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Abstract—We show here a 2Ω(
√
d·logN) size lower bound for

homogeneous depth four arithmetic formulas. That is, we give
an explicit family of polynomials of degree d on N variables
(with N = d3 in our case) with 0, 1-coefficients such that for
any representation of a polynomial f in this family of the form

f =
∑

i

∏

j

Qij ,

where the Qij’s are homogeneous polynomials (recall that a
polynomial is said to be homogeneous if all its monomials have
the same degree), it must hold that

∑

i,j

(Number of monomials of Qij) ≥ 2Ω(
√
d·logN).

The above mentioned family, which we refer to as the Nisan-
Wigderson design-based family of polynomials, is in the com-
plexity class VNP. Our work builds on the recent lower bound
results [1], [2], [3], [4], [5] and yields an improved quantitative
bound as compared to the quasi-polynomial lower bound of
[6] and the NΩ(log logN) lower bound in the independent work
of [7].

Keywords-Arithmetic circuits, shifted partial derivatives,
lower bounds.

I. INTRODUCTION

Understanding efficient computation and the VP versus
VNP problem. The model of arithmetic circuits is an

algebraic analogue of the model of Boolean circuits: an

arithmetic circuit contains addition (+) and multiplication

(×) gates and it naturally computes a polynomial in the

input variables over some underlying field. We typically

allow the input edges to a + gate to be labelled with

arbitrary constants from the underlying field F so that a +
gate can in fact compute an arbitrary F-linear combination

of its inputs. In the field of arithmetic complexity, we seek

to understand the phenomenon of efficient computation of

(multivariate) polynomials via arithmetic circuits. A specific

fundamental question is the VP versus VNP problem. The

complexity classes VP and VNP consist of families of

polynomials and can be viewed as algebraic analogues of

the classes P and NP respectively1. This outstanding open

problem asks whether there are families of polynomials

which admit an efficient description2 but are hard to

compute3. The hope is that it might be possible to use

algebraic and geometric insights along with the structure

of arithmetic circuits to make progress towards settling

the VP vs VNP question. Till date, research on arithmetic

circuits has produced several interesting results that have

enriched our understanding of the lower bound problem

and the related problems on polynomial identity testing

& reconstruction (or learning) of arithmetic circuits. The

survey [9] gives an account of some of the results and

outstanding open questions in this area.

Can computation be efficiently parallelized? While the

resolution of the VP vs VNP question would be a big

landmark in our quest to understand efficient arithmetic

computation, another fundamental pursuit might be to

be understand efficient parallel computation. Circuits of

low depth4 correspond to computations which are highly

parallel. A relevant question here is whether computation

can be efficiently parallelized. Specifically, if an N -variate

polynomial f of degree d can be computed by a circuit C
of size s, what is the size of a minimal Δ-depth circuit C′
computing the same polynomial? Following the landmark

result [10], a series of generalizations and improvements

[11], [12], [13] showed that this can be done with C′ being

1 It is known that if VNP can be computed by arithmetic circuits of
polynomial size and degree and which have the additional property that the
constants from the underlying field have polynomially bounded bitlengths
then it must follow that P = NP (cf. [8]).

2 A polynomial (family) is said to admit an efficient desciption if the
coefficient of any given monomial can be computed efficiently.

3 The VP versus VNP is perhaps closer in spirit to the #P versus NC
problem in Boolean complexity.

4 Recall that the depth of a circuit is the maximum length of any path
from an input node to the output node.
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a homogeneous5 Δ-depth circuit (with unbounded fanin

gates) of size sO(d2/Δ). We do not know if this result is

optimal. A recent result by [14], combined with observations

by Tavenas [13] and Wigderson6 shows that over fields

of characteristic zero, the size of C′ can be improved to

sO(d1/(Δ−1)) albeit at the loss of homogeneity of C′. On the

other hand, recent results by [3] and [4] together imply that

if C′ satisfies some additional regularity conditions then

sO(d2/Δ) is optimal. Without the regularity restrictions, we

do not know if either of these depth reductions is optimal

- the main bottleneck being the nonavailability of lower

bounds for low depth (homogeneous) circuits.

VP versus VNP and homogeneous depth four lower
bounds. Note also that the depth reduction results of [10],

[11], [12], [13] imply in particular that if a degree-d,

N -variate polynomial f is in VP then it can be computed

by a homogeneous depth four circuit7 of size NO(
√
d). This

also opens another potential avenue of attack on the VP
versus VNP problem - it suffices to prove strong enough

homogeneous depth four lower bounds for any polynomial

(family) in VNP. The implicit hope here is that low depth

circuits being easier to analyze, it might be more feasible to

prove such strong lower bounds against them. Thus proving

lower bounds against low depth circuits is relevant both

from the viewpoint of making progress on the VP versus

VNP question and for understanding the limits to which

arithmetic computation can be efficiently parallelized. In

this work, we prove a lower bound of NΩ(
√
d) on the

size of a homogeneous depth four circuit computing a

polynomial (family) in VNP.

