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Abstract—The study of graph products is a major research
topic and typically concerns the term f(G ∗H), e.g., to show
that f(G ∗ H) = f(G)f(H). In this paper, we study graph
products in a non-standard form f(R[G ∗ H] where R is a
“reduction”, a transformation of any graph into an instance
of an intended optimization problem. We resolve some open
problems as applications.

The first problem is minimum consistent deterministic finite
automaton (DFA). We show a tight n1−ε-approximation hard-
ness, improving the n1/14−ε hardness of [Pitt and Warmuth,
STOC 1989 and JACM 1993], where n is the sample size. (In
fact, we also give improved hardnesses for the case of acyclic
DFA and NFA.) Due to Board and Pitt [Theoretical Computer
Science 1992], this implies the hardness of properly learning
DFAs assuming NP �= RP (the weakest possible assumption).
This affirmatively answers an open problem raised 25 years ago
in the paper of Pitt and Warmuth and the survey of Pitt [All
1989]. Prior to our results, this hardness only follows from the
stronger hardness of improperly learning DFAs, which requires
stronger assumptions, i.e., either a cryptographic or an average
case complexity assumption [Kearns and Valiant STOC 1989
and J. ACM 1994; Daniely et al. STOC 2014]. The second
problem is edge-disjoint paths (EDP) on directed acyclic graphs
(DAGs). This problem admits an O(

√
n)-approximation algo-

rithm [Chekuri, Khanna, and Shepherd, Theory of Computing
2006] and a matching Ω(

√
n) integrality gap, but so far only an

n1/26−ε hardness factor is known [Chuzhoy et al., STOC 2007].
(n denotes the number of vertices.) Our techniques give a
tight n1/2−ε hardness for EDP on DAGs, thus resolving its
approximability status.

As by-products of our techniques: (i) We give a tight
hardness of packing vertex-disjoint k-cycles for large k, com-
plimenting [Guruswami and Lee, ECCC 2014] and matching
[Krivelevich et al., SODA 2005 and ACM Transactions on Algo-
rithms 2007]. (ii) We give an alternative (and perhaps simpler)
proof for the hardness of properly learning DNF, CNF and
intersection of halfspaces [Alekhnovich et al., FOCS 2004
and J. Comput.Syst. Sci. 2008]. Our new concept reduces
the task of proving hardnesses to merely analyzing graph
product inequalities, which are often as simple as textbook
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exercises. This concept was inspired by, and can be viewed as
a generalization of, the graph product subadditivity technique
we previously introduced in SODA 2013. This more general
concept might be useful in proving other hardness results as
well.

Keywords-hardness of approximation; graph product;

I. INTRODUCTION

A. The Concept of Pre-Reduction Graph Product

Background: Graph Product and Hardness of Approx-
imation. Graph product is a fundamental tool with rich

applications in both graph theory and theoretical computer

science. It is, roughly speaking, a way to combine two

graphs, say G and H , into a new graph denoted by G ∗H .

For example, the following lexicographic product, denoted

by G ·H , will be particularly useful in this paper.

V (G ·H) = V (G)× V (H)

= {(u, v) : u ∈ V (G) and v ∈ V (H)}.
E(G ·H) = {(u, a)(v, b) : uv ∈ E(G)}∪

{(u, a)(v, b) : u = v ∧ ab ∈ E(H)}. (1)

A common study of graph product aims at understanding

how f(G ∗ H) behaves for some function f on graphs

denoting a graph property. For example, if we let α(G) be

the independence number of G (i.e., the cardinality of the

maximum independent set), then α(G ·H) = α(G)α(H).
Graph products have been extremely useful in boosting

the hardness of approximation. One textbook example is

proving the hardness of nε for approximating the maximum

independent set problem (i.e., approximating α(G) of an

input graph G): Berman and Schnitger [1] showed that we

can reduce from Max 2SAT to get a constant approximation

hardness c > 1 for the maximum independent set problem,

and then use a graph product to boost the resulting hardness

to nε for some (small) constant ε. To illustrate how graph

products amplify hardness, suppose we have a (1.001)-gap

reduction R[I] that transforms an instance I of SAT into a

graph G. Since α(·) is multiplicative, if we take a product

R[I]k for any integer k, the hardness gap immediately
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becomes (1.0001)k = 2Ω(k). Choosing k to be large enough

gives 2log
1−ε n hardness. Therefore, once we can rule out

the PTAS, graph products can be used to boost the hardness

to almost polynomial. This idea is also used in many other

problems, e.g., in proving the hardness of the longest path

problem [2].

Our Concept: Pre-Reduction Graph Product. This paper

studies a reversed way to apply graph products: instead of

the commonly used form of (R[I])k = (R[I]∗R[I]∗ . . .) to

boost the hardness of approximation, we will use R[Ik] =
R[I ∗ I ∗ . . .]; here, I is a graph which is an instance of

a hard graph problem such as maximum independent set

or minimum coloring. We refer to this approach as pre-
reduction graph product to contrast the previous approach in

which graph product is performed after a reduction (which

will be referred to as post-reduction graph product). The

main conceptual contribution of this paper is the demon-

stration to the power and versatility of this approach in

proving approximation hardnesses. We show our results in

Section I-B and will come back to explain this concept in

more detail in Section II.

