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Abstract—In this paper, we present a new algorithm for
solving linear programs that requires only Õ(

√
rank(A)L)

iterations where A is the constraint matrix of a linear program
with m constraints, n variables, and bit complexity L. Each
iteration of our method consists of solving Õ(1) linear systems
and additional nearly linear time computation. Our method
improves upon the previous best iteration bounds by factor
of Ω̃((m/rank (A)))1/4) for methods with polynomial time
computable iterations and by Ω̃((m/rank (A))1/2) for methods
which solve at most Õ(1) linear systems in each iteration each
achieved over 20 years ago.

Applying our techniques to the linear program formu-
lation of maximum flow yields an Õ(|E|√|V | log2 U) time
algorithm for solving the maximum flow problem on di-
rected graphs with |E| edges, |V | vertices, and capacity ratio
U . This improves upon the previous fastest running time
of O(|E|min{|E|1/2, |V |2/3} log (|V |2/|E|) log(U)) achieved
over 15 years ago by Goldberg and Rao and improves upon
the previous best running times for solving dense directed
unit capacity graphs of O(|E|min{|E|1/2, |V |2/3}) achieved
by Even and Tarjan over 35 years ago and a running time of
Õ(|E|10/7) achieved recently by Mądry.

Keywords-linear program; maximum flow; interior point;

I. INTRODUCTION

Given a matrix, A ∈ Rm×n, and vectors, �b ∈ Rm and

�c ∈ Rn, solving a linear program1

min
�x∈Rn : A�x≥�b

�cT�x (1)

is a core algorithmic task in both the theory and practice of

computer science.

Since Karmarkar’s breakthrough result in 1984, prov-

ing that interior point methods can solve linear programs

in polynomial time, interior point methods have been an

incredibly active area of research [30]. Now, the fastest

asymptotic running times for solving (1) in many regimes

are interior point methods. State of the art interior point

methods require either O(
√
mL) iterations of solving linear

systems [35] or O((m rank(A))1/4L) iterations of a more

expensive polynomial-time operation [42], [44], [46], [2].

1This is the dual of a linear program written in standard form and it
encompasses all linear programs. As papers vary in their notation for m
and n differs, we state our results in terms of

√
rank(A).

However, in a breakthrough result of Nesterov and Ne-

mirovski in 1994, they showed that there exists a universal
barrier function that if computable would allow (1) to be

solved in O(
√

rank(A)L) iterations [29]. Unfortunately,

this barrier is more difficult to compute than the solutions to

(1). Despite this existential result, the O((m rank(A))1/4L)
iteration bound for polynomial time linear programming

methods has not been improved in over 20 years.

In this paper we present a new interior point method

that solves general linear programs in Õ(
√

rank(A)L)
iterations thereby matching the theoretical limit proved by

Nesterov and Nemirovski up to polylogarithmic factors.2

Furthermore, we show how to achieve this convergence

rate while only solving Õ(1) linear systems and performing

additional Õ(nnz(A)) work in each iteration. 3

A. The Maximum Flow Problem

Applying our techniques to the linear programming for-

mulation of the maximum flow problem we achieve a run-

ning time of Õ(|E|
√
|V | log2(U)) for solving the problem

on a graph with |E| edges, |V | vertices, and capacity ratio

U . This improves upon the previous fastest running time of

Õ(|E|min{|E|1/2, |V |2/3} log(U)) achieved over 15 years

ago by Goldberg and Rao [11]4 and the previous fastest

running times for solving dense directed unit capacity graphs

of O(|E|min{|E|1/2, |V |2/3}) achieved by Even and Tarjan

[7] over 35 years ago and of Õ(|E|10/7) achieved recently

by Mądry [25].

Interestingly, for this linear program our interior point

method converges provably better than the rate predicted by

Nesterov and Nemirovski’s existential result. To the best of

the author’s knowledge this is the first general convergence

rate of interior point methods of this kind.

2We use Õ(·) to hide polylog(n,m, |V |, |E|) factors.
3Throughout this paper L denotes the standard “bit complexity” of the

linear program, a quantity less than the number of bits needed to represent

(1). For integral A, �b, and �c this quantity is often defined as L
def
= log(1+

dmax)+log(1+max{∥∥�c∥∥∞,
∥∥�b

∥∥
∞}) where dmax is the largest absolute

value of the determinant of a square sub-matrix of A [16].
4In this paper we are primarily concerned with “weakly” polynomial

time algorithms. The current fastest “strongly” polynomial running time
for solving this problem is O(nm) [33].
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B. Algorithm Running Times

Using different linear system solvers and considering the

linear program formulations of flow problems study by

Daitch and Spielman [5] we obtain the following:

• We solve (1) in

Õ(
√

rank(A)(nnz(A) + (rank(A))
ω
)L)

improving upon Õ(
√
m(nnz(A) + (rank(A))

ω
)L)

[35], [27], [22].5

• We solve (1) in Õ
(
n5/2−3(ω−2)m3(ω−2)L

)
improving

upon the previous best of Õ
(
m1.5nL

)
[43].

• We achieve the first O(
√

rank(A)L) depth polynomial

work method for solving linear programs.

• We solve the minimum cost flow problem in

Õ(|E|
√
|V | log2(U)) time improving upon the previ-

ous best of Õ(|E|3/2 log2(U)) [5].

• We produce ε-approximate solutions to the generalized

lossy flow problem in Õ(|E|
√
|V | log2(U/ε)) improv-

ing upon the previous best of Õ(|E|3/2 log2(U/ε)) [5].