Previous work on super-polynomial lower bounds. Lower

bounds for homogeneous formulas were first proved by

Nisan and Wigderson [15], who introduced the method of

partial derivatives in this setting. They used this approach to

show an exponential lower bound for homogeneous depth-3
formulas and also some other interesting lower bound results

on circuit size and depth. 8

The use of partial derivatives (alongside other im-

portant ideas) has since been a recurrent theme in arithmetic

circuit lower bounds. For depth-3 (possibly inhomogeneous)

formulas over constant-sized finite fields, this method was

5 Recall that the formal degree of a node in a circuit is defined inductively
in the natural manner - leaf nodes labelled with variables (respectively with
field constants) have formal degree 1 (respectively zero) and every internal
+ gate (resp. × gate) is said to have formal degree equal to the maximum
of (resp. the sum of) the formal degrees of its children. An arithmetic circuit
is said to be homogeneous if it is syntactically homogeneous, i.e. at every
intermediate + gate, the inputs all have the same formal degree.

6 personal communication
7 with bottom fanin bounded by O(

√
d).

8 Prior to this work, Smolensky [16] used this measure to prove certain
lower bounds for boolean circuits, and Nisan [17] showed an exponential
lower bound for noncommutative arithmetic formulas.

used to prove an exponential lower bound by [18], [19].

Further, Raz [20] showed that any multilinear formula

computing the determinant Detn (or the permanent Permn)

polynomial has nΩ(logn) size with subsequent separations9

and refinements10 in [21] and in [22]. There are also other

works such as [23], which are based upon studying partial

derivatives or associated matrices involving partial deriva-

tives like the Jacobian or the Hessian11.

The situation for depth-4 homogeneous formulas has

been substantially improved by the recent work of [1], [2],

followed by the work of [3] and [4]. These works have

led to a 2Ω(
√
d logN) lower bound for depth-4 homogeneous

formulas with bottom fan-in O(
√
d) (where d is the degree

of the N -variate ‘target’ polynomial on which the lower

bound is shown). Further, [3] and [4] together imply a

super-polynomial separation between algebraic branching
programs (ABPs) and regular formulas - two natural sub-

models of arithmetic circuits. Quite interestingly, the work

of [5] in fact showed a super-polynomial separation between

homogeneous depth-4 formulas and regular formulas! At a

high level, these separation results are obtained by showing

that a polynomial computed by a regular formula can also be

computed by a bounded bottom fan-in homogeneous depth-

4 formula having low top fan-in. Now it was shown in [5]

that there is a polynomial (family) computed by polynomial

size homogeneous depth-4 formulas such that any bounded

bottom fan-in homogeneous depth-4 formula computing

the polynomial must have high top fan-in. This implied

the separation between homogeneous depth-4 formulas and

regular formulas.

A seemingly tempting problem left open in these

works is if the lower bound of 2Ω(
√
d logN) in the above

statement could be improved to 2ω(
√
d logN), since a

super-polynomial lower bound for general circuits would

ensue immediately. At the heart of these results lies

the study of the space of shifted partial derivatives of

polynomials and an associated measure called the dimension
of the shifted partials - a technique introduced in [1], [2].

Loosely speaking, the dimension of the shifted partials

of a polynomial g refers to the dimension of the F-linear

vector space generated by the set of polynomials obtained

by multiplying (shifting) the partial derivatives of g with

monomials of suitable degrees.

Homogeneous Formulas and Shifted Partials. A more

modest (compared to the resolution VP versus VNP), but

still a highly interesting milestone in arithmetic complexity

9 Building upon [20], a super-polynomial gap between multilinear
circuits and formulas was obtained in [21].

10 Also building upon [20], a significantly better bound was later shown
for bounded (i.e. constant) depth multilinear circuits [22]: A depth-d

multilinear circuit computing Detn or Permn has size 2n
Ω(1/d)

.
11 A recent survey by Chen, Kayal and Wigderson [24] gives more

applications of partial derivatives.
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might be to prove superpolynomial lower bounds for

homogeneous formulas12. Could the shifted partials

technique be used to achieve the same? The work [5] poses

an apparent ‘hurdle’ for achieving even a homogeneous

depth-4 formula lower bound: the strategy of directly
reducing a homogeneous depth-4 formula to a bounded

bottom fan-in homogeneous depth-4 formula of low top

fan-in (followed by applying the top fan-in lower bound on

the latter kind of formulas) will not work! At this point,

proving a lower bound for homogeneous depth-4 formulas

seems like a natural step forward to understand the strengths

and limitations of the shifted partials method better - this

is a recurring open problem stated in [3], [4], [25], [13].

Further, with the hope of proving a super-polynomial lower

bound for general homogeneous formulas, it would be

good to have an exponential lower bound for homogeneous

depth-4 formulas first.

Our result. We show here that a slightly modified (or

augmented) version of the shifted partial measure can be

used to obtain an exponential lower bound for depth-4
homogeneous formulas. For the ease of reference in this

paper, we will call this modified measure the projected
shifted partials. Loosely speaking, the idea is to shift the
derivatives of a polynomial by a carefully chosen set of
monomials and then view these after ‘projecting’ them to
an appropriate set of monomials. Our results are formally

stated below.

