
List and Unique Coding for Interactive Communication in the Presence of
Adversarial Noise

Mark Braveman

Department of Computer Science,
Princeton University.

Princeton NJ
mbraverm@cs.princeton.edu

Klim Efremenko

Department of Computer Science,
University of Chicago.

Chicago, IL
klimefrem@gmail.com

Abstract—In this paper we extend the notion of list-
decoding to the setting of interactive communication and
study its limits. In particular, we show that any protocol
can be encoded, with a constant rate, into a list-decodable
protocol which is resilient to a noise rate of up to 1

2
− ε,

and that this is tight.
Using our list-decodable construction, we study a more

nuanced model of noise where the adversary can corrupt
up to a fraction α Alice’s communication and up to a
fraction β of Bob’s communication. We use list-decoding
in order to fully characterize the region RU of pairs (α, β)
for which unique decoding with a constant rate is possible.
The region RU turns out to be quite unusual in its shape.
In particular, it is bounded by a piecewise-differentiable
curve with infinitely many pieces. We show that outside
this region, the rate must be exponential. This suggests
that in some error regimes, list-decoding is necessary for
optimal unique decoding. We also consider the setting
where only one party of the communication must output
the correct answer. We precisely characterize the region
of all pairs (α, β) for which one-sided unique decoding is
possible in a way that Alice will output the correct answer.

Keywords-Interactive Communication; List Decodable
Codes; Tree Codes;

I. INTRODUCTION

We consider the problem of interactive computation

in the presence of adversarial errors. In this setting

Alice and Bob want to perform a computation over a

channel utilizing an alphabet Σ, which is affected by

an adversarial noise of rate η. In other words, if the

total number of symbols transmitted by Alice and Bob

is N (which is known a priori to all the participants),

Research supported in part by an Alfred P. Sloan Fellowship, an
NSF CAREER award (CCF-1149888), NSF CCF-0832797, a Turing
Centenary Fellowship, and a Packard Fellowship in Science and
Engineering.

Research supported by a Simons Fellowship in Theoretical Com-
puter Science. Part of this work was done while KE was a member of
the Institute for Advanced Studies and funded by NSF CCF-0832797
and DMS-0835373 (klimefrem@gmail.com).

then the adversary is allowed to corrupt at most ηN
symbols of the transmission. The goal is to provide a

scheme that can simulate any communication protocol

in an error-resilient way.

The noninteractive version of the problem is the well-

studied problem of encoding a message M ∈ ΣN

with an error-correcting code C : ΣN → ΣN ′
2 re-

silient to adversarial errors. To be resilient to errors

of rate η, we need the Hamming distance between

each two codewords C(M1) and C(M2) to be suffi-

ciently well spaced, so that corrupt versions of these

words can be recovered correctly. Specifically, we need

dH(C(M1), C(M2)) > 2ηN ′ for all M1,M2 ∈ ΣN .

A code C is said to be good if it has a constant rate:

N ′ = O(N) and log |Σ2| = O(log |Σ|); in other words,

a good code stretches the input only by a constant factor.

The most interesting case studied is when |Σ| = O(1).
For any η = 1/2 − ε < 1/2, a simple probabilistic

argument shows that there exist good codes against

adversarial errors of rate η. There are several well-

known constructions of good codes.

Once the error rate η exceeds 1/2, there is no

hope of recovering from a fraction η of errors, since

for any M1,M2 there is a message M̃ such that

dH(C(M1), M̃) ≤ ηN ′ and dH(C(M2), M̃) ≤ ηN ′,
which means that M̃ could be a ηN ′-corrupted en-

coding of either M1 and M2. Nonetheless, using list-
decoding, it is possible to recover from error rates

exceeding 1/2. A code is said to be η-list-decodable

with list of size L if for every word M̃ ∈ ΣN ′
2 , the

number of codewords within relative distance η from

that word is at most L. The notion of list-decoding dates

back to works by Elias [1] and Wozencraft [2] in the

1950s. Once again, good list-decodable codes for any

η = 1 − ε < 1 can be shown to exist probabilistically.

Moreover, efficient constructions of list-decodable codes

exist, and have numerous applications [3].

In the interactive setting, it is not at all obvious

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.33

236

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.33

236

that good error correction is possible against adversarial

substitution errors of any rate. Note that any attempt to

apply standard error-correcting codes round by round

are bound to fail, since all the adversary has to do to

derail the execution of the protocol is to completely cor-

rupt a single round. Therefore, a subconstant error rate

of 1/r suffices to foil an r-round protocol protected with

a round-by-round code. In a striking work, Schulman

[4] showed that there exist good error-correcting codes

against errors of rate η < 1/240. This work introduced

the tree code primitive, variations on which have been

used in follow-up works, including the present one.

Informally, the tree code combines two desirable prop-

erties: (1) It is an “online” code, so the ith symbol of

the encoding can be computed from the first i symbols

of the original word, thus allowing the encoding of the

conversation to be computed as it progresses; (2) its

error-correction properties are such that two messages

are encoded to two codewords, which are far from each

other. How far apart these two codewords are depends

on the first place where two messages are different.

