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Abstract—We construct the first schemes that allow a
client to privately outsource arbitrary program executions
to a remote server while ensuring that: (I) the client’s
work is small and essentially independent of the com-
plexity of the computation being outsourced, and (II) the
server’s work is only proportional to the run-time of the
computation on a random access machine (RAM), rather
than its potentially much larger circuit size. Furthermore,
our solutions are non-interactive and have the structure
of reusable garbled RAM programs, addressing an open
question of Lu and Ostrovsky (Eurocrypt 2013). We also
construct schemes for an augmented variant of the above
scenario, where the client can initially outsource a large
private and persistent database to the server, and later
outsource arbitrary program executions with read/write
access to this database.

Our solutions are built from non-reusable garbled RAM
in conjunction with new types of reusable garbled circuits
that are more efficient than prior solutions but only satisfy
weaker security. For the basic setting without a persistent
database, we can instantiate the required type of reusable
garbled circuits from indistinguishability obfuscation or
from functional encryption for circuits as a black-box.
For the more complex setting with a persistent database,
we can instantiate the required type of reusable garbled
circuits using stronger notions of obfuscation. Our basic
solution also requires the client to perform a one-time pre-
processing step to garble a program at the cost of its RAM
run-time, and we can avoid this cost using stronger notions
of obfuscation. It remains an open problem to instantiate
these new types of reusable garbled circuits under weaker
assumptions, possibly avoiding obfuscation altogether.

We show several simple extensions of our results and
techniques to achieve: efficiency proportional to the input-
specific RAM run-time, verifiability of outsourced RAM
computation, functional encryption for RAMs, and a can-
didate obfuscation for RAMs.

I. INTRODUCTION

Outsourcing computation from a weak client to a

more powerful server is quickly becoming the pre-

dominant mode of day-to-day computation, bringing

with it new security challenges and flourishing research

into methods for addressing them. In this work we

consider the challenge of private outsourcing, where the

client wants to execute a program on a remote server
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while hiding from it the raw data to be used in the

computation. Moreover, we want to ensure that:

1. The client should perform significantly less work

than executing the program, and

2. The server should not have to do much more work

than executing the program.

One method of outsourcing computation relies on fully

homomorphic encryption (FHE) [RAD78], [Gen09],

where the client simply encrypts her input and decrypts

the output, and the server computes the program on

encrypted data. Unfortunately, this solution requires the

server to translate the program into a circuit and there-

fore work as hard as the circuit size of the computation,

which in general, can be much larger than the work

needed to execute the program on a random-access

machine (RAM). In particular, even if we reach the

zenith of FHE efficiency, with no overhead per homo-

morphic addition/multiplication, simply converting the

computation into a circuit may already be too inefficient.

In general, a RAM computation with run-time T can

have Turing-Machine run-time and circuit size as high

as ˜O(T 2), which is already a considerably large over-

head [CR73], [PF79]. However, this distinction hardly

tells the whole story, and the gap can be significantly

larger in a setting involving program executions over

a large persistent memory (e.g., a database). Consider

for example the setting of private information retrieval

(PIR) [CKGS98], where a server holds a large database

of size N and a client wants to simply retrieve a single

record from that database without the server learning

the requested record. In this case, the RAM complexity

of the retrieval query can be as low as O(logN), but

the circuit complexity must be Ω(N) since the circuit

must at least get the entire database as input, a fully
exponential gap. The same gaps also already appear if

we were to consider the Turing-Machine run-time of the

computation instead of its circuit size.

We therefore would like to find an outsourcing pro-

tocol in which the server’s work is only related to the

RAM complexity of the program, while the client’s

work is essentially independent of the complexity of

the program altogether. Furthermore, we would like

to have such protocols in a setting where the client

can initially outsource a large persistent memory (e.g.,

containing a database) and later outsource various RAM
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computations with read/write access to this memory.

Prior to this work, no such protocols were known.

Although we do have private computation protocols

over an outsourced memory based on oblivious RAM
(ORAM) (e.g., [GO96], [OS97], [GKK+12]) where

the server’s work is proportional only to the RAM

complexity of the computation, in all of these protocols

the client also works as hard as the server. In particular,

these protocols allow the client to save on storage by

outsourcing the data to a remote server, but they do not

provide any savings in computation over executing the

program locally on local data.

In this work we describe reusable garbled RAM
schemes, which offer the first solution to private out-

sourcing of RAM computation, where the server’s work

is only proportional to the RAM run-time of the com-

putation and the client’s work is essentially independent

of the complexity of the computation altogether. In

addition, these protocols are non-interactive, i.e., they

only use one-way communication if the server is to learn

the output (or two message communication if the client

is to learn the output), making them useful even beyond

outsourcing in “send and forget” settings.

A. Garbled Circuits and Garbled RAM

(Reusable) Garbled Circuits: Garbled circuits, in-

troduced in the seminal work of Yao [Yao82], allow

a client to garble a circuit C and then an input x in

such a way that a server can use these garbled values to

compute C(x) without learning anything more about x.

Until recently all the schemes that we had became

insecure if the server ever got to see more than one

garbled input per garbled circuit. Last year Goldwasser

et al. described the first reusable circuit-garbling scheme

[GKP+13b] where the client can garble a single circuit

and then garble many inputs to that circuit without

losing security. In this solution the client only needs to

do a one-time pre-processing step to garble the circuit,

at a cost proportional to the circuit size, but can then

outsource many computations of this circuit on many

different inputs by garbling them, with essentially no

additional work per computation beyond what is needed

to send the input.

