
Bi-Lipschitz Bijection between the Boolean Cube
and the Hamming Ball

Itai Benjamini
Department of Mathematics,

Weizmann Institute of Science,

Rehovot, Israel

itai.benjamini@weizmann.ac.il

Gil Cohen
Department of Computer Science

Weizmann Institute of Science,

Rehovot, Israel.

gil.cohen@weizmann.ac.il

Igor Shinkar
Department of Computer Science

Weizmann Institute of Science,

Rehovot, Israel.

igor.shinkar@weizmann.ac.il

Abstract—We construct a bi-Lipschitz bijection from the
Boolean cube to the Hamming ball of equal volume. More
precisely, we show that for all even n ∈ N there exists an explicit
bijection ψ : {0, 1}n → {

x ∈ {0, 1}n+1 : |x| > n/2
}

such that for
every x �= y ∈ {0, 1}n it holds that

1

5
≤ dist(ψ(x), ψ(y))

dist(x, y)
≤ 4,

where dist(·, ·) denotes the Hamming distance. In particular, this
implies that the Hamming ball is bi-Lipschitz transitive.

This result gives a strong negative answer to an open problem
of Lovett and Viola [CC 2012], who raised the question in the
context of sampling distributions in low-level complexity classes.
The conceptual implication is that the problem of proving lower
bounds in the context of sampling distributions requires ideas
beyond the sensitivity-based structural results of Boppana [IPL
97].

We study the mapping ψ further and show that it (and its
inverse) are computable in DLOGTIME-uniform TC0, but not
in AC0. Moreover, we prove that ψ is “approximately local”
in the sense that all but the last output bit of ψ are essentially
determined by a single input bit.

I. INTRODUCTION

The Boolean cube {0, 1}n and the Hamming ball Bn =
{x ∈ {0, 1}n+1 : |x| > n/2}, equipped with the Hamming

distance, are two fundamental combinatorial structures that

exhibit, in some aspects, different geometric properties. As

a simple illustrative example, for an even integer n ∈ N,

consider the vertex and edge boundaries1 of {0, 1}n and Bn,

when viewed as subsets of {0, 1}n+1 of equal density 1/2.

The Boolean cube is easily seen to maximize vertex boundary

among all subsets of equal density (since all its vertices

lie on the boundary), whereas Harper’s vertex-isoperimetric

inequality [Har66] implies that the Hamming ball is in fact

the unique minimizer. The same phenomena occurs for edge

boundary, though interestingly, the roles are reversed: among

all monotone sets2 of density 1/2, the Poincaré inequality

implies that the Boolean cube is the unique minimizer of

1The edge boundary of a subset A ⊂ {0, 1}n+1 is set of edges with one
endpoint in A and one outside A. The vertex boundary of A is the set of
vertices outside A that are endpoints of boundary edges.

2Recall that a subset A ⊂ {0, 1}n+1 is monotone if x ∈ A implies y ∈ A
for all y � x.

edge boundary, whereas a classical result of Hart shows that

the Hamming ball is the unique maximizer [Har76]. From

the Boolean functions perspective, the indicator of {0, 1}n
embedded in {0, 1}n+1 is commonly referred to as the dictator
function, and the indicator of Bn ⊂ {0, 1}n+1 is the majority
function, and it is a recurring theme in the analysis of Boolean

functions that they are, in some senses, opposites of one

another.

Lovett and Viola [LV12] suggested to utilize the opposite

structure of the Boolean cube and the Hamming ball for

proving lower bounds on sampling by low-level complexity

classes such as AC0 and TC0. In particular, Lovett and Viola

were interested in proving that for any even n, any bijection

f : {0, 1}n → Bn has a large average stretch, where

avgStretch(f) = E
x∼{0,1}n

i∼[n]

[dist(f(x), f(x+ ei))] ,

and dist(·, ·) denotes the Hamming distance. To be more

precise, Lovett and Viola raised the following open problem.

Problem I.1 ([LV12], Open Problem 4.1). Let n ∈ N be an
even integer. Prove that for any bijection f : {0, 1}n → Bn, it
holds that

avgStretch(f) = (logn)ω(1). (1)

A positive answer to Problem I.1 would demonstrate yet

another scenario in which the Boolean cube and the Hamming

ball have a different geometric structure – any bijection from

the former to the latter does not respect distances. Furthermore,

a positive answer to Problem I.1 would have applications to

lower bounds for sampling in AC0; even a weaker claim,

where the right hand side in Equation (1) is replaced with

ω(1), would have implications for sampling in the lower class

NC0. We discuss this further in Section I-B.

Arguably, the simplest and most natural bijection

ϕ : {0, 1}n → Bn to consider is the following.

ϕ(x) =

{
flip(x) ◦ 1 if |x| ≤ n/2
x ◦ 0 otherwise,

where flip(x) denotes the bit-wise complement of x. It is

straightforward to verify that avgStretch(ϕ) = Θ(
√
n). To see

this, note that any edge (x, y) in {0, 1}n, where |x| = n/2 and

|y| = n/2 + 1, contributes n to the average stretch, whereas

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.17

81

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.17

81

all other edges contribute 1. The assertion then follows since

Θ(1/
√
n) fraction of the edges are of the first type. In fact,

the maximum stretch of ϕ is n, where

maxStretch(ϕ) = max
x∈{0,1}n

i∈[n]
dist(ϕ(x), ϕ(x+ ei)).

As far as we know, prior to our work this simple bijection

achieved the best-known upper bound on the average stretch

between {0, 1}n and Bn, and no non-trivial upper bounds (i.e.,
sublinear) on maximum stretch were known. For a survey on

metric embeddings of finite spaces see [Lin02]. In particular,

a lot of research has been done on the question of embedding

into the Boolean cube. For example, see [AB07], [HLN87]

for some work on embeddings between random subsets of

the Boolean cube, and [Gra88] for isometric embeddings of

arbitrary graphs into the Boolean cube.

A. Our Results

The main result of this paper is a strong negative answer to

Problem I.1.

Theorem 1 (Main theorem). For all even integers n, there
exists a bijection ψ : {0, 1}n → Bn with

maxStretch(ψ) ≤ 4

and
maxStretch(ψ−1) ≤ 5.

We believe that Theorem 1 will find other applications in

theoretical computer science on top of the original motivation

for studying the problem, as it highlights a surprising and

counter-intuitive geometric resemblance between two well-

studied objects in theory – the Boolean cube and the Hamming

ball. In the language of metric geometry, Theorem 1 says that

there is a bi-Lipschitz bijection between the two spaces.

Corollary I.2 (A bi-Lipschitz bijection between {0, 1}n
and Bn). For all even integers n, there exists a bijection
ψ : {0, 1}n → Bn, such that for every x �= y ∈ {0, 1}n it
holds that

1

5
≤ dist(ψ(x), ψ(y))

dist(x, y)
≤ 4.

