
Hardness of Coloring 2-Colorable 12-Uniform Hypergraphs
with 2(log n)

Ω(1) Colors

Subhash Khot∗

New York University
New York, USA

Email: khot@cims.nyu.edu

Rishi Saket
IBM Research

Bangalore, India
Email: rissaket@in.ibm.com

Abstract—We show that it is quasi-NP-hard to color 2-
colorable 12-uniform hypergraphs with 2(logn)Ω(1)

colors
where n is the number of vertices. Previously, Guruswami et
al. [1] showed that it is quasi-NP-hard to color 2-colorable 8-
uniform hypergraphs with 22

Ω(
√

log log n)

colors. Their result is
obtained by composing a standard Outer PCP with an Inner
PCP based on the Short Code of super-constant degree. Our
result is instead obtained by composing a new Outer PCP with
an Inner PCP based on the Short Code of degree two.

I. INTRODUCTION

A k-uniform hypergraph is a collection of vertices and

hyperedges where each hyperedge is a subset of k vertices.

An independent set in a hypergraph is a subset of vertices

that does not contain any hyperedge completely inside it. A

hypergraph is said to be q-colorable if the vertices can be

partitioned into q disjoint independent sets, or equivalently if

the vertices can be colored with q colors so that every edge is

non-monochromatic. Coloring a hypergraph using few colors

is one of the most well studied problems in combinatorics

and theoretical computer science.

On graphs (i.e. k = 2), there is an efficient algorithm to

determine 2-colorability, i.e. bipartiteness. A series of results

– [2], [3], [4], [5], [6] and [7] – give efficient algorithms to

color 3-colorable graphs with nβ colors, where the current

best value of β is ≈ 0.2038. On the other hand, it is known

to be NP-hard to color 3-colorable graphs with 4 colors [8],

[9]. For q-colorable graphs with sufficiently large q, a lower

bound of 2Ω(q1/3) colors was recently shown by Huang [10],

improving upon an earlier bound of qΩ(log q) by Khot [11].

Dinur, Mossel and Regev [12] propose a variant of the

Unique Games Conjecture referred to as the α-Conjecture

and show hardness of coloring 3-colorable graphs with any

constant number of colors under this conjecture.

Our understanding is much better for the problem of

coloring q-colorable k-uniform hypergraphs with k ≥ 3
(in this case, even determining 2-colorability is NP-hard).

From the algorithmic side, the problem becomes only harder,

so the best known algorithms still require nΩ(1) colors,

see Krivelevich et al. [13], Chen and Frieze [14], Kelsen

∗Research partly supported by NSF Expeditions grant CCF-0832795 and
NSF Waterman Award.

et al. [15] and Kawarabayashi and Thorup [16]. From the

hardness side, there has been steady progress on obtaining

stronger and stronger results. We avoid giving a long list of

all the known results for different values of q and k and in-

stead refer to the respective papers [17], [18], [19], [1], [20],

[21]. Here we focus on the case where q and k are allowed

to be (preferably small) constants and the concern is ob-

taining quantitatively strong lower bounds on the number of

colors used by efficient algorithms. Guruswami, Håstad and

Sudan [22] proved the first superconstant bound, showing

hardness of coloring 2-colorable 4-uniform hypergraphs with

Ω
(

log logn
log log logn

)
colors. Subsequently, Khot [23] showed the

first poly-logarithmic bound, showing hardness of coloring

q-colorable 4-uniform hypergraphs with (log n)Ω(q) colors

where q ≥ 7. In recent work, Guruswami et al. [1]

obtained the first super-polylogarithmic bound, showing

hardness of coloring 2-colorable 8-uniform hypergraphs with

22
Ω(
√

log log n)

colors. The main result of this work is a further

“exponential” improvement:

Theorem I.1. For some absolute constant c > 0, it is
quasi-NP-hard1 to find an independent set of relative size
2−(logn)c in an n-vertex 2-colorable 12-uniform hypergraph.
Hence, it is quasi-NP-hard to color a 2-colorable 12-uniform
hypergraph with 2(logn)c colors. In particular, any c < 1

20
works.

We note that all results quoted above, with the exception

of [18], also show hardness of finding an independent set of

relative size δ(n) which in turn implies hardness of coloring

with 1/δ(n) colors. Our result takes us another step closer

to the nΩ(1) bound, which might perhaps be the truth. We

further note that significantly stronger results are known

for the case of almost coloring: a hypergraph is almost q-

colorable if the removal of a small fraction of its vertices and

incident hyperedges makes it q-colorable. Given an almost

q-colorable graph with q ≥ 3, it is known to be NP-hard to

find an independent set of relative size q−�log2 q�−1 [24], [25]

and of relative size 2−
q
2 [26]. Given an almost 2-colorable

4-uniform hypergraph, it is known to be quasi-NP-hard to

1A problem is said to be quasi-NP-hard if it admits a
DTIME(Npoly(logN)) reduction from 3SAT.

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.30

206

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.30

206

find an independent set of relative size 2−(logn)1−o(1)

[20].

Hardness results (including ours) are typically obtained

by constructing a probabilistically checkable proof (PCP),

letting the proof locations be vertices of a hypergraph and

letting the tests (or rather the set of proof locations queried

in a run of the test) be the hyperedges. Guruswami et al.

[22] related the hardness of hypergraph coloring problem

to the covering complexity of a PCP with the Not-All-
Equal predicate. The covering complexity is k if (in the NO

case) one needs at least k proofs so that every constraint

is satisfied in at least one proof. The number of colors

required to color the hypergraph is then 2k. Dinur and Kol

[27] study the covering complexity of general predicates. It

is easily observed that the covering complexity is at most

O(log n) where the PCP proof has size n and has poly(n)
constraints. This is because if O(log n) random proofs were

constructed, then with high probability over the choice of

the proofs, every constraint is satisfied. In terms of covering

complexity, ours is the first result to achieve a PCP with

covering complexity that is polynomial in log n, specifically

(log n)c. This holds for the Not-All-Equal predicate of arity

12 (optimizing the exponent c and the arity 12 is not the

focus of the paper; however the current techniques face a

natural barrier of 1
2 for the exponent c). We consider a new

notion called super-position complexity of PCPs. Though it

resembles the notion of covering complexity, there is no

obvious upper bound better than n for the super-position

complexity of a PCP. We work with this new notion for

most of the paper and in the end show a hardness result

for hypergraph coloring problem that amounts to a (log n)c

covering complexity result.

A. Overview of the Proof

Our hardness result follows from a long sequence of

reductions, the initial steps presented as Theorems III.1, III.2

and III.7, with the remainder omitted due to lack of space.

The reader is referred to the full version of this paper [28].

