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Abstract—We introduce a new and natural algebraic proof
system, which has tight connections to (algebraic) circuit
complexity. In particular, we show that any super-polynomial
lower bound on any Boolean tautology in our proof system
implies that the permanent does not have polynomial-size
algebraic circuits (VNP �= VP).

As a corollary, super-polynomial lower bounds on the
number of lines in Polynomial Calculus proofs (as opposed
to the usual measure of number of monomials) imply the
Permanent versus Determinant Conjecture.

Note that, prior to our work, there was no proof system
for which lower bounds on an arbitrary tautology implied any
computational lower bound.

Our proof system helps clarify the relationships between
previous algebraic proof systems, and begins to shed light
on why proof complexity lower bounds for various proof
systems have been so much harder than lower bounds on the
corresponding circuit classes. In doing so, we highlight the im-
portance of polynomial identity testing (PIT) for understanding
proof complexity.

Keywords-AC0[p]-Frege; algebraic circuit complexity; Grob-
ner bases; lower bounds; polynomial identity testing; proof
complexity; syzygies

All proofs are present in the freely available draft of the

full version [1].

I. INTRODUCTION

NP versus coNP is the very natural question of whether,

for every graph that doesn’t have a Hamiltonian path, there is

a short proof of this fact. One of the arguments for the utility

of proof complexity is that by proving lower bounds against

stronger and stronger proof systems, we “make progress”

towards proving NP �= coNP. However, until now this

argument has been more the expression of a philosophy or

hope, as there is no known proof system for which lower

bounds imply computational complexity lower bounds of

any kind, let alone NP �= coNP.

We remedy this situation by introducing a very natural

algebraic proof system, which has tight connections to

(algebraic) circuit complexity. We show that any super-

polynomial lower bound on any Boolean tautology in our

proof system implies that the permanent does not have

polynomial-size algebraic circuits (VNP �= VP). Note that,

prior to our work, essentially all implications went the op-

posite direction: a circuit complexity lower bound implying

a proof complexity lower bound. We use this result to begin

to explain why several long-open lower bound questions

in proof complexity—lower bounds on Extended Frege,

on AC0[p]-Frege, and on number-of-lines in Polynomial

Calculus-style proofs—have been so apparently difficult.

A. Background and Motivation

Algebraic Circuit Complexity.: The most natural way to

compute a polynomial function f(x1, . . . , xn) is with a se-

quence of instructions g1, . . . , gm = f—called an algebraic

circuit or a straight-line program—starting from the inputs

x1, . . . , xn, and where each instruction gi is of the form gj ◦
gk for some j, k < i, where ◦ is either a linear combination

or multiplication. The goal of algebraic complexity is to un-

derstand the optimal asymptotic complexity of computing a

given polynomial family (fn(x1, . . . , xpoly(n))
∞
n=1, typically

in terms of size and depth of algebraic circuits. In addition

to the intrinsic interest in these questions, since Valiant’s

work [2] algebraic complexity has become more and more

important for Boolean computational complexity. Valiant

argued that understanding algebraic complexity could give

new intuitions that may lead to better understanding of other

models of computation; several direct connections have been

found between algebraic and Boolean complexity [3], [4],

[5]; and the Geometric Complexity Theory Program (see,

e. g., the overview [6] and references therein) suggests how

algebraic techniques might be used to resolve major Boolean

complexity conjectures.

Two central functions in this area are the determinant

and permanent polynomials, which are fundamental both be-

cause of their prominent role in many areas of mathematics

and because they are complete for various natural complex-

ity classes. In particular, the permanent of {0, 1}-matrices

is #P-complete, and the permanent of arbitrary matrices

is VNP-complete. Valiant’s Permanent versus Determinant

Conjecture [2] states that the permanent of an n×n matrix,

as a polynomial in n2 variables, cannot be written as the

determinant of any polynomially larger matrix all of whose

entries are variables or constants.
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Unlike in Boolean circuit complexity, (slightly) non-trivial

lower bounds for the size of algebraic circuits are known

[7], [8]. However, their techniques only give lower bounds

up to Ω(n log n). Moreover, their methods do not give

lower bounds for polynomials of constant degree. Recent

exciting work [9], [10], [11] has shown that polynomial-

size algebraic circuits computing functions of polynomial

degree can in fact be computed by subexponential-size depth

4 algebraic circuits. Thus, strong enough lower bounds for

depth 4 algebraic circuits for the permanent would already

prove VP �= VNP.

Proof Complexity.: Despite considerable progress ob-

taining super-polynomial lower bounds for many weak proof

systems (resolution, cutting planes, bounded-depth Frege

systems), there has been essentially no progress in the last

25 years for stronger proof systems such as Extended Frege

systems or Frege systems. More surprisingly, no nontrivial

lower bounds are known for the seemingly weak AC0[p]-
Frege system. In contrast, the analogous result in circuit

complexity was resolved by Smolensky over 25 years ago

[12].
To date, there has been no satisfactory explanation for

this state of affairs. In proof complexity, there are no

known formal barriers such as relativization [13], Razborov–

Rudich-natural proofs [14], or algebrization [15] that exist in

Boolean function complexity. Moreover, there has not even

been progress by way of conditional lower bounds. That is,

trivially NP �= coNP implies superpolynomial lower bounds

for AC0[p]-Frege, but we know of no weaker complexity

assumption that implies such lower bounds. The only formal

implication in this direction shows that certain circuit lower

bounds imply lower bounds for proof systems that admit

feasible interpolation, but unfortunately even very weak

proof systems such as Frege and AC0-Frege don’t have this

property, under standard complexity-theoretic assumptions

[16], [17]. In the converse direction, there are essentially no

implications at all. For example, we do not know if AC0[p]-
Frege lower bounds—nor even Frege nor Extended Frege

lower bounds—imply any nontrivial circuit lower bounds.