As a corollary from Theorem 1, we obtain that the subgraph

of {0, 1}n+1 induced by the vertices of Bn is bi-Lipschitz
transitive. Informally speaking, this says that any two points

in Bn have roughly the same “view” – even the unique point

with Hamming weight n + 1 and the boundary points which

have weight n/2 + 1. More formally,

Corollary I.3 (The Hamming balls are uniformly bi-Lipschitz

transitive). For all even integers n, and for every two vertices
x, y ∈ Bn there is a bijection f : Bn → Bn such that f(x) = y,
f(y) = x, and for every z �= w ∈ Bn, it holds that

1

20
≤ dist(f(z), f(w))

dist(z, w)
≤ 20.

To see this, first note that Bn is a convex subset of {0, 1}n+1,

and thus, the distances between vertices in Bn are the same

as their distances as a subset of the cube. Now, for a given

pair x, y ∈ Bn, let x′ = ψ−1(x) and y′ = ψ−1(y), where

ψ is the function from Theorem 1. Define f : Bn → Bn as

f(z) = ψ(ψ−1(z) ⊕ x′ ⊕ y′). It is easy to see that f indeed

satisfies the requirements of Corollary I.3.

Approximating ψi: We highlight another property of the

bijection ψ from our main theorem.

Proposition I.4. Let ψ be the function from Theorem 1. Then,
for all i ∈ [n] it holds that

Pr
x
[ψi(x) = xi] > 1−O(1/

√
n).

That is, all but the last output bit of ψ are essentially

determined by a single input bit. In Section I-C we show that

any bijection ψ : {0, 1}n → Bn with constant average stretch

satisfies a similar, though somewhat weaker, locality property.

The complexity of ψ: Since the original motivation for

constructing ψ comes from efficient sampling of distributions,

Theorem 1 is of larger interest if the bijection ψ (and ψ−1)

can be computed by low-level circuits.

Proposition I.5. The bijections ψ and ψ−1 are computable in
DLOGTIME-uniform TC0.

Remark I.6. In fact, we show that for all i ∈ [n + 1] there
is an NC0-reduction from majority to ψi. That is, TC0 is
the “correct” complexity of ψ, and in particular, ψ is not in
AC0. See Proposition III.1 and Remark III.2 for details.

B. The Complexity of Distributions

Lower bounds in circuit complexity are usually concerned

with showing that a family of functions {fn : {0, 1}n →
{0, 1}}n∈N cannot be computed by a family of circuits

{Cn}n∈N belonging to some natural class of circuits such as

AC0 or TC0. Taking a broader interpretation of computation,

it is often interesting to show that a class of circuits cannot

perform a certain natural task beyond just computing a func-

tion.

One such natural task, introduced by Goldre-

ich et al. [GGN10] and further advocated by Viola [Vio12],

is that of sampling distributions. In this problem, for

a given distribution D supported on {0, 1}n, we are

looking for a function f : {0, 1}m → {0, 1}n that samples

(or approximates) D, that is, for a uniformly random

x ∼ {0, 1}m, the distribution f(x) is equal (or close to) D,

and furthermore, each output bit fi of the function f belongs

to some low-level complexity class, such as AC0 or TC0.

As a concrete example, let U⊕ be the uniform distribution

over the set {(x, parity(x)) : x ∈ {0, 1}n−1} ⊆ {0, 1}n.

Note that although the parity function is not computable in

AC0 (see [Has86] and references therein) there is a function

f : {0, 1}n−1 → {0, 1}n that samples U⊕, such that each

output bit depends on only two input bits:

f(x1, . . . , xn−1) = (x1, x1 + x2, x2 + x3, . . . , xn−1).

Motivated by the foregoing somewhat surprising example,

Viola [Vio12] suggested to replace parity above with majority

8282

– the other notoriously hard function for AC0. The following

two problems have been stated in [LV12].

Problem I.7. Let n ∈ N be even. Does there exist a bijection
g : {0, 1}n → Bn such that each output bit of g is computable
in AC0?

Problem I.8. Let n ∈ N be odd. Does there exist a bijection
h : {0, 1}n → {(x,majority(x)) : x ∈ {0, 1}n} such that each
output bit of h is computable in AC0?

Note that a positive answer to Problem I.7 implies a positive

answer to Problem I.8. Indeed, if g : {0, 1}n → Bn is an em-

bedding from Problem I.7, then the function h : {0, 1}n+1 →
{0, 1}n+2 defined as

h(x1, . . . , xn+1) =

{
g(x1, . . . , xn) ◦ 1 xn+1 = 1

flip(g(x1, . . . , xn)) ◦ 0 xn+1 = 0

gives an embedding for Problem I.8. Therefore, a negative

answer to Problem I.8 implies a negative answer to Prob-

lem I.7. In the other direction, if a function h : {0, 1}n →
{(x,majority(x)) : x ∈ {0, 1}n} gives a positive answer to

Problem I.8, then the function g : {0, 1}n → {0, 1}n defined

as3

g(x1, . . . , xn) =

{
(h(x))[1,...,n] (h(x))n+1 = 1

flip(h(x))[1,...,n] otherwise

samples Bn−1 using input of length n, which almost4 answers

Problem I.8.

Problem I.1 was raised by Lovett and Viola [LV12] in

an attempt to prove a lower bound for Problem I.7. A

positive answer to Problem I.1 would imply a lower bound

for Problem I.7, since by the result of [Bop97], any function

f : {0, 1}n → {0, 1}n+1 computable by a polynomial size

Boolean circuit of constant depth has average stretch at most

logO(1)(n).
As we resolved Problem I.1 negatively, it seems that ideas

beyond the sensitivity-based structural results of [Bop97] are

required in order to resolve Problems I.7 and I.8.

On the positive side Viola [Vio12] showed an explicit

AC0 circuit C : {0, 1}poly(n) → {0, 1}n of size poly(n)
whose output distribution has statistical distance 2−n from

the uniform distribution on {(x,majority(x)) : x ∈ {0, 1}n}.
It is an open problem to improve either the input length or to

reduce the statistical distance to zero. Theorem 1 gives a sign

of hope in this direction.

For a lower bound Viola [Vio11] gave an explicit construc-

tion of a function b : {0, 1}n → {0, 1} such that (x, b(x))
cannot be sampled by AC0 circuits. That is, it gives a negative

answer to Problem I.8 if we replace majority by the function

b. Nonetheless, we feel that it would still be interesting to give

a negative answer to Problem I.8 for majority function, since

this is a more natural function.

3We use the following notation: for a string s ∈ {0, 1}n and integers i ≤ j
in [n], the string s[i,...,j] denotes the substring sisi+1 · · · sj .

4Problem I.8 asks for a function that takes n− 1 bits as input.