It is infeasible to give an overview of all the steps here, so

we present only a high level view of some of the steps and

emphasize some aspects in which our approach differs from

the prior ones, in particular from that of Guruswami et al

[1].

As mentioned before, hardness results (including ours) are

typically obtained by constructing a probabilistically check-

able proof and letting the proof locations be vertices of a

hypergraph and letting the tests be the hyperedges. The PCP

is typically viewed as a composition of an outer verifier with

an inner verifier. The quantitative strength of the hardness

result depends (mainly) on the efficiency of the inner verifier

and in particular, on the efficiency (= length) of the encoding
scheme used by the inner verifier. Several results – such as

[22], [17], [23], [19], [21] – have been obtained using inner

verifiers based on the Long Code. The Long Code of an

m-bit string is a string of length 22
m

and this leads to a

large proof (= hypergraph) size, limiting the hardness result

to a poly-logarithmic number of colors. At the other end

of the spectrum, the Hadamard Code of an m-bit string

is a string of length 2m. Using an inner verifier based on

the Hadamard Code, Khot and Saket [20] obtain a hardness

result with 2(logn)1−o(1)

colors.2 However, Hadamard Code

can only incorporate (via a technique called folding) linear

constraints and one is forced to use an underlying NP-

hard problem with linear constraints. This forces the PCP

to have imperfect completeness and one obtains a hardness

result only for the almost coloring version of the problem.

Recently, Barak et al. [29] proposed a new encoding scheme

referred to as the Short Code that has length intermediate

between the Hadamard Code and the Long Code. To encode

an m-bit string u, the Hadamard Code writes down the

value of all linear functions on u, whereas the Long Code

writes down the value of all functions on u. The Short

Code takes an intermediate route and writes down the value

of all degree d functions on u for some constant d. The

length of the encoding is ≈ 2m
d

and even though much

less than the Long Code, it does increase rapidly for higher

degree d. For d ≥ 2, it allows one to incorporate (via

folding) non-linear constraints and hence a PCP with perfect
completeness is potentially feasible. In a recent work, Dinur

and Guruswami [30] were indeed able to construct an inner

verifier based on the Short Code and obtain hardness results

for a variant of the hypergraph coloring problem. Guruswami

et al. [1] were then able to adapt this Short Code based inner

verifier for the hypergraph coloring problem, leading to the

22
Ω(
√

log log n)

bound mentioned before. Their outer verifier is

a standard one3 and its composition with the inner verifier

requires using a high degree d, limiting the quantitative

bound to 22
Ω(
√

log log n)

as stated.

Our key idea is to use, at the inner level, a Quadratic
Code which is same as the Short Code with degree d = 2.

This leads to a significant saving in the encoding length

and we are able to obtain a 2(logn)Ω(1)

bound. However, as

we elaborate below, the composition now requires a much

stronger guarantee from the outer verifier. The guarantee

from the outer verifier is usually in terms of low soundness,

but we need an additional guarantee that we refer to as the

high super-position complexity (see below). Much of our

effort is then invested in constructing such an outer verifier.

We now describe the testing primitive used by the inner

verifier and how its analysis motivates (and necessitates) the

idea of super-position complexity.

We intend to use the Quadratic Code that encodes an

m-bit input u ∈ F[2]m by writing down the values of

all quadratic functions on u. This is same as defining an

2This almost polynomial factor is a well-known barrier and should be
considered as the best possible bound via the current technology.

3By a standard outer verifier we mean the 2-Prover-1-Round Game, a.k.a.
Label Cover, instance obtained by parallel repetition of a clause versus
variable game constructed from a Gap3SAT instance [31], [32], [33].

207207

m×m matrix M = u⊗ u and writing down the values of

all linear functions on M (i.e. the Hadamard Code of M).

The Quadratic Code is indexed by the set of all m × m
matrices X and the value at location X is given by the

entry-wise inner product 〈M,X〉. We describe a 6-query test

to check whether a supposed code is indeed a Quadratic

Code (in a loose, list decoding sense). It can be adapted,

without much additional effort, to a 12-query test of an inner

verifier, leading to a hardness result for coloring 12-uniform

hypergraphs. This involves reading 6 queries each from two

supposed codes and in addition to checking that these are

indeed codewords, also checking that these are consistent.
The test is as follows. Pick matrices X,Y, Z ∈ F[2]m×m

and vectors a, b ∈ F[2]m uniformly and independently at

random. Let Diag(a) be the diagonal matrix with a as the

diagonal. Test whether,

[C(X) + C(X + Diag(a))] · [C(Y) + C(Y + Diag(b))]

= C(Z) + C(Z + a⊗ b).

It is easy to check that if C is the Quadratic Code of some

u ∈ F[2]m, then the test always accepts. Indeed, letting M =
u⊗ u, the right hand side of the equation is (〈u, a〉 denotes

the inner product over F[2]m)

〈M,Z〉+ 〈M,Z + a⊗ b〉 = 〈M,a⊗ b〉 = 〈u⊗ u, a⊗ b〉
= 〈u, a〉 · 〈u, b〉,

whereas the left hand side evaluates to the same value:

〈M,Diag(a)〉 · 〈M,Diag(b)〉 = 〈u, a〉 · 〈u, b〉.
On the other hand, it can be shown, by an elementary

Fourier analysis, that if the test passes with probability
1
2 + 2−O(k), then the given C-table can be decoded (by

simply outputting a Fourier coefficient with significant mag-

nitude) to a symmetric rank k matrix M̃ . Writing M̃ as a

super-position (i.e. sum) of k symmetric rank one matrices

M̃ =
∑k

�=1 u
(�)⊗u(�), this amounts to decoding the C-table

to a bounded list u(1), . . . , u(k) ∈ F[2]m of inputs.4

Typically, the inner verifier also needs to check that the

input u satisfies a constraint. In our setting, the constraint

will be given as a quadratic equation, say h(u) = 0 for some

quadratic polynomial h (assume for the ease of this overview

that h has no constant term). Let’s write the constraint as

m∑
i,j=1

hi,juiuj = 0.

