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Abstract—In this paper we consider a mechanism de-
sign problem in the context of large-scale crowdsourcing
markets such as Amazon’s Mechanical Turk (MTRK),
ClickWorker (CLKWRKR), CrowdFlower (CRDFLWR).
In these markets, there is a requester who wants to
hire workers to accomplish some tasks. Each worker is
assumed to give some utility to the requester on getting
hired. Moreover each worker has a minimum cost that he
wants to get paid for getting hired. This minimum cost
is assumed to be private information of the workers. The
question then is - if the requester has a limited budget,
how to design a direct revelation mechanism that picks
the right set of workers to hire in order to maximize the
requester’s utility?

We note that although the previous work (Singer (2010);
Chen et al. (2011)) has studied this problem, a crucial
difference in which we deviate from earlier work is the
notion of large-scale markets that we introduce in our
model. Without the large market assumption, it is known
that no mechanism can achieve a competitive ratio better
than 0.414 and 0.5 for deterministic and randomized
mechanisms respectively (while the best known determinis-
tic and randomized mechanisms achieve an approximation
ratio of 0.292 and 0.33 respectively). In this paper, we
design a budget-feasible mechanism for large markets that
achieves a competitive ratio of 1 − 1/e � 0.63. Our
mechanism can be seen as a generalization of an alternate
way to look at the proportional share mechanism, which
is used in all the previous works so far on this problem.
Interestingly, we can also show that our mechanism is
optimal by showing that no truthful mechanism can
achieve a factor better than 1−1/e; thus, fully resolving
this setting. Finally we consider the more general case of
submodular utility functions and give new and improved
mechanisms for the case when the market is large.

Keywords-Crowdsourcing, Truthful Mechanisms, Large
Markets, Budget-feasibility.

I. INTRODUCTION

Crowdsourcing is a recent phenomenon that is used to

describe the procurement of a large number of workers

to do certain tasks. These tasks can be of a variety of

natures, and - to give a few examples - include image

annotation, data labeling for machine learning systems,

consumer surveys, rating search engine results, spam

detection, product reviews, etc. There are several plat-

forms (such as Amazon’s Mechanical Turk (MTRK))

that facilitate and automate various steps involved in

setting up and executing crowdsourcing tasks.

A key challenge in these online labor markets is to

be able to properly price the tasks. Since the requester

(the one who wants to procure workers) is usually

budget constrained, pricing the tasks too high can result

in lower output for the requester. On the other hand,

pricing the tasks too low can disincentivize workers

to work on the tasks. This makes pricing a non-trivial

step for the requester when setting up a crowdsourcing

task. One idea - to make pricing more automated and to

prevent economic loss from poor pricing - is to design

a direct revelation mechanism that solicits bids from

workers to report their cost of participation, and based

on this decide which workers to hire and how much to

pay them.

A simple model that captures the above problem is

as follows: There is a set S of workers. Worker i has a
private cost ci and provides utility ui to the requester on

getting hired. We want to design a truthful mechanism

that decides which workers to recruit and how much

to pay them. The goal is to maximize the requester’s

utility without violating her budget constraint.

For the above model, Singer (2010) gave an

incentive-compatible mechanism that achieves an ap-

proximation ratio 1 of 1/6 compared to the offline
optimum that knows the costs of the workers. Later on

Chen et al. (2011) improved the approximation ratio to
1

2+
√

(2)
� 0.292 (and to 1/3 for randomized mecha-

nisms). Chen et. al. also showed that no deterministic

mechanism can achieve an approximation ratio better

than 1

1+
√

(2)
� 0.414; Singer (2010) showed that no

randomized mechanism can achieve an approximation

ratio better than 0.5.
Our work is motivated by the following observation:

1we use the terms approximation factor and competitive ratio
interchangeably
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Most of the crowdsourcing tasks are large-scale in

nature in terms of the number of workers involved.

On the other hand if one looks at the impossibility

result of Chen et al. (2011), they involve only a small

number of workers (specifically, only 3 workers). Thus,

this leads to a natural open question - Do these lower
bounds extend to the case of large markets? or can
one design better mechanisms for this important case
of large markets?
In this paper, we seek to understand the above ques-

tion. We show that one can significantly improve the ap-

proximation ratio for the case of large markets. We give

a mechanism that achieves an approximation ratio of

1− 1/e � 0.63 for large markets. In addition, we show
that our mechanism is the best possible mechanism by

showing that no truthful budget-feasible mechanism can

achieve a factor better than 1− 1/e. Finally, we look at
the more general case of submodular utility functions.

A. The Model

We define the model abstractly: Consider a reverse

auction scenario with one buyer and n sellers, where the
set of sellers is denoted by S. Each seller i ∈ S owns a
single item (denoted by item i) and has a private cost
ci for it. The buyer derives a utility of ui from item

i. The buyer has a limited budget B, and its goal is to
buy a subset of items that maximizes her utility without

exceeding her budget.

