
On Learning and Testing Dynamic Environments
EXTENDED ABSTRACT

Oded Goldreich
Department of Computer Science,

Weizmann Institute of Science
Rehovot, ISRAEL

Email: oded.goldreich@weizmann.ac.il

Dana Ron
School of Electrical Engineering

Tel-Aviv University
Ramat-Aviv, ISRAEL

Email: danar@eng.tau.ac.il

Abstract—We initiate a study of learning and testing dynamic
environments, focusing on environment that evolve according
to a fixed local rule. The (proper) learning task consists of
obtaining the initial configuration of the environment, whereas
for non-proper learning it suffices to predict its future values.
The testing task consists of checking whether the environment
has indeed evolved from some initial configuration according
to the known evolution rule. We focus on the temporal aspect
of these computational problems, which is reflected in the
requirement that only a small portion of the environment is
inspected in each time slot (i.e., the time period between two
consecutive applications of the evolution rule).

We present some general observations, an extensive study
of two special cases, two separation results, and a host of
open problems. The two special cases that we study refer
to linear rules of evolution and to rules of evolution that
represent simple movement of objects. Specifically, we show
that evolution according to any linear rule can be tested within
a total number of queries that is sublinear in the size of the
environment, and that evolution according to a simple one-
dimensional movement can be tested within a total number of
queries that is independent of the size of the environment.

Keywords-Property Testing, Learning, Multi-dimensional cel-
lular automata.

I. A BRIEF INTRODUCTION

We initiate a study of sublinear algorithms for testing and
learning dynamic environments that evolve according to a
local rule. That is, the content of the environment in each
location and at each time is determined by the contents of
the local neighborhood of that location at the previous time.

One archetypical example of such environments is that of
a collection of elements that interact at a local level (i.e.,
each element may change its local state based on the state
of its neighbors). Indeed, the model of (two-dimensional)
cellular automata was invented and studied as a model for
such applications, and one may view our study as a study of
sublinear algorithms for testing and learning the evolution of
cellular automata. Another archetypical example is that of a
collection of objects that move in (three-dimensional) space
such that their movements may be affected by collisions (or

For a full version of this paper see [5]

near collisions) with other objects. Indeed, such motion can
also be represented as an evolution of a (three-dimensional)
cellular automaton.

The sublinear aspect of our model is reflected in the
postulate that the algorithm can only probe a small portion
of the environment in each time slot, where the environment
evolves in time (and is thus potentially different in each time
slot). Yet, as stated above, the evolution of the environment
is not arbitrary, but is rather based on local rules.

II. THE BASIC MODEL

The environment is viewed as a d-dimensional grid,
mainly for d ∈ {1, 2, 3}, and local rules determine the state
of each location as a function of its own state and the state
of its neighbors in the previous time unit. (Indeed, time is
also discrete.)

The environment’s evolution in time is captured by a d+
1 dimensional array, denoted ENV : Zd+1 → Σ, such that
ENVj(i1, ..., id)

def
= ENV(j, i1, .., id) represents the state of

location (i1, ..., id) at time j, and ENVj is determined by
ENVj−1. The set Σ is an arbitrary finite set of possible local
states, and the (instantaneous) environment is viewed as an
infinite d-dimensional grid. Actually, we shall restrict ENV
to [t]× [n1]× · · ·× [nd] or rather to [t]× [n]d, and postulate
that ENV contains neutral values outside this domain. (The
notion of a neutral value is rule-dependent, but at the very
least we require that a cell maintains the neutral value as
long as its neighboring cells also hold this value).1

An observer, who is trying to learn or test the environ-
ment, may query its locations at any point in time, but at time
j ∈ [t] it may only obtain values of ENVj : [n]d → Σ. That
is, the observer is modeled as an oracle machine, but this
machine is restricted to make queries that are monotonically
non-decreasing with respect to the time value (i.e., the value
j in queries of the form (j, i1, ..., id)). This key feature of
the model is captured by the following definition (where x

1Jumping ahead in order to exemplify this notion, we mention that zero
is a neutral value for linear rules (as in Theorem 3.3) whereas an empty cell
is a neutral value for rules that describe moving objects (as in Theorem 3.4).

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.43

336

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.43

336



represents some auxiliary input that the machine may be
given).

Definition 2.1: Time-conforming observers. An oracle
machine T is said to be time-conforming if, on input (t, n, x)
and oracle access to ENV : [t]× [n]d → Σ, it never makes a
query (j, i1, ..., id) after making a query (j′, i′1, ..., i′d) such
that j < j′.

In particular, any nonadaptive oracle machine is time-
conforming, because its queries can be determined before-
hand and made at the appropriate order (i.e., time-wise).
This does not mean that time-conforming machines are
necessarily nonadaptive (see Theorem 3.2).

