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Abstract—For a class C of graphs, #Sub(C) is the counting
problem that, given a graph H from C and an arbitrary graph
G, asks for the number of subgraphs of G isomorphic to H. It
is known that if C has bounded vertex-cover number (equiv-
alently, the size of the maximum matching in C is bounded),
then #Sub(C) is polynomial-time solvable. We complement
this result with a corresponding lower bound: if C is any
recursively enumerable class of graphs with unbounded vertex-
cover number, then #Sub(C) is #W[1]-hard parameterized by
the size of H and hence not polynomial-time solvable and not
even fixed-parameter tractable, unless FPT is equal to #W[1].

As a first step of the proof, we show that counting k-
matchings in bipartite graphs is #W[1]-hard. Recently, Curt-
icapean [ICALP 2013] proved the #W[1]-hardness of counting
k-matchings in general graphs; our result strengthens this
statement to bipartite graphs with a considerably simpler proof
and even shows that, assuming the Exponential Time Hypoth-
esis (ETH), there is no f(k)*nˆo(k/log(k)) time algorithm for
counting k-matchings in bipartite graphs for any computable
function f. As a consequence, we obtain an independent and
somewhat simpler proof of the classical result of Flum and
Grohe [SICOMP 2004] stating that counting paths of length
k is #W[1]-hard, as well as a similar almost-tight ETH-based
lower bound on the exponent.

I. INTRODUCTION

Counting the number of solutions is often a considerably

more difficult task than deciding whether a solution exists or

finding a single solution. A classical example is the case of

perfect matchings in bipartite graphs: there are well-known

polynomial-time algorithms for finding a perfect matching,

but the seminal result of Valiant [1] showed that counting the

number of perfect matchings in bipartite graphs is #P-hard,

and hence unlikely to be polynomial-time solvable. This

phenomenon has been systematically analyzed, for example,

in the context of Constraint Satisfaction Problems (CSPs),

where dichotomy theorems characterizing the polynomial-

time solvable and #P-hard cases [2], [3], [4], [5], [6] show

that very restrictive conditions are needed to ensure that not

only the decision problem is polynomial-time solvable, but

the counting problem is as well.
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Our goal in the present paper is to systematically analyze

the tractable cases of counting subgraphs. Counting the

number of times a certain pattern appears in a graph is

a fundamental theoretical problem that has been explored

intensively also on real-world large graphs [7], [8], [9],

[10], [11]. Formally, given graphs H and G, the task is

to count the number of subgraphs of G that are isomorphic

to the pattern graph H; we would like to understand which

graphs H make this problem easy or hard. However, we

have to be careful how we formulate the framework of our

investigations. For every fixed pattern graph H , the number

of subgraphs of G isomorphic to H can be determined

in polynomial-time by brute force: it suffices to check

each of the |V (G)||V (H)| mappings from the vertices of

H to the vertices of G, resulting in a simple polynomial-

time algorithm for fixed H . There is a line of research

devoted to finding nontrivial improvements over brute-force

search for specific patterns [12], [13], [14], [15], [16], [17],

[18], [19], [20]. Besides improvements for specific small

graphs H , these papers identified structural properties, such

as boundedness of treewidth, pathwidth, and vertex-cover

number, that can give improvements for some infinite classes

H of graphs H . Our goal is to exhaustively characterize

which graph properties are sufficiently strong to guarantee

polynomial-time solvability.

The search for graph properties that make counting easy

can be studied in the following framework. For every class

H of graphs, #Sub(H) is the counting problem where,

given a graph H ∈ H and arbitrary graph G, the task is

to count the number of (not necessarily induced) subgraphs

of G isomorphic to H . Rather than asking which fixed

graphs H make counting easy (as we have seen, the problem

is polynomial-time solvable for every fixed H), we ask

which classes H of graphs make #Sub(H) polynomial-time

solvable. As many of the theoretical results and applications

involve counting a small fixed pattern graph H in a large

graph G, an equally natural question to ask is whether

#Sub(H) can be solved in time f(|V (H)|) ·nO(1) for some

computable function f depending only on the size of H .

That is, we ask whether #Sub(H) for a particular class H is

fixed-parameter tractable (FPT) parameterized by |V (H)|.
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Main result. The vertex-cover number τ(H) of a graph

H is the minimum size of a set of vertices that contains

at least one endpoint of every edge. It is well known that

if ν(H) is the size of a maximum matching in G, then

ν(H) ≤ τ(H) ≤ 2ν(H). If the class H has bounded vertex-

cover number (or equivalently the maximum matching size

is bounded), then it follows from a result of Vassilevska

Williams and Williams [18] that #Sub(H) is FPT and it

follows from a result of Kowaluk, Lingas, and Lundell [21]

that #Sub(H) is actually polynomial-time solvable (we also

present a simple self-contained argument for the polynomial-

time solvability of #Sub(H) in the full version). Our

main result complements these algorithms by showing that

boundedness of the vertex-cover number is the only property

of H that guarantees tractability of #Sub(H).
Theorem I.1. Let H be a recursively enumerable class of
graphs. If FPT �= #W[1], the following are equivalent:

1) #Sub(H) is polynomial-time solvable.
2) #Sub(H) is FPT parameterized by |V (H)|.
3) H has bounded vertex-cover number.