Note that if the sellers are not strategic and the costs

are known to the buyer, then this is the well-known

knapsack optimization problem. However, the cost ci is
assumed to be a private information of seller i. Thus we
are interested in designing direct-revelation mechanisms

where the buyer solicits bids from the sellers, and

then computes which sellers to buy from and how

much to pay them. More formally, a mechanism M
consists of two functions A : (R+)

n → {0, 1}n and

P : (R+)
n → (R+)

n. The allocation function A(·)
takes as input the costs of n sellers and reports the

set of winners. The payment function P (·) takes

as input the costs of n sellers and reports how

much is paid to each seller. We will use functions

Ai : (R+)
n → {0, 1} and Pi : (R+)

n → R+, for each

i ∈ S, to refer to the restriction of functions A(·) and
P (·) to seller i. In other words, Ai, Pi represent the i-
th element of the output of functions A,P , respectively.

The mechanism M = (A,P ) should satisfy the
following properties:

1) Budget Feasibility: The sum of the payments made

to the sellers should not exceed B, i.e.,
∑

i Pi(c) ≤
B for all c.

2) Individual rationality: A winner i ∈ S is paid at

least ci.
3) Truthfulness/Incentive-Compatibility: Reporting

the true cost should be a dominant strategy of

the sellers, i.e. for all non-truthful reports ci from
seller i, it holds that

Pi(ci, c−i)− ci ·Ai(ci, c−i) ≤
Pi(ci, c−i)− ci ·Ai(ci, c−i)

Among all mechanisms that satisfy the above proper-

ties, we are interested in the ones that give high utility to

the buyer. Note that no mechanism can achieve utility

larger than U∗(c,u), where U∗(c,u) is the utility of
the knapsack optimization problem assuming costs of

the sellers are known to the buyer. When there is no

risk of confusion, we also denote U∗(c,u) by U∗ for
brevity.

We say a mechanismM is an α-approximation (for
α ≤ 1) if it gives utility at least α · U∗(c,u) for any c
and u.

Indivisible vs Divisible Items. Note that the above
description is given for indivisible items, however, we

can define the above problem for divisible items as well.

For instance, if the item being sold by a seller is his

own time, then it can be modeled as a divisible item.

For fraction x ≤ 1 of a divisible item, the cost of seller
i is x.ci and the utility obtained by the buyer is x · ui.

The allocation function for divisible items is defined as

A : (R+)
n → [0, 1]n.

More general utility functions. An interesting gen-
eralization of the above model is when the utility

function over the set of items is a submodular func-

tion rather than an additive function. We denote this

function by U : 2S → R+ (for additive functions,

U(T ) =
∑

i∈T ui, for ∀T ⊆ S). We assume that the
utility function is known to the buyer.

1) The Large Market Assumption: Crowd-sourcing

systems are excellent examples of large markets. In-
formally speaking, a market is said to be large if the

number of participants are large enough that no single

person can affect the market outcome significantly. Our

results take advantage of this nature of crowdsourcing

markets to give better mechanisms.

We define the large market assumption as follows:
We assume that in our model, the cost of a single

item is very small compared to the buyer’s budget B.
More formally, let cmax = maxi∈S{ci}. Then, the large
market assumption is defined as below.

The Large Market Assumption: cmax 	 B.
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In other words, we define the largeness ratio of the
market to be θ = cmax

B and analyze our mechanisms for

when θ → 0.
This assumption - also known as the small bid

to budget ratio assumption - is used in other large-

market problems as well (for instance, see Mehta et al.

(2007) for a similar definition with application in online

advertising). All the mechanisms that we present in the

main body of the paper (mechanisms for additive utility

functions) will be analyzed under this assumption. The

mechanisms that we design for submodular utility func-

tions work under a different large market assumption

which is explained below.
An Alternative Assumption: We also suggest an-

other definition for large markets, the discussion of

which will be deferred to the full version of this

paper. Our mechanisms for submodular utility functions

work under this assumption; moreover, we can slightly

modify our mechanisms for additive utility functions

so that they work under this assumption as well, while

preserving their approximation ratio. We define this

assumption below.

Let umax = maxi∈S ui and U∗ be the utility of the
optimum solution (i.e. the maximum utility that the

buyer can achieve when the costs are known to her).

This large market assumption states that:

An Alternative Large Market Assumption:
umax 	 U∗.

In other words, we define the largeness ratio of

the market to be θ = maxi∈S ui

U� and analyze our

mechanisms for when θ → 0.
We note that our impossibility result for additive util-

ities (Section VI) holds for either of the two definitions.

B. Our Results

In this paper, we design optimal budget-feasible

mechanisms for large markets. To the best of our

knowledge, we are the first ones to study the case of

large markets. We list our results below:

1) If the items are divisible, we design a deterministic

mechanism which satisfies all the required prop-

erties (i.e. budget feasibility, individual rationality

and truthfulness) and has an approximation ratio

of 1 − 1/e (Section V). Note that previously, no
mechanism was known for the case of divisible

items. In fact, one can show that no bounded

approximation ratio is possible for divisible items

if the large market assumption is dismissed.

