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Abstract—We introduce a technique for applying quan-
tum expanders in a distributed fashion, and use it to solve
two basic questions: testing whether a bipartite quantum
state shared by two parties is the maximally entangled
state and disproving a generalized area law. In the process
these two questions which appear completely unrelated
turn out to be two sides of the same coin. Strikingly in
both cases a constant amount of resources are used to
verify a global property.

I. INTRODUCTION

In this paper we address two basic questions:

1) Can Alice and Bob test whether their joint state

is maximally entangled while exchanging only a

constant number of qubits? More precisely, Alice

and Bob hold two halves of a quantum state |ψ〉
on a D2-dimensional space for large D, and would

like to check whether |ψ〉 is the maximally entan-

gled state |φD〉 = 1√
D ∑x |x〉|x〉 or whether it is

orthogonal to that state. So far, all known protocols

for this task require resources (clasical or quantum

communication, as well as shared randomness)

which grow with D ([5], and see below).

2) Is there a counterexample to the generalized area

law? A sweeping conjecture in condensed matter

physics, and one of the most important open ques-

tions in quantum Hamiltonian complexity theory, is

the so called Area Law, which asserts that ground

states of quantum many body systems on a lattice

have limited entanglement. Specifically, assume the

system is described by a gapped local Hamiltonian

H = H1 + . . . + Hm, where each Hi describes a

local interaction between two neighboring particles

of a lattice. The area law conjectures that for

every subset S of the particles, the entanglement

entropy between S and S̄ for the ground state of

H is bounded by a constant times the size of

the boundary of S. The area law, which has been

proven for 1D lattices [15] and is conjectured for

higher degree lattices, is of central importance in

condensed matter physics as it provides the basic

reason to hope that ground states of such systems

might have a succinct classical description. The

generalized area law (a folklore conjecture) transi-

tions from this physically motivated phenomenon

to a very clean and general graph theoretic formu-

lation, where in place of edges of the lattice, the

terms of the Hamiltonian correspond to edges of

an arbitrary graph. The generalized area law then

states that for any subset S of vertices (particles),

the entanglement entropy between S and S̄ for the

ground state is bounded by some constant times

the cut-set of S (the number of edges leaving S).

We affirmatively answer both questions, based on a

common technique that may be thought of as applying

quantum expanders in a distributed fashion. Indeed

these two questions which at first sight seem completely

unrelated turn out to be two sides of the same coin.
For the entanglement testing problem, we show that

Alice and Bob can solve it by communicating only a

constant number of qubits: for any D and any ε > 0,

there is a protocol that uses O(log 1/ε) qubits of

communication from Alice to Bob, after which Bob

always accepts if the shared state is |φD〉. If the shared

state is orthogonal to |φD〉, he accepts with probability

at most ε. If Alice and Bob do start with the maximally

entangled state |φD〉, the protocol does not damage the

state.
For a counterexample to the generalized area law,

we exhibit a gapped local Hamiltonian acting on the

graph featured in Figure I a, for which the entanglement

entropy of the ground state across the middle cut is

Ω(nc) for some 0 < c < 1 (rather than O(1) as

predicted by the generalized area law). The core step

in generating this example is the construction of a
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Figure 1. a) A counterexample to the generalized area law,
consisting of a chain of complete graphs separated by the
middle edge. The entropy across the cut grows as Ω (nc),
where n is the total number of particles. b) A four-particle
construction. c) Short chain framework for proving 1D area
law.

simpler system consisting of four particles on a line (see

Figure I b): two particles of dimension d = 3 (qutrits)

in the middle, and two particles of dimension D at

the two ends, with D is arbitrarily large. The gapped

Hamiltonian is of the form H = HL + HM + HR,

where HL acts between the left particle and the left

qutrit, HM between the two qutrits, and HR between

the right qutrit and the right particle. Crucially, the

entanglement entropy of the ground state across the

middle cut is Ω(log D). This enforcing of a large

amount of entanglement by a single such constraint is

a surprising quantum phenomenon — in the analogous

probabilistic situation, in which we consider the uniform

distribution over the set of all possible solutions to

constraints set on the graph, the middle constraint can

only enforce a convex combination of a constant number

of product distributions.

This simple example of a four body Hamiltonian is

already important within the context of proofs of the 1D

area law and prospects for extending those techniques

to higher dimensions. The best bounds for the 1D area

law [3] show that an area law must hold in a model

similar to our four body Hamiltonian, when the middle

link is extended into a finite chain of s = Ω(log2 d/ε)
particles, each of -dimension d (see figure I c). This

yields an area law bound of S1D = O(log3 d/ε) across

the middle cut. Moreover, any slight improvement in

the exponent of log d in this bound would imply a

non-trivial sub-volume law for 2D systems. The crucial

parameter in improving the result is the length of the

middle chain. Our four particle example establishes that

an area law does not hold when the chain is length 1.

Understanding the intermediate regime is an important

open question.

Our approach to both questions is to apply quantum

expanders distributively. We rely on the existence of

a quantum expander which consists of a set of d
unitaries Ui with the property that the map E(X) =
1
d ∑d

i=1 UiXU†
i has the unique eigenvalue 1 for the

eigenvector X = I and next highest singular value λ <
1. In the entanglement testing problem, the expander is

applied distributively by communicating which of the d
unitaries is being applied. In the generalized area law

problem, synchronizing the application of the expander

on the left and right sides requires only a single term of

the Hamiltonian, acting on two d-dimensional particles.