Interest in interactive error correction has been re-

newed recently, with Braverman and Rao [5] show-

ing that the error rate that can be tolerated can be

improved to η < 1/4. The constructions of both [4]

and [5] are not computationally efficient. A series of

recent works made significant progress toward making

interactive error correction computationally efficient [6],

[7], [8], [9], [10], in some cases by restricting the error

parameter or augmenting or restricting the model. In

particular, the work of Brakerski and Kalai [8] shows

how to implement interactive error correction efficiently

for η < 1/16 with a beautiful scheme that uses private

(nonshared) randomness.

In this paper we will consider only robust protocols:

protocols in which, at all times, the person whose turn it

is to speak is known to both Alice and Bob, regardless of

the number of errors introduced into the communication

so far (even if this amount exceeds the adversary’s

budget). It is not hard to see [5] that robustness is

equivalent to the property that the identity of the speaker

at round i at any execution of the protocol depends

only on i. Nonrobust protocols have recently received

some attention. In particular, very recently [11] and [12]

considered nonrobust models and concluded that, indeed

nonadaptive protocols can withstand a higher error

rate. It would be interesting to combine these results,

particularly those from [12], with ours to calculate the

tight error-rate region for the nonrobust case.

In this work we investigate the limits of error rates

that can be corrected in the interactive setting. Further,

we develop the notion of interactive list decoding,

which is the list analogue of interactive error correction.

Its definition is quite straightforward: after the execution

of a protocol, each party will output a constant-size

list of possible original conversations. If the fraction

of errors has not exceeded η, each list will contain

the intended conversation. We show that constant-rate

interactive list-decodable coding is possible for all error

rates η < 1/2, which we show to be the best error

tolerance we can hope for.

Moreover, interactive list-decoding turns out to be

the right tool for giving tight bounds on the error rates

we can tolerate in the unique decoding setting. In the

interactive setting, it is natural to consider pairs (α, β)
of error rates, with α representing the fraction of Alice’s

communication that may be corrupted and β represent-

ing the fraction of Bob’s communication that may be

corrupted. Using our list-decoding results, we are able

to give a precise characterization of the region RU of

pairs (α, β) of error rates for which constant-rate unique

decoding is possible. Previously, by the construction

of Braverman and Rao [5], unique decoding has been

known to be possible when α+ β < 1/2. At the same

time, it is easy to see that unique decoding is impossible

when α ≥ 1/2 or β ≥ 1/2. The region RU turns out to

be quite unusual in its shape. In particular, it is bounded

by a piecewise-differentiable curve with infinitely many

pieces. When Alice and Bob are affected by an equal

amount of error, the intersection of RU with the line

α = β is the region {(α, α) : α < 1/3}. Thus we can

handle error of up to 1/3 − ε affecting each of Alice

and Bob. Previously, only a lower bound of 1/4−ε and

an upper bound of 1/2 were known [5].

Recent Related Works: We would like to mention

very recent related works of Ghaffari, Haeupler, and

Sudan [12], [13], which were developed independently

of the present paper. Although these works are closely

related to ours in subject matter, the results in these

works are almost completely orthogonal. Whereas we

study the error model where two parties have different

amounts of noise, the main question of [12] was to

find the maximal amount of total noise it is possible to

tolerate if we allow for players to decide who is speak-

ing next adaptively based on previous communication.

The common part of this work and the works [12],

[13] is the notion of list-decodable interactive codes,

which has been developed independently. While the

key definitions are, as expected, similar, there are some

differences between the two lines of work. All the codes

we consider in our work are constant rate, that is, an

n-symbol interactive protocol is always encoded into

237237

an O(n)-symbol protocol over a constant-size alphabet.

The codes in [12] convert n symbols into n2 sym-

bols, and the improved construction in [13] converts

n symbols into n · 2O(log∗ n·log log∗ n). Our analysis is

more detailed in terms of the error region (we analyze

the pairs of error rates that we can tolerate, not only

their sum). On the other hand, our scheme is not

computationally efficient, whereas the scheme of [13] is.

More excitingly, it appears that by combining [13] with

the present paper, one obtains efficient, constant-rate

schemes with optimal error dependence.1 The question

of finding the optimal-rate interactive error correcting

schemes remains wide open.

Main Results

list-decoding.: Our first set of results deals with

list-decoding interactive protocols. We say that a proto-

col can handle (α, β) adversarial noise if an adversary

can corrupt up to α fraction of Alice’s messages and up

to β fraction of Bob’s messages.

Theorem 1. For each ε > 0 and for every protocol
π, there exists another protocol π′, with CC(π′) =
Oε(CC(π)), that is resilient (α, β) adversarial noise
for all α + β < 1− ε. The protocol π′(x, y) outputs a
list of size Oε(1) of transcripts such that π(x, y) is on
the list.

On the other hand, we show that for each pair (α, β)
with α+ β ≥ 1, list-decoding is impossible.

Theorem 2. For every α, β such that α+ β ≥ 1, let π
be a protocol that is resilient to (α, β) adversarial noise
and that solves list-decoding problem of the Pointer
Jumping Problem of depth T with list of size exp(o(T)).
Then CC(π) = exp(Ω(T)).