• We parallelize the flow algorithm so the work is the

same but the depth is Õ(
√
|V | log2 U).

C. Path Finding

We achieve our results by extending standard path follow-

ing techniques for linear programming [35], [13]. Whereas

standard path following techniques follow a fixed path

through the interior of a polytope our algorithms iteratively

find better paths through a broad class paths we call the

weighted central paths. The idea of using the weights to

modify the central path is an old one [8] and it was used

ingeniously a recent breakthrough by Aleksander Mądry

to solve unit capacity directed maximum flow instances

in Õ(|E|10/7) [25]. Our algorithm leverages the common

insight that by finding better paths the convergence rate of

interior point methods can be improved, but performs this

path changing differently and exploits different benefits that

can come from path finding (building off the work in [42],

[44], [46], [2]). We hope that our analysis of weighting the

central path may be of independent interest and help further

improve the running time of interior point methods.

D. Paper Organization

Our paper is split into two parts, "Path Finding I : Solving

Linear Programs with Õ(
√
rank) Linear System Solves"

[20] and “"Path Finding II : An Õ(m
√
n) Algorithm for

the Minimum Cost Flow Problem" [21] which can be found

on arXiv. This paper is a short primer intended to guide the

read through the longer documents available online.

5For simplicity, the linear program running times presented throughout
the paper hide additional dependencies on L that may arise from the need
to carry out arithmetic operations to precision L.

II. OVERVIEW OF OUR APPROACH

We achieve our results by carefully and systematically

generalizing path following interior point methods.

A. Path Following

To solve (1) interior point methods maintain a point �x ∈
Rn in the interior of the feasible region, denoted S0 def

= {�x ∈
Rn : A�x > �b}, and attempt to iteratively decrease the

cost of �x, i.e. �cT�x, while maintaining feasibility, i.e. A�x ≥
�b. Distance from in-feasibility is typically measured as a

function of the slack vector, �s(�x)
def
= A�x−�b. Path following

methods fix a set of tradeoffs between cost and distance

from boundary of the feasible region through a penalized

objective function ft(�x). Formally, they solve

min
�x∈Rn

ft(�x) where ft(�x)
def
= t · �cT�x+ φ(�s(�x))

where t is a parameter and φ : Rn → R is a barrier function
such that φ(�s(�x)) → ∞ as s(�x)i → 0, i.e. x tends to

boundary of the feasible region.

Under mild assumptions on φ solving (1) is equivalent to

minimizing ft(�x) for a sufficiently large t. Leveraging this

insight, path following methods perform a variety of stan-

dard reductions [1] to reduce solving (1) to approximately

computing �xt
def
= argmin�x∈Rn ft(�x) given an approximate

�xt′ for t′ multiplicatively close to t. The �xt form a a path,

called the central path, from some analytical notion of center

of the feasible region (at t = 0) to the solution of (1) (at

t = ∞). Path following methods then typically use some

sort of modification of Newton’s method, i.e. they solve

linear systems corresponding to optimizing second order

approximations to ft(�x), to follow the central path.

B. Path Finding

To solve (1) ideally we would just produce a barrier func-

tion φ such that standard path following methods provably

converge in Õ(
√

rank(A)L) iterations and each iteration

consists of solving Õ(1) linear systems. Unfortunately, we

are unaware of such a barrier function and for the linear

program formulations of maximum flow we consider we

know none exists (See Section VIII).

Instead, we manipulate the most common choice

of barrier, the standard logarithmic barrier, φ(�x) =
−∑

i∈[m] log(s(�x)i). Note that the behavior of the loga-

rithmic barrier is highly dependent on the representation of

(1). Just duplicating a constraint, i.e. repeating a row of A
and the corresponding entry in �b, corresponds to doubling

the contribution of some log barrier terms − log(s(�x)i) to φ.

It is not hard to see that repeating a constraint many times

can actually slow down the convergence of standard path

following methods. In other words, path following methods

are not invariant to the representation of the feasible region.

This insight motivates us to consider adding weights to the

log barrier that we change during the course of the algorithm.

425425



Every weighting of the log barrier induces a different central

path for a new representation of the polytope. Rather than

following one fixed initial central path we show how we can

simultaneously follow a path and find new paths with nicer

local properties.

C. What is a good path?

In Section IV, we make this weighting procedure precise

and study the weighted log barrier function given by

φ(�x) = −
∑
i∈[m]

gi(s(�x)i) · log(s(�x)i)

where �g : Rm
>0 → Rm

>0 is a weight function of the current

point. We provide a general weighted path following scheme
and analyze how the running time and convergence rate of

this scheme in terms of a set of properties of �g.

In Section V we then connect these properties of the

weight function to local geometric properties of the poly-

tope. In particular we show solving an optimization prob-

lem corresponding to an approximate John Ellipsoid yields

weights that induce a Õ(
√

rank(A)L) iteration interior

point method.

D. How well can we find the path?

In Section V we show that by a combination of gradient

descent and a Johnson Lindenstrauss based method used

frequently in numerical linear algebra [26] we can compute

multiplicative approximations to the weight function by

solving Õ(1) linear systems. Unfortunately, naive analysis of

our weighted path following analysis requires more precise

estimates of the weights.

In Section VI we show how our weighted path follow-

ing scheme can be modified to work even if only given

multiplicative approximations to the weights. We phrase the

problem as a two player game which we solve using careful

regularization.

E. Faster Running Times

In Section VII we show how by using different algorithms

for solving the linear systems our linear programming algo-

rithm improves upon current state of the art running times

for solving (1) in various regimes.