B. Our Results
In this paper, we define a simple and natural proof system

that we call the Ideal Proof System (IPS) based on Hilbert’s

Nullstellensatz. Our system is similar in spirit to related

algebraic proof systems that have been studied previously,

but is different in a crucial way that we explain below.
Given a set of polynomials F1, . . . , Fm in n variables

x1, . . . , xn over a field F without a common zero over the

algebraic closure of F, Hilbert’s Nullstellensatz says that

there exist polynomials G1, . . . , Gm ∈ F[x1, . . . , xn] such

that
∑

FiGi = 1, i. e., that 1 is in the ideal generated

by the Fi. In the Ideal Proof System, we introduce new

variables yi which serve as placeholders into which the

original polynomials Fi will eventually be substituted:

Definition 1 (Ideal Proof System). An IPS certificate that a

system of F-polynomial equations F1(�x) = F2(�x) = · · · =
Fm(�x) = 0 is unsatisfiable over F is a F-polynomial C(�x, �y)
in the variables x1, . . . , xn and y1, . . . , ym such that

1) C(x1, . . . , xn,�0) = 0, and

2) C(x1, . . . , xn, F1(�x), . . . , Fm(�x)) = 1.

The first condition is equivalent to C being in the ideal

generated by y1, . . . , ym, and the two conditions together

therefore imply that 1 is in the ideal generated by the Fi,

and hence that F1(�x) = · · · = Fm(�x) = 0 is unsatisfiable.

An IPS proof of the unsatisfiability of the polynomials

Fi is an F-algebraic circuit on inputs x1, . . . , xn, y1, . . . , ym
computing some IPS certificate of unsatisfiability.

For any class C of polynomial families, we may speak

of C-IPS proofs of a family of systems of equations (Fn)
where Fn is Fn,1(�x) = · · · = Fn,poly(n)(�x) = 0. When we

refer to IPS without further qualification, we mean VP-IPS,

i. e., the family of IPS proofs should be computed by circuits

of polynomial size and polynomial degree.

The Ideal Proof System is easily shown to be sound;

its completeness (without size bounds) follows from the

Nullstellensatz.

We typically consider IPS as a propositional proof system

by translating a CNF tautology ϕ into a system of equations

in the following standard way. We translate a clause κ of

ϕ into a single algebraic equation F (�x) using x �→ 1 − x,

x∨y �→ xy. A {0, 1}-assignment thus satisfies κ if and only

if it satisfies the equation F = 0. We add to this system

of equations the equations x2
i − xi = 0, which forces any

solutions over F to be {0, 1}-valued.

Like previously defined algebraic systems [18], [19], [20],

[21], proofs in our system can be checked in randomized

polynomial time. The key difference between our system and

previously studied ones is that those systems are axiomatic

in the sense that they require that every sub-computation

(derived polynomial) be in the ideal generated by the original

polynomial equations Fi, and thus be a sound consequence

of the equations F1 = · · · = Fm = 0.

In contrast our system has no such requirement; an IPS

proof can compute potentially unsound sub-computations

(whose vanishing does not follow from F1 = · · · = Fm =
0), as long as the final polynomial is in the ideal generated

by the equations. This key difference allows IPS proofs to

be ordinary algebraic circuits, and thus nearly all results in

algebraic circuit complexity apply directly to the Ideal Proof

System. To quote the tagline of a common US food chain,

IPS is a “No rules, just right” proof system.

Our first main theorem shows one of the advantages of this

close connection with algebraic circuits. To the best of our

knowledge, this is the first implication showing that a proof

complexity lower bound implies any sort of computational

complexity lower bound.
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Theorem 1. Super-polynomial lower bounds for the Ideal
Proof System imply that the permanent does not have
polynomial-size algebraic circuits, that is, VNP �= VP.

The preceding theorem is somewhat unsurprising—

though not completely immediate—given the definition of

IPS, because of the close connection between the definition

of IPS proofs and algebraic circuits. However, the following

result is significantly more surprising—showing a relation

between a standard rule-based algebraic proof system and

algebraic circuit lower bounds—and we believe we would

not have come to this result had we not first considered the

rule-less Ideal Proof System.

Corollary 1.1. Super-polynomial lower bounds on the num-
ber of lines in Polynomial Calculus proofs imply the Perma-
nent versus Determinant Conjecture.1

Under a reasonable assumption on polynomial identity

testing (PIT) we show that Extended Frege is equivalent

to the Ideal Proof System (§V). Extended Frege (EF) is the

strongest natural deduction-style propositional proof system

that has been proposed.

Theorem 2. Let K be a family of polynomial-size Boolean
circuits for PIT such that the PIT axioms for K (see Def. 2)
have polynomial-size EF proofs. Then EF p-simulates IPS,
and hence EF and IPS are p-equivalent.

Under this assumption about PIT, Thms. 1 and 2 in combi-

nation suggest a precise reason that proving lower bounds on

Extended Frege is so difficult, namely, that doing so implies

VP �= VNP. Thm. 2 also suggests that to make progress

toward proving lower bounds in proof complexity, it may be

necessary to prove lower bounds for the Ideal Proof System,

which we feel is more natural, and creates the possibility

of harnessing tools from algebra, representation theory, and

algebraic circuit complexity. We give a specific suggestion

of how to apply these tools towards proof complexity lower

bounds in §VI.

Remark 1. Given that PIT ∈ P is known to imply lower

bounds, one may wonder if the combination of the above two

theorems really gives any explanation at all for the difficulty

of proving lower bounds on Extended Frege. There are at

least two reasons that it does.

First, the best lower bound known to follow from PIT ∈ P
is an algebraic circuit-size lower bound on an integer poly-

nomial that can be evaluated in NEXP ∩ coNEXP [5] (via

personal communication we have learned that Impagliazzo

and Williams have also proved similar results), whereas our

conclusion is a lower bound on algebraic circuit-size for an

integer polynomial computable in #P ⊆ PSPACE.

