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Abstract—We show that, under a standard hardness as-
sumption, there is no computationally efficient algorithm that
given n samples from an unknown distribution can give
valid answers to n3+o(1) adaptively chosen statistical queries.
A statistical query asks for the expectation of a predicate
over the underlying distribution, and an answer to a statistical
query is valid if it is “close” to the correct expectation over
the distribution.

Our result stands in stark contrast to the well known fact
that exponentially many statistical queries can be answered
validly and efficiently if the queries are chosen non-adaptively
(no query may depend on the answers to previous queries).
Moreover, Dwork et al. [1], showed how to accurately answer
exponentially many adaptively chosen statistical queries via a
computationally inefficient algorithm. They also gave efficient
algorithm that can answer nearly n2 adaptively chosen queries,
which shows our result is almost quantitatively tight.

Conceptually, our result demonstrates that achieving statisti-
cal validity alone can be a source of computational intractabil-
ity in adaptive settings. For example, in the modern large
collaborative research environment, data analysts typically
choose a particular approach based on previous findings. False
discovery occurs if a research finding is supported by the data
but not by the underlying distribution. While the study of
preventing false discovery in Statistics is decades old, to the
best of our knowledge our result is the first to demonstrate a
computational barrier. In particular, our result suggests that
the perceived difficulty of preventing false discovery in today’s
collaborative research environment may be inherent.

I. INTRODUCTION

Empirical research is commonly done by testing multiple

hypotheses on a finite sample. A test outcome is deemed

statistically signficant if it is unliked to have occured by

chance alone. False discovery arises if the analyst incor-

rectly declares an observation as statistically significant.

For decades statisticians have been devising methods for

preventing false discovery, such as the widely used and

highly influential method for controlling the false discovery
rate due to Benjamini and Hochberg [2].

Nevertheless the problem of false discovery persists across

all empirical sciences today. Popular articles report on an

increasing number of invalid research findings. Why is it

seemingly so difficult to prevent false discovery? Today’s

practice of data analysis diverges from classical statistics

in its massive scale, heavy use of sophisticated algorithms,
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and large number of participants in any given project.

Importantly, the way modern data analysts interact with

the data set is inherently adaptive—many design choices,

including the choice and tuning of the algorithm itself, de-

pend on previous interactions with the data set. An extreme

example are data science competitions, in which hundreds

of data scientists analyze the same data set and repeatedly

evaluate their approach against the same data. This level of

adaptivity makes it nearly impossible to give a precise a

priori description of the experimental setup.

We formalize the way in which data analysts may interact

with a data set using the statistical-query model (SQ model)
of Kearns [3]. In the statistical query model, there is an

algorithm called the oracle that gets access to n samples

from an unknown distribution D over some finite universe

X . We will assume throughout that X = {0, 1}d where we

think of the parameter d as the dimensionality of the data. A

statistical query q is specified by a predicate p : X → {0, 1}
and the answer to a statistical query is defined as q(D) =
Ex∼D p(x). The goal of the oracle is to give an answer a
to the query that is accurate (or statistically valid) in the

sense that |a−q(D)| ≤ α with high probability. Throughout

our work we only require α to be a small constant. Put

differently, the goal of the oracle is to provide answers that

generalize to the underlying distribution rather than answers

that are specific to the sample. The latter is always easy

to achieve by outputting the empirical average of the query

predicate on the sample.

The SQ model has a number of advantages for our

purposes. First, almost all natural machine learning al-

gorithms can be compiled into a sequence of statistical

queries. Hence, the model does not give up much generality.

Second, it makes it convenient to formalize adaptivity. In

the adaptive/interactive setting, the analyst is modeled as

an efficient algorithm that given a sequence of queries and

answers q1, a1, q2, a2, . . . , qi, ai (previously exchanged with

the oracle) produces a new query qi+1. We say that an

oracle is accurate given n samples for k adaptively chosen

queries, if for every distribution D, given n samples from

D the oracle accurately responds to any computationally

efficient adaptive analyst that makes at most k queries. A

computationally efficient oracle should run time polynomial

in n and d on input of each query.

A recent work by Dwork, Feldman, Hardt, Pitassi, Rein-
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gold and Roth [1] addresses the problem of answering adap-

tive statistical queries. Their main result implies that there is

a computationally inefficient oracle that accurately answers

even an exponential number of adaptively chosen statistical

queries. Moreover, they show that a quadratic number of

queries can be answered accurately and efficiently. Our main

theorem shows that these results are essentially as far as it

goes. Under a standard cryptographic hardness assumption,

we show that there is no efficient oracle that is accurate on

more than a cubic number of adaptively chosen queries.

Theorem I.1 (Informal). Assuming one-way functions exist,
there is no computationally efficient oracle that given n sam-
ples from an arbitrary distribution is accurate on n3+o(1)

arbitrary adaptively chosen queries.

An intuitive interpretation of the theorem is that if an

efficient oracle attempts to answer more than n3 statistical

queries it cannot in general maintain that its answers are

statistically valid with respect to the underlying distribution.

Of course, the oracle can always report the exact answer

of the query on its data set. However, one can show that

this strategy does not maintain accuracy on adaptive queries

in general and—as our theorem shows—neither does any

other computationally efficient approach. From a technical

perspective our result gives a strong computational lower

bound in the statistical query model. Lower bounds in the

statistical query model have been studied for more than

two decades. But more broadly speaking, we interpret our

result as pointing at an inherent computational obstruction

to preventing false discovery in collaborative science.

Note that Theorem I.1 stands in sharp contrast to the non-

adaptive setting. If we fix queries q1, . . . , qk and then sample

n items from the distribution D, the observed empirical

answer to each query on the data set will be close to the

correct answer with high probability so long as k = 2o(n).
This guarantee follows from a Hoeffding bound together

with the union bound.