This yields the core four-particle example above, which

is then converted to an interaction graph on bounded

dimensional particles by applying Kitaev’s circuit to

Hamiltonian construction to implement the Ui. In Sec-

tion VI (and discussion in Section VII) we explore

whether there is a deeper connection between very effi-

cient communication protocols for entanglement testing

and violations of generalized area laws.

Notation: For a matrix X, let X∗ be the entry-

wise complex conjugate of X and X† the transpose of

X∗. Define the Frobenius norm |X| :=
√

tr X†X; the

operator norm ‖X‖ is the largest singular value of X.

II. QUANTUM EXPANDERS

The key structural component to our results are

quantum expanders. We will only make use here of

expanders based on applying one out of d unitaries at

random (a more general definition using Kraus operators

exists).

Definition 1. The operator E : L(CD)→ L(CD) (here

we use L(CD) to denote the set of linear operators on

CD) is termed a (D, d, λ) quantum expander if

• There are d unitaries, U1 = I, U2, ..., Ud, such that

E(X) = 1
d ∑d

i=1 UiXU†
i .

• Interpreted as a linear map, E has second-largest

singular value ≤ λ.

Just as classical expanders may be thought of as

constant degree approximations to the complete graph,

quantum expanders are constant-degree approximations

to the application of unitaries drawn at random from the

Haar measure.

By definition, the identity map X = I is the unique

fixed point of E . The second condition is equivalent to

saying that for any X with tr(X) = 0

|E(X)| ≤ λ|X|. (1)

This interpretation suggests an alternate formulation

where we think of each X ∈ L(CD) as a vector in

CD ⊗ CD and the operator E then gets mapped to

the operator Ê = 1
d ∑d

i=1 Ui ⊗ U∗i . Then Ê fixes the
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maximally entangled state |φD〉 = 1√
D ∑x∈[D] |x〉|x〉,

and has second largest singular value λ.

Quantum expanders were introduced independently in

[16] and [6] although many of the relevant ideas were

implicit in [2]. In [17], it was proved that taking Ui
for i ∈ {1, ..., d} to be Haar uniform results in a “Ra-

manujan” expander with high probability; that is, λ ≈
2
√

d−1
d . Since random unitaries cannot be constructed

efficiently, other work [7], [13], [11], [18] gave efficient

constructions, in which the unitaries can be applied by

a polynomial size quantum circuits. Essentially all of

these constructions achieve log(d) = O(log 1/λ). For

our communication protocols, we will need d to be a

variable (since the error depends on it); whereas for the

area law counter example, we will take d to be a small

constant. In what follows we will assume d = 3 is

possible, although the smallest d that has been verified

is d = 8 using [11].

Why are expanders relevant to our results? To un-

derstand the gap condition better, let us see why |φD〉,
the maximally entangled state on CD ⊗ CD, is a +1
eigenvector. Observe that for any D×D matrix X, we

have (X⊗ I)|φD〉 = (I⊗XT)|φD〉. Thus 1
d ∑d

i=1(Ui⊗
U∗i )|φD〉 = 1

d ∑d
i=1(UiU†

i ⊗ I)|φD〉 = |φD〉. Since the

second-largest singular value of Ê is λ, then we have∥∥Ê − |φD〉 〈φD|
∥∥ = λ. (2)

Thus, Ê gives an approximation of a projector onto

|φD〉 up to operator-norm error λ.

III. A COMMUNICATION PROTOCOL FOR

CERTIFYING GLOBAL ENTANGLEMENT

A. The EPR testing problem

As above, set |φD〉 to be the maximally entangled

state on CD ⊗ CD. The EPR testing problem is to

determine whether a given shared state |ψ〉 ∈ CD⊗CD

is equal to or orthogonal to |φD〉. More precisely, two

parties (Alice and Bob) would like to simulate the

joint two-outcome POVM {φD, I− φD} where we have

defined the shorthand φD := |φD〉 〈φD|.
An (D, ε) EPR tester is a communication protocol for

performing a two-outcome measurement {M, I − M}
such that ‖M− |φD〉 〈φD| ‖ ≤ ε.

In general EPR testers may differ in a variety of ways:

• If M ≥ φD then we say the EPR tester has perfect
completeness.

• The communication requirements and computa-

tional efficiency may vary.

• The protocol may be performed with quantum

or classical communication. If quantum commu-

nication is used, then it is reasonable to as-

sume that upon input ρ the post-measurement

state is M1/2ρM1/2/ tr[Mρ] or (I−M)1/2ρ(I−

M)1/2/ tr[(I −M)ρ], depending on the outcome.

If classical communication is used, we need to

also consume some entanglement. We say that the

test consumes k EPR pairs if given an input of n
EPR pairs, it outputs at least n− k EPR pairs (up

to ε error) when it reports success. There are no

guarantees for orthogonal input states.

We are aware of two previous implementations of

EPR testers. The foundational work of quantum infor-

mation theory [8] gave a
(

2n, 2−k
)

EPR tester with

perfect completeness that used a message of O(nk)
classical bits and consumed k EPR pairs. This was

improved by [5] to a (2n, 2n
k(2k+1)

) EPR tester that sent

2k classical bits, consumed k EPR pairs and used ≈ n/k
bits of shared randomness.