We note one conceptual difference here between the

previous post-reduction and our pre-reduction approaches:

While the previous approach starts from a reduction R that

already gives some hardness result, our approach usually

starts from a reduction that does not immediately provide

any hardness result; in other words, such reduction alone

cannot be used to even prove NP-hardness. (See Section II

for an illustration.) Moreover, in contrast to the previous

use of (R[I])k which requires R[I] to be a graph, our

approach allows us to prove hardnesses of problems whose

input instances are not graphs. Also note that our approach

gives rise to a study of graph products in a new form: in

contrast to the usual study of f(G∗H), our hardness results

crucially rely on understanding the behavior of f(R[G∗H])
for some function f , reduction R, and graph product ∗
(which happens to always be the lexicographic product in

this paper). Another feature of this approach is that it usually

leads to simple proofs that do not require heavy machineries

(such as the PCP-based construction) – some of our hardness

proofs are arguably simplifications of the previous ones; in

fact, most of our hardness results follow from the meta-

theorem (see Section III) which shows that a bounds of

f(R[G ∗ H]) in a certain form will immediately lead to

hardness results. We list some bounds of f(R[G ∗ H]) in

Theorem II.1.

B. Problems and Our Results

1) Minimum Consistent DFA and Proper PAC-Learning
DFAs: In the minimum consistent deterministic finite au-
tomaton (DFA) problem, denoted by MINCON(DFA,

DFA), we are given two sets P and N of positive and

negative sample strings in {0, 1}∗. We let the sample size,

denoted by n, be the total number of bits in all sample

strings. Our goal is to construct a DFA M of minimum size
that is consistent with all strings in P ∪ N . That is, M
accepts all positive strings x ∈ P and rejects all negative

strings y ∈ N .
This problem can be easily approximated within O(n).

Due to its connections to PAC-learning automata and gram-

mars (e.g. [7], [8]), the problem has received a lot of

attention from the late 70s to the early 90s. The NP-hardness

of this problem was proved by Gold [9] and Angluin [10].

Li and Vazirani [11] later provided the first hardness of

approximation result of (9/8−ε). This was greatly improved

to n1/14−ε by Pitt and Warmuth [3]. Our first result is a

tight n1−ε hardness for this problem, improving [3]. In fact,

our hardness result holds even when we allow an algorithm

to compare its result to the optimal acyclic DFA (ADFA),

which is larger than the optimal DFA. This problem is called

MINCON(ADFA, DFA).

Theorem I.1. Given a pair of positive and negative samples
(P,N ) of size n where each sample has length O(log n),
for any constant ε > 0, it is NP-hard to distinguish between
the following two cases of MinCon(ADFA,DFA):
• YES-INSTANCE: There is an ADFA of size nε consistent

with (P,N ).
• NO-INSTANCE: Any DFA that is consistent with (P,N )

has size at least n1−ε.
In particular, it is NP-hard to approximate the minimum
consistent DFA problem to within a factor of n1−ε.

The main motivation of this problem is its connection

to the notion of properly PAC-learning DFAs. It is one

of the most basic problems in the area of proper PAC-

learning [7], [8], [3]. Roughly speaking, the problem is to

learn an unknown DFA M from given random samples,

where a learner is asked to output (based on such random

samples) a DFA M ′ that closely approximates M (see, e.g.,

[12] for details). The main question is whether DFA is

properly PAC-learnable.
This question was the main motivation behind [3]; how-

ever, the n1/14−ε hardness in [3] was not strong enough to

prove this. Kearns and Valiant [13] showed that a proper

PAC-learning of DFAs is not possible if we assume a

cryptographic assumption stronger than P �= NP . In fact,

their result implies that even improperly PAC-learning DFAs

(i.e., the output does not have to be a DFA) is impossible.

Very recently, Daniely et al. [14] obtained a similar result

by assuming a (fairly strong) average-case complexity as-

sumption generalizing Feige’s assumption [15].
The question whether the cryptographic assumption could

be replaced by the RP �= NP assumption (which would be

the weakest assumption possible) was asked 25 years ago in

[8], [3]. In particular, the following is the first open problem

in [8]: (i) Can it be shown that DFAs are not properly PAC-
learnable based only on the assumption that RP �= NP? (ii)
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Problems Upper Bounds Prev. Hardness New Hardness

MINCON(DFA, DFA) O(n) n1/14−ε [3] n1−ε

EDP on DAGs Õ(n1/2) [4] n1/26−ε [5] n1/2−ε

k-cycle packing O(min(k, n1/2)) Ω(k) [6] O(min(k, n1/2−ε))
MinCon(CNF , CNF ),
MinCon(DNF , DNF ), O(n) n1−ε n1−ε

MinCon(Halfspace,Halfspace) (Alternative proof)

Table I: Summary of our hardness results.

Stronger still, can the improper learnability result of [13]
be strengthened by replacing the cryptographic assumptions
with only the assumption that RP �= NP?

Applebaum, Barak and Xiao [16] showed that proving

lower bounds for improper learning using many standard

ways of reductions from NP-hard problems will not work

unless the polynomial hierarchy collapses, suggesting that

an answer to the second question is likely to be negative. For

the first question, some hardnesses of proper PAC-learning

assuming RP �= NP were already known at the time (e.g.

[17]) and there are many more recent results (see, e.g., [12]

and references therein). Despite this, the basic problem of

learning DFAs (originally asked in the above question) has

remained open. Theorem I.1 together with a result of Board

and Pitt [18] immediately resolve this problem.