Finally, In Section VIII we discuss how our techniques

can be applied to the linear program formulation of max-

imum flow. Unfortunately, all known attempts to write

maximum flow in the form of (1) make rank(A) = Ω(|E|)
and Nesterov and Nemirovski’s results [30] show that for

natural formulations of flow problems suggested by Daitch

and Spielman [5] there is no Õ(|V |) self-concordant barrier

function. Nevertheless, we introduce new tools to solve

these flow problems in Õ(
√
|V |) iterations and applying

further analysis from Daitch and Spielman [5] as well as

fast Laplacian system solvers [38] we achieve our desired

running times.

III. PREVIOUS WORK

Linear programming and maximum flow are extremely

well studied problems with long histories. Here we focus

on recent history that particularly influenced our work.

A. Convergence Rate of Interior Point Methods

In 1984, Karmarkar [16] provided the first proof of an

interior point method running in polynomial time. This

method required O(mL) iterations where the running time

of each iteration was dominated by the time needed to

solve a linear system of the form
(
ATDA

)
�x = �y for

some positive diagonal matrix D ∈ Rm×m and some

�y ∈ Rn. Using low rank matrix updates and preconditioning

Karmarkar achieved a running time of O(m3.5L).
In 1988, Renegar improved the convergence rate of inte-

rior point methods to O (
√
mL) iterations [35]. He presented

a path following method where the iterations had comparable

complexity to Karmarkar’s method. Using a combination of

techniques involving low rank updates, preconditioning and

fast matrix multiplication, the amortized complexity of each

iteration was improved [41], [13], [30] yielding the current

state of the art running time of O(m1.5nL) [43].

In 1989, Vaidya [46] proposed two barrier functions

which were shown to yield O((m rank(A))
1/4

L) and

O(rank(A)L) iteration linear programming algorithms [44],

[46], [42]. Unfortunately each iteration of these meth-

ods required explicit computation of the projection matrix

D1/2A(ATDA)−1ATD1/2 for a positive diagonal matrix

D ∈ Rm×m. This was improved by Anstreicher [2] who

showed it sufficed to compute the diagonal of this projection

matrix. Unfortunately both methods do not yield faster

running times unless m� n.

In 1994 Nesterov and Nemirovski [30] showed that path-

following methods can in principle be applied to any solve

convex optimization problem, given a suitable barrier func-

tion. The number of iterations of their method depends on

a square root of a quantity known as the self-concordance
of the barrier. They showed that for any convex set in Rn,

there exists a barrier function, called the universal barrier
function, with self-concordance O(n) and therefore in prin-

ciple any convex optimization problem with n variables can

be solved in O (
√
nL) iterations. However, this result is

generally considered to be only of theoretical interest as

the universal barrier function is defined as the volume of

certain polytopes, a problem which in full-genearality is NP-

hard and can only be computed approximately in O(nc) for

some large constant c [23].

These results suggested that you can solve linear pro-

grams closer to the Õ(
√
rank(A)L) bound achieved by the

universal barrier only if you pay more in each iteration.

In this paper we show that this is not the case and up to

polylogarithmic factors we achieve the convergence rate of

the universal barrier function while only having iterations of

cost comparable to that of Renegar’s algorithm.
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Year Author Number of Iterations Nature of iterations

1984 Karmarkar [16] O(mL) Linear system solve

1986 Renegar [35] O(
√
mL) Linear system solve

1989 Vaidya [45] O((m rank(A))
1/4

L) Expensive linear algebra

1994 Nesterov and Nemirovskii [30] O(
√

rank(A)L) Volume computation

2013 This paper Õ(
√

rank(A)L) Õ(1) Linear system solves

Figure 1. Interior Point Iteration Improvements

B. Recent Breakthroughs on the Maximum Flow Problem

A beautiful line of work on solving the maximum flow on

undirected graphs began with a result of Benzcur and Karger

in which they showed how to reduce approximately comput-

ing minimum st cuts on arbitrary undirected graphs to the

same problem on sparse graphs, i.e. those with |E| = Õ(|V |)
[3]. Pushing these ideas further Karger showed how to

perform a similar reduction for the maximum flow problem

[15] and Karger and Levine showed how to compute the

exact maximum flow in an unweighted undirected graph

with maximum flow value F in Õ(|E|+ |V |F ) time [14].

In a breakthrough result of Spielman and Teng [38] they

showed that a particular class of linear systems, Laplacians,

can be solved in nearly linear time. Leveraging these fast

Laplacian system solvers Christiano, Kelner, Mądry, and

Spielman [4] showed how to compute (1−ε) approximations

to the maximum flow problem on undirected graphs in

Õ(|E| · |V |1/3ε−11/3). Later Lee, Rao and Srivastava [19]

improved the running time to Õ(|E| · |V |1/3ε−2/3) for

unweighted undirected graphs. This line of work culminated

in recent results of Sherman [36] and Kelner, Lee, Orecchia,

and Sidford [17] who showed how to solve the problem in

O(|E|1+o(1)ε−2), using congestion-approximators, oblivious

routings, and techniques developed by Mądry [24].

In 2008, Daitch and Spielman [5] showed that, by care-

ful application of interior point techniques, fast Laplacian

system solvers [38], and a novel method for solving M-

matrices, they could match (up to polylogarithmic factors)

the running time of Goldberg Rao and achieve a running

time of Õ(|E|3/2 log2(U)) not just for maximum flow but

also for the minimum cost flow and lossy generalized

minimum cost flow problems (see Fig III-B).

