
Dynamic Integer Sets with Optimal Rank, Select, and Predecessor Search

Mihai Pǎtraşcu
Passed away 2012

Mikkel Thorup
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

Email: mikkel2thorup@gmail.com

Abstract—We present a data structure representing a dy-
namic set 𝑆 of 𝑤-bit integers on a 𝑤-bit word RAM. With
∣𝑆∣ = 𝑛 and 𝑤 ≥ log 𝑛 and space 𝑂(𝑛), we support the
following standard operations in 𝑂(log 𝑛/ log𝑤) time:

∙ insert(𝑥) sets 𝑆 = 𝑆 ∪ {𝑥}.
∙ delete(𝑥) sets 𝑆 = 𝑆 ∖ {𝑥}.
∙ predecessor(𝑥) returns max{𝑦 ∈ 𝑆 ∣ 𝑦 < 𝑥}.
∙ successor(𝑥) returns min{𝑦 ∈ 𝑆 ∣ 𝑦 ≥ 𝑥}.
∙ rank(𝑥) returns #{𝑦 ∈ 𝑆 ∣ 𝑦 < 𝑥}.
∙ select(𝑖) returns 𝑦 ∈ 𝑆 with rank(𝑦) = 𝑖, if any.

Our 𝑂(log 𝑛/ log𝑤) bound is optimal for dynamic rank
and select, matching a lower bound of Fredman and Saks
[STOC’89]. When the word length is large, our time bound is
also optimal for dynamic predecessor, matching a static lower
bound of Beame and Fich [STOC’99] whenever log 𝑛/ log𝑤 =
𝑂(log𝑤/ log log𝑤).

Technically, the most interesting aspect of our data structure
is that it supports all the above operations in constant time for
sets of size 𝑛 = 𝑤𝑂(1). This resolves a main open problem of
Ajtai, Komlos, and Fredman [FOCS’83]. Ajtai et al. presented
such a data structure in Yao’s abstract cell-probe model with
𝑤-bit cells/words, but pointed out that the functions used could
not be implemented. As a partial solution to the problem,
Fredman and Willard [STOC’90] introduced a fusion node that
could handle queries in constant time, but used polynomial time
on the updates. We call our small set data structure a dynamic
fusion node as it does both queries and updates in constant
time.

Keywords-dynamic data structures; integer data structures;

I. INTRODUCTION

We consider the problem of representing a dynamic set
𝑆 of integer keys so that we can efficiently support the
following standard operations:

∙ insert(𝑥) sets 𝑆 = 𝑆 ∪ {𝑥}.
∙ delete(𝑥) sets 𝑆 = 𝑆 ∖ {𝑥}.
∙ member(𝑥) returns [𝑥 ∈ 𝑆].
∙ predecessor(𝑥) returns max{𝑦 ∈ 𝑆 ∣ 𝑦 < 𝑥}.
∙ successor(𝑥) returns min{𝑦 ∈ 𝑆 ∣ 𝑦 ≥ 𝑥}. We could

also have demanded 𝑦 > 𝑥, but then the connection to
rank and select below would be less elegant.

∙ rank(𝑥) returns #{𝑦 ∈ 𝑆 ∣ 𝑦 < 𝑥}.
∙ select(𝑖) returns 𝑦 ∈ 𝑆 with rank(𝑦) = 𝑖, if

any. Then predecessor(𝑥) = select(rank(𝑥) − 1) and
successor(𝑥) = select(rank(𝑥)).

Our main result is a deterministic linear space data structure
supporting all the above operations in 𝑂(log 𝑛/ log𝑤) time
where 𝑛 = ∣𝑆∣ is the set size and 𝑤 is the word length. This
is on the word RAM which models what can be implemented
in a programming language such as C [1] which has been

used for fast portable code since 1978. Word operations
take constant time. The word size 𝑤, measured in bits, is
a unifying parameter of the model. All integers considered
are assumed to fit in a word, and with ∣𝑆∣ = 𝑛, we assume
𝑤 ≥ log 𝑛 so that we can at least index the elements in 𝑆.
The random access memory of the word RAM implies that
we can allocate tables or arrays of words, accessing entries
in constant time using indices that may be computed from
keys. This feature is used in many classic algorithms, e.g.,
radix sort [2] and hash tables [3].

A unifying word size was not part of the original RAM
model [4]. However, real CPUs are tuned to work on words
and registers of a certain size 𝑤 (sometimes two sizes,
e.g., 32 and 64 bit registers). Accessing smaller units, e.g.,
bits, is more costly as they have to be extracted from
words. On the other hand, with unlimited word size, we
can use word operations to encode a massively parallel
vector operations unless we make some artificial restrictions
on the available operations [5]. The limited word size is
equivalent to a “polynomial universe” restriction where all
integers used are bounded by a polynomial in the problem
size and sum of the integers in the input. Restrictions of
this type are present in Yao’s cell-probe model [6] and in
Kirkpatrick and Reisch’s integer sorting [7]. Fredman and
Willard [8] made the word length explicit in their seminal
𝑂(𝑛 log 𝑛/ log log 𝑛) = 𝑜(𝑛 log 𝑛) sorting algorithm.

Our 𝑂(log 𝑛/ log𝑤) bound is optimal for dynamic rank
and select, matching a lower bound of Fredman and Saks
[9]1. The lower bound is in Yao’s cell-probe model [6]
where we only pay for probing cells/words in memory. The
lower bound is for the query time and holds even with
polylogarithmic update times. Conceivably, one could get the
same query time with constant time updates. Our optimality
is for the maximal operation time including both queries and
updates.

When the word length is large, our time bound is also op-
timal for dynamic predecessor, matching a cell-probe lower
bound of Beame and Fich [10] whenever log 𝑛/ log𝑤 =
𝑂(log𝑤/ log log𝑤). This lower bound is for the query time
in the static case with any polynomial space representation
of the set 𝑆. Contrasting rank and select, predecessor admits
faster solutions when the word length is small, e.g., van
Emde Boas’ [11] 𝑂(log𝑤) time bound. The predecessor
bounds for smaller word lengths are essentially understood if

1For rank, see Theorem 3 and remark after Theorem 4 in [9]. The lower
bound for select follows by another simple reduction to be presented here.

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.26

166

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.26

166

we allow randomization, and then our new bound completes
the picture for dynamic predecessor search. With key length
ℓ ≤ 𝑤, we will get that the optimal expected maximal
operation time for dynamic predecessor (no rank or select)
is within a constant factor of

max{1,min

⎧⎨
⎩

log𝑛
log𝑤

log ℓ
log𝑤

log
(
log ℓ

log 𝑤 / log log 𝑛
log 𝑤

)

log log(2ℓ−𝑛)
log𝑤

Our clean 𝑂(log 𝑛/ log𝑤) bound for dynamic predecessor
search should be compared with Fredman and Willard’s [8]
bound of 𝑂(log 𝑛/ log𝑤+

√
log 𝑛)2. For larger words, it was

improved to 𝑂(log 𝑛/ log𝑤 + log log 𝑛) by Andersson and
Thorup [13], but the log log 𝑛 term still prevents constant
time when log 𝑛 = 𝑂(log𝑤).

Technically, the most interesting aspect of our data struc-
ture is that it operates in constant time for sets of size
𝑛 = 𝑤𝑂(1). This resolves a main open problem of Ajtai,
Komlos, and Fredman [14]. Ajtai et al. presented such a
data structure in Yao’s abstract cell-probe model with 𝑤-bit
cells/words, but pointed out that the functions used could
not be implemented. As a partial solution to the problem,
Fredman and Willard [8] introduced a fusion node that could
handle queries in constant time, but used polynomial time
on the updates. Despite inefficient updates, this lead them
to the first sub-logarithmic bounds for dynamic predecessor
searching mentioned above. We call our data structure for
small sets a dynamic fusion node as it does both queries and
updates in constant time.

Fredman and Willard [15] later introduced atomic heaps
that using tables of size 𝑠 can handle all operations in
constant time for sets of size (log 𝑠)𝑂(1). Our focus is on
understanding the asymptotic impact of a large word length.
We only use space linear in the number of stored keys, but
our capacity for sets of size 𝑤𝑂(1) with constant operation
time is the largest possible regardless of the available space.
Such a large set size is new even in the simple case of a
deterministic dynamic dictionary with just membership and
updates in constant time.

Like Fredman and Willard [8], [15], we do use multipli-
cation. Thorup [16] has proved that this is necessary, even
if we just want to support membership in constant time for
sets of size Ω(log 𝑛) using standard instructions. However,
as in [17] for the classic static fusion nodes, if we allow
self-defined non-standard operations, then we can implement
our algorithms using AC0 operations only. The original cell-
probe solution from [14] does not seem to have an AC0

implementation even if we allow non-standard operations.
We emphasize that our new dynamic fusion nodes gen-

erally both simplify and improve the application of fusion
nodes in dynamic settings, most notably in the original
fusion trees [8] which with the original fusion nodes had

2[8] describe it as 𝑂(log𝑛/ log 𝑏+log 𝑏) for any 𝑏 ≤ 𝑤1/6, from which
they get 𝑂(log𝑛/ log log𝑛) since 𝑤 ≥ log𝑛.

to switch to a different technique towards the bottom of the
trees (c.f. Section IV), yet never got optimal results for large
word-lengths. Fusion nodes are useful in many different
settings as illustrated by Willard [18] for computational
geometry.