Our hardness result applies when the dimensionality of the

data grows with the sample size more than logarithmically

so that 2d is no longer polynomial in n.1 This requirement

is rather mild, and is also necessary. If n � 2d then the

empirical distribution of the n samples will be close to

the underlying distribution in statistical distance, and thus

every statistical query can be answered accurately given

the sample. More generally, as we discuss in Section I-B,

there are algorithms that run in time polynomial in n and

2d and provide accuracy even on an exponential number of

adaptively chosen queries [1]. Thus, our results show that the

dimensionality of the data has a major effect on the hardness

of the problem. In fact, we provide a second theorem that

shows that if the dimensionality is polynomially large in n,

1This is under the stronger but standard assumption that exponentially
hard one-way-functions exist.

then we cannot even hope for a computationally unbounded
oracle that provides accuracy on adaptive queries.

Theorem I.2 (Informal). There is no computationally un-
bounded oracle that given n samples of dimension d =
n3+o(1) from an arbitrary distribution is accurate on n3+o(1)

arbitrary adaptively chosen queries.

While the dimension in the previous theorem has to be

large, there are important data sets that exhibit this trade-off

between sample size and dimension. A good example are

genome wide association studies (GWAS). Here, the sample

size corresponds to patients with a certain (possibly rare

disease) and is often in the hundreds. The dimensionality

corresponds to the number of relevent positions in the human

genome and is often in the millions. Moreover, the genome

resolution is increasing rapidly with new technology whereas

the number of available patients is not.

To conclude this discussion of our results, we believe that

adaptivity is an essential element of modern data analysis

that ought to be taken into account by theoretical models.

At the same time, our theorems demonstrate the intrinsic

difficulty of coping with adaptivity.

A. Proof Overview

The intuition for our proof is rather simple. We will

design a challenge distribution D and a computationally

efficient adaptive analyst A so that the following is true.

If any compuationally efficient oracle O is given n sam-

ples S = {x1, . . . , xn} drawn from D then our adaptive

analyst A is able to reconstruct n′ = n − O(1) samples

{y1, . . . , yn′} ⊆ S. In other words, the analyst is able to

find all but a constant number of samples that the oracle is

using. While the analyst has a priori information about the

distribution D it has no information whatsoever about which

sample O received. Nevertheless, the analyst can reconstruct

essentially all of the hidden sample. Quantitatively, the

analyst proceeds in n−O(1) rounds and each round consists

of roughly n2 queries. In each round the analyst successfully

recovers one data item from the oracle provided that the

oracle continues to give accurate answers. After the analyst

has recovered almost all samples, the effective sample size

of the oracle has shrunk down to a constant size. At this

point it is easy for the analyst to find queries on which the

oracle gives blatantly inaccurate answers.

The first problem is to recover even a single data point

inside the oracle’s sample. To solve this problem we rely

on a cryptographic primitive known as a fingerprinting

code. Fingerprinting codes were introduced by Boneh and

Shaw [4] for the problem of watermarking digital content.

A fingerprinting code has two components. The first com-

ponent generates a set of “challenge queries.” The second

component is a “tracing algorithm” which takes answers to

these queries and returns a data item. The fingerprinting

code gives the guarantee that if the challenge queries are
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answered accurately, and by looking only at how each

challenge query is defined on S, then the tracing algorithm

will successfully recover one element in S. Unfortunately,

nothing prevents the oracle from evaluating the queries at

points outside of S. In fact, information-theoretically the

challenge queries used in our attack reveal information about

the unknown distribution D that the oracle didn’t have

previously. To circumvent this problem, we need to hide

this additional information from the oracle. To do so, we

use an encryption scheme to effectively hide the definition

of the query on points outside of S from the oracle. The

encryption is sufficient to show that, assuming that the oracle

is computationally bounded, the tracing algorithm of the

fingerprinting code will succeed. We note that encryption

schemes suitable for our purpose exist under the standard

assumption that one-way functions exist. With this one-

round approach in mind, we can proceed iteratively. In the

next round we exclude the previously learned data item from

the definition of the challenge queries, which ensures that

the analyst learns a new item in each round.

There is one important subtlety. The tracing algorithm

of the fingerprinting code will only succeed if the oracle

answers the challenge queries accurately with respect to

its sample S. However, our assumption is that the oracle

is accurate with respect to the underlying distribution D
rather than the sample S. We need to worry that eventually

the sample and the distribution disagree on the challenge

queries. In this case the oracle may be inaccurate on its

sample (and hence tracing fails), yet still accurate on the

distribution. To rule out this pathological situation we use

a measure concentration property of our specific choice

of fingerprinting code. Specifically, we the fact that the

challenge queries of the code are essentially random pred-

icates with a certain bias. This property allows us to use

the randomness of the challenge queries to argue that the

sample S approximately agrees with the distribution D on

these queries with sufficiently high probability so long as

there are at least O(1) elements in the sample that we haven’t

reconstructed yet. Due to the approximation error incurred

here, we also need to use a somewhat stronger primitive

called a robust fingerprinting code that was just recently

provided in work by Bun, Ullman and Vadhan [5], which

also satisfies the necessary measure concentration property.

B. Connection to Privacy and Reconstruction Attacks

Our work builds on a close connection to the problem

of designing privacy-preserving oracles. Here, the goal is to

provide answers to statistical queries in such a way that the

analyst does not learn the specifics of individual data recrods

but rather global properties of the underlying distribution.

A successful approach for formalizing this desideratum is

the notion of differential privacy [6]. Differential privacy

requires that the answers given by the oracle are randomized

in such a way that the presence or absence of any single

data item in the sample cannot be detected. It is known

that differential privacy prevents so-called reconstruction
attacks. A reconstruction attack is an algorithm that is able

to reconstruct most entries of a data set by interacting with

the oracle. Such an attack demonstrates that the oracle is

blatantly non-private (it fails to satisfy not only differential

privacy, but any reasonable notion of privacy). Our work can

be considered an efficient reconstruction attack as we give

an efficient adaptive analyst that reconstructs almost all of

the data points that the oracle uses if the oracle provides

accuracy on n3+o(1) queries. An immediate consequence of

our work is therefore the following result.

Theorem I.3. Assuming one-way functions exist, any com-
putationally efficient oracle that given n samples from
an arbitrary distribution is accurate on n3+o(1) arbitrary
adaptively chosen queries must be blatantly non-private.

