
Online bipartite matching in offline time

Bartłomiej Bosek∗, Dariusz Leniowski†, Piotr Sankowski† and Anna Zych†
∗Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,

Jagiellonian University, Kraków, Poland, Email: bosek@tcs.uj.edu.pl
†Institute of Computer Science, University of Warsaw, Warszawa, Poland, Email: {d.leniowski,sank,anka}@mimuw.edu.pl

Abstract—This paper investigates the problem of maintaining
maximum size matchings in incremental bipartite graphs. In this
problem a bipartite graph G between n clients and n servers is
revealed online. The clients arrive in an arbitrary order and
request to be matched to a subset of servers. In our model we
allow the clients to switch between servers and want to maximize
the matching size between them, i.e., after a client arrives we find
an augmenting path from a client to a free server. Our goals in
this model are twofold. First, we want to minimize the number
of times clients are reallocated between the servers. Second, we
want to give fast algorithms that recompute such reallocation.

As for the number of changes, we propose a greedy algorithm
that chooses an augmenting path π that minimizes the maximum
number of times each server in π was used by augmenting paths
so far. We show that in this algorithm each server has its client
reassigned O(

√
n) times. This gives an O(n3/2) bound on the

total number of changes, what gives a progres towards the main
open question risen by Chaudhuri et al. (INFOCOM’09) who
asked to prove O(n log n) upper bound. Next, we argue that the
same bound holds in the decremental case. Moreover, we show
incremental and decremental algorithms that maintain (1 − ε)-
approximate matching with total of O(ε−1n) reallocations, for
any ε > 0.

Finally, we address the question of how to efficiently com-
pute paths given by this greedy algorithm. We show that by
introducing proper amortization we can obtain an incremental
algorithm that maintains the maximum size matching in total
O(
√
nm) time. This matches the running time of one of the

fastest static maximum matching algorithms that was given by
Hopcroft and Karp (SIAM J. Comput ’73). We extend our result
to decremental case where we give the same total bound on the
running time. Additionally, we show O(ε−1m) time incremental
and decremental algorithms that maintain (1 − ε)-approximate
matching for any ε > 0. Observe that this bound matches the
running time of the fastest approximate static solution as well.

Index Terms—online matchings; bipartite matchings; incre-
mental and decremental algorithms; approximate matchings;

I. INTRODUCTION

In this paper, we study an incremental bipartite matching

problem, which corresponds to a scenario in which clients

arrive online and request service from a set of given servers.

Each client arrives together with a set of servers being able

to handle his request. In this scenario we want to provide the

service to as many clients as possible. Hence, when necessary

we reallocate the clients between the servers, and the cost of

the solution is the total number of times a client is allocated

to a server during the course of this reallocation process.

The solution to this problem needs to find an augmenting

This work was partially supported by ERC StG project PAAl 259515,
FET IP project MULTIPEX 317532, NCN grant 2013/11/D/ST6/03100 and
N206 567940.

path (a path that alternates between matched and unmatched

edges) in the current graph from the client to some unused

server. Using this language we can define, in an equivalent

way, the cost to be equal to the total length of all augmenting

paths. This approach contrasts with the model introduced by

Karp, Vazirani and Vazirani in [14], where clients are assigned

to servers permanently. Our model was introduced by Grove

et al. [8] in ’95, where the authors applied competitive analysis

to show an O(log n) bound when each client was connecting to
at most two servers. Next, the model was studied by Chaudhuri

et al. [7] where a total bound of O(n log n) was shown in

some very restricted models, e.g., forests or random graphs

with degree Θ(log n). These special cases led the authors to

conjecture that a greedy algorithm that chooses the shortest

augmenting path achieves a bound of O(n log n). However,
they were unable to make any progress in the general case

where only the trivial bound of O(n2) is known. Hence, our

result constitutes a step towards resolving this main open

problem from [7]. Here, we propose a new greedy algorithm

for this problem. It uses the notion of a rank of a server-vertex,

which denotes the number of times the server was used by an

augmenting path so far. In each step it chooses an augmenting

path π that minimizes the maximum rank of vertices on π.
We prove that this algorithm reallocates each client at most

O(n1/2) times which gives the total bound of O(n3/2).
As argued in [7] the above model has a wide set of

applications in very diverse areas of computer science, e.g.,

streaming content delivery, web hosting, remote data storage,

job scheduling, hashing, etc. In all these applications we have

some clients (jobs for scheduling, or objects for hashing)

arriving online that have to be allocated to some fixed set

of servers (table cells for hashing). In all these cases we do

not want to drop clients from service, but prefer to reallocate

them so that as many clients as possible are satisfied. Here,

the cost of not serving a client is much higher then the cost of

reallocating the client to another server (e.g., copying an object

in a hash table is cheap). Still we would like to minimize the

cost of these changes. It is somewhat astonishing that despite

the usefulness of this model no better solution then the naive

O(n2) one was known till now.

Besides solving the incremental case, we extend our results

in a twofold way. First, we show that the same bound holds

in the decremental case, what follows by an easy reduction.

Second, we show an incremental as well as decremental

algorithm that is able to maintain (1−ε)-approximate matching

using O(ε−1n) changes, for any ε > 0. This shows that by

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.48

384

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.48

384

dropping an arbitrary small, but constant fraction of clients,

an optimal linear bound on the number of changes can be

obtained. Previously, in this incremental approximate model

the best solution was either to use the algorithm of [14] to get

(1−1/e)-approximation in O(n) reallocations, or to maintain

exact matching in O(n2) reallocations.
So far we have been only counting the number of changes

to the matching. Let us now change the perspective a bit

and let us now consider the time needed to find these aug-

menting paths. Observe that our greedy algorithm can be

implemented using bottleneck shortest paths, which can be

found in O(m + n log n) time using Dijkstra’s algorithm.

Hence, a naive implementation of our algorithm would be very

inefficient as it would require O(nm + n2 log n).1 However,

our algorithm has an important property that the greedy paths

it finds can be defined locally. In other words, we can show that

no global information (e.g., shortest path distances) needs to be

maintained in the graph to find the greedy paths. This allows us

to devise a path search procedure that amortizes the required

work in an efficient way. Intuitively the idea is to assign to each

fixed vertex a number called rank that will only increase. Each

time we try to look for a path that minimizes the ranks, and if

we do not find one we raise them by one. We know that there

always exists an augmenting path of rank bounded by O(
√
n),

so either we find a path or exceed this bound and know

that there is no augmenting path. This leads to incremental

and decremental algorithms that maintain maximum matching

in total O(
√
nm) time. Previously, only the trivial O(nm)

time solution was known. With this respect it is somewhat

surprising that our algorithm finds augmenting paths one by

one without looking on the whole graph when doing so. In

particular, our running time matches one of the best offline

solutions to the problem [10], but within the same bound

computes not only one maximum matching, but n of them.