Contents and techniques: Our new dynamic fusion
node takes starting point in ideas and techniques from [14],
[8] bringing them together in a tighter solution that for
sets of size up to 𝑘 = 𝑤1/4 supports all operations in
constant time using only standard instructions. In Section II
we review the previous techniques, emphasizing the parts
and ideas that we will reuse, but also pointing to their
limitations. In Section III, we describe the new dynamic
fusion nodes, constituting our core technical contribution.
An important idea is that we use matching with don’t cares
to code the search in a compressed trie. In Section IV, we
show how to use our dynamic fusion nodes in a fusion
tree for arbitrary set size 𝑛, supporting all operations in
time 𝑂(log 𝑛/ log 𝑘) = 𝑂(log 𝑛/ log𝑤). This is 𝑂(1) for
𝑛 = 𝑤𝑂(1). Because our fusion nodes are dynamic, we
avoid the dynamic binary search tree at the bottom of the
original fusion trees [8]. Our fusion trees are augmented to
handle rank and select, using techniques from [19], [20]. In
Section V we describe in more details how we get matching
lower bounds from [9], [10]. Finally, in Section VI, we
complete the picture for randomized dynamic predecessor
search with smaller key lengths using the techniques from
[12].

II. NOTATION AND REVIEW OF PREVIOUS TECHNIQUES

We let lg denote log2 and define [𝑚] = {0, ...,𝑚 − 1}.
Integers are represented in 𝑤-bit words with the least signif-
icant bit the to the right. We shall use 0 and 1 to denote the
bits 0 and 1, contrasting the numbers 0 and 1 that in words
are padded with 𝑤−1 leading 0s. When working with 𝑤-bit
integers, we will use the standard arithmetic operations +,
−, and ×, all working modulo 2𝑤. We will use the standard
bit-wise Boolean operations: ∧ (and), ∨ (or), ⊕ (exclusive-
or), and ¬ (bit-negation). We also have left shift ≪ and right
shift ≫.

As is standard in assignments, e.g., in C [1], if we assign
an ℓ0-bit number 𝑥 to a ℓ1-bit number 𝑦 and ℓ0 < ℓ1, then
ℓ1 − ℓ0 leading 0s are added. If ℓ0 > ℓ1, the ℓ0 − ℓ1 leading
bits of 𝑥 are discarded.

Fields of words: Often we view words as divided into
fields of some length 𝑓 . We then use 𝑥⟨𝑖⟩𝑓 to denote the
𝑖th field, starting from the right with 𝑥⟨0⟩𝑓 the right most
field. Thus 𝑥 represents the integer

∑𝑤−1
𝑖=0 2𝑖𝑥⟨𝑖⟩1. Note that

fields can easily be masked out using regular instructions,
e.g.,

𝑥⟨𝑖⟩𝑓 = (𝑥 ≫ (𝑖× 𝑓)) ∧ ((1 ≪ 𝑓)− 1).

A field assignment like 𝑥⟨𝑖⟩𝑓 = 𝑦 is implemented as

𝑥 = (𝑥 ∧ ¬𝑚) ∨ ((𝑦 ≪ (𝑖× 𝑓)) ∧𝑚) where

𝑚 = ((1 ≪ 𝑓)− 1) ≪ (𝑖× 𝑓)

167167

Similarly, in constant time, we can mask out intervals of
fields, using

𝑥⟨𝑖..𝑗⟩𝑓 = (𝑥 ≫ (𝑖× 𝑓)) ∧ ((1 ≪ ((𝑗 − 𝑖)× 𝑓))− 1),

𝑥⟨𝑖..∗⟩𝑓 = (𝑥 ≫ (𝑖× 𝑓)).

For two-dimensional divisions of words into fields, we use
the notation

𝑥⟨𝑖, 𝑗⟩𝑔×𝑓 = 𝑥⟨𝑖× 𝑔 + 𝑗⟩𝑓 .
Finding the most and least significant bits in constant

time: We have an operation msb(𝑥) that for an integer 𝑥
computes the index of its most significant set bit. Fredman
and Willard [8] showed how to implement this in constant
time using multiplication, but msb can also be implemented
very efficiently by assigning 𝑥 to a floating point number
and extract the exponent. A theoretical advantage to using
the conversion to floating point numbers is that we avoid the
universal constants depending on 𝑤 used in [8].

Using msb, we can also easily find the least significant
bit of 𝑥 as lsb(𝑥) = msb((𝑥− 1)⊕ 𝑥).

Small sets of size 𝑘: Our goal is to maintain a dynamic
set of some size 𝑘 = 𝑤Θ(1). Ajtai et al. [14] used
𝑘 = 𝑤/ log𝑤 whereas Fredman and Willard [8] used
𝑘 = 𝑤1/6. We will ourselves use 𝑘 = 𝑤1/4. The exact
value makes no theoretical difference, as our overall bound
is 𝑂(log 𝑛/ log 𝑘) = 𝑂(log 𝑛/ log𝑤), which is 𝑂(1) for
𝑘 = 𝑤Ω(1) and 𝑛 = 𝑤𝑂(1).

For simplicity, we assume below that 𝑘 is fixed, and
we define various constants based on 𝑘, e.g., (0𝑘−11𝑘)𝑘.
However, using doubling, our constants can all be computed
in 𝑂(log 𝑘) time. We let 𝑘 be a power of two, that we
double as the sets grow larger. Then the cost of computing
the constants in the back ground is negligible.

Indexing: We will store our key set 𝑆 in an unsorted
array 𝐾𝐸𝑌 with room for 𝑘 𝑤-bit numbers. We will also
maintain an array 𝐼𝑁𝐷𝐸𝑋 of ⌈lg 𝑘⌉-bit indices so that
𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉ is the index in 𝐾𝐸𝑌 of the key in 𝑆 of
rank 𝑖 in the sorted order. An important point here is that
𝐼𝑁𝐷𝐸𝑋 with its 𝑘⌈lg 𝑘⌉ bits fits in a single word. Selection
is now trivially implemented as

select(𝑖) = 𝐾𝐸𝑌
[
𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉

]
.

When looking for the predecessor of a query key 𝑥, we will
just look for its rank 𝑖 and return select(𝑖).

Consider the insertion of a new key 𝑥, supposing that we
have found its rank 𝑖. To support finding a free slot in 𝐾𝐸𝑌 ,
we maintain a bit map 𝑏𝐾𝐸𝑌 over the used slots, and use
𝑗 = msb(𝑏𝐾𝐸𝑌) as the first free slot. To insert 𝑥, we set
𝐾𝐸𝑌 [𝑗] = 𝑥 and 𝑏𝐾𝐸𝑌 ⟨𝑗⟩1 = 0. To update 𝐼𝑁𝐷𝐸𝑋 ,
we set 𝐼𝑁𝐷𝐸𝑋⟨𝑖+ 1..𝑘⟩⌈lg 𝑘⌉ = 𝐼𝑁𝐷𝐸𝑋⟨𝑖..𝑘 − 1⟩⌈lg 𝑘⌉
and 𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉ = 𝑗. Deleting a key is just reversing
the above.

Binary trie: A binary trie [21] for 𝑤-bit keys is a binary
tree where the children of an internal node are labeled 0 and
1, and where all leaves are at depth 𝑤. A leaf corresponds
to the key represented by the bits along the path to the root,
the bit closest to the leaf being the least significant. Let

𝑇 (𝑆) be the trie of a key set 𝑆. We define the level ℓ(𝑢)
of an internal trie node 𝑢 to be the height of its children.
To find the predecessor of a key 𝑥 in 𝑆 we follow the path
from the root of 𝑇 (𝑆), matching the bits of 𝑥. When we get
to a node 𝑢 in the search for 𝑥, we pick the child labeled
𝑥⟨ℓ(𝑢)⟩1. If 𝑥 ∕∈ 𝑆, then at some stage we get to a node 𝑢
with a single child 𝑣 where 𝑥⟨ℓ(𝑢)⟩1 is opposite the bit of
𝑣. If 𝑥⟨ℓ(𝑢)⟩1 = 1, the predecessor of 𝑥 in 𝑆 the largest key
below 𝑣. Conversely, if 𝑥⟨ℓ(𝑢)⟩1 = 0, the successor of 𝑥 in
𝑆 is the smallest key below 𝑣.

Compressed binary trie: In a compressed binary trie,
or Patricia trie [22], we take the trie and short cut all paths of
degree-1 nodes so that we only have degree-2 branch nodes
and leaves, hence at most 2𝑘 − 1 nodes. This shortcutting
does not change the level ℓ of the remaining nodes.

To search a key 𝑥 in the compressed trie 𝑇 𝑐(𝑆), we start
at the root. When we are at node 𝑢, as in the trie, we
go to the child labeled 𝑥⟨ℓ(𝑢)⟩1. Since all interior nodes
have two children, this search always finds a unique leaf
corresponding to some key 𝑦 ∈ 𝑆, and we call 𝑦 the match
of 𝑥.