C. Low Stretch vs. Locality

Below we discuss some more aspects of the problem of

sampling the uniform distribution over Bn. In [Vio12] Viola

showed that local samplers (say, NC0 circuits) cannot do the

job, as they always have Ω(1) statistical distance from Bn.

Theorem 1 shows that low-stretch samplers can do the job,

with no error, and even with a constant worst-case stretch. We

find it somewhat unexpected because local samplers appear

very similar to low-stretch samplers. Indeed, it is not hard to

see that a local sampler has low average stretch, and the reverse

direction follows from Friedgut’s Junta Lemma [Fri98] as we

explain next. However, the connection between low stretch

samplers and local samplers only holds in the average case,

in the sense that for every sampler X of one type there is

a sampler Y of the other type that does the same with high

probability over the input and the flipped bit. Theorem 1 states

that the picture changes completely when moving to the worst
case computation.

We now sketch a proof for the fact that low stretch sources

are local in the average case. This is a direct consequence

of Friedgut’s Junta Lemma (a similar argument has appeared

recently in the paper of Austin [Aus13], where he studies Bi-

Lipschitz functions F : [0, 1]N → [0, 1]M). Let f : {0, 1}n →
Bn be a bijection of constant average stretch. We think of f
as a vector of Boolean functions 〈f1, . . . , fn+1〉, where fi(x)
is the ith output bit of f on input x ∈ {0, 1}n. Recall that the

total influence of a Boolean function fi : {0, 1}n → {0, 1} is

the quantity

Inf [fi] = E
x∼{0,1}n

[#{j ∈ [n] : fi(x) �= fi(x+ ej)}] .

By linearity of expectation, we have that

E
i∼[n+1]

[Inf [fi]] = O(1). (2)

Next we recall Friedgut’s Junta Lemma, which states that

a Boolean function with constant total influence is well-

approximated by another Boolean function that only depends

on a constant number of input bits. More precisely,

Friedgut’s Junta Theorem ([Fri98]). Let h : {0, 1}n →
{0, 1} be a Boolean function. For every ε > 0 there exists
a Boolean function g : {0, 1}n → {0, 1} such that g is a
2O(Inf [h]/ε)-junta5 and Pr[h(x) �= g(x)] ≤ ε.

Combining Equation (2) with Friedgut’s Junta Theorem, we

see that for any constants δ, ε > 0, all but a δ-fraction of the

fi’s are ε-approximated by O(1)-juntas.

D. Proof Overview

In this section we describe in high-level the proof of

Theorem 1. A full proof is given in Section II. Let n ∈ N be

an even integer. Our goal is to map {0, 1}n to Bn in a way that

the two endpoints of every edge in {0, 1}n are mapped to close

vertices in Bn. The key building block we use is a classical

5Recall that a k-junta is a Boolean function that only depends on at most
k of its input bits.

8383

partition of the vertices of {0, 1}n to symmetric chains, due

to De Bruijn, Tengbergen, and Kruyswijk [BvETK51], where

a symmetric chain is a path {ck, ck+1, . . . , cn−k} in {0, 1}n,

such that each ci has Hamming weight i.
As a first step, we study the chains in the partition of

De Bruijn et al. Roughly speaking, we show6 that adjacent

chains move closely to each other. More precisely, if two

adjacent vertices x and y belong to different chains, then x
and y have the same distance from the top of their respective

chains, up to some additive constant. Moreover, the lengths of

the two chains differ by at most some additive constant, and

the ith vertex in one chain, when counting from the top, is

O(1)-close to the ith vertex in the other chain (if such exists).

We now describe how to map {0, 1}n to Bn based

on the partition of De Bruijn et al. Consider a chain

ck, ck+1, . . . , cn−k. Our mapping will “squeeze” the vertices to

the top half of the cube while exploiting the extra dimension.

In particular, every vertex will climb up its chain half the

distance it has from the top, and then, the collision between

two vertices is resolved by setting the extra last bit to 1 for

the first vertex and to 0 for the second vertex. More precisely,

the vertex cn−k, which is at the top of its chain, is mapped

to cn−k ◦ 1, while cn−k−1 is mapped to cn−k ◦ 0. The third

vertex from the top cn−k−2 is mapped to cn−k−1 ◦ 1 while

cn−k−3 is mapped to cn−k−1 ◦ 0 and so on. The vertex ck at

the bottom of the chain is mapped to cn/2 ◦1, which is indeed

in Bn.

Consider now two adjacent vertices x, y in {0, 1}n. By the

above, these vertices reside in “close” chains with roughly the

same length and have roughly the same distance from the top

of their respective chains. Thus, in the climbing process, both

x and y will be mapped to vertices that have roughly the same

distance from the top of their respective chains, and hence,

from the discussion above, their images will be O(1)-close.

II. PROOF OF THE MAIN THEOREM

In this section we prove the main theorem. In Section II-A

we describe the De Bruijn-Tengbergen-Kruyswijk partition.

In Section II-B we define the mapping ψ and prove basic

facts about it. In Section II-C we give the proof for Theo-

rem 1, omitting some technical details that can be found in

Section II-D.

A. The De Bruijn-Tengbergen-Kruyswijk Partition

Definition II.1. Let n be an even integer. A symmetric chain

in {0, 1}n is a sequence of vertices C = {ck, ck+1, . . . , cn−k}
such that |ci| = i for i = k, k + 1, . . . , n − k, and
dist(ci, ci+1) = 1 for i = k, k + 1, . . . , n − k − 1. We say
that a symmetric chain is monotone if it satisfies the following
property: if ci−1 and ci differ in the j th coordinate, and ci and
ci+1 differ in the (j′)th coordinate, then j < j′.

We shall represent a monotone symmetric chain as follows.

Let y ∈ {0, 1,�}n be such that m = |{i : yi = �}| satisfies

6This is somewhat implicit in our proofs, and is mentioned here mainly in
order to build an intuition.

m ≡ n (mod 2), and let k = (n − m)/2. The monotone

symmetric chain Cy = {ck, ck+1, . . . , cn−k} is specified by y
as follows. For i = k, k+1, . . . , n−k, the string ci is obtained

by replacing the m−(i−k) leftmost symbols � of y by 0 and

the remaining i − k symbols � by 1. Note that Cy is indeed

a monotone symmetric chain.

De Bruijn, Tengbergen, and Kruyswijk [BvETK51] sug-

gested a recursive algorithm that partitions {0, 1}n to mono-

tone symmetric chains. We will follow the presentation of the

algorithm described in [vLW01] (see Problem 6E in Chapter

6). The algorithm gets as input a string x ∈ {0, 1}n, and

computes a string y ∈ {0, 1,�}n which encodes the monotone

symmetric chain Cy that contains x.