This amounts to a linear constraint 〈H,M〉 on the matrix

M = u ⊗ u where H = (hi,j) is also a matrix. If C
is the Quadratic Code of u such that h(u) = 0, then it

satisfies C(X + H) = C(X) for every index X . We can

4To express a symmetric rank k matrix as a sum of symmetric rank one
matrices needs up to 3k

2
summands, see Lemma II.1. We ignore this small

issue here.

ensure that the supposed code always satisfies this property

by identifying the proof locations corresponding to X +H
and X for every index X . Also, since M = u ⊗ u is

symmetric, one expects C(X) = C(XT) and this property

can be ensured similarly. This trick is known as folding and

its consequence is that the decoded matrix M̃ (as described

above, by outputting a significant Fourier coefficient of

the given C-table) is symmetric and satisfies the constraint

〈H,M〉 = 0. Since M̃ =
∑k

�=1 u
(�) ⊗ u(�), this amounts to

saying that

m∑
i,j=1

hi,j

(
k∑

�=1

u
(�)
i u

(�)
j

)
= 0. (1)

We say that the quadratic equation h = 0 is satisfied in
super-position by the k inputs u(1), . . . , u(k). In summary,

the analysis of the inner verifier furnishes a short list of

inputs that together satisfy the quadratic equation h = 0
in super-position, in the sense of Equation (1). This is an

aspect in which our PCP differs from all earlier ones. In

earlier PCPs, the inner verifier furnishes a short list of

inputs such that every input in the list satisfies the relevant

constraint whereas in our case, the constraint is only satisfied

in super-position. To accommodate this weaker guarantee

furnished by the inner verifier, the outer verifier needs a

correspondingly stronger guarantee, which we refer to as

the high super-position complexity.

We hope it is now clear why we need the outer verifier

to have both the low soundness and high super-position

complexity. We elaborate further on the latter property. As

is standard, the outer verifier can be viewed as a 2-prover-

1-round game where the first prover’s answer is u ∈ F[2]m

and the second prover’s answer is v ∈ F[2]r (where r ≤ m).

The verifier accepts if π(u) = v for some projection map
π : F[2]m 	→ F[2]r that happens to be linear in our setting.

In addition, the answer u must satisfy a quadratic equation

h(u) = 0 for the verifier to accept. In the YES case,

the provers have a strategy that makes the verifier accept

with probability 1. In the NO case, the verifier accepts

with negligible probability even under a looser criterion for

acceptance. The provers are now allowed to furnish a short

list u(1), . . . , u(k) and v(1), . . . , v(k) of answers respectively

and the verifier accepts if π(u(�)) = v(�) ∀� ∈ {1, . . . , k}
and that u(1), . . . , u(k) satisfy the constraint h = 0 in

super-position. Once we have an outer verifier with such a

guarantee, it is straightforward to compose it with the inner

verifier described above.

The bulk of our paper is devoted to the construcion of the

outer verifier which follows via a sequence of reductions

(= PCPs), the initial steps presented as Theorems III.1,

III.2 and III.7. We focus on constraint satisfaction problems

where the constraints are quadratic equations over F[2]. The

super-position complexity of a CSP instance is the minimum

number of assignments that satisfy every constraint in super-

208208

position in the sense of Equation (1). We start by showing

that it is NP-hard to distinguish whether a CSP has super-

position complexity of 1 or at least k (we choose the

parameter k to be poly-logarithmic in the instance size

though the result also holds for much higher settings of

the parameter). This appears as Theorems III.1 and III.2.

Interestingly, we do use some of the techniques from Dinur

and Guruswami [30] here, specifically Lemma II.3 which in

turn is based on techniques from [34] to test Reed-Muller

codes over F[2]. However, we emphasize that Dinur and

Guruswami [30] employ these techniques in the analysis of

the inner verifier whereas for us, these serve as a starting

point in a long sequence of reductions.5 We then use the

ingredients used to prove the PCP Theorem (sum-check

protocol, low degree test etc) to simultaneously reduce the

arity of the constraints and to achieve low soundness, while

preserving the high super-position complexity at every step.

In the last step, the constraints are those given by a point-

versus-surface low degree test and is naturally viewed as a 2-

prover-1-round game, i.e. as the outer verifier. As mentioned

before, the inner PCP is then based on the Quadratic Code.

Its analysis is elementary and does not use any of the

machinery required to analyze the Short Code. Subsequent

to this work, Varma [35] has shown that the outer verifier

can be combined with inner PCPs from [1] leading to

similar inapproximability for the 2-colorable 8-uniform and

4-colorable 4-uniform cases.

II. PRELIMINARIES

This section describes some useful tools that are used in

the hardness reduction.

A. Tensor Decomposition of Symmetric Matrices

The following lemma shows a canonical way to write a

symmetric matrix as a sum of symmetric rank one matrices.

We only consider matrices over a field F[q] of characteristic

2.

Lemma II.1. Given a symmetric matrix A ∈ F[q]m×m of
rank k over a field F[q] of characteristic 2, there are k
linearly independent vectors z1, . . . , zk ∈ F[q]m from the
column space of A such that,

A =
s∑

i=1

zi ⊗ zi

+
t∑

j=1

(
zs+2j−1 ⊗ zs+2j + zs+2j ⊗ zs+2j−1

)
, (2)

5One may view Dinur and Guruswami reduction as a sequence of four
steps: NP-hardness of 3SAT (= Cook-Levin Theorem), NP-hardness of
Gap3SAT (= the PCP Theorem), the Outer PCP and the inner PCP. With this
viewpoint, the techniques referred to, are used by Dinur and Guruswami
at the inner PCP level whereas we use them to prove the analogue of the
Cook-Levin Theorem. We then naturally proceed to prove the analogue of
the PCP Theorem.

where k = s + 2t for some non-negative integers s and t.
This implies,

A =
s∑

i=1

zi ⊗ zi

+

t∑
j=1

(
zs+2j−1 ⊗ zs+2j−1 + zs+2j ⊗ zs+2j

+ (zs+2j−1 + zs+2j)⊗ (zs+2j−1 + zs+2j)

)
, (3)

and that A is a sum of at most 3k
2 symmetric rank one

matrices.

Proof: Note that the second equation in the statement of

the lemma follows from the first by observing that a⊗b+b⊗
a = a⊗a+b⊗b+(a+b)⊗(a+b). So we focus on obtaining

the decomposition as in the first equation. If A = 0, there

is nothing to prove. If A = (aij) �= 0, then we consider two

cases and in each case, we give a decomposition of A into

a single term in Equation (2) and a matrix of lower rank A′.
The lemma then follows by an inductive argument on A′.
We use a crucial fact that in a field F[q] of characteristic 2,

every element is a square. In particular, for any a ∈ F[q],
a �= 0, the element 1√

a
exists.

Case (i): Consider the case when A has a non-zero diagonal

element, i.e. aii �= 0 for some i ∈ {1, . . . ,m}. Let ai be

the ith column of A and let bi =
1√
aii
· ai. Consider the

symmetric matrix,

A′ = A+ bi ⊗ bi.

It is easy to see that the ith column as well as row of

A′ is zero. This implies that bi is linearly independent

of the columns of A′ and rank(A′) = rank(A) − 1. We

can then inductively decompose A′ keeping in mind that

the decomposition will involve vectors that are linearly

independent of bi.

