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Abstract—Non-malleable codes were introduced by
Dziembowski, Pietrzak and Wichs [1] as an elegant gener-
alization of the classical notions of error detection, where
the corruption of a codeword is viewed as a tampering
function acting on it. Informally, a non-malleable code with
respect to a family of tampering functions F consists of
a randomized encoding function Enc and a deterministic
decoding function Dec such that for any m, Dec(Enc(m)) =
m. Further, for any tampering function f ∈ F and any
message m, Dec(f(Enc(m))) is either m or is ε-close to a
distribution Df independent of m, where ε is called the
error.

Of particular importance are non-malleable codes in
the C-split-state model. In this model, the codeword is
partitioned into C equal sized blocks and the tampering
function family consists of functions (f1, . . . , fC) such that
fi acts on the ith block. For C = 1 there cannot exist
non-malleable codes. For C = 2, the best known explicit
construction is by Aggarwal, Dodis and Lovett [2] who
achieve rate = Ω(n−6/7) and error = 2−Ω(n−1/7), where
n is the block length of the code.

In our main result, we construct efficient non-malleable
codes in the C-split-state model for C = 10 that achieve
constant rate and error = 2−Ω(n). These are the first
explicit codes of constant rate in the C-split-state model
for any C = o(n), that do not rely on any unproven
assumptions. We also improve the error in the explicit non-
malleable codes constructed in the bit tampering model by
Cheraghchi and Guruswami [3].

Our constructions use an elegant connection found be-
tween seedless non-malleable extractors and non-malleable
codes by Cheraghchi and Guruswami [3]. We explicitly
construct such seedless non-malleable extractors for 10 in-
dependent sources and deduce our results on non-malleable
codes based on this connection. Our constructions of
extractors use encodings and a new variant of the sum-
product theorem.

Index Terms—non-malleable codes; non-malleable ex-
tractors; coding theory; randomness extractors.
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I. INTRODUCTION

A. Non-malleable codes

Error-correcting codes encode a message m into a

longer codeword c enabling recovery of m even after

part of c is corrupted. We can view this corruption

as a tampering function f acting on the codeword,

where f is from some small allowable family F of

tampering functions. The strict requirement of retrieving

the encoded message m imposes restrictions on the kind

of tampering functions that can be handled. Unique

decoding is limited by the minimum distance of the

codeword, and various bounds are known in the case of

list decoding. Hence, many natural classes of tampering

functions cannot be handled in this framework.

One might hope to achieve a weaker goal of only

detecting errors, possibly with high probability. Cramer

et al. [4] constructed one such class of error-detecting

codes, known as Algebraic Manipulation Detection

codes (AMD codes), where the allowable tampering

functions consist of all functions of the form fa(x) =
a+x. However error detection is impossible with respect

to the family of constant functions. This follows since

one cannot hope to detect errors against a function that

always outputs some fixed codeword.

Dziembowski, Pietrzak and Wichs [1] introduced non-

malleable codes as a natural generalization of error-

detecting codes. Informally, a non-malleable code with

respect to a tampering function family F is equipped

with a randomized encoder Enc and a deterministic

decoder Dec such that Dec(Enc(m)) = m and for any

tampering function f ∈ F the following holds: for any

message m, Dec(f(Enc(m))) is either the message m
or is ε-close (in statistical distance) to a distribution Df

independent of m. The parameter ε is called the error.

Let Fn be the set of all functions on {0, 1}n. Note
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that there cannot exist a code with block length n which

is non-malleable with respect to Fn. This follows since

the tampering function could then use the function Dec

to decode the message m, get a message m′ by flipping

all the bits in m, and use the encoding function to pick

any codeword in Enc(m′).
Therefore, it is natural to restrict the size of the family

of tampering functions. It follows from the works in [1],

[5] that there exists non-malleable codes with respect

to any tampering function family of size bounded by

22
δn

with rate close to 1 − δ and error 2−Ω(n), for any

constant δ > 0. The bounds obtained in these works are

existential, and some progress has been made since then

in giving explicit constructions against useful classes of

tampering functions.

Non-malleable codes in the C-split-state model One

of the most important families of tampering functions,

both from an application point of view and from theoreti-

cal interest, is the family of tampering functions in the C-

split-state model. In this model, each tampering function

f is of the form (f1, . . . , fC) where fi ∈ Fn/C , and for

any codeword x = (x1, . . . , xC) ∈ ({0, 1}n/C)C we de-

fine (f1, . . . , fC)(x1, . . . , xC) = (f1(x1), . . . , fC(xC)).
Thus each fi independently tampers a fixed partition of

the codeword. The relevance of this model comes from

a practical point of view when a codeword is partitioned

and stored in C different locations and different tamper-

ing functions acts independently on each part. Another

motivation to study this model comes from the scenario

where a codeword is sent through a channel that corrupts

different parts independently. This suggests that even

the case C = n is interesting, but the case when C
is independent of n is particularly important, especially

when C is in fact a small integer.