1Although Corollary 1.1 may seem to be saying that lower bounds on
PC imply a circuit lower bound, this is not precisely the case, because size
complexity in PC is typically measured not by the number of lines, but
rather by the total number of monomials appearing in a PC proof.

Second, the hypothesis that our PIT axioms can be

proven efficiently in Extended Frege seems to be somewhat

orthogonal to, and may be no stronger than, the widely-

believed hypothesis that PIT ∈ P. As Extended Frege is a

nonuniform proof system, efficient Extended Frege proofs

of our PIT axioms are unlikely to have any implications

about the uniform complexity of PIT (and given that we

already know unconditionally that PIT ∈ P/poly, uniformity

is what the entire question of derandomizing PIT is about).

In the opposite direction, it’s a well-known observation in

proof complexity that nearly all natural uniform polynomial-

time algorithms have feasible (Extended Frege) correctness

proofs. If this phenomenon doesn’t apply to PIT, it would be

interesting for both proof complexity and circuit complexity,

as it indicates the difficulty of proving that PIT ∈ P. �

Although PIT has long been a central problem of study in

computational complexity—both because of its importance

in many algorithms, as well as its strong connection to circuit

lower bounds—our theorems highlight the importance of

PIT in proof complexity. Next we prove that Thm. 2 can

be scaled down to obtain similar results for weaker Frege

systems, and discuss some of its more striking consequences.

Theorem 3. Let C ∈ {ACk,ACk[p],ACCk,TCk,NCk|k ≥
0}. Let K be a family of polynomial-size Boolean circuits
for PIT (not necessarily in C) such that the PIT axioms for
K have polynomial-size C-Frege proofs. Then C-Frege is p-
equivalent to IPS, and thus to Extended Frege as well.

Thm. 3 also highlights the importance of our PIT axioms

for AC0[p]-Frege lower bounds, which have been open for

nearly thirty years. (For even weaker systems, Thm. 3 in

combination with known results yields an unconditional

lower bound on AC0-Frege proofs of the PIT axioms.) In

particular, we are in the following win-win scenario:

Corollary 3.1. For any d, either:

• There are polynomial-size AC0[p]-Frege proofs of the
depth-d PIT axioms, in which case any superpolynomial

lower bounds on AC0[p]-Frege imply VNPFp
does not

have polynomial-size depth-d algebraic circuits, thus
explaining the difficulty of obtaining such lower bounds,
or

• There are no polynomial-size AC0[p]-Frege proofs of
the depth-d PIT axioms, in which case we’ve gotten
AC0[p]-Frege lower bounds.

Finally, in §VI we suggest a new framework for proving

lower bounds for the Ideal Proof System which we feel has

promise. Along the way, we make precise the difference

in difficulty between proof complexity lower bounds (on

IPS, which may also apply to Extended Frege via Thm. 2)

and algebraic circuit lower bounds. In particular, the set

of all IPS-certificates for a given unsatisfiable system of

equations is, in a certain precise sense, “finitely generated.”
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We suggest how one might take advantage of this finite

generation to transfer techniques from algebraic circuit com-

plexity to prove lower bounds on IPS, and consequently

on Extended Frege (since IPS p-simulates Extended Frege

unconditionally), giving hope for the long-sought length-of-

proof lower bounds on an algebraic proof system. We hope

to pursue this approach in future work.

C. Related Work

We will see in §III-C that many previously studied proof

systems can be p-simulated by IPS, and furthermore can

be viewed simply as different complexity measures on IPS

proofs, or as C-IPS for certain classes C.

Raz and Tzameret [22] introduced various multilinear

algebraic proof systems. Although their systems are not

so easily defined in terms of IPS, the Ideal Proof System

nonetheless p-simulates all of their systems. Amongst other

results, they show that a super-polynomial separation be-

tween two variants of their system—one representing lines

by multilinear circuits, and one representing lines by general

algebraic circuits—would imply a super-polynomial separa-

tion between general and multilinear circuits computing mul-

tilinear polynomials. However, they only get implications

to lower bounds on multilinear circuits rather than general

circuits, and they do not prove a statement analogous to

our Thm. 1, that lower bounds on a single system imply

algebraic circuit lower bounds.

D. Outline

In §III we discuss the relationship between IPS and

previously studied proof systems. We also highlight several

consequences of results on algebraic circuits for IPS, such

as division elimination and the chasms at depth 3 and 4.

In §IV, we outline the proof that lower bounds on IPS

imply algebraic circuit lower bounds (Thm. 1). We also

show how this result gives as a corollary a new, simpler

proof that NP �⊆ coMA ⇒ VNP0 �= VP0. In §V we

introduce our PIT axioms and outline the proof of Thms. 2

and 3. We also discuss many variants of Thm. 3 and their

consequences, as briefly mentioned above. In §VI we suggest

a new framework for transferring techniques from algebraic

circuit complexity to (algebraic) proof complexity lower

bounds. Finally, in §VII we gather some open questions

raised by our work, many of which we believe may be quite

approachable (the full version [1] contains many more open

questions). In appendices to the full version [1], we introduce

two variants of the Ideal Proof System—one of which allows

certificates to be rational functions and not only polynomials,

and one of which has a more geometric flavor—and discuss

their relationship to IPS. These systems further suggest that

tools from geometry and algebra could potentially be useful

for understanding the complexity of various propositional

tautologies and more generally the complexity of individual

instances of NP-complete problems.

II. A FEW PRELIMINARIES

A. Algebraic Complexity

Over a ring R, VPR is the class of families f = (fn)
∞
n=1

of formal polynomials—i. e., considered as symbolic poly-

nomials, rather than as functions—fn such that fn has

poly(n) input variables, is of poly(n) degree, and can be

computed by algebraic circuits over R of poly(n) size.

