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Abstract—In this paper, we present a new basis of polynomial
over finite fields of characteristic two and then apply it to
the encoding/decoding of Reed-Solomon erasure codes. The
proposed polynomial basis allows that h-point polynomial eval-
uation can be computed in O(h log2(h)) finite field operations
with small leading constant. As compared with the canonical
polynomial basis, the proposed basis improves the arithmetic
complexity of addition, multiplication, and the determina-
tion of polynomial degree from O(h log2(h) log2 log2(h)) to
O(h log2(h)). Based on this basis, we then develop the encoding
and erasure decoding algorithms for the (n = 2r, k) Reed-
Solomon codes. Thanks to the efficiency of transform based
on the polynomial basis, the encoding can be completed in
O(n log2(k)) finite field operations, and the erasure decoding
in O(n log2(n)) finite field operations. To the best of our
knowledge, this is the first approach supporting Reed-Solomon
erasure codes over characteristic-2 finite fields while achieving
a complexity of O(n log2(n)), in both additive and multiplica-
tive complexities. As the complexity leading factor is small, the
algorithms are advantageous in practical applications.

I. INTRODUCTION

For a positive integer r ≥ 1, let F2r denote a

characteristic-2 finite field containing 2r elements. A poly-

nomial over F2r is defined as

a(x) = a0 + a1x + a2x
2 + · · ·+ ah−1x

h−1,

where each ai ∈ F2r . A fundamental issue is to reduce

the computational complexities of arithmetic operations over

polynomials. Many fast polynomial-related algorithms, such

as Reed-Solomon codes, are based on fast Fourier transforms

(FFT). However, it is algorithmically harder as the traditional

fast Fourier transform (FFT) cannot be applied directly

over a characteristic-2 finite fields. To the best of our

knowledge, no existing algorithm for characteristic-2 finite

field FFT/polynomial multiplication has provably achieved

O(h lg(h)) operations1 (see Section VII for more details).

In algorithmic viewpoint, FFT is a polynomial evaluations

at a period of consecutive points, where the polynomial

is in monomial basis. This viewpoint gives us the ability

to design fast polynomial-related algorithms. In this paper,

we present a new polynomial basis in the polynomial ring

1Throughout this paper, the notation lg(x) represents the logarithm to
the base 2.

F2r [x]/(x2r − x). Then a transform in the new basis is

defined to compute the polynomial evaluations. The new

basis possesses a recursive structure which can be exploited

to compute the polynomial evaluations at a period of h
consecutive points in time O(h lg(h)) with small leading

constant. Furthermore, the recursive structure also works in

formal derivative with time complexity O(h lg(h)).
An application of the proposed polynomial basis is in

erasure codes, that is an error-correcting code by converting

a message of k symbols into a codeword with n symbols

such that the original message can be recovered from a

subset of the n symbols. An (n, k) erasure code is called

Maximum Distance Separable (MDS) if any k out of the n
codeword symbols are sufficient to reconstruct the original

message. A typical class of MDS codes is Reed-Solomon

(RS) codes [1]. Nowadays, RS codes have been applied to

many applications, such as RAID systems [2, 3], distributed

storage codes [4, 5], and data carousel [6]. Hence, the

computational complexity of RS erasure code is considered

crucial and has attracted substantial research attention. Based

on the new polynomial basis, this paper presents the encod-

ing/decoding algorithms for RS erasure codes. The proposed

algorithms use the structure [7] that requires evaluating a

polynomial and it’s derivatives, while the polynomial used

in the structure is in the new polynomial basis, rather than

the monomial basis.

The rest of this paper is organized as follows. The

proposed polynomial basis is defined in Section II. Section

III gives the definition and algorithm of the transform to

compute the polynomial evaluations based on the proposed

polynomial basis. Section IV shows the formal derivative

of polynomial. Section V presents the encoding and erasure

decoding algorithm for Reed-Solomon codes. The discus-

sions and comparisons are placed in Section VI. SectionVII

reviews some related literature. Concluding remarks are

provided in Section VIII.

II. A NEW POLYNOMIAL BASIS OVER F2r

A. Finite field arithmetic

Let F2r be an extension finite field with dimension r over

F2. The elements of F2r are represented as a set {ωi}2
r−1

i=0 .
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We order those elements as follows. Assume that V be the r-

dimensional vector space spanned by v0, v1, . . . , vr−1 ∈ F2r

over F2. For any 0 ≤ i < 2r, its binary representation is

given as

i = i0 + i1 · 2+ i2 · 22 + · · ·+ ir−1 · 2r−1,∀ij ∈ {0, 1}. (1)

Then ωi is defined as

ωi = i0 · v0 + i1 · v1 + i2 · v2 + · · ·+ ir−1 · vr−1.

A polynomial f(x) defined over F2r is a polynomial whose

coefficients are from F2r .

B. Subspace vanishing polynomial

The subspace vanishing polynomial defined in [8–10] is

expressed as

Wj(x) =
2j−1∏
i=0

(x + ωi), (2)

where 0 ≤ j ≤ r− 1. It can be seen that deg(Wj(x)) = 2j .

Next we present properties of Wj(x) without proof.

