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Abstract—The calculation of ground-state energies of physi-
cal systems can be formalised as the k-LOCAL HAMILTONIAN

problem, which is the natural quantum analogue of classical
constraint satisfaction problems. One way of making the problem
more physically meaningful is to restrict the Hamiltonian in
question by picking its terms from a fixed set S. Examples of
such special cases are the Heisenberg and Ising models from
condensed-matter physics.

In this work we characterise the complexity of this problem
for all 2-local qubit Hamiltonians. Depending on the subset
S, the problem falls into one of the following categories: in
P; NP-complete; polynomial-time equivalent to the Ising model
with transverse magnetic fields; or QMA-complete. The third
of these classes contains NP and is contained within StoqMA.
The characterisation holds even if S does not contain any 1-local
terms; for example, we prove for the first time QMA-completeness
of the Heisenberg and XY interactions in this setting. If S
is assumed to contain all 1-local terms, which is the setting
considered by previous work, we have a characterisation that
goes beyond 2-local interactions: for any constant k, all k-local
qubit Hamiltonians whose terms are picked from a fixed set S
correspond to problems either in P; polynomial-time equivalent
to the Ising model with transverse magnetic fields; or QMA-
complete.

These results are a quantum analogue of Schaefer’s dichotomy
theorem for boolean constraint satisfaction problems.

Index Terms—Hamiltonian complexity; QMA-completeness.

I. INTRODUCTION

Constraint satisfaction problems (CSPs) are ubiquitous in

computer science and have been intensively studied since the

early days of complexity theory. A beautiful and surprising

result in this area is the dichotomy theorem of Schaefer [1],

which completely classifies the complexity of boolean con-

straint satisfaction problems of a certain form. These problems

can all be considered special cases of a general problem S-

CSP, where S is a set of constraints, each of which is a boolean

function on a fixed number of bits. An instance of the problem

is described by a sequence of these constraints, applied to dif-

ferent subsets of input bits. The task is to determine whether all

the constraints can be simultaneously satisfied. For example,

the 3-SAT problem fits into this class: here the constraints

are disjunctions of up to 3 input bits, or their negations.

Schaefer’s result states that if S is one of a particular family of

types of constraints, S-CSP is in P; otherwise, S-CSP is NP-

complete. This result is particularly remarkable given Ladner’s

theorem [2] that, assuming P �= NP, there must be an infinite

hierarchy of complexity classes between P and NP.

Schaefer’s dichotomy theorem has subsequently been gener-

alised and sharpened in a number of directions. In particular,

Creignou [3] and Khanna, Sudan and Williamson [4] have

completely characterised the complexity of the maximisation

problem k-MAX-CSP for boolean constraints. Here we are

again given a system of constraints, but the goal is to maximise

the number of constraints we can satisfy. An example problem

of this kind is MAX-CUT. A recent monograph of Creignou,

Khanna and Sudan [5] has much more on this subject.

A natural quantum generalisation of constraint satisfaction

problems is provided by the k-LOCAL HAMILTONIAN prob-

lem [6]. A k-local Hamiltonian is a Hermitian matrix H on

the space of n qubits which can be written as H =
∑

i H
(i),

where each H(i) acts non-trivially on at most k qubits.

Definition 1 (k-LOCAL HAMILTONIAN). The (promise) prob-
lem k-LOCAL HAMILTONIAN is defined as follows. We are
given a k-local Hamiltonian H =

∑m
i=1 H

(i) on n qubits
with m = poly(n). Each H(i) satisfies ‖H(i)‖ = poly(n)
and its entries are specified by poly(n) bits. We are also
given two rational numbers a < b of poly(n) digits such that
b−a ≥ 1/ poly(n), and promised that the smallest eigenvalue
of H is either at most a, or at least b. Our task is to determine
which of these two possibilities is the case.

k-LOCAL HAMILTONIAN is a direct generalisation of k-

MAX-CSP; the classical problem is the special case where

each matrix H(i) is diagonal in the computational basis and

only contains 0’s and 1’s. Just as k-MAX-CSP is NP-complete

for k ≥ 2, k-LOCAL HAMILTONIAN is QMA-complete for

k ≥ 2 [7], where QMA (quantum Merlin-Arthur) is the

quantum analogue of NP [6]. If a problem is QMA-complete,

this is good evidence that there is unlikely to be a polynomial-

time algorithm (whether classical or quantum) to solve it.

As well as the intrinsic mathematical interest of this non-

commutative generalisation of constraint satisfaction prob-

lems, a major motivation for this area is applications to

physics. Indeed, the classical connection between constraint

satisfaction and physics goes back at least as far as Barahona’s

work proving NP-hardness of cases of the Ising model [8].

One of the most important themes in condensed-matter physics
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is calculating the ground-state energies of physical systems1;

for spin models, this is essentially an instance of k-LOCAL

HAMILTONIAN.

This connection to physics motivates the study of the

QMA-hardness (or otherwise) of k-LOCAL HAMILTONIAN

with restricted types of interactions, with the aim being to

prove QMA-hardness of problems of more direct physical

interest, rather than the somewhat unnatural interactions that

may occur in the general k-LOCAL HAMILTONIAN problem.

This is the quantum analogue of the classical programme of

proving NP-hardness of constraint satisfaction problems where

the constraints are picked from a restricted set S. One can

also consider k-LOCAL HAMILTONIAN with restrictions on

the interaction topology (for example, taking all interactions

to be 2-local on a planar lattice).

In particular, it is known that 2-LOCAL HAMILTONIAN

remains QMA-complete if:

• the Hamiltonian H is of the Heisenberg form with

arbitrary local magnetic fields,

H =
∑

(i,j)∈E
XiXj+YiYj+ZiZj+

∑
k

αkXk+βkYk+γkZk,

where αk, βk, γk are arbitrary coefficients and E is the

set of edges of a 2-dimensional square lattice [9], [10];

• the Hamiltonian H is of the form [11]

H =
∑
i<j

JijXiXj +KijZiZj +
∑
k

αkXk + βkZk,

or

H =
∑
i<j

JijXiZj +KijZiXj +
∑
k

αkXk + βkZk,

where Jij , Kij , αk, βk are arbitrary coefficients. These results

determine the complexity of various special cases of the

following general problem, which we call S -HAMILTONIAN.