Theorem 1. Let F be any field of characteristic zero. There
is an explicit family of homogeneous polynomials of degree
d in N = d3 variables with zero-one coefficients such that
any homogeneous ΣΠΣΠ formula over F computing this
family must have size at least 2Ω(

√
d·logN). In other words,

for any representation of the degree d polynomial f in the
family, of the form

f =
∑
i

∏
j

Qij ,

where the Qij’s are homogeneous polynomials, it must hold
that∑

i,j

(Number of monomials of Qij) ≥ 2Ω(
√
d·logN).

The explicit polynomial f in the theorem above is a

variant of the Nisan-Wigderson design-based polynomial

introduced in [3] and further studied in [5], [7]. While this

family of polynomials is explicit (in VNP), it is not known

to be efficiently computable. Thus, as it stands, our main

theorem has two limitations - it is valid only over fields of

characteristic zero and the explicit family of polynomials

12 Recall that, homogeneous formulas can be simulated by polynomial
size ABPs which in turn can be simulated by polynomial size circuits.

that we give is not known to be efficiently computable.

Comparison with our earlier work [6]. The projected

shifted partials measure is closely related to the measure

we used earlier in [6] to obtain a quasi-polynomial lower

bound for homogeneous depth-4 formulas. But there are

also important differences between the two. The definition

of the measure in [6] has an unconventional (perhaps also

undesirable) feature - it depends on the target polynomial,

Iterated Matrix Multiplication, on which the lower bound

was shown. This is not the case for our present (somewhat

cleaner) measure that can be applied on any target

polynomial family and achieves a much stronger lower

bound (exponential) as opposed to the quasi-polynomial

lower bound in [6]. The primary source of this improvement

is the design of a more suitable complexity measure (via a

better ordering of the linear operators involved and a more

careful shifting) and a refined analysis of rank estimation of

a certain matrix. On the other hand, the lower bound in [6]

holds for the families of Iterated Matrix Multiplication and

Determinant polynomials that are in VP as compared to

the family of Nisan-Wigderson design-based polynomials

which is in VNP but not known to be in VP.

An independent result by [7]. Kumar and Saraf [7]

independently proved a superpolynomial (NΩ(log logN))

lower bound for homogeneous depth four circuits using

another nice augmentation of the shifted partial measure

that they call bounded support shifted partials. We do not

know if this measure can be used to prove an exponential

lower bound. Indeed, they explicitly state the problem of

proving exponential lower bounds for homogeneous depth

four circuits as an open problem which we happen to

achieve here.

The rest of the paper is devoted to proving Theorem 1. Many

proofs and computations are omitted due to lack of space.

They may be found in the full version of the paper [26].

II. OVERVIEW OF OUR PROOF

We now give an outline of the proof of Theorem 1. Let

f(x) ∈ F[x] be a homogeneous polynomial of degree d on

N variables over a field F. Consider a representation of f
of the form

f =
s∑

i=1

∏
j

Qij , (1)

where the Qij’s are homogeneous polynomials. Note that

any polynomial can be written in this way - the challenge is

to prove a lower bound on the total number of monomials

appearing in the Qij’s. For each i ∈ [s], the i-th term in

such a representation is defined to be Ti =
∏

j Qij . First

observe that we can assume without loss of generality that

the degree of each term Ti is at most d (as we can simply
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discard terms of degree larger than d without changing the

output). So now assume that the total number of monomials

in this representation is small, say 2o(
√
d·logN) (else we

have nothing to prove). In particular, our assumption means

that every Qij has at most 2o(
√
d·logN) monomials.

Using Random Restrictions to reduce the support size. In

the first step, we consider the identity (1) and in that set each

variable to zero independently at random with probability

(1 − p) (a variable is left untouched with probability p.)

Then any monomial m in any of the Qij’s which contains

t distinct variables will now survive (i.e. remain nonzero

under this substitution) with probability pt. So if we choose

p = 1
NΘ(1) then via an application of the union bound we

deduce that all monomials of support at least t = Ω(
√
d)

will be ‘killed’ (i.e. set to zero) under this substitution13. For

ease of subsequent exposition, let us introduce the following

notation/terminology.

1) Support. Let m = xe1
1 · xe2

2 · . . . · xeN
N in

F[x1, x2, . . . , xN ] be a monomial. The support of m,

denoted Supp(m) is the subset of variables appearing

in it, i.e.

Supp(m)
def
= {i : ei ≥ 1} ⊆ [N ].

The support size of a polynomial f , denoted |Supp(f)|
is the maximum support size of any monomial appear-

ing in f .

2) Substitution maps. Let R ⊆ [N ] be a set. The substi-

tution map σR : F[x] �→ F[x] is the map which sets all

the variables in R to zero, i.e. σR(f)
def
= f |xi=0 ∀i∈R.