Lemma 1 ([9]). Wj(x) is an F2-linearlized polynomial for
which

Wj(x) =
j∑

i=0

aj,ix
2i

, (3)

where each aj,i ∈ F2r is a constant. Furthermore,

Wj(x + y) = Wj(x) + Wj(y),∀x, y ∈ F2r . (4)

C. Polynomial basis

In this work, we consider the polynomial ring

F2r [x]/(x2r − x). A form of polynomial basis we work

with is denoted as X(x) = (X0(x), X1(x), . . . , X2r−1(x))
over F2r . Each polynomial Xi(x) is defined as the product

of subspace vanishing polynomials. For each polynomial

Xi(x), i is written in binary representation as

i = i0 + i1 · 2 + · · ·+ ir−1 · 2r−1,∀ij ∈ {0, 1}. (5)

The polynomial Xi(x) is then defined as

Xi(x) =
r−1∏
j=0

(
Wj(x)

Wj(ω2j )

)ij

, (6)

for 0 ≤ i < 2r. Notice that
(

Wj(x)
Wj(ω2j )

)ij

= 1, if ij = 0. It

can be seen that deg(Xi(x)) = i.
Then a form of polynomial expression [•](x) is given as

follows.

Definition 1. A form of polynomial expression over F2r is
defined as

[Dh](x) =
h−1∑
i=0

diXi(x), (7)

where
Dh = (d0, d1, . . . , dh−1) (8)

is an h-element vector denoting the polynomial coefficients
and h ≤ 2r. Consequently, deg([Dh](x)) ≤ h− 1.

III. FAST TRANSFORM Ψl
h[•]

In this section, we define a h-point transformation Ψl
h[•]

that computes the evaluations of [•](x) at h successive

points, for h a power of two. Given a h-element input vector

Dh, the polynomial [Dh](x) can be constructed accordingly.

The transform outputs a h-element vector

D̂l
h = Ψl

h[Dh],

where

D̂l
h = ([Dh](ω0+ωl), [Dh](ω1+ωl), . . . , [Dh](ωh−1+ωl)),

and l denotes the amount of shift in the transform.

Oppositely, the inversion, denoted as (Ψl
h)−1[•], can

convert D̂l
h into Dh, and we have (Ψl

h)−1[D̂l
h] = Dh. Here,

we omit to provide the close form for inversion. Instead, an

algorithm for transform Ψl
h[•] and the inverse algorithm will

be presented later.

A. Recursive structure in polynomial basis

This subsection shows that the polynomial [Dh](x) can be

formulated as a recursive function [Dh](x) = Δ0
0(x), where

the function Δm
i (x) is defined as

Δm
i (x) = Δm

i+1(x) +
Wi(x)

Wi(ω2i)
Δm+2i

i+1 (x)

, for 0 ≤ i ≤ lg(h)− 1;
(9)

Δm
lg(h)(x) = dm, for 0 ≤ m ≤ h− 1. (10)

Note that m in Δm
i (x) represents a lg(h)-bits binary integer

m = m0 + m1 · 2 + · · ·+ mi−1 · 2i,∀mj ∈ {0, 1}. (11)

By induction, it can be seen that deg(Δm
i (x)) ≤ h/2i − 1.

For example, if h = 8, we have

[D8](x) =

7∑
i=0

diXi(x)

=d0 + d1
W0(x)

W0(ω1)
+ d2

W1(x)

W1(ω2)
+ d3

W0(x)

W0(ω1)

W1(x)

W1(ω2)

+ d4
W2(x)

W2(ω4)
+ d5

W0(x)

W0(ω1)

W2(x)

W2(ω4)
+ d6

W1(x)

W1(ω2)

W2(x)

W2(ω4)

+ d7
W0(x)

W0(ω1)

W1(x)

W1(ω2)

W2(x)

W2(ω4)

=

(
d0 + d4

W2(x)

W2(ω4)
+

W1(x)

W1(ω2)

(
d2 + d6

W2(x)

W2(ω4)

))

+
W0(x)

W0(ω1)

(
d1 + d5

W2(x)

W2(ω4)
+

W1(x)

W1(ω2)

(
d3 + d7

W2(x)

W2(ω4)

))

=

(
Δ0

2(x) +
W1(x)

W1(ω2)
Δ2

2(x)

)

+
W0(x)

W0(ω1)

(
Δ1

2(x) +
W1(x)

W1(ω2)
Δ3

2(x)

)

=Δ0
1(x) +

W0(x)

W0(ω1)
Δ1

1(x) = Δ0
0(x).

(12)
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The Δm
i (x) possesses the following equality that will be

utilized in the algorithm:

Lemma 2.

Δm
i (x + y) = Δm

i (x),∀y ∈ {ωb}2
i−1

b=0 . (13)

Proof: By Lemma 1, we have

Wi(x + y) = Wi(x) + Wi(y) = Wi(x),∀y ∈ {ωb}2i−1
b=0 . (14)

The proof follows mathematical induction on i. In the base
case, we consider (9) at i = lg(h)− 1:

Δm
lg(h)−1(x)

=Δm
lg(h)(x) +

Wlg(h)−1(x)
Wlg(h)−1(ω2lg(h)−1)

Δm+2lg(h)−1

lg(h) (x)

=dm +
Wlg(h)−1(x)

Wlg(h)−1(ω2lg(h)−1)
dm+2lg(h)−1 .