Case (ii): Now consider the case when all diagonal elements

of A are zero, but there are indices i �= j such that aij =
aji �= 0. As before, let bi =

1√
aij
·ai and bj =

1√
aij
·aj . Since

aii = ajj = 0, we have bi �= bj . Consider the symmetric

matrix

A′ = A+ bi ⊗ bj + bj ⊗ bi.

The ith and the jth columns as well as rows of A′ are

zero. This implies that bi and bj are linearly independent

of the columns of A′ and rank(A′) = rank(A) − 2. We

can then inductively decompose A′ keeping in mind that

the decomposition will involve vectors that are linearly

independent of bi and bj .

B. Representations of Monomial Assignments

This and the next section describe the basic setup used by

Dinur and Guruswami [30] for analyzing their inner verifier.

209209

Their verifier relies on the Short Code (we do not define it

here since we won’t be using it) that was proposed and

analyzed by Barak et al. [29].

Let x1, . . . , xm be variables over F[2]. Fix a degree

parameter d ≥ 0 and let Sd be the set of all monomials∏
i∈S xi corresponding to subsets S ⊆ [m] of size at most

d. An assignment σ : Sd 	→ F[2] is referred to as a

monomial assignment. One can naturally extend assignment

σ to all polynomials of degree at most d by linearity, i.e.

if q(x) = c +
∑

S⊆[m],1≤|S|≤d cS
∏

i∈S xi is a polynomial,

then

σ(q) = c · σ(∅) +
∑

S⊆[m],1≤|S|≤d

cS · σ
(∏

i∈S
xi

)
,

where σ(∅) denotes the assignment given by σ to the empty

monomial. We say that a monomial assignment σ satisfies

an equation q(x) = 0, if σ(q) = 0.

Lemma II.2. For any monomial assignment σ : Sd 	→ F[2],
there is a subset β ⊆ F[2]m such that for all polynomials
q(x) of degree at most d,

σ(q) =
∑
a∈β

q(a). (4)

Proof: Let Pd be the linear vector space of all poly-

nomials q(x) of degree at most d. The dimension of this

space equals the number of monomials (including the empty

monomial), i.e.
∑d

i=0

(
m
i

)
. Let A be the set of all inputs

a ∈ F[2]m with Hamming weight at most d so that

|A| = ∑d
i=0

(
m
i

)
is same as the dimension of Pd. For

every fixed a ∈ F[2]m, the map q(x) 	→ q(a) is a linear

map on Pd. We will show that these maps are linearly

independent and hence form a basis for the space of all

linear maps on Pd and in particular, the linear map σ
can be expressed as their linear combination, proving the

lemma. In order to show the linear independence of the

maps {q(x) 	→ q(a) | a ∈ A}, it suffices to show that if

a degree (at most) d polynomial q(x) vanishes on all inputs

in A, then it vanishes identically. Indeed, if on the contrary,

q(x) �= 0, then q(x) =
∏

i∈S xi +
∑

S′
=S cS′
∏

j∈S′ xj

where
∏

i∈S xi is a monomial of lowest degree that has a

non-zero coefficient in q(x). Clearly, for the input a ∈ F[2]m

whose non-zero co-ordinates are precisely on the set S, we

have q(a) �= 0 reaching a contradiction.

Note that the subset β guaranteed by Lemma II.2 need not

be unique. For a monomial assignment σ : Sd 	→ F[2], let βσ

denote a minimum sized subset β satisfying the conclusion

of the lemma (i.e. Equation (4)).

C. A Useful Tool from Dinur and Guruswami [30]

We now state (a minor variant of) the main tool we borrow

from Dinur and Guruswami [30] paper. Let Fm be the space

of all functions f : F[2]m 	→ F[2]. For a subset β ⊆ F[2]m,

define the character χβ : Fm 	→ {−1, 1} as:

χβ(f) = (−1)
∑

x∈β f(x) = (−1)
∑

x∈F[2]m �β(x)f(x)

= (−1)〈�β ,f〉,

where �β denotes the indicator function of that subset. If βσ

is a (minimum sized) subset corresponding to a monomial

assignment σ as defined earlier, then for any polynomial g
of degree at most d,

χβσ (g) = (−1)
∑

x∈βσ
g(x) = (−1)σ(g).

The following is a minor variant of a theorem proved in

[30]. The ideas in its proof go back to the analysis of testing

Reed-Muller codes in [34].

Lemma II.3. Let β = βσ be a (minimum sized) subset
corresponding to some monomial assignment σ such that
|β| ≥ 2d/2 and α, γ ⊆ F[2]m are arbitrary. Then

|Eg,h [χβ(gh)χγ(g)χα(h)]| ≤ 2−2d/4−2

,

where g is a uniformly random polynomial of degree at most
3d/4 and h is a uniformly random polynomial of degree at
most d/4.

Proof: The expectation can be upper bounded by

Eh [|Eg [χβ(gh)χγ(g)]|] . (5)

The inner expectation is same as

Eg [χβ(gh)χγ(g)] = Eg

[
(−1)〈�β ·h+�γ ,g〉

]
. (6)

We use the fact that the space of polynomials of degree at

most m − 3d/4 − 1 is precisely the orthogonal space of

the space of polynomials of degree at most 3d/4. Thus the

expectation in Equation (6) is 1 if �β ·h+�γ is a polynomial

of degree at most m− 3d/4− 1 and zero otherwise. Hence

the expression in Equation (5) is same as

Pr
h
[�β · h+ �γ is a polynomial

of degree at most m− 3d/4− 1],

where h is a random polynomial of degree at most d/4. By

Lemma II.5, this probability is upper bounded by 2−2d/4−2

.

Lemma II.5 is an immediate consequence of a similar lemma

in [30].

Lemma II.4. For a uniformly random polynomial h of
degree at most d/4 and β such that |β| ≥ 2d/2,

Pr
h
[�β · h is a polynomial of

degree at most m− 3d/4− 1] ≤ 2−2d/4−2

.

210210

Lemma II.5. For a uniformly random polynomial h of
degree at most d/4 and any γ, β such that |β| ≥ 2d/2,

Pr
h
[�β · h+ �γ is a polynomial of

degree at most m− 3d/4− 1] ≤ 2−2d/4−2

.

Proof: If there is no h such that �β · h + �γ is a

polynomial of degree at most m − 3d/4 − 1 then we are

done. Otherwise the set of all such h is an affine subspace

and translating it to include the origin yields the subspace

(of the same size) of h′ such that �β · h′ is a polynomial

of degree at most m− 3d/4− 1. An appeal to Lemma II.4

completes the proof.

D. Arora-Sudan Analysis of the Low Degree Test

Let F[q] be a field and d,m be positive integers. Suppose

we are given a table of values of a function f : F[q]m 	→ F[q]
that is supposed to be a degree d polynomial. Suppose, in

addition, we are given, for every line � in the space F[q]m,

a univariate degree d polynomial f� that is supposed to be

the restriction of the supposed global polynomial f to that

line.6 For a point v on the line �, we denote by f�(v) the

value given by f� at the point v. The following theorem was

proved by Arora and Sudan [36].