Very recently Mądry [25] achieved an astounding running

time of Õ(|E|10/7) for solving the maximum flow problem

on un-capacitated directed graphs by a novel application

and modification of interior point methods. This shattered

numerous barriers providing the first general improvement

over the running time of O(|E|min{|E|1/2, |V |2/3}) for

solving unit capacity graphs proven over 35 years ago by

Even and Tarjan [7] in 1975.

While our algorithm for solving the maximum flow prob-

lem is new, we make extensive use of these breakthroughs.

We use sampling techniques first discovered in the context

Year Author Running Time

1972 Edmonds, Karp [6] Õ(|E|2 log(U))
1984 Tardos [40] O(|E|4)
1984 Orlin [31] Õ(|E|3)
1986 Galil, Tardos [10] Õ

(
|E||V |2

)
1987 Goldberg, Tarjan [12] Õ(|E||V | log(U))

1988 Orlin [32] Õ(|E|2)
2008 Daitch, Spielman [5] Õ(|E|3/2 log2(U))

2013 This paper Õ(|E|
√
|V | log2(U))

Figure 2. Minimum Cost Flow Running Times Improvements

of graph sparsification [37] to re-weight the graph so that

we make progress at a rate commensurate with the number

of vertices and not the number of edges. We use fast

Laplacian system solvers as in [4], [19] to make the cost

of interior point iterations cheap when applied to the linear

program formulations analyzed by Daitch and Spielman [5].

Furthermore, as in Mądry [25] we use weights to change

the central path (albeit for a slightly different purpose). We

believe this further emphasizes the power of these tools as

general purpose techniques for algorithm design.

IV. PATH FINDING : PROPERTIES OF THE WEIGHTED

CENTRAL PATH

Here we present our path finding scheme assuming we can

always compute weights with suitable properties. In addition

to maintaining a feasible point �x ∈ S0 and a path parameter

t we maintain a set of positive weights �w ∈ Rm
>0 and attempt

to minimize the weighted penalized objective function ft :
S0 × Rm

>0 → R given for all �x ∈ S0 and �w ∈ Rm
>0 by

ft(�x, �w)
def
= t · �cT�x−

∑
i∈[m]

wi log s(�x)i. (2)

We call (�x, �w) ∈ {Rm × Rm} feasible if �x ∈ S0 and �w ∈
Rm
>0 and our goal is to compute a sequence of feasible points

for increasing t and changing (but bounded) �w such that

ft(�x, �w) is nearly minimized with respect to �x. To do this

we alternate between increasing t, taking a step to improve

the current points distance to the weighted central path, and

changing the weights.
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A. Measuring Centrality

As with all path following methods we use a variant

of Newton’s method to improve centrality. Standard path

following methods simply minimize the second order ap-

proximation of ft(�x, �w) in terms of �x, i.e. set �x(new) :=

�x− �ht(�x, �w), where the Newton step, �ht(�x, �w), is

�ht(�x, �w)
def
= (∇2

�x�xft(�x, �w))
−1∇�xft(�x, �w)

= (ATS−1
x WS−1

x A)−1(t�c−ATS−1
x �w) (3)

We measure the proximity of (�x, �w) to the weighted central

path, what we call centrality, δt(�x, �w), in the standard way,

by the size of the Newton step in the Hessian norm

δt(�x, �w)
def
=

∥∥�ht(�x, �w)
∥∥
∇2

�x�x
ft(�x,�w)

=
∥∥t�c−ATS−1

x �w
∥∥
(ATS−1

x WS−1
x A)

−1 . (4)

where Sx, W are diagonal matrices with diagonals �s(�x), �w.

B. Advancing Down the Path

The rate at which increasing t hurts centrality is easily

shown to be governed by the current centrality and
∥∥�w∥∥

1
.

Lemma 1. For feasible (�x, �w) and α, t ≥ 0

δ(1+α)t(�x, �w) ≤ (1 + α)δt(�x, �w) + α
√∥∥�w∥∥

1

How much Newton’s method can decrease centrality is is

governed by how much the Hessian of ft changes. We bound

this change by bounding what we call the slack sensitivity

Definition 2. For �s, �w ∈ Rm
>0 the slack sensitivity is

γ(�s, �w)
def
= max

i∈[m]

∥∥W−1/2�1i

∥∥
P

S
−1
x A

(�w)

where PS−1
x A(�w) is the projection matrix given by

P
S−1
x A

(�w)
def
= W1/2S−1

x A
(
ATS−1

x WS−1
x A

)−1

ATS−1
x W1/2

Deviating from standard path following analysis we show

that the Newton step can split into a step on �x and a step

on �w and still make large centering progress

Lemma 3 (Split Newton Step). For feasible {�x(old), �w(old)}
let

�x(new) def
= �x(old) − 1

1 + r
�ht(�x

(old), �w(old)),

�w(new) def
= �w(old) +

r

1 + r
W(old)S

−1
(old)A

�ht(�x
(old), �w(old))

If δt
def
= δt(�x

(old), �w(old)) ≤ 1
8γ(�x(old), �w(old))

, Then

δt(�x
(new), �w(new)) ≤ 2

1 + r
· γ(�x(old), �w(old)) · δ2t .

C. The Weight Function : Changing Weights

Lemmas 1 and 3 suggest exactly what properties we want

of our weight function. By Lemma 3 if we maintain that

δt(�x, �w) ≤ O( 1
γ(�x,�w) ) then we decrease δt rapidly with

split steps. Furthermore, for such approximately centered

points by Lemma 1 we could increase t by a multiplicative

(1+O((γ(�x, �w)
√∥∥�w∥∥

1
)−1) and maintain an approximately

centered point. This suggesst we could double t while

maintaining approximate centrality with O(γ(�x, �w)
√∥∥�w∥∥

1
)

split steps.