From (14), we have

Δm
lg(h)−1(x + y)

=dm +
Wlg(h)−1(x + y)

Wlg(h)−1(ω2lg(h)−1)
dm+2lg(h)−1

=dm +
Wlg(h)−1(x)

Wlg(h)−1(ω2lg(h)−1)
dm+2lg(h)−1

=Δm
lg(h)−1(x),∀y ∈ {ωb}h/2−1

b=0 .

Thus (13) holds for i = lg(h)− 1.
Assume (13) holds for i = c + 1. When i = c, we have

Δm
c (x + y)

=Δm
c+1(x + y) +

Wc(x + y)
Wc(ω2c)

Δm+2c

c+1 (x + y)

=Δm
c+1(x + y) +

Wc(x)
Wc(ω2c)

Δm+2c

c+1 (x + y)

=Δm
c+1(x) +

Wc(x)
Wc(ω2c)

Δm+2c

c+1 (x)

=Δm
c (x),∀y ∈ {ωb}2

c−1
b=0 .

This completes the proof.

B. Proposed algorithm

Let

Ψ(i, m, l) = {Δm
i (ωc + ωl)|c ∈ {b · 2i}h/2i−1

b=0 }
, for 0 ≤ i ≤ lg(h)− 1;

(15)

Ψ(lg(h),m, l) = {dm}. (16)

The objective of algorithm is to compute the values in set

Ψ(0, 0, l). In the following, we rearrange the set Ψ(i, m, l)
into two parts: Ψ(i + 1,m, l) and Ψ(i + 1, m + 2i, l), by

taking around h/2i additions and h/2i+1 multiplications.

In (15), Ψ(i, m, l) can be divided into two individual

subsets:

{Δm
i (ωc + ωl)|c ∈ {b · 2i+1}h/2i+1−1

b=0 } (17)

and

{Δm
i (ωc + ωl + ω2i)|c ∈ {b · 2i+1}h/2i+1−1

b=0 }. (18)

In (17), we have

Δm
i (ωc + ωl)

=Δm
i+1(ωc + ωl) +

Wi(ωc + ωl)
Wi(ω2i)

Δm+2i

i+1 (ωc + ωl).
(19)

It can be seen that Δm
i+1(ωc + ωl) ∈ Ψ(i + 1,m, l), and

Δm+2i

i+1 (ωc +ωl) ∈ Ψ(i+1, m+2i, l). The factor
Wi(ωc+ωl)

Wi(ω2i )

can be precomputed and stored. Hence, for each element of

the set given in (17), the calculation requires a multiplication

and an addition. Note that when ωc + ωl = 0, we have

Δm
i (0) = Δm

i+1(0), (20)

which does not involve any arithmetic operations.

Next we consider the computation in (18), and we have

Δm
i (ωc + ωl + ω2i) = Δm

i+1(ωc + ωl + ω2i)

+
Wi(ωc + ωl + ω2i)

Wi(ω2i)
Δm+2i

i+1 (ωc + ωl + ω2i).
(21)

By Lemma 2, we have

Δm
i+1(ωc + ωl + ω2i) = Δm

i+1(ωc + ωl);

Δm+2i

i+1 (ωc + ωl + ω2i) = Δm+2i

i+1 (ωc + ωl).

Furthermore, the factor can be rewritten as

Wi(ωc + ωl + ω2i)
Wi(ω2i)

=
Wi(ωc + ωl) + Wi(ω2i)

Wi(ω2i)

=
Wi(ωc + ωl)

Wi(ω2i)
+ 1.

With above results, (21) can be rewritten as

Δm
i (ωc + ωl + ω2i)

=Δm
i+1(ωc + ωl) +

(
Wi(ωc + ωl)

Wi(ω2i)
+ 1

)
Δm+2i

i+1 (ωc + ωl)

=Δm
i+1(ωc + ωl) +

Wi(ωc + ωl)
Wi(ω2i)

Δm+2i

i+1 (ωc + ωl)

+ Δm+2i

i+1 (ωc + ωl)

=Δm
i (ωc + ωl) + Δm+2i

i+1 (ωc + ωl).
(22)

Hence, the element requires an addition.
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C. Inverse transform

The inversion is a transform converts Ψ(i, m, l) into

polynomial coefficients {dm}h−1
m=0. The inversion can be

done through backtracking the transform algorithm. As

mentioned previously, Ψ(i, m, l) can be rearranged into two

parts: Ψ(i + 1,m, l) and Ψ(i + 1, m + 2i, l). Assume the

set Ψ(i, m, l) is given, we present the method to compute

Ψ(i + 1,m, l) and Ψ(i + 1, m + 2i, l), respectively.

To construct Ψ(i + 1, m + 2i, l), (22) is reformulated as

Δm+2i

i+1 (ωc+ωl) = Δm
i (ωc+ωl)+Δm

i (ωc+ωl+ω2i). (23)

Since Δm
i (ωc + ωl),Δm

i (ωc + ωl + ω2i) ∈ Ψ(i, m, l), each

Δm+2i

i+1 (ωc +ωl) ∈ Ψ(i+1, m+2i, l) can be calculated with

taking an addition.