VNPR is the class of families g of polynomials gn such that

gn has poly(n) input variables and is of poly(n) degree,

and can be written as

gn(x1, . . . , xpoly(n)) =
∑

�e∈{0,1}poly(n)

fn(�e, �x)

for some family (fn) ∈ VPR.

A family of algebraic circuits is said to be constant-
free if the only constants used in the circuit are {0, 1,−1}.
Other constants can only be used by constructing them using

algebraic operations, which count towards the size of the

circuit. Over a fixed finite field Fq , VP0
Fq

= VPFq and

VNP0
Fq

= VNPFq
, since there are only finitely many possible

constants. VP0
Z

coincides with those families in VPZ that

are computable by algebraic circuits of polynomial total bit-
size (use the binary expansion of an integer). Similarly, over

the algebraic closure Fp of a finite field, VP0
Fp

coincides

with those families in VP
Fp

that are computable by algebraic

circuits of polynomial total bit-size, or equivalently where

the constants they use lie in subfields of Fp of total size

bounded by 2n
O(1)

.

B. Proof Complexity

A proof system for a language L ∈ coNP is a non-

deterministic algorithm for L, or equivalently a determin-

istic polynomial-time verifier P such that x ∈ L ⇔
(∃y)[P (x, y) = 1], and we refer to any such y as a P -

proof that x ∈ L. We say that P is p-bounded if for every

x ∈ L there is a P -proof of length polynomially bounded in

|x|: |y| ≤ poly(|x|). We will generally be considering proof

systems for the coNP-complete language TAUT consisting

of all propositional tautologies; there is a p-bounded proof

system for TAUT if and only if NP = coNP. Given two

proof systems P1 and P2 for the same language L ∈ coNP,

we say that P1 p-simulates P2 if there is a polynomial-time

function f such that P1(x, y) = 1 ⇔ P2(x, f(y)) = 1. We

say that P1 and P2 are p-equivalent if each p-simulates the

other. There are a variety of standard, well-studied propo-

sitional proof systems. In this paper, we consider Extended

Frege, Frege, AC0-Frege, and AC0[p]-Frege systems.

III. FOUNDATIONAL RESULTS

A. Relation with coMA

Proposition 4. For any field F, if every propositional tau-
tology has a polynomial-size constant-free IPSF-proof, then
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NP ⊆ coMA, and hence the polynomial hierarchy collapses
to its second level.

If we wish to drop the restriction of “constant-free”

(which, recall, is no restriction at all over a finite field), we

may do so either by using the Blum–Shub–Smale analogs

of NP and coMA using the same proof, or in characteristic

zero using the Generalized Riemann Hypothesis [1].

Proof: Merlin nondeterministically guesses the

polynomial-size constant-free IPS proof, and then Arthur

must check conditions (1) and (2) of Def. 1. (We need

constant-free so that the algebraic proof has polynomial bit-

size and thus can in fact be guessed by a Boolean Merlin.)

Both conditions of Def. 1 are instances of PIT, which can

be solved by the standard Schwarz–Zippel–DeMillo–Lipton

coRP algorithm.

B. Chasms, depth reduction, and other circuit transforma-
tions

Since an IPS proof is just a circuit, algebraic circuit depth

reductions apply equally well to IPS proof size. We note that

it wasn’t clear to us how to adapt the proofs of these results

to the type of circuits used in the Polynomial Calculus or

other previous algebraic systems [21], and indeed this was

part of the motivation to move to our more general notion

of IPS proof.

Observation 1 (Depth chasms for IPS proofs). If a system

of nO(1) polynomial equations in n variables has an IPS

proof of unsatisfiability of size s and (semantic) degree d,

then it also has:

1) A O(log d(log s + log d))-depth IPS proof of size

poly(ds) (follows from [23]);

2) A depth 4 IPS formula proof of size nO(
√
d) (fol-

lows from [10]) or a depth 4 IPS proof of size

2O(
√

d log(ds) logn) (follows from [11]).

3) (In characteristic zero) A depth 3 IPS proof of

size 2O(
√
d log d logn log s) (follows from [24]) or even

2O(
√
d logn log s) (follows from [11]). �

This observation helps explain why size lower bounds for

algebraic proofs for the stronger notion of size—number of

lines, used here and in Pitassi [20], rather than number of

monomials—have been difficult to obtain. This also suggests

that size lower bounds for IPS proofs in restricted circuit

classes would be interesting, even for restricted kinds of

depth 3 circuits.

Similarly, since IPS proofs are just circuits, any IPS

certificate family of polynomially bounded degree that is

computed by a polynomial-size family of algebraic circuits

with divisions can also be computed by a polynomial-

size family of algebraic circuits without divisions (follows

from Strassen [25]). We note, however, that one could in

principle consider IPS certificates that were not merely

polynomials, but even rational functions, under suitable

conditions; divisions for computing these cannot always be

eliminated. We discuss this “Rational Ideal Proof System,”

the exact conditions needed, and when such divisions can

be effectively eliminated in the full version [1].

C. Simulations and definitions of other algebraic proof
systems in terms of IPS

Previously studied algebraic proof systems can be viewed

as particular complexity measures on the Ideal Proof System,

including the Polynomial Calculus (or Gröbner) proof sys-

tem (PC) [19], Polynomial Calculus with Resolution (PCR)

[26], the Nullstellensatz proof system [18], and Pitassi’s

algebraic systems [20], [21], as we explain below.

Before explaining these, we note that although the Null-

stellensatz says that if F1(�x) = · · · = Fm(�x) = 0 is unsat-

isfiable then there always exists a certificate that is linear in

the yi—that is, of the form
∑

yiGi(�x)—our definition of

IPS certificate does not enforce �y-linearity. The definition

of IPS certificate allows certificates with �y-monomials of

higher degree, and it is conceivable that one could achieve

a savings in size by considering such certificates rather than

only considering �y-linear ones. As the linear form is closer

to the original way Hilbert expressed the Nullstellensatz, we

refer to certificates of the form
∑

yiGi(�x) as Hilbert-like
IPS certificates.