Our algorithm can be extended to maintain (1−ε)-approximate

matching in O(ε−1m) total time, for any ε > 0. Again this

solution improves over the O(m) time (1− 1/e)-approximate

algorithm implied by [14] and matches the running time of

the best offline solution.2

Finally we extend the algorithm to graphs with integer edge

weights bounded byW , where it is able to maintain maximum

weight matchings in total O(W 3/2
√
nm) time, or (1 − ε)-

approximation of them in total O(Wε−1m) time.

The bipartite matching problem is a central problem in com-

binatoric optimization and has a wide variety of applications,

as it models the paradigmatic case of allocating objects to

agents. Hence, having a tool to maintain such allocations in

an incremental case is a very useful instrument. With this

respect we note that our algorithms are purely combinatorial

and very easy to implement. Implementation wise, our solution

in some aspects is easier then the Hopcroft-Karp algorithm.

We use only one graph search procedure (e.g., DFS or BFS),

1The same bound holds for the algorithm proposed in [7], but there seem
to be no possibility to improve it.

2It is folklore that running O(ε−1)-phases of the Hopcroft-Karp algorithm
results in (1− ε)-approximate matching and takes O(ε−1m) time.

whereas Hopcroft-Karp algorithm uses alternative calls to both

DFS and BFS. Efficiency wise, our algorithms should perform

in practice in a similar way as Hopcroft-Karp algorithm. We

are not going to review all possible applications here, let us

just mention one that gained a lot of attention recently, i.e.,

the AdWords problem [15]. In this application we indeed

need to take care of vertices that arrive online. Moreover,

we note that the algorithms that allocate AdWords might be

guided by a solution constructed incrementally from previous

requests. However, due to the large data size it is impossible to

recompute each time the optimal solution, and only (1−1/e)-
approximate allocation can be used [16]. Hence, our frame-

work could deliver tools that would allow to maintain better,

or even optimal, solution in this application.

a) Related Work: Our work is most closely related to two

lines of research. The first one, as discussed above, is the study

of online matchings with augmentations [8], [7]. The second

one is the recent series of papers on dynamic matchings [12],

[20], [18], [4], [17], [9], [2]. One should note, however, that

in all these papers a different dynamic model is studied. First,

these papers consider edge updates (insertion and deletion of

edges), whereas we consider vertex updates. As pointed above

this model is closer to some applications then edge updates

scenario, this was pointed as well in [5], [6], where it was

noted that vertex-update dynamic problems are often more

challenging. Second, all of them consider a more general fully-

dynamic model, where the sequence of updates consists of

intermixed insert and delete operations. When comparing these

results with our incremental or decremental ones we derive

the total time needed to handle m edge updates using these

approaches. We first note that the solutions given in [12], [20]

lose against the O(nm) time algorithms, that is obtained by

executing a search for an augmenting path each time a vertex

is added or removed. On the other hand, the solution of [18] is

superseded by [4] both in the running time and approximation

factor. The solution of [4] results in a decremental as well

incremental 1/2-approximate algorithm working in total of

O(m log n) time. Here, we improve this by giving (1 − ε)-
approximation in O(ε−1m) total time. As for both [17], [9],

the algorithm in [9] gives a better approximation than [17] in

essentially the same running time. When translated into our

model these result imply an algorithm that maintains (1− ε)-
approximate matching in O(ε−2m

√
m) total time. Our results

compare well by giving either the same guarantee in much

smaller O(ε−1m) total time, or by allowing to maintain exact

maximum in better O(
√
nm) time. As for the weighted case

none of the papers [17], [9], [2], where the problem is stud-

ied, is able to dynamically maintain exact maximum weight

matching even when weights are bounded by a constant. On

the other hand, we note that [9] implies an O(Wε−2
√
mm)

time algorithm that maintains (1 − ε)-approximate matching.

Here, again our O(Wε−1m) time algorithm gives a visible

improvement.

Recently there was some progress on showing lower bound

on the running time of dynamic algorithms [19], [1]. The

second of these papers basing on some conjectures shows

385385

polynomial lower bounds on the running time of incremental

and decremental maximum matching algorithms. However,

these result do not apply to our model, as they work with edge

updates. There is no known reduction going in the required

direction, because intuitively it would require to add vertices

on both sides of the graph.

Finally, we note that our model is related to the online load

balancing of permanent task with preemption. This model has

been studied in many papers (see [3] for a survey). However,

in our model we assume hard capacity constraints, whereas

in the load balancing models one usually assumes that the

capacities are soft, i.e., the capacities can be exceeded and

one is interested in minimizing the maximum load. Hence,

these results have somewhat different objectives.

b) Paper Overview: In the next section we formally

define our problem, and introduce the basic framework that

will be employed by our greedy approach. In Section III

we prove some basic properties of ranks in this framework,

whereas in Section IV basing on these properties we give the

O(
√
n) upper bound on maximum ranks. Next, in Section V

we give all the details of the amortized implementation of

our algorithms. In Section VI we describe extensions of our

result to approximate, as well as, to decremental and weighted

scenario. Finally, Section VII concludes the paper and gives

some interesting open problems.

II. PRELIMINARIES

In this section we formally define the online maximum

matching problem in bipartite graphs and introduce the general

framework we use to approach this problem. Let W and B
be two sets of vertices over which the bipartite graph will be

formed. The set W is given up front to the algorithm, i.e.,

corresponds to servers, whereas the vertices in B (clients)

arrive online. Throughout the paper, the vertices of W are

referred to as white and the vertices of B are referred to

as black. We denote by Gt = 〈W �Bt, Et〉 the bipartite

graph after the t’th black vertex has arrived. The graph Gt

is constructed online in the following manner:

• we start with G0 = 〈W �B0, E0〉 = 〈W �∅,∅〉;
• in turn t a new vertex bt ∈ B together with all its incident

edges E(bt) is revealed and Gt is defined as:{
Et = Et−1 ∪ E(bt),

Bt = Bt−1 ∪ {bt} ;
• we finish when t = |W |, i.e., the number of black vertices

is equal to the number of white vertices.

The goal of our algorithm is to compute for each Gt the

maximum size matching Mt. The final graph G|W | which is

obtained in this process will be denoted by G = (W �B,E).
We denote n = |W | = |B| and m = |E|.

For every t ∈ [n], we add orientation to edges of the graph

Gt. This orientation is induced by matching Mt: the matched

edges are oriented towards black vertices, while the unmatched

edges are oriented towards white vertices. When a new vertex

bt arrives, we get an intermediate orientation Gint
t = (Eint

t , Bt),

where the edges of bt are oriented towards its neighbors, and

the rest of the edges is oriented according to Mt−1. Note

that Gint
t and Gt−1 differ only by one vertex bt. Any simple

directed path inGint
t from bt to some unmatched white vertex is

an augmenting path. In turn t, if bt can be matched, the edges

of Gint
t are reoriented along some augmenting path chosen

by the algorithm, and the resulting orientation is Gt. The

unmatched white vertices are called seeds. We denote the set

of seeds in turn t as

St = {w ∈W : wb /∈Mt for any b ∈ B} .
So in turn t the augmenting paths in Gint

t are the directed paths

from bt to some s ∈ St−1. We represent a path as an ordered

sequence of vertices. We use the notation v
π−→ v′ to denote

that a (directed) path π starts in v and ends in v′. We use

the notation v ∈ π and ρ ⊆ π to state that a vertex v is

a member of the sequence representing π and that a path ρ is

a consecutive subsequence of π, respectively.
As mentioned in Section I, we study in this paper a greedy

approach. The idea, explained formally further, is as follows.