Let us review some results from the literature that are of

similar form as Theorem I.1. A result of Grohe, Schwentick,

and Segoufin [22] can be interpreted as characterizing the

complexity of finding a vertex-colored graph H ∈ H in G;

they show that the tractability criterion is the boundedness

of the treewidth of H. Grohe [23] considered the problem of

deciding if there is a homomorphism from a graph H ∈ H
to G; here the tractability criterion is the boundedness of

the treewidth of the core of H . For the problem of counting

homomorphisms, Dalmau and Jonsson [24] showed that it is

again the boundedness of the treewidth that matters. Chen,

Thurley, and Weyer [25] studied the problem of finding

induced subgraphs, which is apparently the most difficult

of these problems, as the problem is easy only if the class

H contains only graphs of bounded size. In all of these

results, similarly to Theorem I.1, polynomial time and fixed-

parameter tractability coincide. An example where polyno-

mial time and FPT is not known to be equivalent is the result

of Marx [26], which can be interpreted as characterizing

the complexity of finding vertex-colored hypergraphs. For

this problem, bounded submodular width is the property that

guarantees fixed-parameter tractability, but it is not known

if it implies polynomial-time solvability.
Very recently, Jerrum and Meeks [27], [28], [29] studied

problems related to counting induced subgraphs isomorphic

to a given graph H and counting induced subgraphs satis-

fying certain fixed properties. As these investigations are in

the very different setting of induced subgraphs, they are not

directly related to our results.
We remark that there have been investigations of finding

and counting subgraphs in a framework when the pattern

graph H is arbitrary and the host graph G is restricted to

a certain class; some of these results appear in the more

general context of evaluating first-order logical sentences

[30], [31], [32]. Needless to say, these results are very

different from our setting.

Complexity of counting k-matchings. The study of

the fixed-parameter tractability of counting problems was

initiated by Flum and Grohe [33]. Finding paths and cycles

of length k is well known to be fixed-parameter tractable

[13], [34], [35], [36], but Flum and Grohe [33] proved the

surprising result that counting paths and cycles of length

k is #W[1]-hard, and hence unlikely to be fixed-parameter

tractable. They raised as an open question whether counting

k-matchings (i) in general graphs or (ii) in bipartite graphs

is fixed-parameter tractable. Very recently, Curticapean [37]

(based on earlier work of Bläser and Curticapean [38]) used

quite involved algebraic techniques to answer the first ques-

tion in the negative by showing that counting k-matchings is

#W[1]-hard on general graphs. Our proof of Theorem I.1 is

based on a reduction from counting k-matchings. In fact, the

proof technique requires the stronger result that counting k-

matchings is #W[1]-hard even in bipartite graphs. Therefore,

in Section III, we prove this stronger result using a proof

that relies only on basic linear algebra (the rank of the

Kronecker product of matrices) and is significantly simpler

than the proof of Curticapean [37]. Our proof also shows

the hardness of the “edge-colorful” variant where the edges

of G are colored with k colors and we need to count the

k-matchings in G where every edge has a different color.

An additional benefit of our proof is that, combined with

a lower bound of Marx [39] for subgraph isomorphism, it

gives an almost-tight lower bound on the exponent of n.

The Exponential Time Hypothesis (ETH) of Impagliazzo,

Paturi, and Zane [40] implies that n-variable 3SAT cannot be

solved in time 2o(n). Our result shows that, assuming ETH,

the number of k-matchings in a bipartite graph cannot be

counted in time f(k)no(k/ log k) for any computable function

f . There are simple reductions from counting k-matchings

to counting paths and cycles of length k, thus our proof gives

an independent and somewhat simpler proof of the results of

Flum and Grohe [33] on counting paths and cycles, together

with almost-tight ETH-based lower bounds on the exponent

that were not known previously.

Theorem I.2. The following problems are #W[1]-hard and,
assuming ETH, cannot be solved in time f(k) · no(k/ log k)

for any computable function f : Counting (directed) paths or
cycles of length k, and counting edge-colorful or uncolored
k-matchings in bipartite graphs.

Proof overview. We proceed the following way for gen-

eral (not necessarily hereditary) classes H. First, if H has

unbounded treewidth, then the arguments underlying the

previous work of Grohe, Schwentick, and Segoufin [22],

Grohe [23], Dalmau and Jonsson [24], and Chen, Thurley,

and Weyer [25] go through (see Section II-B). Essentially,

we need two reductions. First, there is a simple reduction

131131



from counting cliques to counting colored grids. If H has

unbounded treewidth, then the Excluded Grid Theorem of

Robertson and Seymour [41] shows that the graphs in H
have arbitrary large grid minors. Therefore, we can embed

the problem of counting colored grids into #Sub(H). As

these techniques are fairly standard by now, the main part

of our proof is handling the case when H has bounded

treewidth. This is the part where we have to deviate from

previous results (where bounded treewidth always implied

tractability) and have to use the fact that counting k-

matchings is hard.

If H has bounded treewidth, then a Ramsey argument

contained in the full version shows that there are graphs inH
containing large induced matchings. Our goal is to use these

large induced matchings to reduce counting k-matchings

in bipartite graphs to #Sub(H). Suppose that there is a

graph H ∈ H such that V (H) has a partition (X,Y )
where H[Y ] is a k-matching. By simple inclusion/exclusion

arguments, it is sufficient to prove hardness for the more

general problem where we count only those subgraphs of G
isomorphic to H that contain certain specified vertices/edges

of G. This suggests the following reduction: let us extend G
to a graph G′ by introducing a copy of H[X] fully connected

to every original vertex of G and then consider the problem

of counting subgraphs of G′ isomorphic to H that contain

every vertex and edge of this copy of H[X]. As H[Y ] is

a k-matching (that is, attaching to a H[X] a k-matching in

a certain way extends it to H), any k-matching of G can

be used to extend the copy of H[X] to a subgraph of G′

isomorphic to H . It could seem now that the number of

subgraphs of G′ isomorphic to H and containing H[X] is

exactly the number of k-matchings in G.

Unfortunately, this is not true in general due to a seem-

ingly unlikely problem: if we extend H[X] to a copy of

H , then it is not necessarily true that the extension forms

a k-matching. That is, it is possible that V (H) has another

partition (X ′, Y ′) such that H[X ′] is isomorphic to H[X],
but H[Y ′] is not a k-matching. While this can be perhaps

considered counterintuitive, there are very simple examples

where this can happen. Consider, for example, the graph H
on vertices a, b, c, d, where any two vertices are adjacent,

except a and d. Now X = {a, b} and Y = {c, d} is a

partition where H[Y ] is an edge. Consider now the partition

X ′ = {b, c}, Y ′ = {a, d}. We have H[X] � H[X ′], but

H[Y ′] contains two independent vertices.