To construct Ψ(i + 1,m, l), (19) is reformulated as

Δm
i+1(ωc + ωl)

=Δm
i (ωc + ωl) +

Wi(ωc + ωl)
Wi(ω2i)

Δm+2i

i+1 (ωc + ωl).
(24)

Since Δm
i (ωc + ωl) ∈ Ψ(i, m, l) and Δm+2i

i+1 (ωc + ωl) ∈
Ψ(i + 1, m + 2i, l) are known, each Δm

i+1(ωc + ωl) ∈
Ψ(i+1,m, l) can be calculated with taking an addition and

a multiplication.

Figure 1 depicts an example of the proposed transform

Ψl
h[•] of length h = 8. Figure 1(a) shows the flow graph

of the transform. The dotted line arrow denotes that the

element should be multiplied with a scalar factor Ŵ j
i upon

adding together with other element, where the scalar factor

is denoted as

Ŵ j
i =

Wi(ωj)
Wi(ω2i)

.

Figure 1(b) shows the flow graph of inversion. Also, it would

be of interest to compare Figure 1 with the butterfly diagram

of radix-2 FFT.

D. Computational complexity

Clearly, the proposed transform and its inversion have the

same computational complexity. Thus, we only consider the

computational complexity on transform. By the recursive

structure, the number of arithmetic operations can be formu-

lated as recursive functions. Let A(h) and M(h) respectively

denote the number of additions and multiplications used in

the algorithm. By (19) and (22), the recursive formula is

given by

A(h) = 2A(h/2) + h;A(1) = 0;
M(h) = 2M(h/2) + h/2; M(1) = 0.

The solution is

A(h) = h lg (h); M(h) =
h

2
lg (h).
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(b) The inverse transform.

Figure 1. Data flow diagram of proposed transform of length h = 8.

Notice that when the amount of shift ωl = 0, the number of

operations can be reduced slightly (see (20)). In this case,

we have

A0(h) = h lg (h)− h + 1; M0(h) =
h

2
lg (h)− h + 1.

E. Space complexity

In a h-point transform, we need h units of space for

the input data and an array to store the factors used in the

computation of (17). From (19), the factors are

Wi(ωc + ωl)
Wi(ω2i)

=
Wi(ωc)
Wi(ω2i)

+
Wi(ωl)
Wi(ω2i)

, ∀c ∈ {b·2i+1}h/2i+1−1
b=0 .

As 0 ≤ i ≤ lg(h), a h-point transform requires a total of

h

2
+

h

4
+ · · ·+ h

h
= h− 1

units of space to store the factors. Hence, the space com-

plexity is O(h).
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IV. FORMAL DERIVATIVE

In this section, we consider the formal derivative over

the proposed basis. Section IV-A gives the closed form of

the formal derivative. SectionIV-B presents a computation

method that has lower multiplicative complexity than the

original approach.

A. Closed-form expression of formal derivative of [Dh](x)

Lemma 3. The formal derivative of Wi(x) is a constant
given by

W ′
i (x) =

2i−1∏
j=1

ωj . (25)

Proof: Let
C(x) = c · xj ,

where c ∈ F2r . Its formal derivative is defined as

C ′(x) =
{

0 if j is even;
cxj−1 otherwise.

From Lemma 1, Wi(x) has terms in the degrees of
1, 2, 4, . . . , 2i, so the formal derivative of Wi(x) is a con-
stant that is the coefficient of Wi(x) at degree 1. The value
is

2i−1∑
l=0

∏
j �=l

ωj =
2i−1∏
j=1

ωj .

This completes the proof.

By Lemma 3, the formal derivative of Xi(x) is shown to

be

Xi(x) =
r−1∑
l=0

il
W ′

l (x)
Wl(ω2l)

∏
j �=l

(
Wj(x)

Wj(ω2j )

)ij

=
∑
l∈Ii

W ′
l ·Xi−2l(x),

(26)

where

W ′
l =

W ′
l (x)

Wl(ω2l)
=

∏2l−1
j=1 ωj

Wl(ω2l)
, (27)

and Ii is a set including all the non-zero indices in the binary

representation of i, given by

Ii = {j|ij = 1, j = 0, 1, . . . , r − 1}.
For example, if i = 13 = 20 + 22 + 23, we have

X ′
13(x)

=W ′
0W2(x)W3(x) + W ′

2W0(x)W3(x) + W ′
3W0(x)W2(x)

=W ′
0X12(x) + W ′

2X9(x) + W ′
3X5(x).

(28)

From (26), the formal derivative of [Dh](x) is given by

[Dh]′(x) =
h−1∑
i=0

di

∑
l∈Ii

W ′
l ·Xi−2l(x), (29)

We move the term Xj(x) out of the summation operator to

get

[Dh]′(x) =
h−1∑
j=0

Xj(x)
∑
l∈Ic

j

W ′
l · dj+2l , (30)

where Ic
j is the complement of Ij defined as

Ic
j = {i}lg(h)−1

i=0 \ Ij .

From (30), when W ′
l given in (27) are pre-computed

and stored, each coefficient of Xj(x) requires at most

lg(h)− 1 additions and lg(h) multiplications. Thus a native

way to compute the formal derivation of [Dh](x) requires

O(h lg(h)) operations, in both additive complexity and mul-

tiplicative complexity.