We associate with every white vertex (server) an attribute

called rank. It denotes how many times the server was re-

allocated, i.e., how many times was the corresponding white

vertex a member of an augmenting path. We wish to minimize

the maximum rank over all white vertices. A rank of a path
π is defined to be equal to the maximum rank among the

white vertices on π. In every turn t, if bt can be matched, our

algorithm chooses an augmenting path bt
πt−→ s ∈ St−1 such

that every suffix of πt is of minimum rank.

We now introduce this idea formally. We define the rank

function on W for every turn t. We set rank0(w) = 0 for

every w ∈ W (it is always the case that rankt(w) = 0 iff

w ∈ St, i.e., w is a seed in turn t). The rankt function is

obtained from rankt−1 by increasing by one the rank of every

white vertex w ∈ πt:

rankt(w) =

{
rankt−1(w) if w /∈ πt,

rankt−1(w) + 1 if w ∈ πt.

We define the rank of a path π in Gt (or in G
int
t+1) as

rankt(π) = max
w∈π rankt(w).

In addition to the rank function on the white vertices we

introduce a tier function on the black vertices. The tier of

a black vertex is the minimal rank of a directed path in Gint
t

leading to a seed. For any t ∈ [n] and b ∈ Bt we define

tiert(b) =

{
∞ if there is no path from b to St,

min
s∈St,(b

π−→s)⊆Gt
rankt(π) otherwise.

Observe that for every white vertex w there is at most one

outgoing edge in every Gt (i.e., the matched edge) and denote

the black vertex matched with w by btw (we skip the upper

index when it is clear from the context). Each edge wbtw in

Gt from a white vertex w to the black vertex btw is tired in

Gt. Moreover, edge bw is tiered if the tier of b is not smaller

386386

than the tier of btw and the rank of w. The set of all tiered

edges at the beginning of turn t is denoted by E�
t ⊆ Eint

t ,

E�
t =

{
bw ∈ E int

t : b ∈ B, w ∈W and

tiert−1(b) � max {tiert−1(bw), rankt−1(w)}}
∪ {

wbt−1
w ∈ Eint

t : w ∈W
}
.

This definition is extended to paths by saying that a path is

tiered if it is a simple path that consists entirely of tiered

edges.

In each round t, if possible, our algorithm chooses in Gint
t

a tiered path bt
πt−→ s ∈ St−1. The definition of a tiered

path enforces that each suffix of πt is optimal in a sense

that it minimizes the rank. The algorithm then changes the

orientation of the edges on πt and increases the ranks of the

white vertices. We refer to any such algorithm as a tiered
algorithm. In the next sections we first show several properties

of all tiered algorithms, and only after that we show how

exactly our algorithm efficiently chooses the paths.

To conclude this section, we introduce a structure that will

become useful in many of our proofs later. This structure also

explains why the unmatched white vertices are called seeds.

A seeded tree τ is any directed tree rooted at some seed s ∈ St.

Any forest of |St| vertex-disjoint seeded trees that spans all

vertices of G that can reach a seed is called seeded. We call

a seeded forest tiered if it consists entirely of tiered edges.

A seeded path is any simple path to a seed.

Observe that not all vertices are contained in some seeded

tree. The algorithm may produce orientations in which some

vertices cannot reach any seed. We essentially ignore these

vertices, as there is no need for the algorithm to visit them.

Once a vertex cannot reach any seed, it will never be able

to reach a seed again. Indeed, consider the set of vertices

reachable from such a vertex. This set contains no seeds.

Moreover, all the edges between this set and the rest of vertices

are directed towards this set. Hence, no alternating path can

reorient the edges between the set and the remaining part of the

graph. We refer to vertices that cannot reach a seed as dead,
the remaining vertices are called alive. As a consequence of

the above argument, it only makes sense to consider the turns

in which bt can be matched. In the remaining turns neither

the alive part of the graph changes, nor do the ranks. Thus,

from now on, we completely ignore the black vertices that

cannot be matched and the turn index t corresponds to the

turns where the augmenting path can be found.

III. RANKS AND TIERS

In this section we present basic properties of ranks and tiers

when they are maintained by tiered algorithms. These results

will form the basis for the following sections. We start this

section by proving that tiers of vertices do not decrease. Next,

we prove that vertices with high tiers are far from the seeds.

To be more precise, we show that for a vertex b of finite tier,

the length of the shortest path from b to a seed is at least its

tier. Let us start with the following observations.

Observation III.1. The following facts hold for t ∈ [n]:

1) There exists a tiered path from any alive vertex b ∈ Bt

to a seed in St.

2) For any tiered path π from b ∈ Bt to a seed s ∈ St it

holds that tiert(b) = rankt(π).
3) There exists a seeded tiered forest in Gt.

4) If there is a non-simple directed path from b to w in

Gt, then there is also a simple directed path from b to

w with the same or smaller rank.

We are ready to prove the following important lemma.

Lemma III.2. For any vertex b ∈ Bt it holds that tiert(b) is
a non-decreasing function of t.

Proof. Fix some seeded tiered forest ψ in Gt, which exists by

Observation III.1.1. First assume that b is alive, so b ∈ B(ψ).
Let distψ(b) denote the black distance from b to a seed in

ψ, i.e., the number of black vertices on a path from b to the

corresponding seed (not including b). We proceed by induction

on distψ(b). The vertices with distψ(b) = 0 can directly reach

seeds, which means that tiert(b) = 0. A non-seed cannot turn

into a seed, so tiert−1(b) = 0 for such vertices.

Let b be an arbitrary alive vertex of Bt. Let π ⊆ ψ be

(the only) tiered path in ψ connecting b with a seed. Let w
be a direct successor of b on π and b′ be a black successor

of w on π (the case when w is a seed was already covered).

Since distψ(b
′) < distψ(b), by induction we have tiert(b

′) �
tiert−1(b

′). By Observation III.1.2, since π is tiered, it holds

that tiert(b) = rankt(π) = max{rankt(w), tiert(b′)}. Denote
by ρ the path along which the edges were reversed in turn t.
We distinguish three cases shown in Figure III.1.

� �

��

�

��

�

�� �
��

� ��� � ���� �
�� ��

� �

� �
���� ����

�� �

Fig. III.1. Three cases depending the location of vertex b with regard to the
augmenting path ρ.