Theorem II.6. There are constants c0, c1, c2, c3 > 0 such
that the following holds. For any parameter δ > 0 such
that q ≥ c0(dm/δ)c1 , let {P1, . . . , Pt} be the set of degree
d polynomials that agree with f at δc2/c3 fraction of the
points. Then, taking the probability over a random line �
and random point v on the line,

Pr
�,v
[f(v) �∈ {P1(v), . . . , Pt(v)} and f�(v) = f(v)] ≤ δ.

Also, by coding theoretic bounds t ≤ 2c3/δ
c2 .

E. Super-position Complexity

Definition II.7. Let a(1), . . . , a(t) ∈ F[2]m be t assignments
and q(x) = 0 be a quadratic equation in m boolean
variables with q(x) = c+

∑m
i=1 cixi+

∑
1≤i<j≤m cijxixj .

We say that the t assignments satisfy the equation q(x) = 0
in super-position if

c+

m∑
i=1

ci

(
t∑

�=1

a
(�)
i

)
+

∑
1≤i<j≤m

cij

(
t∑

�=1

a
(�)
i a

(�)
j

)
= 0.

Note that for t = 1, this is same as saying that q(a(1)) = 0,
i.e. that a(1) satisfies the equation (in the standard sense).
Also, if q(x) is linear, this is same as saying that the
assignment a =

∑t
�=1 a

(�) satisfies the equation (in the
standard sense).

6A line is a set �(t) = α + tβ parameterized by t ∈ F[q] for some
α, β ∈ F[q]m.

Definition II.8. Given a system of quadratic equations
{qi(x) = 0}Li=1, its super-position complexity is the min-
imum number t, if it exists, such that there are t assign-
ments a(1), . . . , a(t) ∈ F[2]m that satisfy every equation
qi(x) = 0, i ∈ {1, . . . , L} in super-position. Otherwise,
one may define the super-position complexity to be ∞ (but
we will not encounter this scenario).

III. STARTING POINT FOR OUR PCPS

In this section, we describe a set of results that serve as the

starting point for our PCPs. The main theorem is Theorem

III.2 that provides a super-position gap for constraint sat-

isfaction problems with constraints that are quadratic equa-

tions over F[2]. The theorem states that given an instance

of such a CSP, it is NP-hard to distinguish whether it has

a satisfying assignment (i.e. has super-position complexity

of 1) or has high super-position complexity. Theorem III.1

is a preparatory step towards the main Theorem III.2. For

subsequent applications, we need certain strengthenings of

the main theorem stated as Theorem III.5 and III.7.

A. CSPs with High Degree Equations

Recall that given n boolean variables x1, . . . , xn and the

degree parameter d, Sd denotes the set of all monomials

of size at most d over the n variables. Given a monomial

assignment σ : Sd 	→ F[2], one can extend it naturally to all

polynomials of degree at most d by linearity. Moreover there

exists a set βσ ⊆ F[2]n (of minimal size, by definition) such

that for all polynomials q(x) of degree at most d, σ(q) =∑
s∈βσ

q(s). A monomial assignment σ is said to satisfy a

system of degree d polynomial equations {qi(x) = 0}mi=1 if

σ(qi) = 0 for every i ∈ {1, . . . ,m}. We prove the following

theorem in this section.

Theorem III.1. For any d ≥ 3, there is a DTIME(nO(d))
reduction from 3SAT to a system B of degree d equations
over F[2] such that,

YES Case: If the 3SAT instance is satisfiable then there is
an assignment that satisfies (all equations in) B.

NO Case: If the 3SAT instance is unsatisfiable then for
any monomial assignment σ : Sd 	→ F[2] that satisfies (all
equations in) B, one must have |βσ| ≥ 2d−3.

Proof: Suppose the 3SAT instance consists of n boolean

variables x1, . . . , xn and m clauses. For i = 1, . . . ,m, the

ith clause can be written as an equation pi(x) = 0 where

pi(x) is a polynomial of degree at most 3. It depends on

at most 3 variables, but this will not be relevant to us. Let

d ≥ 3 be as in the statement of the theorem. We construct

a system B of equations as desired by adding the equation(∏
i∈S

xi

)
pi(x) = 0,

211211

for all monomials
∏

i∈S xi of degree at most d − 3 and

i = 1, . . . ,m. Note that every equation in B has degree

at most d. In the YES case, if the 3SAT instance has

a satisfying assignment, then clearly the same assignment

satisfies all equations in B. So we focus on the NO case. Let

a monomial assignment σ : Sd 	→ F[2] be given that satisfies

all equations in B and let βσ ⊆ F[2]n be the corresponding

set. Note that for any polynomial q(x) of degree at most

d − 3 and any i ∈ {1, . . . ,m}, the equation q(x)pi(x) = 0
is a linear combination of equations in B and hence must

be satisfied by σ, i.e. σ(q · pi) = 0.

Assume for the sake of contradiction that |βσ| < 2d−3.

Fix an arbitrary a ∈ βσ . By Lemma 2.13 of [1], there exists

a polynomial q(x) of degree at most d−3 such that q(a) = 1
and ∀b ∈ βσ, b �= a, q(b) = 0. Since the 3SAT instance is

unsatisfiable, the assignment a fails on some, say jth, clause,

i.e. pj(a) = 1. We reach a contradiction by observing that

σ(q · pj) =
∑
s∈βσ

q(s)pj(s)

= q(a)pj(a) +
∑

s∈βσ,s
=a

q(s)pj(s) = pj(a) = 1.

B. Quadratic CSP with Superposition Gap

We recall Definition II.7 and prove our main theorem in this

section.

Theorem III.2. There is a reduction from 3SAT to an
instance A of quadratic equations such that,

YES Case. If the 3SAT instance is satisfiable then there is
an assignment to A that satisfies all the equations.

NO Case. If the 3SAT instance is unsatisfiable then there
are no t assignments to A that satisfy all the equations
simultaneously in super-position for any 1 ≤ t ≤ k. Here
k is a parameter and the reduction runs in time NO(log k)

where N is the size of the 3SAT instance.

Proof: We first reduce 3SAT to a system of degree d
equations B as given by Theorem III.1. The size of instance

B is NO(d) where N is the size of the 3SAT instance. Let

x1, . . . , xn be the variables of the instance B and the degree

parameter d will be set later. Note that in the YES case, the

instance B has a satisfying assignment a ∈ F[2]n whereas in

the NO case, for any assignment σ : Sd 	→ F[2] that satisfies

B, it must be that |βσ| ≥ 2d−3 (to recall again, Sd is the

set of all monomials over variables x1, . . . , xn of degree at

most d). We construct the desired system A of quadratic

equations as follows.

