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Abstract—The Parallel Repetition Theorem upper-bounds
the value of a repeated (tensored) two prover game in terms of
the value of the base game and the number of repetitions.
In this work we give a simple transformation on games –
“fortification” – and show that for fortified games, the value
of the repeated game decreases perfectly exponentially with
the number of repetitions, up to an arbitrarily small additive
error. Our proof is combinatorial and short. As corollaries,
we obtain: (1) Starting from a PCP Theorem with soundness
error bounded away from 1, we get a PCP with arbitrarily
small constant soundness error. In particular, starting with
the combinatorial PCP of Dinur, we get a combinatorial
PCP with low error. The latter can be used for hardness of
approximation as in the work of Håstad. (2) Starting from
the work of the author and Raz, we get a projection PCP
theorem with the smallest soundness error known today. The
theorem yields nearly a quadratic improvement in the size
compared to previous work. We then discuss the problem of
derandomizing parallel repetition, and the limitations of the
fortification idea in this setting. We point out a connection
between the problem of derandomizing parallel repetition and
the problem of composition. This connection could shed light
on the so-called Projection Games Conjecture, which asks for
projection PCP with minimal error.

Keywords-parallel repetition; PCP; hardness of approxima-
tion; projection game; fortification;

I. INTRODUCTION

A. The Parallel Repetition Theorem

In a two prover game G, a verifier picks at random a pair

of questions (x, y) from a specified set of possible questions,

sends x to the first prover, and sends y to the second prover;

the first prover replies with an answer a, and the second

prover replies with an answer b; the verifier, knowing x
and y, and having inspected both a and b, decides whether

to accept or reject. The value the prover strategies achieve

is the probability that the verifier accepts. The value of G,

denoted val(G), is the maximum of this quantity over all

prover strategies.

A k-repetition (tensor) of a game G is the game G⊗k,

in which the verifier picks at random k question pairs

(x1, y1), . . . , (x1, yk); sends one prover x1, . . . , xk, and

sends the other prover y1, . . . , yk; the first prover replies with

a1, . . . , ak, and the second prover replies with b1, . . . , bk; the

verifier checks that it would have accepted in all k tests.

A long line of work analyzes how val(G⊗k) depends

on val(G) and k. Clearly, val(G⊗k) ≥ val(G)k, since the

provers can follow the same strategy in each one of the k
rounds. One might guess that val(G⊗k) = val(G)k, but this

turns out to be false [17], [13], [16]. In a breakthrough result,

Raz [26] showed that val(G⊗k) does exhibit an exponential

decay with k when val(G) < 1 (below, ΣX is the set of

possible answers a of the first prover, while ΣY is the set

of possible answers b of the second prover):

Theorem 1 (Raz’s Parallel Repetition Theorem [26]):
There exists W : [0, 1] → [0, 1] such that W (x) < 1 for

x < 1, and

val(G⊗k) ≤ (W (val(G)))k/ log(|ΣX ||ΣY |).

Interestingly, the dependence of the exponent in |ΣX | and

|ΣY | is inherent [16]. Disappointingly, the base of the

exponent is quite far from val(G). In fact, in Raz’s theorem,

W (val(G)) is close to 1 even when val(G) is close to 0!

Many works simplified and improved the parameters of the

Parallel Repetition Theorem for general games [19], as well

as for games with a special structure, most notably projection
games [25], [12] and expanding projection games [28], [12].

Before we describe the main results of those papers, let us

discuss projection games and their importance.

Arguably, the most important application of the Parallel

Repetition Theorem is soundness amplification for projec-

tion games. In this paper it will be convenient for us to

consider the following definition of a projection game:

Definition 1.1 (Projection game): A projection game is

defined by a bipartite graph G = (X,Y,E), alphabets

ΣX and ΣY and functions {πe : ΣX → ΣY }e∈E , called

“projections”. In the game, the verifier picks uniformly at

random y ∈ Y , and two edges e = (x, y), e′ = (x′, y) ∈ E,

sends x to the first prover, and sends x′ to the second prover;

the first prover replies with a ∈ ΣX , and the second prover

replies with a′ ∈ ΣX ; the verifier accepts if πe(a) = πe′(a
′).

Remark 1.1: The more standard definition of projection

games is as follows: the verifier picks uniformly at random

an edge (x, y) ∈ E, sends x to the first prover, and sends y
to the second prover; the first prover replies with a ∈ ΣX ,

and the second prover replies with b ∈ ΣY ; the verifier

accepts if πe(a) = b. Definition 1.1 is a symmetric version

of this definition, and as useful to hardness of approximation
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(or more). If G′ is the game in Definition 1.1, and G is the

game we defined here, then val(G)2 ≤ val(G′) ≤ val(G)
(the first inequality follows from convexity, while the second

inequality follows from a probabilistic assignment).

The PCP Theorem, in the form that is most useful

for hardness of approximation, states that it is NP-hard,

given a projection game G, to distinguish the case where

val(G) = 1 from the case where val(G) ≤ ε. The parameter

ε is called the soundness error of the PCP. Since parallel

repetition of a projection game is itself a projection game,

the Parallel Repetition Theorem, when applied on the basic

PCP Theorem [5], [4], [3], [2], yields a projection PCP

theorem with arbitrarily small soundness error. Projection

PCP with low soundness error is the basis of most of the

best NP-hardness of approximation results we have today. In

particular, it is the basis of the hardness results in Håstad’s

seminal paper [18].

For projection games, the size of the game – denoted

size(G) – is the size of the graph G. An unfortunate

aspect of parallel repetition is that it raises the size of

the game to the k-th power. In particular, if k is super-

constant, one gets a super-polynomial reduction from SAT

to the repeated game, rather than an NP-hardness result.

When one assumes that solving SAT on inputs of size n
requires time exp(n) (“The Exponential Time Hypothesis”),

the reductions obtained using parallel repetition only yield

time lower bounds of the form exp(N1/k) for input size N .

Due to this state of affairs, parallel repetition is used mostly

for constant k.

One of the most important open problems in approx-

imability is to construct projection games with error that

is inverse polynomial in the size of the game. The author

named this problem “The Projection Games Conjecture”

in [21]:

Conjecture 1.1 (Projection Games Conjecture): There

exists α > 0, such that for every N and ε ≥ 1/Nα, it is

NP-hard to distinguish, given a projection game G of size

and alphabet size N , between the case that val(G) = 1 and

the case that val(G) ≤ ε.

One of the most notable applications of this conjecture is an

NP-hardness result for approximating CLOSEST-VECTOR-

PROBLEM in lattices to within polynomial factors (see [21]

for a discussion of more applications). The lowest soundness

error known today is ε = 1/(logN)c, for any constant

c > 0, when N is the size of the game [12]. This is by

a reduction of the author and Raz [23] from SAT on input

of size n to projection games of size N = n1+o(1), where

the soundness error is ε = 1/(logN)β for some β > 0.