2) If the items are indivisible, we can modify our

mechanism and give a randomized truthful mech-

anism for this case which achieves approximation

ratio 1 − 1/e. The proof is deferred to the full
version of this paper.

3) In Section VI, we show that the above results are

optimal by proving that no truthful (and possibly)

randomized mechanism can achieve approximation

ratio better than 1 − 1/e. Our impossibility result
holds for both cases of divisible and indivisible

items.

4) For the case of submodular utility functions, we

design deterministic mechanisms that achieve ap-

proximation ratios of 1
2 and 1

3 with exponential

and polynomial running times respectively. Note

that we only consider the case of indivisible items

for submodular utility functions. The discussion of

our results on submodular functions is deferred to

the full version of this paper.

As we saw in Section I-A1, one could define a notion

of θ-large market, i.e. a market with largeness ratio θ.
To gain a better understating of the problem, we focus

on large markets (i.e. when θ → 0) and state our main
theorems for this setting. However, our mechanisms

do not need “very large” markets to perform well; for

instance, in the knapsack problem with additive utilities,

the approximation ratio 2 is (1−1/e) · (1−6θ/5) when
all the items have equal utilities (Section V-B). Thus,

say for θ = 1/20 and θ = 1/40 (which are reasonable
assumptions in many settings) we get approximation

factors 0.592 and 0.613 respectively.
Also we point out that the above results have ap-

plications beyond crowdsourcing - for instance, see

Singer (2011) for application in marketing over social

networks, and Horel et al. (2013) for application in

experiment design. Singer (2011) provides a truthful

mechanism with approximation ratio ≈ 0.032 and

Horel et al. (2013) provides an approximately truthful

mechanism with approximation ratio ≈ 0.077. For
both these settings, large market assumption is a very

reasonable assumption to make; thus, our results apply

to these applications as well. In particular, our results

give fully truthful mechanisms for these applications

with approximation ratios 1
2 ,

1
3 (for exponential and

polynomial running time respectively) in large markets.

C. Related Work

The most relevant related work is that of Singer

(2010) and Chen et al. (2011). Singer (2010) first intro-

duced this model (without the large market assumption).

For the case of additive utilities and indivisible items, he

2we didn’t try to optimize the dependence on θ in our analysis as
we focus on the main ideas for the sake of better understanding.
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gave a deterministic mechanism with an approximation

ratio of 1/6. Chen et al. (2011) later improved it to
1/(2 +

√
2), and also gave a randomized mechanism

with an approximation ratio of 1/3. They gave a lower
bound of 1/(1 +

√
2) and 1/2 for deterministic and

randomized mechanisms respectively. For the case of

submodular utilities, Singer (2010) gave a randomized

mechanism with an approximation ratio of 1/112 which
was improved to 1/7.91 by Chen et al. (2011). Chen
et al. (2011) also gave an exponential time deterministic

mechanism for submodular utility functions with an

approximation ratio of 1/8.34.
Dobzinski et al. (2011) looked at the more general

sub-additive utility functions and gave a 1/log2(n) and
1/log3(n) approximation ratio for randomized and de-
terministic mechanisms respectively. Singla and Krause

(2013a) design budget-feasible mechanisms for adaptive

submodular functions with applications in community

sensing.

In another work, Bei et al. (2012) study this problem

in Bayesian setting. Singer (2011) looks at the applica-

tion of this model in marketing over social networks.

Horel et al. (2013) study the application of this model

in experiment design.

Another related model that has been inspired from

crowdsourcing applications is when the workers arrive

online. A sequence of papers model this as an on-

line learning problem. See Singla and Krause (2013b);

Badanidiyuru et al. (2012); Singer and Mittal (2013) for

more details.

Finally, we note that our assumption for large markets

is similar to the assumption made in other application

areas; notably in the Adwords problem as studied by

Mehta et al. (2007). See Goel and Mehta (2008);

Devanur and Hayes (2009); Feldman et al. (2010, 2009)

for other models motivated by online advertising where

they make similar assumptions.

D. Roadmap

The readers are encouraged to read this section before

proceeding further. We begin by presententing a 1
2 -

approximate mechanism (in section II) using a simple

proportional share mechanism which was proposed in

Singer (2010); Chen et al. (2011). Then, in section III,

we build our new ideas that help us find the optimal

mechanism for the case of the additive utilities. This

section also defines a simple version of our mecha-

nism that is not truthful but is envy-free. We define

our truthful mechansim in section IV. Both our envy-

free and truthful mechanisms are parameterized by a

single input variable (which we call standard allocation
rule). Most of the work in the later sections goes in

finding (and prooving) the optimal standard allocation

rule. In particular, in section V, we find the standard

allocation rule for which our mechanism provides an

approximation ratio of 1 − 1/e in large markets. In
section VI, we complement this result by showing

that no truthful mechanism can achieve approximation

ratio better than 1 − 1/e. In the full version of this
paper, we further adapt our mechanism to the case

of indivisible items, and present two mechanisms for

submodular utility functions which have exponential

and polynomial running times and approximation ratios
1
2 and

1
3 , respectively.