The standard observation about compressed tries is that
if 𝑥 matches 𝑦 ∈ 𝑆, then no key 𝑧 ∈ 𝑆 can have a longer
common prefix with 𝑥 than 𝑦. To see this, first note that if
𝑥 ∈ 𝑆, then the search must end in 𝑥, so we may assume
that 𝑥 matches some 𝑦 ∕= 𝑥. Let 𝑗 be the most significant
bit where 𝑥 and 𝑦 differ, that is, 𝑗 = msb(𝑥 ⊕ 𝑦). If 𝑧 had
a longer common prefix with 𝑥 then it would branch from
𝑦 at level 𝑗, and then the search for 𝑥 should have followed
the branch towards 𝑧 instead of the branch to 𝑦. The same
observation implies that there was no branch node on level
𝑗 above the leaf of 𝑦. Let 𝑣 be the first node below level 𝑗
on the search path to 𝑦. As for the regular trie we conclude
that if 𝑥⟨ℓ(𝑢)⟩1 = 1, the predecessor of 𝑥 in 𝑆 the largest
key below 𝑣. Conversely, if 𝑥⟨ℓ(𝑢)⟩1 = 0, the successor of
𝑥 in 𝑆 is the smallest key below 𝑣.

To insert the above 𝑥, we would just insert a branch node
𝑢 on level 𝑗 above 𝑦. The parent of 𝑢 is the previous parent
of 𝑣. A new leaf corresponding to 𝑥 is the 𝑥⟨𝑗⟩1-child of 𝑢
while 𝑣 is the other child.

Ajtai et al.’s cell probe solution: We can now easily
describe the cell probe solution of Ajtai et al. [14]. We
are going to reuse the parts that can be implemented on
a word RAM, that is, the parts that only need standard word
operations.

As described previously, we assume that our set 𝑆 is
stored in an unordered array 𝐾𝐸𝑌 of 𝑘 words plus a single
word 𝐼𝑁𝐷𝐸𝑋 such that 𝐾𝐸𝑌 [𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉] is the
key of rank 𝑖 in 𝑆.

We represent the compressed trie in an array 𝑇 𝑐 with 𝑘−1
entries representing the internal nodes, the first entry being
the root. Each entry needs its level in [𝑤] plus an index in
[𝑘] to each child, or nil if the child is a leaf. We thus need
𝑂(log𝑤) bits per node entry, or 𝑂(𝑘 log𝑤) = 𝑜(𝑤) bits
for the whole array 𝑇 𝑐 describing the compressed trie. The
ordering of children induces an ordering of the leaves, and
leaf 𝑖, corresponds to key 𝐾𝐸𝑌 [𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉].

In the cell-probe model, we are free to define arbitrary

168168

word operation involving a constant number of words,
including new operations on words representing compressed
tries. We define a new word operation 𝑇𝑟𝑖𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑥, 𝑇 𝑐)
that given a key 𝑥 and a correct representation of a com-
pressed trie 𝑇 𝑐, returns the index 𝑖 of the leaf matching 𝑥
in 𝑇 𝑐. We then look up 𝑦 = 𝐾𝐸𝑌 [𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉], and
compute 𝑗 = msb(𝑥 ⊕ 𝑦). A second new word operation
𝑇𝑟𝑖𝑒𝑃𝑟𝑒𝑑(𝑥, 𝑇 𝑐, 𝑗) returns the rank 𝑟 of 𝑥 in 𝑆, assuming
that 𝑥 branches of from 𝑇 𝑐 at level 𝑗.

To insert a key 𝑥 in the above data structure, we first
compute the rank 𝑟 of 𝑥 in 𝑆 and then we insert 𝑥 in 𝐾𝐸𝑌
and 𝐼𝑁𝐷𝐸𝑋 , as described previously. A third new word
operation 𝑇𝑟𝑖𝑒𝐼𝑛𝑠𝑒𝑟𝑡(𝑇 𝑐, 𝑥, 𝑗, 𝑟) changes 𝑇 𝑐, inserting a
new leaf at rank 𝑟, adding the appropriate branch node on
level 𝑗 with child 𝑥⟨𝑗⟩1 being the new leaf.

Summing up, in the cell probe model, it is easy to support
all our operations on a small dynamic set of integers, exploit-
ing that a compressed trie can be coded in a word, hence that
we can navigate a compressed trie using specially defined
word operations. Ajtai et al. [14] write “Open Question.
We conclude by stating the following problem. Our query
algorithm is not very realistic, as searching through a trie
requires more than constant time in actuality”.

Fredman and Willard’s static fusion nodes with com-
pressed keys: Fredman and Willard [8] addressed the above
problem, getting the searching in to constant time using only
standard instructions, but with no efficient updates. Their
so-called fusion node supports constant time predecessor
searches among up to 𝑤1/6 keys. However, with 𝑘 keys,
it takes 𝑂(𝑘4) time for them to construct a fusion node.

Fredman and Willard proved the following lemma that we
shall use repeatedly:

Lemma 2.1: Let 𝑚𝑏 ≤ 𝑤. If we are given a 𝑏-bit number
𝑥 and a word 𝐴 with 𝑚 𝑏-bit numbers stored in sorted order,
that is, 𝐴⟨0⟩𝑏 < 𝐴⟨1⟩𝑏 < ⋅ ⋅ ⋅ < 𝐴⟨𝑚− 1⟩𝑏, then in constant
time, we can find the rank of 𝑥 in 𝐴, denoted rank(𝑥,𝐴).
The basic idea behind the lemma is to first use multiplication
to create 𝑥𝑚 consisting of 𝑚 copies of 𝑥; then use a
subtraction to code a coordinate-wise comparison 𝐴⟨𝑖⟩𝑏 < 𝑥
for every 𝑖, and finally use msb to find the largest such 𝑖.

Next, they note that for the ordering of the keys in 𝑆, it
suffices to consider bits in positions 𝑗 such that for some
𝑦, 𝑧 ∈ 𝑆, 𝑗 = msb(𝑦 ⊕ 𝑧). These are exactly the positions
where we have branch node somewhere in the trie. Let 𝑐0 <
.. < 𝑐ℓ−1 be these significant positions. Then ℓ < 𝑘.

After computing some variables based on 𝑆, they show
that in constant time, they can compress a key 𝑥 so as to
(essentially) only contain the significant positions (plus some
irrelevant 0s). Their compressed key �̂� is of length 𝑏 ≤ 𝑘3.
Let 𝑆 denote a sorted array with the compressed versions
of the keys from 𝑆. With 𝑘4 ≤ 𝑤, the array fits in a single
word, and they can therefore compute 𝑖 = rank(�̂�, 𝑆) in
constant time. Then 𝑆⟨𝑖⟩𝑏 is the predecessor of �̂� in 𝑆, and
𝑆⟨𝑖+ 1⟩𝑏 is the successor. One of these, say 𝑦 = 𝑆⟨𝑖⟩𝑏, has
the longest common prefix with �̂�, and they argue that then
the original key 𝑦 = 𝐾𝐸𝑌

[
𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉

]
must also

have the longest common prefix with 𝑥 in 𝑆.

Next, they compute 𝑗 = msb(𝑥 ⊕ 𝑦) and see where
it fits between the significant bits, computing ℎ =
rank(𝑗, (𝑐0, ..., 𝑐ℓ)), that is, 𝑐ℎ < 𝑗 ≤ 𝑐ℎ+1. Referring to
the compressed trie representation, 𝑖 and ℎ tells us exactly
in which shortcut edge (𝑢, 𝑣), the key 𝑥 branches out. The
predecessor of 𝑥 is the largest key below 𝑦 if 𝑥⟨𝑗⟩1 = 1;
otherwise, the successor is the smallest key below 𝑦. The
important point here is that they can create a table 𝑅𝐴𝑁𝐾
that for each value of 𝑖 ∈ [𝑘], ℎ ∈ [𝑘], and 𝑥⟨𝑗⟩1 ∈ [2],
returns the rank 𝑟 ∈ [𝑘] of 𝑥 in 𝑆. From the rank we get the
predecessor 𝐾𝐸𝑌

[
𝐼𝑁𝐷𝐸𝑋⟨𝑟⟩⌈lg 𝑘⌉

]
, all in constant time.

Fredman and Willard [8] construct the above fusion node
in 𝑂(𝑘4) time. While queries take constant time, updates
are no more efficient than computing the fusion node from
scratch.

III. DYNAMIC FUSION NODES

We are now going to present our dynamic fusion node
that for given 𝑘 ≤ 𝑤1/4 maintains a dynamic set 𝑆 of up
to 𝑘 𝑤-bit integers, supporting both updates and queries in
constant time using only standard operations on words, thus
solving the open problem of Ajtai et al. [14].

As before, we assume that our set 𝑆 is stored in an
unordered array 𝐾𝐸𝑌 of 𝑘 words plus a single word
𝐼𝑁𝐷𝐸𝑋 such that select(𝑖) = 𝐾𝐸𝑌 [𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉]
is the key of rank 𝑖 in 𝑆. As described in the introduction,
we can easily compute predecessor and successor using rank
and select.

A. Matching with don’t cares

One of the problems making Fredman and Willard’s
fusion nodes dynamic is that when a key is inserted, we
may get a new significant position 𝑗. Then, for every key
𝑦 ∈ 𝑆, we have to insert 𝑦⟨𝑗⟩1 into the compressed key 𝑦,
and there seems to be no easy way to support this change
in constant time per update. In contrast, with a compressed
trie, when a new key is inserted, we only have to include a
single new branch node. However, as stated by Ajtai et al.
[14], searching the compressed trie takes more than constant
time.

Here, we will introduce don’t cares in the compressed
keys so as to make a perfect simulation of the compressed
trie search in constant time, and yet support updates in
constant time. Introducing don’t cares may seem rather
surprising in that they normally make problems harder, not
easier, but in our context of small sets, it turns out that using
don’t cares is just the right thing to do. The basic idea is
illustrated in Figure III.1.