Our goal is to find graphs H ∈ H and partitions (X,Y )
where the problem described in the previous paragraph does

not occur. We say that H ∈ H and a partition (X,Y ) is a

k-matching gadget if H[Y ] is a k-matching, and whenever

(X ′, Y ′) is a partition of V (H) such that H[X] � H[X ′]
and H[Y ′] satisfies some technical conditions that we can

enforce in the reduction (such as H[Y ′] is bipartite and has

no isolated vertices), then H[Y ′] is also a k-matching. If the

class H has such k-matching gadgets for every k ≥ 1, then

we can reduce counting k-matchings to #Sub(H) with a

reduction similar to what was sketched in the previous para-

graph (Section IV). We prove the existence of k-matching

gadgets in H by a detailed graph-theoretic study, where

we first consider bounded-degree graphs (Section V), then

move on to graphs that have unbounded degree, but do

not contain large subdivided stars (Section VI), and then

finally consider graphs where only the treewidth is bounded

(Section VII). Together with the hardness proof for classes

with unbounded treewidth (Section II-B) and an algorithm

for bounded vertex-cover number, this completes the proof

of Theorem I.1.

The full version of this paper, containing all omitted

proofs, is available at http://arxiv.org/abs/1407.2929

II. PRELIMINARIES

We sometimes write #A := |A| for sets A. For � ∈ N, let

(x)� := (x)(x−1) . . . (x−�+1) denote the falling factorial.

Graphs are undirected, unweighted and simple, unless stated

otherwise. We write H � H ′ if H and H ′ are isomorphic.

The graph H is a minor of G, written H � G, if

H can be obtained from G by edge/vertex-deletions and

edge-contractions. The contraction of an edge uv ∈ E(G)
identifies u, v ∈ V (G) to a single vertex adjacent to the

union of the neighborhoods of u and v in G.

Definition II.1. A tree decomposition of a graph G is a pair

(T,B) in which T is a tree and B = {Bt | t ∈ V (T )} is a

family of subsets of V (G) such that (i)
⋃

t∈V (T )Bi = V ,

and (ii) for each edge e = uv ∈ E(G), there exists a t ∈
V (T ) such that both u and v belong to Bt, and (iii) the set

of nodes {t ∈ V (T ) | v ∈ Bt} forms a connected subtree of

T for every v ∈ V (G).
We call vertices of T nodes and their corresponding Bi’s

bags. The width of the tree decomposition is the maximum

size of a bag in B minus 1. The treewidth of a graph G,

denoted by tw(G), is the minimum width over all possible

tree decompositions of G.

In this paper, parameterized problems are problems that

ask for some output on input (x, k), where x is an instance

and k ∈ N is a parameter. A problem is fixed-parameter
tractable (FPT) if it admits an algorithm with runtime

f(k)nO(1) for a computable function f . For parameterized

problems A,B, we write A ≤Tfpt B if A admits a parame-

terized Turing reduction to B, i.e., given oracle access for

B, we can solve an instance (x, k) to A in time f(k)nO(1),
calling the oracle only on queries (y, k′) with k′ ≤ g(k).
Here, both f and g are computable functions. We write ≤T,�

fpt

if such a reduction exists with g ∈ O(k). It is known that

if A ≤Tfpt B and B is FPT, then it follows that A is FPT as

well.

For our purposes, we say that a parameterized problem

A is #W[1]-hard if there is a reduction #Clique ≤Tfpt A,

where #Clique is the problem of counting k-cliques in
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a graph G on input (G, k). It is a standard assumption

of parameterized complexity theory that FPT �= #W[1],

parallel to the classical assumption that P �= #P.

Definition II.2. Let H be a class of graphs, and let H,G
be graphs. Let Sub(H → G) denote the set of all (not

necessarily induced) subgraphs F ⊆ G with F � H .

The problem #Sub(H) asks, given as input a graph H ∈
H and an arbitrary graph G, for the number #Sub(H → G).
The parameter in this problem is |V (H)|.

In #Match, we are given a bipartite graph G and k ∈
N and ask for #Sub(Mk → G), where Mk denotes the

matching of size k, i.e., the 1-regular graph on 2k vertices

with k edges. The parameter in this problem is k.

In the full version, we present a simple self-contained

polynomial-time algorithm for determining #Sub(H → G)
in time polynomial in |V (H)| and |V (G)| when the vertex-

cover number τ(H) can be assumed to be constant. As

already stated in the introduction, more efficient algorithms

are known [18], [21].

Theorem II.3. Let H be a graph on k vertices with vertex-
cover number τ and let G be a graph on n vertices. Then
we can compute #Sub(H → G) in time k2

O(τ)

nτ+O(1).

A. Colored graphs

We will sometimes count occurrences of colored graphs

H within colored graphs G: Firstly, we will count copies

of vertex-colored graphs H within vertex-colored graphs G,

where each vertex of H has a distinct color. Secondly, we

will count edge-colored matchings in edge-colored graphs.

Definition II.4. Let Γ be a set of colors. A colored graph
is a graph G together with a coloring cG : V (G) → Γ or

cG : E(G)→ Γ. In the first case, we call G vertex-colored,

otherwise edge-colored. For γ ∈ Γ, let Vγ(G) denote the

set of all γ-colored vertices of G. For S ⊆ Γ, let VS(G) :=⋃
γ∈S Vγ(G). Define Eγ and ES likewise.

We call G colorful if cG is bijective. In such cases, it will

be convenient to identify Γ with V (G) or E(G), depending

on whether G is vertex- or edge-colored.

Two Γ-colored graphs H and H ′ are color-preserving
isomorphic if there is an isomorphism from H to H ′ that

maps each γ-colored vertex (or edge) of H to a γ-colored

vertex (or edge) of H ′.