Definition 2 (S -HAMILTONIAN). Let S be a fixed (finite or
infinite) subset of Hermitian matrices on at most k qubits,
for some constant k. The S -HAMILTONIAN problem is the
special case of k-LOCAL HAMILTONIAN where, for each i,
there exists αi ∈ R such that αiH

(i) ∈ S . That is, the overall
Hamiltonian H is specified by a sum of matrices H(i), each
of which acts non-trivially on at most k qubits, and whose
non-trivial part is proportional to a matrix picked from S.

We then have the following general question:

Problem 3. Given S, characterise the computational com-
plexity of S -HAMILTONIAN.

We will essentially completely resolve this question in the

case where every matrix in S acts on at most 2 qubits. Before

we state our results, we observe the following important points

about this problem:

1In practice, one might often actually like to determine some more
complicated property of the ground state; however, calculating the energy
is a reasonable starting point.

• In general, we assume that, given a set of interactions

S, we are allowed to produce an overall Hamiltonian by

applying each interaction M ∈ S scaled by an arbitrary

real weight, which can be either positive or negative. This

contrasts with constraint satisfaction problems, where

usually weights are restricted to be positive.

• We assume that we are allowed to apply the interactions

in S across any choice of subsets of the qubits. That is,

the interaction pattern is not constrained by any spatial

locality, planarity or symmetry considerations. However,

each application of a k-local interaction must be across a

set of k distinct qubits. Classically, it is common to allow

one constraint in a CSP to take as input multiple copies

of the same variable, but from a physical perspective

this seems less meaningful so we do not allow it. Even

classically, this distinctness requirement can make it more

difficult to prove hardness for families of CSPs [4].

• Some of the interactions in S could be non-symmetric

under permutation of the qubits on which they act; for

example, it could make a difference whether we apply

M ∈ S across qubits (1, 2) or qubits (2, 1). We assume

that we are allowed to apply such interactions to any

permutation of the qubits.

• We can always assume without loss of generality that the

identity matrix I ∈ S , as adding an arbitrarily weighted

identity term (energy shift) does not change the hardness

of the problem.

Making these assumptions will allow us to give a precise

classification of the complexity of S -HAMILTONIAN; the price

paid is that the problem instances considered are potentially

less physically meaningful (for example, containing terms with

polynomially large weights, with both positive and negative

signs, and with interactions across large distances). Finding

a full characterisation of S -HAMILTONIAN with additional

restrictions on the form of the Hamiltonians considered seems

to be a very challenging task. However, sometimes (see

Section II below) we are nevertheless able to classify the

complexity of S -HAMILTONIAN even when restricted to more

physically realistic interaction patterns.

A number of interesting special cases of k-LOCAL HAMIL-

TONIAN which do not exactly fit into the S -HAMILTONIAN

framework have also been studied. In particular, it has been

shown by Bravyi et al. [12] that k-LOCAL HAMILTONIAN is

in the complexity class AM if the Hamiltonian is restricted to

be stoquastic. A stoquastic Hamiltonian has all off-diagonal

entries real and non-positive in the computational basis. Such

Hamiltonians are of particular interest as they occur in a wide

variety of physical systems, and also in the quantum adiabatic

algorithm for SAT [13] and certain claimed implementations

of quantum computation [14]. As AM is in the polynomial

hierarchy, it is considered unlikely that k-LOCAL HAMILTO-

NIAN with stoquastic Hamiltonians is QMA-complete. This

result was subsequently sharpened by Bravyi, Bessen and Ter-

hal [15], who showed that this problem is StoqMA-complete,

where StoqMA is a complexity class which sits between
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MA and AM. On the other hand, approximating the highest
eigenvalue of a stoquastic Hamiltonian is QMA-complete [16].

Bravyi and Vyalyi [17] proved that k-LOCAL HAMILTONIAN

is in NP for 2-local Hamiltonians with commuting terms, and

this has been extended recently by Hastings [18] to further

classes of commuting Hamiltonians.

A. Organisation and notation

Because of space limitations, many proofs, technical details

and discussions are deferred to the full version of the pa-

per [19]. In the remainder of this extended abstract, we state

our results; discuss our proof techniques; sketch the hardness

proof of an key special case (the Heisenberg model); give an

overview of the proof of one of our main results; and conclude

with some open questions.

We use X := ( 0 1
1 0 ), Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
to denote

the Pauli matrices, and also define σ0 := I , σ1 := X , σ2 :=
Y , σ3 := Z. Any k-qubit matrix M can be decomposed as a

weighted sum of tensor products of Pauli matrices. For each

�, 0 ≤ � ≤ k, we call the part of M corresponding to Pauli

matrices which act non-trivially on exactly � qubits the �-local

part of M .

For any k-qubit matrix M , we let Mi1...ik denote the matrix

formed by applying M on qubits i1, . . . , ik, tensored with

the identity elsewhere. For conciseness, we usually follow

the condensed-matter convention of writing AB for the two-

qubit matrix A ⊗ B (so, for example, XX + Y Y + ZZ =
X ⊗ X + Y ⊗ Y + Z ⊗ Z). We usually let n denote the

number of qubits in the overall Hamiltonian.

II. STATEMENT OF RESULTS

We begin by considering a special case of the problem,

which we call S -HAMILTONIAN WITH LOCAL TERMS, is

defined as follows.

Definition 4. S -HAMILTONIAN WITH LOCAL TERMS is the
special case of S -HAMILTONIAN where S is assumed to
contain all 1-qubit Hermitian matrices.

That is, in the S -HAMILTONIAN WITH LOCAL TERMS prob-

lem we are given access to all 1-local terms for free: the overall

Hamiltonian is formed by taking a sum of terms from S,

each with an arbitrary positive or negative weight, then adding

arbitrary 1-local terms. For any S, S -HAMILTONIAN WITH

LOCAL TERMS is at least as difficult as S -HAMILTONIAN,

because it is a generalisation. It is therefore easier to prove

QMA-hardness of cases of S -HAMILTONIAN WITH LOCAL

TERMS. All previous proofs of QMA-hardness of special cases

of k-LOCAL HAMILTONIAN which we are aware of [7], [11],

[9], [10] actually prove QMA-hardness of S -HAMILTONIAN

WITH LOCAL TERMS for various sets S. Here we are able to

characterise the complexity of this problem when S contains

arbitrary matrices on up to k qubits, for arbitrary k = O(1).
We first need to define a notion of local diagonalisation. Let

M be a k-qubit Hermitian matrix. We say that U ∈ SU(2)
locally diagonalises M if U⊗kM(U†)⊗k is diagonal. We say

that U locally diagonalises S if U locally diagonalises M for

all M ∈ S . Note that matrices in S may act on different

numbers of qubits, so can be of different sizes. We are now

ready to state our first main result.

