If 𝐻 𝑖 ∕= 0, then one should
assume a linear systolic inequality (condition (2) below)
for the non-trivial 𝑖-cocycles of 𝑍𝑖(𝑋,𝔽2). Here is the
theorem in its stronger form.

Theorem III.1. Let 𝑋 be a 𝑑-dimensional pure simpli-
cial complex of dimension 𝑑 and 0 < 𝜇, 𝜂 ∈ ℝ. Assume

1) For every 0 ≤ 𝑖 ≤ 𝑑− 1, 𝜇𝑖(𝑋) ≤ 𝜇.

2) For every 0 ≤ 𝑖 ≤ 𝑑−1 and every 𝛼 ∈ 𝑍𝑖(𝑋,𝔽2)∖
𝐵𝑖(𝑋,𝔽2), ∣∣𝛼∣∣ ≥ 𝜂.

Then there exists 𝑐 = 𝑐(𝑑, 𝜇, 𝜂) so that 𝑋 has 𝑐-
topological overlapping.

In other words, a family of 𝑑-dimensional expanders
which are cocycle expanders and satidfay ”linear sys-
tolic inequality” forms a family of topological ex-
panders. The reader may note that the systolic condition
(2) for graphs means that even if the graph is not
connected, every connected component is large (and, in
particular, there are only bounded number of connected
components). Indeed, this plus condition (1), which as
said before, ensures that every connected component is
an expander, suffice to deduce topological overlapping
for graphs.

For a proof of Theorem III.1 see [12]. Note that if 𝐻𝑖 =
0 for every 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑑 − 1, condition (2) above is
vacuous and Theorem III.1 is the same as Theorem I.3.

IV. ISOPERIMETRIC INEQUALITIES FOR

RAMANUJAN COMPLEXES

A finite connected 𝑘-regular graph 𝑌 is called a Ra-
manujan graph if every eigenvalue 𝜆 of the adjacency
matrix 𝐴 = 𝐴𝑌 of 𝑌 satisfies either ∣𝜆∣ = 𝑘 or
∣𝜆∣ ≤ 2

√
𝑘 − 1. By Alon-Boppana Theorem, these are

the optimal expanders (at least from a spectral point of
view). See for example [16] and the references therein,
for explicit construction of such graphs as quotients of
the Bruhat-Tits tree ℬ2(𝐹 ) associated with the group
𝑃𝐺𝐿2(𝐹 ) when 𝐹 is a local field (e.g. ℚ𝑝-the 𝑝-adic
numbers or 𝔽𝑞((𝑡))). Ramanujan graphs are obtained
by taking the quotients of ℬ2(𝐹 ) modulo the action of
suitable congruence subgroups Γ of an arithmetic co-
compact discrete subgroup (=lattice) Γ0 of 𝑃𝐺𝐿2(𝐹 ).

The above theory and constructions have been gener-
alized to the higher dimensional case. In [19] the no-
tion of Ramanujan complexes was defined and explicit
constructions of such 𝑑-dimensional complexes were
given in [20]. This time the complex 𝑌 is obtained
as a quotient of the Bruhat-Tits building associated
with 𝑃𝐺𝐿𝑑+1(𝐹 ), modulo the action of a suitable
congruence subgroup Γ of an arithmetic lattice Γ0 in
𝑃𝐺𝐿𝑑+1(𝐹 ). In [20] a specific arithmetic lattice Γ0

was used. This is the remarkable lattice constructed by
Cartwright and Steger [3] which acts simply transitive
on the vertices of the building.

To keep the exposition simple we will work only with
those congruence subgroups of Γ0 which destroy com-
pletely the coloring of the building (this is an analogue
of the non-bipartite case of Ramanujan graphs - see a
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discussion in [5]). When Γ0 is the Cartwright-Steger
arithmetic lattice, there are infinitely many congruence
subgroups of Γ0 with this property [20], so the associ-
ated complex ℬ∖Γ is non-partite (see [5]).

The reader is referred to these papers (and to a more
reader friendly description in [15]) for more details
and references. Rather than repeating the definition
of Ramanujan complexes, let us give here the few
properties of such complexes that we will be using.