The following counting problems associated with colored

graphs will occur in the paper.

Definition II.5. For Γ-vertex-colored graphs H,G with

colorful H , let PartitionedSub(H → G) denote the set

of all subgraphs F ⊆ G such that F is color-preserving

isomorphic to H .

Given a class H of uncolored graphs, the problem

#PartitionedSub(H) asks for #PartitionedSub(H → G),
where H is a Γ-vertex-colorful graph whose underlying

uncolored graph is contained in H, and G is Γ-vertex-

colored. The parameter in this problem is |V (H)|.
For a Γ-edge-colored G and X ⊆ Γ, let MX [G] denote

the set of all X-colorful matchings in G, i.e., matchings in

G that choose exactly one edge from each color in X . In

#ColMatch, we are given a bipartite Γ-edge-colored graph

G and X ⊆ Γ and ask for #MX [G]. The parameter is |X|.
Note that #PartitionedSub(H) is defined for a classH for

uncolored graphs, while its inputs are vertex-colored graphs.

Remark II.6. Let H,G be Γ-vertex-colored graphs and let

F be a subgraph of G that is color-preserving isomorphic

to H . If uv ∈ E(F ) is an edge with endpoints of color

γu, γv ∈ Γ, then there is an edge between vertices of colors

γu, γv in E(H). We may therefore assume that, whenever

uv ∈ E(G) is an edge with endpoints of color γu, γv ∈ Γ in

G, then {γu, γv} ∈ E(H). In other words, we may assume

that G has edges between two color classes if H has an edge

with endpoints of this color, otherwise the edges between the

classes are clearly useless.

The principle of inclusion and exclusion will be an

important ingredient of reduction between the colored and

the uncolored versions of the problems defined above. As a

first demonstration of this principle, we obtain a reduction

from the colorful problem to the uncolored problem.

Lemma II.7. For any class H, we have
#PartitionedSub(H) ≤T,�

fpt #Sub(H). Furthermore,
#ColMatch ≤T,�

fpt #Match.

B. Unbounded-treewidth graphs

We prove that #PartitionedSub(H) is #W[1]-hard when-

ever H has unbounded treewidth, i.e., if for every b ∈ N

some H ∈ H has treewidth at least b. By Lemma II.7(1),

the same hardness result follows for #Sub(H), proving

Theorem I.1 for unbounded-treewidth classes.

Theorem II.8. The problems #PartitionedSub(H) and
#Sub(H) are #W[1]-complete whenever H is recursively
enumerable and has unbounded treewidth.

As already stated in the introduction, the proof (which is

contained in the full version) uses standard techniques and

could in fact be adapted from ideas in [22], [23], [24], [25].

On the algorithmic side, it was shown by Arvind and

Raman [42, Lemma 1] that #PartitionedSub(H → G)
can be computed in time O(cb3k + nb+22b

2/2), where

b is the treewidth of H . Therefore, #PartitionedSub(H)
is polynomial-time solvable if H has bounded treewidth.

Together with our #W[1]-hardness result, this yields a di-

chotomy for #PartitionedSub(H). Note that the algorithm

for the bounded-treewidth cases of #PartitionedSub(H)
does not settle the dichotomy for #Sub: the reduction in

Lemma II.7(1) goes the opposite direction. In fact, there are

bounded-treewidth classes H, most notably, matchings and
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paths, for which #PartitionedSub(H) is polynomial-time

solvable, but #Sub(H) is #W[1]-hard. It is precisely the

bounded-treewidth classes where the complexity of the two

problems can deviate.

C. Bipartite 3-regular graphs

In Section III, the #W[1]-hardness proof for bipartite

k-matching will be by reduction from #PartitionedSub.

It is essential for the hardness proof that the graph H
appearing in the #PartitionedSub instance is bipartite and

3-regular. Therefore, we establish here the #W[1]-hardness

of #PartitionedSub(Hbicub), where Hbicub is the class of all

bipartite cubic graphs.

Lemma II.9. #PartitionedSub(Hbicub) is #W[1]-hard.

It is known that, assuming ETH, #Clique cannot be

solved in time f(k)no(k) for any computable function f
[43], [44]. We would like to have a similar lower bound

for #PartitionedSub(Hbicub) and then, via the reduction

in Section III, a lower bound for counting bipartite k-

matchings. It turns out that we need a source problem

different from #Clique to prove (almost) tight lower bounds

for #PartitionedSub(Hbicub).

Theorem II.10 ([39, Corollaries 6.2–6.3]). Assuming ETH,
there is a universal constant D such that #PartitionedSub
cannot be solved in time f(k)no(k/ log k), where k = |V (H)|
and f is any computable function, even under the restriction
that H has maximum degree at most D.

Using this theorem, we show in the full version:

Lemma II.11. Assuming ETH, the problem
#PartitionedSub(Hbicub) admits no f(k)no(k/ log k)

time algorithm, where k = |V (H)| and f is computable.

III. BIPARTITE EDGE-COLORFUL MATCHINGS

In this section, we prove #W[1]-hardness of counting k-

matchings in bipartite graphs G. While this is interesting

on its own, as previously only #W[1]-hardness for general

graphs G was known, we mainly use this problem as a

reduction source for the next section, where it will be crucial

to assume that G is bipartite. In fact, we prove the stronger

statement that counting edge-colorful k-matchings is #W[1]-

hard (by Lemma II.7(2), this statement is indeed stronger).

This might come as a surprise as the vertex-colorful version

is fixed-parameter tractable (even on general graphs) by the

discussion in the last section.

Furthermore, our reduction bypasses the algebraic ma-

chinery of [37], which built upon a technique introduced in

[33] that could only guarantee that the parameter increase

in the reduction is computable. Therefore, while showing

#W[1]-hardness, this proof was inherently unable to show

lower bounds under ETH. In the following proof, we reduce

from the problem #PartitionedSub(Hbicub), which admits

no f(k)no(k/ log k) algorithm under ETH by Lemma II.11.