When this game is repeated in parallel, the soundness error

can be ε = 1/(logN)c for any constant c > 0, while the

size is raised to O(c/β).
Understanding the significance of projection games, we

now turn to review what is known about their repetition. In-

terestingly, in the projection case val(G⊗k) does not depend

on the number of possible answers of the provers [25]. The

state of the art results are as follows:
Theorem 2 (Parallel repetition of projection games [25], [12]):

For any projection game G as in Remark1 1.1,

1) [25] If val(G) = 1− ε, then

val(G⊗k) ≤ (1− ε/2)Ω(εk).

2) [12] If val(G) = 1− ε and ε� 1/
√
k, then

val(G⊗k) ≤ 1− Ω(
√
k · ε).

3) [12] val(G⊗k) ≤ 2k · val(G)k/2.

The first result is best when val(G) is a constant close to 1;

the second result is best for val(G) very close to 1; while the

last result is best for the case of small val(G) (note that in

the first result the base of the exponent is about 1
2 rather than

val(G) when val(G) is very small). The second result is tight

when it applies, as Raz [27] showed a unique game G with

val(G) = 1− ε for which val(G⊗k) ≥ 1−O(
√
k · ε). More

generally, Barak et al [6] analyze the behavior of general

unique games under parallel repetition.

For projection games on expanders, Dinur and Steurer’s

proof is somewhat simpler than its general case [12]. More

than that, Raz and Rosen [28] prove a stronger result in

the expander case: if val(G) = 1 − ε for ε < 1/2, then

val(G⊗k) ≤ (1− ε)Ω(k).

We note that in all the aforementioned results, either

explicitly or hiding in Ω(·), is the fact that not all repetitions
count. That is, in many of the k repetitions, the provers may

win with probability 1 conditioned on winning other rounds.

This phenomenon is known to actually occur – there are

unique games with val(G⊗2) = val(G) [13].

B. Our Contribution

Instead of exploring the subtle behavior of general pro-

jection games under repetition, in this work we engineer

the games so they behave well under repetition. We present

a simple combinatorial transformation on projection games,

which we call “fortification”. Fortification endows the game

with extractor structure and ensures that certain sub-games

of the game have (approximately) the same value as the

global game. Fortification preserves a projection structure,

while increasing |X| and |ΣX | in a controlled way. We show

that for fortified projection games G, the value of the k-

repeated game is, approximately, val(G)k, i.e.,

val(G)k ≤ val(G⊗k) ≤ val(G)k + err,

where the small additive error err can be made arbitrarily

small by fortification.

1Using the relation between the projection games of Definition 1.1 and
the projection games of Remark 1.1 (explained in Remark 1.1), Theorem 2
yields a (weaker) parallel repetition theorem for projection games as in
Definition 1.1. It is quite possible that the techniques of Dinur and Steurer
yield bounds as in Theorem 2 for games as in Definition 1.1 too.
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In the fortified game, rather than sending the first prover

a question x and the second prover a question x′, the

verifier sends the first prover a set of correlated questions

{x1, . . . , xt} � x, and it sends the second prover a set

of correlated questions {x′1, . . . , x′t} � x′. The provers are

asked to provide answers for all t questions they got. The

verifier then uses their answers to perform the test involving

x and x′ (note that other questions among the 2t typically

induce no tests). The choice of the correlated questions is

done using an extractor or a random walk on an expander,

in a manner that was inspired by ideas in combinatorial

construction of error correcting codes.
Notably, our analysis of parallel repetition is much simpler

than all existing analyses. Unlike Raz’s proof, our analysis

does not require information theory, or clever choices of

sub-games à la Razborov, nor does it require a heavy use

of linear algebra and Cheeger’s inequality as in the recent

analysis of Dinur and Steurer for projection games.
As corollaries, we obtain:

1) Starting from a PCP Theorem with soundness error

bounded away from 1 [5], [4], [3], [2], we get a

PCP with arbitrarily small constant soundness error.

In particular, starting with the combinatorial PCP of

Dinur, we get a combinatorial PCP with low error

whose analysis is combinatorial. The latter can be

used for hardness of approximation as in the work

of Håstad.

2) Starting from the work of the author and Raz [23],

which gives a projection PCP theorem with error

1/(log n)β for some constant β > 0, we get a

projection PCP theorem with error 1/(log n)c for any
constant c ≥ 1 (which is the lowest known today [12]).

Our theorem yields nearly a quadratic improvement in

the size for a given c compared to [12].

Our proof evolved from a previous work of the author [22]

about soundness amplification for low degree testing. As

happened several times in the past in PCP, we could trans-

form some of the ideas from the algebraic analysis into a

purely combinatorial setting.
Finally, we explore the possibility of obtaining stronger

projection PCP theorems using our ideas. The bottleneck

here is the large size blow-up introduced by parallel repe-

tition, and hence the question is whether parallel repetition

could be “derandomized” for appropriately fortified games.

That is, whether the verifier can pick all k tests in a

randomness-efficient way. While we do not know how to

extend our fortification ideas to this case (we explain the

difficulty in Section VI), we are able to point out an in-

triguing connection between the problem of derandomizing

parallel repetition and the well-studied problem of composi-
tion of two prover games. The connection – which holds for

general two prover games – is that both problems share a

combinatorial hard core. Since repetition and composition

constitute the two existing approaches to the Projection

Games Conjecture (error reduction and alphabet reduction,

respectively), the connection sheds light on the difficulty of

proving the conjecture.

C. Previous Work on Combinatorial Analysis of Parallel
Repetition

Feige and Kilian [15], as well as Impagliazzo, Kabanets

and Wigderson [20] already gave combinatorial analyses

of parallel repetition. Crucially, those parallel repetition

theorems were weaker than what was known via other

techniques, while our theorem is stronger than what is

known via other techniques. As in the current paper, Feige

and Kilian, as well as Impagliazzo, Kabanets and Wigderson,

first apply a transformation on the game, and then repeat

the game in parallel. The transformation differs from our

fortification, and is (up to variants) as follows: The verifier

picks uniformly at random either (i) “compare”: edges with

a common endpoint e = (x, y), e′ = (x′, y) ∈ E; or (ii)

“confuse”: independent edges e = (x, y), e′ = (x′, y′) ∈ E.