There has been a lot of recent work on constructing

explicit and efficient non malleable codes in the C-

split-state model. Since C = 1 includes all of Fn,

the best one can hope for is C = 2. A Monte-Carlo

construction of non-malleable codes in this model was

given in the original paper on non-malleable codes [1]

for C = 2 and then improved in [5]. However, both

of these constructions are inefficient. For C = 2, these

Monte-Carlo constructions imply existence of codes of

rate close to 1
2 and corresponds to the hardest case.

On the other extreme, when C = n, it corresponds to

the case of bit tampering where each function fi acts

independently on a particular bit of the codeword.

The best known explicit construction of non-malleable

codes in the C-split-state model for the case when C = 2

is due to the elegant work of Aggarwal, Dodis and Lovett

[2], who construct a code with rate = Ω(n−6/7) and

error = 2−Ω(n−1/7). Their proof of non-malleability uses

sophisticated methods from additive combinatorics. The

drawback of this construction is the polynomially small

rate of the code.

Our main result on non-malleable codes is for the

model of C-split-state adversaries when C = 10. We

give explicit constructions of non-malleable codes in

this model with rate = Ω(1) and error = 2−Ω(n). In

particular, we have the following result.

Theorem 1. For all n > 0 there exists an explicit
construction of efficient non-malleable codes on {0, 1}n
in the 10-split-state model with constant rate and error
= 2−Ω(n).

We note that the best known non-malleable code in the

O(1)-split-state prior to this work was the non-malleable

code in the 2-split-state model from [2], which as men-

tioned above, has rate Ω(n−6/7) and error is 2−Ω(n−1/7).

Thus we give the first explicit construction of constant

rate non-malleable codes in the split-state model for

a fixed integer C that do not rely on any unproven

assumptions; in fact, this is the first for C = o(n). We

further obtain optimal error.

For the case of bit tampering (C = n), the best known

explicit constructions of non-malleable codes were given

in the work of [3] with rate = (1 − o(1)) and error

= 2−Ω(n−1/7). We improve upon the error and obtain

the following result.

Theorem 2. For all n > 0 there exists an explicit
construction of efficient non-malleable codes on {0, 1}n
in the bit tampering model with rate = (1 − o(1)) and
error = 2−Ω(n).

We obtain Theorem 2 from the following observation.

The construction against bit tampering in [3] uses a

possibly sub-optimal rate non-malleable code against

bit-tampering in its construction and shows a way to

improve the rate to (1 − o(1)) while maintaining the

error bound. The sub-optimal rate non-malleable code

used was the code from [2] which resulted in the sub-

optimal error bound of 2−Ω(n−1/7). By plugging in our

non-malleable code construction from Theorem 1 as the

sub-optimal non-malleable code in the construction of

[3], we deduce Theorem 2.

Previous Work: Apart from the previous work stated

above, there has been other work in constructing non-

malleable codes. However they did not improve the
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parameters achieved in [2] in the C-split model for

C = o(n). Before the work of [2], the only unconditional

efficient non-malleable code in the C-split-state model,

for C = o(n), was by Dziembowski, Kazana, and

Obremski [6]. However, they could encode only 1 bit

messages.

There were also some conditional results. Liu and

Lysyanskaya [7] constructed efficient constant rate non-

malleable codes in the split-state model against com-

putationally bounded adversaries. Their proof of non-

malleability relies on the existence of robust public-key

cryptosystems and existence of robust non-interactive

zero-knowledge proof systems for some language in

NP. They also use the common reference string (CRS)

assumption which roughly states that one has access to

an untampered random string. The recent work of Faust

et al. [8] constructed almost optimal non-malleable codes

against the class of polynomial sized circuits in the CRS

framework. [9], [10], [11], and [12] considered non-

malleable codes in other models.

Independent Work: Independently, Aggarwal,

Dodis, Kazana and and Obremski [13] constructed

non-malleable codes in the 2-split model with rate

Ω(n−1/2). Furthermore, they gave a general reduction

from 2 parts to a constant number of parts, incurring

only a constant overhead in the rate, as long as the

non-malleable extractor is strong, as ours is. As a

result, after seeing a preliminary version of our work,

they applied their reduction to our result to construct

constant-rate non-malleable codes in the 2-split model.

B. Non-malleable extractors

We prove Theorem 1 by constructing an object called

seedless non-malleable extractor, which is interesting in

its own right. To motivate this, recall that the area of

randomness extraction addresses the problem of effi-

ciently generating nearly uniformly random bits from

weak sources. The most widely used model of a weak

source X measures the randomness in X in terms of its

min-entropy H∞(X). We say that X has min-entropy k
if the maximum probability that X places on any point

in its support is 2−k. Unfortunately it is not possible to

extract even a single bit from sources with min-entropy

n− 1. To overcome this, the notion of seeded extractors

was considered in [14] where one is allowed to extract

from source X using a short uniformly random string

Y . We now define strong seeded extractors, using ◦
to denote concatenation and |D1 − D2| to denote the

statistical distance between distributions D1 and D2 (see

Section II).