Using multivariate polynomial interpolation we are able

to show:

Proposition 5. Let F1 = · · · = Fm = 0 be a polynomial
system of equations in n variables x1, . . . , xn and let
C(�x, �y) be an IPS-certificate of the unsatisfiability of this
system. Let D = maxi degyi

C and let t be the number
of terms of C, when viewed as a polynomial in the yi
with coefficients in F[�x]. Suppose C and each Fi can be
computed by a circuit of size ≤ s. Then a Hilbert-like IPS-
certificate for this system can be computed by a circuit of
size poly(D, t, n, s).2

We note that all known multivariate interpolation algo-

rithms only give limited control on the depth of the resulting

Hilbert-like IPS-certificate (as a function of the depth of the

original IPS-certificate f ), because they all involve solving

linear systems of equations, which is not known to be

computable efficiently in constant depth.

All of the previous algebraic proof systems are rule-based

systems, in that they syntactically enforce the condition that

every line of the proof is a polynomial in the ideal of the

original polynomials F1(�x), . . . , Fm(�x). Typically they do

this by allowing two derivation rules: 1) from G and H ,

derive αG+ βH for α, β constants, and 2) from G, derive

Gxi for any variable xi. By “rule-based circuits” we mean

circuits with inputs y1, . . . , ym having linear combination

2If the base field F has size less than T = Dt
(n
2

)
, and the original

circuit had multiplication gates of fan-in bounded by k, then the size of
the resulting Hilbert-like certificate should be multiplied by (log T )k .
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gates and, for each i = 1, . . . , n, gates that multiply their

input by xi. In particular, rule-based circuits necessarily

produce Hilbert-like certificates.

Now we define previous algebraic proof systems in terms

of complexity measures on the Ideal Proof System:

• Degree in the Nullstellensatz proof system is simply

the minimal degree of any Hilbert-like certificate.

• Polynomial Calculus (PC) size is the sum of the

(semantic) number of monomials at each gate in

C(�x, �F (�x)), where C ranges over rule-based circuits.

• PC degree is the minimum over rule-based circuits

C(�x, �y) of the maximum semantic degree at any gate

in C(�x, �F (�x)).
• Pitassi’s 1998 algebraic proof system [21] is essentially

PC, except where size is measured by number of lines

of the proof (rather than total number of monomials

appearing). This corresponds exactly to the smallest

size of any rule-based circuit C(�x, �y) computing any

Hilbert-like IPS certificate.

• Polynomial Calculus with Resolution (PCR) [26] also

allows variables xi and adds the equations xi = 1−xi

and xixi = 0. This is easily accommodated into the

Ideal Proof System: add the xi as new variables, with

the same restrictions as are placed on the xi’s in a rule-

based circuit, and add the polynomials xi− 1+ xi and

xixi to the list of equations Fi. Note that while this

may have an effect on the PC size as it can decrease

the total number of monomials needed, it has essentially

no effect on the number of lines of the proof.

The following proposition allows us to extend the con-

nection with algebraic circuit complexity lower bounds from

IPS to the number of lines in Polynomial Calculus proofs.

Theorem 6. Pitassi’s 1996 algebraic proof system [20] is
p-equivalent to Hilbert-like IPS.

Pitassi’s 1998 algebraic proof system [21]—equivalent to
the number-of-lines measure on PC proofs—is p-equivalent
to Hilbert-like det-IPS or VPws-IPS.

Combining Thm. 6 with the techniques used in Thm. 1

shows that super-polynomial lower bounds on the number of

lines in PC proofs would positively resolve the Permanent

Versus Determinant Conjecture (Cor. 1.1), explaining the

difficulty of such proof complexity lower bounds.

In light of this proposition, we henceforth refer to the

systems from [20] and [21] as Hilbert-like IPS and Hilbert-

like det-IPS, respectively. Pitassi [20, Theorem 1] showed

that Hilbert-like IPS p-simulates Polynomial Calculus and

Frege. Essentially the same proof shows that Hilbert-like

IPS p-simulates Extended Frege as well.

Unfortunately, the proof of the simulation in [20] does not

seem to generalize to a depth-preserving simulation, which

we show is nonetheless possible:

Theorem 7. For any d(n), depth-(d+2) IPSFp
p-simulates

depth-d Frege proofs with unbounded fan-in ∨,∧,MODp

connectives (for d = O(1), this is AC0
d[p]-Frege).

IV. IPS LOWER BOUNDS IMPLY CIRCUIT LOWER BOUNDS

Theorem 1. A super-polynomial lower bound on [constant-
free] Hilbert-like IPSR proofs of any family of tautologies
implies VNPR �= VPR [respectively, VNP0

R �= VP0
R], for

any ring R.
A super-polynomial lower bound on the number of lines

in Polynomial Calculus proofs implies the Permanent versus
Determinant Conjecture (VNP �= VPws).

Together with Prop. 4, this immediately gives an alterna-

tive, and we believe simpler, proof of the following:

Corollary 1.2. If NP �⊆ coMA, then VNP0
R �= VP0

R, for any
ring R.

The previous proofs we are aware of all depend crucially

on the random self-reducibility of the permanent or of some

function complete for ModpP/poly In contrast, our proof

is quite different, in that it avoids random self-reduciblity

altogether: indeed, we do not even know if there exist

tautologies and a choice of ordering of the clauses such

that the VNP-IPS certificates of Lem. 1.1 are random self-

reducible.
The following lemma is the key to Thm. 1. (Thm. 6 is

needed for the second part.)

Lemma 1.1. Every family of CNF tautologies (ϕn) has a
Hilbert-like family of IPS certificates (Cn) in VNP0

R.