One prover is sent x and the other prover is sent x′. The

provers reply a, a′ ∈ ΣX , respectively; In case the two

edges have a common endpoint y, the verifier checks that

πe(a) = πe′(a
′). The intuition of this transformation is that

in some of the rounds the provers are compared, hence for

the verifier to accept with good probability, the provers are

forced to a consistent strategy. The confuse rounds ensure

that the consistent strategy is pervasive.

Feige and Kilian [15] show that for games G transformed

as we described, for any δ > 0 such that k is a sufficiently

large polynomial in 1/δ and 1/(1 − val(G)), it holds that

val(G⊗k) ≤ δ. In this theorem, the decay of the value of

the game with repetition is polynomial in k, rather than

exponential in k. Impagliazzo, Kabanets and Wigderson [20]

prove that val(G⊗k) ≤ 2−Ω(
√
k/(1−val(G))). Here the decay

is exponential in
√
k instead of in k.

D. Previous Work on Derandomizing Parallel Repetition

For simplicity, let us continue to denote the repeated game

G⊗k, with the understanding that the k questions to the

provers may be correlated. Feige and Kilian [14] showed

that in the derandomized case, for val(G⊗k) ≤ δ, it must

be the case that the degrees in G’s graph are at least ≈ 1/δ
(under an assumption on G they call softness, which indeed

holds in the cases of interest). The degrees in the graph

correspond to the uncertainty each prover has with respect

to the questions of the other prover. For any two prover game

in which each of the verifier’s tests is satisfiable, if the graph

is bi-regular, and one of the sides has degree D, then the

value of the game is at least 1/D. The interesting feature

of Feige and Kilian’s result is that they relate the value of

G⊗k to the degree in G. Taking this restriction into account,

one might hope for a derandomized parallel repetition where

val(G⊗k) ≤ δ and size(G⊗k) = size(G) ·(1/δ)O(k). If such

a derandomization had been available, it would have given
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projection PCP with soundness error δ = 2−(log n)β for some

constant β > 0.

However, so far there has been little progress even on

suggesting candidate games G with a derandomization G⊗k.

The two exceptions have been free games [31] and linear
games [11]. A free game is a game in which the questions

of the two provers are independent. A linear game is a

game in which the questions correspond to points in a linear

space, and the verifier’s tests correspond to linear sub-spaces.

For free games, Shaltiel [31] analyzed repetition where the

dependence between the randomness the verifier needs in

order to reach a given target val(G⊗k) ≤ δ, and the number

of possible answers of the provers, is improved (recall that

for general two prover games val(G⊗k) depends on the

number of possible answers of the provers). The size of the

game in Shaltiel’s theorem is still (size(G))Ω(log(1/δ)). For

linear games, Dinur and Meir [11] analyzed derandomized

repetition, but where the soundness error does not decrease

exponentially. For both types of games, known transforma-

tions from general games incur a large blow-up in the size

(for free games [1]) or in the soundness error (for linear

games [11]). In fact, for free games it was proved that the

size blow-up is inherent [1]. Hence, neither free games nor

linear games seem useful for making further progress toward

the Projection Games Conjecture.

II. PRELIMINARIES

Let Dist be a distribution over a space X . The

entropy in the distribution, denoted H(Dist), is∑
x∈X Dist(x) log(1/Dist(x)). We say that Dist has

min-entropy at least k, and denote H∞(Dist) ≥ k, if no

x ∈ X has probability higher than 2−k. If a distribution is

uniform over a set S ⊆ X (a “flat” distribution; we’ll also

refer to S as an event), then it has min-entropy log |S|. It

is known that any distribution with min-entropy k can be

viewed as a convex combination {Si}i where for every i,
it holds that Pr [Si] = |Si| / |X| ≥ 2−k.

A (δ, ε)-extractor is a bi-regular bipartite graph H =
(X,Y,E), such that for every distribution Dist over X
with min-entropy at least log(δ |X|), the distribution on Y
obtained by picking x according to Dist and picking a

uniformly random neighbor y ∈ Y of x is ε-close to uniform

over Y in statistical distance.

The following extractor construction follows from ex-

pander random walk:

Lemma 2.1 (Extractor construction [30]): For any δ, ε >
0, there exist (δ, ε)-extractors G = (X,Y,E) such that

|X| = O(|Y | /δ) and each vertex in X has degree D =
O(log(1/δ) · (1/ε)2). Moreover, there exist explicit con-

structions achieving |X| = O(|Y | /δ) and D = D(δ, ε) =
exp(poly log log(1/δ)) · (1/ε)2.

A two prover game G is defined by a set X of questions

to the first prover, a set Y of questions to the second prover,

an alphabet ΣX for the answers of the first prover, and

an alphabet ΣY for the answers of the second prover. In

addition, there is a distribution μ over question pairs X×Y ,

and a predicate V ⊆ X × Y × ΣX × ΣY . The verifier

picks (x, y) from μ sends x to the first prover and y to

the second prover; receives a ∈ ΣX from the first prover

and b ∈ ΣY from the second prover; then accepts or reject

based on V (x, y, a, b).
One often considers the bipartite graph associated with

G. This is the graph G = (X,Y,E) on vertex sets X and

Y , where the edges are the question pairs (x, y) with non-

zero probability in μ. When one refers to degrees in G, the

intention is degrees in G. Typically, and by default in this

paper, μ is uniform over E, and a question pair (x, y) from

μ is such that x is uniform over X , while y is uniform over

Y . The value achieved by certain prover strategies is the

probability that the verifier accepts. The value of G, denoted

val(G), is the maximum of this quantity over all prover

strategies. The size of G, denoted size(G), is |X|+|Y |+|E|.
The randomness of the verifier is log |E|.

III. FORTIFICATION

If G′ is a sub-game of a game G obtained by picking only

a subset of the possible question pairs of the verifier, then

the value of G′ can be much higher than the value of the

original game G. Fortified games G are such that certain large

sub-games G′ of G have val(G′) ≈ val(G). The largeness is

with respect to the upper bound val(G⊗k) ≤ δ we wish to

obtain. Note that the requirement that every sub-game G′ of

fraction δ in G has val(G′) < 1 is equivalent to saying that

val(G) < δ. Hence, it is important that we focus on a family

of large sub-games, rather than on all large sub-games.

Specifically, we focus on rectangular sub-games, defined

as follows: If S is an event depending on the question to

the first prover, and T is an event depending on the question

to the second prover, then the rectangular sub-game G|S×T

is the game G conditioned on the questions to the provers

satisfying S and T , respectively. That is, the verifier picks

at random y ∈ Y , x, x′ ∈ X such that (x, y), (x′, y) ∈ E,

conditioned on x ∈ S, x′ ∈ T . It then performs the test

as before. We say that the rectangular game is δ-large if

Pr [S],Pr [T ] ≥ δ.