In general, when the observer queries location
(i1, ..., id) ∈ [n]d at time j ∈ [t], it will retrieve the
visible part of the state ENVj(i1, ..., id), rather than the
entire state. That is, the model includes an auxiliary
function V : Σ → Σ′ (called a viewing function) such that
V (σ) is the visible part of the state σ; hence, the query
(j, i1, ..., id) is answered by V (ENVj(i1, ..., id)). We may
say that the part of σ not revealed by V (σ) is the hidden
part of σ. Without loss of generality, we may assume that
Σ = Q× Σ′ and V (q, σ′) = σ′ for every (q, σ′) ∈ Q × Σ′.
(In this case q is the hidden part of (q, σ′).) We also
consider the special case in which the state is fully visible,
which is captured by the case that |Q| = 1. (In this case,
we prefer to view V as an identity function.)

The evolution of the environment is local in the sense that
the value of ENVj(i1, ..., id) is determined by the value of
ENVj−1 in positions {(i1 + s1, ..., id + sd) : s1, ..., sd ∈
{−1, 0, 1}}. The rule of determining the value, denoted
Γ : Σ3d → Σ, is known.2 Thus, ENVj(i1, ..., id) equals
Γ(z−1,...,−1, .., z1,...,1), where zs1,...,sd = ENVj−1(i1 +
s1, ..., id + sd) and the sequence of all (s1, ...., sd) ∈
{−1, 0, 1}d appears in some canonical order (e.g., lexico-
graphic order, with (0, ..., 0) in the middle). Indeed, we
model the evolution of the environment as a computation
of a d-dimensional cellular automaton.

The computational problems

The computational problems that we consider are (1) test-
ing whether the observed evolution of the environment is
actually consistent with a fixed known rule, and (2) learning
the entire evolution of the environment (i.e., recovering the
(visible part of the) states corresponding to all locations
at all times). We refer to the standard notions of property
testing (cf. [4], [10], [9]) and PAC learning (cf. [11], [7]),
when applied with respect to the uniform distribution on
the domain (of the functions in question). The symbol ε
always denotes the relevant proximity parameter. Since the

2The number of possible rules is a function of Σ and d, which is
independent of the size of the environment (i.e., nd). From this perspective
(i.e., for fixed Σ and d), it is easy to learn the rule that determines a given
evolution.

evolution is determined by the local states at the initial time
(i.e., by ENV1), testing is equivalent to asking whether the
evolution is consistent with the known rule and some initial
global state (i.e., ENV1), whereas proper learning3 calls for
recovering the initial global state.

Definition 2.2: Testing consistency with Γ as viewed via
V . We say that an oracle machine T tests the consistency
of evolving environments with respect to Γ : Σ3d → Σ and
V : Σ → Σ′ if for every ENV : [t]× [n]d → Σ the following
holds:

1) If ENV evolves from ENV1 according to Γ, then
Pr[T V ◦ENV(t, n, ε) = 1] ≥ 2/3, where TF (p) denotes
the execution of T on parameters p when given access
to the oracle F and V ◦ ENV denotes the compo-
sition of V and ENV (i.e., (V ◦ ENV)(j, i1, ..., id) =
V (ENV(j, i1, ..., id))).

2) If ENV is ε-far from any environment ENV′ that
evolves from the corresponding ENV′1 according to
Γ, then Pr[T V ◦ENV(t, n, ε) = 1] ≤ 1/3, where the
distance between ENV and ENV′ equals the fraction
of entries on which ENV and ENV′ disagree (i.e.,
|{(j, i1, ..., id) ∈ [t] × [n]d : ENV(j, i1, ..., id) �=
ENV′(j, i1, ..., id)}|/tnd).4

If Condition 1 holds with probability 1, then we say that T
has one-sided error probability.

Note that, on top of oracle access to V ◦ ENV : [t]×[n]d →
Σ′, the tester gets the (duration and size) parameters t, n
and the proximity parameter ε as explicit inputs. The same
applies to learners as defined next.

Definition 2.3: Learning evolution according to Γ via
V . We say that an oracle machine learns the environment
evolving according to Γ : Σ3d → Σ and viewed via V : Σ → Σ′

if the following holds: On input (t, n, ε) and oracle access to
V ◦ENV such that ENV : [t]× [n]d → Σ evolves according to
Γ, the oracle machine outputs a function F : [t]× [n]d → Σ′

that is ε-close to V ◦ ENV. The learner is said to be proper
if it outputs ENV′ such that ENV′ : [t] × [n]d → Σ is an
environment that evolves according to Γ and V ◦ ENV′ is
ε-close to V ◦ ENV.5

We seek time-conforming oracle machines that solve the
corresponding tasks (of testing and learning). Furthermore,
we seek testers and learners that solve the corresponding
tasks in sublinear query complexity, which we interpret
as making o(nd) queries at each particular time. In other

3In general, proper learning a concept class requires obtaining a descrip-
tion that has the same format as functions in the concept class. Indeed, here
ENV1 serves as such a description.