Formally, σR : F[x] �→ F[x] is a homomorphism such

that for any monomial m ∈ F[x], σR(m) = m if

the monomial m is supported outside R and is zero

otherwise.

So the above discussion can now be summarized as follows.

Let t = Θ(
√
d) be a suitable integer. By choosing a set R at

random in the above manner and applying σR to the identity

(1), we obtain (with high probability) another identity

σR(f) =
s∑

i=1

∏
j

σR(Qij), (2)

where ∀i, j : σR(Qij) is homogeneous and

|Supp(σR(Qij))| ≤ t. In this manner our problem

reduces to proving lower bounds for representations of the

form (2) which we refer to as t-supported homogeneous

ΣΠΣΠ circuits.

Lower bounds for low support homogeneous ΣΠΣΠ
circuits. We first note that the degree of a polynomial is

13 This reduction from homogeneous ΣΠΣΠ formulas to low support
ΣΠΣΠ formulas was communicated to the first author by Avi Wigderson.
It was recently exploited by Kumar and Saraf in [7] and also independently
discovered by some of the other authors of the present work.

an upper bound on its support size. From prior work by

[1], [2], [3], [4], we have lower bounds for similar looking

representations but in which the degree of every Qij , rather

than its support, was bounded by t. We build on these works

to devise a complexity measure that we refer to as dimension
of projected shifted partials. We define this measure as

follows.

1) The projection map. Let s, e ≥ 1 be integers. The

linear map πe,s : F[x] �→ F[x] maps a polynomial

f(x) ∈ F[x] to the component of degree e and support

s of f(x). Formally, it is defined as follows. We need

to only specify it for monomials and it then extends

by linearity to all of F[x]. For a monomial m ∈ F[x],
πe,s(m) equals m if m has degree exactly e and support

size exactly s and zero otherwise.

2) The Complexity Measure. Let k, �, e be integer param-

eters and f(x) ∈ F[x] be a multivariate polynomial. We

denote by ∂=kf the set of all k-th order partial deriva-

tives of f . Let x(=�,=s) denote the set of monomials of

degree exactly � and support exactly s over the variables

in x. Let A,B ⊆ F[x] be any two sets of polynomials.

A ·B stands for the set

A ·B def
= {f · g : f ∈ A and g ∈ B} .

For a linear map π : F[x] �→ F[x], π(A) denotes the

set

π(A)
def
= {π(f) : f ∈ A} .

The dimension of projected shifted partial derivatives
of f (DPSP for short) is defined as

DPSPk,�,e(f)
def
= dim

(
π�+e,�+e

(
x(=�,=�) · ∂=kf

))
.

Recap - lower bounds for low degree depth four. It was

shown in [2] that if f can be expressed as a sum of a

small number of products of low degree polynomials, i.e.

when the Qij’s have low degree, then the dimension of

shifted partial derivatives of f , namely dim
(
x(=�) · ∂=kf

)
.

is small. This was done by observing that there exist a

relatively small number of sets S1, S2, . . . , Sm ⊆ F[x] such

that every polynomial in ∂=kf is in the F-span of the

polynomials in
⋃

i∈[m] Si. Moreover for each set Si, the

polynomials within Si share a large common factor. This

implies that for each i, dim(x(=�) ·Si) is small and thereby

that dim
(
x(=�) · ∂=kf

)
is small as well. Combining this

with a lower bound estimate on dim
(
x(=�) · ∂=kf

)
, one

could then obtain a lower bound for expressing f as a sum

of products of low degree polynomials.

Lower bounds for low support depth four. We modify

the complexity measure used previously so that it works

even for a sum of product of low support factors. Intuitively,

by shifting (i.e. multiplying) the partial derivatives by a

carefully chosen set of monomials and then projecting them

to another appropriate set of monomials, we are able to
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ignore high-degree factors while paying a relatively small

cost (in terms of the dimension of the relevant spaces).

Specifically, we show that this measure is relatively small

for t-supported homogeneous ΣΠΣΠ circuits (Corollary 9

in section IV). We then find an explicit polynomial f whose

projected shifted partials has large dimension and thereby

obtain a 2Ω(
d
t ·logN) lower bound for t-supported homoge-

neous ΣΠΣΠ circuits computing f . We further show that the

dimension of projected shifted partials of f remains quite

large even under random restrictions (with high probability)

thereby obtaining a 2Ω(
√
d·logN) lower bound overall for

general homogeneous ΣΠΣΠ circuits.

Remark 2. In a way, the random restriction together with

the projection map help us carry out an ‘indirect reduc-

tion’ from homogeneous ΣΠΣΠ formulas to homogeneous

ΣΠΣΠ[t] formulas thereby bypassing the apparent hurdle

pointed out in [5]. This comes at a price though - the

projection map also severely restricts the monomials with

which we can shift the partial derivatives. To handle this

loss, we are required to do a tighter analysis to lower bound

the dimension of the projected shifted partials of our explicit

family of polynomials.