Note that the special case of Theorem 2, where

(α, β) = (1, 0), is trivial, since in this case no useful

communication is transmitted by Alice.

We can give an even tighter result by considering

a slightly generalized error notion in Theorem 1. Let

us consider only standard protocols π′, where Alice

and Bob send one message at a time in an alternating

fashion. We can partition such a π′ into blocks of two

symbols, the first one being sent by Alice and the second

by Bob. We say that a block is corrupted if the trans-

mission of either symbol in the block is corrupted. Let

η be the fraction of blocks the adversary corrupts. Note

that it is always the case that max(α, β) ≤ η ≤ α+ β.

We show that we can handle η-symmetric noise up to

1− ε, matching the one-way list-decoding bounds.

1Haeupler, personal communication.

Theorem 3. For each η < 1 and for every protocol
π, there exists another protocol π′ with CC(π′) =
Oη(CC(π)) which is resilient η-symmetric noise. The
protocol π′(x, y) outputs a list of size O(1

1−η) of
transcripts such that π(x, y) is in the list.

Note that since η ≤ α + β, Theorem 3 implies

Theorem 1.

Unique decoding.: Next, we turn our attention to

the problem of unique decoding. In the unique decoding

setting, at the end of the execution of π′, Alice and

Bob need to be able to correctly recover the original

protocol transcript π. We also consider the asymmetric

case, where only Alice needs to recover π uniquely.

We study the set RU of pairs (α, β) for which unique

decoding is possible. The set RU is rather peculiar, and

is defined as follows. Let

L2(α) :=
1

2

(
1− 1

(1 + { 1
α}) · 2�

1
α �−1 − 1

)
,

where {x} := x− �x� is the fractional part of x. Then

the unique decoding region is defined by

RU :={
(α, β) : (α ≤ 1

3 , β < L2(α)) or (β ≤ 1
3 , α < L2(β))

}
.

It is plotted in Figure I. Note that L2 is continuous

and piecewise differentiable with infinitely many pieces.

Also, L2(
1
3) = 1

3 , with (13 ,
1
3) being the intersection

point between the boundary ∂RU and the line (α, α).

Theorem 4. For each (α, β) ∈ RU and for ev-
ery protocol π, there exists another protocol π′ with
CC(π′) = Oα,β(CC(π)), which is resilient (α, β)
adversarial noise such that π′(x, y) outputs transcript
of π(x, y).

Theorem 4 is stronger than the main upper bound

of [5], which shows only how to deal with (α, β)
in the subregion α + β < 1/2. More importantly,

Theorem 4 turns out to be essentially tight, as shown

in the following theorem. Let RU be the closure of

RU , that is the union of RU and its boundary. The

Pointer Jumping Problem can be viewed as the generic

communication complexity problem

Theorem 5. For every (α, β) /∈ RU and for every T ,
the following holds. Let π′ be a protocol resilient to
(α, β) adversarial noise that solves the Pointer Jumping
Problem of depth T . Then CC(π′) = 2Ωα,β(T).

We note that in a noiseless regime, one can solve

Pointer Jumping Problem of depth T with communi-

cation complexity T . Therefore, outside of RU one

238238

cannot perform unique decoding with constant stretch

in communication.

Remark 6. The lower-bound statement of Theorem 5
is the best we can hope for in the following sense:
as long as α < 1/2 and β < 1/2, Alice and Bob
can achieve unique-decodable communication with ex-
ponential stretch. Alice can use a (noninteractive) good
code to send Bob her messages on all potential protocol
transcripts, and Bob can do the same. This guarantees
correct execution, but causes an exponential stretch in
communication.

While Theorem 4 shows that unique decoding is

possible in the interior ofRU and Theorem 5 shows that

it is impossible in the interior of its complement, unlike

the list-decoding case, we do not establish whether

unique decoding is possible for error rates on the

boundary ∂RU . We conjecture that similarly to the list-

decoding case, the boundary belongs to the region where

decoding is not possible.

Acknowledgment

We thank Ran Gelles for for the many insightful

comments on an earlier draft of this paper.

II. MAIN TECHNIQUES AND DISCUSSION

A. List-Decoding

We start with a discussion of the proof of the positive

results on interactive list decoding. First we note that

any protocol π that sends T bits could be reduced to

a Pointer Jumping Problem (PJP) of depth 2T . PJP is

an interactive problem, where Alice receives one edge

per node at the odd levels of a binary tree of depth 2T
and Bob receives one edge per node from the even-level

nodes. The task of Alice and Bob is to find a unique path

from the root to the leaf using their edges. The overall

strategy is similar to that of other recent works: make

progress as long as the error is not too high. From the

viewpoint of, say, Bob, this means the following: at each

step, Bob will try to decode, from Alice’s messages he

has received so far, what her (noiseless) messages have

been, and sends a response that makes progress on the

overall protocol. Thus we make progress as long as Bob

decodes Alice’s messages correctly. It turns out that if

Alice and Bob encode their messages using tree codes,

this strategy works as long as α+ β < 1/2− ε [5]: in

other words, in sufficiently many rounds, Alice and Bob

will correctly reconstruct each other’s transmissions so

far.