II. A SIMPLE 1
2 -APPROXIMATE TRUTHFUL

MECHANISM

In this section, we briefly explain the previous mech-

anism designed for this problem for the additive utility

functions that gives an approximation factor of 1
2 in

large markets.

Definition 1: Cost-per-utility rate of a seller i is
equal to ci/ui.

A natural approach to this problem tries to find a single

payment-per-utility rate (denoted by rate r) at which
all the winning sellers get paid. In other words, this

approach picks a single number r and makes a payment
of r.ui to seller i if she wins and pays her 0 otherwise.
For brevity, we sometimes call the payment-per-utility

rate r simply the rate r when there is no risk of

confusion.

Individual rationality implies that a seller i is willing
to sell her item at rate r iff r ≥ ci/ui. Initially the buyer

declares a very large rate r, and then sees which sellers
are willing to sell at this rate. If the total cost to buy

from all these sellers at rate r is higher than the budget
B, then the buyer decreases the rate r. More formally, a
natural descending price auction for this problem works

as follows:

1) Let A denote the set of active sellers, and initially

set A = S.
2) Start with a very high rate r.
3) Verify if all the active sellers can be paid with rate

r, i.e. whether
∑

i∈A r.ui ≤ B or not.

4) If the payment is feasible, then allocate the subset

A, make the payment and stop.
5) If the payment is not feasible then decrease r
slightly; update A accordingly by removing the

sellers i for whom ci/ui > r; go to Step 3.

The above auction captures the main idea behind

the proportional share mechanisms designed in Singer
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(2010); Chen et al. (2011)3, although they describe it

in a forward auction format. It is not hard to see that

the above mechanism is truthful, budget-feasible, and

in large markets achieves an approximation ratio of 1
2

(with small modifications, this can be converted to a

randomized 1
2 -approximation for arbitrary markets as

well Chen et al. (2011)).

III. OUR APPROACH

In this section, we give a high level overview of our

approach. Subsections III-A and III-B are preliminary

sections and must be read before proceeding further.

Also for rest of the paper we will assume that the

sellers’ items are divisible, unless we explicitly talk

about indivisible items.

A. A Notion of An Allocation Rule

To build our new ideas, we first introduce and for-

malize the notion of an allocation rule.

An allocation rule f : R
+ → [0, 1] is a function

which determines how much to buy from a given seller.

The domain of allocation rules is the cost per utility
rate; meaning, given a (ui, ci) pair of seller i, the
allocation rule f says that we should buy f( ci

ui
) fraction

of seller i’s item. We do not enforce using the same
allocation rule for all sellers.

We say an allocation rule f : R
+ → [0, 1] is a

Standard Allocation Rule if f is a decreasing function
such that f(0) = 1 and f(e− 1) = 0.4

For any standard allocation rule f : R+ → [0, 1], we
can define an associated family of allocation rules

F(f) = {fr : R+ → [0, 1]}r>0

where fr denotes an allocation rule which is same as f
except that it is stretched along the horizontal axis with

ratio r, i.e. fr(x) = f(x/r) for all x ≥ 0.

As we will see later, any single standard allocation

rule f and its corresponding family of allocation rules
F(f) will uniquely specify our mechanism. At a high
level, our mechanism will work as follows: we will

pick the largest positive r such that fr ∈ F(f) is
budget-feasible; meaning the sum of the payments with

allocation rule fr does not exceed B. However, note
that we have not yet defined a payment rule given an

allocation rule fr - we define it next.

3 It is worth pointing out that for submodular utilities, they need
to use an additional trick: constructing a (sorted) list of sellers in a
greedy manner before running the auction.
4The choice of e−1 is just for simplifying the future calculations;

it can be replaced with any other constant.

fr

1

ci/ui

Figure 1: With allocation rule fr , the payment to seller i is
defined to be ui times the shaded area under the curve.

B. Payment Rule

Recall that given a function fr ∈ F(f) and (ui, ci)
pair for a seller i, the value of fr(

ci
ui
) only tells us

what fraction of seller i’s item to buy. But how much

should we pay seller i in order to give incentives to
seller i to report its cost truthfully to the mechanism?
We compute these payments based on the well known

Myerson’s characterization of the truthful mechanisms

[Myerson (1981)].

Let the payment rule for seller i is denoted by Pi,r :
R+ → R+ for an allocation rule fr. Here Pi,r maps the

reported cost of seller i into its payment.
To define Pi,r, we do the following thought process:

Let’s divide seller i’s item into ui different pieces. Note

that now the seller’s cost for each piece is ci
ui
. Thus

function fr can now be seen as mapping the cost of

a single piece into the fraction of that piece that we

will buy. Let Qr(x) : R+ → R+ denote the function

that maps the cost for a single piece into a payment for

that piece. Now, Myerson’s characterization [Myerson

(1981)] says that the payment for each piece is given

by the following formula:

Qr(x) = x · fr(x) +
∫ ∞

x

fr(y) d y.