Assume 𝑌 is a finite non-partite Ramanujan complex of
dimension 𝑑 obtained as a quotient of ℬ𝑑+1(𝐹 ) where
𝐹 is a local field with residue field 𝔽𝑞. The relevant
properties are the following:

(𝐴) The 1-skeleton 𝑌 (1) of 𝑌 is a 𝑘-regular graph
when 𝑘 =

∑𝑑
𝑖=1

(
𝑑+1
𝑖

)
𝑞
, where

(
𝑑+1
𝑖

)
𝑞

is the
number of subspaces of 𝔽𝑑+1

𝑞 of dimension
𝑖. The non trivial eigenvalues 𝜆 of 𝐴𝑌 (1) sat-
isfy ∣𝜆∣ ≤ ∑𝑑

𝑖=1

(
𝑑+1
𝑖

)
𝑞

𝑖(𝑑+1−𝑖)
2 . Thus, ∣𝜆∣ ≤

𝑐(𝑑)𝑘
1
2 when 𝑐(𝑑) depends only on 𝑑.

(𝐵) The link 𝑌𝑣 of every vertex 𝑣 is isomorphic to
the flag complex of 𝐹 𝑑+1

𝑞 . This is the complex
of dimension 𝑑 − 1 whose vertices are all
the non-trivial proper subspaces of 𝔽𝑑+1

𝑞 and
{𝑤0, ⋅ ⋅ ⋅ , 𝑤𝑖} forms an 𝑖-cell if, possibly after
reordering, 𝑤0 ⊂ 𝑤1 ⊂ ⋅ ⋅ ⋅ ⊂ 𝑤𝑖.

Let us spell out the properties for the case we are most
interested in this paper - the 3 dimensional Ramanujan
complexes. So here 𝑑 = 3 and we have

(𝐴3) 𝑌 (1) is the 𝑘-regular graph with 𝑘 =
(
4
1

)
𝑞
+

(
4
2

)
𝑞
+

(
4
3

)
𝑞
= 2 𝑞4−1

𝑞−1 + 𝑞4−1
𝑞−1 ⋅ 𝑞3−1

𝑞2−1 ≈ 𝑞4,
and every eigenvalue 𝜆 of 𝐴𝑌 (1) is either 𝑘 or
∣𝜆∣ ≤ 𝑐𝑞2.

(𝐵3) The link 𝑌𝑣 of a vertex is isomorphic to the
flag complex of 𝔽4

𝑞 . It has therefore vertices
of 3 types 𝑀1 ∪ 𝑀2 ∪ 𝑀3 (corresponding
to subspaces of 𝔽4

𝑞 of dimension 1, 2, 3). The
degree of the vertices in 𝑀2 is 2(𝑞+1), while
those in 𝑀1 ∪𝑀3 have degree 2(𝑞2 + 𝑞+ 1).
This means that 𝑌 has edges of two types:
”black” - the ones correspond to 𝑀1 ∪ 𝑀3,
such an edge lies on 2(𝑞2 + 𝑞 + 1) triangles
and ”white” - those correspond to 𝑀2 and each
of them lies on 2(𝑞 +1) triangles. Thus, if 𝑒𝑏
and 𝑒𝑤 are black and white edges, respectively,
then 𝑤𝑡(𝑒𝑏) = Θ ⋅𝑤𝑡(𝑒𝑤) where Θ = 𝑞2+𝑞+1

𝑞+1 .
Each triangle of 𝑌 has two black edges and
one white and it lies in 𝑞+1 pyramids (since

each edge of 𝑌𝑣 is in 𝑞 + 1 triangles). Thus,
every vertex of 𝑌 lie on 𝑂(𝑞5) triangles.

We can now state the main technical result of this paper.

Theorem IV.1. Fix 𝑞 ≫ 0 (i.e. 𝑞 > 𝑞0 = 𝑞0(3)).
Let 𝐹 = 𝔽𝑞((𝑡)), ℬ = ℬ4(𝐹 ) the 3-dimensional
Bruhat-Tits building associated with 𝑃𝐺𝐿4(𝐹 ), and
𝑌 = Γ∖ℬ a non-partite Ramanujan complex. There
exist 𝜂0, 𝜂1, 𝜂2, 𝜖0, 𝜖1, 𝜖2 all greater than 0 such that:
If 𝛼 ∈ 𝐶𝑖(𝑌,𝔽2) is a locally minimal cochain with
∣∣𝛼∣∣ ≤ 𝜂𝑖 then ∣∣𝛿𝑖(𝛼)∣∣ ≥ 𝜖𝑖∣∣𝛼∣∣. These constants may
depend of 𝑞 but not on 𝑌 .