Corollary I.2. Unless NP = RP, the class of DFAs is not
properly PAC-learnable.

We also note an amusing connection between this type of

result and Chomsky’s “Poverty of the Stimulus Argument”,

as noted by Aaronson [19]: “Let’s say I give you a list of n-

bit strings, and I tell you that there’s some nondeterministic

finite automaton M , with much fewer than n states, such

that each string was produced by following a path in M .

Given that information, can you reconstruct M (probably

and approximately)? It’s been proven that if you can, then

you can also break RSA!” Our Corollary I.2 implies that

for the case of deterministic finite automaton, being able

to reconstruct M will imply not only that one can break

RSA but also solve, for instance, traveling salesman problem

(TSP) probabilistically.

2) Edge-Disjoint Paths on DAGs: In the edge-disjoint

paths problem (EDP) problem, we are given a graph

G = (V,E) (which could be directed or undirected) and

k source-sink pairs s1t1, s2t2, . . . , sktk (a pair can occur

multiple times). The objective is to connect as many pairs

as possible via edge-disjoint paths. Throughout, we let n and

m be the number of vertices and edges in G, respectively.

Approximating EDP has been extensively studied. It is

one of the major challenges in the field of approximation

algorithms. The problem has received significant attention

from many groups of researchers, attacking the problem

from many angles and considering a few variants and special

cases (see, e.g., [20], [21], [22], [23], [24], [25], [26], [27]

and references therein).

In directed graphs, EDP can be approximated within a

factor of O(min(m1/2, n2/3)) [28], [29], [30]. The O(m1/2)
factor is tight on sparse graphs since directed EDP is NP-

hard to approximate within a factor of n1/2−ε, for any ε > 0
[31]. In contrast to the directed case, undirected EDP is

much less understood: The approximation factor for this case

is O(n1/2) [4] with a matching integrality gap of Ω(n1/2)
for its natural LP relaxation, suggesting an n1/2−ε hardness.

Despite these facts, we only know a log1/2−ε n hardness of

approximation assuming NP �⊆ ZPTIME(npolylog(n)). Even

in special cases such as planar graphs (or, even simpler,

brick-wall graphs, a very structured subclass of planar

graphs), it is still open whether undirected EDP admits an

o(n1/2) approximation algorithm. This obscure state of the

art made undirected EDP one of the most important, intrigu-

ing open problems in graph routing. (Table II summarizes

the current status of EDP.)

One problem that may help in understanding undirected

EDP is perhaps EDP on directed acyclic graphs (DAGs).

This case is interesting because (i) its complexity seems to

lie somewhere between the directed and undirected cases, (ii)

it shares some similar statuses and structures with undirected

EDP, and (iii) it has close connections to directed cycle

packing [32] (i.e. hard instances for EDP on DAGs are used

as a gadget in constructing the hard instance for directed

cycle packing). In particular, on the upper bound side, the

technique in [4] gives an O(n1/2 poly log n) upper bound

not only to undirected EDP but also to EDP on DAGs.

Moreover, the integrality gap of Ω(n1/2) applies to both

cases, suggesting a hardness of n1/2−ε for them. However,

previous hardness techniques for the case of general directed

graphs [31] completely fail to give a lower bound on

both DAGs and undirected graphs1. On the other hand,

subsequent techniques that were invented in [33], [34] to

deal with undirected EDP can be strengthened to prove the

currently best hardness for DAGs [5]2, which is n1/26−ε.

These results suggest that the complexity of DAGs lies

between undirected and directed graphs. In this paper, we

show that our techniques give a hardness of n1/2−ε for this

case, thus completely settling its approximability status. Our

1The result in [31] crucially relies on the fact that EDP with 2 terminal
pairs is hard on directed graphs. This is not true if the graph is a DAG or
undirected.

2Their result is in fact proved in a more general setting of EDP with
congestion c for any c ≥ 1
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Cases Upper Bounds Integrality Gap Prev. Hardness

Undirected O(n1/2) [4] Ω(n1/2) log1/2−ε n [34]

DAGs Õ(n1/2) [4] Ω(n1/2) n1/26−ε [5]

Directed O(min(m1/2, n2/3)) [28], [29], [30] Ω(n1/2) n1/2−ε [31]

Table II: The current status of EDP.

result is formally stated in the following theorem.

Theorem I.3. Given an instance of EDP on DAGs, consist-
ing of a graph G = (V,E) on n vertices and a source-sink
pairs (s1, t1), . . . , (sk, tk), for any ε > 0, it is NP-hard to
distinguish between the following two cases:
• YES-INSTANCE: There is a collection of edge disjoint

paths in G that connects 1/nε fraction of the source-
sink pairs.

• NO-INSTANCE: Any collection of edge disjoint paths
in G connects at most 1/n1/2−ε fraction of the source-
sink pairs.

In particular, it is NP-hard to approximate EDP on DAGs
to within a factor of n1/2−ε.

3) Other Results: Minimum Consistent NFA. Our tech-

niques also allow us to prove a hardness result for the

minimum consistent NFA problem as stated formally in the

following theorem.

Theorem I.4. Given a pair of positive and negative samples
(P,N ) of size n where each sample has length O(log n),
for any constant ε > 0, it is NP-hard to distinguish between
the following two cases of MinCon(ADFA,NFA):
• YES-INSTANCE: There is an NFA of size nε consistent

with (P,N ).
• NO-INSTANCE: Any NFA that is consistent with (P,N )

has size at least n1/2−ε.
In particular, it is NP-hard to approximate the minimum
consistent NFA problem to within a factor of n1/2−ε.