Intuitively, Qr(x) represents the area under the curve
as seen in Figure 1. Going forward, we will call the

function Qr a unit-payment rule. Note that Pi,r(x) and
Qr are related by the following formula:

Pi,r(x) = ui ·Qr(x/ui),

Thus, to summarize, for an allocation rule fr, we buy
fr(ci/ui) units of her item, and pay her Pi,r(ci) amount
of money.

Remark: We make a remark that the above payment
rule is truthful only if the allocation rule fr that is
offered to seller i does not depend on the private
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information (cost ci in this case) of the seller i. If the
allocation rule fr does depend on the private informa-
tion of the seller, then the mechanism may or may not

be truthful. In the next section we give a mechanism

in which the allocation rule fr for a seller i depends
on its reported costs. Later in section IV, we give a

mechanism where the allocation rule fr for a seller i
doesn’t depend on its reported cost, thus our payment

rule will ensure that the resulting mechanism is truthful.

C. First Attempt: A Parameterized Class of Envy-Free
Mechanisms
In this section we describe a mechanism (denoted by

Mechanism Envy-Free(f )) that is not always truthful,
but it will form the basis of our truthful mechanism.

Moreover, some structural results about this mechanism

will be useful while analyzing our truthful mecahanism,

thus we will be talking about this mechanism throughout

the paper. This mechanism is parameterized by the

choice of a standard allocation rule f . The mechanism
described in this section offers a single allocation rule
fr ∈ F(f) to all the sellers, thus it is envy-free

(although it may not be truthful).
Definition 2: We say that an allocation rule fr is a

budget-feasible allocation rule if
∑

i∈S Pi,r(ci) = B,
i.e. the payments defined with respect to fr sum up to

B.
Now given any standard allocation rule f , the mech-

anism starts with a very large scaling ratio r = ∞ so

that we are guaranteed to have
∑

i∈S Pi,r(ci) > B.
Then, the mechanism decreases r until the rule fr be-

comes a budget-feasible rule (say at r = r�). The mech-
anism stops at this point and uses fr� and {Pi,r�}i∈S
to determine the allocations and payments. The ratio

r� is also called the stopping rate of the mechanism.
We define this process formally in Mechanism Envy-

Free(f ).

Mechanism Envy-Free: Parameterized by a stan-
dard allocation rule f

input : Budget B, (ui, ci) pair for each seller i
output: A scaling ratio r�

r ←∞;
while fr is not a budget-feasible rule do

Decrease r slightly;
end
r� ← r;
Output the scaling ratio r�;

One can easily see that the above mechanism is

budget-feasible, individually rational, and envy-free;

Allocation

cost per utility rate

1

e− 1

Figure 2: The Uniform Standard Allocation Rule

however, it may not be truthful. Also, the efficiency

of the above mechanism depends on the choice of

function f . Thus, an important question is: What is
the optimal choice of function f? Let’s first understand
the performance of the above mechanism for a simple

choice of function f .
Definition 3: A standard allocation rule f : R+ →

[0, 1] is called a uniform standard allocation rule if

f(x) = 1 for x < e − 1, and f(x) = 0 otherwise.
Figure 2 depicts this curve.

One can show that the above envy-free mechanism

when run using a uniform standard allocation rule,

mimics the simple factor 1
2 mechanism presented earlier.

Thus, it turns out to be truthful as well for this choice

of standard allocation rule. However for more general

allocation rules, the above envy-free mechanism might

not be truthful. Thus before we answer the harder

question about the optimal choice of function f , we
next describe the truthful version of the above envy-

free mechanism.

IV. A PARAMETERIZED CLASS OF TRUTHFUL

MECHANISMS

We use a simple trick to convert Mechanism Envy-

Free(f ) to a truthful mechanism. The idea is to define,
for each seller i, an allocation rule which does not
depend on ci. In particular, we define the allocation
rule for seller i to be fri , where ri will be chosen
independently of ci. For finding ri, we run Mechanism
Envy-Free(f ) on the instance which is obtained by

setting ci to be 0 while keeping cost of the other

sellers intact; ri would be the stopping rate of the
mechanism Envy-Free(f ). The formal definition of the
truthful mechanism appears in Mechanism Truthful(f).
In Lemma 2, we prove that Mechanism Truthful(f)

is individually rational, truthful, and budget-feasible for

any given standard allocation rule f . First, we state the
following useful lemma.

Lemma 1: For any seller i ∈ S we have r� ≥ ri.