For 𝜂0 we could take 𝜂0 = 1, i.e., this is true for
every 𝛼 ∈ 𝐶0 (as anyway ∣∣𝛼∣∣ ≤ 1, and if 𝛼 is
locally minimal then even ∣∣𝛼∣∣ ≤ 1

2 ). This is basically
saying that the 1-skeleton is an expander. This is not
so for 𝜂1 and 𝜂2. In [10], it is shown that it is
possible that for 𝑌 in Theorem IV.1, 𝐻1(𝑌,𝔽2) and
𝐻2(𝑌,𝔽2) be non zero. Hence, Theorem IV.1 is not
true without some assumptions such as ∣∣𝛼∣∣ ≤ 𝜂𝑖. In
particular, 𝑌 and even 𝑋 = 𝑌 (2), are in general not
coboundary expanders. We are still able to show that
𝑋 is a cocycle expander and satisfies a linear systolic
inequality. Hence, it has the topological overlapping
property (due to Theorem III.1); see Section V below.
It should be mentioned, however, that this is the only
obstacle, i.e., if 𝐻1(𝑋,𝔽2)(= 𝐻1(𝑌,𝔽2)) = 0 then 𝑋
is also a coboundary expander.

Now, by a general conjecture of Serre [24] (which has
been proven in many cases!) the Cartwright-Steger lat-
tice satisfies the congruence subgroup property. Unfor-
tunately, the conjecture is still open for the Cartwright-
Steger lattice, or for all the other arithmetic lattices
coming from division algebras. Anyway, if one would
assume Serre’s conjecture for the Cartwright-Steger
lattice, then there are infinitely many 𝑌 ’s as above with
𝐻1(𝑌,𝔽2) = 0 (see [10] for a proof).

Hence,

Corollary IV.2. Assuming Serre’s conjecture on the
congruence subgroup property for the Cartwright-
Steger lattices, then for 𝑞 ≫ 0 (i.e. 𝑞 > 𝑞0 = 𝑞0(3))
, there are infinitely many Ramanujan complexes 𝑌 ,
quotients of ℬ4(𝐹 ), such that 𝑋 = 𝑌 (2) are coboundary
expanders.

We postpond the sketch of the proof of Theorem IV.1
to Section VI and show first how the main theorem,
Theorem I.6, can be deduced from Theorem IV.1.
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V. PROOF OF THE MAIN THEOREM

Recall the notations of the main theorem (Theorem I.6).
We have to show that 𝑋 = 𝑋𝑎 the 2-skeleton of
𝑌 = 𝑌𝑎, the Ramanujan complex of dimension 3, has
the topological overlapping property with a constant
that may depend on 𝑞 but not on 𝑎. As explained in
Section IV, every vertex of 𝑌 lies on 𝑂(𝑞4) edges and
on 𝑂(𝑞5) triangles. So for a fixed 𝑞, we will get a family
of bounded degree topological expanders.

To achieve the goal, we will prove that 𝑋 satisfies
conditions (1) and (2) of Theorem III.1 with constants
𝜇 and 𝜂 independent of 𝑎 (but may depend on 𝑞).

Lemma V.1. If 𝛼 ∈ 𝐶𝑖(𝑌,𝔽2) then there exists �̃� ∈ 𝛼+
𝐵𝑖(𝑌,𝔽2) such that �̃� is locally minimal, ∣∣�̃�∣∣ ≤ ∣∣𝛼∣∣
and 𝛼 − �̃� = 𝛿𝑖−1(𝛾) for some 𝛾 ∈ 𝐶𝑖−1(𝑌,𝔽2) with
∣∣𝛾∣∣ ≤ 𝑐∣∣𝛼∣∣, where the constant 𝑐 may depend on 𝑞
but not on 𝑌 .

Proof: If 𝛼 is locally minimal, there is nothing to
prove. If it is not, then at some vertex 𝑣, 𝛼𝑣 is not
minimal, i.e., there exists 𝛾𝑣 ∈ 𝐶𝑖−2(𝑌𝑣,𝔽2) such that
∣∣𝛼𝑣 + 𝛿𝑖−2(𝛾𝑣)∣∣ < ∣∣𝛼𝑣∣∣. Let 𝛾 be the (𝑖− 1)-cochain
of 𝑌 with 𝛾 equal to 𝛾𝑣 on all the (𝑖−1)-cells containing
𝑣 (i.e., 𝛾𝑣 = 𝛾𝑣) and zero elsewhere, so this 𝛾 has at
most 𝑐1(𝑞) (𝑖 − 1)-cochains. Then 𝛼′ = 𝛼 + 𝛿𝑖−1(𝛾)
satisfies ∣∣𝛼′∣∣ < ∣∣𝛼∣∣. If 𝛼′ is locally minimal we stop
and take �̃� = 𝛼′. If not, we continue the process. Let
us note that when we ”correct” 𝛼 at a vertex 𝑣, we
may destroy it in a neighboring vertex 𝑤. Still, the
process terminates since each time the new 𝛼 has a
strictly smaller norm than the norm of the previous
𝛼. The number of possible values of the norm in the
process is at most