Our reduction will preserve this lower bound.

Theorem III.1. The problem #Match of counting k-
matchings in bipartite graphs and the problem #ColMatch
of counting edge-colorful k-matchings in edge-colored bi-
partite graphs are #W[1]-complete and, assuming ETH,
admit no f(k)no(k/ log k) algorithms.

We show the second claim, from which the first claim

follows with Lemma II.7(2). The following technical lemma

will be needed in the proof, and illustrates how polynomials

appear in the context of counting matchings.

Lemma III.2. Let A and B be edge-colorful graphs using
colors from a set Δ. For n ≥ 0, let A + n · B denote A
together with n vertex-disjoint copies of B. Then for every
X ⊆ Δ, the value #MX(A+ n · B) is a polynomial in n
of maximum degree |X|.

Proof of Theorem III.1:
We prove the statement by reduction from

#PartitionedSub(Hbicub). Let H and G be [k]-vertex-

colored graphs such that H is 3-regular, bipartite and

colorful. Without limitation of generality, G satisfies the

condition stated in Remark II.6: There are no edges between

color classes i and j of G if there is no edge between the

i-colored vertex and the j-colored vertex of H .
Moreover, let n0 ∈ N with n0 ≥ 3 be a fixed universal

constant (independent of H and G) whose value will be

determined at the end of the proof. We assume that there

is some n ∈ N such that |Vi(G)| = n for all i ∈ [k] and

n > n0. This can be ensured by adding isolated vertices to

G. (Note that isolated vertices cannot appear in subgraphs

F ⊆ G with F � H as H is 3-regular.) In the following,

consider H as a Γ-edge-colorful graph, where Γ � E(H)
is a set of 3k/2 colors.

For each vertex of H , let us fix an arbitrary ordering of

the three edges incident to it. Let Δ := [k] × [6] and let

G� be the edge-colored graph with colors Γ ∪Δ, which is

obtained from G as follows:

1) Replace each v ∈ V (G) by a cycle C6 on the vertices

wv,1, zv,1, wv,2, zv,2, wv,3, zv,3. The edges of the

cycle are colored with {i} × [6] the way it is shown

in Figure 1.

2) Let us define the independent set I(v) =
{wv,1, wv,2, wv,3}. For each vertex-color i ∈ [k] of

G, define I(i) = ⋃
v∈Vi(G)

I(v).
3) For e ∈ E(H) with e = {i, j}, let a, b ∈ [3] be such

that e is the a-th edge incident with i and the b-th
edge incident with j. Replace each {u, v} ∈ E(G)
where u is i-colored and v is j-colored by the edge

{wu,a, wv,b} of color γ(e) ∈ Γ.

It is easy to see that G� is bipartite. For X ⊆ Γ ∪ Δ,

recall that MX(G
�) denotes the set of matchings of G�

that contain exactly one edge of each color in X . At first, we
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Figure 1. Each column represents one type. The partition of Mi is depicted with red edges. The black edges show the edges of the cycles not incident
to the matching; these edges form the graphs Rs.

will only be interested in N :=MΓ(G
�), i.e., in colorful

matchings of the subgraph of G� that contains no C6-edges.

Observe that for M ∈ N and i ∈ [k], the set V (M) ∩ I(i)
contains exactly three vertices, which could be contained

within a single set I(v) for some v ∈ V (G), or they could

be spread over different such sets. That is, the three vertices

can be all in the same I(v), or be in three different sets

I(v1), I(v2), I(v3), or one of them can be in some I(v1)
and the other two in some I(v2). This last case further splits

into three subcases: there is an i ∈ [3] such that wv1,i is used

from I(v1) and the two vertices wv2,j for j ∈ [3] \ {i} are

used from I(v2). In total, this yields five possibilities how

the matching M can look like from the viewpoint of the

cycles representing Vi(G), as shown in Figure 1.

We formally define the five possible types depicted in

Figure 1 as follows. For M ∈ N and i ∈ [k], call u, v ∈
V (M)∩I(i) equivalent if there exists some w ∈ V (G) such

that u, v ∈ I(w). This equivalence notion induces a partition

θi(M) of V (M) ∩ I(i), which we refer to by its index in

Figure 1. Let the vector θ(M) = (θ1(M), . . . , θk(M)) be

the type of M , and let Θ := [5]k be the set of all types.

For θ ∈ Θ, let N [θ] := {M ∈ N | θ(M) = θ} denote the

matchings of type θ. Let θ∗ = (1, . . . , 1) denote the good

type. We write θ(i) for the i-th coordinate of a type θ.

Then N [θ∗] � PartitionedSub(H → G): Every M ∈
N [θ∗] encodes a copy of H as the edges in M involve

exactly one vertex of color i for every i ∈ [k]; conversely

every H-copy induces a unique M∗ ∈ N [θ∗]. However,

N [θ] for θ �= θ∗ stands in no useful relation to H-copies.

In the following, we consider the edge-colorful matchings

in MX(G
�), for certain sets Γ ⊆ X ⊆ Γ∪Δ. Each match-

ing in MX(G
�) is an extension of a matching M ∈ N .

Different matchings M ∈ N have different numbers of

extensions in MX(G
�), but we show that the contribution

of M depends only on its type θ(M). Therefore, the size

of MX(G
�) can be interpreted as a weighted sum over

M ∈ N with weights depending on θ(M). Our goal is to

deduce the number of matchings M ∈ N of type θ∗ from

the resulting system of linear equations.

This task requires a few definitions. For t ∈ [5], define

A1 := {4, 5}, A2 := {2, 3}, A3 := {1, 6}, A4 := {2, 3, 4, 5}
and A5 := {1, 2, 3, 4, 5, 6}. For i ∈ [k], write Ai

t = {i} ×
At. Note that these are the colors appearing on the cycles

representing vertices of Vi(G). For t ∈ [5]k, let

X(t) := Γ ∪A1t(1) ∪ . . . ∪Ak
t(k).