Thus we want γ(�x, �w)
√∥∥�w∥∥

1
= Õ(

√
rank(A)). To

maintain this we assume we have access to some fixed dif-

ferentiable weight function �g : Rm
>0 → Rm

>0 from slacks to

positive weights that we will use to pick �w. For �g to be useful

we need to show that when we set the weights to �g(�s(�x))
after a split step, this does not hurt centrality too much.

Letting G(�s)
def
= diag(�g(�s)) denote the diagonal matrix

associated with the slacks and we let G′(�s) def
= J�s(�g(�s))

denote the Jacobian of the weight function with respect to

the slacks we bound this by bounding the operator norm

of I + r−1G(�s)−1G′(�s)S. Lastly, we make a normalizing

uniformity assumption that none of the weights are two big.

Definition 4 (Weight Function). A weight function is a

differentiable function from �g : Rm
>0 → Rm

>0 such that for

constants c1(�g), cγ(�g), and cr(�g), we have the following for

all �s ∈ Rm
>0:

• Size : The size c1(�g) =
∥∥�g(�s)∥∥

1
.

• Slack Sensitivity: The slack sensitivity cγ(�g) satisfies

cγ(�g) ≥ 1 and γ(�s,�g(�s)) ≤ cγ(�g).
• Step Consistency : The step consistency cr(�g) satisfies

cr(�g) ≥ 1 and ∀r ≥ cr(�g) and ∀�y ∈ Rm

–
∥∥I+ r−1G(�s)−1G′(�s)S

∥∥
G(�s)

≤ 1

–
∥∥�y+r−1G(�s)−1G′(�s)S�y

∥∥
∞ ≤

∥∥�y∥∥∞+cr
∥∥�y∥∥

G(�s)

• Uniformity :
∥∥�g(�s)∥∥∞ ≤ 2.

Using the consistency property and integrating we can

bound how much centrality is hurt when we take a split

step and then update the weights using the weight function.

Theorem 5 (Centering with Weights). Let �x(old) ∈ S0 and

�x(new) = �x(old) − 1

1 + cr
�h(�x(old), �g(�s(old))) . (5)

If δt(�x(old), �g(�s(old))) ≤ 1
100cγc2r

then

δt(�x
(new), �g(�s(new))) ≤

(
1− 1

4cr

)
δt(�x

(old), �g(�s(old))).

Combining Theorem 5 and Lemma 1 we see that we can

double t while maintaining δt(�x,�g(�s)) = O(c−1
γ c−2

r ) by a

total of O(c−1
γ c−3

r c
−1/2
1 ) steps of (5) and computing �g(�x). It

simply remains to show c−1
γ c−3

r c
−1/2
1 = Õ(

√
rank(A)) and

shows that computing the weights approximately suffices.
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V. THE WEIGHT FUNCTION

Here, we present the weight function �g : Rm
>0 → Rm

>0 that

when used in the framework proposed in the previous section

yields an Õ(
√

rank(A)L) iteration interior point method.

A. The Weight Function

Our weight function was inspired by the volumetric

barrier methods of [45], [2]. These papers considered using

the volumetric barrier, φ(�s) = − log det(ATS−2A) , in

addition to the standard log barrier, φ(�s) = −∑
i∈[m] log si.

If viewed as a weight function the standard log barrier has

a good slack sensitivity, 1, but a large size, m, and the

volumetric barrier has a worse slack sensitivity,
√
m, but

better total weight, n. By carefully applying a weighted

combination of these two barriers [45] and [2] achieved an

O((m rank(A))1/4L) iteration interior point method at the

cost more expensive linear algebra in each iteration.
Instead of using a fixed barrier, our weight function �g

is computed by solving a convex optimization problem
whose optimality conditions imply both good size and
good slack sensitivity. We define �g for all �s ∈ Rm

>0 by

�g(�s)
def
= argmin�w∈Rm

>0
f̂(�s, �w) where

f̂(�s, �w)
def
= �1T �w − 1

α
log det(AT

s W
αAs)− β

∑
i∈[m]

logwi (6)

where As
def
= S−1A and the constants α, β are chosen later.

To get a sense for why �g has the desired properties,

suppose for illustration purposes that α = 1 and β = 0.

Setting the gradient of (6) to �0, we see that if �g exists then

�gi(�s) = (PAs
(�g))ii

for all i and consequently maxi
∥∥G−1/2�1i

∥∥
PAs (�g)

= 1 and

γ(�s,�g(�s)) = 1. Furthermore, since PAs
is an orthogonal

projection,
∥∥�g(�s)∥∥

1
= rank(A) and hence we see that this

would yield a weight function with good cγ and c1.

Unfortunately picking α = 1 and β = 0 makes the

optimization problem for computing �g degenerate. In the

following theorem, we see that by picking better values for

α and β, we can a desirable weight function.

Theorem 1. (Properties of Weight Function) Picking α =

1 − log2

(
2m

rank(A)

)−1

and β = rank(A)
2m , �g is a weight

function meeting the criterion of Definition 4 with

• Size : c1(�g) = 2 rank(A).
• Slack Sensitivity: cγ(�g) = 2.

• Step Consistency : cr(�g) = 2 log2

(
2m

rank(A)

)
.

B. Geometric Interpretation of the Barrier

The new weight function is closely related to fundamental

problems in convex geometry. If we set α = 1, β = 0, the

optimization problem appears in �g is often referred to as D-
optimal design and is directly related to computing the John

Ellipsoid of the polytope {�y ∈ Rn : |[A (�y − �x)]i| ≤ s(�x)i}

[18]. Hence, one can view our linear programming algorithm

as using John Ellipsoids to improve the convergence rate of

interior point methods.