• For every A ⊆ [n], 1 ≤ |A| ≤ d we have a variable

yA. This variable is supposed to represent the monomial∏
i∈A xi and in the YES case, it takes the same value

as this monomial under a satisfying assignment to B.

Note that we have variables corresponding only to the

non-empty monomials.

• Add all the equations of B replacing each non-empty

monomial
∏

i∈A xi by the corresponding variable yA.

These equations are linear in the variables {yA | 1 ≤
|A| ≤ d} (so this is simply a linearization of B).

• For every pair A,B ⊆ [n] such that 1 ≤ |A|, |B|, |A ∪
B| ≤ d, add the quadratic equation yAyB = yA∪B .

Note that this quadratic equation is indeed satisfied in

the YES case since the variables yA have values same

as the corresponding monomials under an assignment

to the variables x1, . . . , xn.

This completes the construction of the instance A. In the

YES case, taking the satisfying assignment a ∈ F[2]n to

instance B and assigning to every variable yA the value∏
i∈A ai satisfies all equations of instance A.

In the NO case, we wish to show that no t assignments

σ1, . . . , σt : {yA | 1 ≤ |A| ≤ d} 	→ F[2] can satisfy all

equations of A in super-position for any 1 ≤ t ≤ k. We can

assume that t is odd by adding (if necessary) the assignment

which maps each yA to 0. This increases t by at most 1 and

makes no difference to the quantitative bounds. Assume for

a contradiction that such a set of t assignments exists, for

an odd t. Note that any assignment σi is naturally also a

monomial assignment σi : Sd 	→ F[2], by extending it to the

empty monomial as σi(∅) = 1.

Letting σ : Sd 	→ F[2] be the monomial assignment given

by σ =
∑t

i=1 σi we have the following lemma.

Lemma III.3. The monomial assignment σ : Sd 	→ F[2]
satisfies all equations of B.

Proof: Let q(x) = 0 be an equation in B where q(x) =
c +

∑
A⊆[n],1≤|A|≤n cA ·

(∏
i∈A xi

)
. Its linearization in A

is,

c+
∑

A⊆[n],1≤|A|≤n

cAyA = 0.

As the above equation is satisfied in super-position by the

assignments {σi}ti=1 to the variables yA,

c+
∑

A⊆[n],1≤|A|≤n

cA ·
[

t∑
i=1

σi(yA)

]
= 0.

Viewing σi as a monomial assignment and observing that

since t is odd,
∑t

i=1 σi(∅) =
∑t

i=1 1 = 1, the above

implies,

c·
(

t∑
i=1

σi(∅)
)
+

∑
A⊆[n],1≤|A|≤n

cA·
[

t∑
i=1

σi

(∏
i∈A

yA

)]
= 0.

By the definition of σ we have,

c · σ(∅) +
∑

A⊆[n],1≤|A|≤n

cA · σ
(∏

i∈A
yA

)
= σ(q) = 0.

212212

From Lemma II.2 there exist subsets βσi
⊆ F[2]n corre-

sponding to the monomial assignments σi for i = 1, . . . , t
and a subset βσ corresponding to σ. As proved in Lemma

III.3 above σ satisfies all equations in B. Hence, by the

guarantee offered by the NO case of Theorem III.1, we have

|βσ| ≥ 2d−3. We now show that |βσ| being large implies

that σ1, . . . , σt : {yA | 1 ≤ |A| ≤ d} 	→ F[2] cannot

simultaneously satisfy the equations yAyB = yA∪B in super-

position. Assume on the contrary that this is the case, i.e.

for all A,B such that 1 ≤ |A|, |B|, |A ∪B| ≤ d,

t∑
i=1

σi(yA∪B) =
t∑

i=1

σi(yA)σi(yB).

Since σi are also thought of as monomial assignments σi :
Sd 	→ F[2], the above amounts to saying that

t∑
i=1

σi(gh) =

t∑
i=1

σi(g)σi(h), (7)

where g, h are non-empty monomials in variables x1, . . . , xn

such that the sizes of g, h, gh are all upper bounded by d.

Further, as monomial assignments defined above, σi(∅) = 1
for all i = 1, . . . , t which impies that Equation (7) holds for

all monomials g, h such that the sizes of g, h and gh are

bounded by d. In particular, this holds whenever g and h
are monomials of degree at most 3d/4 and d/4 respectively

(assume d is divisible by 4). We observe that by linearity,

Equation (7) holds also when g is a polynomial of degree

at most 3d/4 and h is a polynomial of degree at most d/4.

We switch from values over F[2] to real values in {−1, 1},
i.e. replace σi(g) by (−1)σi(g). Noting that σ =

∑t
i=1 σi,

we get

(−1)σ(gh) =
t∏

i=1

(
(−1)σi(g) ∧ (−1)σi(h)

)
.

Note that addition over F[2] now becomes multiplication

over signs {−1, 1} and multiplication over F[2] now be-

comes the operation a ∧ b = (1 + a+ b− ab)/2 over signs

{−1, 1}. Since (−1)σi(g) = χβσi
(g), we get that

χβσ (gh)

[
t∏

i=1

(χβσi
(g) ∧ χβσi

(h))

]
= 1, (8)

whenever g is a polynomial of degree at most 3d/4 and h is a

polynomial of degree at most d/4. We reach a contradiction

by showing that if g and h are chosen as random polynomials

of the kind prescribed, the expectation of the left hand

side of Equation (8) is nearly zero. Indeed, replacing each

expression a ∧ b by (1 + a + b − ab)/2 and expanding the

product into a sum of 4t terms, the left hand side of Equation

(8) is a sum of 4t terms of type(
1

2t

)
χβσ

(gh)χγ(g)χα(h),

for some γ, α ⊆ F[2]n. The sets γ, α are related to the sets

βσi
, but this is not relevant for the argument. We finish the

proof by showing that the expectation of the term above is

negligible and hence the sum of the expectations of the 4t

terms is negligible too. The claim follows by Lemma III.4

below. It is enough to take d = O(log k).

Lemma III.4. For βσ ⊆ F[2]n, |βσ| ≥ 2d−3, d ≥ 6 and
arbitrary γ, α ⊆ F[2]n, we have

|Eg,h[χβσ (gh)χγ(g)χα(h)]| ≤ 2−2d/4−2

,

where g is a random polynomial of degree at most 3d/4 and
h is a random polynomial of degree at most d/4.

Proof: For d ≥ 6, we have 2d−3 ≥ 2d/2. The proof

follows from Lemma II.3.