V. PIT AS A BRIDGE BETWEEN CIRCUIT COMPLEXITY

AND PROOF COMPLEXITY

In this section we state our PIT axioms and give an outline

of the proof of Thms. 2 and 3, which say that Extended

Frege (EF) (resp., AC0- or AC0[p]-Frege) is p-equivalent to

the IPS if there are polynomial-size circuits for PIT whose

correctness—suitably formulated—can be efficiently proved

in EF (resp., AC0- or AC0[p]-Frege).
More precisely, we identify a small set of natural axioms

for PIT and show that if these axioms can be proven

efficiently in EF, then EF is p-equivalent to IPS. Thm. 3

begins to explain why AC0[p]-Frege lower bounds have been

so difficult to obtain, and highlights the importance of our

PIT axioms for AC0[p]-Frege lower bounds. We begin by

describing and discussing these axioms.
Fix some standard Boolean encoding of constant-free

algebraic circuits, so that the encoding of any size-m
constant-free algebraic circuit has size poly(m). We use

“[C]” to denote the encoding of the algebraic circuit C. Let

K = {Km,n} denote a family of Boolean circuits solving

PIT: Km,n is a Boolean function that takes as input the

encoding of a size-m constant-free algebraic circuit, C, over

variables x1, . . . , xn, and if C has polynomial degree, then

K outputs 1 if and only if the polynomial computed by C
is the 0 polynomial.
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Notational convention: We underline parts of a state-

ment that involve propositional variables. For example, if

in a propositional statement we write “[C]”, this refers to

a fixed Boolean string that is encoding the (fixed) algebraic

circuit C. In contrast, if we write [C], this denotes a Boolean

string of propositional variables, which is to be interpreted

as a description of an as-yet-unspecified algebraic circuit

C; any setting of the propositional variables corresponds

to a particular algebraic circuit C. Throughout, we use �p
and �q to denote propositional variables (which we do not

bother underlining except when needed for emphasis), and

�x, �y, �z, . . . to denote the algebraic variables that are the

inputs to algebraic circuits. Thus, C(�x) is an algebraic circuit

with inputs �x, [C(�x)] is a fixed Boolean string encoding

some particular algebraic circuit C, [C(�x)] is a string of

propositional variables encoding an unspecified algebraic

circuit C, and [C(�p)] denotes a Boolean string together with

propositional variables �p that describes a fixed algebraic

circuit C whose inputs have been set to the propositional

variables �p.

Definition 2. Our PIT axioms for a Boolean circuit K are

as follows.

1) The first axiom states that if C is a circuit computing

the identically 0 polynomial, then the polynomial

evaluates to 0 on all Boolean inputs.

K([C(�x)])→ K([C(�p)])

2) The second axiom states that if C is a circuit comput-

ing the zero polynomial, then the circuit 1 − C does

not compute the zero polynomial.

K([C(�x)])→ ¬K([1− C(�x)])

3) The third axiom states that PIT circuits respect cer-

tain substitutions. More specifically, if the polynomial

computed by circuit G is 0, then G can be substituted

for the constant 0.

K([G(�x)]) ∧K([C(�x, 0)])→ K([C(�x,G(�x))])

4) The last axiom states that PIT is closed under permu-

tations of the (algebraic) variables.

K([C(�x)])→ K([C(π(�x))])

We can now state and discuss two of our main theorems.

Theorem 2. If there is a family K of polynomial-size
Boolean circuits that correctly compute PIT, such that the
PIT axioms for K have polynomial-size EF proofs, then EF
is polynomially equivalent to IPS.

Note that the issue is not the existence of small circuits for

PIT since we would be happy with nonuniform polynomial-

size PIT circuits, which do exist. Unfortunately the known

constructions are highly nonuniform—they involve picking

uniformly random points—and we do not see how to prove

the above axioms for these constructions. Nonetheless, it

seems very plausible to us that there exists a polynomial-size

family of PIT circuits where the above axioms are efficiently

provable in EF, especially in light of Remark 1.
Our next main result shows that the previous result can

be scaled down to much weaker proof systems than EF.

Theorem 3. Let C be any class of circuits closed under
AC0 circuit reductions. If there is a family K of polynomial-
size Boolean circuits computing PIT such that the PIT
axioms for K have polynomial-size C-Frege proofs, then C-
Frege is polynomially equivalent to IPS, and consequently
polynomially equivalent to Extended Frege.

Note that here we do not need to restrict the circuit family

K to be in the class C. This requires one more (standard)

technical device compared to the proof of Thm. 2, namely

the use of auxiliary variables for the gates of K. Here we

discuss some corollaries of Thm. 3; the proof of Thm. 3 is

given in the full version [1].
As AC0 is known unconditionally to be strictly weaker

than Extended Frege, we immediately get that AC0-Frege

cannot efficiently prove the PIT axioms for any Boolean

circuit family K correctly computing PIT.
Using essentially the same proof as Thm. 3, we also get

the following result. By “depth-d PIT axioms” we mean a

variant where the algebraic circuits C (encoded as [C] in

the statement of the axioms) have depth at most d. Note

that, even over finite fields, super-polynomial lower bounds

on depth-d algebraic circuits are notoriously open problems

even for d as small as 4 or 5.3

Corollary 3.1. For any d, if there is a family of tautologies
with no polynomial-size AC0[p]-Frege proof, and AC0[p]-
Frege has polynomial-size proofs of the [depth-d] PIT ax-
ioms for some K, then VNPFp

does not have polynomial-size
[depth-d] algebraic circuits.

This corollary makes the following question of central

importance in getting lower bounds on AC0[p]-Frege:

Open Question 1. For some d ≥ 4, is there some K
computing depth-d PIT, for which the depth-d PIT axioms

have AC0[p]-Frege proofs of polynomial size?

This question has the virtue that answering it either way

is highly interesting:

• If AC0[p]-Frege does not have polynomial-size proofs

of the [depth-d] PIT axioms for any K, then we have

super-polynomial size lower bounds on AC0[p]-Frege,

answering a major open question.