We further extend the definition to convex combinations

over events {Si × Ti}i. Here we first pick Si × Ti from

the combination, then consider the relevant sub-game. The

value of the prover strategies in the game is the convex

combination of the values of the prover strategies in the

sub-games. We say that such a sub-game is δ-large if for all

i, we have Pr [Si],Pr [Ti] ≥ δ.

We define the fortified value of a game as follows:

Definition 3.1: The δ-fortified value of a game G, denoted

valδ(G), is the maximum of val(G|{Si×Ti}i) over all δ-large

convex combinations {Si × Ti}i.
We say that a projection game G on a (δ, ε)-extractor is

(δ, ε)-fortified if δ-large rectangular sub-games have value at
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most val(G) + ε. We show that every projection game can

be fortified easily. Fortification does not increase the size

or the alphabets of the game too much. Fortification does

not change the value of the game, only makes sure that the

value of large rectangular sub-games is similar to the value

of the overall game.
Our fortification lemma assumes that the bipartite graph

underlying the projection game is bi-regular. Projection

games on general graphs can be transformed to bi-regular

using transformations of [23]. The first transformation reg-

ularizes the Y side, so each Y vertex has a small degree:
Lemma 3.1 (Y -degree reduction [23]): For any η > 0,

any projection game G can be efficiently transformed to a

new projection game G′ on a graph (X,Y,E) that is Y -

regular with degree poly(1/η), where size(G′) ≤ size(G) ·
poly(1/η) and val(G′) ≤ val(G) + η (the alphabets are

unchanged).
The second transformation switches between the Y and the

X side. The idea is that each assignment to a vertex y ∈ Y
now contains assignments to all the neighbors of y, such that

the assignments to the neighbors agree on their projection

to y:
Lemma 3.2 (Switching sides [23]): Any projection game

G on a graph G = (X,Y,E) with Y -degree D and alphabets

ΣX , ΣY can be transformed into a projection game G′ on

a graph G′ = (Y,X,E) and alphabets ΣD
X , ΣX , where

val(G′) = val(G).
By applying Y -degree reduction, switching sides, and Y -

degree reduction again, we obtain a projection game on a

bi-regular graph that has approximately the same value as

the original game.
Having gotten bi-regularity out of the way, let us describe

the fortification transformation:
Lemma 3.3 (Fortification): For any ε, δ > 0, a projection

game G on a bi-regular graph G = (X,Y,E), with alpha-

bets ΣX , ΣY , and projections {πe}e∈E can be efficiently

converted to a game G∗ on a graph G∗ = (X∗, Y, E∗) with

alphabets ΣD
X , ΣY , and projections {π∗e}e∈E∗ , such that

1) G∗ is a (δ, ε)-extractor.

2) D = D(δ, ε) as in Lemma 2.1.

3) The size of G∗ is linear in the size of G, 1/δ,

poly(1/ε).
4) val(G∗) = val(G).
5) valδ(G∗) ≤ val(G) + 2ε.

Proof: Let H = (X∗, X,EH) be a (δ, ε)-extractor.

By Lemma 2.1, such can be constructed so |X∗| =
poly(|X| , 1/δ) and each vertex in X∗ has D = D(δ, ε)
neighbors in X . Let E∗ contain an edge e∗ = (x∗, y) for ev-

ery pair (x∗, x) ∈ EH and e = (x, y) ∈ E. An assignment 	a
to x∗ consists of assignments to all D neighbors of x∗ in H ,

and in particular some a(x) to x. The projection on the edge

e∗ is π∗e∗(	a) = πe(a(x)). Note that G∗ is a (δ, ε)-extractor,

and that size(G∗) is O(size(G)poly(1/ε)/δ). Consider the

game G∗ associated with the graph G∗, alphabets ΣD
X , ΣY

and projections {π∗e∗}e∗∈E∗ . In this game, the verifier picks

uniformly at random y ∈ Y and x∗, (x∗)′ ∈ X∗ such that

e∗ = (x∗, y) ∈ E∗ and (e∗)′ = ((x∗)′, y) ∈ E∗. Upon

receipt of answers 	a, (	a)′ ∈ ΣD
X , the verifier checks that

π∗e∗(	a) = π∗(e∗)′((	a)
′).

We have val(G) ≤ val(G∗), since any strategy a : X →
ΣX for G induces a strategy for G∗ achieving the same value:

given x∗ ∈ X∗, the answer 	a of the prover assigns every

neighbor x ∈ X of x∗ in H the answer a(x). Moreover,

val(G∗) ≤ val(G), since every strategy in G∗ induces

a randomized strategy in G achieving the same value in

expectation (and hence there exists a strategy for G achieving

this value): given x ∈ X , the prover picks at random a

neighbor x∗ ∈ X∗ of x in H , and responds according to the

strategy for x∗.

Let {Si × Ti}i be a convex combination of events, where

for all i, the event Si depends only on x∗, the event Ti

depends only on (x∗)′ and Pr [Si],Pr [Ti] ≥ δ. We’d like

to prove that val(G∗)|{Si×Ti}i ≤ val(G) + 2ε. Select at

random i, and y ∈ Y , x∗, (x∗)′ ∈ X∗, conditioned on

the events Si and Ti. Let x, x′ ∈ X be the vertices for

which (x, y), (x′, y) ∈ E, while (x∗, x), ((x∗)′, x′) ∈ EH .

By the extractor property of H , the vertices x and x′ are

each ε-close to uniform over X . The claim that valδ(G∗) ≤
val(G) + 2ε follows from the definition of G and G∗.

Fortification preserves projection, but does not preserve

uniqueness. Indeed, due to the works [26], [6], we do not

expect to prove a strong parallel repetition for unique games.

We wish to emphasize that not every projection game on
extractors is fortified. Indeed, if we take any projection game

on extractors and change the projections on edges touching

δ fraction of the vertices so they are trivially satisfied, we

hardly change the value of the game, but we make sure that

the game is not fortified.

Fortification increases the size by a factor O(1/δ), where

we fortify against sub-games of fraction δ. When repeating

the game for k rounds, the size increases by a factor ≈
(1/δ)k. However, due to fortification, val(G⊗k) decreases

exponentially with k, rather than with k/2. Hence, to reach

a target val(G⊗k) ≤ δ previous methods required twice as

many rounds k as we do, and thus the right comparison is

between size � (size(G))2k for previous methods and size

≈ (size(G)/δ)k for us. Since typically size(G) is much

larger than 1/δ, our method yields better size than before.