(
𝑑+1
𝑖+1

)∣𝑋(𝑑)∣∣∣𝛼∣∣. Now, each ”move”
change 𝛼 by 𝛿𝑖−1(𝛾) when 𝛾 has a bounded support.
So altogether, �̃� − 𝛼 = 𝛿𝑖−1(𝛾) when ∣𝛾∣ ≤ 𝑐2(𝑞)∣𝛼∣.
Thus, ∣∣𝛾∣∣ ≤ 𝑐3∣∣𝛼∣∣, for some constant depending only
on 𝑞.

We need to show that 𝑋 of Theorem I.6 satisfies
Conditions (1) and (2) of Theorem III.1. Let 𝛼 ∈
𝐶𝑖(𝑋,𝔽2) = 𝐶𝑖(𝑌,𝔽2). Assume ∣∣𝛼∣∣ < 𝜂𝑖, where
𝜂𝑖 is from Theorem IV.1, then ∣∣�̃�∣∣ < 𝜂𝑖, and by this
theorem, ∣∣𝛿𝑖(�̃�)∣∣ ≥ 𝜖𝑖∣∣�̃�∣∣. Now, if 𝛼 was in 𝑍𝑖(𝑌,𝔽2)
to start with, then so is �̃� , hence 𝛿𝑖(�̃�) = 0. This is a
contradiction unless �̃� = 0, so, �̃� ∈ 𝐵𝑖, and therefore
also 𝛼 ∈ 𝐵𝑖 , i.e., 𝛼 is a trivial cocycle. This shows
that for all non-trivial cocycles 𝛼 of 𝑍𝑖, ∣∣𝛼∣∣ ≥ 𝜂𝑖.
Part (2) of Theorem III.1 is proven. In fact we prove
along the way also a linear systolic lower bound for
every 𝛼 ∈ 𝑍2(𝑌, 𝐹2), even though, this is not needed

for Theorem III.1.

To prove part (1) we argue as follows: Let 𝛽 ∈
𝐵𝑖+1(𝑋,𝔽2) = 𝐵𝑖+1(𝑌,𝔽2) (𝑖 = 0, 1). We have to
show that there exists 𝛼 ∈ 𝐶𝑖 with 𝛿𝑖(𝛼) = 𝛽 and
∣∣𝛼∣∣ ≤ 𝜇∣∣𝛽∣∣ for some 𝜇 > 0. Arguing as before we
can replace 𝛽 by a locally minimal cochain 𝛽 which
is still in 𝐵𝑖+1, ∣∣𝛽∣∣ ≤ ∣∣𝛽∣∣ and 𝛽 − 𝛽 = 𝛿𝑖(𝛾)
with ∣∣𝛾∣∣ ≤ 𝑐1∣∣𝛽∣∣ for some constant 𝑐1, when 𝑐1
depends neither on 𝑌 nor on 𝛽. Note now that for
every 𝛼 ∈ 𝐶𝑖, ∣∣𝛼∣∣ ≤ 1 Now, if ∣∣𝛽∣∣ > 𝜂𝑖, then
there is nothing to prove, as we can take 𝜇 > 1

𝜂𝑖
. So

assume ∣∣𝛽∣∣ ≤ 𝜂𝑖; in this case ∣∣𝛽∣∣ ≤ 𝜂𝑖 and hence
by Theorem IV.1, ∣∣𝛿𝑖+1(𝛽)∣∣ ≥ 𝜖𝑖∣∣𝛽∣∣. But, 𝛽 ∈ 𝐵𝑖+1,
hence 𝛿𝑖+1(𝛽) = 0. This, implies that 𝛽 = 0. We saw
that 𝛽 − 𝛽 = 𝛿𝑖(𝛾) with ∣∣𝛾∣∣ ≤ 𝑐1∣∣𝛽∣∣, so now (1) of
Theorem III.1 is also verified. Theorem I.6 now follows.