Our algorithm is not the first instance of using John

Ellipsoids in optimization. In a seminal work of Tarasov,

Khachiyan and Erlikh [39], they showed that a general

convex problem can be solved in O(n) steps of computing

John Ellipsoid and querying a separating hyperplane oracle.

Furthermore, Nesterov [28] also demonstrated how to use

a John ellipsoid to compute approximation solutions for

certain linear programs in Õ(n2m+ n1.5m/ε) time.

From this geometric perspective, there are two major

contributions of this paper. First we show that the log-

arithmic volume of an approximate John Ellipsoid is an

almost optimal barrier function for linear programming and

second that computing an approximate John Ellipsoids can

be streamlined such that the cost of these operations is

comparable to computing the standard logarithmic barrier

function. Beyond obtaining a faster linear program solver,

this implies that we obtain the fastest algorithm for com-

puting approximate John Ellipsoids in certain regimes. We

hope to further elaborate on this connection and show more

applications in a followup paper.

C. Computing and Correcting The Weights

We apply the gradient descent method in a carefully scaled

space to minimize f̂(�s, �w), it allows us to compute �g(�s) to

high accuracy in Õ(1) iterations if we have a good estimate

of �g(�s) and can compute the gradient of f̂ exactly. The first

assumption is not an issue because �g does not change too

much between calls to compute �g. Unfortunately, it is expen-

sive to compute the gradient of f̂ exactly. The gradient of f̂
is a function of leverage scores �σAs

. In [37], they showed

that we can compute �σAs approximately by solving only

polylogarithmically many regression problems (See [26] for

more details). These results use the fact that the leverage

scores of the the ith constraint, i.e. [�σAs
]i is the 
2 length

of vector PA(�x)�1i and that by the Johnson-Lindenstrauss

Lemma these lengths are persevered up to multiplicative

error if we project these vectors onto certain random low

dimensional subspace. Consequently, to approximate the

�σAs
we first compute the projected vectors and then use it

to approximate �σAs
. Using this idea, we prove that a variant

of gradient descent method still efficiently computes �g with

adequate error guarantees.

Theorem 2. (Weight Correction) Given a �s ∈ Rm
>0, a �w ∈

Rm
>0 such that

∥∥W−1(�g(�s)− �w)
∥∥
∞ ≤

1
12cr

, and K ∈ (0, 1).

We can find a �w(new) such that∥∥G(�s)−1(�g(�s)− �w(new))
∥∥
∞ ≤ K

with probability 1 − Õ(1)
m . The running time is dominated

by the time needed to solve Õ(c3r log(1/K)/K2) linear

systems.
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Finally, we show how to compute an initial weight by first

computing �g for a large value of β and then decreasing β
gradually.

Theorem 3. (Weight Computation) For �s ∈ Rm
>0 and K > 0,

with constant probability we can find a �w(new) such that∥∥G(�s)−1(�g(�s)− �w)
∥∥
∞ ≤ K.

The running time is dominated by the time needed to solve

Õ(
√
rank (A) log(1/K)/K2) linear systems.

VI. APPROXIMATE WEIGHTS SUFFICE

In the previous sections, we analyzed a weighted path

following strategy assuming oracle access to a weight func-

tion we could compute exactly. However, to achieve the

fastest running time for weighted path following presented

in this paper, we need to show that it suffices to compute

multiplicative approximations to the weight function.

This is a non-trivial statement as the weight function

serves several roles in our weighted path following scheme.

First, it ensures a good ratio between total weight c1 and

slack sensitivity cγ . This allows us to take make large

increases to the path parameter t after which we can improve

centrality. Second, the weight function is consistent and does

not differ too much from the cr-update step direction. This

allows us to change the weights between cr-update steps

without moving too far away from the central path. Given

a multiplicative approximation to the weight function, the

first property is preserved up to an approximation constant

however this second property is not.

To effectively use multiplicative approximations to the

weight function we cannot simply use the weight function

directly. Rather we need to smooth out changes to the

weights by using some slowly changing approximation to

the weight function. In this section we show how this can

be achieved in general.

A. The Chasing 0 Game

The chasing 0 game is as follows. There is player, an

adversary, and a point �x ∈ Rm. The goal of the player is

to keep the point close to �0 in 
∞ norm and the goal of

the adversary is to move �x away from �0 ∈ Rm. The game

proceeds for an infinite number of iterations where in each

iteration the adversary moves the current point �x(k) ∈ Rm to

some new point �y(k) ∈ Rm and the player needs to respond.

The player does not know �x(k), �y(k), or the move of the

adversary. All the player knows is that the adversary moved

the point within some convex set U (k) and the player knows

some �z(k) ∈ Rn that is close to �y(k) in 
∞ norm. With this

information the player is allowed to move the point a little

more than the adversary. Formally, the player is allowed

to set the next point to �x(k+1) ∈ Rm such that �Δ(k) def
=

�x(k+1) − �y(k) ∈ (1 + ε)U for some fixed ε > 0.

The question we would like to address is, how close the

player can keep �x(k+1) to �0 in 
∞ norm? We show that

assuming that the U (k) are sufficiently bounded then there

is strategy that the player can follow to ensure that that∥∥�x(k)
∥∥
∞ is never too large. Our strategy simply consists of

taking “gradient steps” using the following potential function

Φμ(�x)
def
=

∑
i∈[m]

pμ(xi) where pμ(x)
def
= eμx + e−μx.