271271



Mechanism Truthful(f): Parameterized by a stan-
dard allocation rule f

input : Budget B, (ui, ci) pair for each seller i

foreach i ∈ S do
temp← ci;
ci ← 0;
ri ← Mechanism Envy-Free(f);
ci ← temp;

end
foreach i ∈ S do

Allocate fri(ci) from seller i;
Pay Pi,ri(ci) to seller i;

end

Proof: The proof is based on the fact that Pi,r(x)
is an increasing function of r (for a fixed x) and is a
decreasing function of x (for a fixed r). The proof is
by contradiction, suppose r� < ri. Let c

′
j = cj for all

j ∈ S\{i} and let c′i = 0. Observe that

B =
∑
j∈S

Pj,r�(cj) ≤
∑
j∈S

Pj,r�(c
′
j)

<
∑
j∈S

Pj,ri(c
′
j),

where the first inequality is due to the fact that Pj,r�(x)
is a decreasing function of x and the second inequality
is due to the fact that r� < ri. However, note that
the above inequalities imply that B <

∑
j∈S Pj,ri(c

′
j),

which contradicts with the budget feasibility of Mech-

anism Envy-Free(f ): see that
∑

j∈S Pj,ri(c
′
j) repre-

sents the payment of Envy-Free(f ) when the costs are
c′1, . . . , c

′
n, and so it can not be larger than B.

Lemma 2: Mechanism Truthful(f) is individually ra-
tional, truthful, and budget-feasible.

Proof: Note that the allocation and payment rules
for seller i, i.e. fri , Pi,ri , do not depend on the cost

reported by her. This fact, along with the fact that

fri is a monotone rule (decreasing function) implies
individual rationality and truthfulness. The proof is

almost identical to the proof of Myerson’s Lemma and

we do not repeat it here.

The proof for budget feasibility needs a bit more

work. Let pi, p
′
i denote the payments to seller i re-

spectively in Mechanism Truthful(f) and Mechanism
Envy-Free(f ), i.e. pi = Pi,ri(ci) and p′i = Pi,r�(ci).
The lemma is proved if we show that pi ≤ p′i, since we
have

∑
i∈S p′i = B.

To see pi ≤ p′i, note that Pi,r(x) is an increasing
function of r (for a fixed x). So, since we have r� ≥ ri

due to Lemma 1, it must be the case that Pi,ri(ci) ≤
Pi,r�(ci).

V. A (1− 1/e)-APPROXIMATE OPTIMAL TRUTHFUL
MECHANISM

So far, we have introduced a parameterized class

of individually rational, truthful, and budget-feasible

mechanisms for the problem: Passing any standard

allocation rule f to Mechanism Truthful(f) fixes the
mechanism which we denote by Mf . Our goal in this

section is to find the most efficient mechanism in this

class. Formally, given a standard allocation rule f , we
denote the approximation ratio ofMf byRf and define

it as:

Rf = inf
I

Uf (I)
U�(I)

,

where the infimum is taken over all instances I of the
problem 5 . Here Uf (I) denotes the utility obtained
byMf in instance I , and U�(I) denotes the optimum
utility in instance I .
The most efficient allocation rule f , is the one which

maximizes Rf . Our goal, in this section and Section

VI, is to find the most efficient allocation rule and its

corresponding approximation ratio. Formally, we prove

the following theorem.

Theorem 1: Under the large market assumption, and
with additive utilities, the most efficient standard al-

location rule for Mechanism Truthful(f) is f(x) =
ln(e − x), for which we get Rf = 1 − 1/e, i.e. it has
an approximation ratio 1− 1/e.
We prove this theorem in two parts: In the first part

we show that Rf ≥ 1 − 1/e for f(x) = ln(e − x);
this is proved in the current section. In the second

part, we show that Rg ≤ 1 − 1/e for any standard
allocation rule g. This fact can be seen as a consequence
of our hardness result in Section VI, which states that

no truthful mechanism can achieve approximation ratio

better than 1 − 1/e. We also provide a more direct
(alternative) proof in the full version of this paper that

shows our choice of f(x) = ln(e−x) is optimal among
all possible choices of the standard allocation rules.

A. Finding an optimal f for the (non-truthful) Mecha-
nism Envy-Free(f )

In this section, we prove that Mechanism Envy-

Free(f ) has approximation ratio 1 − 1/e for f(x) =
ln(e − x). Note that the Mechanism Envy-Free(f ) is
not truthful, however its analysis will be helpful when

5If we are focused on large markets, we take only instances I for
which the largeness ratio is smaller than some threshold, and take the
limiting approximation factor as the threshold goes to 0.
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analyzing our truthful mechanism in Section V-B. Here,

we analyze Mechanism Envy-Free(f ) assuming that the
true costs are known; later, in Section V-B, we use

this result to prove that Mechanism Truthful(f) has
approximation ratio 1− 1/e for the same choice of f .

1) Preliminaries: We use gr to denote the inverse
of an allocation rule fr, i.e. gr(x) = f−1

r (x). Given
an allocation rule fr, we also write an alternative defi-
nition of its corresponding unit-payment rule Qr. This

definition, rather than being in terms of ci
ui
, would be in

terms of fr(
ci
ui
). This alternative definition is denoted

by Gr, and is defined such that Qr(
ci
ui
) = Gr(f(

ci
ui
)).