4Equivalently, we may require that if the “visible environment” captured
by F : [t]× [n]d → Σ′ is ε-far from V ◦ ENV′ for any environment ENV′ :
[t] × [n]d → Σ that evolves (from the corresponding ENV′1) according to
Γ, then Pr[TF (t, n, ε)=1] ≤ 1/3.

5Equivalently, we may require the proper learner to output (only) the
corresponding ENV′1.

337337



words, we seek machines of sublinear temporal query com-
plexity.

Definition 2.4: Temporal query complexity. The temporal
query complexity of an oracle machine querying ENV :
[t] × [n]d → Σ is the maximal number of queries that the
machines makes to each ENVj (∀j ∈ [t]).

Definitions 2.1 and 2.4 capture the time-evolving nature
of the environment and our goals, and distinguish the current
testing and learning problems from the standard testing and
learning problems regarding various structures (including
these related to (d+1)-dimensional arrays). First, whenever
the oracle machine does not query the entire oracle ENV, the
time-conforming condition restricts its access pattern (i.e.,
the order in which the machine probes the various entries).
Second, the temporal query complexity refers to the number
of queries made at each time slot (as compared to nd), rather
than the total number of queries (as compared to t ·nd). This
requirement reflects the reality of actual observers of natural
phenomena, who are not only forced to be time-conforming
(since they cannot inspect the past) but are restricted in the
amount of inspection they can perform at any time slot.

A natural question is whether the time-conforming re-
quirement actually restricts the power of testers. We show
that this is indeed the case (see Theorem 3.1): We demon-
strate that the time-conforming requirement makes testing
of evolving d-dimensional environments fundamentally dif-
ferent from testing properties of the corresponding (d+ 1)-
dimensional array. Specifically, there exist pairs (Γ, V ) for
which the time-conforming requirement causes a subexpo-
nential increase in the query complexity of testers (i.e., an
increase from poly(log n) to nΩ(1)).

Recall that proper learning implies testing (cf. [4,
Sec. 3.1]), and note that the argument extends to our
setting (i.e., when referring to time-conforming machines
and their temporal query complexity).6 Thus, we present
testing results only when they improve over the best possible
learning results (which typically require a total number of
Ω(nd) queries). We note that there exist evolution rules for
which testing is not easier than learning, and this holds even
if the state is fully visible (see Theorem 3.5).

III. A TASTE OF OUR RESULTS

In this section we provide an overview of the results pre-
sented in this work. The stated results are followed by rather
laconic comments regarding their proofs. More substantial
overviews of these proofs are provided in Section IV, and
precise statements, together with complete proofs, can be
found in the full version of this paper [5].

6Recall that the argument in [4, Sec. 3.1] suggests that the tester first
learns a hypothesis, and then checks the hypothesis’s validity by an auxiliary
sample (which is uniformly distributed in the function’s domain). Note that
this auxiliary sample can be chosen a priori, and the adequate queries can
be made in due time (even before the learning stage is completed).

We start by presenting the two separation results that were
mentioned in Section II. Both results are established by
using one-dimensional environments (i.e., d = 1). Recall
that, throughout this paper, the evolving environments are
represented as functions from [t]× [n]d to Σ. For simplicity,
we assume in this section that t = Θ(n).

The first result establishes the non-triviality of the notion
of time-conforming observers by showing that the time-
conforming requirement may cause a subexponential in-
crease in the query complexity of testers (i.e., an increase
from poly(log n) to nΩ(1)).

Theorem 3.1: On the time-conforming requirement. There
exist a constant c > 0, an evolution rule Γ : Σ3 → Σ, and
a viewing function V : Σ → Σ′, such that (1) any time-
conforming tester of evolution according to Γ via V requires
Ω(nc) queries, but (2) there exists a (non-time-conforming)
tester of query complexity poly(ε−1 logn) for this property.

The proof of Theorem 3.1 is based on notions and ideas of
Gur and Rothblum [6] concerning sublinear, non-interactive
proof-systems, which they refer to as Merlin-Arthur proofs
of proximity (MAPs). Specifically, we refer to their notions
of general MAPs and MAPs with proof-oblivious queries,
and transform the separation between them into a separation
between general testers and time-conforming ones. Towards
this end, we construct an evolution rule that first reveals
an object to be tested, and then deletes the object and
reveals a corresponding proof (for a suitable MAP). While
a general tester may invoke the corresponding MAP, a time-
conforming tester can be transformed into an MAP that
makes proof-oblivious queries.