Fortification also raises the size of the alphabet ΣX

to a power D = D(δ, ε). This price is quite tolerable

since in order to reach a target val(G⊗k) ≤ δ, we take

k = Θ(log(1/δ)), and in repetition, ΣX is raised to a power

k anyway (1/ε is typically smaller than, or comparable to,

log(1/δ)). Moreover, there is a hope that the large alphabet

due to fortification could be re-used for the repeated tests.
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IV. A PARALLEL REPETITION THEOREM

In this work we suggest to prove parallel repetition

theorems assuming that the underlying game is fortified:

Theorem 3 (Parallel repetition): For any ε, δ > 0, if

G is a projection game on a (δ, ε)-extractor where δ ≤
ε4 |ΣY |−(k−1)

, then there exists err = O(kε) for which

val(G⊗k) ≤ (valδ/ε3(G) + err)k.

Theorem 3 relates the value of the repeated game G⊗k to

the fortified value of the original game. If G is fortified, then

its fortified value is approximately val(G). The error term is

err = O(kε), which means that we should pick ε � 1/k.

We also need δ ≈ |ΣY |−k
. Existing constructions of projec-

tion games G with val(G) ≤ ε have |ΣY | = poly(1/ε) [23].

Moreover, there is a simple transformation of Dinur and

Harsha [10] based on code concatenation that decreases ΣY

to poly(1/ε) for any projection game:

Lemma 4.1 (ΣY reduction [10]): For any η > 0, any

projection game G with val(G) ≤ ε and alphabet ΣY can

be efficiently transformed to a new projection game G′
where size(G′) ≤ size(G) · log |ΣY | · poly(1/η), val(G′) ≤
ε+O(η) and the new |ΣY | is poly(1/η).

The proof of Theorem 3 is in Section V. Using fortifi-

cation as in Lemma 3.3 and our parallel repetition theorem

in Theorem 3, we obtain a new combinatorial soundness

amplification technique for two prover games. We demon-

strate the usage of this technique for two purposes: the

first is a purely combinatorial projection PCP with low

error which suffices for Håstad’s hardness of approximation

results [18]; the second is a projection PCP with the lowest

error known today. The second is stronger than the first, and

has applications to hardness of approximation beyond those

of the first (e.g., for tight NP-hardness of approximating

SET-COVER [21], [12]). For the second, we achieve nearly

a quadratic improvement in the size compared to previous

work [12].

Our first corollary is a projection PCP Theorem with

arbitrarily small constant error, as was known by applying

Raz’s analysis [26] on the PCP Theorem [3], [2], but with a

combinatorial proof from beginning to end. The proof relies

on Dinur’s combinatorial PCP theorem [9], and the fact that

any two prover game G can be transformed into a projection

game G′, such that val(G) = 1 ⇒ val(G′) = 1, while

val(G) < 1⇒ val(G′) < 1.

Corollary 4.2 (Combinatorial PCP with low error): For

any α > 0, it is NP-hard to distinguish, given a projection

game G, between the case where val(G) = 1 and the case

where val(G) ≤ α.

Our second corollary is a projection PCP Theorem with

arbitrarily small poly-logarithmic error. This result was

previously obtained by applying Dinur and Steurer’s parallel

repetition theorem [12] on the low error projection games

of the author and Raz [23], however here we get nearly a

quadratic improvement in the size compared to the Dinur-

Steurer result:

Corollary 4.3 (Sub-constant error projection PCP):
There exists β′ > 0, such that for any constant c ≥ 1, there

is a reduction from SAT of size n to a projection game

G of size n(1+o(1))c/β′
, such that satisfiable instances are

mapped to G with val(G) = 1, while unsatisfiable instances

are mapped to G with val(G) ≤ O(1/(logn)c).

V. PROOF OF PARALLEL REPETITION THEOREM

Set ε̂ = valδ/ε3(G) + ckε where c is a sufficiently

large constant. We assume a strategy of the provers in G⊗k

that achieves value larger than ε̂k, and wish to arrive at a

contradiction. If for each round i = 1, . . . , k the provers

fix strategies ai : X → ΣX and a′i : X → ΣX that

depend only on the questions of the i-th round, then the value

they achieve is at most val(G)k by definition. However, the

provers may answer the questions in each round based also

on the questions to the other rounds. For example, suppose

that the provers win in the first round iff there is a certain

relation between their questions in the second round. Then,

a-priori, it is possible that they win the first round with

probability val(G), and conditioned on winning the first

round, win the second round with probability much larger

than val(G), since the second round is effectively played in

a sub-game of the base game that potentially can be won

with higher probability. We show that thanks to fortification

this cannot happen.

We first identify a list I ⊂ {1, . . . , k} of influential
rounds, such that conditioned on winning them, the provers

win any other round with probability larger than ε̂. The

intuition is that these are the rounds where the provers try to

make gains that will help them win other rounds better than

expected. Note that the list cannot contain all rounds – as

otherwise the total probability of winning all k rounds would

have been too small. For i ∈ {1, . . . , k}, Let Wi be the event

that the provers win the i-th round. For I ⊆ {1, . . . , k}, let

WI be the event that the provers win all the rounds in I .

Lemma 5.1 (Influential rounds): There exists

I ⊆ {1, . . . , k}, l
.
= |I| < k, such that for every

i ∈ {1, . . . , k} − I , it holds that Pr [Wi|WI ] > ε̂.

Proof: Construct I as follows: start with I = φ, and

while there is still i ∈ {1, . . . , k} such that Pr [Wi|WI ] ≤ ε̂,

add i to I .

By construction, for every i ∈ {1, . . . , k}−I , it holds that

Pr [Wi|WI ] > ε̂. We claim that at each step Pr [WI ] ≤ ε̂|I|.
This is certainly true when |I| = 0. Moreover, if it is true

for I , it continues to be true if we decide to insert i to I , as

Pr
[
WI∪{i}

]
= Pr [Wi|WI ] · Pr [WI ] ≤ ε̂ · ε̂|I| = ε̂|I∪{i}|.

Since ε̂|I| ≥ Pr [WI ] ≥ Pr [W1..k] > ε̂k, necessarily |I| <
k.

Let W = WI be the event that the provers win

all l influential rounds. That is, if the verifier picks
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edges e1, . . . , ek, e
′
1, . . . , e

′
k ∈ E, and the provers reply

a1, . . . , ak, a
′
1, . . . , a

′
k ∈ ΣX , then πej (aj) = πe′

j
(a′j) for

all j ∈ I . Note that this event may depend on the questions

in all rounds, and not just on the questions in rounds j ∈ I .

By Lemma 5.1, conditioned on W , the provers win each

of the other rounds with probability larger than ε̂. We will

argue that this cannot happen.
Consider a fixing of the questions to the provers in the

influential rounds,

{yj}j∈I ⊆ Y, {xj}j∈I ⊆ X,
{
x′j
}
j∈I ⊆ X.