What goes wrong when 1/2 < α + β < 1? In this

case– for example if α > 1/2, as in the case of one-way

communication– there is no hope for Bob to be able to

ever unambiguously reconstruct Alice’s message. As in

the case of one-way list decoding, Bob can still hope

to be able to recover a constant-size list L of potential

Alice’s communications so far. To make progress, Bob

will send � = |L| responses to simultaneously make

progress on all these communications. Therefore, a list

size � causes an �-fold explosion in communication,

and � needs to be kept constant at (almost) all times.

Unlike one-way communication, this approach has a

major problem: if Alice sends � responses, Bob will

decode them and will need to send � responses for each

of Alice’s responses; thus Bob will need to send �2

responses, and this will exponentially blow up commu-

nication . In order to overcome this problem, we will

follow an approach of Braverman and Rao: instead of

sending the next bit and trying to synchronize, Alice

and Bob will send edges from a tree. This way, if

Alice responds to the wrong message, she will send

her correct edge, which will be irrelevant; Bob will

know this since he knows that it is impossible to get

to this edge using his edges. The main problem in this

approach is that in order to encode a single edge, we

require O(T) (where T is the depth of the tree) bits.

Thus we will add an additional layer of coding. We will

first compress our communication and then encode it.

Since we are in the list-decoding regime, the adversary

can control almost all the communication the so basic

approach of Braverman and Rao will not work here. A

substantial amount of technical work is required to keep

the the compression at the rate of O(1) bits per edge.

In order for Alice and Bob to be able to perform list-

decoding in interactive settings, we define the analogue

of tree codes: a list-tree code. The actual definition is

somewhat technical, but informally, a list tree code is a

239239

prefix code (i.e., it encodes symbols online) such that

for any received word w, for almost all rounds, there

are at most � proper codewords that are (1−ε)-close to

w. With correctly selected parameters, a random prefix

code is a list-tree code except with an exponentially

small probability. This contrasts with the case of or-

dinary tree codes, for which a random prefix code is

unlikely to be a tree code. list-tree codes resemble the

potent tree codes of Gelles, Moitra, and Sahai [6], which

can informally be viewed as list-tree codes with list size

� = 1 + ε.

To summarize, in this paper we are going to have two

levels of coding: the first level is compression, which

will allow us to take a list of edges from the PJP and

to compress them so that, on average, we will use O(1)
bits per edge. We want to note that it is easy to see this

approach cannot work for any set of edges; thus we will

need to chose edges that we are sending very carefully.

The second level of coding will be coding resilient to

noise; that is, we are going to encode the compressed

set of edges with a list-tree code, which will allow us

to assert that if the noise rate is not too high, then Bob

will get the correct answer in his list. We mention here

that we need to carefully adjust the definition of list-tree

code in order to make the compression to work.

B. Unique Decoding

Next we turn our attention to the unique-decoding

regime. It appears that understanding (and being able

to carry out) interactive list decoding is needed to

achieve optimal unique decoding. To illustrate this

point, consider an attempt to break the (1
4 ,

1
4)-barrier

from previous (nonlist decoding) works. To be specific,

let (α, β) = (14 ,
1
4). The adversary can corrupt half

of Alice’s messages in the first half of the protocol,

and half of Bob’s messages in the second half of the

protocol. It is easy to see that in the first half of the

execution, unique decoding by Bob is not possible, since

there is 1
2 -error on Alice’s messages. Therefore, if the

parties wait until they can decode uniquely, they will

not make any progress in the first half of the protocol.

Similarly, they will also not make progress in the second

half. On the other hand, with list-decoding, in this

scenario we can achieve that by the end of the first part

of the protocol Alice has decoded the transcript π, and

Bob has at most two candidate transcripts, π1 and π2.

He can then use the second (noncorrupt) part of Alice’s

transmission to decide whether to output π1 or π2.

By just using the list-decodable interactive scheme,

and having each party output the answer closest to the

received transcript, we can already overcome the α +
β < 1/2 barrier, and get an error-correcting scheme that

works for (α, β) in the region:

R2 := {(α, β) : α+ 2β < 1 and 2α+ β < 1} .
In particular, R2 covers all (α, α) for α < 1/3.

In our main list-decodable scheme, Alice and Bob

speak at the same rate throughout the protocol (i.e,

by the time Alice communicates a p-fraction of her

messages, Bob communicates a p-fraction of his mes-

sages). It turns out that for some values of (α, β)
outside of R2, we can still achieve unique decoding by

having Alice and Bob alter the relative rates at which

they speak throughout the execution of the scheme.

Note that our scheme is still robust; therefore, these

rates will be predetermined by (α, β). For example,

if we consider the point (14 ,
3
7 − ε) ∈ RU \ R2, the

unique-decodable protocol will look as follows: by the

time Alice communicates 1
4 of her messages, Bob will

communicate approximately 1
7 of his; after that, for the

next 3
4 of Alice’s messages, Bob will send the remaining

6
7 of his communication in a uniform fashion. The most

striking feature of this general regime is the complicated

shape of the unique-decoding region RU , which is the

result of the complicated way in which altering relative

transmission rates achieves decodability.