Theorem 5. Let S be an arbitrary fixed subset of Hermitian
matrices on at most k qubits, where k = O(1). Let S ′ be
the subset formed by subtracting all 1-local terms from each
element of S, and then deleting all 0-local matrices from the
resulting set. Then:
• If S ′ is empty, S -HAMILTONIAN WITH LOCAL TERMS is

in P;
• Otherwise, if there exists U ∈ SU(2) such that U locally

diagonalises S ′, then S -HAMILTONIAN WITH LOCAL

TERMS is TIM-complete, where TIM is a complexity class
satisfying NP ⊆ TIM ⊆ StoqMA (see discussion below);

• Otherwise, S -HAMILTONIAN WITH LOCAL TERMS is
QMA-complete. If every matrix in S ′ acts on 2 qubits,
this holds even if we insist that the 2-qubit interactions
in the final Hamiltonian are restricted to the edges of a
2d square lattice and all have equal weight.

We show in the full version [19] that the condition occurring

in the second case can be checked efficiently. This implies that

classification of a set S into one of the above categories can

be performed efficiently.

The alert reader may wonder why there are no NP-complete

or StoqMA-complete classes in the above characterisation.

In the former case, this is because of the free 1-local terms

allowed. In the latter case, this is because we allow terms in S
to be used with arbitrary weights with both signs. This implies

that one can always produce a non-stoquastic Hamiltonian

from any set S containing a non-diagonal matrix, even if all

the elements of S have real non-positive off-diagonal entries;

so stoquasticity is not a meaningful constraint in our setting.

In other words, the local Hamiltonian problem restricted to the

class of Hamiltonians with arbitrarily (positively or negatively)

weighted stoquastic terms is QMA-complete; see the end of

this section for a simple example of this.

The complexity class mentioned in the second case of

Theorem 5 deserves some explanation. This picks out those

special cases of S -HAMILTONIAN WITH LOCAL TERMS which

turn out to be polynomial-time equivalent to the problem

of approximating the lowest eigenvalue of a Hamiltonian in

the general Ising model with transverse magnetic fields. This

model describes Hamiltonians of the form

H =
∑
i<j

αijZiZj +
∑
k

βkXk. (1)

Such Hamiltonians have been much studied in mathematical

physics and in particular occur in the quantum adiabatic

algorithm for solving optimisation problems [13]. In our ter-

minology, the problem of determining the ground-state energy

of Hamiltonians in the transverse Ising model up to inverse-

polynomial precision is {ZZ,X}-HAMILTONIAN; we have

been unable to resist the name TIM to specify the class of

problems reducible to this. Thus a promise problem P is

in TIM if P can be solved by a polynomial-time Turing
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machine equipped with an oracle for the problem {ZZ,X}-

HAMILTONIAN, and is TIM-hard if there is a poly-time

classical reduction from {ZZ,X}-HAMILTONIAN to P .

Fixing βk = 0 suffices to show that NP ⊆ TIM, by the NP-

hardness of the general Ising model (aka MAX-CUT). In the

other direction, we clearly have TIM ⊆ QMA, but a tighter

upper bound can be achieved. By conjugating any Hamiltonian

H of the form (1) by local Z operations on each qubit k such

that βk > 0, which maps X 	→ −X and does not change the

eigenvalues of H , βk can be assumed to be non-positive for all

k. The resulting Hamiltonian has all off-diagonal entries non-

positive, or in other words is stoquastic [12]. Approximating

the ground-state energy of stoquastic Hamiltonians is captured

by the complexity class StoqMA [15], so TIM ⊆ StoqMA. As

StoqMA is contained within the polynomial hierarchy, and in

particular within the class AM [12], it is unlikely that TIM =
QMA. Thus, for sets S which fall into this second class, S -

HAMILTONIAN WITH LOCAL TERMS is unlikely to be QMA-

complete.

We can go further than Theorem 5, and consider a setting

where we do not necessarily have access to all (or any) 1-qubit

matrices. In this case, we can still completely characterise

the complexity of S -HAMILTONIAN for all sets S of 2-

qubit Hermitian matrices, with a slightly more complicated

classification.

Theorem 6. Let S be an arbitrary fixed subset of Hermitian
matrices on at most 2 qubits. Then:
• If every matrix in S is 1-local, S -HAMILTONIAN is in

P;
• Otherwise, if there exists U ∈ SU(2) such that U locally

diagonalises S , then S -HAMILTONIAN is NP-complete;
• Otherwise, if there exists U ∈ SU(2) such that, for each

2-qubit matrix Hi ∈ S , U⊗2Hi(U
†)⊗2 = αiZ

⊗2+AiI+
IBi, where αi ∈ R and Ai, Bi are arbitrary single-
qubit Hermitian matrices, then S -HAMILTONIAN is TIM-
complete, where TIM is a complexity class satisfying
NP ⊆ TIM ⊆ StoqMA;

• Otherwise, S -HAMILTONIAN is QMA-complete.

In a sense, our result completely solves Kitaev’s original

qubit local Hamiltonian problem [6] for the case of two-body

interactions (the most physically relevant case of the original

qubit local-Hamiltonian problem). We highlight some interest-

ing special cases, which are important models in mathematical

physics.

The general Heisenberg model describes Hamiltonians of

the following form:∑
i<j

αij(XiXj + YiYj + ZiZj).

In our terminology, this corresponds to {XX + Y Y + ZZ}-

HAMILTONIAN. By Theorem 6, finding the ground-state en-

ergy of Hamiltonians in this model is QMA-complete. Prior to

this work, this problem was not even known to be NP-hard. We

stress that the αij coefficients are allowed to be independently

positive or negative; in physical systems one often restricts

them to be either all positive (the antiferromagnetic case) or

all negative (the ferromagnetic case); see Section IV-A for a

further discussion of this point.

Schuch and Verstraete [10] previously proved QMA-

hardness of the Heisenberg model where arbitrary 1-local

terms are also allowed, or in other words QMA-hardness of

{XX + Y Y + ZZ}-HAMILTONIAN WITH LOCAL TERMS.

