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Abstract—We study coding schemes for error correction in
interactive communications. Such interactive coding schemes
simulate any n-round interactive protocol using N rounds over
an adversarial channel that corrupts up to ρN transmissions.
Important performance measures for a coding scheme are its
maximum tolerable error rate ρ, communication complexity N ,
and computational complexity.

We give the first coding scheme for the standard set-
ting which performs optimally in all three measures: Our
randomized non-adaptive coding scheme has a near-linear
computational complexity and tolerates any error rate δ < 1/4
with a linear N = Θ(n) communication complexity. This
improves over prior results [1]–[4] which each performed well
in two of these measures.

We also give results for other settings of interest, namely,
the first computationally and communication efficient schemes
that tolerate ρ < 2

7
adaptively, ρ < 1

3
if only one party is

required to decode, and ρ < 1
2

if list decoding is allowed. These
are the optimal tolerable error rates for the respective settings.
These coding schemes also have near linear computational and
communication complexity.

These results are obtained via two techniques: We give a
general black-box reduction which reduces unique decoding, in
various settings, to list decoding. We also show how to boost
the computational and communication efficiency of any list
decoder to become near linear1.

Keywords-Coding; Interactive Communication; Efficiency;
Error-Rate; List-Decoding

I. INTRODUCTION

“Interactive Coding” or “Coding for Interactive Commu-

nication” can be viewed as an extension of error correcting

codes to interactive communications. Error correcting codes

enable a party to communicate a message through a channel

to another party even if a constant fraction of the symbols of

the transmission are corrupted by the channel. This coding

for “one-way communication” is achieved by adding redun-

dancy to the message, that is, by coding an n-bit message

into a slightly longer N -symbol coded message over some

finite alphabet. Interactive coding schemes, as introduced

by Schulman [5], generalize this to two-way interactive

communication: they enable two parties to perform their

interaction even if a constant fraction of the symbols are

corrupted by the channel. This robustness against errors
is again achieved by adding redundancy to the interactive

communication, now by transforming the original interaction

protocol Π which uses n communication rounds into a new

coded protocol Π′ which has longer length, ideally still

N = O(n) rounds. Running this coded protocol Π′ both

parties can recover the outcome of Π even if a constant

fraction ρ of the symbols are corrupted during the execution

of Π′.
Similar to the classical error correcting codes, important

performance measures of an interactive coding scheme are:

the maximum tolerable error-rate ρ that can be tolerated,

the communication complexity N , and the computational
complexity of the coding and decoding procedures.

For error correcting codes the classical results of Shannon

show that for any constant error-rate below 1/2, there exist

codes with N = O(n), that is, with a constant redundancy

factor. Deterministic linear time encoding and decoding pro-

cedures that achieve this optimal error rate and redundancy

are also known [6]. Interestingly, error correcting codes can

also tolerate any constant error rate below 1 if one relaxes the

decoding requirement to list decoding [7], that is, allows the

receiver to output a (constant size) list of outputs of which

one has to be correct. Computationally efficient list decoders

are however a much more recent discovery [8], [9].

The interactive coding setting is more involved and less

well understood: In 1993 Schulman [5] gave an interactive

coding scheme that tolerates an adversarial error rate of ρ =
1/240 with a linear communication complexity N = O(n).
In a more recent result that revived this area, Braverman

and Rao [1] increased the tolerable error rate to ρ ≤ 1/4−
ε, for any constant ε > 0, and showed this bound to be

tight if one assumes the schedule of which party transmits

at what round to be fixed ahead of time, that is, if the coding

scheme is required to be non-adaptive. Both protocols have

an exponential computational complexity.

More efficient protocols were given in [2], [3], [10]–[13]:

Gelles, Moitra, and Sahai [10] give efficient randomized

coding schemes for random instead of adversarial errors.

The protocol presented by Braverman in [11] uses sub-

exponential time and tolerates an error rate of at most 1/40.

Kol and Raz [12], and Haeupler [13] provide efficient ran-

domized coding schemes tolerating random and adversarial

errors respectively that achieve (near) optimal communica-

tion rates but only for sufficiently small error rates. Most

related to this paper is the randomized coding scheme of
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Brakerski and Kalai [2], which runs in quadratic time and

tolerates any error rate below 1/16, and its extension by

Brakerski and Naor [3], which runs in near-linear time and

tolerates some small unspecified constant error rate. These

protocols therefore compromise on the maximum tolerable
error-rate to achieve computational efficiency.

Our first result shows that, in this standard setting, both

computational complexity and an optimal maximum tolera-

ble error-rate are achievable simultaneously:

Theorem I.1. For any constant ε > 0 and n-round protocol
Π there is a randomized non-adaptive coding scheme that
robustly simulates Π against an adversarial error rate of
ρ ≤ 1

4−ε using N = O(n) rounds, a near-linear n logO(1) n
computational complexity, and failure probability 2−Θ(n).

Protocols without the non-adaptivity restriction and other

interactive coding settings of interest were studied in [4],

[14]–[16]: Particularly, [4], [14] study different notions

of adaptivity, [15] studies a setting with shared (hidden)

randomness, and the concurrent work of [16] investigates

list decoding and also tolerable error rate regions for settings

with two separate unidirectional channels with different error

rates α, β. Most related to this paper is [4], which showed

that the maximum tolerable error rate can be improved from

1/4 to 2/7 by using adaptive coding schemes, or to 1/2 by

allowing list decoding. They also showed these bounds on

the maximum tolerable error rate to be optimal even if an

unbounded amount of communication is allowed. However,

the coding schemes achieving these error rates required

polynomially large communication complexity N = O(n2).
We give the first computationally and communication

efficient coding schemes that achieve the optimal error-rates

in these settings:

Theorem I.2. For any constant ε > 0 and n-round protocol
Π, there are the following coding schemes that robustly
simulate Π:
(A) An adaptive unique decoding protocol tolerating error-

rate ρ ≤ 2
7 − ε.