C. Lower Bounds

Finally, we discuss our matching lower bounds. Go-

ing back to the list-decoding setting, consider the case

when α + β ≥ 1. If Alice and Bob speak at the

same rate, the adversary can erase the first α-fraction of

Alice’s communication and the last β fraction of Bob’s

communication. This way there is no overlap between

the part where Alice speaks and the part where Bob

speaks. Therefore, the encoded protocol is equivalent

to a two-round protocol between Alice and Bob. There

are communication problems that require more than

two rounds to execute efficiently (even with a small

probability of success). By starting with such a problem,

we see that a list-decodable encoding that can withstand

(α, β)-error must result in a significant communication

blowup. The preceding argument fails if Alice and Bob

speak at different rates throughout the protocol– for ex-

ample, if most of Alice’s communication is concentrated

early in the execution and most of Bob’s communication

is concentrated late. Using a slightly more complicated

argument, we can show that any protocol resilient to

(α, β)-noise with α + β ≥ 1 can be simulated by a

three round protocol, leading to a similar contradiction.

Now let us consider the problem that Alice and Bob

speak at the same rate. Then adversary can chose either

Alice or Bob and try to corrupt his output. Say adversary

chose that he wants to corrupt output of Alice. In

240240

this case first α fraction of communication he can just

erase all the communication of Alice. If protocol can

not be solved in one round then after first α fraction

of communication there are still two possible inputs

for Bob which are consistent with this communication.

Therefore adversary can every round toss a coin and

play according to one of this two inputs for Bob. This

way Alice will not be able to distinguish between

this two inputs and adversary corrupts only 1−α
2 of

communication of Bob. Thus we see that α + 2β > 1
then no unique decoding is possible. When Alice and

Bob does not speak at the same rate this argument is

not valid any more. The main technical challenge is to

adjust the above argument when Alice and Bob speak at

different rates. By adjusting this argument to different

rates we will get the region RU .

Let us now try to give a brief idea of the region

RU from point of view of upper bounds. Consider the

simpler scheme when only Alice is interested in the

correct answer. Let us assume that adversary can corrupt

up-to α fraction of Alice’s communication. In this case

in order to corrupt Alice’s answer, the adversary can

(and we proof that this is essentially the only thing it

can do) pick some point of the communication s. Before

s, the adversary will corrupt enough communication of

Alice and Bob so that Alice and Bob will not be able to

perform any interactive communication at all. After s,

the adversary will corrupt half of the communication

of Bob such that Alice will output wrong answer

(i.e. will be left with two potential answers without a

way of determining which one of the two to output).

From this one can see that adversary will always be

interested in corrupting Alice’s communication before

before point s. By writing linear inequalities we obtain

that optimal scheme for Bob to talk is to increase his

rate relative to Alice’s by a factor of 2 each α fraction

of communication of Alice. Note that when α−1 is

not an integer the number of α-fraction intervals is not

an integer, and the last interval gets truncated. This is

where the non-smoothness of Ru comes from.

III. LIST TREE CODES

Definition 7. A prefix code C : Σn
in → Σn

out is a code
such that C(x)i depends only on x[1..i]. By abuse of
notation we will also write for i < n, x ∈ Σi

in, C(x) ∈
Σi

out.

Definition 8. The suffix distance between two strings
x, y ∈ D(Σ)m is defined as

δs(x, y) = max
i=1..m

d(x[i..m], y[i..m])/(m− i+ 1).

hell

hello

o

l

l

e

hi

i

h

by

bye

e

y

b

Figure 1. PrefixTree with List2 = {”hi”, ”by”}, List3 =
”bye”, List4 = ”hell”, List5 = ”hello”

In other words suffix distance is the largest relative

distance between corresponding suffixes of two words.

Now we will define analogue of the list in one-way

communication.

Definition 9. For every w ∈ D(Σout)
n the i-th level

ε-list of w under C is given by

Listi(w,C, ε) := {x ∈ Σi
in : δs(C(x), w[1..i]) ≤ 1−ε}.

The ε-list of w under C is given by

List(w,C, ε) :=

|w|⋃
i=1

Listi(w,C, ε).

We also define

PrefixList(w,C, ε) :=

{y ∈ Σ∗
in : y = x[1..k] for k , x ∈ List(w,C, ε)}.

We will identify all codewords Σ∗
in with a full Σin-

ary tree. Where codewords of length d will be at depth

d. We will identify words x ∈ Σ∗
in with node in a tree,

where x ∈ Σi
in will be a father of x ◦ c ∈ Σi+1

in . In

this case we will write c on the edge going from x to

x ◦ c. The tree PrefixList is the rooted subtree that

spans all the nodes in List. In the Figure 1 we give

an example of PrefixList. Note that in this example

although | ∪ Listi| = 5. The size of PrefixList is 9.

241241

For any rooted subtree PL of full Σin-ary tree we

will denote by w(PL) the tree where we write w[i]
on all edges at depth i and C(PL) just a restriction

of C to PL. We will always consider trees in this

paper as one-way graphs directed from root downwards.