The case where no local terms are allowed is particularly

interesting because it displays a large amount of symmetry;

indeed, the ground space of such a Hamiltonian on n qubits

must be invariant under conjugation by U⊗n for arbitrary

single-qubit unitaries U . Since the Heisenberg interaction is

equivalent to projecting onto the two-qubit antisymmetric state

(singlet), it can be viewed as a natural quantum generalisation

of the MAX-CUT problem.

Theorem 6 also implies QMA-completeness of the XYZ and

XXZ models in condensed-matter physics, which correspond

to Hamiltonians of the form∑
i<j

αijXiXj + βijYiYj + γijZiZj .

The general XY model describes Hamiltonians of the

following form: ∑
i<j

αij(XiXj + YiYj).

Similarly, by Theorem 6, calculating ground state energies

in this model is QMA-complete. Biamonte and Love [11]

previously proved QMA-completeness if arbitrary local X , Y
terms are allowed and the XiXj and YiYj terms can have

different weights (Y is relabelled to Z in their work). It is

worth remarking that, if the signs αij are restricted to be

negative, the resulting Hamiltonian is stoquastic. Therefore,

we see that QMA-completeness can be obtained from a simple

special case of the stoquastic local Hamiltonian problem by

allowing weights with varying signs.

Although the theory of QMA-completeness is now over a

decade old [6], the list of problems proven QMA-complete

is still relatively short (see [20] for a recent review). One of

the original motivations for Schaefer’s dichotomy theorem [1]

was to make NP-hardness proofs easier, by increasing the

repertoire of NP-hard problems for use in reductions. We hope

that our resolution of the complexity of S -HAMILTONIAN will

be similarly useful to those wishing to prove QMA-hardness.

A. Independent and subsequent work

Shortly after a first version of this work appeared on the

arXiv, Childs, Gosset and Webb [21] proved that the Bose-

Hubbard model is QMA-complete. In proving this result, they

showed that for Hamiltonians of the form∑
i�=j,Aij=1

XiXj + YiYj −
∑

k,Akk=1

Zk,

where A is the adjacency matrix of a graph, approximating

the lowest eigenvalue restricted to a subspace with fixed ex-

pectation value of Z⊗n (“magnetisation”) is QMA-complete.
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Their work thus proves that a variant of the {XX + Y Y, Z}-

HAMILTONIAN problem with an additional restriction to a

subspace is QMA-complete, even if the non-zero coefficients

of the terms are fixed to 1 (for XX + Y Y terms) or −1 (for

Z terms).

More recently, Bravyi [22] has given a polynomial-time

algorithm for approximating the ground-state energy of TIM
Hamiltonians H =

∑
i �=j αijZiZj +

∑
k βkXk in the fer-

romagnetic case where αij ≤ 0 for all i �= j. A precise

characterisation of the complexity of general Hamiltonians of

this form remains open.

III. PROOF TECHNIQUES

As is typical for “dichotomy-type” results, our classification

theorems proceed by identifying some special cases which are

easy, and then proving hardness of all other cases. All of our

hardness results are based on reductions using gadgets (as

used in e.g. [7], [9], [10], [11]), rather than proving QMA-

hardness directly using clock constructions or similar (as used

in e.g. [6], [7]).

The basic idea is to approximately simulate some set of

interactions A, where A-HAMILTONIAN is QMA-hard, using

some other set of interactions B, thus proving QMA-hardness

of B-HAMILTONIAN. We use two kinds of gadgets, both

analysed using perturbation theory [7]. This theory allows

us to characterise the low-energy part of operators of the

form V + ΔH , where V and H are Hamiltonians and

Δ = poly(‖V ‖) is a large coefficient. The simpler type of

gadget consists of choosing a large enough constant Δ such

that V is effectively projected onto the ground space of H .

This is the quantum analogue of the natural classical technique

of forcing some input bits to be in a certain state by applying

a heavily weighted constraint to them. A more complicated

type of gadget does not have a classical analogue. Here we

choose H to be 1-local, and by picking somewhat smaller Δ,

implement an effective 2-local interaction which we did not

have access to previously.

The S -HAMILTONIAN problem contains a daunting number

of cases, so the first step of our proof is to reduce the

Hamiltonians we consider to a normal form by conjugating

by local unitaries, which does not change the eigenvalues. It

turns out that the 2-local part of any given 2-qubit Hermitian

matrix H which is symmetric (resp. antisymmetric) under

interchange of the qubits can be reduced to a matrix of the

form αXX + βY Y + γZZ (resp. α(XZ − ZX)), which

drastically reduces the number of cases we need to cover. If

our set S contains more than one interaction, we need to be

careful to apply the same local unitaries to all H ∈ S .

In the case of S -HAMILTONIAN WITH LOCAL TERMS,

the techniques used to prove QMA-hardness are then fairly

standard (following previous work [7], [9], [10], [11]). We

use our access to arbitrary 1-local terms to create perturbative

gadgets which allow us to produce arbitrary interactions from

interactions of the form αXX + βY Y + γZZ. In the case

where S only contains interactions on 1 or 2 qubits, following

this approach allows us to prove QMA-hardness even when all

the 2-qubit interactions are equally weighted and are restricted

to the edges of a 2d square lattice. We can also prove QMA-

hardness for k-qubit interactions for k > 2, which is based

on using 1-local interactions to “cut out” components of the

k-local interactions and produce 2-qubit interactions2. One

interesting special case is S = {ZZ}, which as discussed

above is NP-hard and in StoqMA, and hence unlikely to be

QMA-complete.

In the more general case of S -HAMILTONIAN it is more

difficult to prove QMA-hardness, as the lack of access to 1-

local terms does not allow us to use the perturbative techniques

of [9], [10]. In some cases, we are also hampered by the

presence of symmetry. This is highlighted by the Heisenberg

model S = {XX + Y Y + ZZ}. As H = XX + Y Y + ZZ
is invariant under conjugation by local unitaries, the same

holds for the ground space of any Hamiltonian built only

from H terms, implying that it is hopeless to attempt to

directly encode the ground state of a general Hamiltonian

into a Heisenberg Hamiltonian. We therefore proceed using

an encoding method where we associate a block of 3 physical

qubits with a single logical qubit. This is inspired by related

ideas in work on universality of the exchange interaction for

quantum computation [23], but does not appear to follow

from it directly. In order to make the encoding work, we

use perturbation theory to effectively project onto a subspace

which we can control within the 3-qubit space. An interesting

aspect of the proof is that, in order to produce the correct

interactions, we need to find an exactly solvable special case

of the Heisenberg model with certain characteristics; very few

such cases exist, but luckily the Lieb-Mattis model [24] has

the properties we need.