This result should be compared with recent work of

Ullman [7], which showed that oracles satisfying differential

privacy cannot answer even n2+o(1) non-adaptively chosen

queries. Here we show that if the queries are chosen adap-

tively, then the same conclusion holds even for oracles that

merely thwart blatant non-privacy, up to a factor of n loss

in the number of queries.

An important difference to the privacy setting is how

accuracy is defined. In the privacy setting, accuracy is

defined with respect to the oracle’s sample. It is trivial to

maintain accuracy with respect to the sample by answering

each query with the sample mean, which succeeds even

when the oracle is blatantly non-private. In the setting of

false discovery, we define accuracy with respect to the

underlying distribution and show that achieving this notion

of accuracy is hard for the oracle.

Upper bounds for answering adaptive queries: Differ-

ential privacy is also useful in establishing upper bounds in

our setting. At a high-level, differential privacy is a stability
condition on an algorithm requiring that the output varies

only slightly with the addition or deletion of a sample

point. On the other hand, it is known that stability implies

generalization [8]. Hence, we can think of the interaction

between an oracle and an analyst as a single algorithm

that satisfies a stability guarantee strong enough to im-

ply generalization bounds with respect to the underlying

distribution. This approach was formalized by Dwork et

al. [1] leading to upper bounds in the adaptive setting

when combined with algorithms from the differential privacy

literature. Specifically, work of Roth-Roughgarden [9] and

Hardt-Rothblum [10] addresses differential privacy in the

interactive setting. The latter work shows that 2Ω̃(n/
√
d)

statistical queries can be answered with constant error under

differential privacy. However, the running time is exponential

in d. Using the results of [1] this leads to the same upper

bound in the adaptive statistical query setting. Similarly,

there is an efficient differentially private mechanism that
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gives constant accuracy for Ω̃(n2) queries. This leads to

a computationally efficient upper bound in our setting. To

summarize we state the following theorem.

Theorem I.4 ([1]). There is an inefficient algorithm that
accurately answers 2Ω̃(n/

√
d) adaptively chosen statistical

queries. Moreover, there is an efficient algorithm that accu-
rately answers Ω̃(n2) adaptively chosen queries.

We emphasize that exponential running time was known

to be inherent for differentially private algorithms that an-

swer n2+o(1) statistical queries [7], but prior to our results it

was possible that there was an efficient oracle that accurately

answered exponentially many adaptively chosen statistical

queries via a different approach.

C. Related Work

The combination of fingerprinting codes and encryption

in our one-round approach is a common technique in

the construction of “traitor-tracing schemes.” Traitor-tracing

schemes were introduced by Chor, Fiat, and Naor [11], also

for the problem of secure distribution of digital content.

Dwork et al. [12] were the first to show that traitor-tracing

schemes can be used to prove computational hardness results

for differential privacy. Ullman [7] showed that traitor-

tracing schemes with certain non-standard security prop-

erties can be used to prove strong computational hardness

results for differential privacy, and showed how to construct

such a scheme. In fact, the one-round approach described

above closely mirrors the traitor-tracing scheme constructed

in [7]. See [7] for a more detailed discussion of prior work

on traitor-tracing and the issues that arise when using traitor-

tracing schemes in the context of differential privacy.

Our work was also inspired by recent work of Hardt

and Woodruff [13], which showed that no low-dimensional

linear sketch can give valid answers to even a polynomial

number of adaptively chosen queries. Technically our results

are largely orthogonal to theirs, since we consider arbitrary

computationally efficient statistical query oracles, rather than

linear sketches. However, their work also noted the connec-

tion between differential privacy and validly answering adap-

tively chosen queries and inspired our iterative approach.

The work on false discovery and multiple hypothesis

testing in Statistics is too vast to survey here. However, to

our knowledge none of that work addresses adaptivity.
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II. PRELIMINARIES

A. Oracles for Adaptive Queries

Let D be a distribution over {0, 1}d, for some parameter

d ∈ N. We are interested in answering statistical queries
about the distribution D. A statistical query on {0, 1}d is

specified by a predicate q : {0, 1}d → {0, 1} and (abusing

notation) is defined to be q(D) = Ex←RD [q(x)] . The goal

is to design an oracle O that answers statistical queries

about the unknown distribution D, given only iid samples

x1, . . . , xn from D. In this work, we are interested in the

case where the queries may be adaptively and adversarially

chosen.

Specifically, O is a stateful algorithm that holds a tuple

of samples x1, x2, · · · ∈ {0, 1}∗, takes a statistical query q
as input, and returns a real-valued answer a ∈ [0, 1]. We

require that when x consists of iid samples from D, the

answer a is close to q(D), and moreover that this condition

holds for every query in an adaptively chosen sequence

q1, q2, . . . . Formally, we define the accuracy guarantee using

the following game with a stateful adversary A.

A chooses a distribution D over {0, 1}d
Sample x1, . . . , xn ←R D, let x = (x1, . . . , xn)
For j = 1, . . . , k
A(q1, a1, . . . , qj−1, aj−1) outputs a query qj
O(x, qj) outputs aj

Figure 1. Accn,d,k[O,A]

Definition II.1 (Accurate Oracle). An oracle O is (α, β)-
accurate for k adaptively chosen queries given n samples
in {0, 1}d if for every adversary A,

Pr
Accn,d,k[O,A]

[∀j ∈ [k] |O(x, qj)− qj(D)| ≤ α] ≥ 1− β .

As a shorthand, we will say that O is α-accurate for k
queries if for every n, d ∈ N, O is (α, on(1))-accurate for

k queries given n samples in {0, 1}d. Here, k may depend

on n and d and on(1) is a function of n that tends to 0.

We are interested in oracles that are both accurate and

computationally efficient. We say that an oracle O is com-
putationally efficient if when given samples x1, . . . , xn ∈
{0, 1}d and a query q : {0, 1}d → {0, 1} it runs in time

poly(n, d, |q|). Here q will be represented as a circuit that

evaluates q(x) and |q| denotes the size of this circuit.