Reusable Garbled TMs: The work of Goldwasser

et al. [GKP+13a] extends the notion of reusable gabled

circuits to Turing Machines (TMs). The main advantage

is that the work of garbling a TM and the size of

the garbled TM can be made proportional to the TM

description size rather than the larger TM run-time

or circuit size of the computation. In the context of

outsourcing computation, this translates to getting rid

of the pre-processing step so that the client never has

to work as hard as evaluating the program. Another

advantage of TMs over circuits is that TM computation

can have much smaller “per-instance run-time” on some

inputs than its “worst-case run-time”. The solution of

[GKP+13a] allows the server to run in time proportional

to the per-instance TM run-time of the computation, at

the security loss of leaking this run-time to the server.

These advantages are mainly orthogonal to our main

goal of allowing the server to work in time proportional

to the RAM run-time of the computation, which could

potentially be much smaller than the TM run-time or the

circuit size. For example, when outsourcing a binary

search over a large outsourced database of size N ,

both the circuit-size and the per-instance TM run-time

will be O(N) whereas the worst-case RAM run-time is

O(logN).1,2

Garbled RAM. : Also recently, Lu and Ostrovsky

introduced the notion of garbled RAM [LO13a]. Similar

to garbled circuits, the client can garble a RAM program

P , and later garble an input x in such a way that a

server can use these garbled values to compute P (x)
without learning anything more about x. The complexity

of garbling a RAM program (client complexity), the size

of the garbled RAM, and the complexity of evaluating

a garbled RAM (server complexity) are all proportional

to the RAM run-time of the program rather than its

circuit size.3 The constructions of garbled RAM uses a

clever combination of Yao garbled circuits and oblivious

RAM (ORAM). Just like in Yao’s circuits, the scheme

is not reusable and becomes completely insecure if the

server sees more than a single garbled input per garbled

program. In other words, the client has to garble a fresh

program for every computation, which requires as much

work as doing the computation and therefore does not

offer any savings in the context of outsourcing.

However, garbled RAM does offer an opportunity for

amortization in the more complex setting involving mul-

tiple program executions over some persistent memory

(e.g., a large outsourced database). The client can garble

the initial memory contents once, and then can garble

many different RAM programs and inputs (one input per

program) that would be executed relative to the garbled

memory, updating the memory with every execution.

This property is called persistent memory, and allows

the garbled memory to be reused. For example, the

client can garble a large database of size N only once

in time O(N), and after that garble arbitrary queries

to the database where the client work (time to garble a

query) and the server work (time to evaluate a garbled

1The work of [GKP+13a] also constructs attribute-based encryption
for RAM programs, but this scheme does not hide the input over
which the RAM computation is performed. It cannot be used in the
context of outsourcing private RAM computation.

2Although we mainly focus on our primary goal of having the
server work in time proportional to the worst-case RAM run-time,
we will also show a simple extension that reduces this to the per-
instance RAM run-time along the lines of [GKP+13b], [GKP+13a].

3It was recently observed that the security proof for the scheme of
[LO13a] has a subtle flaw, but the scheme can be fixed so as to get
essentially the same properties as the original scheme [GHL+14].
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query) are both proportional to the RAM run-time of the

query. This provides a good solution for cases where

the memory is large and the client wants to save on

storage by outsourcing the contents, but the database

queries are sufficiently simple that the client does not

mind doing the work of the computation. It improves on

simply using ORAM by making the program executions

completely non-interactive. However, it still provides

no savings in terms of client computation over having

the client store the data and perform all computations

locally.

Can Garbled RAM be Reusable? : The above

raises the natural question whether we can obtain a

reusable garbled RAM. In such a scheme, the client

can garble a program once as a potentially expensive

pre-processing step, and later outsource many arbitrary

computations of this program to a server by efficiently

garbling fresh inputs. The server can evaluate the gar-

bled program on a garbled input in time proportional

to the RAM complexity of the program. Furthermore,

we would also like to do this in a setting where

the client initially garbles a large persistent memory
(e.g., database) and the programs can read/write to this

memory. Such reusable garbled RAM schemes give a

particularly nice solution to the problem of outsourcing
private RAM computation with no interaction in the case

where the server is to learn the output, and one round

of back-and-forth communication when the client is to

learn the output. The output can be made private from

the server by simply garbling an augmented program

that returns the output encrypted under the client’s key.

Furthermore, it can be made verifiable so that the client

can be sure that the received output is correct, by simply

garbling an augmented program that returns the output

along with a message-authentication-tag of the output,

under a key provided with the input.4

Outsourcing RAM vs. TM Computation: The work

of Goldwasser et al. [GKP+13a] shows how to out-

source TM computation so that the server only works

as hard as the per-instance TM run-time on the partic-

ular instance being outsourced, rather than the worst-

case run-time. It is worth mentioning that the main

goal of our work is orthogonal to the results in that

paper, leverages the fact that TM computation can

have much smaller ”per-instance run-time” on some

inputs than its ”worst-case run-time”. This advantage

is lost when converting to a circuit. The solution of

Goldwasser et al. [GKP+13a] comes with an inherent

security loss of leaking this per-instance run-time to

the server. This is an orthogonal problem to our main

4We note that there are other approaches to verifiable RAM com-
putation using SNARKs and proof-carrying data [Val08], [BCCT13],
[BSCGT13], [BSCG+13], [BFR+13], but no other prior approaches
that provide privacy. Therefore, we view the question of privacy
as more pressing, but note that reusable garbled RAM gives us
verifiability for free.

result which considers worst-case run-time and does not

allow the corresponding security loss (in which case

the difference between TMs and circuits disappears).