Initially, we ignore the key compression, and focus only
on our simulation of the search in a compressed trie. For a
key 𝑦 ∈ 𝑆, we will only care about bits 𝑦⟨𝑗⟩1 such that 𝑗 =
msb(𝑦 ⊕ 𝑧) for some other 𝑧 ∈ 𝑆. An equivalent definition
is that if the trie has a branch node 𝑢 at some level 𝑗, then
we care about position 𝑗 for all keys 𝑦 descending from
𝑢. We will now create a key 𝑦? from 𝑦 using characters
from {0,1,?}. Even though these characters are not just
bits, we let 𝑦?⟨𝑗⟩1 denote the 𝑗th character of 𝑦. We set

169169

7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 0 4
1 1 0 1 1 0 1 0 3
1 1 0 1 0 0 1 0 2
1 0 0 1 0 0 1 0 1
1 0 0 1 0 0 0 1 0

An array with four 8-bit keys with bit positions on top and
ranks on the right.

7 6 5 4 3 2 1 0
1 4
0 1 3

1 0 2
0 1 1

0 0

Compressed trie as used by Ajtai et al. [14]

6 5 3 1
1 1 1 1 4
1 0 1 1 3
1 0 0 1 2
0 0 0 1 1
0 0 0 0 0

Compressed keys as used by Fredman and Willard [8].

6 5 3 1
1 1 ? ? 4
1 0 1 ? 3
1 0 0 ? 2
0 ? ? 1 1
0 ? ? 0 0

Compressed keys but with don’t cares (?) in positions that
are not used for branching in the (compressed) trie.

6 5 3 1
1 1 𝑥3 𝑥1 4
1 0 1 𝑥1 3
1 0 0 𝑥1 2
0 𝑥5 𝑥3 1 1
0 𝑥5 𝑥3 0 0

When searching a key 𝑥, we replace don’t cares at position
𝑗, with the 𝑗th bit 𝑥𝑗 of 𝑥.

Figure III.1. Representations of a given key set.

𝑦?⟨𝑗⟩1 = ? if we do not care about position 𝑗 in 𝑦; otherwise
𝑦?⟨𝑗⟩1 = 𝑦⟨𝑗⟩1.

A query key 𝑥 matches 𝑦? if and only if 𝑥⟨𝑗⟩1 = 𝑦?⟨𝑗⟩1
for all 𝑗 such that 𝑦?⟨𝑗⟩1 ∕= ?. Then 𝑥 matches 𝑦? if and
only if we get to 𝑦 when searching 𝑥 in the compressed trie
over 𝑆. Since such a search in a compressed trie is always
successful, we know that every 𝑥 has a match 𝑦?, 𝑦 ∈ 𝑆.

Observation 3.1: Let 𝑦? be the match of 𝑥, and suppose
𝑦 ∕= 𝑥. Set 𝑗 = msb(𝑥 ⊕ 𝑦). If 𝑥 < 𝑦, then 𝑥 ∧ (1𝑤−𝑗0𝑗)
matches 𝑧? where 𝑧 is the successor of 𝑥. If 𝑥 > 𝑦, then
𝑥 ∨ (0𝑤−𝑗1𝑗) matches 𝑧? where 𝑧 is the predecessor of 𝑥.

Proof: Since 𝑥 matches 𝑦?, we know that 𝑦⟨𝑗⟩1 = ?.
Let (𝑢, 𝑣) be the shortcut in the compressed trie bypassing
position 𝑗. If 𝑥 < 𝑦, the successor of 𝑥 is the smallest
key below 𝑣, which is exactly what we find when we search
𝑥∧(1𝑤−𝑗0𝑗) since we always pick the 0-child starting from
𝑣. Likewise if 𝑥 > 𝑦, the predecessor of 𝑥 is the largest
key below 𝑦, which is exactly what we find when we search
𝑥∨(0𝑤−𝑗1𝑗) since we always pick the 1-child starting from
𝑣.
Observation 3.1 implies that two matchings suffice to find
the predecessor or successor of a key 𝑥. The second match-
ing eliminates the need of the table RANK in the original
static fusion nodes described above. This two step approach
is similar to the “blind” compressed trie search for integers
by Grossi et al. [23]. However, Grossi et al. do not use
our matching with don’t cares. Their data structure is static
without updates, and they use tables of size 2Ω(𝑤) like in
Fredman and Willard’s atomic heaps [15].

Next we observe that the key compression of fusion nodes
does not affect the matching of keys with don’t cares, for
if we for some key care for position 𝑗, then by definition
this is a significant position. Conversely this means that an
insignificant position is a don’t care in all keys, so skipping
insignificant positions does not affect the matching, that is,
𝑥 matches 𝑦? if and only if �̂� matches 𝑦? where �̂� and 𝑦?

are the compressed version of 𝑥 and 𝑦?.
In Section III-B, we will show how to maintain a perfect

compression which keeps the significant positions only.
Thus, if ℓ ≤ 𝑘 is the number of significant positions, then
�̂� and 𝑦? will both of length ℓ (recall that Fredman and
Willard [8] had 𝑘3 bits in their compressed keys, and they
did not show how to update the compression when new keys
got inserted). For consistent formatting, we view compressed
keys as having 𝑘 bits with 𝑘 − ℓ leading 0s.

To check if �̂� matches 𝑦?, we will create 𝑦�̂� such that
𝑦�̂�⟨ℎ⟩1 = 𝑦⟨ℎ⟩1 if 𝑦?⟨ℎ⟩1 ∕= ? while 𝑦�̂�⟨ℎ⟩1 = �̂�⟨ℎ⟩1 if
𝑦?⟨ℎ⟩1 = ?. Then �̂� matches 𝑦? if and only if �̂� = 𝑦�̂�.

Note that if 𝑦, 𝑧 ∈ 𝑆 and 𝑥 is any 𝑤-bit key, then 𝑦 <
𝑧 ⇐⇒ 𝑦�̂� < 𝑧�̂�. This is because the bits from 𝑥 do not
introduce any new branchings between the keys 𝑦, 𝑧 ∈ 𝑆.

We will create 𝑦�̂� for all 𝑦 ∈ 𝑆 simultaneously in constant
time. To this end, we maintain two 𝑘 × 𝑘 bit matrices
𝐵𝑅𝐴𝑁𝐶𝐻 and 𝐹𝑅𝐸𝐸 that together represent the stored
compressed keys with don’t cares. Let 𝑦 be the key of rank
𝑖 in 𝑆, and let 𝑐ℎ be a significant position. If 𝑦?⟨ℎ⟩1 ∕= ?,
then 𝐵𝑅𝐴𝑁𝐶𝐻⟨𝑖, ℎ⟩𝑘×1 = 𝑦⟨ℎ⟩1 and 𝐹𝑅𝐸𝐸⟨𝑖, ℎ⟩𝑘×1 =
0. If 𝑦?⟨ℎ⟩1 = ?, then 𝐵𝑅𝐴𝑁𝐶𝐻⟨𝑖, ℎ⟩𝑘×1 = 0 and

170170

𝐹𝑅𝐸𝐸⟨𝑖, ℎ⟩𝑘×1 = 1. For a compressed key �̂�, let �̂�𝑘 denote
𝑥 repeated 𝑘 times, obtained multiplying 𝑥 by the constant
(0𝑘−11)𝑘. Then 𝐵𝑅𝐴𝑁𝐶𝐻 ∨ (�̂�𝑘 ∧𝐹𝑅𝐸𝐸) is the desired
array of the 𝑦�̂� for 𝑦 ∈ 𝑆, and we define

match(𝑥) = rank(�̂�, 𝐵𝑅𝐴𝑁𝐶𝐻 ∨ (�̂�𝑘 ∧ 𝐹𝑅𝐸𝐸)).

Here rank is implemented as in Lemma 2.1, and then
match(𝑥) gives the index of the 𝑦? matching 𝑥. By
Observation 3.1, we can therefore compute the rank of 𝑥 in
𝑆 as follows.

rank(𝑥) :
∙ 𝑖 = match(𝑥).
∙ 𝑦 = 𝐾𝐸𝑌

[
𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉

]
.

∙ if 𝑥 = 𝑦 return 𝑖.
∙ 𝑗 = msb(𝑥⊕ 𝑦).
∙ 𝑖0 = match(𝑥 ∧ (1𝑤−𝑗0𝑗)).
∙ 𝑖1 = match(𝑥 ∨ (0𝑤−𝑗1𝑗)).
∙ if 𝑥 < 𝑦, return 𝑖0 − 1.
∙ if 𝑥 > 𝑦, return 𝑖1.

Inserting a key: We will only insert a key 𝑥 after we
have applied rank(𝑥) as above, verifying that 𝑥 ∕∈ 𝑆. This
also means that we have computed 𝑗, 𝑖0 and 𝑖1, where 𝑗
denotes the position where 𝑥 should branch off as a leaf
child. The keys below the other child are exactly those with
indices 𝑖0, ..., 𝑖1.