VI. ISOPERIMETRIC INEQUALITIES - THE

2-DIMENSIONAL CASE

What is left in order to deduce the main theorem is to
prove Theorem IV.1 - the isoperimetric inequalities for
the 3-dimensional Ramanujan complexes. These proofs
are somewhat long, technical and complicated. We keep
these proofs for the full version of the paper [10]. What
we give here is a complete proof of a baby version
of Theorem IV.1, namely, the isoperimetric inequalities
for Ramanujan complexes of dimension 2. This will
illustrate the main idea of the proof of Theorem IV.1,
saving a lot of the technical difficulties. At the end of
the proof for the 2-dimensional case, we will explain
briefly the challenges arising in dimension 3. So here
we prove the following:

Theorem VI.1. Let 𝑞 ≫ 0 (i.e. 𝑞 > 𝑞0 = 𝑞0(2)),
𝐹 = 𝔽𝑞((𝑡)), ℬ = ℬ3(𝐹 ) the 2-dimensional Bruhat-Tits
building associated with 𝑃𝐺𝐿3(𝐹 ) and 𝑌 a non-partite
Ramanujan quotient of ℬ. Then there exist 𝜂0, 𝜂1, 𝜖0, 𝜖1,
all greater than zero such that: For 𝛼 ∈ 𝐶𝑖(𝑌,𝔽2) a
locally minimal cochain with ∣∣𝛼∣∣ ≤ 𝜂𝑖, ∣∣𝛿𝑖(𝛼)∣∣ ≥
𝜖𝑖∣∣𝛼∣∣.

Remark: We will see below that, in fact, for 𝑖 = 0,
we do not need the assumption ∣∣𝛼∣∣ ≤ 𝜂0 (or we can
take 𝜂0 =1 as in this case ∣∣𝛼∣∣ is always at most 1

2 ). If
we would prove Theorem VI.1 also for 𝑖 = 1 without
the assumption ∣∣𝛼∣∣ ≤ 𝜂1, then it would follow that
𝑌 itself is a coboundary expander and hence also a
topological expander. But, as shown in [10], for some
𝑌 ’s, 𝐻1(𝑌,𝔽2) ∕= 0. This implies that in general
Theorem VI.1 is not true without the assumption that
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∣∣𝛼∣∣ ≤ 𝜂1. (Indeed, take 𝛼 to be a locally minimal
representative of a non-trivial cocycle in 𝑍1(𝑌,𝔽2), then
𝛿1(𝛼) = 0). It is still very much plausible that 𝑌 is a
topological expander, but this is still open. This is the
reason that we had to move to the 2-skeleton of the
3-dimensional Ramanujan complex.

We now prove Theorem VI.1. We recall the properties
of 𝑌 we are using:

(𝐴2) The 1-skeleton 𝑌 (1) of 𝑌 is a 𝑘-regular graph
of degree 𝑄 =

(
3
1

)
𝑞
+

(
3
2

)
𝑞
= 2(𝑞2 + 𝑞 + 1),

and every eigenvalue 𝜆 of 𝐴𝑌 (1) is either 𝑄
or ∣𝜆∣ ≤ 6𝑞.

(𝐵2) The link 𝑌𝑣 of a vertex is the flag complex
of 𝔽3

𝑞 . This is the bipartite graph with 𝑄 =
2(𝑞2+𝑞+1) points of degree 𝑞+1 of the ”lines
versus points” of the projective plane ℙ2(𝔽𝑞),
so every edge of 𝑌 lies in 𝑞+1 triangles. The
non trivial eigenvalues of 𝐴𝑌𝑣 are ±√𝑞.

The proof of the first part of the theorem, i.e., 𝑖 =
0, is the same as the (by now standard) argument that
quotients of a group with property 𝑇 are expanders.
We skip this part. Again, for full details see [10]. We
concentrate on 𝑖 = 1, which is the main novelty of
the current paper. To this end, fix 𝜖′ > 0 and assume
𝛼 ∈ 𝐶1(𝑌,𝔽2), with ∣∣𝛼∣∣ ≤ 1

4(1+𝜖′) , i.e., ∣𝛼∣ ≤ 𝑄𝑛
8(1+𝜖′) ,

when 𝑛 = ∣𝑌 (0)∣.
We first recall some properties of (one dimensional)
expander graphs that we will be using. Let 𝑋 = (𝑉,𝐸)
be a finite connected graph, 𝐴 = 𝐴𝑋 its adjacency
matrix and Δ its laplacian, i.e., Δ : 𝐿2(𝑋) → 𝐿2(𝑋)
defined by Δ(𝑓)(𝑣) = 𝑑𝑒𝑔(𝑣)𝑓(𝑣)−∑

𝑦∼𝑣 𝑓(𝑦) where
the sum is over the neighbors of 𝑣. If 𝑋 is 𝑘-regular then
Δ = 𝑘𝐼 − 𝐴. It is well known that the eigenvalues of
Δ (and 𝐴) are intimately connected with the expansion
properties of 𝑋 . We will use the following result due
to Alon and Milman [16, Prop 4.2.5].