The other important special case with significant symmetry

is the XY model S = {XX + Y Y }, which can be dealt

with using similar ideas. Once these cases are proven QMA-

hard, it turns out that using a number of different encodings

we can produce virtual interactions of either Heisenberg or

XY type using almost any 2-qubit interaction with no 1-

local part, sufficing to prove QMA-hardness for these. Finally,

QMA-hardness of cases with 1-local parts is proven by yet

another gadget construction, this time one which removes the

unwanted 1-local terms.

In many of these cases, we needed to carry out fairly compli-

cated eigenvalue-eigenvector calculations in order to prove that

our gadgets work. These calculations were performed using

a computer algebra package. However, once they are found,

verifying that the eigenvectors and eigenvalues are correct can

easily be done by hand.

IV. EXAMPLE: THE GENERAL HEISENBERG MODEL

To exemplify our techniques, we begin by giving the

QMA-hardness proof of one of the more interesting special

cases which occur in our classification: the Heisenberg model

without 1-local terms. Our proof is based on the use of the

2It is not obvious how to achieve this without having access to 1-local
interactions, which is one reason why we were unable to achieve a full
classification result for S-HAMILTONIAN for k > 2.
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following tool, which is similar to the “Projection Lemma” of

Kempe, Kitaev and Regev [7]:

Lemma 7. Let H be a Hamiltonian such that λmin(H) = 0
and the next smallest non-zero eigenvalue of H is 1, and let
V be an arbitrary Hamiltonian such that ‖V ‖ ≥ 1. Further
take Δ = δ‖V ‖2 for some δ ≥ 4, and let H̃ = ΔH+V . Then

‖H̃<Δ/2 − V−‖ ≤ 41/δ.

The notation used in this lemma is as follows: H̃<Δ/2 is the

restriction of H̃ to the subspace spanned by eigenvectors of H̃
of eigenvalue less than Δ/2, and V− = Π−VΠ−, where Π−
is the projector onto the subspace spanned by eigenvectors of

H with eigenvalue 0. Lemma 7, which is based on underlying

technical results of Oliveira and Terhal [9], improves the result

of Kempe, Kitaev and Regev [7] by showing that the low-

energy subspace of H̃ is actually close to V− in operator

norm, rather than the two operators just having a similar

lowest eigenvalue. This will be important for us as we will

need to encode data in this subspace. It is also immediate

that Lemma 7 can be applied a constant number of times in

series (which does not seem obvious from the result of [7]).

We will use the lemma to effectively project the low-energy

part of a Hamiltonian onto a smaller space, up to a small

(1/ poly(n)) additive error. For readability, we will not include

these additive errors in the description that follows.

The general Heisenberg model describes Hamiltonians of

the form

H =
∑
i<j

αij(XiXj + YiYj + ZiZj).

Such Hamiltonians can equivalently be described in terms of

the swap gate F := 1
2 (I +XX + Y Y + ZZ). Schuch and

Verstraete proved that determining ground-state energies in

the Heisenberg model is QMA-hard if one allows arbitrary

additional 1-local terms [10]. Our task is to prove this claim

without 1-local terms. The inherent symmetry of the model

means that, in order to approximate an arbitrary Hamiltonian

as a Heisenberg Hamiltonian, we will have to encode it

somehow. In particular, we would like to encode a qubit in

a larger space such that we can generate two non-commuting

matrices which encode X and Z on the logical qubit.

The simplest such encoding possible is to associate a block

of three physical qubits with each logical qubit (a similar idea

was used in [23]). To take advantage of the symmetry of the

swap operation, we use Schur-Weyl duality, which states that

(C2)⊗3 ∼= P(3) ⊗Q(3) ⊕ P(2,1) ⊗Q(2,1),

where P(3) and P(2,1) correspond to the irreps (3) and (2, 1)
of S3 and Q(3) and Q(2,1) are irreps of U(2). The point of this

decomposition is that any permutation of the 3 qubits acts only

on the spaces P(3), P(2,1). P(3) is trivial (one-dimensional);

Q(3) is 4-dimensional and can be written as

Q(3) = span{|000〉, 1√
3
(|001〉+ |010〉+ |100〉),

1√
3
(|110〉+ |101〉+ |011〉), |111〉}.

P(2,1) and Q(2,1) are 2-dimensional and we have

P(2,1) ⊗Q(2,1) = span

{
1√
2
(|01〉 − |10〉) |0〉,

1√
2
(|01〉 − |10〉) |1〉,−

√
2

3
|001〉+ 1√

6
(|01〉+ |10〉) |0〉,√

2

3
|110〉 − 1√

6
(|01〉+ |10〉) |1〉

}
.

Write S1 = Q(3), S2 = P(2,1)⊗Q(2,1). Then it is clear that F ,

applied on any pair of the qubits, leaves S1 invariant. In the

case of S2, with respect to the above basis one can explicitly

calculate that

F12 + F13 + F23 = 0,−F12 = Z ⊗ I,
F13 − F23√

3
= X ⊗ I.

(Subscripts here denote the qubits that F acts on.) On the

whole space (C2)3, the first of these corresponds to the

projection onto S1. Using Lemma 7, by applying this in-

teraction with a large but polynomially bounded weight, we

can (simultaneously) enforce each of the 3-qubit blocks to be

contained within S2. Our n triples of physical qubits thus give

us a logical space corresponding to n pairs of logical qubits;

within each qubit pair we can apply Z or X to the first qubit.

Note that these are not really separate qubits as we cannot

address the second qubit.

We now need to implement interactions across pairs of

logical qubits. Imagine we have two physical qubit triples,

with the first triple labelled 1 to 3, and the second triple

labelled 4 to 6. By applying F operators across different pairs

of physical qubits, we have 9 potential interactions on the

logical space of 4 qubits, split into two blocks of two logical

qubits: (1, 2) and (3, 4) (plus the 6 interactions we already

know about, by applying F across pairs in the same triple).