(B) A non-adaptive one-sided unique decoding protocol, in
which only one fixed party uniquely decodes, tolerating
error-rate ρ ≤ 1

3 − ε.
(C) A non-adaptive list decoding protocol with an O( 1

ε2 )
list size tolerating error-rate ρ ≤ 1

2 − ε.
These coding schemes are all randomized, use N = O(n)
communication rounds1, and near-linear n logO(1) n compu-

1A part in achieving these coding schemes is to boost list-decoders. While
boosting always reduces the computational complexity and communication
to near linear the exact communication complexity of the final scheme
depends on which initial list decoder is used. If one starts with the simple
list decoder from [4], which has a quadratic communication complexity, the
final communication complexity becomes N = n2O(log∗ n · log log∗ n) =
no(log log . . . logn). If one starts with the list decoder of Braverman and
Efremenko [16], which has linear communication complexity, the final
communication complexity stays linear, that is, N = O(n), while the
computational complexity improves from exponential to near linear time.

tational complexity, and have a failure probability of 2−Ω(n).

An interesting remaining question is to achieve the above

results deterministically. In this paper, we already take a first

step in that direction by providing non-uniform deterministic

coding schemes:

Remark I.3. For each of the coding schemes in Theo-
rems I.1 and I.2, there exists a (non-uniform) deterministic
near linear time variant with the same tolerable error-
rate and linear communication complexity. It remains open
whether these deterministic schemes can be found efficiently.

A. Techniques

Our results rely on two main technical components, a

reduction from unique decoding to list decoding, and a

boosting technique for list-decoders. Next, we give a brief

overview over these components:

1) Black-box Reductions from Unique Decoding to List
Decoding: The reduction technique shows a strong con-

nection between unique-decoding and list-decoding for in-

teractive coding. This technique can be roughly viewed as

follows: given a “good” list-decodable coding scheme, we

can construct “good” unique-decoding coding schemes for

various settings in a black-box manner:

Theorem I.4. Given any non-adaptive list decodable coding
scheme for an error rate of 1/2−ε with constant list size, one
can construct unique decoding schemes with optimal error
rates for various settings, while preserving the asymptotic
round complexity and computational efficiency of the list
decoding coding scheme. In particular, one can obtain a
non-adaptive coding scheme with error rate 1/4−O(ε), an
adaptive coding scheme with error rate 2/7 − O(ε), and
a coding scheme with one-sided decoding and error rate
1/3−O(ε).

The general idea of the reduction is easier to explain

in the non-adaptive setting. Intuitively, we use O( 1ε ) rep-

etitions, in each of which we simulate the protocol using

the provided list decoder. Thus, in each repetition, each

party gets constant many guesses (i.e., decodings) for the

correct path. The parties keep all edges of these paths and

simultaneous with the simulations of each repetition, they

send this accumulated collection of edges to each other using

error correcting codes. At the end, each party outputs the

path that appeared most frequently in (the decodings of)

the received collections. Since we the overall error-rate is

always less than what the list-decoder tolerates, in some

(early enough) repetition the correct path will be added to

the collections. From there on, any repetition corrupted with

an error-rate less than what the list-decoder tolerates will

reinforce the correct path. This will be such that at the end, a

majority-based rule is sufficient for finding the correct path.

Remark: For the reduction in the non-adaptive setting,

it suffices if we start with a list-decoder that tolerates a
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suboptimal error-rate of 1/4 − ε instead of the 1/2 − ε
stated in Theorem I.4. This allows us to interpret the unique

decoder of Braverman and Rao [1] as a list decoder (with list

size one), boost it to become computationally efficient, and

finally transform it back to a unique decoder with the same

tolerable error rate. We note the reductions for the adaptive

setting and the one-sided decoding setting are much more

involved and do not allow for such a slack in the error rate

of the initial list decoder. This makes it imperative to start

with a list decoder tolerating the optimal 1/2−ε error-rate, at

least if one wants unique decoding algorithms with optimal

tolerable error rates of 2/7 and 1/3.

2) Boosting the Efficiency of List Decoding: Given these

reductions, the remaining problem is to construct “good”

list-decodable coding schemes. The main technical element

we use in this direction is an approach that allows us to boost
the performance measures of list-decoders. Particularly, this

approach takes a list decoder for any short, poly-logarithmic-

round, protocol and transforms it into a list decoder for a

long, n-round, protocol while (essentially) maintaining the

same error rate and list size but significantly improving

over the communication and computational complexity and

failure probability:

Theorem I.5 (simpler version of Theorem IV.1). Suppose
there is a list-decodable coding scheme for any Θ(log2 n)-
round protocol that tolerates an error rate of ρ with failure
probability o(1) using O(R log2 n) rounds, a list size of s
and computational complexity O(T log2 n). Then, for any
ε > 0, there is a list-decodable coding scheme for any n-
round protocol that tolerates an error rate of ρ − ε with
failure probability 2−Ω(n) using O(Rn) rounds, a list size
of O(s/ε) and computational complexity O(Tn logO(1) n).

Our boosting is inspired by ideas of Brakerski and Kalai

[2] and Brakerski and Naor [3], which achieve computation-

ally efficient unique decoders. The general approach is to

protect the protocol only in (poly-)logarithmic size blocks,

which can be done efficiently, and then use hashing to ensure

progress and consistency between blocks. The method in [2]

sacrifices a factor of 4 in the tolerable error rate and that of

[3], which makes the computation near-linear time, sacrifices

an additional unspecified constant factor. See the remark in

[3, Section 3.1] for discussions.