The challenges and techniques used to solve these two

orthogonal problems also seem to be mostly unrelated.

In the case of achieving per-instance TM run-time, the

information revealed to the server is just the run-time

of the computation, which has a small description, and

therefore this does not capture the main challenge we

face in the RAM setting. As one of the ”extensions” of

our main results, we also show how to achieve efficiency

proportional to the per-instance run-time in the RAM

model. This extension combines our main techniques

with the techniques of Goldwasser et al. [GKP+13a].

B. Our Solutions

In this work we describe the first solutions to the

above problem of reusable garbled-RAM. We give

three solutions with various tradeoffs between fea-

tures/efficiency and the security assumptions needed to

instantiate them.

As our “basic” solution, we describe a protocol

that works in the setting without persistent memory,

and requires the client to perform an expensive one-

time pre-processing step to garble the program. In

particular, the client can take a RAM program P with

a run-time bound T and create a garbled version by

working in time ˜O(T ). It can then very efficiently

garble arbitrarily many inputs xj to that program in

time only proportional to the input (and output) size of

the program, but independent of its complexity T . The

server can evaluate the garbled program on each garbled

input in time ˜O(T ). Furthermore, garbling new inputs

only requires a public key, so anybody can outsource

computations by creating garbled inputs to the garbled

program.5

As our “best-case” solution, we describe a protocol

that also works in the more complex setting involv-

ing persistent memory (e.g., database) and does not

require any expensive pre-processing. Specifically, in

this solution the client has the option to garble some

persistent memory of size N in time ˜O(N). It can then

garble a RAM program P in time proportional to its

description length O(|P |) but independent of its running
time. Finally it can garble many “short inputs” xi to the

program P in time proportional to the input (and output)

size of the program. The server can evaluate the garbled

5By default, we do not require “program privacy” and allow
the server to learn the description of the outsourced program. In
the public-key setting this is inherent since the server can create
garbled inputs on his own and therefore learn information about the
functionality of the program. We only guarantee that the server does
not learn anything about the inputs that are garbled by the client,
beyond the output of the computation. We will describe a simple
extension that achieves program privacy, but necessarily moves the
construction to the secret key setting where only the client that creates
the garbled program can create garbled inputs.
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program with the garbled input over the garbled memory

in time proportional to the program’s RAM run-time
˜O(T ). For example, the programs P could be a SQL

database implementation and the inputs xi could specify

various complex database queries. We stress that the

program executions can both read and write to memory,

and that the changes to memory made by one program

execution persist for the next program execution and

cannot be “rolled back” by a malicious server.

Assumptions. : Our main contribution is to re-

duce the complex problems of reusable garbled RAM
to seemingly simpler problems dealing with reusable

garbled circuits, and avoiding the complexity of RAM

altogether. Each of the above three constructions cor-

responds to a new notion of security/efficiency for

reusable garbled circuits, which may be of independent

interest (see below). Ultimately, we can instantiate these

new notions of reusable garbled circuits using vari-

ous obfuscation-based assumptions. The garbled circuits

that are used in our “basic” solution can be based on

indistinguishability obfuscation or on the existence of

indistinguishability-secure functional encryption for cir-

cuits. In particular, the latter is a falsifiable assumption.

The reusable garbled circuits needed for our “middle”

and “best-case” solutions can be based on stronger

variants of obfuscation, related to differing-inputs ob-

fuscation. We stress that the use of obfuscation does not

seem inherent, and there is hope that these new notions

of reusable garbled circuits could be instantiated under

simpler assumptions that avoid obfuscation altogether.

Indeed, this seems to be an easier problem than the

related problem of achieving indistinguishability-based

security for functional encryption without obfuscation.

C. Our Techniques

We obtain reusable garbled RAM from a combination

of non-reusable garbled RAM, and a new form of

reusable garbled circuits whose properties we discuss

shortly.

Our solutions are based on a very simple intuitive

idea: given a RAM program P , consider the circuit

C[P ] which has P hard-coded in its description, gets

as input (r, x), and uses r as randomness to created

a one-time garbled program P̃one (garbling P ) and a

garbled input x̃one (garbling x). Garbled RAM ensures

that the circuit-size of C[P ] is only dependent on the

RAM run-time T of the program P rather than its

potentially much larger circuit size. Our main idea

is to create a reusable garbled circuit C̃reuse of the

circuit C[P ], which the client gives to the server. Each

time the client wants to run a new program execution

with input xi, she chooses some fresh randomness ri,
and garbles (ri, xi) under the reusable circuit garbling

scheme. The server runs the reusable garbled circuit

C̃reuse on the garbled input from the client to create a

one-time garbled RAM program P̃one and garbled input

x̃one, and then evaluates P̃one on x̃one.