Definition I.1. A function SExt : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε)-strong seeded extractor if the fol-
lowing holds : If X is a source on {0, 1}n such that
H∞(X) ≥ k and Y is a uniformly random string on
{0, 1}d independent of X , then

|SExt(X,Y ) ◦ Y − Um ◦ Y | < ε

From a series of works ending with [15],[16],[17],

we now have explicit constructions of strong seeded

extractors for k as small as O(log n), which is optimal

up to a constant factor.

A generalization of strong seeded extractors called

seeded non-malleable extractors was introduced in the

context of privacy amplification by Dodis and Wichs

in [18]. Dodis and Wichs showed the existence of

such extractors, and subsequently explicit constructions

of seeded non-malleable extractors were given in the

recent works of [19], [20], [21] and [22]. Recently

Li [23] found applications of non-malleable extractors

in constructing extractors for independent sources. To

define non-malleable extractors, we need the following

definition.

Definition I.2. For any function f : S → S, f has a
fixed point at s ∈ S if f(s) = s. We say f has no fixed
points in T ⊆ S, if f(t) �= t for all t ∈ T . f has no
fixed points if f(s) �= s for all s ∈ S.

We will need non-malleable extractors even if the seed

is weak (not uniformly random), as in the following.

Definition I.3. A function snmExt : {0, 1}n×{0, 1}d →
{0, 1}m is a (k1, k2, ε)-seeded non-malleable extractor
if the following holds : If X and Y are independent
sources on {0, 1}n and {0, 1}d respectively such that
H∞(X) ≥ k1 and H∞(Y ) ≥ k2 and f : {0, 1}n →
{0, 1}n has no fixed points, then

|snmExt(X,Y ) ◦ snmExt(X, f(Y )) ◦ Y−
Um ◦ snmExt(X, f(Y )) ◦ Y | < ε

In the above, f is called a tampering function.

In a recent work, Cheraghchi and Guruswami [3]

raised the natural question of constructing non-malleable

extractors when we allow both X and Y to be tampered

independently. They asked, roughly :

Construct a polytime function nmExt : ({0, 1}n)2 →
{0, 1}m such that the following holds : If X,Y
are independent sources on {0, 1}n such that

H∞(X), H∞(Y ) ≥ k and f, g are arbitrary tampering

functions on {0, 1}n such that at least one of f, g has
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no fixed points, then

|nmExt(X,Y ) ◦ nmExt(f(X), g(Y ))−
Um ◦ nmExt(f(X), g(Y ))| < ε

Note that if both f and g are the identity function, then

obviously there cannot be any such function nmExt. To

avoid such technicalities, we have the restriction that at

least one of f or g has no fixed points. It turns out that

such functions, called seedless non-malleable extractors,

exist for k as low as O(log n) and ε = 2−Ω(k) with m =
Ω(k). This was shown in [3] using clever techniques

from the probabilistic method. However giving explicit

constructions of such extractors turns out to be a very

hard problem, even for k = n, and there are still no

known constructions.

It appears nontrivial to extend existing constructions of

seeded non-malleable extractors when both sources are

tampered. For example for sources on Fp, the function

χ(x+y), where χ is the quadratic character, was shown

to be a seeded non-malleable extractor [19]. However it

fails to work against tampering functions f(x) = x+ 1
and g(y) = y − 1, even for full entropy.

In this paper we make progress on a relaxed version

of this problem where we use a constant number of

independent sources, each with min-entropy k, instead

of just 2 sources. We note that prior to this work, there

were no known results in this setting even for k = n.

We now give an informal definition of seedless non-

malleable extractors for independent sources. We refer

the reader to Section III for formal definitions.

Definition I.4 (informal). A function snmExt :
({0, 1}n)C → {0, 1}m is a (k, ε)-seedless non-malleable
extractor for C independent sources if the follow-
ing holds: If X1, . . . , XC are independent sources on
{0, 1}n such that H∞(Xi) ≥ k for all i = 1, . . . , C and
f1, . . . , fC are arbitrary tampering functions such that
there exists an fi with no fixed points, then

|nmExt(X1, . . . , XC) ◦ nmExt(f1(X1), . . . , fC(XC))−
Um ◦ nmExt(f1(X1), . . . , fC(XC)))| < ε

Our main result on non-malleable extractors is the

following theorem.

Theorem 3. For some δ > 0 there exists a poly-
nomial time construction of a (k, ε)-seedless non-
malleable extractor for 10 independent sources nmExt :
({0, 1}n)10 → {0, 1}m with k = (1 − δ)n, ε = 2−Ω(n)

and m = Ω(k).

Theorem 1 now follows from an elegant reduction

discovered in [3], which shows how to use explicit

constructions of seedless non-malleable extractors to

construct non-malleable codes with an efficient decoder.

This reduction however does not guarantee an efficient

encoder for the constructed codes. Developing an effi-

cient encoder for the non-malleable codes, which follow

from the extractor construction in Theorem 3, requires

some additional work. We build an efficient encoder

using algorithms for almost uniformly sampling from

algebraic varieties combined with the method of rejec-

tion sampling. The proof of correctness of the encoding

algorithm relies on estimates on the number of rational

points on algebraic varieties.