The algorithm is iterative. During the running of the algo-

rithm, every coordinate of x is either marked or unmarked,

where we denote a marked 0 by 0̂ and a marked 1 by 1̂. In

each step, the algorithm chooses a consecutive pair 10, marks

it by 1̂0̂, temporarily deletes it, and repeats the process. The

algorithm halts once there is no such pair, that is the remaining

string is of the form 00 . . . 01 . . . 11. We call this stage of the

algorithm the marking stage, and denote the marked string

by mark(x) ∈ {0, 1, 0̂, 1̂}n. The string y is then defined as

follows: if the ith bit of x was marked then yi = xi. Otherwise,

yi = �.

For example, consider the string x = 01100110. At the

first iteration, the algorithm may mark the third and fourth

bits to obtain 011̂0̂0110. Then, the second and fifth bits are

marked 01̂1̂0̂0̂110. Lastly, the rightmost two bits are marked,

and we obtain the marked string mark(x) = 01̂1̂0̂0̂11̂0̂. Hence

y = �1100�10 and Cy = {01100010, 01100110, 11100110}.
Readily, the algorithm induces a partition of {0, 1}n to

monotone symmetric chains. We stress that although the

algorithm has some degree of freedom when choosing a 10
pair out of, possibly, many pairs in a given iteration, the output

of the algorithm, y, is independent of the specific choices

that were made. That is, y is a function of x, and does not

depend on the specific order in which the algorithm performs

the marking. This assertion can be proven easily by induction

on n. As a consequence, we may choose the ordering of the

10 pairs as we wish. We will use this fact in the proof of

Theorem 1.

B. The Bijection ψ

We define the mapping ψ as follows. Let n ∈ N be

an even integer. For an input x ∈ {0, 1}n, let C =
{ck, ck+1, . . . , cn−k} be the symmetric chain from the par-

tition of De Bruijn et al., that contains x. Let j be the index

such that x = cj . Define

ψ(x)
def
=

{
c (n−k)+j

2
◦ 1 j ≡ (n− k) (mod 2);

c (n−k)+j+1
2

◦ 0 j �≡ (n− k) (mod 2).
(3)

Claim II.2. The mapping ψ is a bijection from {0, 1}n to Bn.

Proof. We first show that the range of ψ is Bn. Consider x ∈
{0, 1}n and let C = {ck, ck+1, . . . , cn−k} be the symmetric

8484

chain that contains x. Suppose that x = cj for some k ≤ j ≤
n−k. If j ≡ (n−k) (mod 2), then using the fact that j ≥ k,

|ψ(x)| =
∣∣∣cn−k+j

2
◦ 1

∣∣∣ = n− k + j

2
+ 1 >

n

2
.

Otherwise, j �≡ (n− k) (mod 2). Since n is even, it follows

that j �≡ k (mod 2), and thus j ≥ k + 1. Hence,

|ψ(x)| =
∣∣∣cn−k+j+1

2
◦ 0

∣∣∣ > n

2
.

In both cases ψ(x) ∈ Bn.

We conclude the proof by describing the inverse mapping

ψ−1 : Bn → {0, 1}n. For z ∈ Bn, write z = x ◦ zn+1, where

x ∈ {0, 1}n and zn+1 is the (n + 1)st bit of z. Let C =
{ck, ck+1, . . . , cn−k} be the symmetric chain that contains x,

and let j be the index such that x = cj (note that j ≥ n/2).

Then,

ψ−1(z) =

{
c2j−(n−k) if zn+1 = 1;

c2j−(n−k)−1 if zn+1 = 0.
(4)

It is straightforward to verify that this is indeed the inverse

mapping of ψ.

In order to understand the mapping ψ better, consider x ∈
{0, 1}n and let y ∈ {0, 1,�}n be the encoding of the chain

that contains x. Note that if 1 ≤ i1 < i2 < · · · < it ≤ n
are the coordinates in which y contains �, then there exists

some 0 ≤ � ≤ t such that xi1 = · · · = xi� = 0 and xi�+1
=

· · · = xit = 1. That is, x is located at the (� + 1)st position

of the chain Cy , when counting from the top. The function ψ
outputs the vertex located at the (��/2�+ 1)st position in the

chain, concatenated with 1 or 0, depending on the parity of

�. In other words, we obtain ψ(x) by keeping intact all the

bits of x in the coordinates other than i��/2�+1, . . . , i�, and by

setting ψ(x)i��/2�+1
= · · · = ψ(x)i� = 1. Then, we append 1

to the obtained string if � is even, and append 0 otherwise.

The following claim is immediate from the definition of ψ.

Claim II.3. Fix a string x ∈ {0, 1}n. Let M ⊆ [n] be the set
of marked coordinates in mark(x). Then,
• For every i ∈M it holds that ψ(x)i = xi.
• For every j ∈ [n] \M , the jth coordinate of ψ(x) does

not depend on any of the bits {xi}i∈M .

We are now ready to prove Theorem 1.

C. Proof of Theorem 1

Proof of Theorem 1. We first show that maxStretch(ψ) ≤ 4.

Take x ∈ {0, 1}n and i ∈ [n] such that xi = 0. Our goal

is to show that dist(ψ(x), ψ(x + ei)) ≤ 4. As mentioned

in Section II-A, the output of the algorithm on input x is

independent of the order in which the algorithm marks the

10 pairs. Therefore, given an input x, we may perform the

marking stage in three steps:

1) Perform the marking stage on the prefix of x of length

i− 1.

2) Perform the marking stage on the suffix of x of length

n− i.
3) Perform the marking stage on the resulting, partially

marked, string.

Since x and x + ei agree on all but the ith coordinate, the

running of the marking stage in steps 1 and 2 yield the same

marking. That is, prior to the third step the strings x and x+ei
have the same bits marked. Denote by s ∈ {0, 1, 0̂, 1̂}i−1 and

t ∈ {0, 1, 0̂, 1̂}n−i the two partially marked strings such that

the resulted strings after the second step on inputs x and x+ei
are s ◦ 0 ◦ t and s ◦ 1 ◦ t respectively. Let us suppose for

concreteness that the string s contains a unmarked zeros and

b unmarked ones, and the string t contains c unmarked zeros

and d unmarked ones. Recall that at the end of the marking

stage, all unmarked zeros are to the left of all unmarked ones

in both s and t.
By Claim II.3, the only coordinates that may contribute to

dist(ψ(x), ψ(x + ei)) are the unmarked coordinates prior to

the third step, and so dist(ψ(x), ψ(x+ ei)) is equal to

dist(ψ(0a1b ◦ 0 ◦ 0c1d), ψ(0a1b ◦ 1 ◦ 0c1d)).7

Therefore, it is enough to bound this from above by 4. At

this point, it is fairly easy to be convinced that the right hand

side is bounded by some constant. Proving that the constant

is 4 is done by a somewhat tedious case analysis, according

to the relations between a, b, c and d. We defer the proof of

the following claim to Section II-D.