B. Computation method with lower multiplicative complex-
ity

We present an alternative approach whose multiplicative

complexity is lower than the above approach. Define

dd
i = di

∏
j∈Ii

W ′
j , (31)

for 0 ≤ i ≤ h− 1. By substituting (31) into (30), we have

[Dh]′(x) =
h−1∑
j=0

Xj(x)
∑
l∈Ic

j

W ′
l · dd

j+2l∏
m∈I

j+2l
W ′

m

. (32)

As ∏
m∈I

j+2l

W ′
m = W ′

l

∏
m∈Ij

W ′
m,

(32) can be rewritten as

[Dh]′ (x) =
h−1∑
j=0

Xj(x)
∑
l∈Ic

j

dd
j+2l∏

m∈Ij
W ′

m

=
h−1∑
j=0

Xj(x)

∑
l∈Ic

j
dd

j+2l∏
m∈Ij

W ′
m

.

(33)

By the above formulas, the method of computing [Dh]′(x)
consists of two steps. In the first step, we compute (31).

Here, the set of factors

B = {
∏
j∈Ii

W ′
j |i = 0, 1, . . . , h− 1} (34)

can be pre-computed and stored, and this step only requires

h multiplications. In the second step, we compute the

coefficients through (33). Notice that the denominator is

an element of B. Thus, this step needs around 1
2h lg(h)

additions and h multiplications.
Next we use an example to demonstrate how to obtain

[Dh]′(x). If h = 8 and the set B includes 8 elements defined

as

B0 = 1;B1 = W ′
0;B2 = W ′

1;B3 = W ′
0W

′
1;

B4 = W ′
2;B5 = W ′

0W
′
2;B6 = W ′

1W
′
2;B7 = W ′

0W
′
1W

′
2.
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From (31), each di, 0 ≤ i ≤ 7 is computed via

dd
i = diBi.

From (33), the formal derivative of [D8](x) is shown to be

[D8]′(x)

=X0(x)
dd
1 + dd

2 + dd
4

B0
+ X1(x)

dd
3 + dd

5

B1
+ X2(x)

dd
3 + dd

6

B2

+ X3(x)
dd
7

B3
+ X4(x)

dd
5 + dd

6

B4
+ X5(x)

dd
7

B5
+ X6(x)

dd
7

B6
.

V. ALGORITHMS OF REED-SOLOMON ERASURE CODES

Based on the new polynomial basis, this section presents

the encoding and decoding algorithms for (n, k) Reed-

Solomon (RS) erasure codes over characteristic-2 fields.

There are two major approaches on the encoding of Reed-

Solomon codes, termed as polynomial evaluation approach

and generator polynomial approach. In this paper, we follow

the polynomial evaluation approach, which treats the code-

word symbols as the evaluation values of a polynomial F (x)
of degree less than k. Let

Mk = (m0, m1, . . . , mk−1)

denote the vector of message, for each mi ∈ F2r . In the

systematic construction, F (x) is a polynomial of degree less

than k such that

F (ωi) = mi, for 0 ≤ i ≤ k − 1. (35)

By the set of equations (35), F (x) can be uniquely con-

structed via polynomial interpolation. Then we use this F (x)
to calculate the codeword

Fn = (F (ω0), F (ω1), . . . , F (ωn−1)).

In decoding, assume the received codeword has n − k era-

sures {F (y) : y ∈ E}, where E denotes the set of evaluation

points of erasures. With the k un-erased symbols, F (x) can

be uniquely reconstructed via polynomial interpolation, and

thus the erasures can be computed accordingly.

In the following, we illustrate the algorithms of encoding

and erasure decoding for Reed-Solomon codes. The pro-

posed algorithm is for k a power of two, and n = 2r. The

codes for other k can be derived through code shortening

strategy; i.e., appending zeros to message vector so that the

length of the vector is power of two.

A. Encoding algorithm

Algorithm 1 illustrates the pseudocode of the (n, k) RS

encoding algorithm. In Line 1, we compute the vector

M̄k = (m̄0, m̄1, . . . , m̄k−1),

which can be formed as a polynomial

[M̄k](x) =
k−1∑
i=0

m̄iXi(x).

Algorithm 1 Reed-Solomon encoding algorithm.

Input: A k-element message vector Mk over F2r .

Output: An n-element systematic codeword Fn.

1: M̄k = (Ψ0
k)−1[Mk]

2: for i = 1 to (n/k − 1) do
3: F̄i = Ψi·k

k [M̄k]
4: end for
5: return Fn = (Mk, F̄1, F̄2, . . . , F̄�n/k�−1).

Since deg([M̄k](x)) ≤ k − 1 and

[M̄k](ωi) = mi, for 0 ≤ i ≤ k − 1 (36)

we conclude that [M̄k](x) = F (x). Thus, the parity-

check symbols can be computed by applying the proposed

transform on M̄k (see Lines 2-4). The parity-check symbols

are obtained in blocks with size k and there are n/k − 1
blocks.2 For each block, the vector F̄i includes k elements

and each element is

F̄i[j] = [M̄k](ωj+(i·k)) = [M̄k](ωj+ωi·k), for 0 ≤ j ≤ k−1.

In Line 5, we assemble those vectors to get the codeword

vector Fn.