C. Strengthening of Theorem III.2

We will need to consider quadratic equations over F[q]
that is an extension field of F[2]. In particular we need ana-

logue of Theorem III.2 where the conclusion holds even for

F[q]-valued assignments. In this section, while considering

quadratic equations over F[q], we only consider equations

that have F[2] coefficients and no linear terms, i.e. equations

of the form c+
∑

1≤i≤j≤m cijxixj = 0 where c, cij ∈ F[2].
The notion of satisfying an equation in super-position is

similar as before. Assignments a(1), . . . , a(t) ∈ F[q]m are

said to satisfy an equation c +
∑

1≤i≤j≤m cijxixj = 0 in

super-position if,

c+
∑

1≤i≤j≤m

cij

(
t∑

�=1

a
(�)
i a

(�)
j

)
= 0.

Theorem III.2 easily implies the theorem below.

Theorem III.5. Let F[q] be an extension field of F[2] with
q = 2r. There is a reduction from 3SAT to an instance C
of quadratic equations over F[q] such that
• The equations have F[2] coefficients and no linear

terms.
• YES Case. If the 3SAT instance is satisfiable then there

is an assignment to C that satisfies all the equations.
In fact there is such an assignment that is F[2] valued.

• NO Case. If the 3SAT instance is unsatisfiable then
there are no t assignments to C that are F[q] valued
and satisfy all the equations simultaneously in super-
position for any 1 ≤ t ≤ k. Here k is a parameter and
the reduction runs in time NO(r log k) where N is the
size of the 3SAT instance.

Proof: The instance C is essentially the same as

the instance A given by Theorem III.2. The only dif-

ference is that every linear term xi is replaced by a

quadratic term x2
i . Specifically, an equation c+

∑m
i=1 cixi+∑

1≤i<j≤m cijxixj = 0 in instance A is now written as

c +
∑

1≤i≤j≤m cijxixj = 0 in instance C where cii = ci.

213213

The claim in the YES case follows from the analogous claim

in Theorem III.2, so we focus on the NO case.

We show that if there are t assignments over F[q] that

satisfy all equations in the instance C in super-position, then

there are t ·s assignments over F[2] that satisfy all equations

in the instance A in super-position and s ≤ 2r. Let a typical

equation in the instance C be c +
∑

1≤i≤j≤m cijxixj = 0,

where c, cij ∈ F[2]. Suppose there are F[q]-valued assign-

ments a(1), . . . , a(t) ∈ F[q]m that satisfy the equation in

super-position, i.e.

c+
∑

1≤i≤j≤m

cij

(
t∑

�=1

a
(�)
i a

(�)
j

)
= 0.

The computations above are over F[q]. Fixing an arbitrary

representation of F[q] as a r-dimensional vector space over

F[2], the above equation must hold in the last bit of the

vector representation, i.e. in the notation of Lemma III.6,

c+
∑

1≤i≤j≤m

cij

(
t∑

�=1

(a
(�)
i a

(�)
j)last

)
= 0.

However by Lemma III.6, there are vectors λ1, . . . , λs ∈
F[2]r, that capture the computation of the last bit of a

product of two elements in F[q]. Hence, the above equation

can be written as

c+
∑

1≤i≤j≤m

cij

(
t∑

�=1

s∑
p=1

〈a(�)i , λp〉 · 〈a(�)j , λp〉
)
= 0.

Since all values now are in F[2], we can separate the diagonal

terms and re-write them as linear terms (note ci = cii), i.e.

c+
∑

1≤i≤m

ci

(
t∑

�=1

s∑
p=1

〈a(�)i , λp〉
)

+
∑

1≤i<j≤m

cij

(
t∑

�=1

s∑
p=1

〈a(�)i , λp〉 · 〈a(�)j , λp〉
)
= 0.

This is same as saying that the t · s many F[2]-valued

assignments given by 〈a(�), λp〉 for � ∈ [t], p ∈ [s] satisfy

the corresponding equation in the instance A in super-

position. Noting that the choice of the equation is arbitrary,

the theorem follows by the guarantee on the NO case in

Theorem III.2.

Lemma III.6. Let F[q] be an extension field of F[2] with
q = 2r. Any x ∈ F[q] can be thought of as a (row) vector in
F[2]r in some fixed representation of F[q] as a r-dimensional
vector space over F[2]. For x ∈ F[q], let (x)last denote the
last bit of the corresponding vector. Then there exist vectors
λ1, . . . , λs ∈ F[2]r, s ≤ 2r such that

∀x, y ∈ F[q] (xy)last =
s∑

i=1

〈x, λi〉 · 〈y, λi〉,

where 〈·, ·〉 denotes the inner product over F[2]r and while
computing the expression 〈x, λi〉, x is being thought of as
a vector in F[2]r.

Proof: The map (x, y) 	→ (xy)last can be thought of as

a symmetric bilinear map F[2]r×F[2]r 	→ F[2]. Hence there

is a r × r symmetric matrix Λ over F[2] such that

∀x, y ∈ F[q] (xy)last = x · Λ · yT .
The matrix Λ can be written as

∑s
i=1 λi ⊗ λi for some

s ≤ 2r and λi ∈ F[2]r by Lemma II.1. The same s and λi

satisfy the conclusion of the lemma.

The conclusion in the NO case (i.e. soundness) of The-

orem III.5 can be boosted via a standard trick, so that a

constant fraction of equations must fail instead of at least one

equation failing. Suppose the instance C in Theorem III.5 has

L equations written as E1 = 0, . . . , EL = 0. One can take a

M × L matrix Γ over F[2], M = O(L), that is a generator

matrix of a linear code of constant relative distance, say

0.10, and construct a new system C′ of equations

L∑
j=1

ΓijEj = 0 i = 1, . . . ,M.

Clearly, a satisfying assignment to C is also a satisfying

assignment to C′. On other other hand, if no t assignments

satisfy all equations in C in super-position, then no t
assignments satisfy even 0.90 fraction of the equations in C′
in super-position. With this observation, we re-state Theorem

III.5 as:

Theorem III.7. Let F[q] be an extension field of F[2] with
q = 2r. There is a reduction from 3SAT to an instance C
of quadratic equations over F[q] such that,
• The equations have F[2] coefficients and no linear

terms.
• YES Case. If the 3SAT instance is satisfiable then there

is an assignment to C that satisfies all the equations.
In fact there is such an assignment that is F[2] valued.

• NO Case. If the 3SAT instance is unsatisfiable then
there are no t assignments to C that are F[q] valued and
satisfy 0.90 fraction of the equations in super-position
for any 1 ≤ t ≤ k. Here k is a parameter and the
reduction runs in time NO(r log k) where N is the size
of the 3SAT instance.

Note however that the equations in the instance above

have unbounded arity, i.e. a typical equation may depend on

almost all the variables.