For s ∈ [5] and i ∈ Γ, let Ci
6 be the cycle representing

vertices of Vi(G). We introduce a specific auxiliary graph

Rs, which is an induced subgraph of three disjoint copies of

Ci
6, after removing vertices incident to a matching of type s;

clearly, Rs has exactly 3 · 6− 3 = 15 vertices. These graphs

are drawn in Figure 1. By Lemma III.2, for all s, t ∈ [5],
the quantity

ps,t(n) := #MAi
t
(Rs + n · Ci

6)

is a polynomial in n of maximum degree 6 which is

independent of H and G. In principle, the 25 polynomials

ps,t could be calculated and written out explicitly, but we

will see that it is sufficient to know that they are polynomials.

By invoking the next claim on all possible t ∈ [5]k, we

obtain 5k linear equations involving

• the results #MX(t)(G
�) of oracle calls on

#ColMatch, for t ∈ [5]k, and

• products of numbers ps,t(n) for s, t ∈ [5], where ps,t
are defined above, and

• the number of matchings #N [θ] for all 5k types θ ∈ Θ,

including the desired #N [θ∗].
Claim III.3. Let n ≥ 3, as assumed in this section. For
every t ∈ [5]k, it holds that

#MX(t)(G
�) =

∑

θ∈Θ
#N [θ] ·

∏

i∈[k]
pθ(i),t(i)(n− 3). (1)

For t ∈ [5]k, consider (1) as a linear equation in the

unknowns #N [θ]: We obtain T equations in T unknowns,

where T = 5k. By Gaussian elimination, a solution to this
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system can be found in time O(T 3), but it is crucial to

show that this solution is unique, i.e., that its system matrix

Rk(n) has full rank. We show that there is a number n0 ∈ N

independent of H and G, such that for all n, k ∈ N with

n > n0, the matrix Rk(n) has full rank.

For R ∈ Z
�×� and k ∈ N, we write R⊗k for the k-th

Kronecker power of R: The �k rows and columns of R⊗k

are indexed by the lexicographical ordering of vectors i, j ∈
[�]k, and it holds that (R⊗k)i,j =

∏
s∈[k]Ri(s),j(s). Let us

observe that Rk(n) = (R1(n))
⊗k, where R1(n) is the 5×5

matrix with (R1(n))s,t = ps,t(n) for s, t ∈ [5]. It is a basic

property of the Kronecker product that the k-th Kronecker

power of a nonsingular square matrix is also nonsingular.

Therefore, we only need to verify that R1(n) is nonsingular.

By Lemma III.2, the value ps,t(n) is a polynomial in n
for every s, t ∈ [5], hence the determinant det(R1(n)) is

also a polynomial in n. This means that it is either zero for

every n ∈ Z, or zero only for finitely many n. Recall that

(R1(0))s,t = ps,t(0) = #MAi
t
(Rs), that is, the number

of Ai
t-colored matchings in a specific 15-vertex graph Rs,

which can be computed with some effort. In the full version,

we show that det(R1) �= 0.

This implies that det(R1(n)), interpreted as a polynomial

in n, is not identically 0, which in turn implies that R1(n)
is singular only for finitely many n. Hence the linear system

admits a unique solution if n > n0, which we assumed in

the beginning by adding isolated vertices to G.

We can transfer the lower bound of Theorem III.1 for

bipartite k-matchings to k-cycles and k-paths.

Theorem III.4. The problems of counting (directed or
undirected) paths or cycles of length k are #W[1]-hard and
admit no f(k)no(k/ log k) algorithm unless ETH fails.

IV. REDUCING MATCHINGS TO #Sub(H)
To show hardness for Sub(H), we develop a general

machinery of k-matching gadgets, which are graphs H ∈ H
together with a partition of V (H) into an induced matching

M and some remainder C. These gadgets satisfy certain

technical properties which will be used in Theorem IV.7,

which is the main reduction of this paper. It states that, if

H is a class of graphs that contains k-matching gadgets for

all k ∈ N, then there is a parameterized Turing reduction

from the problem of counting (uncolored) k-matchings in

bipartite graphs G to the problem #Sub(H).
In the remainder of this section, we define k-matching

gadgets formally, give some first examples of their prop-

erties, and then prove Theorem IV.7. Proving the actual

existence of k-matching gadgets in graph classes H will

be the task of the subsequent sections.

Definition IV.1. Let H be a graph. For C ⊆ V (H), let

∂H(C) denote the set of vertices in C that have a neighbor

in V (H) \ C. If f is an isomorphism from H[C] to H[C ′]

for some C,C ′ ⊆ V (H) such that f(∂H(C)) = ∂H(C
′),

then we say that f is boundary preserving.

Observe that X ⊆ Y implies (X \ ∂H(X)) ⊆ (Y \
∂H(Y )): if v ∈ X has no neighbor outside X , then it has

no neighbor outside Y either.

The following definition formulates the properties of the

gadgets we need in the main reduction (Theorem IV.7).

Definition IV.2. Let H be a graph, M be an induced k-

matching in H , and let C := V (H) \ V (M). We say that

(H,M) is a k-matching gadget if whenever an isomorphism

f from H[C] to H[C ′] for some C ′ ⊆ V (H) satisfies

(P1) H \ C ′ has no isolated vertex,

(P2) H \ C ′ is bipartite, and

(P3) f is boundary preserving,

then it is also true that H \C ′ is a k-matching, i.e., H \C ′

is isomorphic to the graph on 2k vertices that contains k
vertex-disjoint edges.

Using a rather extensive graph-theoretical analysis, we

will show in Sections V-VII:

Theorem IV.3. LetH be a graph class of unbounded vertex-
cover number and bounded treewidth. Then, for all k ∈ N,
there exists a graph H ∈ H and a subset M ⊆ V (H) such
that (H,M) is a k-matching gadget.