The second separation result asserts that adaptivity is
useful also in the context of time-conforming testers.

Theorem 3.2: On the benefits of adaptivity. There exist
a constant c > 0, an evolution rule Γ : Σ3 → Σ, and a
viewing function V : Σ→ Σ′, such that (1) any nonadaptive
tester of evolution according to Γ via V requires Ω(nc)
queries, but (2) there exists a (time-conforming) tester of
query complexity O(ε−1 logn) for this property.

The proof of Theorem 3.2 is based on the observation that
some separations between adaptive and nonadaptive testers
that hold in the standard model can be translated to anal-
ogous results regarding testing evolving environments. Our
translation requires the existence of an efficient algorithm for
sampling the property that is used in the separation result
(of the standard model). This sampler need not produce the
uniform distribution over objects having the property, but
the support of its output distribution should equal the set of
all objects having this property.

Turning to the actual study of testing evolving envi-
ronments, we first note that, in general (i.e., for arbitrary
evolution rules Γ : Σ3 → Σ, even for d = 1), testing
may require as many queries as learning (cf. Theorem 3.5)
and its computational complexity may be NP-Hard (as we

338338



show in the full version of this paper [5]). We thus focus
our attention on special classes of evolution rules. In two
natural cases, we obtain testers of lower query complexity
than the corresponding learners. Furthermore, these testers
are efficient (i.e., their computational complexity is closely
related to their query complexity). The first class of evolution
rules that we consider is the class of linear rules.

Theorem 3.3: Sublinear time complexity for testing linear
rules. For any d ≥ 1 and any field Σ of prime order there
exists a constant γ < d such that the following holds. For
any linear rule Γ : Σ3d → Σ there exists a time-conforming
oracle machine of (total) time complexity poly(ε−1) · nγ

that tests the consistency of an evolving environment with
respect to Γ : Σ3d → Σ and the identity viewing function
(i.e., V (σ) = σ for every σ ∈ Σ). Furthermore, the tester is
nonadaptive and has one-sided error probability.

The proof of Theorem 3.3 is based on proving that, on
the average, the value of a random location in the evolving
environment (i.e., ENV : [t] × [n]d → Σ) depends only on
O(nγ) locations in the initial configuration. We note that our
upper bound on the time complexity is only mildly lower
than poly(1/ε)·nd (e.g., for d = 1 and |Σ| = 2 we obtain the
bound O(n0.8/ε)), and we wonder whether poly(ε−1 logn)
complexity is possible (for all linear rules).

The second class of evolution rules is aimed at capturing
the movement of objects in a d-dimensional grid. The
following result refers to the case of d = 1 and to objects
that move in a fixed-speed but stop whenever a collision
occurs (i.e., an object continues moving, one cell at a time,
until it collides with another object, and when this happens
the object stops).

Theorem 3.4: Testing interruptible moving objects, very
loosely stated. Let Γ : Σ3 → Σ be a local rule that
captures the fixed-speed movement of objects in one dimen-
sion such that colliding objects stop forever. Then, there
exists a time-conforming oracle machine of (total) time
complexity poly(1/ε) that tests the consistency of evolving
environments with respect to Γ : Σ3 → Σ and the identity
viewing function.

The tester referred to in Theorem 3.4 makes quite a few
checks, which include checking that individual objects move
in fixed speed as long as they don’t stop, checking that these
objects do not cross each other, and checking global statistics
regarding the number of moving and stopping objects within
some intervals at some times. The non-triviality of this
testing task is reflected in the fact that the tester has two-
sided error probability, and that this is unavoidable for
testers of query complexity that is independent of n. The
latter assertion is a corollary of a theorem proved in the full
version of this paper [5], which asserts that any nonadaptive
tester of one-sided error probability for this task must have
query complexity Ω(

√
n), which in turn implies an Ω(logn)

bound for general testers (of one-sided error probability).

We note that the tester used in the proof of Theorem 3.4 is
actually nonadaptive.

As stated above, we show that, in general, testing evolving
environments may be as hard as learning them. That is, in
contrast to (the rules considered in) Theorems 3.3 and 3.4,
there are evolution rules for which testing is not easier than
learning. This hardness result holds even when the state is
fully visible, which indicates that this restriction (i.e., fully
visible states) does not suffice for making testing easier than
learning.

Theorem 3.5: Testing may have the same query complex-
ity as learning. There exist a constant c > 0 and an evolution
rule Γ : Σ3 → Σ such that both testing evolution according
to Γ via V and (proper) learning evolution according to
Γ via V have (total) query complexity Θ(nc), where in
both cases we refer to a fully visible state (i.e., V is the
identity function) and to all sufficiently small constant values
of ε > 0.