By explicit calculation, each choice (i, j) such that i and j are

in different triples turns out to give a logical interaction of the

form M
(i,j)
13 (2F − I)24 + I⊗4/2. As usual, we can ignore the

identity term. We will not write out all of the matrices M (i,j),

merely recording that

3

2

(
M (1,4) −M (1,5) −M (2,4) +M (2,5)

)
= XX,

1

2

(
M (1,4) +M (1,5) − 2M (1,6) +M (2,4) +M (2,5)

− 2M (2,6) − 2M (3,4) − 2M (3,5) + 4M (3,6)
)
= ZZ,

and

2

3∑
i=1

6∑
j=4

M (i,j) = II. (2)
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The first two of these mean that we can implement the

interactions XX and ZZ across logical qubits (1, 3) – but

product with (2F −I⊗I) across qubits (2, 4). In other words,

we can implement a logical Hamiltonian of the form

n∑
i=1

(αiXi + βiZi)Ii′ +
∑
i<j

(γijXiXj + δijZiZj)(2F − I)i′j′ ,

where we identify the i’th logical qubit pair with indices (i, i′).
We would like to eliminate the unwanted (2F − I) operators.

One way to do this is to force the primed qubits to be in

a particular state by very strong Fi′j′ interactions. Consider

adding in the (logical) term

G = Δ
∑
i<j

wijFi′j′

where wij are some weights and Δ is very large. We can do

this because we can make I1I3(2F − I)24, as shown in (2). If

the ground state |ψ〉 of G is non-degenerate, by Lemma 7 the

primed qubits will all be effectively projected onto the ground

state, and H will become

n∑
i=1

(αiXi+βiZi)+
∑
i<j

(γijXiXj+δijZiZj)〈ψ|(2F−I)i′j′ |ψ〉.

We therefore need to find a G whose ground state is non-

degenerate and 〈ψ|(2F − I)i′j′ |ψ〉 �= 0 for all i, j (and also

these quantities should be easily computable). In particular,

this implies that for all subsets S of two qubits, we need

ψS �= I/4. In order to find such a G, we study exactly

solvable restricted special cases of the Heisenberg model.

A model (i.e. family of Hamiltonians) is said to be exactly

solvable if the eigenvalues and corresponding eigenvectors of

any Hamiltonian in the model can be calculated efficiently.

Only very few restricted versions of the Heisenberg model are

known to be exactly solvable. The case which we will use is

the Lieb-Mattis model on n qubits [24]:

H =
∑

i∈A,j∈B
XiXj + YiYj + ZiZj ,

where A and B are disjoint subsets of qubits. That is, the

interaction graph of this model is the complete bipartite graph

on A×B. For the case |A| = |B| = n, we have the following

lemma, which combines results stated (for example) in [24],

[25]. First define

|ψn
k 〉 :=

1√(
n
k

) ∑
x∈{0,1}n,|x|=k

|x〉.

Lemma 8. Write

HLM :=
n∑

i=1

2n∑
j=n+1

Mij =
n∑

i=1

2n∑
j=n+1

XiXj + YiYj + ZiZj .

Then the ground state of HLM is unique and given by

|φLM 〉 := 1√
n+ 1

n∑
k=0

(−1)k|ψn
k 〉|ψn

n−k〉.

For i and j such that 1 ≤ i, j ≤ n or n + 1 ≤ i, j ≤ 2n,
〈φLM |Fij |φLM 〉 = 1. Otherwise, 〈φLM |Fij |φLM 〉 = −2/n.

The beautiful proof of Lemma 8 is well-known in the

condensed-matter theory literature, and the most difficult part

(proving uniqueness) was already shown by Lieb and Mattis in

their original paper [24]. However, the ingredients of the proof

are somewhat scattered, so we present a self-contained proof in

the full version [19]. Given Lemma 8 and the above discussion,

QMA-hardness of the Heisenberg model is essentially imme-

diate. We first (potentially) add one triple of physical qubits

to make the total number of logical qubits equal to 2n for

integer n. Then, by Lemma 7, we can effectively implement

Hamiltonians of the form

2n∑
k=1

αkXk + βkZk

+
∑
i<j

(γijXiXj + δijZiZj)〈φLM |(2F − I)i′j′ |φLM 〉.

As 〈φLM |(2F − I)i′j′ |φLM 〉 is non-zero, at most inverse-

polynomially small, and efficiently computable for all pairs

i, j, by rescaling γij and δij appropriately, we can effectively

implement any Hamiltonian of the form

2n∑
k=1

αkXk + βkZk +
∑
i<j

γijXiXj + δijZiZj

for any choices of αk, βk, γij , δij . This suffices for QMA-

completeness [11]. We have proven the following lemma.

Lemma 9. {XX + Y Y + ZZ}-HAMILTONIAN is QMA-
complete.

A. QMA-hardness with physically realistic interactions?

Our construction proving QMA-hardness of the general

Heisenberg model involves interactions between many pairs

of spatially distant qubits, and also a highly non-planar in-

teraction graph. It is natural to wonder whether one could

modify it to be more physically natural, and perhaps only

involving interactions on a 2d square lattice, as can be

achieved for {XX+Y Y +ZZ}-HAMILTONIAN WITH LOCAL

TERMS [10]. The following observation (which was already

made in [12] and essentially even in [24]) shows that such

a QMA-hardness construction is unlikely to work for either

ferromagnetic or antiferromagnetic cases.

Observation 10. Consider a Hamiltonian H of the form
H =

∑
i<j αij(XiXj + YiYj + ZiZj). Then, if αij ≤ 0

for all i, j, determining the ground-state energy of H up to
inverse-polynomial precision is in P. If αij ≥ 0 for all i, j,
and the graph of interactions that occur in H is bipartite,
determining the ground-state energy of H up to inverse-
polynomial precision is in StoqMA.

Proof. In the first case, the ground state of H is the product

state |0〉⊗n, so the problem is trivial. In the second case, split

the qubits on which H acts into two sets A and B such that all

interactions are between A and B, and apply Z rotations to the
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B set. This corresponds to mapping every term in H to a term

of the form αij(−XiXj − YiYj +ZiZj). This is a stoquastic

matrix (i.e. all its off-diagonal entries are non-positive), so

finding its ground-state energy is in StoqMA [15].

V. THE GENERAL S -HAMILTONIAN PROBLEM

Our characterisation of the complexity of the general S -

HAMILTONIAN problem will be greatly facilitated by the

ability to transform any two-qubit Hermitian matrix H into

a standard normal form using conjugation by single-qubit

unitaries. The normal form we use is essentially the same as

one well-known in entanglement theory (e.g. [26]), except that

we insist that the unitaries applied are the same on each qubit.

This is important because mapping H 	→ U⊗2H(U †)⊗2 does

not change the eigenvalues of any Hamiltonian produced only

from applications of H , as

∑
i �=j

αij(U
⊗2H(U †)⊗2)ij = U⊗n

⎛
⎝∑

i�=j

αijHij

⎞
⎠ (U†)⊗n.