If w /∈ ρ, then bwb′ is a directed path in Gt−1, so

tiert(b) � max {rankt(w), tiert(b′)}
� max {rankt−1(w), tiert−1(b

′)}
� tiert−1(b).

The last inequality follows from Observation III.1.4.

If b′wb ⊆ ρ (i.e., the path bwb′ changed its orientation),

since ρ is a tiered path in turn t−1, it holds that tiert−1(b
′) �

tiert−1(b). Therefore

tiert(b) � tiert(b
′) � tiert−1(b

′) � tiert−1(b).

Finally, it might be that b′wb′′ ⊆ ρ where b′′ ∈ Bt, b
′′ �= b.

That means that there is a path with prefix bwb′′ to a seed

387387

s ∈ St−1 in Gt−1. On the other hand the smallest rank of the

path from b to a seed in Gt−1 equals tiert−1(b), so

max {rankt−1(w), tiert−1(b
′′)} � tiert−1(b). (1)

Because b′ lies on the tiered path (the fragment of tiered forest

ψ) from b to a seed in Gt and b
′′ lies on the tiered path (the

fragment of augmenting path ρ) from b′ to a seed in Gt−1 we

obtain that

tiert(b) � tiert(b
′) � tiert−1(b

′) � tiert−1(b
′′). (2)

Taking together (1) and (2) we obtain that

tiert(b) � max{rankt(w), tiert−1(b
′′)} � tiert−1(b).

The case when b is a dead vertex, so its tier becomes or

remains infinite, completes the proof.

The next lemma shows, that high ranks are followed by high

tiers. It directly implies, that vertices of high tiers are far from

the seeds.

Lemma III.3. For any white vertex w ∈ W \ St, we have
tiert(b

t
w) + 1 � rankt(w).

Proof. Assume that rankt(w) > 0 (i.e., w /∈ St) and let t̃ be
the last time the rank of w changed, i.e.,

t̃ = max {i ∈ [t] : ranki−1(w) < ranki(w)} .
Then, since the augmenting path πt̃ was tiered, it holds that

tiert̃−1(b
t
w) � rankt̃−1(w). However, by Lemma III.2, the tier

does not decrease, so

tiert(b
t
w) + 1 � tiert̃−1(b

t
w) + 1 �

� rankt̃−1(w) + 1 = rankt(w).

Corollary III.4. Let Bt � b
π−→ s ∈ St. Every white vertex

w ∈ π of rank rankt(w) � 1 is followed by some vertex w′

of rank rankt(w
′) � rankt(w)− 1.

Proof. By Lemma III.3 tiert(bw) � rankt(w)− 1. By defini-

tion of tier, any path (including π) from bw to any seed con-

tains a white vertex w′ such that rankt(w
′) ≥ tiert(bw).

Corollary III.5. The length of the shortest path from b ∈ Bt

to a seed is at least 2 tiert(b) + 1.

IV. UPPER BOUND ON WHITE VERTEX USAGE

In this section we prove the main result of the paper,

which gives an O(
√
n) upper bound on the ranks of the

vertices generated by any tiered algorithm. The proof pro-

ceeds in two stages. Lemma IV.1 captures a certain reversed

behavior of a tiered algorithm crucial for our proof, pictured

by Figure IV.1. Figure IV.1 presents the state of the graph

after (to the left: graph Gt) and before (to the right: graph

Gt−1) the augmentation step. Assume that graph Gt contains

seeded paths μ1 . . . μl. On the picture to the left, the ranks of

these paths are shown by the heights of the corresponding

bars, sorted by rank. Lemma IV.1 states, that before the

augmentation step (the right side of the picture), each path

μi had its counterpart λi, plus there was one more path ρ.
The interesting part is that the heights of the bars (the ranks

of the corresponding paths) decrease at most by one, and the

newly added bar (the one corresponding to ρ) dominates the

bars that decrease.

Hence, the line inclined at the angle of 45 degrees through

the right top point of the bar representing λl does not drop:

whenever the bars reduce their height by one, an additional

bar appears to support the line at its initial position. The idea

�� � �� �� � � �� �� � � �� �� � � �� ��

Fig. IV.1. The bars corresponding to the paths after and before the augmen-
tation step.

is that for any white vertex whose rank is r at some point,

there is a turn when a seeded path of rank at least r exists.

So, if the algorithm produces a vertex of rank r, we start with
one bar of height r and reverse the steps of the algorithm.

We reach a point when there is a linear in r number of vertex

disjoint paths whose height is also linear in r. The next lemmas

formally prove our result.

It is worth mentioning that in the following reasoning it is

enough to consider alive vertices. Dead vertices do not affect

the definition of rankt and tiert and behavior of the algorithm.

Lemma IV.1. Let μ1, μ2, . . . , μl be a sequence of vertex-
disjoint seeded paths in Gt. Also, let bt

πt−→ s be the
augmenting path in turn t, i.e., in Gint

t . Then, there exist vertex-
disjoint seeded paths λ1, . . . , λl and ρ in Gt−1 such that

rankt−1(π) � rankt−1(ρ), (3)

rankt(μi) � rankt−1(λi)

for rankt(μi) > rankt−1(π) + 1,
(4)

rankt(μi) � rankt−1(λi) + 1

otherwise.
(5)

Proof. Let wi be the highest-ranked white vertex of μi that

is the closest to the seed. Without loss of generality we can

assume that μi starts with wi. Then, for i ∈ [l], directed path

μi is of the form W � wi
μi−→ si ∈ W where si ∈ St is

a seed.

Now, we define a 0/1-flow network F where V (F) =
V (Gint

t) ∪ {ς, τ} and

E(F) = E(Gint
t) ∪ {ςbt, ςw1, . . . , ςwl} ∪ {sτ, s1τ, . . . , slτ}

where ς and τ are artificially added source and sink respec-

tively (see Fig. IV.2).

388388

�

��
�

�
�

�

����

�

�

�

��

�� ��

�

��

Fig. IV.2. Example of a flow network F , where solid arcs form the flow from
source ς to sink τ with the total value 4.

Because bt
πt−→ s is an augmenting path expanding matching

in graph Gint
t , we have that ςbt

πt−→ sτ is a path which

defines a flow f1 in F with the total flow value equal to 1.
Moreover, we obtain that the residual graph F f1 in restriction

to V (Gt) has the same orientation as Gt. Because μ1, . . . , μl

are pairwise vertex-disjoint directed paths in Gt, we have that

paths μi of the form ςwi
μi−→ siτ are pairwise edge-disjoint

directed paths in residual graph F f1 . Consecutive application

of the augmenting paths μ1, . . . , μl expands the flow f1 to

a flow fl+1 with the total value of l + 1.