The above idea is not entirely new, but it turns out

that it cannot quite work right out of the box.6 Notice

that the circuit C[P ] above has a huge output of size
˜O(T ) even though its input is small. Unfortunately, the

reusable garbled circuit construction of Goldwasser et

al. [GKP+13b], requires that the size of the garbled
input to the circuit always exceeds the size of the

circuit’s output, even if the size of the actual input
of the circuit is small.7 We call this property output-
size dependence. In particular, to securely garble a

short input (ri, xi), the client would have to create a

huge garbled input of size ˜O(T ), which would require

that the client works at least as hard as evaluating

the program, and completely obliterate the efficiency

benefits of outsourcing. Unfortunately, this is also not an

accidental property of the construction of [GKP+13b]

and we show that any reusable circuit garbling scheme

with simulation-based security must have output-size

dependence (see the full version [GHRW14]).

Our main observation is that we do not necessarily

require full simulation-based security from the reusable

garbled circuit component, even though we insist on

achieving full simulation-based security for the final

reusable garbled RAM construction. We come up with

new notions of security for reusable garbled circuits

that we call “distributional indistinguishability” (with

two flavors), which turn out to suffice in our construc-

tions and may be of independent interest elsewhere.

Intuitively, these notions say that one cannot distinguish

garbled inputs from two distributions that produce indis-

tinguishable outputs. Moreover, these weaker security

notions seem to plausibly allow for more efficient

constructions that avoid “output-size dependence”. In-

deed, we propose new candidate constructions of such

reusable garbled circuits based on obfuscation. Our two

constructions of reusable garbled RAM translate to two

flavors of reusable garbled circuits with “distributional

indistinguishability”. The weaker flavor can be based

on indistinguishability obfuscation while the stronger

one seems to require stronger obfuscation-based as-

sumptions. It remains as an open problem to achieve

these notions from other assumptions, ideally avoiding

obfuscation altogether.

D. Extensions

In the full version [GHRW14] we explore several

extensions and applications of our main results and

6A variant of an idea along these lines appeared in an early version
of [LO13a] and was outlined in a rump-session talk [LO13b] but was
retracted for exactly the reasons we describe here.

7The scheme and parameters of [GKP+13b] are described for
circuits with 1-bit output, but can easily be extended to the setting of
multi-bit output at the above cost of having the size of the garbled-
input grow with the output size.
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techniques. We discuss how to generically augment

reusable garbled RAM to get output privacy (server

does not learn the output of the computation) and

verifiability (client can be certain that the received

output is correct). We also discuss how to get program
privacy where the server does not learn the code of

the program. Furthermore, we discuss how to leverage

our solutions to get input-specific run-time where the

server’s work is only proportional to the RAM run-

time of P (x) on the desired input x rather than the

worst-case run-time of P on inputs of size n. We

also discuss applications to MPC where only one party

needs to work as hard as the program’s RAM run-

time. In the full version [GHRW14], we also show how

to leverage our techniques to build indistinguishability-

secure functional encryption (FE) for RAM programs

(without persistent data) using FE for circuits as a black

box. We show that this gives an alternate construction

of reusable garbled RAM from FE for circuits, without

using obfuscation directly. However, the only known

construction of FE for circuits in [GGH+13] relies on

iO. Lastly, we propose a speculative candidate con-

struction for obfuscating RAMs using obfuscation for

circuits and conjecture that it can achieve iO for RAMs.

II. PRELIMINARIES

The two models of computation that we deal with in

this work are circuits and RAM programs. Intuitively, a

RAM program has access to some memory of size N
and each step of the program can read/write to an arbi-

trary location of memory. We usually assume that the

memory starts out empty. However, when we consider

program executions over a persistent memory/database,

it is useful to consider the case where the memory

initially contains some data D. We use the notation

PD(x) to denote the execution of a program P with

random-access memory containing D and a short input

x. For the RAM programs we consider in this work, we

assume that we have an absolute bound on their worst-

case running time, input/output length, and memory

usage. A somewhat more detailed specification of the

RAM model is found in the full version [GHRW14].

We use C[prm] or P [prm] to denote a circuit/program

that depends on a parameter prm. The parameter can be

an arbitrary string, and can itself be another circuit or

program. We think of prm as being “hard wired” in the

description of the corresponding circuit/program. The

input to a circuit/program is specified inside parenthesis,

so C[prm](x) describes the computation of the circuit

C[prm] (whose definition depends on prm) on the

input x.

III. REUSABLE GRAM WITHOUT PERSISTENT

MEMORY

A. Definitions

We begin by defining non-reusable (one-time) and

reusable garbled RAM. The syntax of the scheme is the

same in both cases, and the difference is only in the

security requirements.

Definition III.1 (GRAM without persistent memory).
A garbled RAM scheme without persistent memory con-
sists of procedures GR = (GR.prog,GR.inp,GR.eval):

• (P̃ , s) ← GR.prog(1λ, P, (n,m, t)) : Gets a RAM
program P , and bounds on the program’s: input
size n, output size m, and run-time t (say that
all bounds encoded in binary). Outputs a garbled
program P̃ and a garbling key s.

• x̃← GR.inp(x, s, (n,m, t)) : Takes as input an n-
bit value x, the garbling key s the same bounds
(n,m, t). It outputs the garbled input x̃.

• y = GR.eval(P̃ , x̃): This is a RAM program that
takes (P̃ , x̃) as input and computes the output y.

We require that for any program P with parameters
(n,m, t), any input x ∈ {0, 1}n if P̃ , x̃ are created as
described, then GR.eval(P̃ , x̃) = P (x) with probability
1.

Definition III.2 (GRAM Security). Let GR be a garbled
RAM scheme as above.