In summary, the encoding algorithm requires a k-element

inversion (Ψ0
k)−1[•] and (n/k − 1) times of k-element

transform Ψi
k[•]. Thus, the encoding algorithm has the

complexity

O((n/k)k lg (k)) = O(n lg (k)).

B. Erasure decoding algorithm

The decoding algorithm follows our previous work [7] that

requires evaluating a polynomial and it’s derivatives. The

code proposed in [7] is based on Fermat number transforms

(FNT). In this paper, we replace the role of FNT over F2r+1

with the proposed transform over F2r . However, since the

proposed transform is not Fourier transform, some arithmetic

operations involved in the transform should be modified

accordingly.

Assume the received codeword F̄n has n − k erasures.

The set of evaluation points of erasures are denoted as

E = {ωei
}n−k−1

i=0 .

Let

Π(x) =
∏
y∈E

(x + y)

denote the error locator polynomial having zeros at all erased

symbols. It can be seen that Π(j) = 0,∀j ∈ E. Define

F̂ (x) = F (x)Π(x),

2Since k and n are both powers of 2, n is divisible by k.
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Algorithm 2 Framework of Reed-Solomon erasure decoding

algorithm.

Input: Received codeword F̄n, and the positions of erasures

E = {ei}n−k−1
i=0 .

Output: The erasures {F (j)|j ∈ E}.
1: Compute two sets of values Π̄ and Π′, defined in (40)

and (42).

2: From (39), compute

Φ = (F̂ (ω0), F̂ (ω1), . . . , F̂ (ωn−1)).

3: Apply n-point fast inverse transform on Φ to get

Φ̄n = (Ψ0
n)−1[Φ].

4: Compute the formal derivative of Φ̄n. The result is

denoted as Φ̄d
n.

5: Apply n-point fast transform on Φ̄d
n to get

Φd
n = Ψ0

n[Φ̄d
n].

6: Compute the erasures via

F (j) =
Φd

n[j]
Π′(j)

,∀j ∈ E.

and the polynomial degree is deg(F̂ (x)) = deg(F (x)) +
deg(Π(x)) ≤ n− 1. The formal derivative of F̂ (x) is

F̂ ′(x) = F ′(x)Π(x) + F (x)Π′(x). (37)

By substituting x = j ∈ E into (37), we have

F̂ ′(j) = F (j)Π′(j),∀j ∈ E.

Hence the erasures can be computed by

F (j) =
F̂ ′(j)
Π′(j)

,∀j ∈ E. (38)

Based on above formulas, the decoding procedure consists of

three major stages: First, compute the coefficients of F̂ (x);
second, compute the formal derivative of F̂ (x); and third,

compute the erasures by (38). The details are elaborated as

follows.

In the first stage, we need to compute the coefficients of

F̂ (x). It can be shown that

F̂ (j) = F (j)Π(j) =
{

0 ∀j ∈ E;
F (j)Π(j) otherwise. (39)

Here, we define

Π̄ = {Π(j)|j ∈ F2r\E}. (40)

Appendix shows the algorithm of computing Π̄ proposed

by [11]. Since F (j), j ∈ F2r\E are elements of the

received vector, the result of (39) can computed with n
multiplications after Π̄ is obtained and is denoted as a vector

Φ = (F̂ (ω0), F̂ (ω1), . . . , F̂ (ωn−1)).

Then we compute

Φ̄n = (Ψ0
n)−1[Φ]. (41)

Here, the resulting vector Φ̄n = (φ̄0, φ̄1, . . . , φ̄n−1) can be

formed as a polynomial

[Φ̄n](x) =
n−1∑
i=0

φ̄iXi(x),

where [Φ̄n](ωj) = F̂ (ωj), for 0 ≤ j ≤ n − 1. That is,

[Φ̄n](ωj) − F̂ (ωj) = 0, for 0 ≤ j ≤ n − 1. Since the

degree of [Φ̄n](x) − F̂ (x) is at most n − 1, it must be the

zero polynomial when it has n roots. Hence, we conclude

[Φ̄n](x) = F̂ (x).
The second stage is to compute the formal derivative of

F̂ (x). Since [Φ̄n](x) is under the polynomial basis given by

Definition 1, we compute the formal derivative of [Φ̄n](x) by

the method presented in Section IV. Then we can obtain the

result vector Φ̄d
n = (φ̄d

0 , φ̄d
1 , . . . , φ̄d

n−1), and the polynomial

[Φ̄d
n](x) =

n−1∑
i=0

φ̄d
i Xi(x)

is the formal derivative of [Φ̄n](x).
In the final stage, we need to compute the erasures via

(38). Here, the denominators in (38) are defined as a set

Π′ = {Π′(j)|j ∈ E}, (42)

which can be constructed by the algorithm introduced in

Appendix. We then compute

Φd
n = Ψ0

n[Φ̄d
n], (43)

where the resulting vector includes the evaluations of F̂ ′(j)
for j ∈ F2r ; i.e., the Φd

n is denoted as

Φd
n = (F̂ ′(ω0), F̂ ′(ω1), . . . , F̂ ′(ωn−1)).

Then the erasures can be computed through (38).

The decoding procedure is summarized in Algorithm 2.