The flow fl+1 determines l + 1 edge-disjoint paths in F
from ς to τ as fl+1 is a 0/1-flow. Because bt, w1, . . . , wl are

all neighbors of ς and s1, . . . , sl, sl+1 = s are all neighbors

of τ , we obtain l + 1 paths of the form ςbtwl+1
ρ−→ sσ(l+1)τ

and ςwi
λi−→ sσ(i)τ for i ∈ [l] where σ is some permutation

of [l + 1] and λ1, . . . , λl, ρ are some edge-disjoint directed

paths in Gint
t ⊆ F . Because w1, . . . , wl, bt are different and

s1, . . . , sl, sl+1 are also different and each vertex in Gt−1 has

out-degree or in-degree equals at most 1, paths λ1, . . . , λl, ρ
are also vertex-disjoint.

To see (3), it is enough to mention that path π was chosen in

turn t so it was the smallest rank seeded path from bt. Because
the augmenting path π in turn t uses white vertices with rank

at most rankt−1(π), lines (4)-(5) are obvious.

The next lemma presents the core of our result. Imagine that

for some white vertex w its rank was raised to rankt̃(w) by

some turn t̃. The lemma states that we will find a turn before

turn t̃, when a collection of vertex-disjoint paths existed, such

that the sum of their ranks was at least quadratic with respect

to rankt̃(w). The proof heavily bases on Lemma IV.1, which

allows us to reverse the steps of the algorithm.

We begin the reversing process in turn t′, where a path ρ
exists with rank at least rankt̃(w) − 1. Starting from a one

element collection {ρ}, we iteratively construct a collection

of paths using Lemma IV.1. From the collection in step t we
obtain a collection in step t − 1. There are two important

invariants in this reversing process which imply the lemma:

• minimum rank in the collection decreases at most by one

• if the minimum rank in the collection decreases, the size

of the collection grows by one

• there is a moment t0 when all ranks in the collection are

equal to 0

Somewhere before t0 there is a moment, where there are

sufficiently many paths of sufficiently high ranks, as illustrated

in Figure IV.3. Again, each bar represents a path and the

heights of the bars are the ranks of the corresponding paths.

Let us now move on to formalizing this idea.

������

�����	��
��
� ��

�����	��
��
� ��

Fig. IV.3. In time t there is a collection of �rankt̃(w)/2� paths of rank at
least �rankt̃(w)/2�.

Lemma IV.2. For any turn t̃ ∈ [n] and any white vertex
w ∈ Wt̃ there is t � t̃ and j pairwise vertex-disjoint seeded
simple paths P1, . . . , Pj in Gt such that⌊

1

4
rankt̃(w)

2

⌋
� rankt(P1) + . . .+ rankt(Pj).

Proof. Let t′ � t̃ be the round when the rank of white vertex

w was changed the last time before round t̃. Now, we define

sequence Bt′−1, . . . , B0, where Bk is a collection of edge-

disjoint simple seeded paths in Gk for k = 0, . . . , t′. From
the definition of t′ we know that rankt̃(w) = rankt′(w) and

rankt′−1(πt′) � rankt′−1(w). If we remove the vertex bt′

from πt′ , we obtain a simple path ρ in Gt′−1 with rank

rankt′−1(ρ) = rankt′−1(πt′) � rankt′−1(w) =

= rankt′(w)− 1 = rankt̃(w)− 1.

Thus, we define Bt′−1 = {ρ}. Now, let us assume that

Bk = {μ1, . . . , μl} is defined for some k ∈ {1, . . . , t′ − 1}.
Again, by applying Lemma IV.1 to Gk, a sequence of paths

μ1, . . . , μl, and augmenting path πk, we obtain simple seeded

paths λ1, . . . , λl, ρ in Gk−1 satisfying conditions (1)-(3). Then

we define Bk−1 as

Bk−1 =

⎧⎪⎨
⎪⎩
{λ1, . . . , λl, ρ} ∃i∈[l] rankk(μi) > rankk−1(λi),

{λ1, . . . , λl}
otherwise (i.e., ∀i∈[l] rankk(μi) = rankk−1(λi).)

If rankk(μi) > rankk−1(λi) for some i ∈ [l] then

rankk(μi) � rankk−1(πk) + 1 � rankk−1(ρ) + 1, by con-

ditions (1)-(3) from Lemma IV.1. Again, applying inequalities

(1)-(3) from Lemma IV.1, we obtain that

min
λ∈Bk−1

rankk−1(λ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
minμ∈Bk

rankk(μ)− 1

if |Bk−1| − |Bk| = 1,

minμ∈Bk
rankk(μ)

otherwise (i.e., |Bk−1| − |Bk| = 0).

389389

Multiple use of the above inequality gives us

min
λ∈Bk

rankk(λ) � min
μ∈Bt′−1

rankt′−1(μ)− (|Bk| − 1)

= rankt̃(w)− |Bk| ,
(6)

for any chosen k = 0, . . . , t′ − 1. The formula (6) im-

plies that family B0 is the size of at least rankt̃(w) by

rank0(λ) = 0 for all λ ∈ B0. Thus, we can choose

t ∈ [t′] for which |Bt| =
⌊
1
2 rankt̃(w)

⌋
and by (6) we have

minλ∈Bt
rankt(λ) �

⌈
1
2 rankt̃(w)

⌉
. Finally, we obtain the

family Bt = {P1, . . . , Pj} of size j = |Bt| =
⌊
1
2 rankt̃(w)

⌋
where each Pi ∈ Bt has the rank at least

⌈
1
2 rankt̃(w)

⌉
. This

together gives a desired lower bound on the sum of the ranks

of Pi:⌊
1

4
rankt̃(w)

2

⌋
�

⌊
1

2
rankt̃(w)

⌋
·
⌈
1

2
rankt̃(w)

⌉
� |Bt| · min

Pi∈Bt

rankt(Pi)

� rankt(P1) + . . .+ rankt(Pj).

Now, we are ready to prove the main theorem:

Theorem IV.3. For any tiered algorithm it holds that
rankn(w) <

√
2n for every w ∈W .

Proof. By Lemma IV.2 there is round t ∈ [n] in which there

is a collection of j pairwise vertex-disjoint directed simple

paths P1, . . . , Pj ∈ Gt for which the sum of their ranks is⌊
1
4 rankn(w)

2
⌋
. This gives that P1, . . . , Pj are paths of total

length greater than 1
2 rankn(w)

2 by Corollary III.5. On the

other hand, graph Gt has at most n vertices, so rankn(w) <√
2n.

V. THE ALGORITHM

In the previous sections we showed that any tiered algorithm

rematches a white vertex at most O(
√
n) times. This shows

that the sum of the lengths of all used augmenting paths is

bounded by O(n
√
n). Unfortunately the algorithm not only

needs to apply the augmenting paths, but also needs to find

them, so the total running time might be much higher than this

bound. In this section we show an incremental algorithm find-

ing maximal matching with a total running time of O(m
√
n),

which is equal to the running time of the Hopcroft–Karp

algorithm.
In essence, we observe that we can pay for the search by

increasing the ranks of the visited white vertices, and the

bound of O(
√
n) for the white vertex usage still holds.