Before we continue, we have to consider if 𝑗 is a new
significant position, say with rank ℎ among the current sig-
nificant positions. If so, we have to update the compression
function to include 𝑗, as we shall do it in Section III-B. The
first effect on the current compressed key arrays is to insert
a column ℎ of don’t cares. This is a new column of 0s in the
𝐵𝑅𝐴𝑁𝐶𝐻 array, and a column of 1s in the 𝐹𝑅𝐸𝐸 array.
To achieve this effect, we first have to shift all columns ≥ ℎ
one to the left. To do this, we need some simple masks. The
𝑘 × 𝑘 bit matrix 𝑀ℎ with column ℎ set is computed as

𝑀ℎ = (0𝑘−11)𝑘 ≪ ℎ,

and the 𝑘 × 𝑘 bit matrix 𝑀𝑖:𝑗 with columns 𝑖, ..., 𝑗 set are
computed as

𝑀𝑖:𝑗 = 𝑀𝑗+1 −𝑀𝑖.

This calculation does not work for 𝑀0:𝑘−1 which in-
stead is trivially computed as 𝑀0:𝑘−1 = 1𝑘2

. For 𝑋 =
𝐵𝑅𝐴𝑁𝐶𝐻,𝐹𝑅𝐸𝐸, we want to shift all columns ≥ ℎ one
to the left. This is done by

𝑋 = (𝑋 ∧𝑀0:ℎ−1) ∨ ((𝑋 ∧𝑀ℎ:𝑘−1) ≪ 1).

To fix the new column ℎ, we set

𝐹𝑅𝐸𝐸 = 𝐹𝑅𝐸𝐸 ∨𝑀ℎ

𝐵𝑅𝐴𝑁𝐶𝐻 = 𝐵𝑅𝐴𝑁𝐶𝐻 ∧ ¬𝑀ℎ.

We have now made sure that column ℎ corresponding to
position 𝑗 = 𝑐ℎ is included as a significant position in
𝐵𝑅𝐴𝑁𝐶𝐻 and 𝐹𝑅𝐸𝐸. Now, for all keys with indices
𝑖0, ..., 𝑖1, we want to set the bits in column ℎ to 𝑦⟨𝑗⟩1. To

do this, we compute the 𝑘 × 𝑘 bit mask 𝑀 𝑖0:𝑖1 with rows
𝑖0, ..., 𝑖1 set

𝑀 𝑖0:𝑖1 = (1 ≪ ((𝑖1 + 1)× 𝑘))− (1 ≪ (𝑖0 × 𝑘))

and then we mask out column ℎ within these rows by

𝑀 𝑖0:𝑖1
ℎ = 𝑀 𝑖0:𝑖1 ∧𝑀ℎ.

We now set

𝐹𝑅𝐸𝐸 = 𝐹𝑅𝐸𝐸 ∧ ¬𝑀 𝑖0:𝑖1
ℎ

𝐵𝑅𝐴𝑁𝐶𝐻 = 𝐵𝑅𝐴𝑁𝐶𝐻 ∨ (𝑀 𝑖0:𝑖1
ℎ × 𝑦⟨𝑗⟩1)

We now need to insert the row corresponding to �̂�?

with 𝑟 = rank(𝑥). Making room for row 𝑟 in 𝑋 =
𝐵𝑅𝐴𝑁𝐶𝐻,𝐹𝑅𝐸𝐸, is done by

𝑋 = (𝑋 ∧𝑀0:𝑟−1) ∨ ((𝑋 ∧𝑀𝑟:𝑘−1) ≪ 𝑘).

We also need to create the new row corresponding to �̂�?. Let
𝑦? be the compressed key with don’t cares that 𝑥 matched.
Then

�̂�?⟨0..ℎ− 1⟩1 = ?ℎ

�̂�?⟨ℎ⟩1 = 𝑥⟨𝑗⟩1
�̂�?⟨ℎ+ 1..𝑘 − 1⟩1 = 𝑦?⟨ℎ+ 1..𝑘 − 1⟩1

With 𝑖 the index of 𝑦 after the above insertion of row 𝑟 for
𝑥, we thus set

𝐵𝑅𝐴𝑁𝐶𝐻⟨𝑟, 0..ℎ− 1⟩𝑘×1 = 0ℎ

𝐹𝑅𝐸𝐸⟨𝑟, 0..ℎ− 1⟩𝑘×1 = 1ℎ

𝐵𝑅𝐴𝑁𝐶𝐻⟨𝑟, ℎ⟩𝑘×1 = 𝑥⟨𝑗⟩1
𝐹𝑅𝐸𝐸⟨𝑟, ℎ⟩𝑘×1 = 0

𝐵𝑅𝐴𝑁𝐶𝐻⟨𝑟, ℎ+ 1..𝑘 − 1⟩𝑘×1 =

𝐵𝑅𝐴𝑁𝐶𝐻⟨𝑖, ℎ+ 1..𝑘 − 1⟩𝑘×1

𝐹𝑅𝐸𝐸⟨𝑟, ℎ+ 1..𝑘 − 1⟩𝑘×1 =

𝐹𝑅𝐸𝐸⟨𝑖, ℎ+ 1..𝑘 − 1⟩𝑘×1

This completes the update of 𝐵𝑅𝐴𝑁𝐶𝐻 and 𝐹𝑅𝐸𝐸. To
delete a key, we just have to invert the above process. We
still have to explain our new perfect compression.

B. Perfect dynamic key compression

As Fredman and Willard [8], we have a set of at most
𝑘 significant bit positions 𝑐0, ..., 𝑐ℓ−1 ∈ [𝑤], 𝑐0 < 𝑐1 <
⋅ ⋅ ⋅ < 𝑐ℓ−1. For a given key 𝑥, we want to construct, in
constant time, an ℓ-bit compressed key �̂� such that for ℎ ∈
[ℓ], �̂�⟨ℎ⟩1 = 𝑥⟨𝑐ℎ⟩1. We will also support that significant
positions can be added or removed in constant time, so as
to be added or excluded in future compressions.

Fredman and Willard had a more loose compression,
allowing the compressed key to have some irrelevant zeros
between the significant bits, and the compressed keys to have
length 𝑂(𝑘3). Here, we will only keep the significant bits.

Our map will involve three multiplications. The first
multiplication pack the significant bits in a segment of length
𝑂(𝑤/𝑘2). The last two multiplications will reorder them and
place them consecutively.

171171

C. Packing

We pack the significant bits using the approach of Tarjan
and Yao for storing a sparse table [24]. We have a 𝑤-bit
word 𝐵 where the significant bits are set. For a given key
𝑥, we will operate on 𝑥 ∧𝐵.

For some parameter 𝑏, we divide words into blocks of 𝑏
bits. For our construction below, we can pick any 𝑏 such
that 𝑘2 ≤ 𝑏 ≤ 𝑤/𝑘2. We are going to pack the significant
bits into a segment of 2𝑏 bits, so a smaller 𝑏 would seem
to be an advantage. However, if we later want a uniform
algorithm that works when 𝑘 is not a constant, then it is
important that the number of blocks is 𝑘𝑂(1). We therefore
pick the maximal 𝑏 = 𝑤/𝑘2.

We are looking for 𝑤/𝑏 shift values 𝑠𝑖 < 𝑘2/2 such that
no two shifted blocks 𝐵⟨𝑖⟩𝑘2 ≪ 𝑠𝑖 have a set bit in the
same position. The packed key will be the 2𝑏 bit segment

𝜇(𝑥) =

𝑤/𝑏∑
𝑖=0

((𝑥 ∧𝐵)⟨𝑖⟩𝑏 ≪ 𝑠𝑖).

Since we are never adding set bits in the same position,
the set bits will appear directly in the sum. The shifts 𝑠𝑖 are
found greedily for 𝑖 = 0, .., 𝑤/𝑏−1. We want to pick 𝑠𝑖 such
that 𝐵⟨𝑖⟩𝑏 ≪ 𝑠𝑖 does not intersect with

∑𝑖−1
𝑗=0(𝐵⟨𝑗⟩𝑏 ≪ 𝑠𝑗).

A set bit 𝑝 in 𝐵⟨𝑖⟩𝑏 collides with set bit 𝑞 in
∑𝑖−1

𝑗=0(𝐵⟨𝑗⟩𝑏 ≪
𝑠𝑗) only if 𝑠𝑖 = 𝑝− 𝑞. All together, we have at most 𝑘 set
bits, so there at most 𝑘2/4 shift values 𝑠𝑖 that we cannot
use. Hence there is always a good shift value 𝑠𝑖 < 𝑘2/2.

So compute the above sum in constant time, we will
maintain a word 𝐵𝑆𝐻𝐼𝐹𝑇 that specifies the shifts of all
the blocks. For 𝑖 = 0, ..., 𝑤/𝑏− 1, we will have

𝐵𝑆𝐻𝐼𝐹𝑇 ⟨𝑤/𝑏− 1− 𝑖⟩𝑏 = 1 ≪ 𝑠𝑖.

Essentially we wish to compute the packing via the product
(𝑥∧𝐵)×𝐵𝑆𝐻𝐼𝐹𝑇 , but then we get interference between
blocks. To avoid that we use a mask 𝐸𝑏 = (0𝑏1𝑏)𝑤/(2𝑏) to
pick out every other block, and then compute:

𝜇(𝑥) = ((𝑥 ∧𝐵 ∧ 𝐸𝑏)× (𝐵𝑆𝐻𝐼𝐹𝑇 ∧ 𝐸𝑏))+

(((𝑥 ∧𝐵) ≫ 𝑏) ∧ 𝐸𝑏)× ((𝐵𝑆𝐻𝐼𝐹𝑇 ≫ 𝑏) ∧ 𝐸𝑏))

≫ (𝑤 − 2𝑏).