C. Organization

We discuss preliminaries in Section II , and formally

define non-malleable codes and seedless non-malleable

extractors in Section III . We recall the connection be-

tween non-malleable codes and seedless non-malleable

extractors from [3] and deduce Theorem 1 assuming

Theorem 3 in Section IV . Our main technical contri-

bution is the proof of Theorem 3. We use Section V
to sketch the main ideas in proving Theorem 3. We

require a sum-product estimate over F4
p for proving

Theorem 3. We state this theorem in Section VI. The

proof of this estimate closely follows the arguments

of a sum-product theorem over F2
p by Bourgain [24].

We give high level ideas of constructing an efficient

encoder for the constructed non-malleable codes in the

10-split-state model in Section VII. In Section VIII, we

state an additional property of the constructed seedless

non-malleable extractor which might be useful in other

explicit constructions.

II. PRELIMINARIES

A. Notations

Let [l] denote the set {1, 2, . . . , l}. Let Um denote the

uniform distribution over {0, 1}m. For a vector v ∈ Fn
p ,

we use ΠS(v) to denote the projection of v to the

coordinates indexed by the elements in S ⊂ [n]. We

extend the action of ΠS to sets in the obvious manner.

We use Πi for Π{i}.

B. Min entropy and flat distributions

For a source X we define min-entropy of X as:

H∞(X) = mins∈support(X)

{
1

log(Pr[X=s])

}
. A (n, k)-

source is a distribution on {0, 1}n with min-entropy k.

We call a distribution (source) D to be flat if it is uniform
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over a set S. It is well known that any (n, k)-source is

a convex combination of flat sources supported on sets

of size 2k.

C. Statistical distance, convex combination of distribu-
tions and probability lemmas

Definition II.1. Let D1 and D2 be two distributions on
a set S. The statistical distance between D1 and D2 is

|D1 −D2| = 1

2

∑
s∈S

|Pr[D1 = u]− Pr[D2 = u]|

Definition II.2. We say that a distribution D on a set S
is a convex combination of distributions D1, . . . , Dl on
S if there exists non-negative constants (called weights)
w1, . . . , wl with

∑l
i=1 wi = 1 such that Pr[D = s] =∑l

i=1 wi · Pr[Di = s] for all s ∈ S. We use the
notation D =

∑l
i=1 wi ·Di to denote that D is a convex

combination of the distributions D1, . . . , Dl with weights
w1, . . . , wl.

Definition II.3. For random variables X and Y , let
X|Y denote a random variable with distribution :
Pr[(X|Y ) = x] =

∑
y∈support(Y ) Pr[Y = y] · Pr[X =

x|Y = y].

We record the following simple lemma.

Lemma II.4. Let X and Y be distributions on a set S
such that X =

∑l
i=1 wi · Xi and Y =

∑l
i=1 wi · Yi.

Then |X − Y | ≤∑
i wi · |Xi − Yi|.

The following result follows from a lemma proved in

[25].

Corollary II.5. Let X,Y be random variables with
supports S, T ⊆ V such that (X,Y ) is ε-close to a
distribution with min-entropy k. Further suppose that
the random variable Y can take at most l values. Then

Pr
y∼Y

[
(X|Y = y) is 2ε1/2-close to a source with

min-entropy k − log l − log

(
1

ε

)]
≥ 1− 2ε1/2

D. Some known extractor constructions

We recall some known results on multi-source extrac-

tors and non-malleable extractors.

The following result on extracting from 2 independent

sources is well known and a proof can be found in [26].

Theorem II.6. For all n > 0 and any constant δ there
exists an explicit function 2SExt : {0, 1}n × {0, 1}n →

{0, 1}m, m = Ω(δn), such that if X , Y are independent
sources with min-entropy k1, k2 respectively satisfying
k1 + k2 ≥ (1 + δ)n, then

|2SExt(X,Y ) ◦ X − Um ◦ X| ≤ 2−Ω(n),

|2SExt(X,Y ) ◦ Y − Um ◦ Y | ≤ 2−Ω(n)

Explicit constructions of seeded non-malleable extrac-

tors follow from works of [19] and [22]. The output

length in [19] relies on an unproven but widely believed

conjecture on primes while the output length in [22]

is unconditional. Further, either of the non-malleable

extractors from [19] or [22] is also a strong 2-source

extractor.

Theorem II.7 ([19],[22]). Let δ > 0 be a constant.
For all n, there exists an explicit function snmExt :
{0, 1}n × {0, 1}n → {0, 1}m, m = Ω(n), satisfying:
Suppose X,Y are independent sources on {0, 1}n with
min-entropy k1, k2 respectively.

1) If (k1 + k2) ≥ (1 + δ)n, then

|snmExt(X,Y ) ◦ X − Um ◦ X| < 2−Ω(n),

|snmExt(X,Y ) ◦ Y − Um ◦ Y | < 2−Ω(n)

2) If k1, k2 > (1 − δ)n and f is any tampering
function with no fixed points, then

|snmExt(X,Y ) ◦ snmExt(X, f(Y ))

−Um ◦ snmExt(X, f(Y ))| < 2−Ω(n)

III. NON-MALLEABLE CODES AND SEEDLESS

NON-MALLEABLE EXTRACTORS

A. Non-malleable codes

We follow the presentation in [1] and define non-

malleable codes.