Algorithm Match proposed here proceeds in the following

way (see Algorithm 1 for the pseudocode). At the initialization

time, Match receives G0 as an input, and sets w.rank∗ = 0
for every white vertex w ∈W . We denote the ranks produced

by Match in turn t as rank∗t (w). So, due to the initialization

step, for every white vertex w ∈ W we have rank∗0(w) = 0.
The tier function for every t ∈ [n] is defined, as before, based
on the rank function, i.e., for any b ∈ Bt

tier∗t (b) =

{
∞ if there is no path from b to St,

min
s∈St,b

π−→s
rank∗t (π) otherwise.

In turn t, the algorithm searches for the tiered augmenting

path πt starting at bt. It proceeds recursively. The recursive

function SEARCH(w) is called for a white vertex w, initially
equal to the white neighbor of bt with the smallest rank. If w
is a seed (UNMATCHED(w) returns true) then w increases

its rank and, since a seeded path is found, SEARCH(w)
returns true. Otherwise the recursive step is determined by

the black vertex bt−1
w (matched with w). The algorithm (using

function SMALLESTNEIGHBORUNMATCHEDTO(bt−1
w)) picks

the white neighbor w′ of bt−1
w with the minimum rank, i.e.,

w′.rank∗ = min
w′′ : bt−1

w w′′ ∈Eint
t

w′′.rank∗.

The value of w′.rank∗ is a lower bound for tier∗t−1(b
t−1
w).

A successful recursive call on w′ recursively finds a directed

path to a seed with rank bounded from above by w′.rank∗.
Hence, if the call is successful, tier∗t−1(b

t−1
w) = w′.rank∗.

This certifies that both edges wbt−1
w and bt−1

w w′ are tiered and

so the algorithm found a tiered path. In such case the recursion

terminates returning true and the ranks are increased along

the tiered path that was found. Each time a rank of a white ver-

tex w is increased, the function UPDATEINFORMATION(b, w)
is called in order to update w.rank∗ for all the black vertices

b that can directly reach w. An unsuccessful recursive call

on w′ certifies, that tier∗t−1(bw′) > w′.rank∗. On such

an event, the algorithm increases w′.rank∗ and continues

picking the neighbors of bt−1
w of minimum rank and calling

the recursion on them. This process finishes when either the

call is successful or the only available ranks reach the bound

of
√
2n. In the latter case the algorithm located a dead region,

which never will be entered again. Note that every time a white

vertex is visited by the algorithm, its rank increases. We soon

show, that unless a vertex is dead, its rank is bounded by
√
2n.

As for the running time, note that the function

UPDATEINFORMATION(b, w) can be handled in constant time

for every neighbor b pointing at w. For example each black

vertex can keep a list of lists of white vertices. This allows

to update the information in this recursive call in the time

bounded by the degree of w. At the same time the rank of w
is increased, and this happens at most O(

√
n) times for any

white vertex. The total running time of O(m
√
n) follows.

Consider an arbitrarily chosen vertex w. We distinguish

two phases of the algorithm Match in turn t, encoded as

MATCH(bt) in Algorithm 1. The first phase consits of a se-

quence (which can be empty) of calls to SEARCH(w) which

return false. Each such call does not rematch w but increases

w.rank∗. The second phase consists of at most one call

SEARCH(w) with returns true. In such call, SEARCH(w)
rematches vertex w and increases w.rank∗ as well. We formu-

late the following lemma, which can be proven by induction

on the number of calls to SEARCH(·). The lemma describes

the difference between the above mentioned two phases.

Lemma V.1. Consider any recursive call SEARCH(w) orig-
inating from a call to MATCH(bt) for any w ∈ W . There is
a path ρ from w to some seed with ranks on white vertices not
greater then w.rank∗ if and only if SEARCH(w) returns true

390390

Algorithm 1 Algorithm Match
1: procedure MATCH(bt)
2: w′ ← SMALLESTNEIGHBORUNMATCHEDTO(bt)
3: while w′.rank∗ <

√
2n do

4: if SEARCH(w′) then
5: match← match ∪ {(bt, w′)}
6: return true

7: w′ ← SMALLESTNEIGHBORUNMATCHEDTO(bt)

8: return false

9: procedure SEARCH(w)
10: w.rank∗ ← w.rank∗ + 1
11: for each b such that bw ∈ Eint

t do
12: UPDATEINFORMATION(b, w)

13: if UNMATCHED(w) then
14: return true

15: w′ ← SMALLESTNEIGHBORUNMATCHEDTO(bw)
16: while w′.rank∗ < w.rank∗ do
17: if SEARCH(w′) then
18: match← match \ {(w, bw)} ∪ {(bw, w′)}
19: return true

20: w′ ← SMALLESTNEIGHBORUNMATCHEDTO(bw)

21: return false

and rematches edges along some path π from w to some seed
with ranks on white vertices smaller or equal to w.rank∗.

One of the consequences of the above lemma is that

during the first phase, although w.rank∗ grows, it does not

become greater than tier∗t−1(b
t−1
w). Let us define rank�t−1(w)

as a value w.rank∗ immediately after the first phase. It holds

that

if rank�t−1(w) > rank∗t−1(w)

then rank�t−1(w) � tier∗t−1(b
t−1
w)

(7)

and so we obtain the following:

Observation V.2. For any t ∈ [n] and any path w
π−→ s,

w ∈W, s ∈ St−1, it holds that rank
�
t−1(π) = rank∗t−1(π).

Now if bt is dead, procedure MATCH(bt) tries to match it

anyway. Due to Observation V.2, all vertices visited during

such a call to MATCH(bt) incur only the first phase, and as

a consequence the ranks of the paths do not change. This

allows us to simplify the description and omit the rounds when

dead vertices appear.

With respect to the second phase, we can observe that

during that phase the algorithm increases by one ranks of white

vertices on the augmenting path πt, i.e.,

rank∗t (w) =

{
rank�t−1(w) if w /∈ πt,

rank�t−1(w) + 1 if w ∈ πt.
(8)

By Observation V.2 and equation (8) very similar arguments

as for Lemma III.2 and Lemma III.3 prove the corresponding

lemmas:

Lemma V.3. For any vertex b ∈ Bt it holds that tier∗t (b) is
a non-decreasing function of t.

Lemma V.4. For any white vertex w ∈ W \ St, we have
tier∗t (bw) + 1 � rank∗t (w).

The next two corollaries follow.

Corollary V.5. Let b
π−→ s, for a black vertex b, be a path

that ends at a seed s. Every white vertex w ∈ π of rank

rank∗t (w) � 1 is followed by some vertex w′ of rank

rank∗t (w
′) � rank∗t (w)− 1.

Corollary V.6. The length of the shortest path from a black

vertex b to a seed is at least tier∗t (b).

We move on to the two lemmas crucial for our approach.