REFERENCES

[1] V. Guruswami, J. Håstad, P. Harsha, S. Srinivasan, and
G. Varma, “Super-polylogarithmic hypergraph coloring hard-
ness via low-degree long codes,” in Proc. STOC, 2014, pp.
614–623.

214214

[2] A. Wigderson, “Improving the performance guarantee for
approximate graph coloring,” Journal of the ACM, vol. 30,
no. 4, pp. 729–735, 1983.

[3] A. Blum, “New approximation algorithms for graph coloring,”
Journal of the ACM, vol. 41, no. 3, pp. 470–516, 1994.

[4] D. R. Karger, R. Motwani, and M. Sudan, “Approximate
graph coloring by semidefinite programming,” Journal of the
ACM, vol. 45, no. 2, pp. 246–265, 1998.

[5] A. Blum and D. R. Karger, “An Õ(n3/14)-coloring algo-
rithm for 3-colorable graphs,” Information Processing Letters,
vol. 61, no. 1, pp. 49–53, 1997.

[6] S. Arora, E. Chlamtac, and M. Charikar, “New approximation
guarantee for chromatic number,” in Proc. STOC, 2006, pp.
215–224.

[7] K. Kawarabayashi and M. Thorup, “Combinatorial coloring
of 3-colorable graphs,” in Proc. FOCS, 2012, pp. 68–75.

[8] S. Khanna, N. Linial, and S. Safra, “On the hardness of ap-
proximating the chromatic number,” Combinatorica, vol. 20,
no. 3, pp. 393–415, 2000.

[9] V. Guruswami and S. Khanna, “On the hardness of 4-coloring
a 3-colorable graph,” SIAM Journal of Discrete Mathematics,
vol. 18, no. 1, pp. 30–40, 2004.

[10] S. Huang, “Improved hardness of approximating chromatic
number,” in APPROX-RANDOM, 2013, pp. 233–243.

[11] S. Khot, “Improved inaproximability results for MaxClique,
chromatic number and approximate graph coloring,” in Proc.
FOCS, 2001, pp. 600–609.

[12] I. Dinur, E. Mossel, and O. Regev, “Conditional hardness for
approximate coloring,” SIAM Journal of Computing, vol. 39,
no. 3, pp. 843–873, 2009.

[13] M. Krivelevich, R. Nathaniel, and B. Sudakov, “Approximat-
ing coloring and maximum independent sets in 3-uniform
hypergraphs,” Journal of Algorithms, vol. 41, no. 1, pp. 99–
113, 2001.

[14] H. Chen and A. M. Frieze, “Coloring bipartite hypergraphs,”
in Proc. IPCO, 1996, pp. 345–358.

[15] P. Kelsen, S. Mahajan, and R. Hariharan, “Approximate
hypergraph coloring,” in Proc. SWAT, 1996, pp. 41–52.

[16] K. Kawarabayashi and M. Thorup, “Coloring 3-colorable
graphs with o(n1/5) colors,” in Proc. STACS, 2014, pp. 458–
469.

[17] J. Holmerin, “Vertex cover on 4-regular hyper-graphs is hard
to approximate within 2 - ε,” in Proc. CCC, 2002.

[18] I. Dinur, O. Regev, and C. D. Smyth, “The hardness of 3-
uniform hypergraph coloring,” Combinatorica, vol. 25, no. 5,
pp. 519–535, 2005.

[19] S. Khot, “Hardness results for coloring 3-colorable 3-uniform
hypergraphs,” in Proc. FOCS, 2002, pp. 23–32.

[20] S. Khot and R. Saket, “Hardness of finding independent sets
in 2-colorable and almost 2-colorable hypergraphs,” in Proc.
SODA, 2014, pp. 1607–1625.

[21] R. Saket, “Hardness of finding indpendent sets in 2-colorable
hypergraphs and of satisfiable CSPs,” in Proc. CCC, 2014,
pp. 78–89.

[22] V. Guruswami, J. Håstad, and M. Sudan, “Hardness of ap-
proximate hypergraph coloring,” SIAM Journal of Computing,
vol. 31, no. 6, pp. 1663–1686, 2002.

[23] S. Khot, “Hardness results for approximate hypergraph col-
oring,” in Proc. STOC, 2002, pp. 351–359.

[24] I. Dinur, S. Khot, W. Perkins, and M. Safra, “Hardness of
finding independent sets in almost 3-colorable graphs,” in
Proc. FOCS, 2010, pp. 212–221.

[25] S. Khot and R. Saket, “Hardness of finding independent sets
in almost q-colorable graphs,” in Proc. FOCS, 2012, pp. 380–
389.

[26] S. O. Chan, “Approximation resistance from pairwise inde-
pendent subgroups,” in Proc. STOC, 2013, pp. 447–456.

[27] I. Dinur and G. Kol, “Covering CSPs,” in Proc. CCC, 2013,
pp. 207–218.

[28] S. Khot and R. Saket, “Hardness of coloring 2-colorable

12-uniform hypergraphs with 2(logn)Ω(1)

colors,” ECCC,
vol. 21, p. 51, 2014. [Online]. Available: http://eccc.hpi-web.
de/report/2014/051

[29] B. Barak, P. Gopalan, J. Håstad, R. Meka, P. Raghavendra,
and D. Steurer, “Making the Long Code shorter,” in Proc.
FOCS, 2012, pp. 370–379.

[30] I. Dinur and V. Guruswami, “PCPs via low-degree long code
and hardness for constrained hypergraph coloring,” in Proc.
FOCS, 2013.

[31] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness
of approximate optima in lattices, codes, and systems of linear
equations,” J. Comput. Sys. Sci, vol. 54, no. 2, pp. 317–331,
1997.

[32] M. Bellare, O. Goldreich, and M. Sudan, “Free bits, PCPs,
and nonapproximability-towards tight results,” SIAM Journal
of Computing, vol. 27, no. 3, pp. 804–915, 1998.

[33] J. Håstad, “Some optimal inapproximability results,” Journal
of the ACM, vol. 48, no. 4, pp. 798–859, 2001.

[34] A. Bhattacharyya, S. Kopparty, G. Schoenebeck, M. Sudan,
and D. Zuckerman, “Optimal testing of Reed-Muller codes,”
in Proc. FOCS, 2010, pp. 488–497.

[35] G. Varma, “A note on reducing uniformity in Khot-
Saket hypergraph coloring hardness reductions,” CoRR, vol.
abs/1408.0262, 2014. [Online]. Available: http://arxiv.org/
abs/1408.0262

[36] S. Arora and M. Sudan, “Improved low-degree testing and
its applications,” Combinatorica, vol. 23, no. 3, pp. 365–426,
2003.

215215