Definition III.1 (Coding schemes). Let Enc : {0, 1}k →
{0, 1}n and Dec : {0, 1}n → {0, 1}k∪{⊥} be functions
such that Enc is a randomized function (i.e. it has access
to a private randomness) and Dec is a deterministic
function. We say that (Enc,Dec) is a coding scheme
with block length n and message length k if for all
s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1 (the probability
is over the randomness in Enc).

Definition III.2 (Tampering functions). For any n > 0,
let Fn denote the set of all functions f : {0, 1}n →
{0, 1}n. We call any subset F ⊆ Fn to be a family of
tampering functions.
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We need to define the following function.

copy(x, y) =

{
x if x �= same�

y if x = same�

Definition III.3 (Non-malleable codes). A coding
scheme (Enc,Dec) with block length n and message
length k is a non-malleable code with respect to a
family of tampering functions F ⊂ Fn and error ε if
for every f ∈ F there exists a random variable Df on
{0, 1}k ∪{same�} which is independent of the random-
ness in Enc such that for all messages s ∈ {0, 1}k, it
holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε

The rate of a non-malleable code C is given by k
n .

As an easy example, suppose the tampering function

family at hand is Fconstant, consisting of all constant

functions, fc(x) = c for all x. We can use any coding

scheme and for any tampering function fc ∈ Fconstant,

we may take Dfc to be Dec(c) with probability 1.

1) Non-malleable codes in the C-split-state model:
We formally define non-malleable codes in the C-split

sate model.

Definition III.4. Let Fn,C = {(f1, . . . , fC) :
fi ∈ Fn/C for all i ∈ [C]}, where for any
x = (x1, . . . , xC) ∈ ({0, 1}n/C)C we define
(f1, . . . , fC)(x) = (f1(x1), . . . , fC(xC)). Non-
malleable codes in the C-split-state model with block
length n are non-malleable codes with respect to Fn,C .

We call Fn,C to be the family of tampering functions

in the C-split-state model.

When C = n, note that this corresponds to the case

of bit tampering. Also C ≥ 2, since as discussed before,

C = 1 is impossible.

B. Seedless non-malleable extractors

Seedless non-malleable extractors were first intro-

duced by Cheraghchi and Guruswami in [3]. We define a

special case of such non-malleable which is of particular

interest to us.

Definition III.5 (Seedless non-malleable multi-source

extractors). For any constant C, we say that nmExt :
({0, 1}n)C → {0, 1}m is a seedless non-malleable
multi-source extractor for C independent sources with
min-entropy k and error ε if whenever X1, X2, . . . , XC

are independent (n, k)-sources and f1, f2 . . . , fC are
arbitrary tampering functions in Fn, there exists random

variable Df on {0, 1}m∪{same�} which is independent
of the sources X1, . . . , XC such that

|nmExt(X1, . . . , XC) ◦ nmExt(f1(X1), . . . fl(XC))−
Um ◦ copy(Df , Um)| < ε

where both Um’s refer to the same uniform m-bit string.

IV. NON-MALLEABLE CODES VIA SEEDLESS

NON-MALLEABLE EXTRACTORS

In this section we prove Theorem 1 assuming Theorem

3. The work by Cheraghchi and Guruswami [3] shows a

way to construct non-malleable codes with an efficient

decoder from explicit constructions of seedless non-

malleable extractors. We use this connection to construct

non-malleable codes. An efficient encoder for the result-

ing non-malleable codes is constructed in Section VII.

The following theorem follows from the work in [3].

Theorem IV.1. For any constant C, let nmExt :
({0, 1}n)C → {0, 1}m, m = Ω(n) be a polynomial
time computable seedless non-malleable extractor for C-
independent sources for min-entropy n with error ε =
2−Ω(n). Then there exists an explicit non-malleable code
with an efficient decoder in the C-split-state model with
block length = Cn, rate = Ω(1) and error = 2−Ω(n).

Thus composing Theorem 3 with Theorem IV.1 gives

us an explicit construction of non-malleable codes in the

10 split-state model with an efficient decoder. An effi-

cient encoder for this non-malleable code is constructed

in Section VII. This proves Theorem 1.

V. PROOF OUTLINE OF THEOREM 3

In this section we sketch the main ideas involved in

proving Theorem 3. The formal proof of Theorem 3 is

deferred to the full version.

Definition V.1. We call a set A satisfying the conclusion
of Theorem V I.1 to be sum-product friendly. We call
a flat distribution sum-product friendly if its support is
sum-product friendly.

Definition V.2. For any function f : S → S and T ⊆
S, the maximum pre-image size of f in T is given by
maxt∈T |f−1(t)|. The maximum pre-image size of f is
maxs∈S |f−1(s)|.