Our boosting loses only a small additive ε in the tol-

erable error rate. The intuitive reason for this difference

is as follows: In [2], one factor of 2 is lost because the

algorithm tries to uniquely decode blocks. This allows the

adversary to corrupt any blocks by corrupting only half of

the transmissions during this block. In our boosting, this is

circumvented by using list decoding. This also allows us to

apply boosting recursively which further enables the use of

block sizes that are poly-logarithmic instead of logarithmic

as in [2], [3]. The second factor of 2 is lost for trying to

keep the pointers of both parties consistent while they are

following the correct path. As such, these pointers can only

move in constant block size steps and any step in the wrong

direction costs two good steps (one back and one forward

in the right direction). These (ideally) lock-step moves are

conceptually close to the approach of Schulman [5]. Our

boosting instead is closer to the approach of Braverman and

Rao [1]; it continuously adds new blocks and in each step

tries to interactively find what the best starting point for an

extension is. This interactive search is also protected using

the same list decoder. Being able to have poly-logarithmic

block sizes, instead of logarithmic, proves important in this

interactive search.

ORGANIZATION

The rest of this paper is organized as follows: Section II

provides the formal definitions of interactive coding setting

and its different variations. In Sections III and IV we

present our reduction and boosting results. The boosting

in Section IV leads to coding schemes with an Õ(n2)
computational complexity. A more involved boosting which

leads to an Õ(n) computational complexity is presented in

the full version [17].

II. INTERACTIVE CODING SETTINGS

In this section, we define the interactive coding setup and

summarize the different interactive coding settings consid-

ered in [4]. We also define the new one-sided decoding

setting which is introduced in this work for the first time. We

defer an in-depth discussion of the motivation and results for

this new setting to [17] and provide here only its definition.

We mainly adopt the terminology from [4]: An n-round

interactive protocol Π between two players Alice and Bob is

given by two functions ΠA and ΠB . For each round of com-

munication, these functions map (possibly probabilistically)

the history of communication and the player’s private input

to a decision on whether to listen or transmit, and in the latter

case also to a symbol of the communication alphabet Σ.

For non-adaptive protocols the decision of a player to listen

or transmit deterministically depends only on the round

number and ensures that exactly one party transmits in each

round. In this case, the channel delivers the chosen symbol

of the transmitting party to the listening party, unless the

adversary interferes and alters the symbol arbitrarily. In the

adversarial channel model with error rate ρ, the number

of such errors is at most ρn. For adaptive protocols the

communicating players are allowed to base their decision

on whether to transmit or listen (probabilistically) on the

complete communication history (see [4] for an in-length

discussion of this model). This can lead to rounds in which

both parties transmit or listen simultaneously. In the first

case no symbols are delivered while in the latter case the

symbols received by the two listening parties are chosen

by the adversary, without it being counted as an error. The
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outcome of a protocol is defined to be the transcript of the

interaction.

Robust Simulation: A protocol Π′ is said to robustly
simulate a protocol Π for an error rate ρ if the following

holds: Given any inputs to Π, both parties can uniquely
decode the transcript of an error free execution of Π on

these inputs from the transcript of any execution of Π′

in which at most a ρ fraction of the transmissions were

corrupted. This definition extends easily to s-list decoding
by allowing both parties to produce a list of s transcripts that

is required to include the correct decoding, i.e., the transcript

of Π. Another natural extension is the one-sided decoding in

which only one of the two parties is required to decode. For

a one-sided decoding interactive coding setting we assume

that the party to decode is fixed and known a priori. We

also consider randomized protocols in which both parties

have access to independent private randomness. We say a

randomized protocol robustly simulates a protocol Π with

failure probability p if, for any input and any adversary,

the probability that the parties correctly (list) decode is at

least 1 − p. We remark that in all settings the protocol Π′

typically uses a larger alphabet Σ′ and a larger number of

rounds N . Throughout this paper we only consider protocols

with constant size alphabets. We furthermore denote with a

coding scheme any algorithm that given oracle access to Π
gives oracle access to Π′. We denote with the computational
complexity of a coding scheme the number of computation

steps performed over N accesses to Π′ assuming that each

oracle access to Π is a one step operation.

Canonical Form: A non-adaptive protocol is called bal-
anced if in any execution both parties talk equally often.

We say a balanced protocol is of canonical form if it is

over binary alphabet and the two parties take turns sending.

Any (non-adaptive) protocol with m = O(n) rounds over

an alphabet with size σ = O(1) can be transformed to a

protocol of canonical form with at most O(m log σ) = O(n)
rounds which is equivalent when used over an error free

channel. We therefore assume that any protocol Π to be

simulated is an n-round protocol of canonical form. To

define the protocol Π, we take a rooted complete binary

tree T of depths n. For each node, one of the edges towards

children is preferred, and these preferred edges determine

a unique path from the root to a leaf. The set X of the

preferred edges at odd levels is given to Alice as input and

the set Y of the preferred edges at even levels is given

to Bob. The output of the protocol is the unique path P ,

called the common path, from the root to a leaf formed by

following the preferred edges. The protocol succeeds if both

Alice and Bob learn the common path P .

III. REDUCING UNIQUE DECODING TO LIST DECODING

For the rest of this paper, we consider the standard

information theoretic setting in which the adversary is com-

putationally unbounded.

In this section, we show how to use a list decodable

interactive coding scheme to build equally-efficient coding

schemes for adaptive or non-adaptive unique decoding and

also one-sided unique decoding.

A. Results

We start with the non-adaptive unique-decoding, which is

the more standard setting:

Theorem III.1. For any constant ε > 0, given a balanced
list decodable coding scheme with constant list size that
tolerates error-rate 1/4− ε, we get a (non-adaptive) unique
decodable coding scheme that tolerates error-rate 1/4− 2ε
with asymptotically the same round complexity, alphabet size
and computational complexity.

Theorem III.1 is interesting because of two somewhat

curious aspects: (a) As list decoding is a strictly weaker

guarantee than unique decoding, this theorem shows that

one can get the uniqueness of the decoding essentially for

free in the non-adaptive setting. (b) This theorem takes a

list decoder that tolerates a suboptimal error-rate—as it is

known that list decoders can tolerate error-rate 1/2−ε—and

generates a non-adaptive unique decoder which tolerates an

optimal error-rate.