In other words, for all k we simply set �Δ(k) to be the vector

in (1 + ε)U (k) that minimizes the potential function Φμ for

an appropriate choice of μ. In the following theorem we

show that this suffices to keep Φμ(�x
(k)) small.

Theorem 4. Suppose that each U (k) is a symmetric convex

set that contains an 
∞ ball of radius rk and is contained in

a 
∞ ball of radius Rk ≤ R. Let 0 < ε < 1
5 and consider

the strategy

�Δ(k) = (1 + ε) argmin
�Δ∈U(k)

〈
∇Φμ(�z

(k)), �Δ
〉

where μ =
ε

12R
.

Let τ
def
= maxk

Rk

rk
and suppose Φμ(�x

(0)) ≤ 8mτ
ε then

Φμ(�x
(k)) ≤ 8mτ

ε for all k. In particular, we have
∥∥�x(k)

∥∥
∞ ≤

12R
ε log

(
8mτ
ε

)
for all k.

B. Centering Step With Noisy Weight
Now, we show how to use Theorem 4 to improve the

centrality of �x while maintaining the invariant that �w is close

to �g(�x) multiplicatively. Given a feasible point (�x, �w), we

measure the distance between the current weights �w, and the

weight function �g(�s), in log scale �Ψ(�s, �w)
def
= log(�g(�s)) −

log(�w). Our goal is to keep
∥∥�Ψ(�s, �w)

∥∥
∞ ≤ K for some error

threshold K. We choose K to be just small enough that we

can still decrease δt(�x, �w) linearly and approximate �g(�s).
Furthermore, we ensure that �Ψ doesn’t change too much in

either
∥∥ ·∥∥∞ or

∥∥ ·∥∥
W

and thereby ensure that the centrality

does not increase too much as we move �w towards �g(�s).
We meet these goals by playing the chasing 0 game where

the vector we wish to keep near �0 is �Ψ(�s, �w), the adversaries

moves are cr-steps, and our moves change log(�w). The cr-

step decreases δt and since we are playing the chasing 0

game we keep �Ψ(�s, �w) small. Finally, since by the rules of

the chasing 0 game we do not move �w much more than

�g(�s) has moved, we have by similar reasoning to the exact

weight computation case, Theorem 5, that changing �w does

not increase δt too much. This inexact centering operation

and the analysis are formally defined and analyzed below.

Theorem 5 (Centering with Inexact Weights). Given a point

(�x, �w), an error parameter K ≤ 1
8cr

. Assume that

δt(�x, �w) ≤
K

240cγc2r log (26crcγm)

and Φμ(�Ψ(�x, �w)) is small enough. Then, we can find a new

point (�x(new), �w(new)) such that

δt(�x
(new), �w(new)) ≤

(
1− 0.5

1 + cr

)
δt(�x, �w)
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and

Φμ(�Ψ(�x(new), �w(new))) ≤ Φμ(�Ψ(�x, �w)).

Also, we have
∥∥ log(�g(�s(new)))− log(�w(new))

∥∥
∞ ≤ K.

VII. RUNNING TIMES FOR SOLVING LINEAR PROGRAMS

Combining Theorem 5, Theorem 1 and Lemma 1 , we see

that we can increase t by a factor of 1 + Ω̃
(

1√
rankA

)
and

maintain centrality with Õ(1) linear system solves. In the

full version, we explain how to find an initial central point

and how to round the central point to a solution for large

enough t efficiently. Hence, the total running time of the

algorithm now depends on how fast we can solve the linear

systems involved. Using the fast matrix multiplication and

recent results on solving overdetermined systems, we obtain

the following result.

Theorem 6. Consider a linear program of the form (1)

where A ∈ Rm×n, �b ∈ Rm, and �c ∈ Rn have integer

coefficients. Let L be the bit complexity of (1). Suppose

for any positive definite diagonal matrix D ∈ Rm×m with

condition number 2Õ(L), we can find a B such that∥∥B− (DA)
+�b

∥∥
ATD2A

≤ ε
∥∥ (DA)

+�b
∥∥
ATD2A

in time O (T log(1/ε)) for any ε > 0 with probability at least

1− 1
m . Then, there is an algorithm to solve the linear program

in expected time Õ
(√

rank(A) (T + nnz(A))L
)

, i.e, find

the active constraints of an optimum or prove that the

program is unfeasible or unbounded.

Using [27], [22] to solve the linear systems, we obtain an

algorithm that solves (1) in time

Õ
(√

rank(A) (nnz(A) + (rank(A))
ω
)L

)
.

where ω < 2.3729 [47] is the matrix multiplication constant.

Since all of our operations in each iteration are paralleliz-

able, we achieve the first Õ(
√
rank (A)L) depth polynomial

work method for solving linear programs.

Theorem 7. There is an Õ(
√

rank (A)L) depth polynomial

work algorithm to solve linear program of the form (1).

Finally, we adapt techniques of Vaidya [43] to decrease

the iteration costs of our method. This is based on the

observation that the linear systems involved do not change

too much from iteration to iteration and therefore this

sequence of the linear system can be solved faster than

considering them individually.

Theorem 8. There is an Õ
(
n5/2−3(ω−2)m3(ω−2)L

)
time

algorithm to solve linear program of the form (1).

For ω = 2.3729, we have Õ
(
m1.1187n1.3813L

)
which

is strictly better than the previously fastest linear program-

ming algorithm for dense matrix Õ
(
m1.5nL

)
in [43]. To

appreciate this running time, we note that it takes time

O
(
mn1.3729

)
to exactly solve a dense linear system of size

m × n, which is a necessary step to compute the solution

exactly. However, we want to emphasis that linear solvers

with low (amortized) cost can be designed for specific class

of linear programs, such as the maximum flow problem.