B. EPR testing with constant quantum communication

Our main result in this section is an EPR tester using

only a constant amount of quantum communication that

is independent of the dimension D.

Theorem 1. For any D and any ε > 0 there exists a
(D, ε) EPR tester with perfect completeness using one-
way communication from Alice to Bob. The protocol has
several variants:
• Using (2 + o(1)) log(1/ε) qubits sent from Alice

to Bob, but poly(D) run-time.
• Using C log(1/ε) qubits sent from Alice to Bob

and poly log(D) run-time for some universal con-
stant C > 0.

• Using either (8 + o(1)) log(1/ε) or
≈ 4C log(1/ε) classical bits sent from Alice
to Bob (depending on whether computational
efficiency is needed) and consuming the same
number of EPR pairs.

We remark that replacing the state |φD〉 in Theorem 1

with a general entangled state can result in a much larger

(and D-dependent) communication cost [14]. Thus we

refer to the result as an EPR tester rather than a general

entanglement tester.

One application of this result relates to the open

question of whether entanglement helps quantum com-

munication complexity. Classically, shared randomness

does not significantly reduce communication complex-

ity because large random strings can be replaced by

pseudo-random strings that fool protocols[22]. This is

called a blackbox reduction because it replaces the ran-

dom input but does not change the protocol. Quantumly

such blackbox reductions are ruled out by efficient

entanglement-testing protocols, since they cannot be

fooled by any low-entanglement state. A similar result

is in [19] but their construction does not yield an EPR

tester. See also [23] for a non-blackbox entanglement
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reduction that increases the communication cost by an

exponential amount.

Proof of Theorem 1:
The main idea is to interpret the results of Section II

as a way to test maximally entangled states. By Sec-

tion II it suffices for Alice and Bob to implement a

two-outcome measurement {M, I−M} on their shared

state with M = Ê for E a (D, k, ε) expander. However,

it is not immediately clear how to implement this mea-

surement. To do this, we will use a trick that has been

used in a variety of contexts (e.g. [4], [14] and Section

2.2.2 of [21]) The protocol (depicted in Figure 3a) is as

follows.

1) Alice & Bob initially share a state in registers L, R.

2) Alice prepares the log(d)-qubit state 1√
d ∑d

i=1 |i〉
in register a.

3) She performs W = ∑d
i=1 |i〉 〈i| ⊗Ui on a, L.

4) She sends system a to Bob.

5) Bob performs W∗ = ∑d
i=1 |i〉 〈i| ⊗U∗i on a, R.

6) Bob does a two-outcome measurement on a, with

the accept outcome corresponding to the state
1√
d ∑d

i=1 |i〉 and the “reject” outcome correspond-

ing to the orthogonal subspace.

The measurement operator corresponding to accep-

tance can be calculated to be M = 1
d ∑d

i=1 Ui ⊗ U∗i .

By Eq. (2), this is ε close to the desired measurement

operator |φD〉 〈φD|.
The communication cost is log(d). If we do not care

about computationally efficiency, we can obtain ε ≈
1/
√

d using random unitaries [17]. For a poly log(d)
run-time, we can iterate an efficient expander; e.g.

applying the construction of [11] k times yields d = 8k

and ε ≤ (2
√

5/8)k. To using classical bits instead we

first use the construction of [5] to verify O(log 1/ε)
EPR pairs that use to teleport the qubits used to verify

the rest of the EPR pairs.

This test can be viewed in matrix form as follows. If

the initial state of the left/right registers was |x〉L|y〉R,

after Alice’s operation, the state has to have the form

1√
d

d

∑
i=1
|i〉(Ui|x〉L)|y〉R. (3)

After Bob gets the ancilla and performs his operation

W∗, the state has to have the form

1√
d

d

∑
i=1
|i〉 (Ui|x〉L) (U∗i |y〉R) . (4)

Let us represent the initial state |ψ〉AB = ∑k,� xk,�|k, �〉
by a matrix X, such that Xk,� = xk,�. We now rewrite

the final state as a matrix with components β(a,L),R:

β =
1√
d

⎡
⎢⎣

U1XU†
1

U2XU†
2

...

⎤
⎥⎦ . (5)

Passing the final test now means that

UiXU†
i = UjXU†

j , ∀i, j, (6)

which is possible (if we have a quantum expander) only

for X = I. This means the initial state was |ψ〉LR =

|φD〉, and that the final state is
(

1√
d ∑d

i=1 |i〉a
)
⊗ |φD〉.

IV. A COUNTEREXAMPLE TO THE GENERALIZED

AREA LAW

In this Section we present our second result – a

Hamiltonian with a small bridge term connecting two

large halves of a system. Strikingly, this single-link

bridge of constant dimensions has a large influence on

the entanglement entropy between the two parts of the

system, in the ground state.

ΣL σ1 σ2 ΣRL M R

Figure 2. A single-link chain with side operators L and R.

Let the system W consists of two qutrits (σ1 and σ2)

and two high dimensional systems (ΣL and ΣR):

W = ΣL ⊗ σ1 ⊗ σ2 ⊗ ΣR = CD ⊗ C3 ⊗ C3 ⊗ CD.