Let (G⊗k)′ be the sub-game associated with this fixing. Let

W ′ be the event of winning all l influential rounds in (G⊗k)′.
We further partition (G⊗k)′ into sub-games: There is a sub-

game per choice of l labels from ΣY for {yj}j∈I of the

influential rounds. If the labels are denoted {σj}j∈I ⊆ ΣY ,

then S�σ ⊆ Xk contains all the questions (x1, . . . , xk) to

the first prover such that the answers of the first prover

a1, . . . , ak agree with the choice, i.e., for all j ∈ I , we have

πej (aj) = σj . Similarly, T�σ ⊆ Xk contains all questions

(x′1, . . . , x
′
k) to the second prover such that the answers of

the second prover a′1, . . . , a
′
k agree with the choice, i.e., for

all j ∈ I , we have πe′
j
(a′j) = σj . For every 	σ, in the sub-

game S�σ × T�σ it holds that the provers win the influential

rounds. Moreover, whenever the provers win the influential

rounds, there is 	σ such that they land in the sub-game

S�σ×T�σ. Note that there are only |ΣY |l sub-games S�σ×T�σ.

Hence, for any 0 < δ′ < 1, the probability of landing in sub-

games S�σ ×T�σ where S�σ or T�σ have probability at most δ′

is at most δ′ |ΣY |l.
Set δ′ = δ/ε3. For the remainder of the analysis, we

focus on a choice of S�σ and T�σ whose probabilities are at

least δ′. Let (G⊗k)′′ be the sub-game after the additional

conditioning in S�σ and T�σ. Let k̂ = k − l, and denote

[k̂] = {1, . . . , k} − I . Note that effectively (G⊗k)′′ has

only k̂ rounds. For every i ∈ [k̂], define the game Ĝi as

the restriction of the game (G⊗k)′′ to the i-th round, where

the provers are given their questions in all k̂ rounds, but are

tested only on their answers in the i-th round. Consider the

marginals of S�σ and T�σ corresponding to the i-th question,

and let Gi denote the sub-game of G corresponding to those

marginals. Note that this sub-game is δ-large.
In Claim 5.2 we use the independence between the rounds

and the extractor structure of G to argue that, no matter what

was the fixing of questions and ΣY -labels for the influential

rounds, a strategy for Ĝi can be used to derive a strategy for

Gi whose value is at least val(Ĝi)−O(kε). By definition, we

have val(Gi) ≤ valδ′(G), and hence val(Ĝi) ≤ valδ′(G) +
O(kε). On the other hand, from Lemma 5.1, if we take

expectation of val(Ĝi) over all fixing of questions and ΣY -

labels for the influential rounds (each weighted according to

its probability in G⊗k with the provers strategy we fixed),

E
[
val(Ĝi)

]
> ε̂− δ′ |ΣY |l ≥ ε̂− ε.

Since the left hand side is upper bounded by valδ′(G) +
O(kε), we get a contradiction (recall the definition of

ε̂). The heart of our analysis is the following claim; a

discussion comparing our ideas to those of Raz can be found

subsequently.

Claim 5.2 (One round approximation): There is err =
O(kε), such that for every fixing of questions and ΣY labels

to the influential rounds (captured by events S�σ, T�σ), for

every i ∈ [k̂],

val(Ĝi) ≤ val(Gi) + err.

Proof: We consider the event yi = y for each y ∈ Y ,

and relate the provers winning in Ĝi, the i-th round of the re-

peated game G⊗k, to their winning in Gi, the corresponding

sub-game of G.

For every y ∈ Y , consider the bipartite graph (G⊗k)y,i
whose vertices consist of all 	x = (x1, . . . , xk) ∈ Xk such

that {xj}j∈I is as fixed and (xi, y) ∈ E, and all 	y =

(y1, . . . , yk) ∈ Y k such that {yj}j∈I is as fixed and yi = y.

There is an edge between 	x and 	y if ej = (xj , yj) ∈ E for all

1 ≤ j ≤ k. Denote (G⊗k)y,i = ((Xk)y,i, (Y
k)y,i, (E

k)y,i).
Since G is a (δ, ε) extractor, the product graph (G⊗k)y,i is

a (δ′′ = δ/ε, ε′′ = 2kε)-extractor [7].

Let Sy ⊆ (Xk)y,i be those vertices 	x ∈ (Xk)y,i in S�σ.

Let Ty ⊆ (Xk)y,i be those vertices 	x ∈ (Xk)y,i in T�σ.

Partition the vertices 	x ∈ Sy according to the assignments

to y: For every b ∈ ΣY , let Sy,b ⊆ Sy consist of those 	x for

which prover 1 assigns label ai ∈ ΣX to xi and πei(ai) = b.
Partition the vertices 	x ∈ Ty according to the assignments

to y: For every b ∈ ΣY , let Ty,b ⊆ Ty consist of those 	x for

which prover 2 assigns label ai ∈ ΣX to xi and πei(ai) = b.
Focus on y ∈ Y such that |Sy| ≥ εEy [|Sy|] and

|Ty| ≥ εEy [|Ty|]. The probability other y’s are selected

as yi in Ĝi is at most ε. Focus on b ∈ ΣY such that

|Sy,b| ≥ ε |Sy| and |Ty,b| ≥ ε |Ty|. The contribution to

winning Ĝi from b’s that do not satisfy this is at most ε.

We have |Sy,b| ≥ ε |Sy| ≥ ε · ε∑y |Sy| ≥ ε2δ′
∣∣(Xk)y,i

∣∣
and similarly, |Ty,b| ≥ ε2δ′

∣∣(Xk)y,i
∣∣. Since ε2δ′ ≥ δ′′, we

can apply the extractor property of (G⊗k)y,i and get that

the probability distribution of 	y conditioned on 	x ∈ Sy,b is

ε′′-close to uniform over (Y k)y,i.
Consider the event that when picking uniformly at random

	y ∈ (Y k)y,i and 	x ∈ Sy , 	x′ ∈ Ty such that (	x, 	y), (	x′, 	y) ∈
(Ek)y,i, it holds that 	x′ ∈ Ty,b. Note that by bi-regularity,

	x′ is uniform in Ty, and hence this event happens with prob-

ability |Ty,b| / |Ty|. Similarly, Pr [	x ∈ Sy,b] = |Sy,b| / |Sy|.
By the extractor property,

Pr [	x′ ∈ Ty,b|	x ∈ Sy,b] ≤ |Ty,b|
|Ty| + ε′′.