As in the proof of Theorem 3.2, the main observation in
the proof of Theorem 3.5 is that results that hold in the
standard model (in this case relations between the complex-
ity of testing and learning) can be translated to analogous
results regarding testing evolving environments. However, in
the current proof, we wish to carry out this translation in the
context of fully visible states. Thus, we pick a property for
which probing the process of the construction of the object
(having the property) does not reveal more than probing the
object itself.

Staying within the realm of fully visible states, the fol-
lowing result assert that, even in this case, the computational
complexity of testing may be NP-Hard (with respect to
the size of the environment), provided that the temporal
query complexity is “significantly sublinear” (where f(m)
is significantly sublinear if f(m) < m1−Ω(1)).

Theorem 3.6: on the computational complexity of testing
with sublinear temporal query complexity. Assuming NP �⊆
BPP, there exists an evolution rule Γ : Σ3 → Σ such that no
time-conforming probabilistic polynomial-time tester for the
evolution (of n-sized environments) according to Γ and V≡
has temporal query complexity n1−Ω(1), where V≡ denotes
the identity mapping.

Indeed, Theorem 3.6 stands in contrast to Theorems 3.3
and 3.4, which refer to specific evolution rules (and a fully
visible state). We mention that in the case of a viewing
function that hides part of the state, NP-Hardness of testing
holds regardless of the query complexity.

IV. MORE ON THE IDEAS UNDERLYING OUR PROOFS

In this section we attempt to give a flavour of the ideas
underlying the proofs of our results, going beyond the
laconic comments provided in the prior section.

339339



A. On the proofs of our separation and hardness results

Our separation and hardness results (i.e., Theorems 3.1,
3.2, 3.5, and 3.6) are all based on the fact that (1-
dimensional) cellular automata can emulate (1-tape) Turing
machines (while preserving the time complexity), and thus
can generate objects that are hard to test in some sense.
The proofs differ by issues such as which computation is
emulated and under which circumstances it is emulated.

The basic approach: As a warm-up, let us consider the
following claim, which we’ll refer to as Claim (*): Testing
the consistency of an evolution with respect to a fixed rule
Γ : Σ3 → Σ may be NP-hard, regardless of the query
complexity. (A precise statement appears as Theorem 2.1 in
the full version of this paper [5]). The basic idea is to design
a rule Γ such that evolutions that are consistent with Γ reveal
(via the viewing function) an error-corrected encoding of
a string if and only if the string is in the NP-set. Hence,
membership in the NP-set S can be decided by invoking
the tester, while answering its queries (and relying on the
fact that strings that are not in S have encodings that are far
from the encoding of any string in S). Specifically, we let
Γ emulate the verification procedure associated with an NP-
witness relation of S, and output (an encoding of) the main
input (but not the NP-witness) if the procedure accepts (and
output an empty string otherwise). The emulation is carried
out using the hidden part of the state, and the output is
revealed through the visible part of the state. (The output
is maintained for a sufficient number of steps so evolving
environments that output encodings of different strings are
far apart (i.e., at constant relative distance of one another).)

On input x, the decision procedure for S invokes the
tester, while answering queries that correspond to the emu-
lated computation by an empty symbol (which matches the
expected output of the viewing function) and answers the
other queries by using bits in the encoding of x. The key
observation is that an evolving environment that “outputs”
an encoding of x is legal if and only if there exists an NP-
witness w for x (i.e., iff x ∈ S). The distance between
evolving environments that output encodings of different
strings guarantees that evolving environments that output a
string not in S are far from any legal evolution.

The simple argument outlined above relies in an essen-
tial manner on the use of a viewing function that hides
information. This function reveals the encoding of x, but it
does not reveal the emulation of the computation that maps
(x,w) to this encoding. Moreover, this simple argument
does not allow to separate different query models as asserted
in Theorems 3.1 and 3.2. Still, the underlying principle of
generating an object that is hard to test in some sense will be
pivotal to all subsequent proofs. But the generation process
in these proofs will be less straightforward than in the above
case.

Handling the case of a fully visible state: Note that
Claim (*) cannot possibly hold when the state is fully
visible, since in this case testing consistency of evolutions
with a fixed rule is trivial when there are no restrictions on
the query complexity. Indeed, Theorem 3.6 refers to testers
of limited query complexity (i.e., sublinear temporal query
complexity), and its proof capitalizes on this limitation. In
the corresponding cellular automaton, many emulations of
the above type take place in parallel, but the temporal query
complexity imposed on the tester does not allow it to probe
the “informative time” (i.e., the time when the NP-witness
is visible) of almost all of these emulations. Specifically,
the evolution rule Γ partitions [n] into many blocks (i.e.,
more blocks than the temporal query complexity), emulates
the verification of an NP-witness in each block, identifies
the first non-empty output obtained in some block (if such
exists), and copies its contents (which is a codeword) to all
other blocks. (Otherwise, the evolution maintains an empty
output in all blocks.)