Any traceless two-qubit Hermitian matrix H can be written as

H =

3∑
i,j=1

Mijσ
i ⊗ σj +

3∑
k=1

vkσ
k ⊗ I + wkI ⊗ σk

for some coefficients Mij , vk, wk. Write M(H) for the 3× 3
matrix M occurring in this decomposition. Also define the

Pauli rank of H to be the rank of M(H). We observe that,

if H is symmetric (resp. antisymmetric) under exchange of

the two qubits on which it acts, M(H) is a symmetric (resp.

skew-symmetric) matrix. For any S -HAMILTONIAN problem,

we can assume that every 2-qubit matrix H ∈ S is either

symmetric or antisymmetric under interchange of the two

qubits on which it acts. This holds because, given access to H ,

we can implement the two matrices H+ = (H+FHF )/2 and

H− = (H −FHF )/2, where F is the swap operator, simply

by applying H in both the normal direction and in reverse.

H+ is symmetric, and H− is antisymmetric. We have lost

nothing by doing this, as H+ +H− = H .

Lemma 11. Let H be a traceless 2-qubit Hermitian matrix.
If H is symmetric under exchanging the two qubits on which
it acts, there exists U ∈ SU(2) such that

U⊗2H(U †)⊗2 =
3∑

i=1

αiσ
i ⊗ σi +

3∑
j=1

βj(σ
j ⊗ I + I ⊗ σj),

for some real coefficients αi, βj . If H is antisymmetric under
this exchange, there exists U ∈ SU(2) and i �= j such that

U⊗2H(U †)⊗2 = α(σi⊗σj−σj⊗σi)+
3∑

k=1

βk(σ
k⊗I−I⊗σk),

for some real coefficients α, βk.

Lemma 11 allows us to reduce the complexity of the S -

HAMILTONIAN problem to a manageable number of special

cases. As well as the Heisenberg model discussed above,

we prove QMA-completeness of the XY model and a skew-

symmetric case.

Lemma 12. {XX+Y Y }-HAMILTONIAN is QMA-complete.

Lemma 13. {XZ −ZX}-HAMILTONIAN is QMA-complete.

Based on reductions from these special cases, we can prove

QMA-completeness more generally:

Lemma 14. For any real β, γ such that at least one of β
and γ is non-zero, {XX + βY Y + γZZ}-HAMILTONIAN is
QMA-complete.

Lemma 15. For any β, γ such that at least one of β and γ is
non-zero, and any single-qubit Hermitian matrix A, {XX +
βY Y + γZZ +AI + IA}-HAMILTONIAN is QMA-complete.

Lemma 16. For any single-qubit Hermitian matrix A, {XZ−
ZX +AI − IA}-HAMILTONIAN is QMA-complete.

We will also need to consider some cases which are unlikely

to be QMA-complete:

Lemma 17. {ZZ}-HAMILTONIAN WITH LOCAL TERMS is
TIM-complete.

Lemma 18. For any single-qubit Hermitian matrix A such
that A does not commute with Z, {ZZ,X,Z}-HAMILTONIAN

reduces to {ZZ +AI + IA}-HAMILTONIAN.

Lemma 19. For any single-qubit Hermitian matrix A such
that A does not commute with Z, {ZZ,X,Z}-HAMILTONIAN

reduces to {ZZ,AI − IA}-HAMILTONIAN.

Finally, we consider the purely classical case of diagonal

matrices.

Lemma 20. Let S be a set of diagonal Hermitian matrices
on at most 2 qubits. Then, if every matrix in S is 1-local, S -

HAMILTONIAN is in P. Otherwise, S -HAMILTONIAN is NP-
complete.

Based on all the above lemmas, we are ready to prove

Theorem 6, which we restate as follows.

Theorem 6 (restated). Let S be an arbitrary fixed subset of
Hermitian matrices on at most 2 qubits. Then:
• If every matrix in S is 1-local, S -HAMILTONIAN is in

P;
• Otherwise, if there exists U ∈ SU(2) such that U locally

diagonalises S, then S -HAMILTONIAN is NP-complete;
• Otherwise, if there exists U ∈ SU(2) such that, for each

2-qubit matrix Hi ∈ S , U⊗2Hi(U
†)⊗2 = αiZ

⊗2+AiI+
IBi, where αi ∈ R and Ai, Bi are arbitrary single-
qubit Hermitian matrices, then S -HAMILTONIAN is TIM-
complete, where NP ⊆ TIM ⊆ StoqMA;

• Otherwise, S -HAMILTONIAN is QMA-complete.

Proof. The first case is clear: any Hamiltonian that can be

made from S is of the form H =
∑

i Hi for 1-local matrices

Hi, so the lowest eigenvalue of H is the sum of the lowest

eigenvalues of the individual matrices Hi, which can be
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calculated efficiently. For the second case, if there exists such

a U , applying it gives a set of diagonal matrices where at least

one is not 1-local (or we would be in the first case). The claim

then follows from Lemma 20.

For the third case, the problem is clearly no harder than

{ZZ}-HAMILTONIAN WITH LOCAL TERMS, so is contained

within TIM by Lemma 17. To prove TIM-hardness, first note

that after applying U , there must exist a matrix Hi ∈ S of

the form αiZZ + AiI + IBi with αi �= 0, or we would be

in the first case. Symmetrising and rescaling, we can make a

matrix of the form ZZ+β(AI+IA) (where β or A might be

zero). If A does not commute with Z, Lemma 18 implies that

{ZZ,X,Z}-HAMILTONIAN reduces to S -HAMILTONIAN, so

S -HAMILTONIAN is TIM-hard. So assume that A commutes

with Z. As A can be taken to be traceless by adding an overall

identity term, this is equivalent to A being proportional to Z.

As we are not in the second case, there must also either exist

a 2-qubit matrix Hj ∈ S of the form αjZZ + AjI + IBj ,

where either Aj or Bj does not commute with Z, or a 1-qubit

matrix Hk ∈ S that does not commute with Z. If the latter

possibility is true, we can make IHk +HkI , so it suffices to

assume the former is true. Note that possibly i = j or αj = 0
(but not both).