Let X1, . . . , X8 be independent (n, (1− δ)n)-sources

and X9 an independent (2n, 2(1 − δ)n)-source. View

each Xi, i ∈ [8], as a source on Fp for some prime p,

2n < p < 2n+1.
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A. A first attempt

For simplicity, assume that we are dealing with tam-

pering functions with no fixed points. Consider the

sources (Xi, fi(Xi)) on F2
p with min-entropy (1 −

δ) log p. Following ideas of constructing multi-source

extractors from the sum-product theorem over prime

fields ([27], [28], [29]) in [30], suppose we have that

the source (X1 · X2 + X3, f1(X1) · f2(X2) + f3(X3))
expands (in a statistical sense) and is p−Ω(1)-close to a

source with min-entropy (1 + δ) log p.

Since the maximum min-entropy in the source

f1(X1) ·f2(X2)+f3(X3) is log p, we are in good shape.

In particular by Corollary II.5, (X1 ·X2+X3)|(f1(X1) ·
f2(X2)+f3(X3)) is p−Ω(1)-close to a source with min-

entropy Ω(δ log p) with probability 1−p−Ω(1). Following

this, we can thus group the sources in blocks of 3 and

output

3Ext(X1 ·X2 +X3, X4 ·X5 +X6, X7 ·X8 +X9)

where 3Ext is an extractor for 3 independent sources.

B. A simple counterexample to the approach above

It turns out that the source (X1 · X2 + X3, f1(X1) ·
f2(X2) + f3(X3)) need not cross the log p min-entropy

barrier. As an easy counter example consider the tamper-

ing functions f1(x) = 2x, f2(x) = 2x and f3(x) = 4x
(where we view the tampering functions as functions

from Fp to Fp). We see that

(X1 ·X2 +X3, f1(X1) · f2(X2) + f3(X3)) = (Y, 4Y )

for some distribution Y on Fp. Thus the min-entropy

expansion step in our attempted construction fails.

C. The actual construction

The high level idea is to make the previous approach

work by characterizing all counterexamples to expansion

and then using suitable encodings of the sources to avoid

such counterexamples. We can ensure expansion from

encodings under certain assumptions on the maximum

pre-image size and number of fixed points of the tamper-

ing functions. We combine this with other extractor ideas

to build seedless non-malleable multi-source extractors.

We note that the idea of encoding sources was also

used by Bourgain [31] for constructing extractors for 2
independent sources.

We now present the main steps involved in our con-

struction. We assume n ≥ n0 for some constant n0 (if

n < n0, we can do a constant time brute-force search

for optimal extractors).

• View each (n, (1 − δ)n)-source Xi, i ∈ [8], as a

source on Fp, 2n < p < 2n+1. We encode each xi

as enc(xi) = (xi, q(xi)) for some suitable q() to be

fixed later. Define the source

Xf,i,j = (enc(Xi) + enc(Xj), enc(fi(Xi))+

enc(fj(Xj)))

Note that Xf,i,j is a source on F4
p. We find a suitable

encoding such that the following claim holds.

Claim V.3 (informal). Xf,1,2 �Xf,3,4 +Xf,5,6 �
Xf,7,8 is p−Ω(1)-close to a source with min-entropy
(2 + 20δ) log p under the assumption that at least
one of the fi’s has no fixed points and the maximum
pre-image size of each of the fi’s is bounded.

• To find a good encoding enc, we first derive a sum-

product estimate over F4
p in Theorem VI.1 which

characterizes sets that do not expand. We roughly

show that for a set A ⊂ F4
p of size p2−δ such that

Π{1,2}(A),Π{3,4}(A) > p1+δ′ for δ′ >> δ and

|A∩ (F∗p)
4| > 1

2 |A|, we have |A+A|+ |A�A| >
p2+10δ unless A has a large intersection with a 2-

dimensional plane of a certain form in F4
p.

The statement of sum-product estimate is presented

in Section V I . It is obtained by closely follow-

ing the proof of a sum product estimate over F2
p

obtained by Bourgain in [24] and extending the

arguments to F4
p. We defer its proof to the full

version.

• The idea to prove Claim V.3 is to adapt the machin-

ery developed in [30] for proving such expansion

statements about min-entropy to a more general

setting. We point out the key differences from [30]

and our contribution in making the proof work.

1) The sources Xf,i,j are not flat sources. We

show that each such Xf,i,j is close to a

convex combination of a constant number of

flat sources. Since not all sets in F4
p are sum-

product friendly, we keep track of the supports

of these flat sources.

2) Our key contribution here is to show that for

the choice of enc(x) = (x, x4 + x2 + x), the

flat sources corresponding to Xf,i,j are sum-

product friendly if at least one of fi or fj has

no fixed points and the maximum pre-image

size of fi and fj is bounded.

3) Thus we are dealing with convex combina-

tions of distributions of the form A�B+C�D
where A,B,C,D are flat sources on F4

p with

the guarantee that at least one of the flat

sources is sum-product friendly. We show that
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the proof technique of [30] goes through even

with this weaker guarantee.

• Define the following function.

ext1(x1, . . . , x8) =

(enc(x1) + enc(x2))� (enc(x3) + enc(x4))

+(enc(x5) + enc(x6))� (enc(x7) + enc(x8))

We use Claim V.3 and Corollary II.5 to conclude

the following.