Next, we present the reduction for the adaptive unique-

decoding setting:

Theorem III.2. For any constant ε > 0, given a balanced
list decodable coding scheme with constant list size that
tolerates error-rate 1/2 − ε, we get an adaptive unique
decodable coding scheme that tolerates error-rate 2/7− 2ε
with asymptotically the same round complexity, alphabet size
and computational complexity.

We next present the reduction for the newly introduced

setting of one-sided unique decoding, where only one

party—which is determined a priori—has to uniquely de-

code:

Theorem III.3. For any constant ε > 0, given a balanced
list decodable coding scheme with constant list size that
tolerates error-rate 1/2 − ε, we get a (non-adaptive) one-
sided unique decodable coding scheme that tolerates error-
rate 1/3−2ε with asymptotically the same round complexity,
alphabet size and computational complexity.

Note that the 1/3 − ε error-rate that can be tolerated

by Theorem III.3 is larger than the 2/7 error rate of the

more standard two-sided setting (or 1/4 if protocols are

not allowed to be adaptive), in which both parties have

to decode uniquely. This means that this slightly weaker

decoding requirement, which might be all that is needed in

some applications, allows for a higher error tolerance. This

makes one-sidedness a useful distinction. We also remark

that the 1/3 tolerable error rate is optimal (see [17]).
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Lastly, we also explain that using the same techniques, we

can reduce the list size of the list decodable coding schemes

to O(1/ε2):

Theorem III.4. For any constant ε > 0, given a balanced
list decodable coding scheme for n-round protocols that tol-
erates error-rate 1/2−ε with list size s and round complexity
N ′ = Ω(ns/ε), we get a balanced list decodable coding
scheme that tolerates error-rate 1/2− 2ε, with constant list
size s′ = O( 1

ε2 ) and round complexity O(N ′), while having
asymptotically the same alphabet size and computational
complexity.

B. Coding Schemes

In this section we describe our coding scheme which

underlie the reductions stated in Theorems III.1, III.2, and

III.3. All three reductions are built in a very similar manner

and can be viewed as following a common template. We

describe this coding scheme template in Section III-B1 and

then give the concrete instantiations for each of the coding

schemes in Section III-B2.

1) The Template of the Reductions: Parameters and
Structure: We denote the n-round protocol to be simulated

with Π, and we assume that Π is in the canonical form.

We further denote with Π′ the balanced list decoder coding

scheme that we assume to exist, which robustly simulates Π
and we use N ′, ρ′ and Σ′ to respectively denote the number

of rounds, the tolerable error-rate, and the alphabet of Π′. As

Π′ is balanced, each party transmits for N ′/2 rounds during

Π′. We denote with Π′′ the new coding scheme that achieves

unique decoding and we use N ′′, ρ′′ and Σ′′ to respectively

denote the number of rounds, the tolerable error-rate, and

the alphabet of Π′′.
We partition the N ′′ rounds of Π′′ into two parts: The

first part consists of b1N
′ rounds, which are grouped into

b1 blocks of N ′ rounds each. This part is called the joint
part and the blocks are called joint blocks. The second

part consists of b2N
′/2 rounds, which are grouped into b2

blocks, consisting of N ′/2 rounds each. This part is called

the exclusive part and the blocks in it are called exclusive
blocks. During the joint blocks, Alice and Bob send equally

often. In the exclusive part, only one party is supposed to

talk. Which party talks in the exclusive part is either agreed

upon in advance (as for Theorem III.3) or decided adaptively

(as for Theorem III.2).

Encoding: During the protocol Π′′, Alice and Bob respec-

tively maintain sets EA ⊂ X and EB ⊂ Y , which are

subsets of their preferred edges (see the the canonical form
paragraph in Section II for the definitions). In the beginning

of the simulation Π′′, these edge-sets are initialized to be

empty. Intuitively, these edge-sets correspond to the set of

edges Alice and Bob believe could be on their common path.

In each joint block Alice and Bob run the list-decodable

simulation Π′ and obtain a list of s potentially correct

common paths. Each party first discards obviously incorrect

paths from its list (those containing non-preferred edges

owned by themselves) and then adds all owned edges from

all remaining paths to its respective edge-set EA or EB .

The size of these edge-sets increases therefore by at most

sn edges per block for a total of at most b1sn edges. The

edges furthermore form a tree, that is, for every edge all

the ancestor edges owned by the same party are included as

well. This allows one to encode each such edge-set using

4(b1sn) bits, because the number of size b1sn subtrees of

the complete binary tree is at most 24(b1sn).

In addition to running the list decoder in each block and

adding edges to the sets EA and EB (which we refer to

as E-sets), both parties also send their current E-sets to

each other using error correcting codes. At the beginning of

each block, both parties encode their current E-set into a

codeword consisting of N ′/2 symbols from an alphabet of

size σECC = O(1/ε) using an error correcting code with

relative distance of 1 − ε. This is where the assumption of

N ′ = Ω(ns/ε) comes in, as then N ′/2 is large enough that

can contain an error-correcting coded version of messages of

length 4b1ns with relative distance 1− ε. During the block

they add this codeword symbol by symbol to their transmis-

sion leading to the output alphabet size being [σECC ]×Σ′.
In the exclusive part, the party that is speaking uses the N ′/2
rounds of each block to send the codeword of its (final) E-

set symbol by symbol over the same output alphabet.

Decoding: All decoding decisions only rely on the received

possibly-corrupted codewords. We describe how the decod-

ing works for Alice; Bob’s decoding procedure is the same.