B. Encryption Schemes

Our attack relies on the existence of a semantically secure

private-key encryption scheme. An encryption scheme is
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a triple of efficient algorithms (Gen,Enc,Dec) with the

following syntax:

• Gen is a randomized algorithm that takes as input a

security parameter λ and outputs an �Enc(λ)-bit secret

key for some non-decreasing function �Enc : N → N.

Formally, sk ←R Gen(1λ).
• Enc is a randomized algorithm that takes as input a

secret key and a one-bit message m ∈ {0, 1} and

outputs a ciphertext c. Formally, c←R Enc(sk,m).
• Dec is a deterministic algorithm that takes as input a

secret key and a ciphertext c and outputs a decryption

m′. If the ciphertext c was an encryption of m under the

key sk, then m′ = m. Formally, if c ←R Enc(sk,m),
then Dec(sk, c) = m with probability 1.

Roughly, security of the encryption scheme asserts that

no polynomial time adversary who does not know the secret

key can distinguish encryptions of m = 0 from encryptions

of m = 1, even if the adversary has access to an oracle

that returns the encryption of an arbitrary message under

the unknown key. For convenience, we will require that

this security property holds simultaneously for an arbitrary

polynomial number of secret keys. The existence of an

encryption scheme with this property follows immediately

from the existence an ordinary semantically secure encryp-

tion scheme, which in turn follows from the existence of

one-way functions. We start with the stronger definition only

to simplify our proofs. A secure encryption scheme exists

under the minimal cryptographic assumption that one-way

functions exist. Due to space requirements, we omit the

formal definition of security.

C. Fingerprinting Codes

Collusion-resilient fingerprinting codes were introduced

by Boneh and Shaw [4] for the problem of watermarking

digital content. A fingerprinting code is a pair of efficient

algorithms (FPC .Gen,FPC .Trace). The code generator

FPC .Gen takes a number of users p as input and outputs

a matrix F ∈ {0, 1}p×�FPC (p), for some function �FPC :
N → N. We think of F as consisting of p codewords, one

for each user i ∈ [p], with each codeword being of length

�FPC = �FPC (p). For a subset of users S ⊆ [p], we use FS

to denote the |S| × �FPC matrix consisting of the subset of

codewords belonging to users in S.

The security property says that any codeword can be

“traced” to its corresponding user. Moreover, the code is

fully collusion-resilient—if any subset of users S ⊆ [p]
“combines” their codewords in an arbitrary manner, then the

combined codeword a ∈ {0, 1}�FPC can also be traced to one

of the users in S, provided that the combined codeword is

“consistent” with FS in a very weak sense. For the standard

definition of fingerprinting codes, the consistency condition

would require that for every column j of FS , if every entry

of the j-th column shares the same bit b, then the j-th entry

of a is also b. Formally, we will use the condition that

for every j, |aj − Ei∈S [FS(i, j)] | ≤ 1/3. For our results

we require a stronger, error-robust fingerprinting code, that

can trace combined codewords that only respect a relaxed

consistency condition, in which the above constraint on a is

only required to hold for 99% of columns j.

Specifically, for any set of codewords FS , we define

Con(FS) to be the set of a ∈ {0, 1}�FPC such that for

.99�FPC choices of j, |aj − Ei∈S [FS(i, j)]| ≤ 1/3. We can

now formally define error-robust fingerprinting codes

Definition II.2. For a function �FPC : N → N, a pair of

efficient algorithms (FPC .Gen,FPC .Trace) is an error-

robust fingerprinting code of length �FPC if

1) for every p ∈ N, FPC .Gen(1p) outputs a matrix F ∈
{0, 1}p×�FPC (p) and

2) for every (possibly randomized) adversary AFPC and

every S ⊆ [p], if F ←R FPC .Gen(1p) and a ←R

AFPC (FS), then

Pr

[
a ∈ Con(FS)

∧FPC .Trace(F, a) �∈ S

]
≤ negl(p).

Bun, Ullman, and Vadhan [5] introduced error-robust

fingerprinting codes. They gave a construction with nearly-

optimal length, building on the nearly-optimal construction

of standard (non-robust) fingerprinting codes by Tardos [14].

Theorem II.3 ([5], building on [14]). For every p ∈ N,
there exists an error-robust fingerprinting code of length
�FPC (p) = Θ̃(p2).

For our results, we will need an additional technical

lemma about the fingerprinting code in [5] that we will

use for our results. The lemma states that if |S| is at least

a sufficiently large constant, then for most columns j, the

mean of the j-th column of F and that of FS are close. In

order to prove the lemma, we need to partially describe the

algorithm FPC .Gen .

Choose parameters p1, . . . , p�FPC
∈ [0, 1]. (The pa-

rameters pj must be chosen from a particular distri-

bution, which is not relevant for our purposes)

For every i ∈ [p], j ∈ [�FPC ], let F (i, j) = 1 with

probability pj , independently

Figure 2. FPC .Gen

Lemma II.4. For every p ≥ 500, and every S ⊆ [p]
such that |S| ≥ 500, if F ←R FPC .Gen(1p) then with
probability at least 1 − negl(p), it holds that for .99�FPC

choices of j,
∣∣Ei∈[p] [F (i, j)]− Ei∈S [FS(i, j)]

∣∣ ≤ 1/6.

Proof: Fix any p1, . . . , p�FPC ∈ [0, 1] and any j ∈
[�FPC ]. Then for every i ∈ [S], F (i, j) is an independent

Bernoulli random variable with success probability pj . Thus,
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by a Hoeffding bound2

Pr

[∣∣∣∣ E
i∈[p]

[F (i, j)]− pj

∣∣∣∣ > 1/12

]
≤ 2e−p/72 ≤ 1/400

and

Pr

[∣∣∣∣ Ei∈S [F (i, j)]− pj

∣∣∣∣ > 1/12

]
≤ 2e−|S|/72 ≤ 1/400.