Claim V.4 (informal). Let X1, . . . , X8 be
independent (n, (1 − δ)n)-sources. Then
ext1(X1, . . . , X8)|ext1(f1(X1), . . . , f8(X8))
is p−Ω(1)-close to a source with min-entropy
10δ log p with probability 1−p−Ω(1) assuming that
none of the fi’s have large maximum pre-image
size and at least one of the fi’s have no fixed
points.

• We next prove that the requirement on pre-image

size of the tampering functions in Claim V.4 can

be removed.

Claim V.5 (informal). Let X1, . . . , X8 be
independent (n, (1 − δ)n)-sources. Then
ext1(X1, . . . , X8)|ext1(f1(X1), . . . , f8(X8))
is p−Ω(1)-close to a source with min-entropy
10δ log p with probability 1 − p−Ω(1) assuming
that at least one of the fi’s have no fixed points.
(We note that Claim V.3 may not hold without

the restriction on maximum pre-image size of the

fi’s and hence we use some new observations for

proving Claim V.5)

• To motivate our final construction, we describe an

extractor ext2 in this step which we don’t actually

use in our construction.

Let SExt be the strong 2-source extractor from

Theorem II.6. Let ext2 : ({0, 1}n)8 × {0, 1}2n →
{0, 1}m, m = Ω(n), be defined as:

ext2(x1, . . . , x9) = SExt(ext1(x1, . . . , x8), x9)

The following result follows from Claim V.5.

Claim V.6 (informal). Let X1, . . . , X8 be
independent (n, (1 − δ)n)-sources and X9 be
an independent (2n, 2(1 − δ)n)-source. Then
ext2(X1, . . . , X9)|ext2(f1(X1), . . . , f9(X9)) is
p−Ω(1)-close to Um with probability 1 − p−Ω(1) if
there exists some i ∈ [8] such that fi has no fixed
points.
The proof of the above claim follows from

the following observations. Define the random

variable W = ext1(X1, . . . , X8) and V =

ext1(f1(X1), . . . , f8(X8)). We know by Claim V.5
that for most fixings of V = v, W is p−Ω(1)-close

to a source with min-entropy 10δ log p = 5δ(2n).
Since SExt is an extractor that for 2 independent

sources on {0, 1}2n with min-entropy k1, k2 satis-

fying k1 + k2 ≥ (2 + δ)n, by Theorem II.6 we

have

|SExt(W,X9) ◦ V ◦ X9 − Um ◦ V ◦ X9|
< 2−Ω(n)

The proof of Claim V.6 now follows.

• However, if fi is the identity function for all i ∈ [8],
and f9 is any arbitrary tampering function with no

fixed points, ext2 does not work. We replace SExt

with snmExt and present our final construction.

Let nmExt : ({0, 1}n)8×{0, 1}2n → {0, 1}m, m =
Ω(n), be defined as:

nmExt(x1, . . . , x9) = snmExt(ext1(x1, . . . , x8), x9)

where snmExt is the seeded non-malleable extractor

from Theorem II.7. We prove the following claim.

Claim V.7 (informal). Let X1, . . . , X8 be
independent (n, (1 − δ)n)-sources and X9 be
an independent (2n, 2(1 − δ)n)-source. Then
nmExt(X1, . . . , X9)|nmExt(f1(X1), . . . , f9(X9))
is p−Ω(1)-close to Um with probability 1− p−Ω(1)

when at least one of the fi’s have no fixed points.
We outline the proof of the above claim in a simpler

setting where each fi is either the identity function

or has no fixed points and at least one of the fi’s
is not the identity function.

The following cases arise depending on the fi’s.

1) Suppose there is some j ∈ [8] such that fj has

no fixed points. The conclusion in this case

follows from Claim V.6.

2) Now suppose for all j ∈ [8], fj is the identity

function. Thus f9 has no fixed points.

Set W to be the random variable

ext1(X1, . . . , X8).
We show that W is p−Ω(1)-close to a source Z
with min-entropy 2(1−2δ)n. Note that Z and

X9I(9) are independent sources on {0, 1}2n,

each with min-entropy rate > (1−2δ) and f I
9

has no fixed points. Thus by Theorem II.7,

|snmExt(Z,X9) ◦ snmExt(Z, f9(X9))−
Um ◦ snmExt(Z, f9(X9))| < 2−Ω(n)

This concludes the proof of Claim V.7.

Theorem 3 follows from Claim V.7 with some

additional work.
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VI. THE SUM-PRODUCT ESTIMATE OVER F4
p

We closely follow the proof of the sum-product es-

timate by Bourgain in [24] and obtain the following

theorem.

Theorem VI.1. Let τ0 > τ1 > 0 be any positive con-
stants. Let A be a subset of F4

p satisfying |A∩ (F∗p)
4| ≥

|A|
2 . Suppose that for any subset A1 ⊆ A satisfying
|A1| ≥ p−τ1 |A|, the following conditions holds.