This improves upon the n1/14−ε hardness of Pitt and

Warmuth [3]. We note that this hardness result is not

strong enough to imply a PAC-learning lower bound for

NFAs. Such hardness was already known based on some

cryptographic or average-case complexity assumptions [13],

[14]. We think it is an interesting open problem to remove

these assumptions as we did for the case of learning DFAs.

k-Cycle Packing. Our reduction for EDP can be slightly

modified to obtain hardness results for k-Cycle Packing,

when k is large. In the k-cycle packing problem, given an

input graph G, one wants to pack as many disjoint cycles as

possible into the graph while we are only interested in cycles

of length at most k. An O(min(k, n1/2))-approximation

algorithm for this problem can be easily obtained by modi-

fying the algorithm of Krivelevich et al. [32]). Very recently,

Guruswami and Lee [6] obtained a hardness of Ω(k), assum-

ing the Unique Game Conjecture, when k is a constant. This

matches the upper bound of Krivelevich et al. for small k.

In this paper, we compliment the result of Guruswami and

Lee by showing a hardness of n1/2−ε for some k ≥ n1/2,

matching the upper bound of Krivelevich et al. for the case

of large k.

Theorem I.5. Given a directed graph G, for any ε > 0 and
some k ≥ |V (G)|1/2, it is NP-hard to distinguish between
the following cases:
• There are at least |V (G)|1/2−ε disjoint cycles of length

k in G.
• There are at most |V (G)|ε disjoint cycles of length at

most 2k − 1 in G.
In particular, for some k ≥ n1/2, the k-cycle packing
problem on n-vertex graphs is hard to approximate to within
a factor of n1/2−ε.

Alternative Hardness Proof for Minimum Consistent
CNF, DNF, and Intersections of Halfspaces. Our tech-

niques for proving the DFA hardness result can be used to

give an alternative proof for the hardness of the minimum

consistent DNF, CNF, and intersections of thresholded half-

spaces problems. In the minimum consistent CNF problem,

we are given a collection of samples of size n, and our

goal is to output a small CNF formula that is consistent

with all such samples. Alekhnovich et al. [35] previously

showed tight hardnesses for these problems, which imply

that the classes of CNFs, DNFs, and the intersections of

halfspaces are not properly PAC-learnable. Our techniques

give an alternative proof (which might be simpler) for these

results. More specifically, we give an alternative proof for

the following theorem and corollary (stated in terms of CNF,

but the same holds for DNF and intersection of halfspaces3).

Theorem I.6. Let ε > 0 be any constant. Given a pair of
positive an negative samples (P,N ) of size n where each
sample has length at most nε, it is NP-hard to distinguish
between the following two cases:
• YES-INSTANCE: There is a CNF formula of size nε

consistent with (P,N ).
• NO-INSTANCE: Any CNF consistent with (P,N ) must

have size at least n1−ε.
In particular, it is NP-hard to approximate the minimum
consistent CNF problem to within a factor of n1−ε.

3It is noted in [35] that one only needs to prove the hardness of
CNF, since this problem is a special case of the intersection of thresholded
halfspaces problem, and the proof for DNF would work similarly.
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Corollary I.7. Unless NP = RP, the class of CNF is not
properly PAC-learnable.

II. OVERVIEW

A. Example of Reduction R: Vertex-Disjoint Paths

To illustrate the pre-reduction graph product concept, con-

sider the vertex-disjoint path (VDP) problem. The objective

of VDP is the same as that of EDP except that we want

paths to be vertex-disjoint instead of edge-disjoint. The

approximability statuses of EDP and VDP on DAGs and

undirected graphs are the same, and we choose to present

VDP due to its simpler gadget construction. Our hardness

of VDP can be easily turned into a hardness of EDP.

Our goal is to show that this problem has an approx-

imation hardness of n1/2−ε, where n is the number of

vertices. We will use the following reduction4 R which

transforms a graph G (supposedly an input instance of the

maximum independent set problem) into an instance R[G] of

the vertex-disjoint paths problem with Θ(|V (G)|2) vertices.

We start with an instance R[G] as in Figure 1a where there

are k source-sink pairs (Figure 1a shows an example where

k = 6) and edges are oriented from left to right and from

top to bottom. Let us name vertices in G by 1, 2, . . ., k. For

any pair of vertices i and j, where i < j, such that edge ij
does not present in G, we remove a vertex vij from R[G],
as shown in Figure 1b (this means that two edges that point

to vij will continue on their directions without intersecting

each other).

To see an intuition of this reduction, define a canonical
path be a path that starts at some source si, goes all the

way right, and then goes all the way down to ti (e.g.,

a thick (green) path in Figure 1b). It can be easily seen

that any set of vertex-disjoint paths in R[G] that consists

only of canonical paths can be converted to a solution

for the maximum independent set problem. Conversely any

independent set S in G can be converted to a set of |S|
vertex-disjoint paths. For example, canonical paths between

the pairs (s1, t1) and (s2, t2) in R[G] in Figure 1b can

be converted to an independent set {1, 2} in G and vice

versa. In other words, if we can force the VDP solution to

consist only of canonical paths, then we can potentially use

the |V |1−ε hardness of maximum independent set to prove

a tight |V |1−ε = |V (R[G])|1/2−ε hardness of VDP. This

intuition, however, cannot be easily turned into a hardness

result since the VDP solution can use non-canonical paths,

and it is possible that VDP(R[G]) is much larger than α(G).
Thus, the reduction R by itself cannot be used even to prove

that VDP is NP-hard!