It indeed suffices to consider classes H covered by this

theorem: By Theorem II.3, the problem #Sub(H) admits a

polynomial-time algorithm if H has bounded vertex-cover

number. If H has unbounded treewidth, then #Sub(H) is

#W[1]-complete by Theorem II.8.

It will be convenient to know that if a k-matching gadget

exists, then a k0-matching gadget also exists for every k0 <
k. This is not obvious from the definition and requires a

nontrivial proof.

Lemma IV.4. If (H,M) is a k-matching gadget and M0 ⊆
M is a k0-matching, then (H,M0) is a k0-matching gadget.

The following lemma shows a simple condition that

guarantees the correctness of a k-matching gadget.

Lemma IV.5. Let M be an induced k-matching in a graph
H such that every vertex of C := V (H)\V (M) is adjacent
to at most one vertex of V (M). Then (M,H) is a k-
matching gadget.

We will see condition (P1) is usually easy to achieve (by

making M somewhat smaller), but ensuring condition (P2)

will be more involved.

The main reduction is described by the following lemma

and theorem, which provide a reduction from counting

bipartite k-matchings to Sub(H) whenever H contains k-

matching gadgets of all sizes.

Lemma IV.6. Let G be a graph and let (H,M) be a k-
matching gadget of size t = |V (H)|. Then we can compute
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the number of k-matchings in G from 2k · 2O(t2) oracle
queries of the form #Sub(H → G′), where G′ is an
arbitrary graph.

This readily implies the hardness result.

Theorem IV.7. IfH is a recursively enumerable graph class
that contains a k-matching gadget for every k ∈ N, then
#Sub(H) is #W[1]-complete.

V. BOUNDED-DEGREE GRAPHS

The goal of this section is to prove Theorem IV.3, the

existence of k-matching gadgets, for the special case of

graph classes H with bounded maximum degree and un-

bounded vertex-cover number. The results in Sections VI

and VII for other graph classes are based on this result for

bounded-degree graphs. The basic idea is that in bounded-

degree graphs we are close to the situation described by

Lemma IV.5: clearly, the two endpoints of an edge in the

matching can have only a bounded number of common

neighbors; in this sense property (P2) “almost holds.” We

choose a candidate (H,M) for the k-matching gadget and

see how it can fail. If for every C ′ satisfying (P1)-(P3), the

graph H \ C ′ still has many components of size 2 (so it

is “almost a matching”), then we can extract a correct k′-
matching gadget for some relatively large k′ < k. Suppose

therefore that (H,C) “spectacularly fails”: H \C ′ has only

few components of size 2. As H\C ′ has no isolated vertices,

this is only possible if H \C ′ has many more edges than the

k-matching M . Then we argue that now the total degree on

the boundary of C ′ is much smaller than on the boundary of

C, and we can use this to find an induced matching in H\C ′

whose endpoints have strictly fewer common neighbors than

in M . As the graph has bounded degree, repeating this

argument a constant number of times eventually leads to a

matching where the endpoints of the edges have no common

neighbors, hence Lemma IV.5 can be invoked.

In a bounded-degree graph, any sufficiently large set of

edges contains a large matching and in fact a large induced

matching: we can greedily select edges and we need to throw

away only a bounded number of edges after each selection.

Moreover, in order to move closer to the situation described

in Lemma IV.5, we may also satisfy the requirement that the

selected edges have no common neighbors (but it is possible

that the two endpoints of an edge have common neighbors).

Lemma V.1. Let F be a set of edges in a graph G with
maximum degree D. Then there is an induced matching
M ′ ⊆ F of size at least |F |/(2D2). Furthermore, there
is an induced matching M ′′ ⊆ F of size at least |F |/(2D3)
such that every vertex of V (G) \ V (M ′′) is adjacent to at
most one edge of M ′′.

For bounded-degree graphs, Lemma V.1 implies that there

is not much difference between having a large set of edges, a

large matching, a large induced matching, or a large induced

matching satisfying the requirement that every vertex outside

the matching is adjacent to at most one edge of the matching.

Lemma V.2. There is a function fd(k0, D) such that the
following holds. If H is a graph with maximum degree at
most D and contains a matching of size at least fd(k0, D),
then there is a k0-matching gadget (H,M0).

VI. GRAPHS WITH NO LARGE SUBDIVIDED STARS

A subdivided �-star consists of a center vertex v and �
paths of length 2 starting at v that do not share any vertex

other than v. We denote by ψ(v) the largest integer � such

that v is the center of a subdivided �-star. We denote by

ψ(G) the maximum of ψ(v) for every v ∈ V (G). The goal

of this section is to prove Theorem IV.3, the existence of

k-matching gadgets, for graphs where ψ(G) is bounded.

We develop a technology that allows us to “ignore” certain

sets Q of vertices: if H \Q has a k-matching gadget, then so

does H . This works for sets Q where the vertices have some

characteristic property (e.g., based on degrees) that allows us

to distinguish them from the vertices not in Q (see below).

We use this technique to reduce the problem to bounded-

degree graphs. If we have a large induced matching where

every vertex has small degree, then we define Q to be the

vertices of “large degree.” Now H \Q is clearly a bounded-

degree graph and hence Lemma V.2 can be invoked. Suppose

therefore that we have an induced matching where every

vertex has large degree. Then we define Q to be the vertices

of “small degree.” Somewhat unexpectedly, H \ Q is a

bounded-degree graph also in this case: this follows from

the fact that if ψ(G) is bounded, then a vertex cannot have

many neighbors of large degree.

Proposition VI.1. Every vertex v ∈ V (G) has at most ψ(v)
neighbors with degree at least 2ψ(v) + 2.

Therefore, we can reduce the problem to bounded-degree

graphs also in the case of a matching with large degree

vertices. Finally, if we have a large induced matching with

“mixed” edges, that is, each having both a small-degree and

a large-degree endpoint, then we can reduce to one of the

previous two cases by looking at the common neighbors of

the endpoints.