Lower bounding the dimension of projected shifted
partials. A crucial component of this proof is to show that

the dimension of projected shifted partials of our explicit

family of polynomials is large14. From the definition, it

follows that this quantity is equal to the rank of a certain

matrix M(f) whose rows correspond to the polynomials in

π�+e,�+e

(
x(=�,=�) · ∂=kf

)
in the natural way - each row is

just the coefficient vector of the corresponding polynomial.

In order to show that rank(M(f)) is large for our choice

of f , we show that the columns of the matrix M(f) are

almost orthogonal15, i.e. the dot product of any two distinct

column vectors is small relatively to their lengths, and

thereby deduce that it must have high rank16. The latter

deduction goes as follows. Let B(f)
def
= M(f)T · M(f).

Note that the (i, j)-th entry of B(f) is the dot product of

the the i-th and the j-th columns of M(f) and the fact

that the columns of M(f) are almost orthogonal means that

B(f) is diagonally dominant - i.e, its diagonal entries are

much larger than the off-diagonal entries. Note also that the

rank of B(f) is a lower bound on the rank of M(f). Noga

14 In prior work one needed to estimate the dimension of shifted partials
of a given f and it was shown that in many interesting cases this could
be successfully accomplished simply by counting leading monomials. This
corresponds to lower bounding the rank of M(f) by finding a submatrix
which is upper triangular. We do not know if the modified measure allows
one to embed large triangular submatrices inside M(f) but if this can be
done then it could be one way to prove the same lower bound over arbitrary
fields.

15 Our inspiration for this method of lower bounding the rank comes
from the beautiful recent work by Barak, Dvir, Wigderson and Yehudayoff
[27] and a subsequent improvement by Dvir, Saraf and Wigderson [28],

16 Note that if the columns of M(f) were exactly orthogonal (i.e. the
dot product is zero) then its rank would equal the number of columns.

Alon [29] gave the following lower bound on the rank of

diagonally dominant matrices (via an application of Cauchy-

Schwarz on the vector of nonzero eigenvalues of B(f)):

rank(B(f)) ≥ Tr(B(f))2

Tr(B(f)2)
.

For our application, we then estimate Tr(B(f))2 and

Tr(B(f)2) and show that the ratio is large for our choice

of f (even under random restrictions). This then yields the

claimed lower bound on the size of homogeneous depth

four formulas computing f .

Organization. The rest of the paper is devoted to fleshing

out this outline into a full proof. For the sake of clarity

of exposition, we first focus our attention on t-supported

homogeneous ΣΠΣΠ circuits. We first give an upper bound

(in section IV) on the dimension of projected shifted partials

of any homogeneous t-supported ΣΠΣΠ circuit C. In section

V we then give the construction of our polynomial f and

show that choosing the parameters appropriately yields a

lower bound of 2Ω(
d
t ·logN) on the top fanin of homogeneous

t-supported ΣΠΣΠ circuits computing f - assuming that

f has large projected shifted partials dimension. In section

VI we show that our polynomial does indeed have a large

projected shifted partials dimension. Finally, in section VII

we analyze the effect of random restrictions and show that

the dimension of shifted partials of f remains large under

random restrictions thereby yielding a 2Ω(
√
d·logN) lower

bound overall.

III. PRELIMINARIES

Vector Spaces of Polynomials and linear maps. Let

U, V ⊆ F[x] be two vector spaces of polynomials and let

π : F[x] �→ F[x] be a linear map. Define

π(U)
def
= {π(f) : f ∈ U} ⊆ F[x].

Note that π(U) must be a subspace in F[x]. Also define

U + V
def
= F-span ({f + g : f ∈ U, g ∈ V }) .

Let us record a basic fact from linear algebra as applicable

to us.

Proposition 3. Let U, V ⊆ F[x] be two vector spaces of
polynomials and let π : F[x] �→ F[x] be any linear map.
Then

π(U + V ) = π(U) + π(V ) and dim(π(U)) ≤ dim(U).

Numerical estimates.

Proposition 4 (Stirling’s Formula, cf. [30]). ln(n!) =
n lnn− n+O(lnn)

Stirling’s formula can be used to obtain the following

estimates.
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Lemma 5. Let a(n), f(n), g(n) : Z>0 → Z be integer
valued function such that (|f |+ |g|) = o(a). Then,

ln
(a+ f)!