3Lower bounds of 2Ω(
√
n logn) on homogeneous depth 4 circuits are

known [27], [28]—and furthermore any asymptotic improvement to these
lower bounds implies VP �= VNP [11]—but for unrestricted depth 4
algebraic circuits nothing better than Strassen’s degree bound of Ω(n logn)
is known [7]. The only lower bounds for depth 5 circuits, beyond Strassen’s
degree bound, are for a very restricted class of circuits, namely, homoge-
neous depth 5 circuits of bottom fan-in bounded by Nδ with δ < 1 [29].
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• Otherwise, super-polynomial size lower bounds on

AC0[p]-Frege imply that the permanent does not have

polynomial-size algebraic circuits [of depth d] over any

finite field of characteristic p. This would then explain

why getting superpolynomial lower bounds on AC0[p]-
Frege has been so difficult.

This dichotomy is in some sense like a “completeness

result for AC0[p]-Frege, modulo proving strong algebraic

circuit lower bounds on VNP”: if one hopes to prove AC0[p]-
Frege lower bounds without proving strong lower bounds on

VNP, then one must prove AC0[p]-Frege lower bounds on

the PIT axioms. For example, if you believe that proving

VP �= VNP [or that proving VNP does not have bounded-

depth polynomial-size circuits] is very difficult, and that

proving AC0[p]-Frege lower bounds is comparatively easy,

then to be consistent you must also believe that proving

AC0[p]-Frege lower bounds on the [bounded-depth] PIT
axioms is easy.

Similarly, along with Thm. 7, we get the following:

Corollary 3.2. If for every constant d, there is a constant
d′ such that the depth-d PIT axioms have polynomial-
size depth-d′ AC0

d′ [p]-Frege proofs, then AC0[p]-Frege is p-
equivalent to constant-depth IPSFp

.

Using the chasms at depth 3 and 4 for algebraic circuits

[9], [10], [11] (see Observation 1 above), we can also help

explain why sufficiently strong exponential lower bounds for

AC0-Frege—that is, lower bounds that don’t depend on the

depth, or don’t depend so badly on the depth, which have

also been open for nearly thirty years—have been difficult

to obtain:

Corollary 3.3. Let F be any field, and let c be a sufficiently
large constant. If there is a family of tautologies (ϕn) such
that any AC0-Frege proof of ϕn has size at least 2c

√
n logn,

and AC0-Frege has polynomial-size proofs of the depth-4
PITF axioms for some K, then VP0

F
�= VNP0

F
.

If F has characteristic zero, we may replace “depth 4”
above with “depth 3.”

As with Corollary 3.1, we conclude a similar dichotomy:

either AC0-Frege can efficiently prove the depth 4 PIT ax-

ioms (depth 3 in characteristic zero), or proving 2ω(
√
n logn)

lower bounds on AC0-Frege implies VP0 �= VNP0.

VI. TOWARDS LOWER BOUNDS

Thm. 1 shows that proving lower bounds on (Hilbert-

like) IPS, or on the number of lines in Polynomial Calculus

proofs, is at least as hard as proving algebraic circuit lower

bounds. In this section we begin to make the difference

between proof complexity lower bounds and circuit lower

bounds more precise, and use this precision to suggest a

direction for proving new proof complexity lower bounds,

aimed at proving the long-sought length-of-proof lower

bounds on an algebraic proof system.

The key fact we use is embodied in Lem. 1, which

says that the set of (Hilbert-like) certificates for a given

unsatisfiable system of equations is, in a precise sense,

“finitely generated.” The basic idea is then to leverage this

finite generation to extend lower bound techniques from

individual polynomials to entire “finitely generated” sets of

polynomials.

Because Hilbert-like certificates are somewhat simpler to

deal with, we focus on those here, but note that all our key

conclusions about Hilbert-like certificates will also apply to

general IPS certificates [1].

The algebraic circuit size of a Hilbert-like certificate

C =
∑

i Gi(�x)yi is equivalent to the algebraic circuit

size of computing the entire tuple (G1(�x), . . . , Gm(�x)). A

circuit computing the tuple can be converted to a circuit

computing C by adding m times gates and a single plus gate.

Conversely, for each i we can recover Gi(�x) from C(�x, �y)
by plugging in 0 for all yj with j �= i and 1 for yi. So

from the point of view of lower bounds, we may consider

Hilbert-like certificates, and their representation as tuples,

essentially without loss of generality. This holds even in the

setting of Hilbert-like depth 3 IPS-proofs.

Hilbert-like IPS-certificates are thus in bijective corre-

spondence with R[�x] solutions to the following R[�x]-linear

equation in the new variables gi:

(
F1(�x) · · · Fm(�x)

) (
g1 · · · gm

)T
= 1

Just as in linear algebra over a field, the set of such solutions

can be described by taking one solution and adding to it all

solutions to the associated homogeneous equation:

(
F1(�x) · · · Fm(�x)

) (
g1 · · · gm

)T
= 0 (1)

(To see why: given two solutions of the inhomogeneous

equation, consider their difference.) Solutions to the latter

equation are commonly called “syzygies” amongst the Fi.

Syzygies and their properties are well-studied—though not

always well-understood—in commutative algebra and alge-

braic geometry, so lower and upper bounds on Hilbert-like

IPS-proofs may benefit from known results in algebra and

geometry.

Lemma 1. Given unsatisfiable polynomial equations
F1(�x) = · · · = Fm(�x) = 0 over a Noetherian ring R (such
as a field or Z), the set of Hilbert-like IPS-certificates is a
coset of a finitely generated submodule of R[�x]m.

Proof: The discussion above shows that the set of

Hilbert-like certificates is a coset of a R[�x]-submodule of

R[�x]m, namely the solutions to (1). As R is a Noetherian

ring, so is R[�x] (by Hilbert’s Basis Theorem). Thus R[�x]m

is a Noetherian R[�x]-module, and hence every submodule

of it is finitely generated.