B. The Use of Pre-Reduction Products

The above situation is very common in attempts to prove

hardnesses for various problems. A usual way to obtain

4We thank Julia Chuzhoy who suggested this reduction to us (private
communication).

hardness results is to modify R into some reduction R′.
This modification, however, often blows up the size of the

reduction, thus affecting its tightness. For example, VDP
and EDP on DAGs are only known to be n1/26−ε-hard, as

opposed to being potentially n1/2−ε-hard, as suggested by

the integrality gap. Moreover, the reduction R′ is usually

much more complicated than R. In this paper, we show that

for many problems the above difficulties can be avoided

by simply picking an appropriate graph product ∗ and

understanding the structure of R[G ∗ G ∗ . . .]. To this end,

it is sometimes easier to study f(R[G ∗H]) for any graphs

G and H , although we eventually need only the case where

G = H . This gives rise to the study of the behavior of

f(R[G∗H]) which is a non-standard form of graph product

in comparison with the standard study of f(G ∗ H). In

fact, most results in this paper follow merely from bounding

f(R[G ∗H]) in the form

g(G ∗H) ≤ f(R[G ∗H]) ≤ g(G)f(H) + poly(|V (G)|),
(2)

where g is an objective function of a problem whose hard-

ness is already known (in this paper, g is either maximum

independent set or minimum coloring), and f is an objective

function of a problem that we intend to prove hardness. Our

bounds for functions f corresponding to problems that we

want to solve, e.g. the minimum consistent DFA (function

dfa) and maximum edge-disjoint paths (function edp), are

listed in the theorem below. (Recall that G ·H denotes the

lexicographic product as defined in Equation (1).)

Theorem II.1 (Bounds of graph products; informal). There
is a reduction R1 (respectively R2) that transforms a graph
G into an instance of the minimum consistent DFA problem
of size Θ̃(|V (G)|2) (respectively the maximum edge-disjoint
paths problem of size Θ(|V (G)|2)) such that, for any graphs
G and H ,

χ(G ·H) ≤ dfa(R1[G ·H]) ≤ χ(G)dfa(R1[H]) +O(|V (G)|2)
(3)

α(G ·H) ≤ edp(R2[G ·H]) ≤ α(G)edp(R2[H]) +O(|V (G)|2)
(4)

It only requires a systematic, simple calculation to show

that these inequalities imply hardnesses of approximation;

we formulate this implication as a “meta theorem” (see

Section III) which roughly states that for large enough k,

f(R[Gk]) ≈ g(Gk) (5)

where Gk is G ∗ G ∗ G ∗ . . . (k times). (For an intuition,

observe that when k is large enough, the term poly(|V (G)|)
in Equation (2) will be negligible and an inductive argument

can be used to show that g(Gk) ≤ f(R[Gk]) ≤ g(G)O(k)

(recall that, in our case, g is multiplicative)). This means that
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Figure 1: The reduction R for the vertex-disjoint paths problem. The thick (green) path in Figure 1b shows an example of

a canonical path.

the hardness of f 5 is at least the same as the hardness of g on

graph product instances Gk. For the case of DFA and EDP,

R1(G) and R2(G) increase the size of input size to |V (G)|2
while α and χ have the hardness of |V (G)|1−ε. Thus, we get

a hardness of n1/2−ε where n is the input size of DFA and

EDP. This immediately implies a tight hardness for EDP
and an improved hardness of DFA. How this translates to a

hardness of f depends on how much instance blowup the

reduction R[Gk] causes. For our problems of DFA and EDP,

it is a well known result that the hardness of α and χ stays

roughly the same under the lexicographic product, i.e., α and

χ on Gk have a hardness of |V (Gk)|1−ε. The meta theorem

and Theorem II.1 say that this hardness also holds for DFA
and EDP. Since R1[G

k] and R2[G
k] increase the size of

input instances by a quadratic factor — from |V (Gk)| to

n = |V (Gk)|2 — we get a hardness of n1/2−ε where n is

the input size of DFA and EDP. This immediately implies a

tight hardness for EDP and an improved hardness for DFA.

C. Toward A Tight Hardness of the Minimum Consistent
DFA Problem

To get the tight n1−ε hardness for DFA, we have to adjust

R1 in Theorem II.1 to avoid the quadratic blowup. We will

exploit the fact that, to get a result similar to Equation (5),

we only need a reduction R defined on the k-fold graph

product Gk instead of on an arbitrary graph G as in the

case of R1. We modify reduction R1 to R1,k that works only

on an input graph in the form Gk and produces an instance

R1,k[G
k] of size almost linear in |V (Gk)| while inequalities

as in Theorem II.1 still hold, and obtain the following.

Lemma II.2. For any k, there is a reduction R1,k that
reduces a graph Gk = G·G·. . . into an instance of the mini-
mum consistent DFA problem of size O(k·|V (Gk)|·|V (G)|2)

5For conciseness, we will use g and f to refer to problems and their
objective functions interchangeably.

such that

χ(G)k ≤ dfa(R1,k[G
k]) ≤ χ(G)2k|V (G)|4 (6)

Observe that the size O(k · |V (Gk)| · |V (G)|2) of

R1,k(G
k) is almost linear (almost O(|V (Gk)|)) as the extra

O(k|V (G)|2) is negligible when k is sufficiently large.