We design a gapped Hamiltonian H = L + M + R,

where L (left) M (middle) and R (right) are projectors

acting on ΣL ⊗ σ1, σ1 ⊗ σ2 and σ2 ⊗ ΣR, respectively,

that defies the area law through the cut ΣL ⊗ σ1 | σ2⊗
ΣR. For convenience we write all elements of W in the

form

∑
i,j∈[3]

|ψi,j〉|i〉|j〉,

where ψi,j ∈ ΣL⊗ΣR, and ∑i,j∈[3] |ψi,j|2 = 1. If we fix

a basis in ΣL and ΣR, respectively, we can think of ψi,j
for every i, j ∈ [3] as D×D matrices. Our construction

will rely on quantum expanders, i.e. (unitary) D × D
matrices U2 and U3 such that for any D×D matrix X
with |X|2 = tr(XX†) = 1, tr(X) = 0 we have:

|E(X)| = 1
3
|X + U2XU†

2 + U3XU†
3 | ≤ (1− c), (7)

where c := 1− λ > 0 is a fixed constant, independent

of D. Equation (7) and the triangle inequality imply that

for any D× D matrix X with |X| = 1, tr(X) = 0:

|U2XU†
2 − X|+ |U3XU†

3 − X| ≥ 3c (8)
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We now define projectors L, R and M via their zero

subspaces L, R and M. We describe these subspaces

by writing states of W in the block matrix form⎛
⎝ ψ1,1 ψ1,2 ψ1,3

ψ2,1 ψ2,2 ψ2,3
ψ3,1 ψ3,2 ψ3,3

⎞
⎠

Note that our way to present a (pure) state of W is

unlike the density matrix presentation, and it is only

meaningful, because W is a tensor product of four com-

ponents. The above matrix form (of a vector) is simply

a convenient way of rendering the (3D)2 coordinates

of a state in W. In this presentation L, R and M have

convenient expressions. L is the set of states of the form⎛
⎝ ψ1,1 ψ1,2 ψ1,3

U2ψ1,1 U2ψ1,2 U2ψ1,3
U3ψ1,1 U3ψ1,2 U3ψ1,3

⎞
⎠ ,

where ψ1,1, ψ1,2 and ψ1,3 are arbitrary. R is the set

of states of the form⎛
⎝ ψ1,1 ψ1,1U2 ψ1,1U3

ψ2,1 ψ2,1U2 ψ2,1U3
ψ3,1 ψ3,1U2 ψ3,1U3

⎞
⎠ ,

where ψ1,1, ψ2,1 and ψ3,1 are arbitrary. M is the set

of states of the form⎛
⎝ ψ1,1 X Y

X ψ2,2 ψ2,3
Y ψ3,2 ψ3,3

⎞
⎠ ,

where X, Y and the remaining ψi,j’s are arbitrary. It is

easy to check that L, R and M are local, as needed.

For instance M is a tensor product of ΣL ⊗ ΣR with

the subspace S of σ1 ⊗ σ2 that equates the coefficients

of |1〉|2〉 and |2〉|1〉 and also the coefficients of |1〉|3〉
and |3〉|1〉.
Lemma 2. The unique normalized ground state |G〉 of
H = L + R + M = (I − ΠL) + (I − ΠR) + (I −
ΠM) written out as a matrix is

G =
1

3
√

D

⎛
⎝ I U2 U3

U2 U2
2 U2U3

U3 U3U2 U2
3

⎞
⎠

Proof: Equation (8) guarantees that I is the only

D × D matrix that commutes with both U2 and U3.

From this together with the above forms of L,R and

M, it follows that |G〉 is the only normalized state

vector in L ∩R∩M.

Lemma 3. The entanglement entropy of |G〉 along the
ΣL ⊗ σ1 | σ2 ⊗ ΣR cut is log2 D.

Proof: The reduced density matrix of the ΣL ⊗ σ1
systems can be directly calculated to be GG†. Since

G = 1
3
√

D ∑3
i,j=1 UiUj ⊗ |i〉〈j| (letting U1 := I), we

have

GG† =
1

3D

3

∑
i,i′=1

UiU†
i′ ⊗ |i〉〈i′|. (9)

To diagonalize GG†, let W := ∑3
i=1 Ui ⊗ |i〉 〈i|. Then

W†(GG†)W =
I
D
⊗ 1

3

3

∑
i,i′=1

|i〉〈i′| (10)

which has D eigenvalues equal to 1/D.

Lemma 4. The Hamiltonian H has a constant gap.

Proof: We show that any normalized state |ψ〉 with

energy below the threshold τ = c/100 (where c comes

from Equation (8)) should “look similar to” |G〉. There-

fore no (normalized) |ψ〉 with energy below threshold

τ can be orthogonal to |G〉, and so the eigenvalue gap

of H is at least τ. Indeed, let |ψ〉 be any unit vector

with energy at most τ. Since 〈ψ|I −ΠL|ψ〉+ 〈ψ|I −
ΠR|ψ〉 ≤ τ there are vectors |ψL〉 ∈ L and |ψR〉 ∈ R
such that |||ψ〉 − |ψL〉||2 + |||ψ〉 − |ψR〉||2 ≤ τ. By

Lemma 10 of the Appendix there is a |ψLR〉 ∈ L ∩R
such that |||ψL〉 − |ψLR〉||2 + |||ψR〉 − |ψLR〉||2 =
|||ψL〉− |ψR〉||2 ≤ 2τ, which in turn implies that |ψLR〉
and |ψ〉 have distance at most 3τ. That is, |ψ〉 is 3τ-

close to

|ψLR〉 =

⎛
⎝ X XU2 XU3

U2X U2XU2 U2XU3
U3X U3XU2 U3XU3

⎞
⎠ (11)