Lemma V.7. Let μ1, μ2, . . . , μl be a sequence of vertex-
disjoint seeded simple paths to distinct seeds in Gt. Also, let
bt

πt−→ s be the augmenting path in turn t, i.e., in Gint
t−1. Then,

there exist vertex-disjoint simple seeded paths λ1, . . . , λl and
ρ in Gt−1 to distinct seeds such that

rank∗t−1(πt) � rank∗t−1(ρ), (9)

rank∗t (μi) � rank∗t−1(λi)

for rank∗t (μi) > rank∗t−1(π) + 1,
(10)

rank∗t (μi) � rank∗t−1(λi) + 1

otherwise.
(11)

Idea of proof. The analogous argument as in proof of

Lemma IV.1 implies that the paths λ1, . . . , λl and ρ as de-

scribed exist in Gint
t . Due to Observation V.2 and the equation

(8) we obtain the desired inequalities.

Now, the proof of Lemma IV.2 directly translates into

an argument for the following lemma:

Lemma V.8. For any turn t̃ ∈ [n] and any white vertex w ∈
Wt̃ there is t � t̃ and j pairwise vertex-disjoint seeded simple
paths P1, . . . , Pj in Gt such that⌊

1

4
rank∗t̃ (w)

2

⌋
� rank∗t (P1) + . . .+ rank∗t (Pj).

As a consequence, we obtain a corollary analogous to

Theorem IV.3.

Corollary V.9. For any tiered algorithm it holds that

rank∗n(w) <
√
2n for every w ∈W .

VI. APPLICATIONS

In this section we describe few applications of our result.

First, we present a linear time incremental approximation

algorithm which, for any constant ε, maintains a (1 − ε)-
approximation of maximum matching in a bipartite graph

revealed online. Interestingly, if we settle for approximation,

we do not need Theorem IV.3 for the algorithm to work. This

algorithm implies a simple offline algorithm with a simple

analysis, also not requiring Theorem IV.3. It shows that the

real value of our result lies in the online nature of the problem.

391391

Further, we reduce the decremental version of the problem to

the incremental version, both in exact and approximate case.

We finish the section by generalizing our result to the weighted

setting.

A. Incremental approximation and offline analysis

The approximation algorithm is based on the following well

known fact, that a matching for which all augmenting paths

are long is a good approximation of an optimum matching in

a bipartite graph.

Claim VI.1. Let M∗ be an optimum matching in a bipartite
graph B, and M be a matching. If the length of the shortest
path augmenting M is at least k, then |M | � |M∗|(1− 2

k).

Combined with the above claim, our algorithm gives

an efficient (1 − ε)-approximation for incremental bipartite

matching. We try to match a black vertex bt as long as

minw : btw∈Eint
t
rank(w) ≤ k for some constant k. Once this

value is higher than k, we leave bt unmatched. In every turn,

due to Lemma III.5, all augmenting paths starting at vertices

we left out are of length at least k. Hence, in each turn we

maintain a (1 − 2
k)-approximation of the optimum matching.

Moreover, since we took care that ranks are bounded by k, the
total time used by the approximation algorithm is O(km). We

summarize this interesting observation in the following lemma.

It is worth emphasizing that we do not need Theorem IV.3 for

this argument: we impose low ranks ourselves here.

Lemma VI.2. For any ε > 0, there exists an incremental al-
gorithm that maintains (1−ε)-approximate maximum bipartite
matching in O(ε−1m) total time.

We use a similar idea in order to provide a simple anal-

ysis for the offline version of our algorithm. We apply the

approximation algorithm with 2/ε = k =
√
n. The running

time of the approximation algorithm is, due to Lemma VI.2,

O(m
√
n). We are left with at most 2|M∗|/k ∈ O(

√
n)

unmatched vertices, so we can afford to perform the full search

for the augmenting paths. However, this simple analysis does

not carry over if we need to match every black vertex at the

moment it is presented.

B. Decremental Algorithm

Let us consider the online problem where at the beginning

we are given a graph Gd =
〈
W d �Bd, Ed

〉
, and the vertices

from W are removed from Gd in an online manner. During

this process we are asked to maintain the maximum size

matching in Gd. More formally we consider graphs Gd
t =

(W d
0 �Bd, Ed

t) constructed by the following scenario:

• we start with Gd
0 = Gd,

• in turn t we remove vertex wt ∈ W along with all its

adjacent edges:{
Ed

t = Ed
t−1 \

{
{wt, b} : b ∈ Bd

}
,

W d
t =W d

t−1 \ {wt}.
• we finish when t = |W d

0 |, i.e., when all white vertices

are removed.

Observe the important difference with respect to the incremen-

tal problem. Here, we are removing white vertices, whereas

previously we were adding black vertices. This change in

colors will be useful when reducing the decremental problem

to the incremental one. Now we initialize the incremental

algorithm with graph Gd, i.e., we set G0 = Gd. When the

vertex wt should be removed from Gd
t−1 we add a vertex bt to

Gt−1 using the incremental algorithm. The only edge adjacent

to bt that we add to Gt−1 is btwt. Let Gt denote the sequence

of graphs resulting from this incremental process. We observe

the following:

Lemma VI.3. Let Mt be the maximum size matching in Gt,
and let Md

t be the maximum size matching in Gd
t . Then |Mt|−

t = |Md
t |.

Proof. Consider the matchingM ′
t =Md

t ∪{biwi : 1 � i � t}.
By this construction we have |M ′

t | − t = |Md
t |. If M ′

t is not

a maximum size matching in Gt then there exists an augment-

ing path π with respect to M ′
t . This path cannot pass via any

of the edges in {biwi : 1 � i � t}, because bi has degree 1.
Hence, π is an augmenting path forMd

t in Gd
t what contradicts

the maximality of Md
t . Hence, |Mt| = |M ′

t | = |Md
t |+ t.

Combining these results with the algorithm of Section V

we obtain the following observation.

Corollary VI.4. There exists a decremental algorithm for the

maximum bipartite matching problem that works in O(
√
nm)

total time.

We will now prove that the same reduction works in the

approximate case as well. In the incremental case we were

using Claim VI.1. This fact cannot be used directly with the

above reduction, because the sizes of the two matchings Mt

and Md
t differ by t. However, it is possible to prove the

guarantee on approximation directly form the nonexistence of

short augmenting paths.

Lemma VI.5. Let Mt be a matching in Gt such the shortest
augmenting path with respect to Mt has length k, for some
k � 1, and let Md

t be the maximum size matching in Gd
t . Then

|Mt| − t �
(
1− 2

k−2

)
|Md

t |.
By using the above lemma together with Lemma VI.2 we

obtain the following observation.

Corollary VI.6. For any ε > 0, there exists a decremental al-

gorithm that maintains (1−ε)-approximate maximum bipartite

matching in O(ε−1m) total time.