Hence,

Pr [	x′ ∈ Ty,b ∧ 	x ∈ Sy,b] ≤ |Sy,b|
|Sy| ·

|Ty,b|
|Ty| + ε′′.
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The overall probability of winning Ĝi, accounting also for

y’s and b’s where Sy,b or Ty,b are not as above, is at most

E
y∈Y

[ ∑
b∈ΣY

|Sy,b|
|Sy| ·

|Ty,b|
|Ty|

]
+O(ε′′ + ε) (1)

Next we use this assertion to devise a successful strategy

for the sub-game Gi of G. In Gi the verifier picks y ∈ Y
uniformly at random, and then 	x ∈ Sy , 	x′ ∈ Ty . The verifier

sends the provers x and x′, which are the i-th coordinates of

	x and 	x′, respectively. Upon receiving answers a and a′ from

the provers, the verifier checks that the answers agree on y,

i.e., π(x,y)(a) = π(x′,y)(a
′). We consider the strategy of the

provers where the first prover picks uniformly 	x ∈ S�σ with x
in the i-th coordinate, and the second prover picks uniformly

	x′ ∈ T�σ with x′ in the i-th coordinate. Each prover then

responds with the i-th answer of its repeated strategy. Note

that the provers do not necessarily guess the same 	x and 	x′

that the verifier used to generate x and x′, however, no matter

which y ∈ Y (unknown to the provers!) the verifier chose,

we have that the 	x chosen by the first prover is uniform in

Sy , and the 	x′ chosen by the second prover is uniform in

Ty . Therefore, the probability that the strategy we defined

succeeds in Gi is precisely:

E
y∈Y

[ ∑
b∈ΣY

|Sy,b|
|Sy| ·

|Ty,b|
|Ty|

]
(2)

The lemma follows from (1) and (2).

It is interesting to contrast our proof with that of Raz [26]. In

Raz’s proof, given questions x, x′ ∈ X in the original game

G, the provers appeal to the strategy in Ĝi by coordinating

questions to the rounds other than i, and playing the repeated

strategy where x and x′ are in the i-th round. Coordinating

the questions in the remaining rounds is quite difficult

because of the various correlations between the questions

in Ĝi, and this is where the trick of Razborov [29] comes

in. However, once this is achieved, Raz can directly relate

G to Ĝi, and success in the latter corresponds to success in

the former. We, on the other hand, take a different route.

We argue that after the conditioning in the questions and

ΣY -labels of the influential rounds, the provers in fact have

a successful global strategy for the i-th round! This follows

since if the provers have different answers for a question

y for different settings of the questions in the other rounds,

then the extractor guarantees that the repeated verifier detects

inconsistency.

VI. DERANDOMIZED PARALLEL REPETITION, TWO

ROUNDS AND COMPOSITION

A natural question is whether it is possible to apply

our parallel repetition and fortification ideas in order to

obtain a projection PCP with soundness error lower than

1/poly logn. To obtain such a low error we can no longer

apply parallel repetition with k independent rounds. The

reason is that this requires a super-constant k, for which

parallel repetition blows-up the size to nk. A natural idea

is to use k correlated rounds; an idea often referred to

as “derandomizing parallel repetition”. In this section we

explain the difficulty in “fortifying” in the derandomized

setting. Moreover, we relate the problem of derandomizing

parallel repetition to a different well-studied problem in

PCP; that of composition. While we continue to use our

notation from the previous part of the paper, everything in

this part of the paper holds for general two prover games.

A. Correlation and Fortification

We start with explaining what breaks down in the analysis

in Section V when considering the correlated case. In

Section V we fix questions in the influential rounds and

relate the game in the remaining rounds to G. This approach

fails in the correlated case, as the questions in the remaining

rounds are likely to be extremely far from uniform in G
after such a fixing. The fixing was used in order to prevent

conditioning in W from introducing dependencies between

the questions of the provers beyond those captured by the

graph of G⊗k. The latter is what allowed us to fortify only

against rectangular sub-games.

When conditioning on an event W that arbitrarily depends

on the questions to both provers, fortification with respect

to rectangular sub-games is no longer sufficient, nor is

fortifying a single round without taking others into account.

A natural generalization of fortfication is with respect to

general large sub-games of G⊗k. However, the condition that

any (non-rectangular) sub-game of fraction at least δ in G⊗k

has value smaller than 1 is equivalent to the statement that

val(G⊗k) < δ, which is precisely what we try to prove!

Interestingly, the value of a random large sub-game of G⊗k

(indeed, of any game with value sufficiently smaller than 1)

does have value smaller than 1 with high probability [8].

However, since the provers are adversarial, this does not

constitute a useful fortification. An intriguing open problem

following this work is to define fortification that is both easy

to analyze and useful for the correlated case.

B. Degrees and Two Rounds

The degrees in the graph associated with a two prover

game G correspond to the uncertainty each prover has with

respect to the questions of the other prover. We know that

the degrees have to be at least 1/δ to allow for val(G) ≤ δ
(assuming that each test of the verifier can be satisfied

by itself). In fact, Feige and Kilian [14] show that in the

randomness-efficient case, for val(G⊗k) ≤ δ it must be the

case that the degrees in G’s graph are at least ≈ 1/δ (under

an assumption on G they call softness, which indeed holds

in the cases of interest). In this section we relax the problem

of derandomizing parallel repetition to a corresponding

combinatorial problem about degrees in graphs. We call

the combinatorial problem the Two Rounds problem. We
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then relate the Two Rounds problem to the well-studied

problem of composition of two prover games, and show

that any efficient composition scheme yields a solution to

the problem.
We remark that large degrees are a necessary, but not

a sufficient, condition for small value. In fact, in general

two prover games one can increase the degree artificially,

and without decreasing the value, by duplicating questions.

Interestingly, for projection games on (δ, ε)-extractors G =
(X,Y,E), the degree in Y is necessarily large ≈ 1/δ,

while the degree in X cannot be artificially increased by

duplicating Y vertices due to the extractor property. This

observation supports the intuition that large degrees are

“morally” a sufficient condition for low value, at least in

cases of interest.
Definition 6.1 (Two Rounds): Given two projection

games G, H on bi-regular graphs G = (X,Y,E) and

H = (X ′, Y ′, E′), respectively, where the degrees are at

least d, we say that a distribution over pairs (	x, 	y), where

	x = (x, x′) ∈ X × X ′ and 	y = (y, y′) ∈ Y × Y ′, yields

“two rounds” of G and H for parameter d, if:

• (x, y) is a uniformly distributed edge in E, while

(x′, y′) is a uniformly distributed edge in E′.
• For any fixing of x, x′ (similarly, y, y′), we

have H(y|y′), H(y′|y) ≥ log d (similarly,

H(x|x′), H(x′|x) ≥ log d).