Thus, by a triangle inequality, it holds that

Pr

[∣∣∣∣ Ei∈S [F (i, j)]− E
i∈[p]

[F (i, j)]

∣∣∣∣ > 1/6

]
≤ 1/200

If we let Bj be the indicator variable of the event{|Ei∈S [F (i, j)] − Ei∈[p] [F (i, j)] | > 1/6
}

, then

E

[∑�FPC

i=1 Bj

]
≤ �FPC/200. Since the parameters pj are

fixed, the events Bj are independent. By a Hoeffding bound,

Pr
[∑�FPC

i=1 Bj > �FPC/100
]
≤ e−�FPC/20000 ≤ negl(p).

The final inequality holds because �FPC = �FPC (p) =
Θ̃(p2). Since the conclusion holds for every fixed choice

of parameters pj , it also holds when the parameters pj are

chosen randomly as in FPC .Gen .

III. LOWER BOUNDS FOR ADAPTIVELY CHOSEN

STATISTICS

In this section we will show that there is no computation-

ally efficient oracle that is accurate for a sufficiently large

number of adaptively chosen queries, and thereby formally

establish Theorem I.1 in the introduction. To do, we will

construct an adversary that chooses a distribution D, and

then issues queries to the oracle such that no computationally

efficient oracle given samples from D can answer all the

queries correctly.

The adversary is specified in Figure 3. The adversary

works in three phases. In the first phase the adversary

chooses the distribution D randomly. Then the oracle is

given samples from D and the adversary performs a re-

covery phase in order to identify (most of) the samples

the oracle received. Finally, the adversary uses knowledge

of (most of) the samples to find a query that the oracle

cannot answer accurately. See Section I-A for more informal

description of the adversary. In Figure 3, (Gen,Enc,Dec)
is an encryption scheme with key length �Enc(λ) and

(FPC .Gen,FPC .Trace) is a fingerprinting code of length

�FPC (p). Observe that Attackn,d is only well defined for

pairs n, d ∈ N such that there exists λ ∈ N for which

�Enc(1) + �log(2000n)
 ≤ d. Through this section we will

assume that n = n(d) = poly(d) and that d is a sufficiently

large constant, which ensures that Attackn,d is well defined.

2For independent random variables X1, . . . , Xm ∈ [0, 1], if
X = 1

m

∑m
i=1 Xi, then Pr [X > E [X] + τ ] ≤ exp(−2τ2m) and

Pr [|X − E [X] | > τ ] ≤ 2 exp(−2τ2m).

The distribution D:
Given parameters d, n, let p = 2000n, let R = n −
500. Let λ be the largest integer such that �Enc(λ)+
�log p
 ≤ d. For i ∈ [p], let ski ←R Gen(1λ) and let

yi = (i, ski). Let D be the uniform distribution over

{y1, . . . , yp} ⊆ {0, 1}d.

Choose samples x1, . . . , xn ←R D, let

x = (x1, . . . , xn). Let S ⊆ [p] be the set of unique

indices i such that (i, ski) appears in x.

Recovery phase:
Setup fingerprinting codes and ciphertexts:

Let F 1, . . . , FR ←R FPC .Gen(1p), let �FPC

= �FPC (p) be code length. For r = 1, . . . , R,

i = 1, . . . , p, j = 1, . . . , �FPC , let cr(i, j) =
Enc(ski, F

r(i, j)).

Iteratively reconstruct S:

Let T 0 = ∅
For round r = 1, . . . , R:

For j = 1, . . . , �FPC :
Define the query qrj (i

′, sk′) to be

Dec(sk′, cr(i′, j)) if i′ �∈ T r−1 and 0 otherwise

Let arj = O(x; qrj )
Let ar = (ar1, . . . , a

r
�FPC

)
Let ir = FPC .Trace(F r, ar), and let T r =
T r−1 ∪ {ir}

Attack phase:
Let φ = 0 with probability 1/2 and φ = 1/500 with

probability 1/2. Sample a random subset B ⊆ [p] of

size φ · p. Let mi = 1 for all i ∈ B and mi = 0 for

all i ∈ [p] \ B. Let c∗i = Enc(ski,mi) for all i ∈
[p]. Define the query q∗(i′, sk′) to be Dec(sk′, c∗i′) if

i′ �∈ TR and 0 otherwise. Let a∗ = O(x, q∗).

Figure 3. Attackn,d[O]

A. Analysis of the Recovery Phase

The goal of the recovery phase of the algorithm is to

identify most of the samples x1, . . . , xn that are held by the

oracle. Once the attacker has this information, he can use

it to find queries that distinguish the oracle’s keys from the

population and force the oracle to be inaccurate.

In order to recover keys, the attacker will force the oracle

to give answers that are consistent with the fingerprinting

codes F 1, . . . , FR, which are then given to FPC .Trace to

recover an element of the sample. Our first claim establishes

that an accurate oracle will indeed force the oracle to give

answers consistent with the fingerprinting codes.
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Claim III.1. If O is (1/12)-accurate for n·�FPC (2000n)+1
adaptively chosen queries then for every polynomial n =
n(d) and every sufficiently large d ∈ N, in the execution of
Attackn,d[O], with probability at least 1 − o(1), it holds
that ∀r ∈ [R], for .99�FPC choices of j ∈ [�FPC ],∣∣O(x, qrj )− Ei∈S\T r−1 [F r(i, j)]

∣∣ ≤ 1/3.

Proof: First we show that,

Pr
Attack

[
∀r ∈ [R], j ∈ [�FPC ],∣∣O(x, qrj )− Ei∈[p] [F r(i, j)]

∣∣ ≤ 1/6

]
≥ 1− o(1)

Observe that by definition, for every r, j,

E
(i,ski)←RD

[
qrj (i, ski)

]
=

1

p

∑
i∈[p]\T r−1

Dec(ski, c
r(i, j)) +

1

p

∑
i∈T r−1

0

=
1

p

∑
i∈[p]\T r−1

F r(i, j)

where the last equality follows by construction, since

cr(i, j) ←R Enc(ski, F
r(i, j)). Since |T r−1| ≤ n and

F r(i, j) ∈ {0, 1}, for every r, j,∣∣∣∣ E
(i,ski)←RD

[
qrj (i, ski)

]− E
i∈[p]

[F r(i, j)]

∣∣∣∣ ≤ n

p
≤ 1

12
(1)

In Attack, the oracle’s input x consists of n samples from D.