Proposition VI.2. Let 𝜆 = 𝜆1(𝑋) be the smallest
positive eigenvalue of Δ.

1) For every subset 𝑊 ⊆ 𝑉 ,

∣𝐸(𝑊, �̄� )∣ ≥ ∣𝑊 ∣∣�̄� ∣
∣𝑉 ∣ 𝜆1(𝑋),

where 𝐸(𝑊, �̄� ) denotes the set of edges from 𝑊
to its complement �̄� .

2) The Cheeger constant ℎ(𝑋) satisfies:

ℎ(𝑋) := min𝑊⊆𝑉
∣𝐸(𝑊, �̄� )∣

min(∣𝑊 ∣, ∣�̄� ∣) ≥
𝜆1(𝑋)

2
.

3) If 𝑋 is 𝑘-regular then 𝐸(𝑊 ) := 𝐸(𝑊,𝑊 ) satis-
fies:

𝐸(𝑊 ) =
1

2
(𝑘∣𝑊 ∣−𝐸(𝑊, �̄� )) ≤ 1

2
(𝑘− �̄�

∣𝑉 ∣𝜆1(𝑋))∣𝑊 ∣.

Lemma VI.3. For 𝑖 = 0, 1, 2, 3 denote by 𝑡𝑖, the
number of triangles of 𝑌 which contain exactly 𝑖 edges
from 𝛼. Then,

1) 𝑡1 + 2𝑡2 + 3𝑡3 = (𝑞 + 1)∣𝛼∣.
2) ∣𝛿1(𝛼)∣ = 𝑡1 + 𝑡3.

3)
∑

𝑣∈𝑌 (0) ∣𝐸𝑌𝑣 (𝛼𝑣, 𝛼𝑣)∣ = 2𝑡1 + 2𝑡2.

Here we consider 𝛼𝑣 , which is the set of edges in 𝛼
touching 𝑣, as a set of vertices of the link 𝑌𝑣. By 𝛼𝑣

we denote its complement there and 𝐸𝑌𝑣 (𝛼𝑣, 𝛼𝑣) is the
set of edges from 𝛼𝑣 to 𝛼𝑣.

Proof: For (1) we recall that every edge lies on
𝑞 + 1 triangles and a triangle which contributes to 𝑡𝑖
contains 𝑖 edges from 𝛼. Part (2) is simply the definition
of 𝛿1(𝛼), which is the set of all triangles containing
an odd number of edges from 𝛼. For (3) we argue as
follows.

If△ = {𝑣0, 𝑣1, 𝑣2} is a triangle of 𝑌 , then it contributes
an edge at 𝑌𝑣𝑘 ({𝑣𝑘} = {𝑣𝑖, 𝑣𝑗 , 𝑣𝑘}∖{𝑣𝑖, 𝑣𝑗}). This is
the edge between 𝑒𝑖,𝑘 = (𝑣𝑖, 𝑣𝑘) and 𝑒𝑗,𝑘 = (𝑣𝑗 , 𝑣𝑘)
when we consider 𝑒𝑖,𝑘 and 𝑒𝑗,𝑘 as vertices of 𝑌𝑣𝑘 . This
edge will be in 𝐸𝑌𝑣𝑘

(𝛼𝑣𝑘 , 𝛼𝑣𝑘) if and only if exactly
one of {𝑒𝑖,𝑘, 𝑒𝑗,𝑘} is in 𝛼. A case by case analysis of
the four possibilities shows that if △ has either 0 or 3
edges from 𝛼 then △ does not contribute anything to
the left hand sum. On the other hand, if it has either 1
or 2 edges, it contributes 2 to the sum. This proves the
lemma.