For every i, Alice combines the symbols received from

Bob during block i to the string xi. Without any channel

corruptions xi would correspond to the codeword encoding

the set EB at the beginning of block i. Alice decodes

xi to the closest codeword x̂i which corresponds to the

edge-set Êi and assigns this decoding a confidence ci is

defined as ci = 1 − 2Δ(xi,x̂i)
N ′/2 , where N ′/2 is the length

of error-correcting code. Alice then combines Êi with all

preferred edges she owns and determines whether these

edges together give a unique path. If so Alice calls this path

τ̂i and otherwise she sets τ̂i = ∅. Given a set of decoded

paths τ̂1, τ̂2, . . . and their confidences c1, c2, . . . we denote

for any path τ its confidence with c(τ) =
∑

i:τ̂i=τ ci and

define the majority path τmax to be the non-empty path that

maximizes this confidence. Lastly we define the combined

confidence C as C =
∑

i ci.

For Theorem III.4, the decoding procedure is slightly

different: In each block, Alice list-decodes xi to the L =
O(1/ε) closest codewords x̂1

i , . . . , x̂L
i which respectively

correspond to edge-sets Ê1
i , . . . , ÊL

i , and thus paths τ̂1i , . . . ,

τ̂Li . All these paths are output in the end of the algorithm.

2) Setting the Parameters for the Reductions: We now

describe with what parameters the template from Sec-
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1/� blocks 3/� blocks 

1/� blocks 

Non-Adaptive Unique Decoding Adaptive Unique Decoding 

both parties decode (by majority) At least one party decodes safely (combined confidence > 1/�) 
and transmits: 

Any party that has not already decoded decodes (by majority) 

1/� blocks 

1/� blocks 

(Non-Adaptive) One-Sided Unique Decoding 

      Alice decodes (by majority) 

Figure 1. The instantiations of the coding scheme template from Section III-B1 for the three settings considered in Section III-A, namely Theorem III.1,
Theorem III.2, Theorem III.3. The instantiation for Theorem III.4 is similar to that of Theorem III.1.

tion III-B1 is employed to lead to the three coding scheme

claimed in Section III-A:

For Theorem III.1, we use a very simple version of the

template from Section III-B1, in particular, we do not use

the exclusive part. The complete protocol consists N ′′ =
1
εN

′ rounds, all in the joint part, which are grouped into

b1 = 1
ε joint blocks. To decode both parties simply output

the majority path in the end.

For Theorem III.2, we use the template from Sec-

tion III-B1 with N ′′ = 3.5
ε N ′ rounds which are grouped

into b1 = 3
ε joint blocks and b2 = 1

ε exclusive blocks.

After the joint part both parties determine the quantity

C ′ = 2(c(τmax)+ c(∅))−C and declare the majority path a

safe decoding if C ′ > 1/ε. For the exclusive part both parties

make the following adaptive decision: If a party has safely

decoded it will transmit in the exclusive part otherwise it

will listen and declare the majority path as a decoding in

the end.

For Theorem III.3, we use the template from Sec-

tion III-B1 with N ′′ = 1.5
ε N ′ rounds which are grouped into

b1 = 1
ε joint blocks and b2 = 1

ε exclusive blocks. Assuming

that Alice is the party which is interested in decoding in the

end, during the exclusive blocks Alice will be listening while

Bob is transmitting. To decode Alice outputs the majority

path in the end.

For Theorem III.4, we use the template from Sec-

tion III-B1 with no exclusive part: N ′′ = 1
εN

′ rounds, all in

the joint part, which are grouped into b1 = 1
ε joint blocks.

At the end, each party outputs all the paths created in the

decoding procedure, which are s′ = O(1/ε2) many.

C. Analysis
As a sample, here we present the analysis for the non-

adaptive setting, i.e., Theorem III.1. The proofs of the other

reductions are deferred to [17]. In particular, the analysis of

the adaptive setting is considerably more involved.
Proof of Theorem III.1: As described in Section III-B2

we use the template from Section III-B1 with b1 = 1/ε joint

blocks. We show that for the correct path τ and for both

parties the inequality c(τ) > (C − c(τ)− c(∅)) holds. This

means that for both parties the confidence into the path τ
is larger than the confidence in all other (non-emtpy) paths

combined. This also implies that the majority path τmax is

a correct decoding for both parties.
To prove this we fix one party, say Alice, consider the

quantity C ′ = c(τ)− (C− c(τ)− c(∅)) for her, and analyze

the contribution of each block towards this quantity. We split

the execution into two parts according to the first block in

which the list decoder succeeded and prove the claim for

both parts separately. In particular we define i∗ to be the

first block at which the list decoder succeeded, that is, the

first block after which the edge set EA ∪ EB contains the

common path P of Π. We claim that the contribution towards

C ′ of any block i �= i∗ is at least 1− 4ei − 4ε where ei is

the fraction of transmissions with an error in block i.
We first prove this claim for block i > i∗. In these blocks

the codeword transmitted by Bob corresponds to the correct

path τ . Since the error correcting code employed has a dis-

tance of at least 1− ε we get that Alice correctly decodes to

τ if less than a 1/2−ε/2 fraction of Bob’s transmissions are

corrupted. The confidence ci of this block then contributes

positively to C ′. It furthermore holds that ci = 1 − 2eA
where eA is fraction of errors on Alice which is at most
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twice the fraction of errors ei in this block. This makes the

contribution of block i at least 1 − 4ei > 1 − 4ei − 4ε as

desired. For the case that more than a 1/2− ε/2 fraction of

the transmissions to Alice are corrupted she might decode

to a different path which makes the confidence of this block

contribute negatively to C ′. We still get that the contribution

−ci is at least −(1− 2(1− ε− eA)) > 1− 2ε− 4ei.
We also need to show that our claim holds for blocks

i < i∗. The analysis for these blocks is the same except that

the codeword sent out by Bob might correspond to the empty

path. If few transmissions towards Alice get corrupted she

might decode to τ̂i = ∅ which leads to a zero contribution

towards C ′. We need to verify that in this case we do not

claim a positive contribution. What saves us is that for any

block i < i∗ it holds that ei > 1/4 − ε since otherwise

the list decoder would have been successful in block i. This

means our assumed contribution of 1 − 4ei − 4ε is never

larger than zero which completes the proof of the claim for

all blocks i �= i∗.
Finally, using the claim, the assumption that the global

fraction of errors eave is at most 1
4 − 2ε, and summing over

the contributions of all blocks we get:

C ′ ≥
∑
i�=i∗

(1 − 4 ei − 4

ε
) − |c(i∗)|

> (b1 − 1) − 4
∑
i

ei − 4b1
ε

− 1

= (
1

ε
− 1) − 4 b1 eave − 4 − 1

≥ 1

ε
− 4

ε

(
1

4
− 2ε

)
− 6 = 2 > 0.