Moreover, the total number of queries issued to the oracle

is at most k = n · �FPC (2000n) + 1. Since the oracle is

assumed to be (1/12)-accurate for k queries given n samples

in {0, 1}d,

Pr
Attack

[
∀r, j∣∣O(x, qrj )− Ex←RD

[
qrj (i, ski)

]∣∣ ≤ 1
12

]
≥ 1− o(1)

(2)

Applying the triangle inequality to (1) and (2), this shows

Pr
Attack

[
∀r, j∣∣O(x, qrj )− Ei∈[p] [F r(i, j)]

∣∣ ≤ 1/6

]
≥ 1− o(1).

(3)

By Lemma II.4, since |S \ T r−1| ≥ 500, for every

r, if F r ←R FPC .Gen(1p), then with probability at

least 1 − negl(n), it holds that for .99�FPC choices of

j,
∣∣Ei∈[p] [F r(i, j)]− Ei∈S [F r

S(i, j)]
∣∣ ≤ 1/6. where the

probability is taken over the choice of F r ←R FPC .Gen .

By a union bound over r = 1, . . . , R, where R = n− 500,

if F 1, . . . , FR ←R FPC .Gen , then with probability at least

1− negl(n), it holds that for every r, for .99�FPC choices

of j,
∣∣Ei∈[p] [F r(i, j)]− Ei∈S [F r

S(i, j)]
∣∣ ≤ 1/6. The claim

now follows by combining this last observation with (3).

Claim III.1, establishes that in every round r, the oracle O
holding x returns a set of answers that are consistent with

the fingerprinting code F r
S\T r−1 . However, this fact alone is

not enough to guarantee that FPC .Trace returns a user in

S \T r−1, because the queries to the oracle depend on rows

of F r for users outside of S \T r−1, whereas the security of

the fingerprinting code applies only to algorithms that only

have access to the rows of F r for users in S \ T r−1. To

remedy this problem we rely on the fact that the rows of F r

outside of S \T r−1 are encrypted under keys sk that are not

known to the oracle. Thus, a computationally efficient oracle

“does not know” those rows. We can formalize this argument

by comparing Attack to an IdealAttack where rows of F r

for users outside of S \ T r−1 are replaced with zeros, and

argue that the adversary cannot distinguish between these

two attacks without breaking the security of the encryption

scheme.

The distribution D:
Given parameters d, n, let p = 2000n, let R = n −
500. Let λ be the largest integer such that �Enc(λ)+
�log p
 ≤ d. For i ∈ [p], let ski ←R Gen(1λ) and let

yi = (i, ski). Let D be the uniform distribution over

{y1, . . . , yp} ⊆ {0, 1}d.

Choose samples x1, . . . , xn ←R D, let

x = (x1, . . . , xn). Let S ⊆ [p] be the set of unique

indices i such that (i, ski) appears in x.

Recovery phase:
Setup fingerprinting codes and ciphertexts:

Let F 1, . . . , FR ←R FPC .Gen(1p), let �FPC =
�FPC (p) be code length. For r = 1, . . . , R, j =
1, . . . , �FPC , for every i ∈ S let cr(i, j) =
Enc(ski, F

r(i, j)), and for every i ∈ [p] \ S let

cr(i, j) = Enc(ski, 0).

Iteratively reconstruct S:

Let T 0 = ∅
For round r = 1, . . . , R:

For j = 1, . . . , �FPC :
Define the query qrj (i

′, sk′) to be

Dec(sk′, cr(i′, j)) if i′ �∈ T r−1 and 0 otherwise

Let arj = O(x; qrj )
Let ar = (ar1, . . . , a

r
�FPC

)
Let ir = FPC .Trace(F r, ar), and let T r =
T r−1 ∪ {ir}

Attack phase:
Let φ = 0 with probability 1/2 and φ = 1/500 with

probability 1/2. Sample a random subset B ⊆ [p] of

size φ·p. Let mi = 1 for all i ∈ B and mi = 0 for all

i ∈ [p] \ B. For every i ∈ S, let c∗i = Enc(ski,mi)
and for every i ∈ [p]\S let c∗i = Enc(ski, 0). Define

the query q∗(i′, sk′) to be Dec(sk′, c∗i′) if i′ �∈ TR

and 0 otherwise. Let a∗ = O(x, q∗).

Figure 4. IdealAttackn,d[O]
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Claim III.2. Let Z1 be the event that for every r ∈ [R], for
.99�FPC choices of j ∈ [�FPC ],∣∣∣∣O(x, qrj )− E

i∈S\T r−1
[F r(i, j)]

∣∣∣∣ ≤ 1/3.

Assume (Gen,Enc,Dec) is a computationally secure
encryption scheme with key length �Enc(λ) = λ and let
n = n(d) be any polynomial. Then if O is computationally
efficient, for every sufficiently large d ∈ N,∣∣∣∣ Pr

IdealAttackn,d[O]
[Z1]− Pr

Attackn,d[O]
[Z1]

∣∣∣∣ ≤ negl(d)

Note that if n(d) = poly(d), then for every sufficiently

large d, the pair n(d), d is reasonable. The proof fol-

lows straightforwardly from the security of the encryption

scheme. Due to space requirements we omit the details.

Claim III.3. If O is computationally efficient and (1/12)-
accurate for n ·�FPC (2000n)+1 adaptively chosen queries,
then for every polynomial n = n(d), and every sufficiently
large d ∈ N, in the execution of IdealAttackn,d[O], with
probability at least 1− o(1) it holds that for every r ∈ [R],
for .99�FPC choices of j ∈ [�FPC ],∣∣∣∣O(x, qrj )− E

i∈S\T r−1
[F r(i, j)]

∣∣∣∣ ≤ 1/3.

The proof is immediate by combining Claim III.1 and

Claim III.2. Next, we argue that in IdealAttack, with high

probability FPC .Trace only outputs users contained in the

sample S.