We consider evolutions in which a single informative
emulation (i.e., an emulation of the verification of a real NP-
witness) takes place in one block, selected at random, while
dummy emulations (which emulate verification with dummy
values) take place in all other blocks. The point is that
a time-conforming tester is unlikely to hit the informative
block at the informative (emulation) time, whereas if the
informative block produces an encoding of a string, then
this encoding will be propagated to all other blocks. Hence,
the tester should determine whether an evolution that repeats
an encoding of x is legal or not, which means that this tester
decides membership of x in an NP-set, whereas the tester is
highly unlikely to probe the process in which the encoding
of x was generated by verifying a valid NP-witness.

Specifically, on input x, the decision procedure invokes
the tester, while answering queries that correspond to the
emulated computations (in the various blocks) according to
the verification of a dummy NP-witness for x (which indeed
leads the verification procedure to reject in each block), and
answers the other queries by using bits in the encoding
of x (which is being copied from a random block that
was not probed by the tester during the verification stage).7

That is, the decision procedure emulates a seemingly illegal
evolution; yet, if x is in the NP-set (and the tester did not
probe the informative block at the informative time), then
the tester’s view is consistent with a legal evolution that
outputs (the encoding of) x. On the other hand, if x is not
in the set, then an evolution that outputs the encoding of x
is far from being legal.

The forgoing arguments relied on the ability of an ordi-
nary procedure (i.e., the decision procedure we obtain for

7Actually, the decision procedure selects the informative block at random,
and aborts the emulation if the tester probes this block during the verifica-
tion stage. Otherwise, it continues the emulation as if only this block has
output the encoding of x.

340340



NP-sets) to answer queries to various fictitious evolutions
(or to evolutions taken from a restricted set of possible evo-
lutions). That is, the decision procedure partially emulates
the execution of hypothetical testers while providing them
with oracle access to fictitious (or restricted) evolutions. This
strategy is not open to us when we want to distinguish
different types of machines that query a real evolving
environment (i.e., different types of testers or testers versus
learners). In this case, we must construct oracle machines
that actually probe a real evolving environment, and not
merely foil hypothetical machines by presenting them with
fictitious (or restricted) evolutions that we construct.

Consider, for example, the assertion of Theorem 3.5 by
which testing requires asymptotically as many queries as
(proper) learning. Here we have to present a lower bound
on the complexity of testing and match it with an upper
bound on the complexity of learning. Furthermore, we claim
these bounds for the case of fully visible states. The basic
idea is to consider a cellular automaton that computes the
inner product (mod 2) of two binary vectors, while placing
the vectors and the result in an error correcting form (so as
to generate a distance between different input-output pairs).
Using the communication complexity method of [1] (see
also [3]), one may show that testing such outcomes requires
linear query complexity. But, since we deal with fully visible
states, we need to establish this lower bound also with
respect to testers that may query the process of computing
the outcome. We first note that the process of encoding the
individual vectors poses no additional difficulties, because
probing this process only provides values that are functions
of one of the vectors (rather than functions of both vectors).8

Hence, we focus on the process of computing the inner prod-
uct (mod 2) of the two vectors, and show that this process
leaks no additional information when we reduce from the
communication complexity of (Unique) Disjointness
(rather than from Inner Product). Specifically, we use
that fact that if a pair of vectors has no common 1-entry,
then all partial inner products are zero (whereas if the pair
has a single common 1-entry, then its inner product (mod 2)
is 1).

On separation results regarding various types of testers:
We now turn to the separation results (i.e., Theorems 3.1
and 3.2), which are proved using a viewing function that
hides parts of the state. We start with Theorem 3.2, which
asserts a separation between nonadaptive testers and (time-
conforming) adaptive testers. The idea here is to present a
cellular automaton that can generate (and maintain) instances
of some property that is easy to test adaptively but hard
to test nonadaptively. We need a process that can generate
each string that has the property, but never generates a
string that does not have the property. We do not need this

8Such a situation is easy to handle when using the formulation of [3]
(rather than that of [1]).

process to generate these strings with uniform distribution
(over the property); any distribution that assigns non-zero
weight to each string that has the property will do. For
example, we can use a process that generates a random 4-
partition of [v] (or rather maps the set of all v log2 v-bit
strings to the set of all such partitions), and consider a 3-
regular graph that consists of the corresponding isolated 4-
cliques. This property is easy to test in the bounded-degree
graph model (i.e., a constant number of queries suffice), but
it cannot be tested by a nonadaptive machine that makes
o(
√
v) queries [8].