First assume that Aj �= −Bj . Then by rescaling and

symmetrising, we can assume we have access to matrices of

the form Hi = ZZ + α(ZI + IZ), Hj = γZZ + BI + IB,

where B is a traceless Hermitian matrix that does not commute

with Z, and α, γ ∈ R. By adding a suitable multiple of

Hi to Hj and rescaling, we can produce a matrix H ′ such

that H ′ = ZZ + AI + IA for some matrix A which

does not commute with Z. By Lemma 18, this implies that

{ZZ,X,Z}-HAMILTONIAN reduces to S -HAMILTONIAN, so

once again S -HAMILTONIAN is TIM-hard.

On the other hand, if Aj = −Bj , we have Hi = ZZ +
α(ZI + IZ), Hj = γZZ +BI − IB, where B is a traceless

Hermitian matrix that does not commute with Z, and α, γ ∈ R.

By adding a suitable multiple of Hi to Hj , antisymmetrising

and rescaling, we can produce a matrix ZZ+BI−IB for some

B that does not commute with Z. Lemma 19 then implies that

S -HAMILTONIAN is TIM-hard.

We finally address the fourth case (the QMA-hard case),

which is split into two subcases. In the first subcase, assume

there exists at least one 2-qubit matrix H ∈ S which has Pauli

rank at least 2. M(H) can be assumed to be either symmetric

or skew-symmetric. If M(H) is symmetric, by Lemma 11

(and possibly relabelling Pauli matrices), using local unitaries

H can be mapped to XX + βY Y + γZZ + AI + IA for

some β, γ such that at least one of them is non-zero and

some single-qubit Hermitian matrix A, so QMA-completeness

follows from Lemma 15. If M(H) is skew-symmetric, we get

QMA-completeness from Lemma 16.

In the second subcase, assume all 2-qubit matrices in

S have Pauli rank 1. There does not exist U such that

U⊗2Hi(U
†)⊗2 = αiZ

⊗2 + AiI + IBi for all Hi ∈ S ,

otherwise we would be in the third case. So in this subcase

there must exist a pair i �= j and a unitary U such that

U⊗2H
(2)
i (U†)⊗2 is diagonal, but U⊗2H

(2)
j (U†)⊗2 is not,

where H
(2)
i is the 2-local part of Hi. By applying this U

and rescaling, we can assume that Hi = ZZ + δ(AI + IA),
Hj = (αX + βY + γZ)⊗2 + η(BI + IB), for some real

α, β, γ, δ, η where at least one of α or β is non-zero. So,

by rescaling Hj , we can assume that α2 + β2 = 1. There

exists an SO(3) rotation R which maps (α, β, γ) to (1, 0, γ)
while leaving (0, 0, 1) unchanged. Therefore, there exists a

unitary V such that V ⊗2Hj(V
†)⊗2 = (X + γZ)⊗2 and also

V ⊗2H
(2)
i (V †)⊗2 = ZZ. If γ = 0, we have something of the

form Hi = ZZ + δ(AI + IA), Hj = XX + η(BI + IB).
Adding these two matrices, relabelling Pauli matrices and

using Lemma 12 and Lemma 15, this case is also QMA-

complete. If γ �= 0, by rescaling and subtracting Hi from

Hj , we can make a matrix whose 2-local part is unitarily

equivalent to XX + γ′ZZ for some γ′ �= 0, so this case is

QMA-complete by Lemmas 14 and 15.

VI. OUTLOOK

We have completely resolved the complexity of a natural

subclass of S -HAMILTONIAN problems. However, many in-

teresting generalisations and open problems remain, e.g.:

1) Can we generalise our results to k-local Hamiltonians for

k > 2? Although we achieved this for S -HAMILTONIAN

WITH LOCAL TERMS, one potentially significant difficulty

with improving this to the full S -HAMILTONIAN problem

is that no comparable normal form exists for Hermitian

matrices on k ≥ 3 qubits. Another issue is that reduction

to the 2-local case, which we used for S -HAMILTONIAN

WITH LOCAL TERMS, does not seem easy to perform

without having access to 1-local terms.

2) Can we generalise our results beyond qubits? Again,

this could be difficult as the equivalent generalisation of

Schaefer’s dichotomy theorem [1] to constraint satisfac-

tion problems on a 3-element domain took 24 years, being

resolved in 2002 by Bulatov [27].

3) Can we prove hardness, or otherwise, for more restricted

types of Hamiltonian? One way of restricting further

would be to put limitations on the signs or types of coeffi-

cients allowed (such as the antiferromagnetic Heisenberg

model), another would be to restrict the topology of

interactions (such as only allowing a planar graph, or

a square lattice). We were able to achieve the latter for

2-qubit interactions with arbitrary 1-local terms, but this

seems more difficult for the general S -HAMILTONIAN

problem (but see Observation 10 for a small step in this

direction).

Another case which has been of interest is Hamiltonians

whose terms commute pairwise. In this case the k-local

Hamiltonian problem is in P for various special cases: 2-

local Hamiltonians [17], 3-local qubit Hamiltonians [28],

and k-local Hamiltonians whose terms are projectors onto

eigenspaces of Pauli matrices [29]. Another example in

this vein is a result of Schuch proving that the problem

is in NP for a special class of commuting 4-local qubit

Hamiltonians [30].
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4) We were not able to completely determine the complexity

of the class of S -HAMILTONIAN problems which are

polynomial-time equivalent to the Ising model with trans-

verse magnetic field, merely encapsulating them by a new

complexity class TIM, where NP ⊆ TIM ⊆ StoqMA.

Could one of these inclusions be an equality? Our intu-

ition is that at least the inclusion MA ⊆ TIM should hold,

but thus far the proof has eluded us.

5) Our results can be seen as a quantum generalisation of

dichotomy theorems for the k-MAX-CSP problem [5].

Another way to generalise Schaefer’s original dichotomy

theorem [1] would be to prove a similar result for the

quantum k-SAT problem. This is a variant of k-LOCAL

HAMILTONIAN where each term is a projector, and we

ask whether there exists a state which is in the nullspace

of all the projectors (“satisfies all the constraints”).

6) In a different direction, an interesting open question is

whether one can prove a dichotomy theorem for unitary

quantum gates. For example, given a set G of unitary

gates, are circuits made up of gates picked from G always

either classically simulable or universal for BQP? This

question was resolved quite recently for gates produced

by applying 2-local Hamiltonians from a given set for ar-

bitrary lengths of time [31]. The general question is likely

to be sensitive to the precise definitions of “simulable”

and “universal”, as demonstrated by the apparently inter-

mediate class of commuting quantum computations [32].
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