Resetting a block: If new significant bit 𝑗 is included
in 𝐵, we may have to change the shift 𝑠𝑖 of the block 𝑖
containing bit 𝑗. With 𝑏 a power of two, 𝑖 = 𝑗 ≫ lg 𝑏.

The update is quite simple. First we remove block 𝑖 from
the packing by setting

𝐵𝑆𝐻𝐼𝐹𝑇 ⟨𝑤/𝑏− 1− 𝑖⟩𝑏 = 0.

Now 𝜇(𝐵) describes the packing of all bits outside block 𝑖.
To find a new shift value 𝑠𝑖, we use a constant 𝑆0 with 𝑏𝑘2

bits, where for 𝑠 = 0, .., 𝑘2/2− 1,

𝑆0⟨𝑠⟩2𝑏 = 1 ≪ 𝑠.

Computing the product 𝑆0 ×𝐵⟨𝑖⟩𝑏, we get that

(𝑆0 ×𝐵⟨𝑖⟩𝑏)⟨𝑠⟩2𝑏 = 𝐵⟨𝑖⟩𝑏 ≪ 𝑠

We can use 𝑠 as a shift if and only if

𝜇(𝐵) ∧ (𝑆0 ×𝐵⟨𝑖⟩𝑏)⟨𝑠⟩2𝑏 = 0.

This value is always bounded by (1 ≪ 3𝑏/2), so

𝜇(𝐵) ∧ (𝑆0 ×𝐵⟨𝑖⟩𝑏)⟨𝑠⟩2𝑏 = 0 ⇐⇒ 0 ∕=
(1 ≪ 3𝑏/2) ∧ ((1 ≪ 3𝑏/2)− (𝜇(𝐵) ∧ (𝑆0 ×𝐵⟨𝑖⟩𝑏)⟨𝑠⟩2𝑏)).
We can thus compute the smallest good shift value 𝑠𝑖 by

𝑋 =(1 ≪ 3𝑏/2)𝑘
2/2∧

((1 ≪ 3𝑏/2)𝑘
2/2 − (𝜇(𝐵)𝑘

2/2 ∧ (𝑆0 ×𝐵⟨𝑖⟩𝑏))
𝑠𝑖 = lsb(𝑋) ≫ lg(2𝑏).

All that remains is to set

𝐵𝑆𝐻𝐼𝐹𝑇 ⟨𝑖⟩𝑏 = 1 ≪ 𝑠𝑖.

Then 𝜇(𝑥) gives the desired updated packing.

D. Final reordering

We now have all significant bits packed in 𝜇(𝑥) which
has 2𝑏 ≤ 2𝑤/𝑘2 bits, with significant bit ℎ in some position
𝜇ℎ. We want to compute the compressed key �̂� with all
significant bits in place, that is, �̂�⟨ℎ⟩1 = �̂�⟨𝑐ℎ⟩1.

The first step is to create a word 𝐿𝑆𝐻𝐼𝐹𝑇 with 𝑘 fields
of 4𝑏 bit fields where 𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ⟩4𝑏 = 1 ≪ (2𝑏 − 𝜇ℎ).
Then (𝐿𝑆𝐻𝐼𝐹𝑇×𝜇(𝑥)) ≫ 2𝑏 is a word where the ℎth field
has the ℎth significant bit in its first position. We mask out
all other bits using ((𝐿𝑆𝐻𝐼𝐹𝑇×𝜇(𝑥)) ≫ 2𝑏)∧(04𝑏−11)𝑘.

Finally, to collect the significant bits, we multiply with the
𝑘×4𝑏 bit constant 𝑆1 where for ℎ ∈ [𝑘], 𝑆1⟨𝑘 − 1− ℎ⟩4𝑏 =
1 ≪ ℎ. Now the compressed key can be computed as

�̂� =
(
𝑆1 × (((𝐿𝑆𝐻𝐼𝐹𝑇 × 𝜇(𝑥)) ≫ 2𝑏) ∧ (04𝑏−11)𝑘

))
≫ ((𝑘 − 1)× 4𝑏).

Updates: Finally we need to describe how to maintain
𝐿𝑆𝐻𝐼𝐹𝑇 in constant time per update. To this end, we will
also maintain a 𝑘× lg𝑤 bit word 𝐶 with the indices of the
significant bits, that is, 𝐶⟨ℎ⟩lg𝑤 = 𝑐ℎ.

We can view updates as partitioned in two parts: one is
to change the shift of block 𝑖, and the other is to insert or
remove a significant bit. First we consider the changed shift
of block 𝑖 from 𝑠𝑖 to 𝑠′𝑖. If block 𝑖 has no significant bits,
that is, if 𝐵⟨𝑖⟩𝑏 = 0, there is nothing to be done. Otherwise,
the index of the first significant bit in block 𝑖 is computed
as ℎ0 = rank(𝑖 × 𝑏, 𝐶), and the index of the last one is
computed as ℎ1 = rank((𝑖+ 1)× 𝑏, 𝐶)− 1.

In the packing, for ℎ = ℎ0, .., ℎ1, significant bit ℎ
will move to 𝜇′

ℎ = 𝜇ℎ + 𝑠′𝑖 − 𝑠𝑖. The numbers 𝜇ℎ are
not stored explicitly, but only as shifts in the sense that
𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ⟩4𝑏 = 1 ≪ (2𝑏 − 𝜇𝑖). The change in shift is
the same for all ℎ ∈ [ℎ0, ℎ1], so all we have to do is to set

𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ0..ℎ1⟩4𝑏 = 𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ0..ℎ1⟩4𝑏 ≪ (𝑠𝑏 − 𝑠′𝑏),

interpreting “≪ (𝑠𝑏 − 𝑠′𝑏)” as “≫ (𝑠′𝑏 − 𝑠𝑏)” if 𝑠𝑏 < 𝑠′𝑏.

172172

The other operation we have to handle is when we get a
new significant bit ℎ is introduced at position 𝑐ℎ ∈ [𝑤], that
is, 𝐵⟨𝑐ℎ⟩1 = 1. First we have to insert 𝑐ℎ in 𝐶, setting

𝐶⟨ℎ+ 1..∗⟩lg𝑤 = 𝐶⟨ℎ..∗⟩lg𝑤 and 𝐶⟨ℎ⟩lg𝑤 = 𝑐ℎ.

Significant bit ℎ resides in block 𝑖 = 𝑐ℎ ≫ lg 𝑏, and the
packing will place it in position 𝜇𝑖 = 𝑐ℎ − 𝑖× 𝑏+ 𝑠𝑖. Thus
for the final update of 𝐿𝑆𝐻𝐼𝐹𝑇 , we set

𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ+ 1..∗⟩4𝑏 =𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ..∗⟩4𝑏
𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ⟩4𝑏 =1 ≪ (2𝑏− 𝜇𝑖).

Removal of significant bit ℎ is accomplished by the simple
statements:

𝐶⟨ℎ..∗⟩lg𝑤 =𝐶⟨ℎ+ 1..∗⟩lg𝑤

𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ..∗⟩4𝑏 =𝐿𝑆𝐻𝐼𝐹𝑇 ⟨ℎ+ 1..∗⟩4𝑏.
This completes our description of perfect compression.

IV. DYNAMIC FUSION TREES WITH OPERATION TIME
𝑂(log 𝑛/ log𝑤)

We will now show how to maintain a dynamic set
𝑆 of 𝑛 𝑤-bit integers, supporting all our operations in
𝑂(log 𝑛/ log𝑤) time. Our fusion nodes of size 𝑘 is used in
a fusion tree which is a search tree of degree Θ(𝑘). Because
our fusion nodes are dynamic, we avoid the dynamic binary
search tree at the bottom of the original dynamic fusion trees
[8]. Our fusion trees are augmented to handle rank and select
using the approach of Dietz [19] for maintaining order in
a linked list. Dietz, however, was only dealing with a list
and no keys, and he used tabulation that could only handle
nodes of size 𝑂(log 𝑛). To exploit a potentially larger word
length 𝑤, we will employ a simplifying trick of Pǎtraşcu
and Demaine [20, §8] for partial sums over small weights.
For simplicity, we are going to represent the set 𝑆 ∪ {−∞}
where −∞ is a key smaller than any real key.

Our dynamic fusion node supports all operations in con-
stant time for sets of size up to 𝑘 = 𝑤1/4. We will create
a fusion search tree with degrees between 𝑘/16 and 𝑘. The
keys are all in the leaves, and a node on height 𝑖 will have
between (𝑘/4)𝑖/4 and (𝑘/4)𝑖 descending leaves. It standard
that constant time for updates to a node imply that we can
maintain the balance for a tree in time proportional to the
height when leaves are inserted or deleted. When siblings
are merged or split, we build new node structures in the
background, adding children one at the time (see, e.g., [13,
§3] for details). The total height is 𝑂(log 𝑛/ log𝑤), which
will bound our query and update time.