• GR has reusable security if there exists a PPT
simulator Sim such that, for all RAM programs
P with polynomial parameters (n,m, t) and all
polynomial-length input-vectors (x1, . . . , xq), the
following distributions are computationally indis-
tinguishable:

(P̃ , x̃1, . . . , x̃q)
comp≈ Sim(1λ, P, (n,m, t), y1, . . . , yq)

where (P̃ , s) ← GR.prog(1λ, P, (n,m, t)), x̃i ←
GR.inp(xi, s, (n,m, t)) and yi = P (xi).
The simulator is required to run in time
poly(λ, |P |, n,m, t, q).

• GR has security with public input garbling if there
exists a PPT simulator Sim′ such that the above
security holds even when including the input-
garbling key s in the left-hand distribution,

(P̃ , s, x̃1, . . . , x̃q)
comp≈ Sim′(1λ, P, (n,m, t), y1, . . . , yq).

• GR has one-time security (resp. one-time security
with public input garbling) if the above only holds
for q = 1.

Efficiency: We require that: GR.prog runs in time
˜O(|P | + n + m + t) · poly(λ) and can be though of

as a one-time preprocessing where the client has to

work as hard as the program execution. GR.inp runs in

time ˜O(m+n) ·poly(λ), and therefore is asymptotically
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efficient even as t becomes large. GR.eval runs in time
˜O(|P |+ n+m+ t) · poly(λ) on a RAM, and therefore

is only linear in the original program’s running time

t. In addition, we require that GR.prog,GR.inp can be

expressed as circuits with the above bounds denoting

their circuit size. On the other hand, GR.eval is crucially

expressed as a RAM program.

Remark on Program Privacy: Note that our defi-

nition does not explicitly consider program privacy and

we assume that the code of the program P is public.

This can be fixed via standard transformations (see the

full version).

We rely on prior constructions of one-time garbled

RAM schemes [LO13a], [GHL+14].8

Theorem III.3 ([LO13a], [GHL+14]). Assuming the
existence of selectively-secure identity-based encryption
(IBE), there exist garbled RAM schemes with one-time

security satisfying the above efficiency requirements.

Garbled Circuits: As a useful tool, we will rely

on the notion of reusable garbled circuits and we define

the syntax of such schemes as follows.

Definition III.4 (Garbled Circuits). A garbled cir-
cuit scheme consists of three procedures, GC =
(GC.circ,GC.inp,GC.eval):

• (C̃, s)← GC.circ(1λ, C) : Gets an input circuit C
and outputs a garbled circuit C̃ and key s.

• x̃← GC.inp(x, s) : Gets an input x and the same

key s. Outputs the garbled input x̃.

• y ← GC.eval(C̃, x̃): Gets a garbled circuit C̃ and

matching input x̃, and computes the output.

We require that for any circuit C, input x, setting

(C̃, s)← GC.circ(1λ, C) and x̃← GC.inp(x, s) we get

GC.eval(C̃, x̃) = C(x).

We defer discussion of the security properties that we

need until later.

Output-size independent efficiency: Our main effi-

ciency requirement is that GC.inp works in time |x| ·
poly(λ), in particular its running time can only depend

on the input size and not on the circuit size or even the

output size. We call this requirement output-size inde-
pendent efficiency. In addition, we require that GC.circ
works in time |C| · poly(λ) and that GC.eval works in

time ˜O(|C̃|+ |x̃|) · poly(λ) = ˜O(|C|+ |x|) · poly(λ).
B. Construction of Reusable GRAM

Overview: We construct a reusable garbled-

RAM scheme by combining reusable garbled circuit

with a one-time garbled RAM scheme. Let GC =
(GC.circ,GC.inp,GC.eval) be a reusable garbled circuit

8The syntax of [GHL+14] includes a separate procedure GR.data
to garble memory, but for now we can think of this as part of the
GR.prog procedure. We mention that similar result with slightly worse
efficiency can be achieved under one-way functions.

scheme whose required security properties we specify

later and GR1 = (GR1.prog,GR1.inp,GR1.eval) be a

one-time garbled-RAM scheme. Recall our first ap-

proach from the introduction, which was to consider

the circuit C[P ](r, x) that has P hard-wired in and

gets as input randomness r and input x. The circuit

C[P ](r, x) runs (P̃one, s) ← GR1.prog(1λ, P, (· · · ))
and x̃one ← GR1.inp(x, s, (· · · )), using r as random-

ness, and outputs (P̃one, x̃one). Our hope was to create

a reusable garbled circuit C̃ ← GC.circ(C[P ]) as our

reusable garbled RAM program.

Observe that the circuit C[P ] from above has short

input and very long output, related to the running time

of P . Unfortunately, the construction of reusable gar-

bled circuits of Goldwasser et al. [GKP+13b], requires

that the size of the garbled input to the circuit always

exceeds the size of the circuit’s output, even if the size

of the actual input of the circuit is small. In particular,

they have output-size dependence. In the full version,

we show that any reusable circuit garbling scheme with

simulation-based security must have output-size depen-

dence. In our context, that would mean that garbling an

input to the program takes as much time as evaluating

a program and therefore would not be useful in the

context of outsourcing.

We fix the problem above by tweaking the above

construction in a way that allows us to reduce the

security requirement on the reusable garbled circuit to

something weaker than simulation security, while still

achieving simulation security for our final construction.