Note that picking two independent uniform edges (x, y) ∈ E
and (x′, y′) ∈ E′ yields two rounds. The challenge is to

pick two rounds using less randomness. Ideally, one could

hope to use log |E|+O(logD) randomness, when D is the

maximal degree in the graph, since given (x, x′) (similarly,

given (y, y′)), there are at most D2 alternatives for (y, y′)
(respectively, (x, x′)).

A randomness-efficient solution to the Two Rounds prob-

lem for games G and H yields a candidate construction

for a derandomized 2-round parallel repetition, where the

tensored games are G and H: the first prover gets questions

x, x′, while the second prover gets questions y, y′; the

first prover answers a, a′ ∈ ΣX , while the second prover

answers b, b′ ∈ ΣY ; the verifier checks that πe(a) = b and

πe′(a
′) = b′ (for simplicity, in this part of the paper we

consider the more standard definition of projection games;

see Remark 1.1). The definition of two rounds guarantees

that a prover who knows both x and x′, even if it has

information on y (e.g., by virtue of conditioning on an event

W ), has a lot of uncertainty about y′. The same goes for

the other question and the other prover.
The hope is that there are randomness-efficient two rounds

– and, more generally, k rounds – for “interesting” games

G and H, namely, ones whose value is NP-hard to ap-

proximate. Ideally, such a derandomized parallel repetition

scheme would yield val(G⊗k) ≤ δ when the size of G⊗k

is size(G) · DO(k) for D, d = Θ(1/δ). In other words,

this would give a projection PCP with soundness error

δ = 2−(logn)β for some constant β > 0, i.e., exponentially

smaller than what we know today.

We will briefly explain the relation between the Two

Rounds problem and the composition problem. More details

can be found in the full version of this work. The goal

in the composition problem is to take an outer game with

large alphabets, as well as small inner games with small

alphabets, and compose them into a single game with small

alphabets. This is similar to concatenation for codes, where

one combines an outer code with large alphabet and inner

codes over a small alphabet to get a single code over the

small alphabet. The idea of composition is to simulate a

test of the outer game using a test of an inner game, since

the latter only requires small alphabet. In the notation of

the Two Rounds problem, the edge (x, y) corresponds to an

edge of the outer game, while the edge (x′, y′) corresponds

to an edge of the inner game. To allow composition, given

questions x, x′ from both the outer and inner games, the

prover should not gain much advantage in guessing either

y or y′. The same should hold given questions y, y′. This

connection between composition and the Two Rounds prob-

lem leads to the following understanding: The difference

between composition and repetition is that in composition

the second round comes to replace the first round, while in

repetition the second round is in addition to the first round.

Let us denote the “input size” for the inner game by

n′ = log(|ΣX |+|ΣY |). As it stands now, there are construc-

tions of inner games based on the Hadamard code and based

on the long code (these are variants of standard constructions

as in [9] and [24]). Hadamard-based constructions have

|X ′| , |Y ′| = poly(exp(n′)), while the long code-based

constructions have |X ′| , |Y ′| = exp(exp(n′)). Both have

alphabets that are of size polynomial in 1/ε. The utility

of these constructions follows from the asymmetry between

the outer and inner games, which is not present between

repetitions of the same game. There are also constructions

that have size polynomial in n′ [23], [11], alas, they have

a large alphabet |ΣX′ | = exp(poly(1/ε)). To improve on

the current state of the art in PCP one has to design inner

games for the case of n′ ≥ poly logn, whose alphabets are

of size � exp(poly(1/ε)) (desirably, poly(1/ε)).

The connection between composition and repetition via

Two Rounds highlights a crucial barrier toward PCPs with

lower error that occurs when designing either repetition or

composition schemes. The connection might also lead to

new schemes for either problem.

ACKNOWLEDGEMENTS

I am thankful to Ran Raz for discussions, and to Henry

Yuen and an anonymous reviewer for a careful reading of

the paper.

422422



REFERENCES

[1] S. Aaronson, D. Moshkovitz, and R. Impagliazzo. AM with
multiple merlins. In Computational Complexity Conference,
2014.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and the hardness of approximation prob-
lems. Journal of the ACM, 45(3):501–555, 1998.

[3] S. Arora and S. Safra. Probabilistic checking of proofs: a new
characterization of NP. Journal of the ACM, 45(1):70–122,
1998.

[4] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In Proc. 23rd ACM
Symp. on Theory of Computing, pages 21–32, 1991.

[5] L. Babai, L. Fortnow, and C. Lund. Nondeterministic expo-
nential time has two-prover interactive protocols. Computa-
tional Complexity, 1:3–40, 1991.

[6] B. Barak, M. Hardt, I. Haviv, A. Rao, O. Regev, and
D. Steurer. Rounding parallel repetitions of unique games. In
Proc. 49th IEEE Symp. on Foundations of Computer Science,
pages 374–383, 2008.

[7] M. R. Capalbo, O. Reingold, S. P. Vadhan, and A. Wigder-
son. Randomness conductors and constant-degree lossless ex-
panders. In IEEE Conference on Computational Complexity,
page 15, 2002.

[8] M. Dinitz, G. Kortsarz, and R. Raz. Label cover instances
with large girth and the hardness of approximating basic k-
spanner. In ICALP, pages 290–301, 2012.

[9] I. Dinur. The PCP theorem by gap amplification. Journal of
the ACM, 54(3):12, 2007.

[10] I. Dinur and P. Harsha. Composition of low-error 2-query
PCPs using decodable PCPs. In Proc. 50th IEEE Symp. on
Foundations of Computer Science, pages 472–481, 2009.

[11] I. Dinur and O. Meir. Derandomized parallel repetition via
structured PCPs. Computational Complexity, 20(2):207–327,
2011.

[12] I. Dinur and D. Steurer. Analytical approach to parallel
repetition. In Proc. 46th ACM Symp. on Theory of Computing,
2014.

[13] U. Feige. On the success probability of the two provers in
one round proof systems. In Proc. of 6th IEEE Symposium
on Structure in Complexity Theory, pages 116–123, 1991.

[14] U. Feige and J. Kilian. Impossibility results for recycling
random bits in two-prover proof systems. In Proc. 27th ACM
Symp. on Theory of Computing, pages 457–468, 1995.

[15] U. Feige and J. Kilian. Two-prover protocols - low error at
affordable rates. SIAM Journal on Computing, 30(1):324–
346, 2000.

[16] U. Feige and O. Verbitsky. Error reduction by parallel
repetition - a negative result. Combinatorica, 22(4):461–478,
2002.

[17] L. Fortnow, J. Rompel, and M. Sipser. Errata for on the
power of multi-prover interactive protocols. In Structure in
Complexity Theory Conference, pages 318–319, 1990.
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