Fix now a small 𝜖 > 0 to be determined later and define:

Definition VI.4. A vertex 𝑣 of 𝑌 is called thin with
respect to 𝛼 if ∣𝛼𝑣∣ < (1 − 𝜖)𝑄2 and thick otherwise
(note that by our local minimality assumption, ∣𝛼𝑣∣ ≤ 𝑄

2
for every 𝑣). Denote 𝑊 = {𝑣 ∈ 𝑉 = 𝑌 (0)∣ ∃𝑒 ∈
𝛼 with 𝑣 ∈ 𝑒}, 𝑅 = {𝑣 ∈ 𝑊 ∣ 𝑣 thin}, 𝑆 = {𝑣 ∈
𝑊 ∣ 𝑣 thick}.

Let 𝑟 =
∑

𝑣∈𝑅 ∣𝛼𝑣∣ and 𝑠 =
∑

𝑣∈𝑆 ∣𝛼𝑣∣. As every edge
in 𝛼 contributes 2 to 𝑟 + 𝑠 we get the following:

Lemma VI.5. 𝑟 + 𝑠 = 2∣𝛼∣
Lemma VI.6.
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1) For every 𝑣 ∈ 𝑉 , ∣𝐸𝑌𝑣 (𝛼𝑣, 𝛼𝑣)∣ ≥ 1
2 (𝑞 + 1 −√

𝑞)∣𝛼𝑣∣.
2) If 𝑣 is thin, then ∣𝐸𝑌𝑣 (𝛼𝑣, 𝛼𝑣)∣ ≥ (1+𝜖)

2 (𝑞 + 1 −√
𝑞)∣𝛼𝑣∣.

Proof: As mentioned in (𝐵2), the link 𝑌𝑣 is the
”line versus points” graph of the projective plane. It is
a (𝑞+1)-regular graph whose eigenvalues are ±(𝑞+1)
and ±√𝑞. Hence, 𝜆1(𝑌𝑣) = (𝑞 + 1)−√𝑞. Part 1 now
follows from Proposition VI.2, and similarly part 2.

We can deduce

Lemma VI.7. 2𝑡1 + 2𝑡2 ≥ (𝑞 + 1 −√𝑞)∣𝛼∣ + 𝜖
2 (𝑞 +

1−√𝑞)𝑟.

Proof: 2𝑡1 + 2𝑡2 =
∑

𝑣∈𝑊 𝐸𝑌𝑣 (𝛼𝑣, 𝛼𝑣). The last
equals to the following:

=
∑

𝑣∈𝑅 𝐸𝑌𝑣 (𝛼𝑣, 𝛼𝑣) +
∑

𝑣∈𝑆 𝐸𝑌𝑣 (𝛼𝑣, 𝛼𝑣) (1)

≥ (1+𝜖)
2 (𝑞 + 1−√𝑞)𝑟 + 1

2 (𝑞 + 1−√𝑞)𝑠 (2)

= 1
2 (𝑞 + 1−√𝑞)(𝑟 + 𝑠) + 𝜖

2 (𝑞 + 1−√𝑞)𝑟 (3)

= (𝑞 + 1−√𝑞)∣𝛼∣+ 𝜖
2 (𝑞 + 1−√𝑞)𝑟 (4)

In the first equation we have used Lemma VI.3, part (3)
and in the last one Lemma VI.5. The inequality follows
from Lemma VI.6.

Lemma VI.8. 𝑡1 − 3𝑡3 ≥ 𝜖
2 (𝑞 + 1−√𝑞)𝑟 −√𝑞∣𝛼∣.

Proof: Subtract equation (1) in Lemma VI.3 form
the equation obtained in Lemma VI.7.

Our goal now is to show that 𝑟, the contribution of the
thin vertices, is greater than 𝑐′ ⋅ ∣𝛼∣, where 𝑐′ does not
depend on 𝑌 (actually, it does not even depend on 𝑞).
This will prove that for 𝑞 large enough 𝑡1 ≥ 𝑐𝑞∣𝛼∣ and
the theorem will follow. Up to now we have used only
the local structure of 𝑌 , the links. Now we will use the
global structure, the fact that its 1-skeleton is almost a
Ramanujan graph.

Lemma VI.9. The total number of edges in 𝑌 (1)

between the thick vertices is bounded as follows:

∣𝐸𝑌 (1)(𝑆)∣ ≤ ∣𝛼∣( 1

(1 − 𝜖)2(1 + 𝜖′)
+

12𝑞

(1− 𝜖)𝑄
).