The complexity of this algorithm is dominated by Steps 1, 3,

4 and 5, whereas Steps 2 and 6 only require O(n) multiplica-

tions. By the proposed fast transform algorithm, Steps 3 and

5 can be done with O(n lg (n)) additions and O(n lg (n))
multiplications. By the method in Section IV, Step 4 requires

O(n lg(n)) additions and O(n) multiplications. In Step 1,

we use the algorithm shown in Appendix, and it can be

done with O(n lg(n)) modulus operations. In summary, the

proposed decoding algorithm has the complexity of order

O(n lg (n)).

VI. DISCUSSIONS AND COMPARISONS

A. Complexities of operations in polynomial basis

We consider some polynomial operations in this section.

Table I tabulates the complexities of some polynomial

operations in the monomial basis and the proposed basis

322322



Table I
COMPLEXITIES OF OPERATIONS IN POLYNOMIAL BASIS OVER

CHARACTERISTIC-2 FINITE FIELDS

Operations Monomial basis Proposed basis

Addition O(h) O(h)
Multiplication O(h lg(h) lg lg(h)) O(h lg(h))

Polynomial degree O(h) O(h)
Formal derivative O(h) O(h lg(h))

over characteristic-2 finite fields. In particular, the poly-

nomial addition is simple by adding the coefficients of

two polynomials. Hence, the complexity is O(h) in both

basis. For the polynomial multiplication, an algorithm with

order O(h lg(h) lg lg(h)) is proposed by [12], in 1977. To

compute [Ah](x)× [Bh](x) in the proposed basis, the result

polynomial is computed via

(Ψl
2h)−1[Ψl

2h[A2h] � Ψl
2h[B2h]],

where A2h( and B2h) is 2h-point vector by appending zeros

to Ah( and Bh), and � denotes the operation of pairwise

multiplication. Hence, the complexity is O(h lg(h)).
To determine the degree polynomial in proposed basis,

we scan the coefficients of [Dh](x) to determine the highest

degree term djXj(x), dj �= 0, and thus the complexity is

O(h lg(h)); and so does the polynomial in monomial basis.

The formal derivative in proposed basis requires

O(h lg(h)) field operations shown in Section IV. In contrast,

the formal derivative in monomial basis only requires O(h)
operations.

B. Comparisons with Didier’s approach

In 2009, Didier [11] present an erasure decoding al-

gorithm for Reed-Solomon codes based on fast Walsh-

Hadamard transforms. The algorithm [11] consists of two

major parts: the first part is to compute the polynomial

evaluations of error locator polynomial, and the second

part is to decompose the Lagrange polynomial into several

logical convolutions, which are then respectively computed

with fast Walsh-Hadamard transforms. The first part requires

O(n lg(n)) time, and the second part requires O(n lg2(n))
time, so the complexity [11] is O(n lg2(n)). In contrast,

the proposed approach employs the first part in [11]; in the

second part, we design another decoding structure based on

the proposed basis. The proposed transform only requires

O(n lg(n)) time, so that the proposed approach can reduce

the complexity from O(n lg2(n)) to O(n lg(n)).
We also implement the proposed algorithm in C and run

the program on Intel core i7-950 CPU. While n = 216,

k/n = 1/2, the program took about 1.12 seconds to generate

a codeword, and 3.06 seconds to decode an erased codeword

on average. On the other hand, we also ran the program

[11] written by the author on the same platform. In our

simulation, the program [11] took about 52.91 seconds in

both encoding and erasure decoding under the same param-

eter configuration. Thus, the proposed erasure decoding is

around 17 times faster than [11], while n = 216.

VII. LITERATURE REVIEW

In the original view of [1], the codeword of the RS

code is a sequence of evaluation values of a polynomial

interpreted by message. By this viewpoint, the encoding

process can be treated as an oversampling process through

discrete Fourier transform (DFT) over finite fields. Some

studies [13–15] indicate that, if a O(n lg(n)) finite field FFT

is available, the error-correction decoding can be reduced

to O(n lg2(n)). An n-point radix-2 FFT butterfly diagram

requires n lg(n) additions and n
2 lg(n) multiplications. This

FFT butterfly diagram can be directly applied on Fermat

prime fields F2r+1, r ∈ {1, 2, 4, 8, 16}. In this case, the

transform, referred to as Fermat number transform (FNT),

requires n lg(n) finite field additions and n
2 lg(n) finite

field multiplications. By employing FNT, a number of fast

approaches [13, 16, 17] had been presented to reduce the

complexity of encoding and decoding of RS codes. Some

FNT-based RS erasure decoding algorithms had been pro-

posed [7, 18, 19] in O(n lg(n)) finite field operations. Thus

far, no existing algorithm for (n, k) RS codes has decoding

complexity achieving lower than Ω(n lg(n)) operations, in

a context of a fixed coding rate k/n. However, the major

drawback of FNT is that it needs more space to store one

extra symbol in practical implementation such that the FNT-

based codes are impractical in general applications.