If we have some tree PL and two different labelings

of nodes w(PL), C(PL) than d(w(PL), C(PL)) =∑
e∈PL d(w(e), C(e)) and agr(w(PL), C(PL)) =

|PL|−d(w(PL), C(PL)). Note that if P is some path

in the tree ending at v. Then C(P) is just labeling of

this path. The string that we get from this labeling is

suffix of C(v) since C(v) is in fact labeling of path

from root v. The following lemma is a good excise on

above definitions.

Lemma 10. Let v be a leaf in the the
PrefixList(w,C, ε) then for every path P ending at
v we have agr(C(P), w(P)) > ε|P |

Proof: By definition of PrefixList all its

leaves v are in List(w,C, ε). Thus for some i,
v ∈ Listi(w,C, ε). By definition of Listi we have

δs(C(v), w) ≤ 1− ε. If |P | = k then also by definition

C(P) = C(v)[i − k − 1, i]. Thus from definition of δs
the lemma follows.

We will define the size of the tree to be number of its

vertexes. Now we are ready to define the main object

of this paper.

Definition 11. An (ε, L)-list tree code C : Σn
in → Σn

out

with average list size L and decoding distance 1 − ε
is a prefix code such that for all w ∈ D(Σout)

n let
PL(w) = PrefixList(w,C, ε) then

1) |PL(w)| ≤ L · n.
2) agr(C(PL), w(PL)) ≤ εLn

As we will see from the next lemma first property

is included in the second property. We stated here first

property since we are going to use mainly this property

of the code. The only reason why we require w to be

string of distribution rather than just string of symbols

is because this way we can perform soft decoding.

Remark 12. We also want to note that the only reason
for defining PrefixList is in order to allow compres-
sion for the case the alphabet is of size O(1). For a large
alphabet it is enough to require that |Listi| < ε′L for
almost all i.

Lemma 13. Let PL � PrefixList(w,C, ε) , then
agr(C(PL), w(PL)) > ε|PL|.

Proof: We will prove this by induction on number

of leaves. If PL has only one leaf v Then PL is a

path from root to v and the claim follows from the

Lemma 10.

Induction step: Let PL be tree with i leaves. Let P be

a branch of v(i.e. path from w to v where w is a first

predecessor of v which has more than one child.) Then

PL\P has one leaf less than PL. Thus from induction

we get that

agr(C(PL\P), w(PL\P)) > ε(|PL| − |P |).

From Lemma 10 we know that agr(C(P), w(P)) >
ε|P |. Thus

agr(C(PL), w(PL)) =

agr(C(PL\P), w(PL\P)) + agr(C(P), w(P)) >

ε|PL| .

Theorem 14. For all 0 < ε < 1 Σin, let |Σout| >
(2Σin)

3
ε2 . Then a random prefix code C : Σn

in → Σn
out

is a (ε, L) list-tree code with L = 1
ε+1 with probability

at least 1− 2−n.

Before proving this we will need the following

lemma.

Lemma 15. Let PL be full d-ary tree then there exists
at most (d+ 1)2s rooted subtrees of PL of size s.

Proof: First we will write our tree as a path where

each symbol says to what child to go and d+1 symbol

will say to go up. Next note if we make DFS on subtree

of size s then we will pass on every edge twice once

when we go down and once when we go up. Thus we

can write every subtree of size s by 2s symbols.

IV. COMMUNICATION TRANSCRIPT

During our protocol Alice and Bob are going to send

edges from the tree T of the original protocol. In order

to describe some specific edge from T it may take

O(T) bits. Also as in Braverman Rao [5] we will need

one additional level of encoding that will compress our

communication. First idea of the compression is that

we are not sending random edges, we never send any

edge before we send his grandparent. Therefore we can

describe an edge by a link to grandparent and a path

from grandparent to an edge. This will solve us the

problem for the case that we have alphabet polynomial

in the length of our communication since in this case

we do not care of the length of the links. In case of

constant size alphabet the size of the link is important

and therefore we sometimes instead of sending link to

grandparent we will send link to cousin who may be

much closer to the edge we are sending.

242242

Since links to a cousin’s looks little bit mysterious

let us try to give brief intuition why it is necessary.

Let us consider tree of size t. Let us assume that we

have subset of nodes of this tree which we call special

nodes. Let us assume that every special node has a link

pointing to a closest special node predecessor of him.

In this case we have no control on the lengths of links.

However if size of link is difference in depth between

nodes and we allow links to cousin’s then it is not very

hard to see that sum of links is bounded by the size of

the tree.

Each entry of our transcript will correspond to some

edge in T . Every entry ai = (ri, bi, si) of the transcript

will consist of integer ri ∈ N which will be a pointer

to another edge that appeared ri entries earlier in our

transcript. bi ∈ {0, 1} bit will indicate whether the

reference edge is grandparent or cousin2 and si ∈ Σ≤2
T

which will indicate path from grandparent to the edge.

We will assume that an integer k takes at most 2 log k+2
bits to encode.

Procedure of decoding E(A):: Now let us describe

formally how we will decode our transcript for i =
1, . . . k, we will do the following to decode ei from

ai = (ri, bi, si):

1) if ri = 0 set ei to be an edge at depth at most 2
specified by bits si.