In particular, we first present our modified construc-

tion of reusable garbled RAM from reusable garbled

circuits, then we present a new notion of security for

reusable garbled circuits that we call “distributional

indistinguishability”, and show that is suffices to make

our construction secure (Section III-C) and finally, we

show how to instantiate this new notion of reusable

garbled circuits (Section III-D) while achieving output-

size independent efficiency.

The main modification that we make to the first-

attempt construction from above is to first transform a

program P with run-time t into a modified program P+

that we call the real-or-dummy program. In addition to

the input x, the new program P+ takes also an alleged

output y and a flag ψ. If ψ = 1 (real) then P+(x, ψ, y)
simply executes P (x), ignoring y. If If ψ = 0 (dummy),

on the other hand, then P+ simply executes t dummy

steps and outputs y, ignoring x.

Just as before, we consider the circuit

C[P+](r, (x, ψ, y)) that outputs a one-time garbled

program P̃ garbling P+ and garbled input x̃ garbling

(x, ψ, y) using r as randomness. We then construct

a reusable garbled circuit C̃ garbling C[P+] as

the reusable garbled RAM program. Intuitively,

the simulator of the reusable garbled RAM will
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simply provide a garbling of a “dummy input”

consisting of (r, 0n, ψ = 0, y) instead of the “real”

input (r, x, ψ = 1, 0m). Proving security of the

new construction boils down to proving that, given

C̃, one cannot distinguish many garbling of real

inputs vs. dummy inputs. Notice that the outputs

P̃ , x̃ derived from real-inputs vs. dummy-inputs look

indistinguishable by the security of the one-time

garbled RAM. Therefore, we reduce simulation-based

security of the full scheme to showing a new type

of “distributional indistinguishability” for reusable

garbled circuits, where it should be hard to distinguish

garbled inputs from two different distributions (e.g.,

read or dummy) that produce indistinguishable outputs.

This idea is similar in spirit to one used by De Caro

et al. [CIJ+13] to convert indistinguishability-based

security to simulation-based security for functional

encryption. However, our notion of “distributional

indistinguishability” is new.

The real-or-dummy program P+: In more detail,

for a RAM program P with input-size n, output-size m
and running-time bound t, let P+ be a RAM program

that gets as input (x, ψ, y) with |x| = n, |ψ| = 1 and

|y| = m. If ψ = 1 then P+(x, ψ, y) outputs P (x), and

if ψ = 0 then it outputs y after t steps. Note that the

complexity of P+ is essentially the same as P , except

that it has input of size n+m+ 1 rather than just n.

The program-garbling circuit: A central compo-

nent of our construction is a circuit that runs the

program- and input-garbling routines of the underlying

one-time GRAM scheme. For a RAM program P with

input-size n, output-size m and running-time bound t,
and for security parameter λ, define C[P, n,m, t, λ] as

the following circuit with n+m+ 2λ+ 1 input bits:9

C[P,n,m, t, λ](r, x, ψ, y):

// r = (r1, r2) ∈ {0, 1}2λ,

// x ∈ {0, 1}n, ψ ∈ {0, 1}, y ∈ {0, 1}m
1. Run (P̃ , s)← GR1.prog(1λ, P+, (n,m, t); r1),
x̃← GR1.inp((x, ψ, y), s, (n,m, t); r2),

2. Output (P̃ , x̃).

Recall that for the program P+ as above, the circuit-

size of GR1.prog is ˜O(|P |+ n+m+ t) · poly(λ) and

the circuit-size of GR1.inp is O(n+m) ·poly(λ). Hence

the size of C[P, n,m, t, λ] (as well as the time that it

takes to generate its description) can be bounded by
˜O(|P |+ n+m+ t) · poly(λ).

GR: Reusable Garbled RAM Construction: We

describe our reusable GRAM construction GR =
(GR.prog,GR.inp,GR.eval) in the following figure.

9For simplicity, we assume that GR1.prog, GR1.inp uses exactly λ
bits of randomness each. This can always be made the case by using
a pseudorandom generator.

GR.prog(1λ, P, (n,m, t)):

1. Construct the circuit C[P, n,m, t, λ] shown above.

2. Output a garbling of this circuit

(C̃, s)← GC.circ(1λ, C[P, n,m, t, λ]).
GR.inp(x, s, (n,m, t)):

1. Choose a random r ← {0, 1}2λ,

set ψ = 1, y = 0m, and w = (r, x, ψ, y),
2. Garble the input to C[P . . .], outputting

w̃ ← GC.inp(w, s).

GR.eval(C̃, w̃):

1. Evaluate (P̃ , x̃)← GC.eval(C̃, w̃),
// = C[P, n,m, t, λ](s, x, ψ, y)

2. Evaluate the 1-time GRAM and output

y ← GR1.eval(P̃ , x̃). // = P (x)

Functionality and complexity: The correctness of

this scheme can be verified by inspection. As for its

complexity, since the size of C[P, n,m, t, λ] and the

time to construct it are bounded by ˜O(|P | + n +m +
t) · poly(λ), the overall complexity of GR.prog is also
˜O(|P |+n+m+t)·poly(λ). The input to C[P, n,m, t, λ]
has length O(n + m + λ), and therefore the time to

garble that input (which is the complexity of GR.inp)

is bounded by O(n+m) · poly(λ). 10 Finally, the time

to evaluate the garbled circuit is polynomial in its size,

hence the first step of GR.eval has complexity ˜O(|P |+
n+m+t)·poly(λ). Also, the time to evaluate a garbling

of P+ is essentially the running time GR1.eval(P̃ , x̃)
is essentially that of P+, so also the second step has

complexity bounded by ˜O(|P | + n +m + t) · poly(λ)
as well, and so this term bounds the overall complexity

of GR.eval.