In particular, all nine blocks of |ψ〉 are at most 3τ-far to

the corresponding blocks of |ψLR〉 This together with

the fact that |ψ〉 has small energy with respect to M
also implies that 4τ ≥ |U2X − XU2| = |U2XU†

2 −
X| and 4τ ≥ |U3X − XU3| = |U3XU†

3 − X| (for the

equalities recall that U2 and U3 are unitary), which then

by Equation (8) implies that X has to be 1/100-close

to 1
3
√

D
I (since its component that is orthogonal to I

must be smaller in Frobenius norm than 1/100). This

in turn implies that |ψ〉 cannot be orthogonal to |G〉.
V. THE ABSTRACT HAMILTONIAN CAN BE

IMPLEMENTED LOCALLY

The Hamiltonian construction in Section IV has very

interesting properties (a unique, very entangled ground

state and a constant gap), but the HL and HR terms are

nonlocal. We now wish to decompose them into local

terms, while retaining their desirable properties. This is

done in several steps.

We first use a variant of Kitaev’s Local Hamiltonian

construction to find a local Hamiltonian HKit
L with

ground states similar to those of HL in Section IV

except with an additional ancilla. The price we pay in

this construction is an inverse polynomial gap instead
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of a constant one. We can multiply the local interaction

terms in HKit
L by a large prefactor to get a Hamiltonian

H′L with a constant gap, as stated in Claim 5. However,

its terms have polynomially large, unphysical norms.

Second, in Claim 6 we derive a Hamiltonian with

similar properties to the four-particle Hamiltonian H
from Section IV. To do this we use H′L twice, once

on the left side and once on the right side of a

new larger system, together with the original middle

interaction HM. This gives us a local Hamiltonian

H′LMR = H′L + H′R + HM with a constant gap, and

a unique, entangled ground state, just as we had for

H. Note that the large interaction terms appear only in

H′L + H′R, and that the central interaction is O(1).
Finally, in Theorem 9, we decompose each high-norm

local interaction term in H′L and H′R into many local,

constant-norm terms. Thus, we end up with a local

Hamiltonian Hgadget
LMR with all the desired properties of

HLMR form Section IV. However, we again pay a price

– each particle is involved in polynomially many 2-body

interactions.

A. Evaluating a quantum expander locally (3 computa-
tions in parallel)

Let us translate the Hamiltonian from Section IV into

a local one. We start by mimicking HL by a sum of

local terms. The Hamiltonian HL acts on a space of

dimension 3D, and its ground states have form

|Φx〉 =
1√
3

3

∑
i=1
|i〉 ⊗Ui|x〉. (12)

We will now enlarge our system and find a local

Hamiltonian H′L, whose ground state will be close to

|Φx〉 ⊗ |w〉, (13)

with |w〉 some state of an extra register.

Claim 5. There exists a local Hamiltonian with constant
spectral gap, set on a 1D chain of n qudits, such that
all ground states are ε-close to the form (13). The
local terms of the Hamiltonian are of norm bounded
by O(poly(n)).

We construct this Hamiltonian following Kitaev’s

Local Hamiltonian approach [20]. It allows us to write

down a Hamiltonian whose ground states are history

states of a quantum computation V, i.e.

|ψhist
y 〉 = 1√

T

T

∑
t=0
|t〉k ⊗Vt . . . V1 (|y〉 ⊗ |0〉a) , (14)

where k is an extra “clock” register, a is an ancilla

register, |y〉 is some initial state of a data register and

Vt are the gates of some circuit V, acting on the data

register. Our data register will contain N data qubits

(for simplicity, set 2N = D) and a “control” qutrit c.

We want to get the history state of the circuit V with

unitaries

Vt =
3

∑
i=1
|i〉〈i|c ⊗Ui,t (15)

for t = 1, . . . , τ, where Ui,t are the gates of the quantum

expander1, with τ gates. On top of this, we pad the

circuit V with many identity gates Vt = I for τ < t ≤
T, for some T � τ, setting ε = τ

T = 1
poly(N)

. We

will require an extra clock register k capable of locally

implementing a clock with T + 1 clock states, as well as

an ancilla scratch register a. The ground states (history

states of V) for the new Hamiltonian H′L are of the

form:

|Ψx〉 =
1√

T + 1

T

∑
t=0
|t〉k⊗ (16)

⊗Vt . . . V1

(
1√
3

3

∑
i=1
|i〉c|x〉d|0 · · · 0〉a

)
.

We will build HKit
L = Hinit + Hprop from two parts.

First, propagation-checking:

Hprop =
1
2

T

∑
t=1

(|t− 1〉〈t− 1|k + |t〉〈t|k) (17)

− 1
2

T

∑
t=1

(
|t− 1〉〈t|k ⊗V†

t + |t〉〈t− 1|k ⊗Vt

)
.

Second, we need to ensure proper initialization by

adding a projector that prefers a uniform superposition

on the control qutrit when the clock register is |0〉k (we

want all three computations to run on the same input).