Claim II.4. For every a, b, c, d ∈ N, we have

dist(ψ(0a1b ◦ 0 ◦ 0c1d), ψ(0a1b ◦ 1 ◦ 0c1d)) ≤ 4.

This completes the proof for maxStretch(ψ) ≤ 4.

We now prove that maxStretch(ψ−1) ≤ 5, where we

use the description of ψ−1 given in Equation (4). In order

to bound maxStretch(ψ−1), let us fix an edge in Bn, that

is, take z ∈ Bn and i ∈ [n + 1] such that zi = 0 and

show that dist(ψ−1(z), ψ−1(z + ei)) ≤ 5. By the proof of

Claim II.2, if i = n + 1 then ψ−1(z) and ψ−1(z + ei) are

consecutive vertices in some monotone symmetric chain, and

thus dist(ψ−1(z), ψ−1(z + ei)) = 1.

Therefore, we shall assume henceforth that i �= n + 1.

Let z = x ◦ zn+1 and z + ei = (x + ei) ◦ zn+1 for some

x ∈ {0, 1}n and zn+1 ∈ {0, 1}. Similarly to the proof for

maxStretch(ψ) ≤ 4, we perform the marking stage by first

performing the marking stage on the prefix of x of length i−1,

then perform the marking stage on the suffix of x of length

n− i, and finally, perform the marking stage on the resulting,

partially marked string. Denote by s ∈ {0, 1, 0̂, 1̂}i−1 and

t ∈ {0, 1, 0̂, 1̂}n−i the two partially marked strings such that

the resulted strings after the second step on inputs x and x+ei
are s ◦ 0 ◦ t and s ◦ 1 ◦ t respectively. Suppose again for

7Note that ψ is applied to inputs whose length is not necessarily n.
However, for the sake of readability, we do not indicate the input length
when applying ψ. In other words, ψ is a shorthand for a family of functions
{ψn}n∈N.

8585

concreteness that the string s contains a unmarked zeros and

b unmarked ones, and the string t contains c unmarked zeros

and d unmarked ones.

By Claim II.3, the only coordinates that may contribute to

dist(ψ−1(z), ψ−1(z + ei)) are the unmarked coordinates in s
and t, and so dist(ψ−1(z), ψ−1(z + ei)) is equal to

dist(ψ−1(0a1b ◦0◦0c1d ◦zn+1), ψ
−1(0a1b ◦1◦0c1d ◦zn+1)).

Thus, it is enough to upper bound this by 5. We first note

that a + c + 1 ≤ b + d. To see this recall that |z| > n/2 and

0a1b◦0◦0c1d was obtain from x = z1 . . . zn (that is, z without

its last bit zn+1) by deleting the same number of zeros and

ones.

Claim II.5. For every a, b, c, d ∈ N such that a+c+1 ≤ b+d,
and for every zn+1 ∈ {0, 1} it holds that dist(ψ−1(0a1b ◦ 0 ◦
0c1d ◦ zn+1), ψ

−1(0a1b ◦ 1 ◦ 0c1d ◦ zn+1)) ≤ 5.

Therefore, by Claim II.5 we have maxStretch(ψ−1) ≤ 5. This

completes the proof of Theorem 1.

D. Proof of Claim II.4

We now return to the proof of Claim II.4. The proof of

Claim II.5 is very similar, and is omitted it in this version.

Proof of Claim II.4. Let w = 0a1b ◦0◦0c1d and w′ = 0a1b ◦
1◦0c1d. We prove the claim using the following case analysis.

It will be convenient to introduce the function even : N →
{0, 1} defined as even(n) = 1 if n is even, and even(n) = 0
otherwise.

a) Case 1 (b = c).: In this case we have w = 0a◦1b0b◦
01d and w′ = 0a1 ◦ 1b0b ◦ 1d. After the marking stage we get

mark(w) = 0a ◦ 1̂b0̂b ◦ 01d and mark(w′) = 0a1 ◦ 1̂b0̂b ◦ 1d.

Therefore,

ψ(w) = 0�
a+1
2 �1a−�

a+1
2 � ◦ 1b0b ◦ 1d+1 ◦ even(a+ 1)

and

ψ(w′) = 0�
a
2 �1�

a
2 	+1 ◦ 1b0b ◦ 1d ◦ even(a).

By inspection, one can now easily verify that

dist(ψ(w), ψ(w′)) ≤ 4 in this case.

b) Case 2 (b > c).: In this case we have w = 0a ◦
1b−c−1 ◦1c+10c+1 ◦1d and w′ = 0a ◦1b−c+1 ◦1c0c ◦1d. After

the marking stage we get mark(w) = 0a1b−c−1◦1̂c+10̂c+1◦1d
and mark(w′) = 0a1b−c+1 ◦ 1̂c0̂c ◦ 1d. Therefore,

ψ(w) = 0�
a
2 �1�

a
2 	+b−c−1 ◦ 1c+10c+1 ◦ 1d ◦ even(a)

and

ψ(w′) = 0�
a
2 �1�

a
2 	+b−c+1 ◦ 1c0c ◦ 1d ◦ even(a).

Therefore, in this case, dist(ψ(w), ψ(w′)) ≤ 1.

c) Case 3 (b < c and a ≥ c− b).: In this case we have

w = 0a◦1b0b◦0c−b+1◦1d and w′ = 0a◦1b+11b+1◦0c−b−1◦1d.

After the marking stage we get mark(w) = 0a◦1̂b0̂b◦0c−b+11d

and mark(w′) = 0a ◦ 1̂b+10̂b+1 ◦0c−b−11d. By the assumption

that a ≥ c− b we have a ≥ �a+c−b+1
2 �, and so

ψ(w) = 0��/2�1a−��/2� ◦ 1b0b ◦ 1d+c−b+1 ◦ even(�),
where � = a+ c− b+ 1, and

ψ(w′) = 0��
′/2�1a−��

′/2� ◦ 1b+10b+1 ◦ 1d+c−b−1 ◦ even(�′),
where �′ = a + c − b − 1. Therefore, by inspection we have

dist(ψ(w), ψ(w′)) ≤ 4 for this case.

d) Case 4 (b < c and a < c− b).: Just like in the

previous case, we have mark(w) = 0a ◦ 1̂b0̂b ◦ 0c−b+11d and

mark(w′) = 0a ◦ 1̂b+10̂b+1 ◦0c−b−11d. By the assumption that

a < c− b, we have a ≤ �a+c−b−1
2 �, and so

ψ(w) = 0a ◦ 1b0b ◦ 0��/2�−a1c−b+1+d−��/2�+a ◦ even(�),
where � = a+ c− b+ 1, and

ψ(w′) = 0a◦1b+10b+1◦0��′/2�−a1c−b−1+d−��′/2�+a◦even(�′).
where �′ = a + c − b − 1. Therefore, in this case,

dist(ψ(w), ψ(w′)) ≤ 2.