1) Π{1,2}(A1) ≥ p1+τ0and Π{3,4}(A1) ≥ p1+τ0 .
2) A1 � P , where P is a 2-dimensional linear

subspace of F4
p of form

a) {(x1, x2, c1x1, c2x2) : x1 ∈ Fp, x2 ∈ Fp} or
b) {(x1, x2, c2x2, c1x1) : x1 ∈ Fp, x2 ∈ Fp}.

Then there exists some constant τ > 0 (depending on
τ0, τ1) such that if |A| < p7/3−τ1 , then

|A+A|+ |A�A| > pτ |A|

We defer the proof of Theorem V I.1 to the full

version.

VII. EFFICIENT ALGORITHMS FOR NON-MALLEABLE

CODES IN THE 10-SPLIT-STATE MODEL

In this section we give the high level ideas of the proof

of efficiency of the non-malleable codes constructed in

Theorem 1. The detailed proof is deferred to the full

version. Let nmExt be the function from Theorem 3.

Recall that for any message s, its encoding is a uniform

element from nmExt−1(s) and for any codeword c, the

decoded message is nmExt(c). Thus the efficiency of

the decoder follows from nmExt being polynomial time

function.

We construct an efficient algorithm which samples

from a distribution that is 2−Ω(n)-close to uniform

on nmExt−1(s) and use this as our encoder. This is

sufficient, since we only add an exponentially small

error when we use this algorithm instead of sampling

uniformly from nmExt−1(s). Our sampling algorithm is

based on the following observations.

• The uniform distribution on the set nmExt−1(s) is

a convex combination of uniform distributions on

algebraic varieties of low degree.

• Sampling almost uniformly from such algebraic sets

can be done efficiently [32].

• Further, obtaining the weights in the convex com-

bination reduces to approximately counting the size

of such algebraic sets for which there are efficient

algorithms [33]. However, the number of distribu-

tions in the convex combination can be exponen-

tially large. To get around this difficulty, we use

the method of rejection sampling. The proof of

correctness of the algorithm relies on estimates on

the number of rational points on algebraic varieties.

A. A new extractor

In the construction of the seedless non-malleable

extractor nmExt in Theorem 3, we needed a seeded non-

malleable extractor snmExt (with some additional prop-

erties, see Theorem II.7). We carefully choose snmExt

such that it is easy to sample almost uniformly from

nmExt−1(s). The main idea is to pick snmExt such that

nmExt−1(s) is a convex combination of algebraic vari-

eties of low degree over a field with large characteristic.

Thus, the constructions in [22] look to be a good choice

for the seeded non-malleable extractor. However, for this

choice, we face the following difficulty:

Let σM : Fp → ZM be defined as σM (x) =
x (mod M). nmExt is of the form σM ◦ext2◦ext1, where

ext1 : F10
p → F4

p, ext2 : F2
q → Fq , and p, q are primes

satisfying p2 ≤ q ≤ 2p2 (and interpreting the output of

ext1 as an element in F2
q). Changing the characteristic

of the field destroys the low degree properties of the

function ext2 ◦ ext1.

To fix this, we construct a new extractor for ext2
(satisfying the conditions of Theorem II.7) which allows

us to work over the same field as ext1. The extractor is a

variation of a construction by Bourgain [31]. The proof

uses ideas from [22], but requires more work.

Theorem VII.1. Let p be a prime. Define the functions
ext2 : (F2

p) × (F2
p) → Fp and snmExt : (F2

p) × (F2
p) →

ZM in the following way:

ext2((x1, x2), (y1, y2)) =
2∑

j=1

(xjyj + x2
jy

2
j ),

snmExt(x, y) = σM (ext2(x, y))

where σM (x) = x (mod M). Suppose X,Y are
independent sources on F2

p with min-entropies k1, k2
respectively.

1) If (k1 + k2) ≥ (2 + δ) log p, then

|snmExt(X,Y ) ◦ X − UM ◦ X| < p−Ω(1),

|snmExt(X,Y ) ◦ Y − UM ◦ Y | < p−Ω(1)

2) If k1, k2 > (2 − δ) log p and f is any tampering
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function with no fixed points, then

|snmExt(X,Y ) ◦ snmExt(X, f(Y ))−
UM ◦ snmExt(X, f(Y ))| < p−Ω(1).

The proof of Theorem VII.1 is deferred to the full

version.

VIII. AN ADDITIONAL PROPERTY OF THE

CONSTRUCTED SEEDLESS NON-MALLEABLE

EXTRACTOR

We include an additional property of the seedless non-

malleable extractor from Theorem 3, which might find

application in other explicit constructions. We do not use

Theorem VIII.1 in this paper.

Theorem VIII.1. Let X1, . . . , X8 be independent
(n, n)-sources and let X9 be an independent
(2n, 2n)-source. Let nmExt : ({0, 1}n)8 × {0, 1}2n →
{0, 1}m,m = Ω(n), be the seedless non-malleable
extractor with error ε = 2−Ω(n) from Theorem 3.Then:

|nmExt(X1, . . . , X9) ◦Xi1 ◦ . . . Xi8−
Um ◦Xi1 ◦ . . . Xi8 | < 2−Ω(n)

for arbitrary 1 ≤ i1 < . . . < i8 ≤ 9.
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