As desired, this shows that an error rate of at most 1
4 −

2ε results in both parties recovering the correct path τ by

choosing the majority path.

IV. BOOSTING LIST-DECODERS

In this section, we present a generic boosting approach

for improving the efficiency of list decoders. In partic-

ular, the boosting we present here improves the round
complexity (blow up) of the list decoders and also leads

to computationally efficient list-decoders, even from list-

decoders with, e.g., exponential computational complexity.

More concretely, as the basic boosting step, we explain that

assuming a list-decoder coding scheme for O(log2 n)-round

protocols, we can create a list-decoder coding scheme for

n-round protocols with round complexity blow up similar

to that of the O(log2 n)-rounds protocol and near-cubic

computational complexity. A more advanced version with

near-linear computational complexity appears in [17]. We

explain in [17] how to recursively apply this boosting to

get efficient list-decoders and then combine them with the

reduction results to prove Theorems I.1 and I.2. For ease of

readability we will use Õ-notation to hide logO(1) n factors.

A. Basic Boosting Step: From Poly-logarithmic Protocols to
Linear Protocols

Here we show how to boost any list-decoder for protocols

with O(log2 n) rounds to a list-decoder for protocols with n
rounds, while loosing only an additive ε′ term in the tolerable

error rate and 1
ε′ factors in the round complexity and list size.

More formally, we prove the following:

Theorem IV.1. For any failure-exponent C = Ω(1),
any C ′ = Ω(C), and any error-rate loss ε′ such that
2 log 5

ε′ ≤ C log2 n, the following holds: Suppose there
is a list-decodable coding scheme that robustly simulates
any C ′ log2 n-round protocol, while tolerating error rate ρ,
and such that it has list size s = Õ(1), round complexity
RC ′ log2 n, computational complexity T , and failure proba-
bility at most 2−C log2 n. Then, there exists a randomized list
decoding coding scheme for n-round protocols that tolerates
error rate ρ − ε′ and has list size s′ = O( s

ε′ ), round
complexity O(RC′

ε′ ·n), computational complexity Õ( n3

ε′2 ·T ),
and failure probability 2−Cn.

For simplicity, the reader might think of C and C ′ as large

enough constants. Furthermore, the condition 2 log 5
ε′ ≤

C log2 n is a technical condition that is needed for the

generality of this boosting but it is readily satisfied in all

applications of interest in this paper.

Remark about the Computational Complexity of The-
orem IV.1: For simplicity, in this section we present a

boosting step that has computational complexity of Õ(n3).
In [17], we present a more advanced version which has a

computational complexity of Õ(n).
Proof Outline of Theorem IV.1: Let Π be the original

n-rounds protocol in the canonical form (see Section II), let

T be its binary tree in the canonical form, and let Eodd

and Eeven respectively represent the edges of T starting

from odd and even levels. Furthermore, let X ⊂ Eodd and

Y ⊂ Eeven respectively be the preferred edges inputs of

Alice and Bob. Finally, let P be the common path in X ∪Y .

The new coding scheme runs in N = 10RC′
ε′ · n rounds.

These rounds are partitioned into N ′ = 10
ε′ · n

log2 n
meta-

rounds, each of length RC ′ log2 n rounds. Furthermore, we

break Π into blocks of length log2 n rounds. In the simula-

tion Π′ of Π, Alice and Bob always maintain edge-sets ĒA

and ĒB , respectively, which are rooted sub-trees of T and

such that we have ĒA ∩ Eodd ⊆ X and ĒB ∩ Eeven ⊆ Y .

Hence, always ĒA∩ĒB is a rooted sub-path of the common

path P . Initially, we have ĒA = ĒB = ∅. In the course of

the simulation, we grow the edge-sets ĒA and ĒB by adding

at most s many blocks per meta-round. If a block added to

ĒA ends at a leaf of T , then Alice adds a vote to this leaf,

and Bob does similarly with respect to ĒB . We show that,

at the end, if the total error-rate is less than ρ− ε′, then for

both Alice and Bob, the leaf of the common path is among

the s′ = O( s
ε′ ) many leaves with the most votes.
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Algorithm 1 Boosting List-Decoder, at Alice’s Side

1: X ← the set of Alice’s preferred edges;
2: ĒA ← ∅;
3: N ′ = 10

ε′ · n
log2 n

;

4: for i = 1 to N ′ do
5: Simulate the following C′ log2 n-rounds protocol in R ·

C′ log2 n rounds:
6: Search Phase: Find the deepest common

path in ĒA ∩ ĒB, let it be P ′.
7: Path-Extension Phase: Execute the protocol

on the block extending P ′.
8: S ← s list-decodings of possible original outcomes of this

protocol
9: for each outcome σ ∈ S do

10: B ← block executed in the path-extension phase of σ
11: if B is a path in T and B ∩ Eodd ⊂ X then
12: ĒA ← ĒA ∪ {B}
13: if B ends at a leaf v then
14: v.vote← v.vote+ 1
15: Output the O(s/ε′) leaves with the most votes