First, assume that we only want to support predecessor
search. For each child 𝑣 of a node 𝑢, we want to know the
smallest key descending from 𝑣. The set 𝑆𝑢 of these smallest
keys is maintained by our fusion node. This includes 𝐾𝐸𝑌𝑢

and 𝐼𝑁𝐷𝐸𝑋ℎ as described in Section II. The 𝑖th key is
found as 𝐾𝐸𝑌𝑢[𝐼𝑁𝐷𝐸𝑋𝑢⟨𝑖⟩⌈lg 𝑘⌉]. We will have another
array 𝐶𝐻𝐼𝐿𝐷𝑢 that gives us pointers to the children of 𝑢,
where 𝐶𝐻𝐼𝐿𝐷𝑢 uses the same indexing as 𝐾𝐸𝑌𝑢. The 𝑖th
child is thus pointed to by 𝐶𝐻𝐼𝐿𝐷𝑢[𝐼𝑁𝐷𝐸𝑋𝑢⟨𝑖⟩⌈lg 𝑘⌉].

When we come to a fusion node 𝑢 with a key 𝑥,
we get in constant time the index 𝑖 = rank𝑢(𝑥) of the
child 𝑣 such that 𝑥 belongs under, that is, the largest
𝑖 such that 𝐾𝐸𝑌 [𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉] < 𝑥. Following
𝐶𝐻𝐼𝐿𝐷𝑢[𝐼𝑁𝐷𝐸𝑋⟨𝑖⟩⌈lg 𝑘⌉] down, we eventually get to the
leaf with the predecessor of 𝑥 in 𝑆.

Now, if we also want to know the rank of 𝑥, then for
each node 𝑢, and child index 𝑖 of 𝑢, we want to know the
number 𝑁𝑢[𝑖] of keys descending from the children indexed
< 𝑖. Adding up these numbers from all nodes on the search
path gives us the rank of 𝑥 (as a technical detail, the count
will also count −∞ for one unless the search ends −∞).

The issue is how we can maintain the numbers 𝑁 [𝑖]; for
when we add a key below the child indexed 𝑖, we want
to add one to 𝑁 [𝑗] for all of 𝑗 > 𝑖. As in [20, §8] we
will maintain 𝑁𝑢[𝑖] as the sum of two numbers. For each
node 𝑢, we will have a regular array 𝑀𝑢 of 𝑘 numbers,
each one word, plus an array 𝐷𝑢 of 𝑘 numbers between
−𝑘 and 𝑘, each using ⌈lg 𝑘⌉+ 1 bits. We will always have
𝑁𝑢[𝑖] = 𝑀𝑢[𝑖] +𝐷𝑢⟨𝑖⟩⌈lg 𝑘⌉+1. As described in [20, §8], it
easy in constant time to add 1 to 𝐷𝑢⟨𝑗⟩⌈lg 𝑘⌉+1 for all 𝑗 > 𝑖,
simply by setting

𝐷𝑢⟨𝑖+ 1..∗⟩⌈lg 𝑘⌉+1 = 𝐷𝑢⟨𝑖+ 1..∗⟩⌈lg 𝑘⌉+1+(0⌈lg 𝑘⌉1)𝑘−𝑖.

Finally, consider the issue of selecting the key with rank 𝑟.
This is done recursively, staring from the root. When we are
at a node 𝑢, we look for the largest 𝑖 such that 𝑁𝑢[𝑖] < 𝑟.
Then we set 𝑟 = 𝑟 − 𝑁𝑢[𝑖], and continue the search from
child 𝑖 of 𝑢. To find this child index 𝑖, we adopt a nice
trick of Dietz [19] which works when 𝑢 is of height ℎ ≥ 2.
We use 𝑀𝑢 as a good approximation for 𝑁𝑢 which does
not change too often. We maintain an array 𝑄𝑢 that for
each 𝑗 ∈ [𝑘] stores the largest index 𝑖′ = 𝑄[𝑗] such that
𝑀𝑢[𝑖

′] < 𝑗𝑘ℎ−1/4ℎ. Then the right index 𝑖 is at most 5
different from 𝑖′ = 𝑄𝑢[𝑟4

ℎ/𝑘ℎ−1], so we can check the
10 relevant indices 𝑖 exhaustively. Maintaining 𝑄𝑢 is easy
since we in round-robin fashion only change one 𝑀𝑢[𝑗] at
the time, affecting at most a constant number of 𝑄𝑢[𝑗]. For
nodes of height 1, we do not need to do anything; for the
children are the leaf keys, so select 𝑟 just returns the child
of index 𝑟.

This completes the description of our dynamic fusion tree
supporting rank, select, and predecessor search, plus updates,
all in time 𝑂(log 𝑛/ log𝑤).

V. LOWER BOUNDS

First we note that dynamic cell-probe lower bounds hold
regardless of the available space. The simple point is that if
we start with an empty set and insert 𝑛 elements in 𝑂(log 𝑛)
amortized time per element, then, using perfect hashing,
we could make an 𝑂(𝑛 log 𝑛) space data structure, that in
constant time could tell the contents of all cells written based
on the integers inserted. Any preprocessing done before the
integers were inserted would be a universal constant, which
is “known” to the cell probe querier. The cost of the next
dynamic query can thus be matched by a static data structure
using 𝑂(𝑛 log 𝑛) space.

173173

We claimed that Fredman and Saks [9] provides an
Ω(log 𝑛/ log𝑤) lower bound for dynamic rank and select.
Both follow by reduction from dynamic prefix parity where
we have an array 𝐵 with 𝑛 bits, starting, say, with all zeros.
An update flips bit 𝑖, and query asks what is the xor of the
first 𝑗 bits. By [9, Theorem 3], for log 𝑛 ≤ 𝑤, the amortized
operation time is Ω(log 𝑛/ log𝑤).

Rank: Fredman and Saks mention that a lower bound
for rank follows by an easy reduction: simply consider a
dynamic set 𝑆 ⊆ [𝑛], where 𝑖 ∈ 𝑆 iff 𝐵[𝑖] = 1. Thus we
add 𝑖 to 𝑆 when we set 𝐵[𝑖], and delete 𝑖 from 𝑆 when we
unset 𝐵[𝑖]. The prefix parity of 𝐵[0, .., 𝑗] is the parity of the
rank of 𝑗 in 𝑆.

Select: Our reduction to selection is bit more convo-
luted. We assume that 𝑛 is divisible by 2. For dynamic select,
we consider a dynamic set 𝑆 of integers from [𝑛(𝑛 + 1)].
which we initialize as the set 𝑆0 consisting of the integers

𝑆0 = {𝑖(𝑛+ 1) + 𝑗 + 1 ∣ 𝑖, 𝑗 ∈ [𝑛]}
We let bit 𝐵[𝑖] in prefix parity correspond to integer 𝑖(𝑛+
1) ∈ 𝑆. When we want to ask for prefix parity of 𝐵[0, .., 𝑗],
we set 𝑦 =select((𝑗 + 1)𝑛 − 1). If there are 𝑟 set bits in
𝐵[0, .., 𝑗], then 𝑦 = (𝑗 + 1)(𝑛 + 1) − 1 − 𝑟, so we can
compute 𝑟 from 𝑦.

To understand that the above is a legal reduction, note
that putting in 𝑆0 which is a fixed constant does not help.
While it is true that the data structure for dynamic select can
do work when 𝑆0 is being inserted, this is worth nothing in
the cell probe model, for 𝑆0 is a fixed constant, so in the
cell-probe, if this was useful, it could just be simulated by
the data structure for prefix parity, at no cost.

Predecessor: The query time for dynamic predecessor
with logarithmic update time cannot be better than that
of static predecessor using polynomial space, for which
Beame and Fich [10, Theorem 3.6 plus reductions in Sec-
tions 3.1-2] have proved a lower bond of Ω(log 𝑛/ log𝑤)
if log 𝑛/ log𝑤 = 𝑂(log(𝑤/ log 𝑛)/ log log(𝑤/ log 𝑛)).
But the condition is equivalent to log 𝑛/ log𝑤 =
𝑂(log𝑤/ log log𝑤). To see the equivalence, note that if 𝑤 ≥
log2 𝑛 then log(𝑤/ log 𝑛) = Θ(log𝑤) and if 𝑤 ≤ log2 𝑛,
both forms of the conditions are satisfied. Sen and Vankatesh
[25] have proved that the lower bound holds even if we allow
randomization.

VI. OPTIMAL RANDOMIZED DYNAMIC PREDECESSOR

From [12], [26] we know that with key length ℓ and word
length 𝑤, the optimal (randomized) query time for static
predecessor search using �̃�(𝑛) space for 𝑛 keys is within a
constant factor of

max{1,min

⎧⎨
⎩

log𝑛
log𝑤

log ℓ
log𝑤

log(log ℓ
log 𝑤 / log log 𝑛

log 𝑤)

log ℓ−lg𝑛
log𝑤

This is then also a lower bound for the dynamic case
with logarithmic update times, for we can use a dynamic

data structure to build a static data structure, simply by
inserting the 𝑛 keys. However, in the introduction, we
actually replaced the last branch log ℓ−lg𝑛

log𝑤 with the higher

bound log log(2ℓ−𝑛)
log𝑤 . To get this improvement from the static

lower bound, we do as follows. First note that we can
assume that log 𝑛 ≥ ℓ/2, for otherwise the bounds are
asymptotically the same. We now set 𝑛′ =

√
2ℓ − 𝑛 < 𝑛

and ℓ′ = ⌊lg(2ℓ − 𝑛)⌋. For a set 𝑆′ ⊆ [2ℓ
′
] of size 𝑛′ using

�̃�(𝑛′) space, the static lower bound states that the query
time is Ω(log ℓ′−lg𝑛′

log𝑤) = Ω(log log(2ℓ−𝑛)
log𝑤). To create such a

data structure dynamically, first, in a preliminary step, for
𝑖 = 1, ..., 𝑛 − 𝑛′, we insert the key 2ℓ − 𝑖. We have not
yet inserted any keys from [2ℓ

′
]. Now we insert the keys

from 𝑆′. It is only the �̃�(∣𝑆′∣) cells written after we start
inserting 𝑆′ that carry any information about 𝑆′. Everything
written before is viewed as a universal constant not counted
in the cell-probe model. The newly written cells and their
addresses, form a near-linear space representation of 𝑆′, to
which the static cell-probe lower bound of Ω(log log(2ℓ−𝑛)

log𝑤)
applies.