C. Simulation Security From Distributional Indistin-
guishability

A crucial observation is that we can prove simulation-

security for the above reusable GRAM construction GR
using a new notion of “distributional indistinguishabil-

ity” security for the underlying garbled circuit scheme

and the usual simulation security for the underlying one-

time GRAM scheme. “Distributional indistinguishabil-

ity’ says that one cannot distinguish garbled inputs from

any two sets of independent distributions that produce

individually indistinguishable outputs.

Definition III.5. Let GC = (GC.circ,GC.inp,GC.eval)
be a garbled circuit scheme. We say that GC provides
distributional indistinguishability if for every circuit
ensemble C = {Cλ}, every polynomial q = q(λ),
and every 2q polynomial-time samplable distributions
D1, . . . , Dq and D′

1, . . . , D
′
q , if for all j ∈ [q] it holds

10Note that the complexity of input garbling depends on both the
input and the output size of P , meaning that our overall construction
has output-size dependence. This is necessary for reusable simulation-
security (see the full version [GHRW14]).
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that C(wj)
comp≈ C(w′

j) where wj ← Dj(1
λ), w′

j ←
D′

j(1
λ) then it also holds that

〈C̃, w̃1, . . . w̃q〉
comp≈ 〈C̃, w̃′

1, . . . w̃
′
q〉

where (C̃, s)← GC.circ(1λ, Cλ), wi ← Di(1
λ), w′

i ←
D′

i(1
λ), w̃i ← GC.inp(wi, s), w̃

′
i ← GC.inp(w′

i, s).
We say that the scheme has security with public input

garbling if the above holds when we include the garbling
key s in the two distributions on the bottom.

We remark that this notion is clearly implied by

simulation security for reusable garbled circuits, but

simulation security of reusable garbled circuits requires

“output-size dependence” where the size of the garbled

input must exceed that of the circuit’s output (see the

full version [GHRW14]). Furthermore, we remark that

for any scheme with public input garbling, distributional

indistinguishability for q = 1 implies security for

arbitrary q by a simple hybrid argument. Interestingly,

this does not hold for simulation security where it may

be possible to simulate q = 1 inputs but not possible to

simulate for a larger q, even if the scheme has public

input garbling.

In Section III-D we show how to construct a reusable

circuit-garbling scheme with output-size independence

satisfying this definition using indistinguishability ob-

fuscation.

Theorem III.6. If GC = (GC.circ,GC.inp,GC.eval)
is a reusable garbled-circuit scheme satisfying dis-
tributional indistinguishability and output-independent
efficiency, and GR1 = (GR1.prog,GR1.inp, GR1.eval)
is a one-time garbled-RAM scheme, then the scheme
GR from above is a reusable garbled-RAM scheme
satisfying simulation security. Furthermore, if GC has
security with public input garbling, then so does GR.

Proof: The simulator was sketched above: On input

(1λ, (n,m, t), P, y1, . . . , yq) with |yi| = m for all i, the

simulator GR.sim begins just as the garbling procedure

of the actual scheme, namely by constructing the circuit

C[P, n,m, t, λ] and applying to it the circuit-garbling

procedure to get (C̃, s)← GC.circ(1λ, C[P, n,m, t, λ]).
Next, for every yi the simulator chooses a uniformly

random ri ∈ {0, 1}2λ, sets w′
i = (ri, 0, ψ = 0, yi)

and w̃′
i ← GC.inp(wi, s). The output of the simulator

GR.sim consists of (C̃, w̃′
1, . . . , w̃

′
q).

We next prove indistinguishability between the real

and simulated outputs. Fix the program P and inputs

x1, . . . , xq for P , and denote yi = P (xi) for all i. Let

wi = (ri, xi, ψ = 1, 0m) where ri ∈ {0, 1}2λ. We first

argue that the output distributions on inputs wi and w′
i

are indistinguishable.

Claim III.7. Denote C = C[P, n,m, t, λ]. If the
scheme GR1 = (GR1.prog,GR1.inp,GR1.eval) satisfies

one-time GRAM security then for every x ∈ {0, 1}n and
y = P (x) we have

{C(wi)}
comp≈ {C(w′

i)},
where wi, w

′
i are chosen as described above.

Proof: Note that C(wi) = (P̃i, x̃i) and C(w′
i) =

(P̃i, x̃
′
i) where P̃i is a garbled version of the program

P+, x̃i is a garble version of the input (xi, 1, 0
m) and

x̃′i is a garbled version of the input (0n, 0, yi). The one-

time simulation-security of the underlying GR1 scheme

implies that:

(P̃i, x̃i)
comp≈ GR1.Sim(1λ, P, (n,m, t), yi)

comp≈ (P̃i, x̃
′
i)

since yi = P+((xi, 1, 0
m)) = P+((0n, 0, yi)). This

proves the claim.

Claim III.7 implies that the distributions of the

wi, w
′
i’s satisfy the condition of Definition III.5, and by

the distributional indistinguishability of GC we conclude

that also

〈C̃, w̃1, . . . w̃q〉
comp≈ 〈C̃, w̃′

1, . . . w̃
′
q〉.