Ideally, we would like each meta-round to simulate one

block and if the error-rate is at most ρ, then this meta-round

should make a progress of length log2 n along the common

path P . That is, we would like that in each meta-round in

which error-rate is at most ρ, |(ĒA∩ĒB)∩P | grows by one

block. However, realizing this ideal case faces one important

challenge: in each meta-round, we cannot be sure of the

correctness of the past blocks as the adversary could have

corrupted them by investing enough errors. To remedy this

issue, in each meta-round, the two parties first try to find

the deepest block that has been computed correctly in the

past; we call this the search phase. Then the two parties

simulate the next block extending from there downwards on

P; we call this the path-extension phase. The search phase

takes Θ(C log2 n) rounds while the path-extension phase

takes log2 n rounds. We choose the constants such that the

total number of communications in search phase plus that of

the path-extension phase is at most C ′ log2 n rounds. This

is doable because of the condition C ′ = Ω(10C) in the

statement of the lemma. Then, these C ′ log2 n rounds of

communication are wrapped in (and thus protected via) the

list decodable coding scheme of C ′ log2 n rounds, in the

RC ′ log2 n rounds of the meta-round. What we do on top

of this list-decoder in each meta-round is as follows: for

each meta-round, there are at most s suggested transcripts.

The parties add the extension blocks of these s transcripts

to their edge-sets ĒA and ĒB (but of course only if the

block is consistent with the party’s own local input X or Y ,

otherwise the block gets discarded). Furthermore, for each

of the s transcripts, there is one path which is found in

the search phase. If this path ends at a leaf, we add one

vote to this leaf. At the end of the whole simulation, each

party outputs the s′ = O( s
ε′ ) leaves with the most votes. A

pseudocode is presented in Algorithm 1.

Figure 2. The Tree-Intersection Problem

In the above sketch, we did not explain how to solve

the search phase. We abstract this phase as a new two

party communication complexity problem over a noiseless

channel, which we call the tree-intersection problem, and

discuss in Section IV-A1. In particular, we explain how this

problem can be solved in O(log2 n) rounds with failure

probability 1−2C log2 n, and with computational complexity

of Õ(n). Having solved the search phase, we complete the

proof with a few simple arguments in Section IV-A2. In

particular, we show that in each meta-round in which the

error-rate is less than ρ, with probability at least 1−2C log2 n,

either |(ĒA ∩ ĒB) ∩ P | grows by at least one block or

if |(ĒA ∩ ĒB) ∩ P | already contains a leaf, then this leaf

receives one more vote. We then show that with probability

at least 1−2−Cn, the leaf at the end of the common path P
receives at least Θ(N ′ε′) votes. On the other hand, each of

ĒA and ĒB can contain a total vote of at most N ′ ·s. Hence,

we get that the correct path is among the s′ = O( s
ε′ ) leaves

with the most votes, with probability at least 1− 2−Cn.

1) The Tree-Intersection Problem:

Definition IV.2. (The Tree-Intersection Problem) Suppose
that Alice and Bob respectively have edge sets ĒA and ĒB

that correspond to subtrees of a complete binary tree T of
depth n rooted at the root of T , and that |ĒA| ≤ M and
|ĒB | ≤M , where M = Õ(n). Now, given the promise that
P = ĒA ∩ ĒB is a path, Alice and Bob want to recover the
path P with as little communications over a noiseless binary
channel as possible, while failing to so only with negligible
probability.

Figure 2 shows an example of this problem where edges

in ĒA and ĒB are indicated with blue and red arrows,

respectively, and the path P is the path from the root to

the green node.

We present a simpler O(C log2 n) rounds solution, in

Lemma IV.3, which explains the main approach but has

failure probability at most 2−Ω(C logn). In [17], we give an

improved version with similar round complexity but a failure

probability of at most 2−Ω(C log2 n).

Lemma IV.3. For any C, there is a tree-intersection pro-
tocol which uses O(C log2 n) rounds of communication
on a binary channel, O(C log n) bits of randomness, and
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polynomial-time computation, and finds path P with failure
probability at most 2−C logn. This protocol has computation
complexity Õ(CM).

Proof: Alice samples Θ(C log n) random bits and sends

them to Bob. This defines a hash function h : {0, 1}n →
{0, 1}Θ(C logn). Choosing large enough constants, we have

that the probability that there are two different paths (among

the paths of Alice and Bob) that have equal hash-values is

at most M2 · 2−Θ(C logn) ≤ 2−C logn, where the M2 is

for a union bound over all pairs. In the rest, we assume

that no two different paths have equal hash values and we

use this hash in a binary search for finding the intersection

P = ĒA ∩ ĒB .

Alice finds an edge e ∈ ĒA that cuts her edge-set ĒA in

two “semi-balanced” parts, each containing at least |ĒA|/3
edges. That is, an edge e such that the following holds: let

Te be the subtree of T below edge e. Then, edge e should

satisfy |ĒA|/3 ≤ |ĒA ∩ Te| ≤ 2|ĒA|/3. Note that such

an edge e exists and also can be found in Õ(CM) time.

Once Alice finds such an edge e, she then sends h(Pe) to

Bob, where h(Pe) is the hash-value of the path Pe starting

from the root and ending with edge e. Bob checks whether

he has a path with the same hash-value h(Pe) and reports

the outcome to Alice by sending one bit. If there is a path

with matching hash value, then e is construed to belong to

the common path. Otherwise, if there is no such path with

matching hash-value, this is construed as e not belonging to

the common path. In either case, Alice can discard at least

a 1/3 fraction of ĒA. This is because, if e is not on the

common path, then every edge in ĒA∩Te can be discarded.

On the other hand, if e is on the common path, then we are

sure that the path starting from the root and ending with e
is in the common path. Thus, edges on this path can be also

ignored from now on as certainly being on the path and the

remaining problem is to only solve the tree-intersection in

Te. Note that any edge that diverges from Pe before e gets

discarded as well as it cannot be on the common path P .

Iterating the above step log3/2 n times leads to Alice

finding the common path. Alice can then report this path

to Bob by just sending the related hash value. The whole

procedure succeeds if the hash-values of different paths in

ĒA ∪ ĒB are different which as discussed before happens

with probability at least 1− 2−C logn.