The main result of this paper is that the top
𝑂(log 𝑛/ log𝑤) branch is possible. Essentially this was the
missing dynamic bound for predecessor search if we allow
randomization.

Going carefully through Section 5 of the full version
of [12], we see that the lower two branches are fairly
easy to implement dynamically if we use randomized hash
tables with constant expected update and query time (or
alternatively, with constant query time and constant amor-
tized expected update time [27]). The last branch is van
Emde Boas’ data structure [11], [28] with some simple
tuning. This includes the space saving Y-fast tries of Willard
[29], but using our dynamic fusion nodes for 𝑤Θ(1)-sized
bottom trees that are searched and updated in constant
time. This immediately gives a bound of 𝑂(log ℓ

log𝑤). The

improvement to 𝑂(log log(2ℓ−𝑛)
log𝑤) is obtained by observing

that for each key stored, both neighbors are at distance at
most 2ℓ − 𝑛, implying a commong prefix missing at most
lg(2ℓ − 𝑛) bits.

To implement the middle part, we follow the small space
static construction from [12, Full version, Section 5.5.2]. For
certain parameters 𝑞 and ℎ, [12] uses a special data structure
[12, Full version, Lemma 20] (which is based on [10]) using
𝑂(𝑞2ℎ) space, which is also the construction time. They use
𝑞 = 𝑛1/(4ℎ) for a 𝑂(

√
𝑛) space and construction time. The

special data structure only has to change when a subproblem
of size Θ(𝑛/𝑞) = Θ(𝑛1−1/(4ℎ)) changes in size by a
constant factor, which means that the 𝑂(

√
𝑛) construction

time gets amortized as sub-constant time per key update.
This is similar to the calculation behind exponential search
trees [13] and we can use the same de-amortization. Other
than the special table, each node needs a regular hash table
like van Emde Boas’ data structure, as discussed above.

For a concrete parameter choice, we apply our dynamic
fusion node at the bottom to get 𝑂(𝑤) free space per key.

174174

Then, as in [12],

ℎ =
lg ℓ

𝑎

lg lg𝑛
𝑎

/
lg

lg ℓ
𝑎

lg lg𝑛
𝑎

where 𝑎 = lg𝑤.

This yields the desired recursion depth of

𝑂

(
lg ℓ

lg𝑤

lg ℎ
+ ℎ lg

lg 𝑛

lg𝑤

)
= 𝑂

⎛
⎝ lg ℓ

log𝑤

lg
(
lg ℓ

log𝑤 / lg lg𝑛
log𝑤

)
⎞
⎠ .

FUNDING

Research of Mikkel Thorup partly supported by an Ad-
vanced Grant from the Danish Council for Independent Re-
search under the Sapere Aude research carrier programme.

REFERENCES

[1] B. Kernighan and D. Ritchie, The C Programming Language.
Prentice Hall, 1978.

[2] L. J. Comrie, “The hollerith and powers tabulating machines,”
Trans. Office Machinary Users’ Assoc., Ltd, pp. 25–37, 1929-
30.

[3] A. I. Dumey, “Indexing for rapid random access memory
systems,” Computers and Automation, vol. 5, no. 12, pp. 6–9,
1956.

[4] S. A. Cook and R. A. Reckhow, “Time bounded random
access machines,” Journal of Computer and System Sciences,
vol. 7, no. 4, pp. 354–375, 1973.

[5] W. J. Paul and J. Simon, “Decision trees and random access
machines,” in Logic and Algorithmic: An International Sym-
posium Held in Honour of Ernst Specker. L’Enseignement
Mathématique, Université de Genevè, 1982, pp. 331–340.

[6] A. C.-C. Yao, “Should tables be sorted?” Journal of the ACM,
vol. 28, no. 3, pp. 615–628, 1981, see also FOCS’78.

[7] D. Kirkpatrick and S. Reisch, “Upper bounds for sorting
integers on random access machines,” Theoretical Computer
Science, vol. 28, pp. 263–276, 1984.

[8] M. L. Fredman and D. E. Willard, “Surpassing the informa-
tion theoretic bound with fusion trees,” Journal of Computer
and System Sciences, vol. 47, no. 3, pp. 424–436, 1993, see
also STOC’90.

[9] M. L. Fredman and M. E. Saks, “The cell probe complexity
of dynamic data structures,” in Proc. 21st ACM Symposium
on Theory of Computing (STOC), 1989, pp. 345–354.

[10] P. Beame and F. E. Fich, “Optimal bounds for the predecessor
problem and related problems,” Journal of Computer and
System Sciences, vol. 65, no. 1, pp. 38–72, 2002, see also
STOC’99.

[11] P. van Emde Boas, R. Kaas, and E. Zijlstra, “Design and
implementation of an efficient priority queue,” Mathematical
Systems Theory, vol. 10, pp. 99–127, 1977, conference ver-
sion by van Emde Boas alone in FOCS’75.

[12] M. Pǎtraşcu and M. Thorup, “Time-space trade-offs for pre-
decessor search,” in Proc. 38th ACM Symposium on Theory
of Computing (STOC), 2006, pp. 232–240, full version:
http://arxiv.org/abs/cs/0603043.

[13] A. Andersson and M. Thorup, “Dynamic ordered sets with
exponential search trees,” Journal of the ACM, vol. 54, no. 3,
2007, see also FOCS’96, STOC’00.

[14] M. Ajtai, M. L. Fredman, and J. Komlós, “Hash functions for
priority queues,” Information and Control, vol. 63, no. 3, pp.
217–225, 1984, see also FOCS’83.

[15] M. L. Fredman and D. E. Willard, “Trans-dichotomous al-
gorithms for minimum spanning trees and shortest paths,”
Journal of Computer and System Sciences, vol. 48, no. 3, pp.
533–551, 1994, see also FOCS’90.

[16] M. Thorup, “On AC0 implementations of fusion trees and
atomic heaps,” in Proc. 14th ACM/SIAM Symposium on
Discrete Algorithms (SODA), 2003, pp. 699–707.

[17] A. Andersson, P. B. Miltersen, and M. Thorup, “Fusion trees
can be implemented with 𝐴𝐶0 instructions only,” Theoretical
Computer Science, vol. 215, no. 1-2, pp. 337–344, 1999.

[18] D. E. Willard, “Examining computational geometry, van
Emde Boas trees, and hashing from the perspective of the
fusion tree,” SIAM Journal on Computing, vol. 29, no. 3, pp.
1030–1049, 2000, see also SODA’92.

[19] P. F. Dietz, “Optimal algorithms for list indexing and subset
rank,” in Proc. 1st Workshop on Algorithms and Data Struc-
tures (WADS), 1989, pp. 39–46.

[20] M. Pǎtraşcu and E. D. Demaine, “Lower bounds for dynamic
connectivity,” in Proc. 36th ACM Symposium on Theory of
Computing (STOC), 2004, pp. 546–553.

[21] E. Fredkin, “Trie memory,” Communications of the ACM,
vol. 3, no. 9, pp. 490–499, 1960.

[22] D. R. Morrison, “PATRICIA - practical algorithm to retrieve
information coded in alphanumeric,” Journal of the ACM,
vol. 15, no. 4, pp. 514–534, 1968.

[23] R. Grossi, A. Orlandi, R. Raman, and S. S. Rao, “More
haste, less waste: Lowering the redundancy in fully indexable
dictionaries,” in Proc. 26th Symposium on Theoretical Aspects
of Computer Science (STACS), 2009, pp. 517–528.

[24] R. E. Tarjan and A. C.-C. Yao, “Storing a sparse table,”
Communications of the ACM, vol. 22, no. 11, pp. 606–611,
1979.

[25] P. Sen and S. Venkatesh, “Lower bounds for predecessor
searching in the cell probe model,” Journal of Computer and
System Sciences, vol. 74, no. 3, pp. 364–385, 2008, see also
ICALP’01, CCC’03.

[26] M. Pǎtraşcu and M. Thorup, “Randomization does not help
searching predecessors,” in Proc. 18th ACM/SIAM Symposium
on Discrete Algorithms (SODA), 2007, pp. 555–564.

[27] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der
Heide, H. Rohnert, and R. E. Tarjan, “Dynamic perfect hash-
ing: Upper and lower bounds,” SIAM Journal on Computing,
vol. 23, no. 4, pp. 738–761, 1994, see also FOCS’88.

[28] K. Mehlhorn and S. Näher, “Bounded ordered dictionaries in
O(log log n) time and O(n) space,” Inf. Process. Lett., vol. 35,
no. 4, pp. 183–189, 1990.

[29] D. E. Willard, “Log-logarithmic worst-case range queries are
possible in space Θ(𝑁),” Information Processing Letters,
vol. 17, no. 2, pp. 81–84, 1983.

175175