For instance, if a seller owns an item with utility 1,
then we pay her Gr(x) when a fraction x of her item is
allocated. To be more precise, for y = fr(

ci
ui
) we define

Gr(y) =

∫ y

0

gr(x) dx = Qr(
ci
ui

).

We also denote g1 and G1 respectively by g and G.
Proposition 1: Given the standard allocation rule

f(x) = ln(e − x), it is straight-forward to verify that
g(x) = e − ex and G(x) = ex − ex + 1. Also,
fr(x) = ln

(
er−x

r

)
.

From now on in this section, we assume that f(x) =
ln(e − x). Next, we prove a useful inequality in the
following lemma which will be used in the analysis of

Envy-Free(f ).
Lemma 3: For any x, α such that 0 ≤ x, α ≤ 1 we

have

G(x)− α · g(x) ≤ e · (x− α · (1− 1/e)).

Proof:

α(ex − 1) ≤ ex − 1

⇒ αex − ex + 1 ≤ α

⇒ αex − ex + 1 + e(x− α) ≤ α+ e(x− α)

⇒ G(x)− α · g(x) ≤ e · (x− α · (1− 1/e)).

The last line follows from the definition of g and G.

2) Approximation Ratio of Mechanism Envy-Free(f ):
In the following lemma, we prove the efficiency of

Mechanism Envy-Free(f ) when all sellers report true
costs.

Lemma 4: If sellers report true costs, then Mecha-
nism Envy-Free(f ) has approximation ratio 1− 1/e.

Proof: Observe that w.l.o.g. we can assume r� = 1:
If r� �= 1, then we can construct a new instance which
is similar to the original instance and has stopping rate
1. More precisely, there exists some β > 0 such that
if we multiply the budget and the reported costs by β,
the stopping rate becomes equal to 1. Note that this

operation will not change the optimal solution or the

solution of Envy-Free(f ) and can be performed w.l.o.g.
Now, suppose that a fraction xi of item i is allocated

by Envy-Free(f ). Since r� = 1, we can use Lemma 3
to write the following inequality for each i ∈ S:

G(xi)− αi · g(xi) ≤ e · (xi − αi · (1− 1/e)),

where αi is the fraction that is allocated from seller i in
the optimal solution (recall that we are are comparing

Envy-Free(f ) with the optimum fractional solution).

The above inequality can be multiplied by ui on both

sides and be written as:

ui · (G(xi)− αi · g(xi)) ≤
ui · e · (xi − αi · (1− 1/e)).

By adding up these inequalities, we get:∑
i∈S

ui · (G(xi)− αi · g(xi)) ≤

e ·
∑
i∈S

ui · (xi − αi · (1− 1/e)) . (1)

Now, we show that if

0 ≤
∑
i∈S

ui · (G(xi)− αi · g(xi)) , (2)

then the lemma is proved using (1) and (2). First we

show why (1) and (2) prove the lemma, and then in the

end, we prove (2) itself.
Observe that (1) and (2) imply that

0 ≤
∑
i∈S

ui · (xi − αi · (1− 1/e)) . (3)

Now, let U denote the utility gained by Envy-Free(f )
and U� =

∑
i∈S uiαi denote the utility of the optimum

(fractional) solution; see that (3) implies

(1− 1/e) · U� =
∑
i∈S

αiui · (1− 1/e) ≤
∑
i∈S

xiui = U,

This would prove the lemma.
So, it only remains to show that (2) holds: First

observe that
∑

i∈S ui · G(xi) = B, since the sum
represents the payment of Envy-Free(f ). Also, see that∑

i∈S αiui ·g(xi) ≤ B, since this sum is a lower bound
on the cost of the optimal solution, which is at most B.

B. Special case: Analyzing our truthful mechanism for
unit utilities
In this section, we prove that Mechanism Truthful(f)

has approximation ratio 1− 1/e in large markets when
it uses the standard allocation rule f(x) = ln(e − x)
for the special case when all the utilities are equal to 1.
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In other words, we will show that approximation ratio

approaches 1 − 1/e as θ, the market’s largeness ratio,
approaches 0 for the case of unit utilities. The proof for
the case of general utilities is intricate and appears in

the full version of the paper.

Note that the assumption of unit utilities imply

ci/ui = ci for any seller i. Next, we state two lemmas
before proving the approximation ratio. For simplicity in

the analysis, w.l.o.g., assume that c1 ≤ c2 ≤ . . . ≤ cn.

Lemma 5: r1 ≥ r2 ≥ . . . ≥ rn.

Lemma 6: Let u�(b) : R+ → R+ denote the max-

imum utility that the buyer can achieve with budget b
(when the items are divisible). Then, u�(b) is a concave
function.

Proofs for both of these lemmas are straight-forward

and are deferred to the full version of the paper.

Lemma 7: Mechanism Truthful(f) has approxima-
tion ratio 1− 1/e when all the items have utility equal
to 1.