(a− g)!
= (f + g) ln a ± O

(
f2 + g2

a

)

Depth-4 arithmetic formulas. We recall some basic

definitions regarding arithmetic circuits and formulas; for a

more thorough introduction, see the survey [9]. Let Y be a

finite set of variables. An arithmetic formula C over F is

a rooted tree the leaves of which are labelled by variables

in Y and elements of the field F, and internal nodes

(called gates) by + and ×. This computes a polynomial

f ∈ F[Y ] in a natural way. By the size of a formula, we

mean the number of vertices in the tree, and by the depth
of a formula, we mean the longest root-to-leaf path in the

tree. Our focus here is on depth-4 formulas 17, which are

formulas that can be written as sums of products of sums

of products, otherwise known as ΣΠΣΠ formulas. We will

prove lower bounds for homogeneous ΣΠΣΠ formulas

which are ΣΠΣΠ formulas such that each node computes

a homogeneous polynomial (i.e. a polynomial whose every

monomial has the same degree). Given a ΣΠΣΠ formula,

the layer 0 nodes will refer to the leaf nodes, the layer 1
nodes to the Π-gates just above the leaf nodes, etc. The

top fan-in refers to the fan-in of the root node on layer

4. We also consider variants of ΣΠΣΠ formulas with

bounds on the fan-ins of the Π gates. By ΣΠ[D]ΣΠ[t]

formulas, we mean ΣΠΣΠ formulas where the fan-ins of the

layer 1 and layer 3 Π gates are at most t and D respectively.

IV. UPPER BOUNDING THE MEASURE FOR LOW SUPPORT

ΣΠΣΠ CIRCUITS.

Consider a homogeneous ΣΠΣΠ ciruit C of the form

C =
∑
i

∏
j

Qij , where |Supp(Qij)| ≤ t for every Qij .

We will see how the measure defined in Section II can be

used to pinpoint a weakness of such a circuit. Let us first

note two simple properties of our projection map π. The

next two propositions are straightforward to verify and we

omit the proof.

Proposition 6. Let Q(x) ∈ F[x] be a homogeneous polyno-
mial of degree d and m(x) ∈ F[x] be a monomial of degree
a. Then πd+a,d+a (m(x) ·Q(x)) equals 0 if if |Supp(m)| <
a and it equals m(x) · σA(πd,d(Q)) = m(x) · πd,d(σA(Q))

if A def
= Supp(m) has size a.

17we will interchangeably use the terms ‘depth-4 circuits’, as depth-
4 circuits can be converted to depth-4 formulas with only a polynomial
blow-up in size

Our measure, namely DPSPk,�,e(f)
def
= π�+e,�+e(x

=(�,�) ·
∂=kf) has the following properties.

Proposition 7. For any pair of polynomials f, g ∈ F[x] and
any 3-tuple of integers k, �, e

1) [Subadditivity.] DPSPk,�,e(f + g) ≤ DPSPk,�,e(f) +
DPSPk,�,e(g).

2) [Subprojectivity.] If g = σA(f) for some subset A,
i.e. g is obtained from f by setting some subset A of
variables to zero, then DPSPk,�,e(g) ≤ DPSPk,�,e(f).

3) [Zeroness for low-support polynomials.] If all mono-
mials of f have support strictly less than e then
DPSPk,�,e(f) = 0.

We will now upper bound how large the measure can

be for any term T of a low support homogeneous

ΣΠΣΠ-circuit C = T1 + T2 + . . . + Ts. Let us

focus on a term T in our t-supported homogeneous

ΣΠΣΠ-circuit C so that T is of the form

T = Q1 ·Q2 · . . . ·Qm, |Supp(Qi)| ≤ t for each i ∈ [m],
where the Qi’s are homogeneous polynomials and T is of

degree d. We will now upper bound DPSPk,�,d−k(T ).

Preprocessing. First note that we can assume without loss

of generality that every Qi (except perhaps one) has degree

at least t/2 for if not, then we can replace two such Qi’s by

their product (Qi · Qj). The product (Qi · Qj) has degree

at most t and therefore also support at most t. Continuing

this process of combining factors of small degree, we end

up in a situation where every factor (except perhaps one)

has degree at least t/2. In such a situation, the number of

factors m can at most be m ≤ 1 + d
t/2 = 1 + 2d

t .

Lemma 8. Let T be as in the above paragraph. For any k
and any � < N

2 − kt we have

DPSPk,�,d−k(T ) ≤
(
2d/t+ 1

k

)
·
(

N

�+ k · t
)
.

Combining the above upper bound for a term with the

subadditivity of our measure we immediately get:

Corollary 9. Let C be a t-supported degree d homogeneous
ΣΠΣΠ circuit with top fanin s, i.e C is a degree d homo-
geneous circuit of the form

C =
s∑

i=1

Qi1 ·Qi2 · . . . ·Qimi
, |Supp(Qij)| ≤ t.

Then for every k and every � < N
2 − kt we have

DPSPk,�,d−k(C) ≤ s ·
(
2d/t+ 1

k

)
·
(

N

�+ k · t
)
.

Consequently, for any N -variate homogeneous polynomial
f of degree d, any homogeneous t-supported ΣΠΣΠ-circuit
C computing f must have top fanin at least

s ≥ DPSPk,�,d−k(f)(
2d/t+1

k

) · ( N
�+k·t

) .
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The proofs of Lemma 8 and Corollary 9 are omitted.

In the next section we construct an explicit polynomial f
for which DPSPk,�,d−k(f) is large and then use the above

to deduce a lower bound on the top fanin of any t-supported

ΣΠΣΠ-circuit computing f .

V. THE LOWER BOUND FOR LOW SUPPORT

HOMOGENEOUS ΣΠΣΠ CIRCUITS.