C. Weighted Algorithm

In this section we are going to recall the unfolded graph

technique that was introduced in [13]. Let Gw = (Vw, Ew)
be a graph where edge weights are given by a function

w : E → [1,W] for some natural number W . The unfolded
graph G = (V,E) of Gw is defined as follows:

392392

V = {vi : v ∈ V and i ∈ [1,W]},
E =

{
(uivW−i+1) : uv ∈ E and i ∈ [1,W]

}
.

We have the following lemma.

Lemma VI.7 (Lemma 4.1 of [13]). The weight of the max-
imum weight matching in Gw is equal to the size of the
maximum matching in G.

Using the above lemma we can compute the weight of the

maximum matching in Gw online by maintaining the unfolded

graph G. The unfolded graph hasWm edges andWn vertices.

Hence, the following corollaries are immediate.

Corollary VI.8. There exist incremental and decremental

algorithms that maintain the weight of the maximum weight

matching in Gw that work in O(W 3/2
√
nm) total time.

Corollary VI.9. There exist incremental and decremental

algorithms that maintain (1− ε)-approximation of the weight

of the maximum weight matching in Gw that work in

O(Wε−1m) total time.

VII. CONCLUSIONS

In this paper we have introduced a new greedy framework

for solving online maximum matching problem in bipartite

graphs. We believe that the introduction of this framework

will inspire further work on development of efficient online

algorithms for other combinatorial problems like: maximum-

flow, min-cost maximum-flow, stable matchings, matroid in-

tersection or non-bipartite matchings. In particular, we would

like to stress the following open problems.

1) Is it possible to extend our results to the online non-

bipartite matching problem, where vertices of the graph

are revealed online? So far only O(nm) time exact

solution is known.

2) Can our framework be adopted to the incremental max-

flow problem? Here, even in the case where all edge

capacities are equal to one, no dynamic solution is

known for general graph. We know only some dynamic

algorithms in the case of planar graphs [11].

3) We note that our model is different from the edge update

scenarios studied in [12], [20], [18], [4], [17], [9], [2],

and it would be interesting to see whether our techniques

can be applied in this model to get fast incremental or

decremantal algorithms?

4) As noted in the introduction the lower bounds developed

in [1] do not apply to our model, as they talk about edge

updates. Can one show similar lower bounds for vertex-

updates?

REFERENCES

[1] A. ABBOUD AND V. VASSILEVSKA WILLIAMS, Popular conjectures
imply strong lower bounds for dynamic problems, ArXiv e-prints, (2014).

[2] A. ANAND, S. BASWANA, M. GUPTA, AND S. SEN, Maintaining
Approximate Maximum Weighted Matching in Fully Dynamic Graphs, in
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2012), D. D’Souza, T. Kavitha,
and J. Radhakrishnan, eds., vol. 18 of Leibniz International Proceedings
in Informatics (LIPIcs), Dagstuhl, Germany, 2012, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 257–266.

[3] Y. AZAR, On-line load balancing, in Theoretical Computer Science,
Springer, 1992, pp. 218–225.

[4] S. BASWANA, M. GUPTA, AND S. SEN, Fully dynamic maximal match-
ing in o (log n) update time, in Proceedings of the 2011 IEEE 52Nd
Annual Symposium on Foundations of Computer Science, FOCS ’11,
Washington, DC, USA, 2011, IEEE Computer Society, pp. 383–392.

[5] T. M. CHAN, Dynamic subgraph connectivity with geometric applica-
tions, in Proceedings of the Thiry-fourth Annual ACM Symposium on
Theory of Computing, STOC ’02, New York, NY, USA, 2002, ACM,
pp. 7–13.

[6] T. M. CHAN, M. PǍTRAŞCU, AND L. RODITTY, Dynamic connectivity:
Connecting to networks and geometry, SIAM Journal on Computing, 40
(2011), pp. 333–349. See also FOCS’08, arXiv:0808.1128.

[7] K. CHAUDHURI, C. DASKALAKIS, R. D. KLEINBERG, AND H. LIN,
Online bipartite perfect matching with augmentations, in INFOCOM’09,
2009, pp. 1044–1052.

[8] E. GROVE, M.-Y. KAO, P. KRISHNAN, AND J. VITTER, Online perfect
matching and mobile computing, in Algorithms and Data Structures,
S. Akl, F. Dehne, J.-R. Sack, and N. Santoro, eds., vol. 955 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 1995, pp. 194–
205.

[9] M. GUPTA AND R. PENG, Fully dynamic (1+ e)-approximate matchings,
2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, 0 (2013), pp. 548–557.

[10] J. E. HOPCROFT AND R. M. KARP, An n5/2 algorithm for maximum
matchings in bipartite graphs, SIAM Journal on Computing, 2 (1973),
pp. 225–231.

[11] G. F. ITALIANO, Y. NUSSBAUM, P. SANKOWSKI, AND C. WULFF-
NILSEN, Improved algorithms for min cut and max flow in undirected
planar graphs, in Proceedings of the Forty-third Annual ACM Sympo-
sium on Theory of Computing, STOC ’11, New York, NY, USA, 2011,
ACM, pp. 313–322.

[12] Z. IVKOVIĆ AND E. LLOYD, Fully dynamic maintenance of vertex
cover, in Graph-Theoretic Concepts in Computer Science, J. Leeuwen,
ed., vol. 790 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 1994, pp. 99–111.

[13] M.-Y. KAO, T. W. LAM, W.-K. SUNG, AND H.-F. TING, A decomposi-
tion theorem for maximum weight bipartite matchings with applications
to evolutionary trees, in Proceedings of the 7th Annual European
Symposium on Algorithms, 1999, pp. 438–449.

[14] R. M. KARP, U. V. VAZIRANI, AND V. V. VAZIRANI, An optimal
algorithm for on-line bipartite matching, in STOC, H. Ortiz, ed., ACM,
1990, pp. 352–358.

[15] A. MEHTA, A. SABERI, U. VAZIRANI, AND V. VAZIRANI, Adwords
and generalized on-line matching, in Foundations of Computer Science,
2005. FOCS 2005. 46th Annual IEEE Symposium on, Oct 2005,
pp. 264–273.

[16] V. MIRROKNI. personal communication.
[17] O. NEIMAN AND S. SOLOMON, Simple deterministic algorithms for

fully dynamic maximal matching, in Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’13, New
York, NY, USA, 2013, ACM, pp. 745–754.

[18] K. ONAK AND R. RUBINFELD, Property testing, Springer-Verlag,
Berlin, Heidelberg, 2010, ch. Dynamic Approximate Vertex Cover and
Maximum Matching, pp. 341–345.

[19] M. PATRASCU, Towards polynomial lower bounds for dynamic prob-
lems, in Proceedings of the Forty-second ACM Symposium on Theory
of Computing, STOC ’10, New York, NY, USA, 2010, ACM, pp. 603–
610.

[20] P. SANKOWSKI, Faster dynamic matchings and vertex connectivity,
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, Philadelphia, PA, USA, 2007, Society
for Industrial and Applied Mathematics, pp. 118–126.

393393