2) if ri ≥ i return error.

3) if bi = 0 set pi = ei−ri

4) if bi = 1 set pi to be grandparent of ei−ri

5) set ei be the edge specified by starting at the child

vertex of the edge pi and then taking (at most) two

steps in the tree using the bits si.

Procedure Encoding Add(A, e):: Now assume

that we want to add an edge ei to our transcript

a1, a2, . . . ai−1. If ei is at depth at most two we will

set ri = 0 and si to correspond to path from root to ei.
Else we will decode edges e1, . . . ei−1 from a1, . . . ai−1.

Next we are going to find maximal index j such that

ej is a cousin or grandparent of ei and then we are

going to set ri = j − i and we will set bi = 0 if ej is

grandparent of ei and bi = 1 if ej is cousin of ei. We

will set si to correspond to path from grandparent of ei
to ei. For the purposes of this procedure, an edge is its

own cousin.

Thus for A = (a1, a2, . . . ak) we have procedure

E(A) which returns edges encoded by A and Add(A, e)
which adds edge e to transcript A.

Remark 16. Note that Procedure Add does not works
for any edge e, but only for edges at depth at most 2

2In fact we will need cousins only for a small alphabet

from already added edges.

We think of the transcript as a stream of bits and we

will also have the following functions:

• Procedure size(A): which will return the size of

the transcript.

• Procedure End− round(A, i): which will set the

size of the transcript to be maximum between

log Σi
in and size(A) and padding if necessary

transcript to this size by adding some 0(which will

represent no edge).

V. RECOVERING FROM ERRORS USING A

POLYNOMIAL SIZE ALPHABET

The goal of this section is to prove the following

theorem:

Theorem 17. For every ε, c > 0 there exists a protocol
π whitch is resilient to 1−ε-symmetric noise and which
solves the problem of list-decoding of PJP (T,ΣT),
where |ΣT | = T c for some constant c > 0 with list of
size O(1ε). Moreover the protocol π runs O(Tε) rounds
and in each round sends Oε,c(log T) bits.

Define L = 1
ε′ +1. During the protocol we are going

to send O(T) edges and encode them with the transcript

defined in previous section. The links in the transcript

will be of size at most O(T) therefore every entry of

transcript takes at most O(log T) bits. Let us set Σin to

be large enough to hold Ent = L
ε′ = O(1

ε2) entries of

the transcript. Thus log |Σin| = Oε,c(log T). Let n =
T
ε′ = O(Tε) be the number of rounds of the protocol.

By Theorem 14 there exist C : Σn
in → Σn

out which is

(L, ε′) = (O(1ε), O(ε)) list tree code with log |Σout| =
Oε(log |Σin|) = Oε,c(log T).

Remark 18. Note that we have here three alphabets:
First is the alphabet of the original protocol ΣT of

size T c.
Second is Σin which corresponds to a non-encoded

single message that we are going to send during each
round.

The third one is Σout which corresponds to an
alphabet which we are going to send over noisy channel.

Let C be encoding and for w ∈ Σi
out, D(w) will

return Listi(w,C, ε). At every round i Alice will de-

code received codeword w ∈ D(Σout)
i and will get

list of possible transcripts of Bob B1, B2, . . . Bk (Bob

will similarly decode Alice’s message). For every such

transcript Alice will calculate E(Bi) edges that Bob

sent and send next edge from X ⊂ X by first adding

this edge to transcript and then encoding transcript with

list tree code.

243243

The protocols of Alice and Bob will be symmetric

so we will introduce only protocol for Alice. We will

denote by wA, wB received codewords by Alice and

Bob correspondently. Alice will maintain transcript A
which will be initialized by empty set. Formally at block

i Alice will,

Input: wA ∈ D(Σout)
i

1) Calculate Decode(wA) = Listi(wA, C, ε) =
{B1, B2, . . . , Bk}

2) For j = 1, . . . ,min{k,Ent} do

a) If E(Bj)∪E(A) has unique path from root

and let e be a last edge on this path then

Add(A, e)

3) End− round(A, i+ 1).
4) Send C(A)[i+ 1] to Bob.

We will run the protocol for n steps. At the end Alice

will construct PrefixList(wA, C, ε).

VI. UNIQUE DECODING UP-TO α+ 2β < 1.

In this section we are going to show how to perform

unique decoding up-to α + 2β < 1 and 2α + β < 1.

Although, as we will see from the next sections, this

is not optimal. The algorithm described here gives

essential ideas for the next sections.

Let us assume that β < 1
2 (1−α) we are going to show

that in this case Alice will output the correct answer.

Let ε = 1− 2β − α. Note that ε > 0. Let ε′ = cε for

some small constant c to be defined later. The protocol

is very simple we will perform list decoding protocol

from previous section which is resilient to (1−ε′) noise,

but instead of outputting a list at the end we will output

the closest answer i.e., we will find coutput ∈ C such

that

d(coutput, wA) = min{d(c, wA) : c ∈ C} .

Here C is the set of all codewords. We will calculate

E(coutput) and output v(X ∪ E(coutput)).
Now let us show why this will be the correct answer.