We will now construct an explicit homogeneous, multi-

linear polynomial f of degree d on N = d3 variables for

which our measure, namely DPSPk,�,d−k(f) is large. We

will then see that this implies that any t-supported ΣΠΣΠ-

circuit computing f must have large top fanin.

A. The Construction of an Explicit Polynomial

Our explicit polynomial is parametrized by an integer

parameter r that we call NWr and it is a variant of the Nisan-

Wigderson design polynomial from [3]. Let d be a prime

power and Fd be the finite field of size d. Let Fd2 ⊇ Fd be

the quadratic extension field of Fd. We refer to the elements

of the finite field Fd2 simply as {1, 2, · · · , d2} where the first

d among these belong to the subfield Fd. Fix an integer r.

Our explicit polynomial is NWr(x1,1, x1,2, . . . , xd,d2) which

is defined to be ∑
h(z)∈Fd2 [z],deg(h)≤r

∏
i∈[d]

xi,h(i).

From the definition above, it is clear that for all r, NWr is an

explicit homogeneous, multilinear polynomial of degree d on

N = d3 variables. our main technical lemma stated below is

a lower bound on the dimension of projected shifted partials

of the design polynomial NWr.

Lemma 10. [Main Technical Lemma.] Let NWr be the
Nisan-Wigderson design-based polynomial defined above.
Over any field F of characteristic zero, for r = d

3 and k =
o(d) and � = N

2 ·
(
1− k ln d

d

)
we have DPSPk,�,d−k(NWr) ≥

1
dO(1) ·min

((
N

�+d−k

)
,
(
d
k

)2 · dk · k! · (N� )) .

The proof of the lemma is outlined in Section VI.

We can use this lemma to deduce a lower bound

on the top fanin of any t-supported homogeneous

ΣΠΣΠ circuit computing NWd/3.Consider a t-supported

ΣΠΣΠ circuit C of top fanin s computing NWd/3.

We fix our choice of parameters as follows: k =
δ · d

t (for a small enough constant δ > 0) , � = N
2 ·(

1− k ln d
d

)
. By Lemma 10 and Corollary 9 and using some

(omitted) computations we can prove

s ≥ DPSPk,�,d−k(NWd/3)(
2d/t+1

k

) · ( N
�+k·t

)
≥ 1

dO(1) · (2d/t+1
k

) min

((
d
k

)2
dkk!

(
N
�

)
(

N
�+kt

) ,

(
N

�+d−k

)
(

N
�+kt

)
)

≥ 2Ω(
d
t ·logN)

VI. PROOF OF THE MAIN TECHNICAL LEMMA

In this section we give a proof sketch for Lemma 10,

which shows that the dimension of projected shifted

partial derivatives of the Nisan-Wigderson design based

polynomial is large. Let e
def
= (d− k) throughout the rest of

this section.

Preliminaries. Note that in the construction in section V

of NWr, there is a 1-1 correspondence between the variable

indices in [N ] and points in Fd×Fd2 , which we identify with

[d]× [d2]. Being homogeneous and multilinear of degree d,

the monomials of NWr are in 1-1 correspondence with sets

in
(
[N ]
d

) ≡ (
[d]×[d2]

d

)
. Indeed, from the construction it is clear

that the coefficient of any monomial in NWr is either 0 or 1
and that there is a 1-1 correspondence between monomials

in the support of NWr and univariate polynomials of degree

at most r in Fd2 [z]. Now since two distinct polynomials of

degree r over a field have at most r common roots we get:

Proposition 11. [A basic property of our construc-
tion.] For any two distinct sets D1, D2 ∈ (

[d]×[d2]
d

)
in the support of NWr, we have |D1 ∩D2| ≤ r <
e
2 (for r = d/3 and k = o(d).)

Our goal for the remainder of this section is to

lower bound DPSPk,�,d−k(NWr) which is defined to be

dim
(
π�+d−k,�+d−k

(
x(=�,=�) · ∂=kNWr

))
.

Reformulating our goal in terms of the rank of an
explicit matrix. Let f be any homogeneous multilinear

polynomial of degree d on N variables. By multilinearity,

the only derivatives of f that survive are those with respect

to multilinear monomials. Thus we have

∂=kf =

{
∂Cf : C ∈

(
[N ]

k

)}
.

Note that every k-th order derivative of f is homoge-

neous and multilinear of degree (d − k). Combining this

with proposition 6 we get that π�+d−k,�+d−k(x
(=�,=�) ·

∂=kf) =
{
xA · σA

(
∂Cf

)
: A ∈ (

[N ]
�

)
, C ∈ (

[N ]
k

)}
.

Thus we have

Proposition 12. For any homogeneous multilinear
polynomial f of degree d on N variables and
for all integers k and �: DPSPk,�,d−k(f) =

dim
({

xA · σA

(
∂Cf

)
: A ∈ (

[N ]
�

)
, C ∈ (

[N ]
k

)})
.