This completes the proof of Claim II.4.

III. THE MAPPING ψ IS COMPUTABLE IN

DLOGTIME-UNIFORM TC0

In this section we analyze the complexity of the bijection ψ
described in the proof of Theorem 1. We first claim that each

output bit of ψ (and of ψ−1) can be computed in DLOGTIME-

uniform TC0. In Proposition III.1 and in the remark following

it, we show that indeed TC0 is the “correct” class for ψ.

e) Proposition I.5 (restated).: The bijections ψ and ψ−1

are computable in DLOGTIME-uniform TC0.

We prove the proposition only for ψ. The proof for ψ−1 is

very similar, and we omit it.

Proof. We divide the proof into two steps. First we show that

the marking stage can be implemented in TC0. Then, given

the marking of an input, we show how to compute ψ in TC0.

Both steps can be easily seen to be DLOGTIME-uniform.

Throughout the proof, the output of the marking stage is

represented by two bits for each coordinate, encoding a symbol

in {0, 1, 0̂, 1̂}, where one bit represents the Boolean symbol,

and the other indicates whether the coordinate is marked or

not.

f) Implementing the marking stage.: Let x ∈ {0, 1}n. In

order to implement the marking stage in TC0, we observe

that the ith coordinate in x is marked if and only if there are

coordinates si ≤ i ≤ ei such that

1) The number of ones in x[si,...,ei] is equal to the number

of zeros in x[si,,...,ei].
2) For every k ∈ {si, , . . . , ei}, the number of ones in the

prefix x[si,...,k] is greater or equal to the number of zeros

in x[si,...,k].

8686

Fix i ∈ [n] and fix si, ei ∈ [n] such that si ≤ i ≤ ei. Thinking

of the bit 1 as ’(’ and 0 as ’)’, the above two conditions

are equivalent to checking whether the string x[si,...,ei] of

parentheses is balanced, or in other words, deciding whether

x[si,...,ei] is in Dyck language. It is well-known that Dyck

language can be recognized in TC0 [Lyn77]. In fact, it is not

hard to show that deciding whether a string of length m is in

Dyck language can be carried out by a DLOGTIME-uniform

TC0 circuit with size O(m).
Now, for each i ∈ [n], we go over all choices for si, ei in

parallel, and take the OR of the O(n2) results. Thus, for each

i ∈ [n], there is a DLOGTIME-uniform TC0 circuit with size

O(n3) that decides whether the ith coordinate is marked or

not.

g) Computing ψ(x) from mark(x):: In order to compute

ψ(x), let mark(x) ∈ {0, 1, 0̂, 1̂}n be the marking of x. Since

every marked coordinate will remain unchanged, we need to

consider only of the unmarked coordinates. Recall also that

the unmarked bits form a sequence of zeros followed by a

sequence of ones. That is, if we ignore the marked coordinates,

then we get a string of the form 0a1b for some a = a(x), b =
b(x), and the output should be 0�

a
2 �1�

a
2 	+b ◦ even(a) (recall

that even(a) = 1 if a is even, and even(a) = 0 otherwise).

This can be implemented as follows.

1) Let a be the number of unmarked zeros in mark(x).
2) For each i ∈ [n], let ui = ui(x) be the number of

unmarked coordinates among {1, . . . , i}.
3) For all unmarked coordinates i ∈ [n], if 2ui < a, then

set the ith bit of the output to 0. Otherwise, set the ith

bit to 1.

4) Set the (n+ 1)st bit of the output to even(a).

It is easy to verify that given mark(x), checking whether the

inequality 2ui < a holds can be done in TC0, and so the

entire second step can be carried out by a TC0 circuit.

We remark that the bijection ψ cannot be computed in AC0.

For example, we prove that the first output bit of ψ cannot be

computed in AC0.

Proposition III.1. The function majority is NC0-reducible to
ψ1, i.e., majority ≤NC0 ψ1. In particular ψ1 /∈ AC0.

Proof. We first note that ψ1(x) = 0 if and only if x1 = 0 and

mark(x) contains at least two unmarked zeros. For odd n, we

construct a reduction r : {0, 1}n → {0, 1}3n+1 that for input

x ∈ {0, 1}n outputs a string r(x) ∈ {0, 1}3n+1 as follows.

Let x′ ∈ {0, 1}2n be the string obtained from x by replacing

each 0 of x with 10, and by replacing each 1 of x with 00.

Define r(x) = 0 ◦ 1n ◦ x′. For example, if x = 01101, then

x′ = 10◦00◦00◦10◦00, and r(x) = 0◦15◦10◦00◦00◦10◦00.

By the definition of r, it is clear that each bit of r(x) depends

on at most one bit of x. It is straightforward to check that

majority(x) = ψ1(r(x)), and the assertion, then, follows.

Remark III.2. Note that the reduction above also gives
majority ≤NC0 ψn+1. A similar proof also shows that
majority ≤NC0 ψi for all i ∈ [n+ 1].

IV. ALL BUT THE LAST OUTPUT BIT DEPEND

ESSENTIALLY ON A SINGLE INPUT BIT

In this section we prove Proposition I.4. We recall it here

for convenience.
h) Proposition I.4 (restated).: For all i ∈ [n] it holds

that
Pr
x
[ψi(x) = xi] > 1−O(1/

√
n).

Before proving the proposition, we need to further study

the structure of the De Bruijn-Tengbergen-Kruyswijk partition

described in Section II-A. We start with the following claim.

Claim IV.1. Let n be an integer, and let P be a partition of
{0, 1}n into symmetric chains. For every 1 ≤ t ≤ n + 1, let
Mt be the number of symmetric chains of length t in P . Then,

Mt =

{ (
n

n−t+1
2

)− (
n

n−t−1
2

)
t �≡ n (mod 2);

0 otherwise.

Proof. Note first that if C = {ck, ck+1, . . . , cn−k} is a

symmetric chain, then its length is n − 2k + 1. In particular,

this implies that there are no symmetric chains of length t
where t ≡ n (mod 2), and hence Mt = 0 for such t.