First we will need the following lemma about (ε′, 1
ε′ +1)

list decodable tree codes:

Lemma 19. Let C be (ε′, 1
ε′ + 1) list decodable tree

code . For every x, y ∈ Σn
in let s be first index where

x[s] �= y[s]. Then d(C(x), C(y)) ≥ n− s− 2ε′n.

Proof: Let us take w to be C(x) on the first n− ε′

locations and to be C(y) at the last ε′n locations.

Then δs(w,C(y)) ≤ 1 − ε′ and also δs(w[1, . . . n −
ε′n], C(x)[1, . . . , n− ε′n]) = 0 ≤ 1− ε′. By definition

of list tree code we know that agreement between w
and PrefixList is at most ε′Ln = (1 + ε′)n. Note that

agreement between w and C(x) on the first n − ε′n

locations is n − ε′n. Note also that starting level s,

C(x) and C(y) represent different branches in the

PrefixList. Agreement between w and C(y) starting

level s is at least the agreement between C(x)[i,...,n]
and C(y)[s, . . . , n]. Thus

n− ε′n+ agr(C(y)[s, . . . , n], C(x)[s, . . . , n])

≤ ε′Ln = n+ ε′n

Thus agr(C(y)[s, . . . , n], C(x)[s, . . . , n]) ≤ 2ε′n
Let us assume by contradiction that protocol outputs

wrong answer. Let us assume that Alice outputs the

wrong answer. Let cB ∈ Σn
out be a codeword which was

sent by Bob. Let us assume that wA was the codeword

received by Alice. Assume assume that coutput is the

closest codeword to wA. There are two important points

on cB one is a “split” point s to be a first place

where coutput[s] �= cB [s] and an other is eend output

communication point (we will show soon that exists one

on the ”correct” path cB). Observe that if output node is

located before split point s then we output the correct

answer. Thus by contradiction assumption s < eend.

The proof now follows from Lemma 19 .

Let us define B1 = d(cA[1, . . . s], wB [1, . . . s]) and

B2 = d(cA[s + 1, . . . n], wB [s + 1, . . . n]) note that

B1 + B2 ≤ βn. From the Lemma 19 we know that

d(coutput, cB) ≥ n − s − O(ε′n); thus, since wA is

closer to coutput than to cB we have that the number

of errors in Bob’s messages in last n− s rounds was at

least
n−s−O(ε′n)

2 . Thus we have that

B2 ≥
n− s−O(ε′n)

2

Rewriting thus we get

s ≥ n− 2B2 −O(ε′n) (1)

On other hand it follows that

B1 + αn ≥≥ s−O(ε′n) .

Thus we got that

B1 + αn ≥ n− 2B2 −O(ε′n)

Rewrite this and we will get that

2βn+ αn ≥ B1 + 2B2 + αn ≥ n−O(ε′n) .

Thus we have got that 2β + α > 1 − O(ε′) thus by

taking c small enough we will get that 2β + α > 1− ε
contradiction to the definition of ε.

244244

REFERENCES

[1] P. Elias, “List decoding for noisy channels,” 1957.

[2] J. M. Wozencraft, “List decoding,” Quarterly Progress
Report, vol. 48, pp. 90–95, 1958.

[3] V. Guruswami, List decoding of error-correcting codes.
Springer, 2004.

[4] L. J. Schulman, “Coding for interactive communication,”
IEEE Transactions on Information Theory, vol. 42, no. 6,
pp. 1745–1756, 1996.

[5] M. Braverman and A. Rao, “Towards coding for maxi-
mum errors in interactive communication,” in Proceed-
ings of the 43rd annual ACM symposium on Theory of
computing. ACM, 2011, pp. 159–166.

[6] R. Gelles, A. Moitra, and A. Sahai, “Efficient and
explicit coding for interactive communication,” in
FOCS, R. Ostrovsky, Ed. IEEE, 2011, pp. 768–
777. [Online]. Available: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=6108120

[7] M. Braverman, “Towards deterministic tree code con-
structions,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. ACM, 2012,
pp. 161–167.

[8] Z. Brakerski and Y. T. Kalai, “Efficient interactive coding
against adversarial noise,” in Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Symposium on.
IEEE, 2012, pp. 160–166.

[9] M. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schul-
man, “Optimal coding for streaming authentication and
interactive communication.” in Electronic Colloquium on
Computational Complexity (ECCC), vol. 19, 2012, p.
104.

[10] Z. Brakerski and M. Naor, “Fast algorithms for interac-
tive coding.” in Electronic Colloquium on Computational
Complexity (ECCC), vol. 20, 2013, p. 14.

[11] S. Agrawal, R. Gelles, and A. Sahai, “Adaptive pro-
tocols for interactive communication,” arXiv preprint
arXiv:1312.4182, 2013.

[12] M. Ghaffari, B. Haeupler, and M. Sudan, “Optimal
error rates for interactive coding i: Adaptivity and other
settings,” arXiv preprint arXiv:1312.1764, 2013.

[13] M. Ghaffari and B. Haeupler, “Optimal error rates for
interactive coding ii: Efficiency and list decoding,” arXiv
preprint arXiv:1312.1763, 2013.

245245