Adding standard ancilla initialization-checking, we get

Hinit = |0〉〈0|k ⊗
[

I− |u3〉〈u3|c +
s

∑
i=1
|1〉〈1|ai

]
,

with |u3〉 = 1√
3
(|1〉+ |2〉+ |3〉). We can now im-

plement the clock register and the corresponding pro-

jectors by a a 5-local, unary clock with T + 1 qubits

[20]. The Hamiltonian HKit
L is positive-semidefinite, and

frustration-free. It has a zero-energy state of the form

(16) for any basis state |x〉 of the N working qubits.

Furthermore, the energy gap of HKit
L to eigenstates with

nonzero energy is ΔKit
L = Θ

(
T−2). Using the 1D

construction for a line of 8-dimensional qudits from [1]

or [12], which also have a gap that scales as an inverse

polynomial in T. This results in a 1D Hamiltonian with

the properties we want.

Let us consider the groundstates more closely. For

t � τ, the data register is in the desired state |Φx〉
1Furthermore, we want these Ui,t in a form that uncomputes the

scratch ancilla register a at the end.
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(12), the ancilla register is uncomputed, and it is only

the clock register that changes. Recalling T � τ, we

realize that each |Ψx〉 can be rewritten as

|Ψx〉 =
1√
T

τ

∑
t=1
|ϕx,t〉

+ |Φx〉cd ⊗
1√
T

(
T

∑
t=τ+1

|t〉k
)
⊗ |0 · · · 0〉a

=
√

ε |vx〉+
√

1− ε |Φx〉cd ⊗ |w〉, (18)

with some normalized vectors |vx〉 and |w〉. Each

ground state is thus as close to |Φx〉|w〉 (13) as we

want, because we are free to choose T.

The gap of the Hamiltonian HKit
L is however not con-

stant. We rescale the interaction strengths of all terms in

HKit
L by T2 (or by a higher polynomial in T for the 1D

clock construction), and look at H′L = poly(T)×HKit
L .

This new H′L satisfies the requirements of Claim 5.

B. A local Hamiltonian with an entangled ground state

We now take two copies of the system from the

previous Section, and construct a Hamiltonian H′LMR =
H′L + H′R + HM, with a 2-local middle term

HM =
1
2
(|12〉 − |21〉) (〈12| − |21〉)aL ,aR

+
1
2
(|13〉 − |31〉) (〈13| − |31〉)aL ,aR

, (19)

an implementation of the projector M from Section IV.

Claim 6. The 1D, qudit Hamiltonian H′LMR = H′L +
H′R + HM with terms of norm poly(n), has a unique,
entangled ground state, and a constant energy gap.

Let us take the Hamiltonian H′L with a ground state

subspace spanned by basis states of the form (18).

The energy gap above this ground state subspace is a

constant. Let us take another copy of such a system and

call its Hamiltonian H′R. The ground state subspace of

these two copies is spanned by basis states of the form

|Ψx〉|Ψy〉 =
√

ε(2− ε) |zε
xy〉 (20)

+ (1− ε)|Φx〉|Φy〉|w〉⊗2.

Note that each basis state |Ψx〉|Ψy〉 is close to the state

|Φx〉|Φy〉|w〉|w〉. (21)

The Hamiltonians H′L and H′R act on independent

subspaces, while both Hamiltonians have a constant

energy gap above the ground state subspace. Therefore,

the ground state subspace of H′L + H′R is spanned by

states of the form (20), with a constant gap above this

subspace. Let us now look at how a state with energy

less than some constant ELR must look like.

Claim 7. Any state |cLR〉 that has an energy less than a
small constant ELR for the Hamiltonian H′L + H′R, has
overlap at least 1 −

(
ε +

√
ELR
Δ′LR

)
with the subspace

spanned by states of the form (21).

Proof: Let us write

|cLR〉 =
√

1− |q|2
(

∑
x,y

cxy|Ψx〉|Ψy〉
)
+ q|q〉, (22)

and deduce that

ELR ≥ 〈cLR|H′L + H′R|cLR〉 = |q|2〈q|H′L + H′R|q〉
≥ Δ′LR|q|2. (23)

Therefore, the overlap of |cLR〉 with the subspace

spanned by (20) is at least 1−
√

ELR
Δ′LR

. Continuing from

there, the overlap of such state |cLR〉 with the subspace

spanned by (21) is at least 1−
(

ε +
√

ELR
Δ′LR

)
, assuming

ε and ELR are small enough constants.

We are now ready to use the results of Section IV to

prove that the ground state of H′L + H′R + HM is unique

and entangled.

First, let us rewrite the components of any super-

position of basis states (21) as a matrix. The |w〉|w〉
part is a single state of the extra (clock and ancilla)

registers. Therefore, the top left corner (corresponding

to the |w〉|w〉 state of the extra register) of (21) as a

matrix then is the same as in (11) in Section IV (without

loss of generality, we assume U0 = I):

1
3

⎡
⎣ X XU2 XU3

U2X U2XU2 U2XU3
U3X U3XU2 U3XU3

⎤
⎦ (24)

with Xa,b = xayb, for |x〉 = ∑D
a=1 xa|a〉 and |y〉 =

∑D
b=1 yb|b〉. The states in this clean form are the ground

states of HL + HR, the abstract Hamiltonians of Sec-

tion IV. We now know that any state |cLR〉 that has an

energy less than some ELR for H′L + H′R, has a large

overlap with the subspace spanned by (21), therefore as

a matrix, this state is close to the form (11).