Similarly, the term |V (G)|4 in Equation (6) is negligible

and thus the value of dfa(R1,k[G
k]) is sandwiched by

χ(G)k and χ(G)2k. This means that if χ(G) is small (i.e.,

χ(G) ≤ |V (G)|ε), then dfa(R1,k[G
k]) will be small (i.e.,

dfa(R1,k[G
k]) ≤ |V (Gk)|2ε), and if χ(G) is large (i.e.,

χ(G) ≥ |V (G)|1−ε), then dfa(R1,k[G
k]) will be also large

(i.e., dfa(R1,k[G
k]) ≥ |V (Gk)|1−ε). The hardness of n1−ε

for DFA thus follows.

We note that in Theorem II.1, we can replace DFA by

NFA, a function corresponds to the minimum consistent NFA

problem, thus getting a hardness of n1/2−ε for this problem

as well. This is, however, not yet tight. We would get a

tight hardness if we can replace DFA by NFA in Lemma II.2,

which is not the case. We also note that the proof for the tight

hardness for the minimum consistent CNF problem follows

from the same type of inequalities: We show that there

exists a near-linear-size reduction R3,k from the minimum

coloring problem to the minimum consistent CNF problem

(with function cnf) such that

χ(G)k ≤ cnf(R3,k[G
k]) ≤ χ(G)k|V (G)|O(1). (7)

The proofs of the bounds of graph products (Equations (3),

(4), (6) and (7)) are fairly short and elementary; in fact, we

believe that they can be given as textbook exercises. These

proofs can be found in the full version.

D. Related Concept

Our pre-reduction graph product concept was inspired

by the graph product subadditivity concept we previously

introduced in [36] (some of these ideas were later used in

[37], [38]). There, we prove a hardness of approximation

using the following framework. As before, let f be an
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objective function of a problem that we intend to prove

hardness and g be an objective function of a problem whose

hardness is already known. We show that there are graph

products ⊕, ∗e, and ∗ such that

• We can “decompose” f(G ∗e J): g(G) ≤ f(G ∗e J) ≤
g(G) + f(G ∗ J), and

• f((G ⊕ H) ∗ J) is “subadditive”: f((G ⊕ H) ∗ J) ≤
f(G ∗ J) + f(H ∗ J).

We then use the above inequalities to show that if we let

Gk = G⊕G⊕ . . . (k times), then

g(Gk) ≤ f(Gk ∗ J) ≤ g(Gk) + kf(G ∗ J).
For large enough k, the term kf(G ∗ J) is negligible and

thus f(Gk ∗e J) ≈ g(Gk). We use this fact to show that

the approximation harness of f is roughly the same as the

hardness of g. Observe that if we let R[G] = G ∗e J , the

above inequalities can then be used to show that

g(G⊕H) ≤ f(R[G⊕H]) ≤ g(G⊕H)+f(R[G])+f(R[H]).

In the problems considered in [36], one can easily bound

f(R[G]) and f(R[H]) by |V (G)| and |V (H)|, respectively.

So, our meta theorem will imply that f(Gk ∗ J) ≈ g(Gk),
which leads to the approximation hardness of f . This means

that the previous concept in [36] can be viewed as a special

case of our new concept where we restrict the reduction R
to be a graph product R[G] = G ∗e J . The way we use the

reduction R in this paper goes beyond this. For example, our

reduction R2 for EDP as illustrated in Figure 1 cannot be

viewed as a natural graph product. Moreover, our reduction

R1 reduces a graph G to an instance of DFA which has

nothing to do with graphs. (This is possible only when we

abandon viewing reduction R as a graph product.) Our meta

theorem also shows that bounds of graph products in a much

more general form can imply hardness results. Finally, the

way we exploit graph products using the reduction R1,k has

never appeared in [36].

E. Organization

We prove our meta theorems in Section III. These the-

orems show that bounding f(R[G ∗ H]) in a certain way

will immediately imply a hardness result. They allow us to

focus on proving all results that have been developed in this

framework. We show here how to prove the graph product

bound for automata problems.

III. META THEOREMS

In this section, we prove general theorems that will

be used in proving most hardness results in this paper.

These theorems give abstractions of the (graph product)

properties one needs to prove in order to obtain hardness

of approximation results. Our techniques can be used to

derive hardnesses for both minimization and maximization

problems. For the former, the reduction is from minimum

coloring, while the latter is obtained via a reduction from

maximum independent set.

Let us start with maximization problems. Suppose we

have an optimization problem Π such that any instance

I ∈ Π is associated with an optimal function OPTΠ(I).
We consider a transformation R that maps any graph G
into an instance R[G] of the problem Π. We say that a

transformation R satisfies a low α-projection property with

respect to a maximization problem Π if and only if the

following two conditions hold:

• (I) For any graph G = (V,E), OPTΠ(R[G]) ≥ α(G).
• (II) There are universal constants c1, c2 > 0 (indepen-

dent of the choices of graphs) such that, for any two

graphs G and H ,

OPTΠ(R[G ·H]) ≤ |V (G)|c1 + α(G)c2OPTΠ(R[H]).