To reduce the failure probability to 2−Ω(log2 n), the key

change is that we use a probabilistic binary search approach

instead of the deterministic binary search used above. The

main point is to try to cover for the possibility that each

hash-value checking step can fail with probability 2−Θ(logn)

by allowing backtracking in the binary search. We note that

getting this better 2−Ω(log2 n) failure probability, that is a

failure probability that is exponential in the communication

complexity of the tree-intersection solution, is most inter-

esting for our non-uniform deterministic coding schemes,

which are given in [17].

2) Completing the Basic Boosting Step: We now com-

plete the proof of Theorem IV.1. We first show that for

each meta-round with small error-rate, this meta-round either

makes a block of progress on the common path or it adds a

vote to the leaf at the end of the common path.

Lemma IV.4. In each meta-round in which error-rate is at
most ρ, with probability at least 1 − O(2−C log2 n), either
|ĒA ∩ ĒB ∩P| increases by log2 n or one vote is added to
the leaf at the end of P , on both of Alice and Bob’s sides.

Proof: Note that in the absence of errors, each meta-

round would with probability at least 1−2−2C log2 n find the

deepest path in ĒA ∩ ĒB and then extend it by one block

along P (if it already does not end in a leaf). The list-

decoding coding scheme for C ′ log2 n round protocols pro-

vides the following guarantee: if the error-rate in this meta-

round is at most ρ, with probability at least 1− 2−2C log2 n,

we get a list of s possible transcripts of this log2 n round

protocol, one of which is correct. In the algorithm, we add all

of the s possible new blocks, one for each transcript, to ĒA

and ĒB , and also if the blocks end at a leaf, we add one vote

to the respective leaf. Hence, if the meta-round has error-rate

at most ρ, with probability at least 1−O(2−2C log2 n), either

|ĒA ∩ ĒB ∩P| increases by one block or each of Alice and

Bob add one vote to the leaf at the end of P .

Proof of Theorem IV.1: Let us call a meta-round bad if

one of the following holds: (a) its error-rate is greater than

ρ, (b) its error-rate is less than ρ but the parties neither make

one block of progress along P together nor they both add

a vote to the leaf at the end of P . At most ρ−ε′

ρ fraction of

the meta-rounds have error-rate greater than ρ. On the other

hand, Lemma IV.4 tell us that in each meta-round with error-

rate at most ρ, with probability at least 1−O(2−2C log2 n),
parties either both make one block of progress along P or

both add a vote to the leaf at the end of P . Thus, with

probability at least 1−2−Cn, the number of bad meta-rounds

in which error-rate is less than ρ is at most ε′N ′/2. This is

because, the probability that there are more than ε′N ′/2 such

meta-rounds is at most

N ′∑
i=ε′N ′/2

(
N ′

i

)
O(2−C log2 n)i ≤

N ′∑
i=ε′N ′/2

(
5

ε′
)i · 2−iC log2 n

≤
N ′∑

i=ε′N ′/2

2i(log
5
ε′−C log2 n) ≤ 2−

N′ε′
4 ·C·log2 n,

which is less than or equal to 2−Cn. Hence, with probability

at least 1−2−Cn, the fraction of bad meta-rounds is at most
ρ−ε′

ρ + ε′
2 ≤ 1 − ε′/2. Therefore, there are at least N ′ · ε′

2
good meta-rounds. Note that each good meta-round either

extends the common path along P by one block or adds a

vote to the leaf at the end of P . On the other hand, at most
n

log2 n
≤ N ′ε′

4 meta-rounds can be spent on extending the
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common path along P by one block each. Hence, the leaf

at the end of P receives at least N ′ε′
2 − N ′ε′

4 ≥ N ′ε′
4 votes.

On the other hand, each of ĒA and ĒB can contain at most

N ′ · s votes. Therefore, with probability at least 1− 2−Cn,

the correct path is among the O( s
ε′ ) leaves with the most

votes.

V. PROVING THE END RESULTS

Lastly, we explain how to combine the reduction tech-

nique of Section III with the list-decoders derived via

boosting in Section IV to prove the main end results of this

paper, namely Theorems I.1 and I.2 and Remark I.3.

Proof of Theorem I.1: To prove this theorem, we

view the unique decoding coding scheme of Braverman

and Rao [1] as a list-decoding that tolerates error rate

1/4−ε/2. Thus, we get a deterministic list decodable coding

scheme, with list size 1, for any O((log log log n)2)-round

protocol over a channel with alphabet size O(1/ε) and

error-rate 1/4 − ε/2, round complexity O((log log log n)2)
and computational complexity Õ(log n). We then boost this

list-decoder to a list-decoder for n-round protocols with

communication complexity N = O(n). As the result, we

get a list-decoder for any n-round protocol that has round

complexity O(n), constant list size of O(1/ε2), failure

probability 2−Θ(n), and computational complexity Õ(n).
Then, we apply Theorem III.1, which gets us to a unique

decoder that tolerates error-rate 1/4−ε and thus finishes the

proof of Theorem I.1.

Proof of Theorem I.2: Braverman and Efremenko

[16] present a list-decodable coding scheme that toler-

ates error-rate 1/2 − ε/2 and has linear communication

complexity and exponential compuational complexity. By

recursively boosting this list-decoder, we get a randomized

list-decodable coding scheme that robustly simulates any n-

round protocol in O(n) rounds tolerating error rate 1/2− ε
with list size O(1/ε2), computational complexity Õ(n),
and failure probability at most 2−ω(n). This already gives

item (C) of Theorem I.2. Combining this list decoder with

Theorems III.2 and III.3 provides items (A) and (B) of

Theorem I.2 respectively.

The proof for Remark I.3 is similar to the proofs of

Theorems I.1 and I.2 with the exception that we use our

non-uniform deterministic list-decoder boosting procedures

instead of the randomized ones. It is deferred to the full

version [17].
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