Next, we prove the claim for t �≡ n (mod 2). This is done

by backward induction on t. For t = n+ 1 we clearly have a

unique symmetric chain starting at 0n and ending at 1n, and

hence Mn+1 = 1, as claimed.
Before actually doing the induction step, let us consider the

next case, namely, t = n−1. Note that only one of the vertices

of Hamming weight 1 is contained in the unique chain of

length n+1, and so, since distinct vertices with equal weight

are contained in distinct symmetric chains, there are n − 1
chains with bottom vertex of Hamming weight 1. Therefore

Mn−1 = n− 1, as claimed.
For the general induction step, suppose that the claim holds

for all t′ larger than t. We prove the assertion for t �≡ n
(mod 2). Every symmetric chain of length t must be of the

form C = {ck, ck+1, . . . , cn−k}, where k = n−t+1
2 . Since the

chains of length greater than t are disjoint, and each contains a

vertex with Hamming weight k, it follows that the number of

vertices with Hamming weight k that are contained in chains

of length greater than t is
∑

t′>tMt′ =
(

n
k−1

)
. The remaining(

n
k

) − (
n

k−1

)
vertices must be contained in chains of length

t, and so, since distinct vertices of Hamming weight k are

contained in distinct symmetric chains, it follows that there

are
(
n
k

)− (
n

k−1

)
chains of length t.

The following corollary is immediate from the observation

that any x ∈ {0, 1}n such that mark(x) contains exactly

a unmarked zeros and b unmarked ones is contained in a

unique chain of length a+b+1 in the De Bruijn-Tengbergen-

Kruyswijk partition.

Corollary IV.2. Let n, a, b ∈ N such that a+b ≡ n (mod 2),
and a+ b ≤ n. Then,

1) The number of x ∈ {0, 1}n such that mark(x) contains
exactly a unmarked zeros and b unmarked ones is(

n
n−a−b

2

)− (
n

n−a−b−2
2

)
.

8787

2) The number of x ∈ {0, 1}n such that mark(x) contains
exactly a unmarked zeros (and any number of unmarked
ones) is

(
n

�n−a
2 �

)
.

We are now ready to prove Proposition I.4.

Proof of Proposition I.4. Let x ∈ {0, 1}n, and let mark(x)
be its marking. Suppose that the unmarked coordinates in

mark(x) are i1 < i2 < · · · < it, and let 0 ≤ � ≤ t be such

that xi1 = · · · = xi� = 0 and xi�+1
= · · · = xit = 1. Note

that ψi(x) �= xi if and only if the ith coordinate is unmarked

in mark(x) and i = ij for some j ∈ {� �2�+ 1, . . . , �}.
As in the proof of Theorem 1, it will be convenient to

perform the following partial marking of x. First perform the

marking stage on the prefix of x of length i − 1, and denote

the resulting string by s ∈ {0, 1, 0̂, 1̂}i−1. Then, perform

the marking stage on the suffix of x of length n − i, and

denote the result string by t ∈ {0, 1, 0̂, 1̂}n−i. Suppose for

concreteness that the string s contains a unmarked zeros and b
unmarked ones, and the string t contains c unmarked zeros and

d unmarked ones. By the definition of ψ we have ψi(x) �= xi
if and only if xi = 0, b = 0 and a ≥ c. Therefore,

Pr[ψi(x) �= xi] = Pr[xi = 0] ·Pr[b = 0, a ≥ c]

=
1

2

n−i∑
k=0

i∑
j=k

Pr[a = j, b = 0, c = k].

Note that since each bit of x is chosen independently, the

partially marked strings s, t and the bit xi are also independent,

and so

Pr[a = j, b = 0, c = k] = Pr[a = j, b = 0]Pr[c = k]

for all j and k. Next we compute each of Pr[a = j, b = 0]
and Pr[c = k] independently. By Corollary IV.2, for j �≡ i
(mod 2) we have

Pr[a = j, b = 0] =
1

2i−1
·
((

i− 1
i−j−1

2

)
−

(
i− 1
i−j−3

2

))
,

and

Pr[c = k] =
1

2n−i
·
(

n− i
�n−i−k

2 �
)
.

Therefore, for every k ≤ i we have

i∑
j=k

Pr[a = j, b = 0] =
1

2i−1
·
(

i− 1

� i−k−1
2 �

)
,

and so

Pr[ψi(x) �= xi] ≤ 1

2n+1
·
min(i,n−i)∑

k=0

(
n− i
�n−i−k

2 �
)(

i− 1

� i−k−1
2 �

)
.

Let us assume that i ≥ n/2 (the case of i < n/2 is handled

similarly). Then, using the fact that
(i−1
� i−k−1

2 �
) ≤ O(2i/

√
i)

for all k, we have

Pr[ψi(x) �= xi] = O

(
1√
i

)
· 1

2n−i
·
n−i∑
k=0

(
n− i
�n−i−k

2 �
)
.

By the identity

n−i∑
k=0

(
n− i
�n−i−k

2 �
)

=
n−i∑
j=0

(
n− i
j

)
= 2n−i,

we get Pr[ψi(x) �= xi] = O(1/
√
i), and so, since we assumed

that i ≥ n/2 we get that Pr[ψi(x) �= xi] = O(1/
√
n), as

required.

V. CONCLUDING REMARKS AND OPEN PROBLEMS

Bi-Lipschitz bijection between balanced halfspaces.: Let

a0, . . . , an ∈ R. The halfspace determined by the ai’s is

the set of all points (x1, . . . , xn) ∈ {−1, 1}n such that

a0 + a1x1 + · · · + anxn ≥ 0.8 A balanced halfspace is a

halfspace with a0 = 0. The Boolean cube {−1, 1}n embedded

in the natural way in {−1, 1}n+1 and the Hamming ball

{x ∈ {−1, 1}n+1 : x1 + · · · + xn+1 ≥ 0} are two examples

of balanced halfspaces. We showed a bi-Lipschitz bijection

between them. It is therefore natural to ask the following

question.

Problem V.1. Is there a bi-Lipschitz bijection between any

two balanced halfspaces? Or even a bijection with constant
average stretch from the Boolean cube {−1, 1}n to any
balanced halfspace in {−1, 1}n+1?

In functions terminology, the Boolean cube {−1, 1}n em-

bedded in {−1, 1}n+1 is indicated by the dictator function,

while the Hamming ball is indicated by the majority function.

Problem V.1 refers more generally to linear threshold func-

tions. One attempt at solving Problem V.1 positively, would

be to generalize the partition of De Bruijn et al. to general

halfspaces.

Besides being a natural problem, a positive solution to

Problem V.1 may have implications to fully polynomial ap-

proximation scheme for counting solutions of the 0-1 knapsack

problem [MS04].

Another interesting problem, inspired by Corollary I.3, is the

following.

Problem V.2. Is it true that any halfspace is bi-Lipschitz
transitive?

Bi-Lipschitz bijection of the hypercube mapping the half
cube to the Hamming ball: The following problem has been

suggested to us by Daniel Varga. It asks whether the bijection

given in Theorem 1 can be strengthened in the following way.

Problem V.3. Let n be even. Is there a bi-Lipschitz bijection
f : {0, 1}n+1 → {0, 1}n+1 that maps the half cube to the
Hamming ball? That is, for all x ∈ {0, 1}n+1 such that x1 = 1
the bijection satisfies f(x) ∈ Bn.