• (III) There is a universal constant c0 > 0 such that

OPTΠ(R[G]) ≤ c0|R[G]|.
Intuitively, the transformation R with the low α-projection

property tells us that there are relationships between the

optimal solution of the problem Π on R[G] and the in-

dependence number of G. Instead of looking for a so-

phisticated construction of R, we focus on a “simple”

transformation R that establishes a connection on one side,

i.e., OPTΠ(R[G]) ≥ α(G), and the “growth” of OPTΠ is

“slow” with respect to graph products. Property (III) of the

low α-projection property says that the optimal is at most

linear in the size of the instance, which is the case for almost

every natural combinatorial optimization problem.

Next, we turn our focus to a minimization problem. In this

case, we relate the optimal solution to the chromatic number

of an input graph. Specifically, one can define the low χ-
projection property with respect to a minimization problem
Π as follows.

• (I) For any graph G = (V,E), OPTΠ(R[G]) ≥ χ(G).
• (II) There are universal constants c1, c2 > 0 (indepen-

dent of the choices of graphs) such that, for any two

graphs G and H , we have

OPTΠ(R[G ·H]) ≤ |V (G)|c1 + χ(G)c2OPTΠ(R[H]).

• (III) There is a universal constant c0 > 0 such that

OPTΠ(R[G]) ≤ c0|R[G]|.
We observe that the existence of such reductions is suffi-

cient for establishing hardness of approximation results, and

the hardness factors achievable from the theorems depend

on the size of the reduction.

Theorem III.1 (Meta-Theorem for Maximization Prob-

lems). Let Π be a maximization problem for which there is
a reduction R for Π that satisfies low α-projection property
with |R[G]| = O(|V (G)|d). Then for any ε > 0, given an
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instance I of Π, it is NP-hard to distinguish between the
following two cases:
• (YES-INSTANCE:) OPTΠ(I) ≥ |I|1/d−ε

• (NO-INSTANCE:) OPTΠ(I) ≤ |I|ε
Theorem III.2 (Meta-Theorem for Minimization Problems).
Let Π be a minimization problem for which there is a
reduction R for Π that satisfies low χ-projection property
with |R[G]| = O(|V (G)|d), for some constant d ≥ 0. Then
for any ε > 0, given an instance I of Π, it is NP-hard to
distinguish between the following two cases:
• (YES-INSTANCE:) OPTΠ(I) ≤ |I|ε
• (NO-INSTANCE:) OPTΠ(I) ≥ |I|1/d−ε

IV. A GRAPH PRODUCT BOUND FOR AUTOMATA

We further illustrate the flavor of our approaches by

proving bounds for automata problems (remark that, in

contrast to EDP, this is not a “graph problem”). Note that

the result here is not tight. The full proof (which implies

PAC learning lower bound) is deferred to the full version.

A. Definitions
Given two graph G and H , the lexicographic prod-

uct of G and H , denoted by G · H , is defined as

V (G · H) = V (G) × V (H) = {(u, v) : u ∈
V (G) and v ∈ V (H)}, and E(G · H) = {(u, a)(v, b) :
uv ∈ E(G) or (u = v and ab ∈ E(H) )}.

A deterministic finite automaton (DFA) is defined as a 5-

tuple (Q,Σ, δ, q0, F ) where Q is the set of states, Σ is the

set of alphabets, δ : Q × Σ → Q is a transition function,

q0 is initial state, and F ⊆ Q is the set of accepting states.

One can naturally extend the transition function δ into δ∗ :
Q × Σ∗ → Q by inductively defining δ∗(q, x1, . . . , x�) as

δ∗(δ(q, x1), x2, . . . , x�) and δ∗(q, null) = q. We say that M
accepts x if and only if δ∗(q0, x) ∈ F .

In the MINIMUM CONSISTENCY problem, denoted by

MINCON(H, F ), we are given collections P and N of

positive and negative sample strings in {0, 1}∗, for which

we are guaranteed that there is a hypothesis h ∈ H that

is consistent with all samples in P ∪ N , i.e., h(x) = 1
for all x ∈ P and h(x) = 0 for all x ∈ N . Our goal is

to output a function f ∈ F that is consistent with all these

samples, while minimizing |f |. In other words, H and F are

the classes of the real hypothesis that we want to learn and

those that our algorithm outputs respectively. This notion of

learning allows our algorithm to output the hypothesis that

is outside of the hypothesis class we want to learn.
Now we need a slightly modified notion of approximation

factor. For any instance (P,N ), we denote by OPTH(P,N )
the size of the smallest hypothesis h ∈ H consistent with

(P,N ). Let A be any algorithm for MINCON(H, F), i.e.,

A always outputs the hypothesis in F . The approximation

gauranteed provided by A is:

sup
P,N

|A(P,N )|
OPTH(P,N )

With this terminology, the problem of learning DFA can

be abbreviated as MINCON(DFA, DFA).

B. The Reduction

We design a reduction R[G] with χ-projection property

and |R[G]| = O(|V (G)|2). By our meta theorem, this

implies N1/2−ε hardness of MINCON(DFA, NFA).

We will be working with binary strings, i.e., the alphabet

set Σ = {0, 1}. Given a graph G = (V,E), we construct two

sets P,N of positive and negative samples, which encode

vertices and edges of the graph. We assume w.l.o.g. that

|V (G)| = 2k for some integer k. Therefore, each vertex u ∈
V (G) can be associated with a k-bit string 〈u〉 ∈ {0, 1}k.