Turning to the proof of Theorem 3.1, recall that this
result asserts a gap between the power of (adaptive) time-
conforming testers and the power of testers that are not
time-conforming. The idea here is to rely on notions and
ideas of Gur and Rothblum [6], which we re-interpret in
terms of “order of events”. Specifically, we refer to their
notions of general MAPs and MAPs with proof-oblivious
queries, where MAPs are testers that obtain (short) auxiliary
proofs. We view proof-oblivious MAPs as testers that are
restricted to first query the object and only later read the
auxiliary proof (without having further access to the object).
In contrast, w.l.o.g., general MAPs first read the (entire)
auxiliary proof, and then query the object based on the proof
just read. Hence, in the proof-oblivious case the queries are
made before the proof is read, whereas in the general case
the queries are made after the proof is read. Wishing to
capitalize on the gap (established in [6]) between the power
of the two models, we present a cellular automaton that
first makes visible a string to be tested, and then hides (or
deletes) this string and reveals the corresponding short proof.
The point is that a time-conforming tester is restricted in
a manner analogous to a proof-oblivious MAP, whereas a
general tester (which is not time-conforming) can first read
the proof and then inspect the object (just as a general MAP).

We implement the above strategy by presenting a cellular
automaton that proceeds as follows. On input a string x and
an index i ∈ [|x|], which are not visible, the automaton first
reveals an error correcting form of x. Next, it computes the
ith bit of x (i.e., xi), and an error correcting version of i
(in a secret manner), and deletes all trace of x. Finally, it
reveals the encoding of i and the bit xi, and repeats them
for enough time. The legality of an evolution is easy to test
by a logarithmic number of queries that violate the time-
conforming condition. To show that a time-conforming tester
requires an exponentially larger query complexity, we use
a reduction from Disjointness (again via the method
of [1]). Here, we reduce a standard testing problem that
refers to a pair of strings (presented in error correcting for-
mat) to two instances of testing the consistency of evolving
environments with the foregoing evolution rule. Actually,
we reduce testing via proof-oblivious MAPs of a property
related to Disjointness to testing two evolutions; specif-
ically, the property is the set of all pairs of codewords that

341341



encode a pair of strings that has a common 1-entry.

Establishing all results for t = O(n): All the above
constructions can be implemented when the evolution time
(i.e., t) is polynomial in the size of the environment (i.e.,
n), since all of them are based on evolutions that emulate
polynomial-time computations of 1-tape Turing machines. In
order to obtain results that refer to the case that t = O(n),
we emulate many computations as above in parallel such
that each computation takes place on a block of length �,
where the emulation time on �-bit inputs is Θ(n). The details
involve performing some simple manipulations in linear time
(on a one-dimensional cellular automata); for example, the
n cells of the automaton can be partitioned into �-cell blocks
in O(n) time, and an �-bit string can be copied to the
neighboring block in O(�) steps of such an automaton.

B. On testers for special cases

We now turn to our positive testing results, which corre-
spond to two classes of evolution rules.

Testers for linear rules: The first result (i.e., Theorem 3.3)
refers to the class of all linear rules (over a finite field of
prime cardinality). The tester operates by picking a random
location i ∈ [n]d at a random time j ∈ [t] and comparing
the value of ENVj(i) to a predetermined linear combination
of the values of the initial configuration (i.e., ENV1(·)). The
crucial fact is that this linear combination is typically sparse,
which implies that this tester has sublinear query complexity
(i.e., it makes (nd)1−Ω(1) queries). Specifically, we prove
that on the average, over all times j ∈ [t], the contents of a
cell depends on a sublinear number of locations in the initial
configuration (i.e., (nd)1−η locations, for some η > 0). This
is proved by first showing that each location i ∈ [n]d at time
j ∈ [t] depends only on 3d locations at time j−pe, where p
is the cardinality of the field and e ∈ N. Furthermore, each of
these locations has the form i+pe ·δ, where δ ∈ {−1, 0, 1}d
(i.e., in the case d = 1, these locations are i−pe, i and i+pe).
Using this fact, we upper bound the number of locations at
times j − j′ for j′ ∈ [pe] that influence the fixed location at
time j, by employing a careful accounting of all influences.

We comment that using a similar accounting, one can
show that on the average, over all times j ∈ [t], the contents
of a cell does depend on (nd)η

′
locations in the initial

configuration, for some η′ > 0, provided that t = Ω(n) and
the linear rule is not degenerated. This means that, except for
linear rules that depend on at most one variable, the above
tester has query complexity at least nΩ(1).

Testers for environments of moving objects: The second
result (i.e., Theorem 3.4) refers to a rule that describes the
interruptible fixed-speed movement of objects in one dimen-
sion. The result asserts a two-sided error tester of complexity
that does not depend on the size of the environment. This
is complemented by a negative result that asserts that such
a complexity is impossible in the case of one-sided error

testers. Indeed, our tester performs several checks, and one
of these checks refers to a global statistics (and not to the
consistency of a partial view with the rule of movement).
The core of the analysis boils down to showing that an
evolution that passes all checks with high probability must
be close to a legal one. This is proved by a sequence of
modifications such that each set of modifications relies on
a different check, showing that if the environment passes
this check with high probability then it is close to one that
satisfies the corresponding sub-property. Details follow.