Proof: Recall that U� = u�(B) and let U denote

the utility achieved by Mechanism Truthful(f). We need
to show that (1 − 1/e) · U� ≤ U . Instead of showing
that U =

∑
i∈S fri(ci) is large enough compared to U

�,

we show that
∑

i∈S frn(ci) is large enough compared
to U�; the lemma then would be proved since we have

frn(ci) ≤ fri(ci) for all i ∈ S. To see why frn(ci) ≤
fri(ci), it is enough to note that rn ≤ ri due to Lemma
5 which implies frn(ci) ≤ fri(ci).

We consider two cases for the proof: In Case 1 we

assume cmax ≤ c, and in Case 2 we assume otherwise,
where the number c is the cost at which frn(c) = 1−
1/e, more precisely, this happens at c = rn(e−e1−1/e).

Case 1: In this case, observe that we have

frn(ci) ≥ 1−1/e for all i ∈ S, which implies fri(ci) ≥
1−1/e. This just means U ≥ (1−1/e)n ≥ (1−1/e)U�.

Case 2: Let Un =
∑

i∈S frn(ci), we will show
that

Un ≥ (1− 1/e) · (1− o(1)) · U�. (4)

To prove this, consider an auxiliary instance in which,

instead of budget B, we have a reduced budget B′ =∑
i∈S Qrn(ci). Note that if we run Mechanism Envy-

Free(f ) on the auxiliary instance, then its stopping rate
is rn, and so, the utility gained by the mechanism is

exactly Un. Let U
�
aux denote the optimal utility in the

auxiliary instance. Then, by applying Lemma 4 on the

auxiliary instance, we have Un ≥ (1− 1/e) · U�
aux. So,

if we show that

U�
aux ≥ (1− o(1)) · U� (5)

then (4) holds and the proof is complete.

We use Lemma 6 to prove (5): First, we show that

B′ ≥ (1 − o(1)) · B; then, applying Lemma 6 would
imply that u�(B′) ≥ (1 − o(1)) · u�(B), which is
identical to (5) by definition. So all we need to complete

the proof is showing that B′ ≥ (1− o(1)) ·B.
To this end, we prove that B′ ≥ (1 − α · cmax

B ) · B,
where α is a constant with value (e−e1−1/e)−1 ≈ 6/5.
This would prove the Lemma due to the large market

assumption. First, observe that

B = Qrn(0) +
∑

i∈S\{n}
Qrn(ci) ≤ Qrn(0) +B′

⇒ B′ ≥ B −Qrn(0) ≥ B − rn. (6)

Now, recall that in Case 2, we have cmax ≥ c, which
implies

B ≥ c · B

cmax
= rn(e− e1−1/e) · B

cmax

⇒ cmax · (e− e1−1/e)−1 ≥ rn. (7)

Combining (6) and (7) implies B′ ≥ (1− α · cmax
B ) · B

with the promised value for α.

VI. IMPOSSIBILITY RESULT: ON WHY 1− 1/e IS
THE BEST APPROXIMATION POSSIBLE

In this section we show that no truthful (and possibly)

randomized mechanism achieves approximation ratio

better than 1− 1/e. The proofs are deferred to the full
version of the paper and we include only an outline of

the proof together with the instance used in the proof.

We show a stronger claim by allowing the mechanism

to satisfy the budget feasibility in expectation, i.e. we

prove that no truthful mechanism that is budget-feasible

in expectation can achieve a ratio better than 1− 1/e.
Proof Outline.: We construct a bayesian instance

of the problem and prove that no budget-feasible

truthful mechanism for this instance can achieve

approximation ratio better than 1 − 1/e; this also
implies that no mechanism for the prior-free setting

can achieve ratio better than 1 − 1/e 6. The proof is

done in two steps. First, we show that for any truthful

mechanism for this instance, there exists a simple

posted price mechanism that achieves at least the same

revenue. The posted price mechanism simply offers the

same price p to every seller and pays p to any seller
who accepts the offer and 0 to others. In the second
step of the proof, we show that for any choice of p,
such mechanisms cannot achieve a ratio better than

1 − 1/e. The proof that we present, w.l.o.g. analyzes
the market in expectation: budget feasibility is satisfied

6This is so because an α-approximate mechanism in the prior-free
setting is also α-approximate in Bayesian setting
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in expectation; also, the utility of the mechanisms are

computed in expectation.

We present the instance used in the proof below and

leave the rest of the proof to the full version of the

paper.

The Impossibility Instance.: We construct a

bayesian instance of the problem in which all the sellers

have unit utility and their costs are drawn i.i.d. from

a distribution with cumulative distribution function F ,
defined as follows:

F (x) =

{
1/e if x = 0,

1
e(1−x) if 0 < x <= 1− 1/e.

In other words, F (x) denotes the probability that the
cost of a seller is at most x. Let D be the distribution

defined by F and let c denote the expected cost of a
seller sampled from D, i.e. c = Ex∼D[x]. We define the
budget to be B = c · N where N ≥ 1 is an arbitrary
integer denoting the number of sellers.
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