On the other hand, FFTs over characteristic-2 finite fields

require higher complexities than O(n lg(n)). Table II tab-

ulates the arithmetic complexities of FFT algorithms over

characteristic-2 finite fields. As shown in Table II, Gao and

Mateer [10] gave two versions of additive FFTs over F2r that

are most likely the most efficient FFTs by far. The first is for

arbitrary r, and the second is for r a power of two. Notably,

Wu’s approach [20] has very low multiplicative complexity

O(n lglg(3/2)(n)), but the additive complexity is higher with

complexity O(n2/ lglg(8/3)(n)). This implies that when the

polynomial representation in RS codes are in monomial

basis, the complexity will fail to reach O(n lg(n)).
There exist faster encoding and erasure decoding ap-

proaches in some non-MDS codes. Such codes, termed

as fountain codes [6], require a little more than k code-

word symbols to recover the original message. Two famous

classes of fountain codes are LT code [21] and Raptor

code [22]. Due to the low complexity, fountain codes have

significant merits in many applications. However, because

of the randomly generated generator matrices, the hardware

parallelization of fountain code is not trivial.

VIII. CONCLUDING REMARKS

Based on the proposed polynomial basis, we can com-

pute the polynomial evaluations in the complexity of order

323323



Table II
COMPLEXITIES OF n-POINT FFT ALGORITHMS OVER F2r , WHERE n = 2r − 1

Algorithm Restriction Additive complexity Multiplicative complexity

Gao [10] r is a power of two O(n lg(n) lg lg(n)) O(n lg(n))

Cantor [8] r is a power of two O(n lglg(3)(n)) O(n lg(n))

Gao [10] O(n lg2(n)) O(n lg(n))

Wang [23], Gathen [9] O(n lg2(n)) O(n lg2(n))

Pollard [24] r is even O(n3/2) O(n3/2)

Wu [20] O(n2/ lglg(8/3)(n)) O(n lglg(3/2)(n))
Sarwate [25] O(n2) O(n lg(n))

Naive approach O(n2) O(n2)

O(h lg(h)) with a small leading constant. This enables our

capability to encode/erasure decode (n, k) Reed-Solomon

codes over characteristic-2 finite field in O(n lg(n)) time.

As the complexity leading factor is small, the algorithms

are advantageous in practical applications. To the best

of our knowledge, this is the first approach supporting

Reed-Solomon erasure codes on characteristic-2 finite fields

to achieve complexity of O(n lg(n)). In addition, all the

transforms employed in the Reed-Solomon algorithms can

be easily implemented in parallel processing. Hence, the

proposed algorithms substantially facilitate practical appli-

cations. While this paper has demonstrated the polynomial

basis and operations over characteristic-2 finite fields, it is

of interest to consider the case over fields with arbitrary

characteristics.
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APPENDIX

In [11], Didier present an efficient algorithm to compute

the elements in two sets (40) and (42). The method is

presented here for the purpose of completeness. Consider

the construction of Π′. The formal derivative of Π(x) is

given by

Π′(x) =
∑
j∈E

∏
y∈E,y �=j

(x + y).

By substituting x = j ∈ E into Π′(x), we have

Π′(j) =
∏

y∈E,y �=j

(j + y) =
∏

y∈F2r ,y �=j

(j + y)R(y), (44)

where R(x) is a function defined as

R(y) =
{

1 if y ∈ E;

0 otherwise.
(45)

Define Log(x) as the discrete logarithm function. For each

i ∈ F
∗
2r , we denote Log(i) = j iff i = αj , where α is the

primitive element of F
∗
2r . Then (44) can be reformulated as

Log(Π′(j)) =
⊎

y∈F2r ,y �=j

R(y)Log(j + y),∀j ∈ E.

Note that the symbol
⊎

means the summation with normal

additions. By setting Log(0) = 0, the above equation can

be rewritten as

Log(Π′(j)) =
⊎

y∈F2r

R(y)Log(j + y),∀j ∈ E. (46)

Upon describing the algorithm to compute (46), we consider

the construction of another set Π. In the same way, the

elements of Π can be formulated as

Log(Π(j)) =
⊎

y∈F2r

R(y)Log(j + y),∀j ∈ F2r \ E. (47)

With combining (46) and (47), the objective of algorithm is

to compute

Log(Π(j)) =
⊎

y∈F2r

R(y)Log(j + y),∀j ∈ F2r . (48)

In (48), the operation + is the F2r addition, that can be

treated as exclusive-or operation. Hence, (48) is namely

the logical convolution [26][27], that can be efficiently

computed with fast Walsh-Hadamard transform [28]. The

algorithm is elaborated as follows.

Let FWTh[•] denote the h-point fast Walsh-Hadamard

transform (FWHT). A h-point FWHT requires h lg(h) ad-

ditions. Define

R2r = (R(0), R(1), . . . , R(2r − 1)),

L2r = (0, Log(ω1), Log(ω2), . . . , Log(ω2r−1)).

The result of (48) is computed by

Rw
2r = FWHT2r [FWHT2r [R2r ] � FWHT2r [L2r ]], (49)

where the operation � denotes pairwise multiplication. To

further reduce the complexity, the FWHT2r [L2r ] can be

pre-computed and stored, and thus (49) can be done with

performing two fast Walsh transforms of length 2r. We

remark that all the above computation can be performed

over modulo 2r − 1. After obtaining Rw
2r , we compute the

exponent for each element of Rw
2r , and this step can be

done via table lookup. In summary, the algorithm requires

O(2r lg(2r)) modulus additions, O(2r) modulus multiplica-

tions, and O(2r) exponentiations.
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