Second, we add the (positive semidefinite) Hamilto-

nian HM (19) acting on the control registers. Its ground

states (rewritten as a matrix in each block corresponding

to some basis state of the ancilla registers) must be of

the form ⎡
⎣ ? Z W

Z ? ?
W ? ?

⎤
⎦ . (25)

Any state that has energy less than EM for HM has to

be close to this form, as shown in Section IV.

Putting the conditions on low energy for both H′L +
H′R and HM, we end up with X = 1√

D
I, i.e. with a
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low energy state

|gLMR〉 =
1√
D

D

∑
x=1
|Φx〉|Φx〉|w〉|w〉

=
1

3
√

D

⎡
⎣ I U1 U2

U1 U1U1 U1U2
U2 U2U1 U2U2

⎤
⎦ , (26)

again writing the only nonzero block corresponding to

the |w〉|w〉 state of the extra registers. Now any state

that has energy less than a constant has to be close to

this state. Therefore, the ground state of H′L + H′R +
HM is unique, and the Hamiltonian has a constant gap.

Finally, we need to show that the ground state is

entangled. This is straightforward, as the ground state

is close to (26), which is itself close to the maximally

entangled state, using the following lemma with |ϕ〉 =
|gLMR〉 and 〈ϕ|φD〉 = 1

3 .

Lemma 8. Any state |ϕ〉 that has a constant over-
lap c with a maximally entangled state |φD〉 =

1√
D ∑D

x=1 |x〉|x〉 is close to maximally entangled.

Proof: Let us look at the Schmidt decomposition

|ϕ〉 = ∑χ
k=1 λk|lk〉|rk〉. Assuming |ϕ〉 has at least a

constant overlap c with |φD〉, we obtain

c ≤ 〈φD|ϕ〉 =
1√
D

D

∑
x=1

χ

∑
k=1

λk〈x|lk〉〈x|rk〉

=
1√
D

χ

∑
k=1

λk〈r̃k|lk〉 ≤
1√
D

χ

∑
k=1

λk, (27)

where r̃k are vectors related to |rk〉, obeying 〈x|rk〉 =
〈r̃k|x〉. For a constant c, the entanglement of the state

|ϕ〉 must be large, including Θ (D) terms of size

Θ
(

D−
1
2

)
, resulting in −∑i λi log λi = Θ (log D).

When D = 2N , this is Θ (N).
This concludes the proof of Claim 6.

C. Decomposing the Hamiltonian H′L into O(1)-
strength interaction terms

We now handle the problem of large interaction norm.

The interactions in the Hamiltonian Hclock
L have norm

poly(T). Each such term can be decomposed using the

strengthening quantum gadget construction by Nagaj

and Cao [10], into poly(T) interactions with poly(T)
extra ancilla qubits. The gap of this new H′L will remain

a constant, while any state in its ground state will now

be 1/ poly(T) close to some |Ψx〉|0 · · · 0〉new ancillas,

with |Ψx〉 from (18). This also implies that each (less

than a small constant energy) state of H′L is 1/ poly(T)
close to the state |Φx〉|w〉|0 · · · 0〉new ancillas for some

x. However, this is just what we had in (13), with

an expanded ancilla register state |w′〉 = |w〉|0 · · · 0〉.

Figure 3. EPR testing procedures. a) The test from Section III-B. b)
A modified test with two ancillas. c) The Hamiltonian from Section IV
can be also easily recast as an EPR testing protocol.

Therefore, all of the arguments of Section V-B go

through, and we have shown that

Theorem 9. There exists a 2-body Hamiltonian on n
qudits, whose terms are of O(1) norm. The interaction
graph is as in Figure I, where the two particles on
the two sides of the cut are qutrits. All particles are
involved in at most poly(n) interactions. Moreover, the
Hamiltonian is gapped with a unique ground state, such
that the entanglement entropy across the middle cut
scales as Ω (nc) for some 0 < c < 1.

VI. ENTANGLEMENT TESTING AND GROUND STATES

OF HAMILTONIANS

We now connect our two results more directly. Start-

ing from the EPR testing protocol of Section III-B, we

turn it into a Hamiltonian violating the generalized area

law, using Kitaev’s circuit-to-Hamiltonian construction.

In fact, we use a slight variant of the protocol, which

uses two ancillas (see Figure 3b), as it translates to a

Hamiltonian more easily.
We first describe the modified EPR testing protocol.

Alice has two registers, L⊗ aL, and Bob has two regis-

ters denoted aR⊗ R, where R, L are of large dimension

D and aR,aL are of constant dimension d. They wish to

check whether their joint state |ψ〉LR on registers L⊗ R
is maximally entangled. First, Alice and Bob pre-share

a maximally entangled state on aL ⊗ aR:

|φd〉 =
1√
d

d

∑
i=1
|i〉aL |i〉aR (28)

Second, Alice applies the unitary W = ∑d
i=1 |i〉 〈i| ⊗Ui

to aL⊗ L, and Bob applies W∗ to aR⊗ R. Finally, they

apply a projective measurement on aL ⊗ aR of the state

|φd〉 (28). It is not difficult to see that this too is an

EPR testing protocol; the test passes with probability

close to 1 if and only if the original state |ψ〉LR was

very close to the maximally entangled state.
To encode this protocol into a Hamiltonian via the

circuit-to-Hamiltonian construction, we use two inde-

pendent, two-step clocks. (We will think of the circuit
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W as well as W∗ as applied in a single time step). The