Claim III.4. If O is computationally efficient and (1/12)-
accurate for n ·�FPC (2000n)+1 adaptively chosen queries,
then for any polynomial n = n(d), and every sufficiently
large d ∈ N, PrIdealAttackn,d[O]

[|S \ TR| > 500
] ≤ o(1).

Proof: Fix any round r ∈ {1, . . . , |S| − 500} and let

U = S \ T r−1. By the security of the fingerprinting code,

for every algorithm A, if F r ←R FPC .Gen(1p), then

Pr

[ A(F r
U ) ∈ Con(F r

U )

∧ FPC .Trace(F r,A(F r
U )) �∈ U

]
≤ negl(n)

Observe that in IdealAttack, the oracle O is never given

any input that depends on rows of F r that belong to users

outside of U : The queries issued in rounds r′ �= r depend

only on F r′ , which is independent from F r. And in round

r the query only depends on ciphertexts cr(i, j) for i �∈
T r−1, which are all independent of F r(i, j) whenever i �∈ U .

Therefore, if F r ←R FPC .Gen(1p), we have

Pr

[
ar ∈ Con(F r

U )

∧ FPC .Trace(F r, ar) �∈ U

]
≤ negl(n) (4)

By a union bound over r = 1, . . . , |S| − 500, we also have

that if F 1, . . . , F |S|−500 ←R FPC .Gen(1p), then

Pr

[
∃r

(
ar ∈ Con(F r

S\T r−1)

∧FPC .Trace(F r, ar) �∈ S \ T r−1

)]
≤ negl(n)

(5)

By Claim III.3, we have that with probability at least

1−o(1), it holds that for all r ∈ {1, . . . , |S| − 500} and for

.99�FPC choices of j ∈ [�FPC ],
∣∣arj − Ei∈U [F r(i, j)]

∣∣ ≤
1/3 Note that in order to apply Claim III.3 we have

used the fact that when r ∈ {1, . . . , |S| − 500}, |S \
T r−1| ≥ 500. If this condition is satisfied, then indeed

ar ∈ Con(F r
U ). Therefore, combining with (5), we have

that if F 1, . . . , F |S|−500 ←R FPC .Gen(1p), then

Pr
[∃r,FPC .Trace(F r, ar) �∈ S \ T r−1] ≤ o(1)

Now the claim follows by observing that

Pr
IdealAttackn,d[O]

[|S \ TR| > 500
] ≤

Pr
IdealAttackn,d[O]

[ ∃r ∈ {1, . . . , |S| − 500}
FPC .Trace(F r, ar) �∈ S \ T r−1

]
≤ o(1)

Finally, we show that if |S\TR| ≤ 500 with high probabil-

ity in IdealAttack, then |S\TR| ≤ 500 with high probability

in Attack. Again, we do so by arguing that Attack and

IdealAttack are computationally indistinguishable.

Claim III.5. Let Z2 be the event
{|S \ TR| ≤ 500

}
. As-

sume (Gen,Enc,Dec) is a computationally secure encryp-
tion scheme with key length �Enc(λ) = λ and let n = n(d)
be any polynomial. Then if O is computationally efficient,
for every sufficient large d ∈ N,∣∣∣∣ Pr

IdealAttackn,d[O]
[Z2]− Pr

Attackn,d[O]
[Z2]

∣∣∣∣ ≤ negl(d) .

The proof follows straightforwardly from the security of

the encryption scheme. We omit the details.

Lemma III.6. If O is computationally efficient and (1/12)-
accurate for n ·�FPC (2000n)+1 adaptively chosen queries,
then for any polynomial n = n(d), and every sufficiently
large d ∈ N,

Pr
Attackn,d[O]

[|S \ TR| > 500
]
= o(1)

The proof is immediate from Claims III.4 and III.5.

B. Analysis of the Attack Phase

By the arguments of Section III-A, we know that if the

oracle is computationally efficient and accurately answers all

the queries in the recovery phase, then with high probability

|S \ TR| ≤ 500. In this section we will show that if these

events indeed occur, then the probability that the oracle

answers q∗ accurately in the attack phase is bounded away

from 1 by a constant. Since an accurate oracle is required

to answer each query accurately with probability at least

1− o(1), we will have obtained a contradiction.

To begin with we show that the population answer q∗(D)
is close to the value φ in the real attack.
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Claim III.7. For every reasonable n, d ∈ N, in the execution
of Attackn,d[O], it holds that |q∗(D)− φ| ≤ 1/2000.

Proof: The case φ = 0 we have q∗(D) = 0. If φ =
1/500, then we have that Ei∈[p] mi = φ since |B| = φ · p.
Hence,

q∗(D) = E
(i,sk)∼D

q∗(i, sk) = φ− Pr
i←R[p]

[
i ∈ TR ∧mi = 1

]
where Pr

[
i ∈ TR ∧mi = 1

] ≤ Pr
[
i ∈ TR

]
= |TR|/p =

(n− 500)/p ≤ 1/2000.
We will show that the oracle cannot guess the value of

φ with sufficiently high probability in IdealAttack provided

that the recovery phase succeeded.

Claim III.8. For every reasonable n, d ∈ N,

Pr
IdealAttackn,d[O]

[ |S \ TR| ≤ 500

∧ |O(x, q∗)− φ| ≤ 1
2000

]
≤ 1− Ω(1)

Proof: Consider the case where φ = 1/500. A straight-

forward calculation shows that

Pr
[∀i ∈ S \ TR, mi = 0

∣∣ |S \ TR| ≤ 500
] ≥ 1

4e2

On the other hand, when φ = 0, we have

Pr
[∀i ∈ S \ TR, mi = 0

∣∣|S \ TR| ≤ 500
]

= 1. Note

that in IdealAttack the oracle only sees mi for i ∈ S \ TR.
When the oracle sees only that mi = 0 for every i ∈ S\TR,

it cannot give an answer that is simultaneously accurate to

within 1/2000 for both the case of φ = 0 and for the case

of φ = 1/500. The event mi = 0 for every i ∈ S \ TR

occurs with at least probability 1/4e2 as shown above.