The following definition will be crucial for the clean

treatment of the problem. We show that if a set is “well

identifiable” (for example, based on degrees etc.) then we

can remove it from the graph and it is sufficient to show that

the remaining part of the graph has a k-matching gadget.

The definition formulates this condition as invariance under

certain isomorphisms.

Definition VI.2. Let H be a graph and let X ⊆ C ⊆ V (H)
be two subsets of vertices. We say that X is a strong set
with respect to C if whenever f is a boundary-preserving

isomorphism from H[C] to H[C ′] for some C ′ ⊆ V (H),
then f(X) = X (in particular, this implies X ⊆ C ′).
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Observe that f(X) and X have the same size, thus to

prove f(X) = X , it is sufficient to prove f(X) ⊆ X , that

is, v ∈ X implies f(v) ∈ X .

As a simple example, suppose that every vertex in H has

either degree at most d or degree at least d + 2k + 1 and

M ⊆ H is a k-matching with every vertex having degree

at most d in H . Let C = V (H) \ V (M) and let X ⊆
C be the set of vertices with degree at least d + 2k + 1.

Then X is a strong set: every vertex x ∈ X has at least

d+ 2k + 1− |V (M)| = d+ 1 neighbors in C, hence f(v)
has at least d+ 1 neighbors in C ′, implying that f(v) ∈ X
(as we assumed that degree larger than d implies that the

degree is at least d+2k+1). In fact, it is sufficient to enforce

the degree requirement only for vertices v ∈ ∂H(C): it is

sufficient if we require that the degree of every vertex in

∂H(C) is either at most d or at least d + 2k + 1, but the

degrees of the vertices in C \ ∂H(C) can be arbitrary. This

is sufficient, as if v ∈ C \ ∂H(C), then every neighbor of v
is in C and (P3) of f implies that every neighbor of f(v) is

in C ′, hence (as H[C] and H[C ′] are isomorphic) vertices

v and f(v) have exactly the same degree.

We show now that removing a strong set disjoint from M
does not affect whether a k-matching gadget is correct.

Lemma VI.3. Let H be a graph containing an induced k-
matching M , let C := V (H) \ V (M), and let X ⊆ C be a
strong set with respect to C. If (H \X,M) is a k-matching
gadget, then so is (H,M).

Similarly to bounded-degree graphs (Lemma V.1), we can

use a bound on ψ(H) to argue that not too many edges can

be in the neighborhood of an edge and therefore a large set

of edges implies a large induced matching. However, all we

need now is that a large induced matching implies that there

is a large induced matching such that every vertex outside

the matching is adjacent to at most one edge of the matching.

Lemma VI.4. Let M be an induced matching of size at
least 2kL2 in a graph H with ψ(G) ≤ L. Then there is
an M ′ ⊆ M of size at least k such that every vertex of
V (G) \ V (M ′) is adjacent to at most one edge of M ′.

Recall the example after Definition VI.2: if there is a

sufficiently large “gap” in the degrees of the vertices of

N(V (M)) for a matching M , then we can define a strong set

simply based on the degrees. The following lemma creates

such a gap of arbitrary large size by throwing away at most

half of the edges of a matching.

Lemma VI.5. Let F be an induced matching in a graph
H with ψ(H) ≤ L. For every x ≥ 2L + 2, y ≥ 1, there is
an induced matching F ′ ⊆ F of size at least |F |/2 and an
x ≤ g ≤ x+4(2L+2)y such that N(V (F ′)) has no vertex
whose degree in H is in the range {g, . . . , g + y − 1}.

Now we are ready to prove that main result for graphs not

having large subdivided stars. The proof uses Lemma VI.3

to remove a set of vertices, making the graph bounded

degree, and then the bounded-degree result Lemma V.2 can

be invoked.

Lemma VI.6. There is a function fs(k0, L) such that if
graph H with ψ(H) ≤ L has an induced matching of size
fs(k0, L), then there is a k0-matching gadget (H,M0).

VII. BOUNDED-TREEWIDTH GRAPHS

In this section, we complete the proof of Theorem IV.3

by showing that if a bounded-treewidth graph has large

vertex-cover number, then it contains a k-matching gadget.

From a Ramsey argument contained in the full version, it

follows that bounded-treewidth graphs with large vertex-

cover number contain large induced matchings. We give

another proof (Lemma VII.1) of this fact by looking at the

tree decomposition instead of using Ramsey arguments. The

proof finds an induced matching such that ψ(v) is bounded

for every vertex v of the matching, that is, there are no

large subdivided stars centered on them. Then we define Q
to be the set of vertices with large ψ-number (this require

some care) and use the technology developed in Section VI

(Lemma VI.3) to argue that it is sufficient to find a k-

matching gadget in H \ Q. Clearly, ψ(H \ Q) is bounded,

hence Lemma VI.6 can be invoked.

Lemma VII.1. Let w and k be integers and let H be a graph
of treewidth at most w and vertex cover number greater
than 3k(w + 1). Then there is an induced matching M =
{u1v1, . . . , ukvk} such that ψ(ui), ψ(vi) ≤ 2(w + 1) for
every 1 ≤ i ≤ k.

The following two technical lemmas will be used in the

proof of Lemma VII.4.

Lemma VII.2. If H is a multiset of at least (1 + z · r)k
subsets of a universe U , each having size at most r, then
there is a subcollection H′ ⊆ H of size k such that for every
x ∈ U , either there is at most one set in H′ containing x,
or there are at least z sets in H \H′ containing x.

Lemma VII.3. Let H be of treewidth ≤ w and let Z ⊆
V (H). If for every v ∈ Z there is a subdivided star Sv

centered at v covering every vertex of Z, then |Z| ≤ w+1.

We are now ready to prove the main result for bounded-

treewidth graphs, which completes the proof Theorem IV.3.

Lemma VII.4. There is a function f(k,w) such that if a
graph H with treewidth ≤ w has vertex cover number >
f(k,w), then there is a k-matching gadget (H,M).
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