Now our reduction R[G] is defined as follows. The posi-

tive samples are given by P =
{〈u〉1〈u〉R : u ∈ V (G)

}
and

the negative samples are N =
{〈u〉1〈v〉R : uv ∈ E(G)

}
.

We denote this instance of the consistency problem by an

ordered pair (P,N ). Now we proceed to prove property

(I), that any NFA consistent with (P,N ) must have at least

χ(G) states.

Lemma IV.1. Let M = (Q,Σ, δ, q0, F ) be an NFA that is
consistent with (P,N ). Then for any vertex u ∈ V (G),

δ∗(q0, 〈u〉) �⊆
⋃

v:uv∈E(G)

δ∗(q0, 〈v〉).

Corollary IV.2. Any NFA M that is consistent with
(P,N )G must have at least χ(G) states. Therefore,
OPTDFA(R[G]) ≥ OPTNFA(R[G]) ≥ χ(G) for all G.

C. χ-Projection Property

We will consider a specific class of DFA M =
(Q,Σ, δ, q0, F ), which we call canonical DFA. Specifically,

we say that a DFA is canonical if it has the following

properties.

• The state diagram has exactly � layers for some �, and

each path from q0 to any sink has length exactly �.
• All accepting states are in the last layer.

Denote shortly by OPT(R[G]) the number of states in the

minimum canonical DFA consistent with R[G]. So we have

that OPT(R[G]) ≥ OPTDFA(R[G]) ≥ OPTNFA(R[G]).
The following lemma gives the χ-projection property for

OPT(·)
Lemma IV.3. OPT(R[G · H]) ≤ χ(G)(OPT(R[H]) +
O(|V (G)|))

Now we prove the lemma. Let MH =
(QH , {0, 1} , δH , qH , FH) be the minimum DFA for the

instance R[H] whose number of states is s = OPT(R[H])
and has �H = 2h + 1 layers for h = �log |V (H)|�. Let

C1, . . . , CB be the color classes of G defined by the

optimal coloring, so B = χ(G). Let f : V (G) → [B] be

the corresponding coloring function. We will also be using

several copies of a directed complete binary tree with 2k
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Figure 2: The illustration of the construction in the proof of

Lemma IV.3.

leaves, where each leaf corresponds to a string in {0, 1}k
and is associated with a vertex in V (G). Call this directed

binary tree Tk.

We will use MH and Tk to construct a new acyclic

DFA M that have at most B(s + O(|V (G)|)) states and

exactly � = 2(k+ �H)+1 layers. Now we proceed with the

description of machine M = (Q, {0, 1} , δ, q, F ). We start

by taking a copy of directed tree Tk, and call this copy T
(0)
k .

The starting state q is defined to be the root of T
(0)
k . This

is the first phase of the construction. Notice that there are k
layers in the first phase, so exactly k positions of any input

string will be read after this phase. Each state in the last

layer is indexed by state(〈v〉) for each v ∈ V (G).

In the second phase, we take B copies of the ma-

chines MH where the jth copy, denoted by M
(j)
H =

(Q
(j)
H , {0, 1}, δ(j)H , q

(j)
H , F

(j)
H ), is associated with color class

Cj defined earlier. For each vertex v ∈ V (G), we connect

the corresponding state state(〈v〉) in the last layer of Phase

1 to the starting state q
(f(v))
H . This transition can be thought

of as a “null” transition which can be removed afterward, but

keeping it this way would make the analysis simpler. Since

each copy of MH has 2�H +1 layers, now our construction

has exactly 2�H + k + 1 layers.

In the final phase, we first extend all rejecting states

in M
(j)
H by a unified path until it reaches layer 2(�H +

k) + 1. This is a rejecting state rej0. Now, for each

j = 1, . . . , B, we connect each accepting state in the last

layer of M
(j)
H to the root in the copy T

(j)
k again by a

“null” transition, so we reach the desired number of layers

now (notice that each root-to-leaf path has 2(k + �H) + 1

states.) The states in the last layer of T
(j)
k are indexed

by state(j, 〈v〉). The accepting states of M are defined

as F =
⋃B

j=1

{
state(j, 〈u〉R) : u ∈ Cj

}
, and the rest of

the states are defined as rejecting. This completes our

construction. See Figure 2 for illustration.

The size of the construction is |V (G)| + Bs +
O(|V (G)|B) = B(s + O(|V (G)|)). The next claim shows

that the machine M is consistent with samples obtained from

the product of G and H , which thus finish the proof.

Claim IV.4. If MH that is consistent with R[H], then
machine M constructed above is consistent with R[G ·H].

V. CONCLUSION AND OPEN PROBLEMS

There are many open problems on edge-disjoint paths.

Most notably can one narrow down the gap of undirected

EDP between O(
√
n) upper bound and log1/2−ε n lower

bound? For directed EDP, there is still a gap in the case

of routing with congestion, between the upper bound of

n1/c [39] and the lower bound of n1/(3c+23) [5] if we allow

routing with congestion c. We believe that our techniques

are likely to work there. Closing this gap would resolve an

open question in Chuzhoy et al. [5].

Another interesting problem is the cycle packing problem.

For this problem, the approximability is pretty much settled

on undirected graphs with an upper bound of O(log1/2 n)
and a lower bound of log1/2−ε n ([40], [32]). On directed

graphs, there is still a gap between n1/2 and Ω( logn
log logn ).
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