Hamiltonian will thus act on four registers, L, R and two

enlarged registers, AL = aL ⊗ CL and AR = aR ⊗ CR
with CL, CR being the two 2-dimensional spaces of the

two clocks, respectively. We write the basis states of

AL, AR as |0, i〉 and |1, i〉 for i ∈ {1, .., d}.
The Hamiltonian consists of the following terms. An

“initialization” and “output” term on AL ⊗ AR:

HM =
1

∑
s=0

d

∑
i,j=1

|s, i〉〈s, i|AL ⊗ |s, j〉〈s, j|AR

−
1

∑
s=0

d

∑
i=1
|s, i〉〈s, i|AL ⊗ |s, i〉〈s, i|AR (29)

whose ground states have the form |1, i〉|0, j〉
and |0, i〉|1, j〉 for any i, j, but more importantly

1√
d ∑d

i=1 |0, i〉|0, i〉 and 1√
d ∑d

i=1 |1, i〉|1, i〉. These two

states are maximally entangled states of the ancillas

when the “clocks” are both 0 (initialization) or both

1 (output).
Second, we have the “left-computation-checking”

Hamiltonian, which acts on the registers aL and L:

HL =
1
2

d

∑
i=1

(|0i〉〈0i|+ |1i〉〈1i|)aL
⊗ IL (30)

− 1
2

d

∑
i=1
|1i〉〈0i| ⊗W − 1

2

d

∑
i=1
⊗|0i〉〈1i| ⊗W†.

We define HR similarly, replacing W by W∗ (and W†

by WT). The final Hamiltonian, H = HM + HL + HR
is our desired counterexample. We claim that its unique,

frustration-free ground state is the “history” state

|Ψ〉 = 1√
d

d

∑
i=1

(|0, i〉aL + (W ⊗ I) |1, i〉aL)×

× (|0, i〉aR + (I⊗W∗) |1, i〉aR) |φD〉LR.

It is not difficult to check that this is a maximally

entangled state of dimension dD, by observing that the

Schmidt rank is dD and the coefficients are uniform.

VII. DISCUSSION AND OPEN QUESTIONS

What do our results imply regarding further progress

on the area law problem? A crucial issue is the geometry

of the underlying graph; of course, the 2D lattice case

is wide open. A more modest goal would be to reduce

the degree of the interconnection graph in our final

construction to a constant. Such a step already seems

to require significant progress in our understanding of

related notions, e.g., parallel circuit-to-Hamiltonian con-

structions (see e.g.,[9]), and quantum expanders which

are geometrically constrained.
We note that our intermediate construction (see

Claim 6) violates the area law using very simple in-

terconnection geometry – albeit with Hamiltonian local

terms of polynomially large weights. Depending on

the construction, the interaction graph consists either

of a 1D lattice or two 2D lattices joined by a single

edge. In each case, there is a cut edge such that the

term of the Hamiltonian acting across that cut has

unit norm, and the norms of all the terms acting to

the left (right) of it have norm greater than 1 and

bounded above by a polynomial in n. This can be

viewed as a family of counterexamples to a different

kind of generalized area law: one where the terms of

the Hamiltonian acting across the cut are required to be

of unit norm. The rationale of this condition is that large

norm terms on each side of the cut should only increase

the entanglement within the two regions on each side

of the cut and therefore by monogamy of entanglement

only decrease the entanglement across the cut. The fact

that there are 1D and 2D counterexamples to this kind

of an area law suggests that the intuition behind a 2D

area law, if true, is more subtle.

The entanglement-testing problem and the area-law

question appear to be closely related. Can any area-law-

violating Hamiltonian be connected to an entanglement-

testing protocol with communication pattern corre-

sponding to the interaction graph of the Hamiltonian?

More generally, in what ways can Hamiltonians be

viewed as testers for their ground states? Making such

an equivalence rigorous might open up a whole new

set of tools to studying the area law question, and

more generally, help develop better intuition for local

Hamiltonians and their groundstates. A related question

is whether EPR testing is in fact equivalent in some

sense to the property of being a quantum expander.
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APPENDIX

Here we show a lemma about being close to two

“independent” subspaces. It immediately implies that if

φ ∈ H ⊗ H′ is a unit vector such that its projections

on S ⊗ H′ and on H⊗T have length close to one (i.e.

φ is close to both subspaces), then φ is close to some

unit vector x ∈ S ⊗ T .

Lemma 10. Let S ≤ H and T ≤ H′ respective
subspaces of Hilbert spaces H and H′. Let s ∈ S ⊗ H′

and t ∈ H⊗ T arbitrary. Then there is an x ∈ S ⊗ T
such that ||s− x||2 + ||t− x||2 = ||s− t||2.

Proof: We can decompose s as s = s′ + s′′ where

s′ ∈ S ⊗ T and s′′ ∈ S ⊗ T ⊥. Then 〈s′, s′′〉 = 0. We

also have that 〈t, s′′〉 = 0. Then 0 = 〈t − s′, s′′〉 =
〈t− s′, s− s′〉, or differently said, the ss′t triangle is a

right triangle, where the right angle is at s′. Then by the

Pythagorean theorem the Lemma holds with the choice

x = s′.
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