Proof: Recall, that by (𝐵2), the second largest
eigenvalue of the adjacency matrix of 𝑌 (1) is bounded
from above by 6𝑞. So 𝜆1(𝑌

(1)) ≥ 𝑄−6𝑞 = 2𝑞2−4𝑞+1.
Note now that every vertex in 𝑆 touches at least
(1 − 𝜖)𝑄2 edges of 𝛼, hence ∣𝑆∣ ≤ 2∣𝛼∣

(1−𝜖)𝑄
2

= 4∣𝛼∣
(1−𝜖)𝑄 .

Proposition VI.2 implies therefore (when 𝑛 := ∣𝑌 (0)∣)

∣𝐸(𝑆)∣ ≤ 1

2
(𝑄− ∣𝑆∣

𝑛
𝜆1(𝑌

(1)))∣𝑆∣ (5)

≤ 1

2
(𝑄− ∣𝑆∣

𝑛
(𝑄− 6𝑞))∣𝑆∣ (6)

=
1

2
(𝑄(1− ∣𝑆∣

𝑛
) + 6𝑞

∣𝑆∣
𝑛
)∣𝑆∣ (7)

≤ 1

2
(𝑄
∣𝑆∣
𝑛

+ 6𝑞)∣𝑆∣ (8)

≤ 1

2
(

4∣𝛼∣
(1− 𝜖)𝑛

+ 6𝑞)∣𝑆∣ (9)

Recall, that ∣𝛼∣ ≤ 𝑄𝑛
8(1+𝜖′) and hence, ∣𝐸(𝑆)∣ ≤

( 2𝑄
8(1−𝜖)(1+𝜖′)+3𝑞)

4∣𝛼∣
(1−𝜖)𝑄 = ∣𝛼∣( 1

(1−𝜖)2(1+𝜖′)+
12𝑞

(1−𝜖)𝑄 ).

Proof: (of Theorem VI.1) We can now finish the
proof of Theorem VI.1. Choose 𝜖 > 0 such that

1
(1−𝜖)2(1+𝜖′) < 1 and then assume that 𝑞 is sufficiently

large such that 1
(1−𝜖)2(1+𝜖′) +

12𝑞
(1−𝜖)𝑄 < 1− 𝜉 < 1, for

some 𝜉 > 0. This now means by Lemma VI.9 that at
most (1 − 𝜉) of the edges in 𝛼 are between two thick
vertices, namely, for at least 𝜉∣𝛼∣ edges, one of their
endpoints is thin. This implies that 𝑟 ≥ 𝜉∣𝛼∣. Plugging
this in Lemma VI.8, we get 𝑡1 ≥ ( 𝜖2 (𝑞 + 1 − √𝑞)𝜉 −√
𝑞)∣𝛼∣. Again, if 𝑞 is large enough this means that

∣𝛿1(𝛼)∣ ≥ 𝑡1 ≥ 𝜖1𝑞∣𝛼∣ and Theorem VI.1 is proved
with 𝜂1 =

1
4(1+𝜖′) .

Let us mention that along the way we have proved two
facts which are worth formulating separately.

Corollary VI.10. In the notations and assumptions as
above. For every 𝜖′ > 0, if 𝑞 ≥ 𝑞(𝜖′) ≫ 0, then we
have:

1) If 𝛼 ∈ 𝐵1(𝑋,𝔽2) is a locally minimal coboundary
with ∣𝛼∣ < 1

4(1+𝜖′) ∣𝑋(1)∣ then 𝛼 = 0.

2) If 𝛼 ∈ 𝑍1(𝑋,𝔽2) ∖ 𝐵1(𝑋,𝔽2), then ∣𝛼∣ >
1

4(1+𝜖′) ∣𝑋(1)∣. In particular, every representative
of a non-trivial cohomology class has linear size
support.

This is a systolic inequality. This is actually a very
strong systolic lower bound as any class of 𝑍1 has
a representative 𝛼 with ∣𝛼∣ ≤ ∣𝑋(1)∣

2 , and 𝜖′ can be
chosen as small as we wish. Note that as shown in [10],
there are indeed cases that 𝐻1(𝑋,𝔽2) ∕= {0}, so the
second item of Corollary VI.10 is a non-vacuum systolic
result. Such results are of potential interest for quantum
error-correcting codes (see [25],[8] and the references
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therein).

We finish by outlining the additional difficulties in
proving Theorem IV.1. Some of the difficulties are
technical, e.g., the difference between (𝐵2) and (𝐵3)
where the links are more complicated. A more essential
difficulty is with the notion of ”thinness”: the appropri-
ate notion of thinness for vertices and edges in the high
dimensional case is far from being obvious. See [10]
for more.
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