Conditioned on this event, both cases φ = 0 and φ = 1/500
have constant probability. Hence, the answer of the oracle

must be far from φ with constant probability. Formally, in

the execution of IdealAttack,

Pr

[
|O(x, q∗)− φ| ≤ 1

2000

∣∣∣∣ |S \ TR| ≤ 500

]
≤ 1−Ω(1).

By Claim III.4, this implies

Pr
IdealAttack

[ |O(x, q∗)− φ| ≤ 1
2000

∧|S \ TR| ≤ 500

]
≤ 1− Ω(1)

1− o(1)
≤ 1−Ω(1) .

As in the analysis of the recovery phase, we will first

argue that the probability the oracle is accurate for q∗ in

Attack is nearly the same as it is in an IdealAttack where

the query q∗ has been modified to contain no information

about users outside of S.

Claim III.9. Let Z3 be the event{
|S \ TR| ≤ 500 ∧ |O(x, q∗)− φ| ≤ 1

2000

}
.

Let (Gen,Enc,Dec) is a computationally secure encryption
scheme with key length �Enc(λ) = λ and n = n(d) be any

polynomial. Then if O is computationally efficient, for every
sufficiently large d ∈ N,∣∣∣∣ Pr

IdealAttackn,d[O]
[Z3]− Pr

Attackn,d[O]
[Z3]

∣∣∣∣ ≤ negl(d)

The proof follows straightforwardly from the security of

the encryption scheme. We omit the details.

Lemma III.10. If O is computationally efficient, then for
any polynomial n = n(d), and every sufficiently large d ∈ N,

Pr
Attackn,d[O]

[ |S \ TR| ≤ 500

∧ |O(x, q∗)− q∗(D)| ≤ 1
2000

]
≤ 1− Ω(1)

Proof: By Claim III.7, we have that |q∗(D) − φ| ≤
1/2000. Combining Claim III.8 with Claim III.9, we further

have

Pr
Attack

[ |S \ TR| ≤ 500

∧ |O(x, q∗)− φ| ≤ 1
2000

]
≤ 1− Ω(1) .

The statement of the lemma now follows from a triangle

inequality.

C. Putting it Together

We can now prove Theorem I.1 from the introduction.

Theorem III.11. There is no computationally efficient or-
acle O that is (1/2000)-accurate for n3+o(1) adaptively
chosen queries given n samples.

Proof: The entire attack will consist of k = R·�FPC+1
queries, where R = n− 500 and �FPC = Õ(p2) = Õ(n2).
Therefore the entire attack consists of k = n3+o(1) queries.

Therefore, if O, by Lemma III.6,

Pr
Attackn,d

[|S \ TR| > 500
]
= on(1)

By Lemma III.10,

Pr
Attackn,d

[ |S \ TR| ≤ 500

∧ |O(x, q∗)− q∗(D)| ≤ 1
2000

]
≤ 1− Ω(1)

Combining these two statements gives

Pr
Attackn,d[O]

[
|O(x, q∗)− q∗(D)| ≤ 1

2000

]
≤ 1− Ω(1)

However, this contradicts the definition of an accurate oracle.

D. An Information-Theoretic Lower Bound

We now state a precise version of our information theo-

retic lower bound (Theorem I.2). Due to space requirements

we omit the proof of this Theorem. The key observation in

the proof is that the encryption scheme used in our attack

only needs to satisfy a certain weak security property, which

can be achieved even against computationally unbounded
adversaries, provided that the secret key is sufficiently long.

This requirement that the keys are long is why the attack

only applies for sufficiently large dimension d relative to n.
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Theorem III.12. There is no oracle O that for every n ∈ N

is (1/2000, on(1))-accurate for n3+o(1) adaptively chosen
queries given n samples in {0, 1}d for d = d(n) = n3+o(1).

IV. LOWER BOUNDS FOR AVOIDING BLATANT

NON-PRIVACY

We now state our results that computationally efficient

oracles that guarantee accuracy for adaptively chosen queries

must be blatantly non-private. Due to space requirements we

defer all proofs to the full version.

First, we need to define a notion of accuracy that is more

appropriate for the application to privacy. In contrast to

Definition II.1 where accuracy is defined with respect to

the distribution, here we define accurate with respect to the

sample itself.

Definition IV.1. An oracle O is (α, β)-sample-accurate for
k adaptively chosen queries given n samples in {0, 1}d if

for every adversary Apriv,

Pr
NonPrivacyn,d,k[O,Apriv]

[ ∀j ∈ [k]

|O(x, qj)− qj(x)| ≤ α

]
≥ 1− β .

As a shorthand, we will say that O is α-sample-accurate for
k queries if for every n, d ∈ N, O is (α, on(1))-accurate for

k queries given n samples in {0, 1}d. Here, k may depend

on n and d and on(1) is a function of n that tends to 0.

With this change in mind, we model blatant non-privacy

via the following game.

Apriv chooses a set y = {y1, . . . , y2n} ⊆ {0, 1}d
Sample a random subset x ⊆ y of size n
For j = 1, . . . , k
A(q1, a1, . . . , qj−1, aj−1) outputs a query qj
O(x, qj) outputs aj

Apriv outputs a set x′ ⊆ y

Figure 5. NonPrivacyn,d[O,Apriv]

Definition IV.2. Giving α-accurate answers to k adaptively
chosen queries is blatantly non-private for efficient oracles
if there exists an adversary Apriv such that for every oracle

O that is computationally efficient and α-sample-accurate

for k adaptively chosen queries,

Pr
NonPrivacyn,d,k[O,Apriv]

[|x�x′| > n/100] ≤ on(1)

If the conclusion holds even for computationally ineffi-

cient oracles then we replace “for efficient oracles” with

“for unbounded oracles” in the definition.

Theorem IV.3. Giving accurate answers to n3+o(1) adap-
tively chosen queries is blatantly non-private for computa-
tionally efficient oracles.

We also obtain an information-theoretic analogue of our

hardness result for avoiding blatant non-privacy.

Theorem IV.4. Giving accurate answers to n3+o(1) adap-
tively chosen queries on n samples of dimension d = n3+o(1)

is blatantly non-private for unbounded oracles.
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