This completes the proof, since these are exactly the

output distributions of the scheme GR and its simulator

GR.sim.

D. Achieving Distributional Indistinguishability

We now construct reusable garbled circuits with

“distributional indistinguishability” and “output-size in-

dependent efficiency”. Furthermore, our construction

has public input-garbling. The construction is based

on “indistinguishability obfuscation” (see the full ver-

sion [GHRW14]) and a NIZK which is “statistically

simulation sound” (see the full version [GHRW14]). It

is inspired by the construction of functional encryption

from indistinguishability obfuscation of [GGH+13]. For

efficiency, we will require that the obfuscation of a

circuit C has size |C| · poly(λ) linear in the size of

the original circuit, and this is indeed the case for

candidate schemes (see the full version [GHRW14] for

details). However, we also note that this requirement

is not crucial for our full construction and we can

get qualitatively similar final results using iO with

any polynomial blow-up in circuit size (see the full

version [GHRW14] for details). Nevertheless, assuming

obfuscation with linear slow-down makes things simpler

and therefore we use this as our default notion.

Construction: Let O be an obfuscation scheme,

let PKE = (Setup,Encrypt, Decrypt) be a public key

encryption scheme, and let Π = (K,P, V ) be a NIZK

scheme with statistical simulation soundness. Let LEQ

be the NP language defined as

LEQ = { (pk1, pk2, c1, c2) : ∃ m, r1, r2,
c1 = Encrypt(pk1,m; r1) ∧ c2 = Encrypt(pk2,m; r2)}.
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For any circuit C : {0, 1}n → {0, 1}m define the

circuit C∗[σ, pk1, pk2, b, sk, u, v] where: σ is a CRS for

the NIZK, pk1, pk2 are encryption keys, b ∈ {1, 2}
is an index, sk is the decryption key for pkb, u is of

size |(c1, c2, π)| where c1, c2 are ciphertexts of n-bit

messages and π is a NIZK for LEQ, and v ∈ {0, 1}m.

C∗[σ, pk1, pk2, b, sk, u, v](c1, c2, π):
1. If u = (c1, c2, π) output v.

2. Verify that π is a proof of (pk1, pk2, c1, c2) ∈ LEQ

by running V (σ, (pk1, pk2, c1, c2), π).
If this rejects, output ⊥.

3. Compute x = Decrypt(sk, cb). Output C(x).

We define the circuit garbling scheme GC =
(GC.circ,GC.inp,GC.eval), which has public input gar-

bling, as follows:

• (C̃, s) ← GC.circ(1λ, C): Generate

(pk1, sk1) ← Setup(1λ), (pk2, sk2) ←
Setup(1λ), σ ← K(1λ). Construct the circuit

C∗ := C∗[σ, pk1, pk2, 1, sk1, u = ⊥, v = ⊥]
from C as shown. Output C̃ ← O(C∗) and

s := (σ, pk1, pk2).
• x̃ ← GC.inp(x, s): output x̃ := (c1, c2, π),

where c1 ← Encrypt(pk1, x; r1),
c2 ← Encrypt(pk2, x; r2) and π ←
P (σ, (pk1, pk2, c1, c2), (r1, r2)) is an NIZK

that (pk1, pk2, c1, c2) ∈ LEQ.

• GC.eval(C̃, x̃): Interpret C̃ as an obfuscated circuit

and output C̃(x̃).

Theorem III.8. If O is an indistinguishability obfusca-
tor, Π is a statistical-simulation-sound (SSS) NIZK, and
PKE is a semantically secure encryption scheme, then
the above construction GC is a reusable garbled circuit

with distributional indistinguishability and public input

garbling.

A proof for Theorem III.8, using “punctured pro-

grams” paradigm, is given in the full version of the

paper [GHRW14].

Summary: Combining the above with Theorem

III.3 and III.6, and the facts that indistinguishability ob-

fuscation + one-way function implies selectively secure

functional encryption which implies IBE [GGH+13],

and that statistically simulation sound NIZK can be

constructed from statistically sounds NIZK [GGH+13],

we get the following corollary.

Corollary III.9. If indistinguishability obfuscation,
one-way functions, and statistically sounds NIZKs ex-
ist, then there exists a reusable garbled-RAM scheme
without persistent memory satisfying Definition III.2.
Furthermore, it supports public input garbling.

IV. GARBLED RAM WITH PERSISTENT MEMORY

Due to space constraints we defer the definition and

construction of reusable garbled RAM with persistent

memory to the full version of the paper [GHRW14].

V. CONCLUSIONS

We have shown how to privately outsource RAM

computation from a weak client to a more powerful

server via reusable garbled RAM schemes. Our main

contribution was to reduce the problem of reusable

garbled RAM into seemingly simpler problems deal-

ing with reusable garbled circuits. In doing so, we

introduced new notions of security for such garbled

circuit that we call “distributional indistinguishabil-

ity” and “correlated distributional indistinguishability”

which may be of independent interest and seem to allow

for greater (output-size independent) efficiency than the

stronger simulation-based security. Lastly, we showed

how to construct such schemes under obfuscation-based

assumptions. The main open problem is to provide

constructions of such reusable garbled circuits under

weaker assumptions. Ideally, such constructions would

avoid obfuscation altogether, but a more limited goal

would be to get “correlated distributional indistinguisha-

bility” from indistinguishability obfuscation.
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