8The {−1, 1}n representation of the Boolean cube is more natural in the
context of halfspaces.

8888

Tightness of the stretch from the Boolean cube to the
Hamming ball: One may ask whether the constants 4 and 5
in Theorem 1 are tight. By a slight variation on the proof

of Theorem 1, we can show that there exists a bijection

φ : {0, 1}n → Bn with maxStretch(φ) ≤ 3, improving on

Theorem 1 in this respect. However, the maximum stretch of

φ−1 is unbounded.

Theorem 2. For all even integers n, define the bijection
φ : {0, 1}n → Bn as follows. Let x ∈ {0, 1}n, and let
C = {ck, ck+1, . . . , cn−k} be the symmetric chain from the
partition of De Bruijn et al., that contains x. Let j be the
index such that x = cj . Define,

φ(x)
def
=

{
cn−j ◦ 1 j ≤ n/2;

cj ◦ 0 otherwise.

Then, maxStretch(φ) = 3 and avgStretch(φ−1) = 2 + o(1).

The proof of Theorem 2 is similar to the proof of Theorem 1,

and thus we omit it. One can easily see that any bijection

f : {0, 1}n → Bn has maximum stretch at least 2. Indeed, let

y = f(x) ∈ Bn be a point with Hamming weight n/2+1. Then

y has only n/2 neighbors in Bn, which cannot accommodate

all n neighbors of x ∈ {0, 1}n. We do not know whether

the stretch 3 of φ in Theorem 2 is tight or not, and leave it

as an open problem. What is the smallest possible stretch of

a bijection from Bn to {0, 1}n? Are the constants 4 and 5
optimal if one considers only bi-Lipschitz bijections? Is the

constant 20 in Corollary I.3 optimal?
Lower bounds on average and maximum stretch:

Problem V.4. Exhibit an explicit subset A ⊂ {0, 1}n+1 of
density 1/2 such that any bijection f : {0, 1}n → A has
avgStretch(f) = ω(1), or prove that no such subset exists.

As a concrete candidate, we suggest to consider sets A =
{x : f(x) = 1}, where f is a monotone noise-sensitive

function (e.g., Tribes9 or Recursive-Majority-of-Three). A

sufficiently strong positive answer to this question would

imply a lower bound for sampling the uniform distribution

on A by low-level complexity classes.
Bijections from the Gale-Shapley algorithm for the stable

marriage problem: Let A,B be two subsets of {0, 1}n+1

with density 1/2. Consider the Gale-Shapley algorithm for

the stable marriage problem, where each vertex v ∈ A ranks

all the vertices in B according to their distance to v (breaking

ties according some rule). What can be said about the average

stretch of the bijection obtained from this algorithm? Two

interesting settings are (1) A = {0, 1}n, B = Bn and (2) A,B
are random subsets of {0, 1}n of density 1/2. For related work

in this direction see Holroyd [Hol11]. Another natural bijection

to consider, suggested to us by Avishay Tal, is the one induced

by the Hungarian method for the assignment problem [Kuh55].

ACKNOWLEDGEMENT

We thank Li-Yang Tan for introducing us Problem I.1, and

for helpful discussions. We thank Ehud Friedgut for suggesting

9We note that Tribes has density close to 1/2.

to use the De Bruijn–Tengbergen–Kruyswijk partition, which

turned out to be the key step in the proof of Theorem 1. We

also thank Emanuele Viola for referring us to [Vio11]. Lastly,

we thank the anonymous referees for their helpful comments.

In particular we are thankful to the referee who shed light on

the relation between local and low stretch sources. Section I-C

is based on his/her insights. Itai Benjamini would also like to

thank Microsoft Research New England, where this research

was started. Gil Cohen’s research is supported by Israel

Science Foundation (ISF) grant. Igor Shinkar’s research is

supported by ERC grant number 239985.

REFERENCES

[AB07] O. Angel and I. Benjamini. A phase transition for the metric
distortion of percolation on the hypercube. Combinatorica, 27(6):645–
658, 2007.

[Aus13] T. Austin. On the failure of concentration for the �∞-ball. 2013.
http://arxiv.org/abs/1309.3315.

[Bop97] R. Boppana. The average sensitivity of bounded-depth circuits.
Information Processing Letters, 63(5):257–261, 1997.

[BvETK51] N. G. De Bruijn, C. van Ebbenhorst Tengbergen, and
D. Kruyswijk. On the set of divisors of a number. Nieuw Arch. Wiskunde
(2), 23:191–193, 1951.

[Fri98] E. Friedgut. Boolean functions with low average sensitivity depend
on few coordinates. Combinatorica, 18(1):27–35, 1998.

[GGN10] O. Goldreich, S. Goldwasser, and Nussboim. On the implementa-
tion of huge random objects. SIAM Journal on Computing, 39(7):2761–
2822, 2010.

[Gra88] R. L. Graham. Isometric embeddings of graphs. Selected Topics in
Graph Theory, 3:133–150, 1988.

[Har66] L. H. Harper. Optimal numbering and isoperimetric problems on
graphs. Journal of Combinatorial Theory, (1):385–393, 1966.

[Har76] S. Hart. A note on the edges of the n-cube. Discrete Mathamatics,
14(2):157–163, 1976.

[Has86] J. Hastad. Almost optimal lower bounds for small depth circuits.
In Proceedings of the eighteenth annual ACM Symposium on Theory of
Computing, pages 6–20. ACM, 1986.

[HLN87] J. Hastad, T. Leighton, and M. Newman. Reconfiguring a hyper-
cube in the presence of faults. In Proceedings of the nineteenth annual
ACM Symposium on Theory of Computing, pages 274–284, 1987.

[Hol11] A. E. Holroyd. Geometric properties of poisson matchings. Proba-
bility Theory and Related Fields, 150(3–4):511–527, 2011.

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[Lin02] N. Linial. Finite metric spaces - combinatorics, geometry and algo-
rithms. In Proceedings of the International Congress of Mathematicians
III, pages 573–586, 2002.

[LV12] S. Lovett and E. Viola. Bounded-depth circuits cannot sample good
codes. Computational Complexity, 21(2):245–266, 2012.

[Lyn77] N. Lynch. Log space recognition and translation of parenthesis
languages. Journal of the ACM, 24(4):583–590, 1977.

[MS04] B. Morris and A. Sinclair. Random walks on truncated cubes
and sampling 0-1 knapsack solutions. SIAM Journal on Computing,
34(1):195–226, 2004.

[Vio11] E. Viola. Extractors for circuit sources. In IEEE 52nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 220–
229. IEEE, 2011.

[Vio12] E. Viola. The complexity of distributions. SIAM Journal on
Computing, 41(1):191–218, 2012.

[vLW01] J. H. van Lint and R.M. Wilson. A Course in Combinatorics.
Cambridge University Press, Cambridge, 2001.

8989