Lem. 1 seems such an important idea that it’s worth re-

stating:
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The set of all Hilbert-like IPS-certificates for a
given system of equations can be described by
a single Hilbert-like IPS-certificate and a finite
generating set for the syzygies.

Its importance is underscored by contrasting the preceding

statement with the structure (if any?) of the set of all proofs

in other proof systems, particularly non-algebraic ones.

Note that a finite generating set for the syzygies (even a

Gröbner basis) can be found in the process of computing

a Gröbner basis for the R[�x]-ideal 〈F1(�x), . . . , Fm(�x)〉.
This process is to Buchberger’s algorithm as the extended

Euclidean algorithm is to the usual Euclidean algorithm.

Lem. 1 suggests that one might be able to prove size lower

bounds on Hilbert-like-IPS along the following lines: 1)

find a single family of Hilbert-like IPS-certificates (Gn)
∞
n=1,

Gn =
∑poly(n)

i=1 yiGi(�x) (one for each input size n), 2)

use your favorite algebraic circuit lower bound technique

to prove a lower bound on the polynomial family G, 3) find

a (hopefully nice) generating set for the syzygies, and 4)

show that when adding to G any R[�x]-linear combinations

of the generators of the syzygies, whatever useful property

was used in the lower bound on G still holds. Although

this indeed seems significantly more difficult than proving a

single algebraic circuit complexity lower bound, it at least

suggests a recipe for proving lower bounds on Hilbert-like

IPS (and its subsystems such as homogeneous depth 3, depth

4, multilinear, etc.), which should be contrasted with the

difficulty of transferring lower bounds for a circuit class to

lower bounds on previous related proof systems.

This entire discussion also applies to general IPS-

certificates, with only slight modifications [1].

VII. SUMMARY AND OPEN QUESTIONS

The Ideal Proof System raises many new questions, not

only about itself, but also about PIT, new examples of

VNP functions coming from propositional tautologies, and

the complexity of ideals or modules of polynomials. In

particular, it motivates the following general question:

General Question 2. Given a family of cosets of ideals

f
(0)
n + In (or more generally modules) of polynomials, with

In ⊆ R[x1, . . . , xpoly(n)], consider the function families

(fn) ∈ (f
(0)
n + In) (meaning that fn ∈ f

(0)
n + In for

all n) under any computational reducibility ≤ such as p-

projections. What can the ≤ structure look like? When, if

ever, is there such a unique ≤-minimum (even a single

nontrivial example would be interesting)? Can there be

infinitely many incomparable ≤-minima?

Say a ≤-degree d is “saturated” in (f
(0)
n + In) if every

degree d′ ≥ d has some representative in f (0) + I . Must

saturated degrees always exist? We suspect yes, given that

one may multiply any element of I by arbitrarily complex

polynomials. What can the set of saturated degrees look like

for a given (f
(0)
n + In)? Must every ≤-degree in f (0) + I

be below some saturated degree? What can the ≤-structure

of f (0) + I look like below a saturated degree?

Question 2 is of interest even when f (0) = 0, i. e., for

ideals and modules of functions rather than their nontrivial

cosets.
The complexity of Gröbner basis computations obviously

depends on the degrees and the number of polynomials that

one starts with. From this point of view, Mayr and Meyer

[30] showed that the doubly-exponential upper bound on the

degree of a Gröbner basis could not be improved in general.

However, in practice many Gröbner basis computations seem

to work much more efficiently, and even theoretically many

classes of instances—such as proving that 1 is in a given

ideal—can be shown to have only a singly-exponential

degree upper bound. These points of view are reconciled

by the more refined measure of the (Castelnuovo–Mumford)

regularity of an ideal or module [31]. Given that the syzygy

module or ideal of zero-certificates are so crucial to the

complexity of IPS-certificates, and the tight connection

between these modules/ideals and the computation of the

Gröbner basis of the ideal one started with, we ask:

General Question 3. Is there a formal connection between

the proof complexity of individual instances of TAUT (in,

say, the Ideal Proof System), and the Castelnuovo–Mumford

regularity of the corresponding syzygy module or ideal of

zero-certificates?

Prior to our work, much work was done on bounds for

the Ideal Membership Problem. The viewpoint afforded by

the Ideal Proof Systems raises new questions about potential

strengthening of these results. In particular, the following is

a natural extension of Def. 1.

Definition 3. An IPS certificate that a polynomial G(�x) ∈
F[�x] is in the ideal [respectively, radical of the ideal]

generated by F1(�x), . . . , Fm(�x) is a polynomial C(�x, �y)
such that

1) C(�x,�0) = 0, and

2) C(�x, F1(�x), . . . , Fm(�x)) = G(�x) [respectively, G(�x)k

for any k > 0].

An IPS derivation of G from F1, . . . , Fm is a circuit

computing some IPS certificate that G ∈ 〈F1, . . . , Fm〉.
For the Ideal Membership Problem, known EXPSPACE

lower bounds [30] imply a subexponential-size lower bound

on constant-free circuits computing IPS-certificates of ideal

membership (or non-constant-free circuits in characteristic

zero, assuming GRH, see the full version [1]). However,

under special circumstances, one may be able to achieve

better upper bounds; for the effective Nullstellensatz and its

arithmetic variant, we leave the following open:

Open Question 4. For any G,F1, . . . , Fm on x1, . . . , xn,

is there always an IPS-certificate of subexponential size that

G is in the radical of 〈F1, . . . , Fm〉 (see Def. 3)? Similarly,
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if G,F1, . . . , Fm ∈ Z[x1, . . . , xn] is there a constant-free

IPSZ-certificate of subexponential size that aG(�x) is in the

radical of the ideal 〈F1, . . . , Fm〉 for some integer a?
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