We decouple the property of legal evolutions of environ-
ments according to the foregoing rule into the following four
conditions:9 (1) the movement and standing behavior of each
object is consecutive; (2) each object appears as standing just
after it stopped moving; (3) objects do not cross each other
paths; and (4) objects stop due to an object that occupies
the neighboring cell (in their direction of movement). Note
that Condition (1) only says that each object moves in
some time interval [1, j] and/or stand in some time interval
[j′, t], but it does not say that if an object stopped moving
in location i at time j then it will appear as standing
at location i in time [j + 1, t]. As indicated by the one-
sided error lower bound, it is infeasible to check the latter
(“matching”) condition for individual objects. Instead, the
checking of Condition (2) is performed “globally”; that is,
by comparing the statistics regarding the movement-stopping
times and the standing-start times of all objects. Checks that
correspond to Conditions (1) and (3) are performed in a
rather straightforward manner, and checking Condition (4)
relies on a characterization of the intervals that must be filled
with standing objects, given a specific pattern of movement
stopping.

It is rather easy to see that a legal evolution passes
all checks with high probability, whereas the small error
probability is due to the statistical checking of Condition (2).
The difficult part is proving that if an evolution passed
all checks with high probability then it is close to a legal
one. This is shown by a sequence of four modifications,
which correspond to the above four checks. For example,
it is quite easy to see that if the evolution passes the first
check with high probability, then it must be close to one
that satisfies Condition (1). Proving an analogous claim for
the other three checks (and corresponding conditions) is
more complex. In particular, we should make sure that the
modifications that we perform in later stages do not violate
the conditions established in prior stages. For example, the
matching of movement and standing should be performed
while maintaining Condition (1) that asserts that each such
behavior occurs in a consecutive interval of time.

9Another condition (i.e., “spaced beginning”) was omitted in the current
(high-level) description. In fact, the evolution rule does not allow moving
objects to start at neighboring locations, and this condition is checked too.
The reason for this augmentation is discussed in the full version of this
paper [5].

342342



ACKNOWLEDGMENTS

We were inspired by a short presentation of Bernard
Chazelle in the Property Testing Workshop that took place
in January 2010 at Tsinghua University (Beijing).10 Specif-
ically, Bernard suggested attempting to provide a sublinear
time analysis of dynamic systems, which may consist of
selecting few objects and tracing their movement in time.
This suggestion sounded very appealing to us, and it was
the trigger for the model presented here.

We are grateful to Benny Applebaum for collaboration
in early stages of this research. We wish to thank a few
anonymous readers for their comments.

This research was partially supported by the Israel Science
Foundation (grant No. 671/13).

REFERENCES

[1] E. Blais, J. Brody, and K. Matulef. Property testing lower
bounds via communication complexity. Computational Com-
plexity, 21(2):311–358, 2012.

[2] O. Goldreich, editor. Property Testing: Current Research and
Surveys. Springer, 2010. LNCS 6390.

[3] O. Goldreich. On the communication complexity method-
ology for proving lower bounds on the query complexity
of property testing. Technical Report TR13-073, Electronic
colloquium on computational complexity (ECCC), 2013.

10A related collection of extended abstracts and surveys has appeared
as [2].

[4] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation. Journal of
the ACM, 45(4):653–750, 1998.

[5] O. Goldreich and D. Ron. On learning and testing dynamic
environments. Technical Report TR14-029, Electronic collo-
quium on computational complexity (ECCC), 2014.

[6] T. Gur and R. Rothblum. Non-interactive proofs of proxim-
ity. Technical Report TR13-078, Electronic colloquium on
computational complexity (ECCC), 2013.

[7] M. Kearns and U. Vazirani. An introduction to Computational
Learning Theory. MIT Press, 1994.

[8] S. Raskhodnikova and A. Smith. A note on adaptivity
in testing properties of bounded degree graphs. Technical
Report TR06-089, Electronic Colloquium on Computational
Complexity (ECCC), 2006.

[9] D. Ron. Algorithmic and analysis techniques in property
testing. Foundations and Trends in Theoretical Computer
Science, 5:73–205, 2010.

[10] R. Rubinfeld and M. Sudan. Robust characterization of
polynomials with applications to program testing. SIAM
Journal on Computing, 25(2):252–271, 1996.

[11] L. G. Valiant. A theory of the learnable. CACM, 27(11):1134–
1142, November 1984.

343343