Therefore, running times better than Õ
(
m1.1187n1.3813L

)
can be obtained for specific situations.

VIII. MAXIMUM FLOW PROBLEM AND MORE

In this section, we provide a brief overview of how we

generalize our results and solve the various flow problems.

Given A ∈ Rm×n, �b ∈ Rn, �c ∈ Rm, �l ∈ Rm, �u ∈ Rm, we

consider the linear program

min
�x ∈ Rm : AT�x = �b

∀i ∈ [m] : li ≤ xi ≤ ui

�cT�x. (7)

Without the upper constraints for xi, the dual of this problem

has only n variables and hence results from previous sections

are applicable. Unfortunately, it is not clear how to apply

our previous results in this setting and naive attempts to

write (7) in the form of (1) without increasing rank(A)
fail. In particular, the maximum flow problem has rank |V |
if written in the form of (7) but we only know how to write

this problem with rank Ω(|E|) in the form of (1) where |V |
is the number of vertices and |E| is the number of edges.

A. The Difficulty

The analysis in previous sections rely on the fact that

certain ellipsoid around the current point approximates the

polytope well and therefore, so long as our Newton step

maintain such an ellipsoid, we converge quickly. However,

we cannot repeat such 
2 analysis here. For example, when

A is an empty matrix, we face the failure of the sphere to

approximate a box and hence only able to obtain an Ω(
√
m)

iterations algorithm if each move is inside a certain ellipsoid

inside the polytope. Hence, it is not obvious how such 
2

type analysis can lead to an algorithm which converges in

Õ(1) iterations for A is an empty matrix.

Even more troubling, achieving a faster than Õ(
√
mL)

iterations interior point method for solving general linear

programs in this form would break a long-standing barrier

for the convergence rate of interior point methods. In a sem-

inal result of Nesterov and Nemirovski [30], they provided a

unifying theory for interior point methods and showed that

given the ability to construct a v-self concordant barrier
for a convex set one can minimize linear functions over

that convex set with a convergence rate of O(
√
v). To the

best of our knowledge, there is no general purpose interior

point method that achieves a convergence rate faster than the

self concordance of the best barrier of the feasible region.

Furthermore, using lower bounds results of Nesterov and

Nemirovski [30, Proposition 2.3.6], it is not hard to see that

any general barrier for (7) must have self concordance Ω(m).

431431



B. Our Solution

We achieve our running time by a novel extension of the

ideas in previous sections to work with the linear program

(7) directly. Using an idea from [9], we create a 1-self

concordant barrier for each of the li ≤ x ≤ ui constraints

and run a primal path following algorithm with the sum of

these barriers. While this would naively yield a O(
√
mL)

iteration method, we show how to use weights in a similar

manner as in previous sections to improve the convergence

rate to Õ(
√

rank(A)L).

Now, when we apply the standard primal path following

method to this problem the steps involve projecting the

Newton step direction onto the kernel of AT . As before we

want to re-weight the constraints (which here is the same as

re-weighting Rm) with weights such that
∥∥�w∥∥

1
≈ rank(A).

However, if we only use the standard notion of centrality

it may be the case that although the size of the projected

Newton step is small in weighted 
2 it may be large in

weighted 
∞ and thus we would be forced to take small

steps). Our early argument that we can trivially bound the

change in slacks from centrality and slack sensitivity simply

breaks. To overcome this issue we simply explicitly keep

track of the size of the Newton step in the appropriate


∞ norm. We define a mixed norm of the form
∥∥ · ∥∥ =∥∥ ·∥∥∞+Cnorm

∥∥ ·∥∥
W

for suitable constant Cnorm and perform

all analysis in this norm, extending many of our earlier

arguments. Our reasoning about 
∞ directly helps explain

why our method outperforms the self-concordance of the

best barrier for the space (which is a primarily 
2 focused

analysis).

Using this mixed norm idea and results about self con-

cordant barriers, we extend results in previous sections to

(7).

Theorem 6. Suppose we have an interior point �x ∈ S0 for
the linear program (7). We can find an �x such that �cT�x ≤
OPT + ε in Õ

(√
rank(A) log (U/ε) (T +m)

)
time where

T is the time needed to solve certain linear systems related
to A to enough accuracy and U is related to the size of the
variables involved.

This is the first general interior point method we aware

of that converges at a faster rate than the self concordance

of the best barrier of the feasible region.

We apply Theorem 6 to the maximum flow problem and

the minimum cost flow problem. To do this, we use the

reduction by Daitch and Spielman [5]. They showed how

to write the generalized minimum cost flow problem into a

linear problem in the form above with an explicit interior

point. Furthermore, they showed that the linear systems

occurs in interior point methods for solving certain flow

problems can be reduced to Laplacian systems. Using their

reduction, a recent nearly linear work polylogarithmic depth

Laplacian system solver of Spielman and Peng [34] and

our new interior point method, we obtain the promised

generalized minimum cost flow algorithm.

Theorem 7. There is a randomized algorithm to compute
an approximate generalized minimum cost maximum flow
in Õ(

√
|V | log2(U/ε)) depth Õ(|E|

√
|V | log2 (U/ε)) work.

Furthermore, there is an algorithm to compute an exact stan-
dard minimum cost maximum flow in Õ

(√
|V | log2(U)

)
depth and Õ(|E|

√
|V | log2 (U)) work.
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