Now the F-linear dimension of any set of polynomials is the

same as the rank of the matrix corresponding to our set of

polynomials in the natural way. Specifically,

Proposition 13. Let f be a homogeneous multilinear poly-
nomial of degree d on N variables. Let k, � be integers.
Define a matrix M(f) as follows. The rows of M(f) are
labelled by pairs of subsets (A,C) ∈ (

[N ]
�

) × (
[N ]
k

)
and
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columns are indexed by subsets S ∈ (
[N ]
�+e

)
. Each row (A,C)

corresponds to the polynomial

fA,C
def
= xA · σA

(
∂Cf

)
in the following way. The S-th entry of the row (A,C) is
the coefficient of xS in the polynomial fA,C . Then,

DPSPk,�,d−k(f) = rank(M(f)).

So our problem is equivalent to lower bounding the rank

of the matrix M(f) for our constructed polynomial f . Now

note that the entries of M(f) are coefficients of appropriate

monomials of f and it will be helpful to us in what follows

to keep track of this information. We will do it by assigning

a label to each cell of M(f) as follows. We will think of

every location in the matrix M(f) being labelled with either

a set D ∈ (
[N ]
d

)
or the label InvalidSet depending on

whether that entry contains the coefficient of the monomial

xD of f or it would have been zero regardless of the actual

coefficients of f . Specifically, let us introduce the following

notation. For sets A,B define:

1)

A � B =

{
A \B ifB ⊆ A

InvalidSet otherwise

2)

A B =

{
A ∪B ifB ∩A = ∅
InvalidSet otherwise

Then the label of the ((A,C), S)-th cell of M(f) is defined

to be the set (S � A)  C. Equivalently, if the label of a

cell of the (A,C)-th row of M is a set D then the column

must be the one corresponding to S = (D � C)  A (if

C is not a subset of D or if (D � C) and A are not

disjoint then D cannot occur in the row indexed by (A,C)).
For the rest of this section, we will refer to M(NWr)
simply as the matrix M . Our goal then is to show that

the rank of this matrix M is reasonably close (within a

poly(d)-factor) of the trivial upper bound, viz. the minimum

of the number of rows and the number of columns of M .

It turns out that our matrix M is a relatively sparse matrix

and we will exploit this fact by using a relevant lemma

from real matrix analysis to obtain a lower bound on its rank.

The Surrogate Rank. Consider the matrix B
def
= MT ·M .

Then B is a real symmetric, positive semidefinite matrix.

From the definition of B it is easy to show that:

Proposition 14. Over any field F we have rank(B) ≤
rank(M). Over the field R of real numbers we have
rank(B) = rank(M).

So it suffices to lower bound the rank of B. By an

application of Cauchy-Schwarz on the vector of nonzero

eigenvalues of B, one obtains:

Lemma 15. [29] Over the field of real numbers R we have:

rank(B) ≥ Tr(B)2

Tr(B2)
.

Let us call the quantity
Tr(B)2

Tr(B2) as the surrogate rank of

M , denoted SurRank(M). It then suffices to show that this

quantity is within a poly(d) factor of U = min(
(

d3

�+e

)
,
(
d3

�

) ·(
d3

k

)
).

A. Bounding SurRank(M).

We now bound Tr(B) and Tr(B2) for B = MT ·M in

order to bound SurRank(M).

Calculating Tr(B). Calculating Tr(B) is fairly straightfor-

ward. From the definition of the matrix B we have:

Proposition 16. For any 0,±1 matrix M (i.e. a matrix all
of whose entries are either 0, or +1 or −1) we have

Tr(B) = Tr(MT ·M) = number of nonzero entries in M.

Now we can calculate the number of nonzero entries in M
by going over all sets D ∈ (

[N ]
d

)∩ Supp(NWr), calculating

the number of cells of M labelled with D and adding these

up. This yields:

Proposition 17.

Tr(B) = d2r+2 ·
(
d

k

)
·
(
N − e

�

)
.

Calculating Tr(B2). From the definition of B = MT ·M
and expanding out the relevant summations we get:

Proposition 18. Tr(B2) =
∑

(A1,C1),(A2,C2)

∑
S1,S2

M(A1,C1),S1
·M(A1,C1),S2

·M(A2,C2),S1
·M(A2,C2),S2

, where

(A1, C1), (A2, C2) ∈
((

[N ]
�

)× (
[N ]
k

))2

and S1, S2 ∈(
[N ]
�+e

)2
.

We will use the following notation in doing

this calculation. For a pair of row indices

((A1, C1), (A2, C2)) ∈
((

[N ]
�

)× (
[N ]
k

))2

and a pair

of column indices S1, S2 ∈
((

[N ]
�+e

))2

, the box b defined

by them, denoted b = 2 − box((A1, C1), (A2, C2), S1, S2)
is the four-tuple of cells (((A1, C1), S1), ((A1, C1), S2),
((A2, C2), S1), ((A2, C2), S2)). Since all the entries of our

matrix M are either 0 or 1 we have:

Proposition 19.

Tr(B2) = Number of boxes b with all four entries nonzero.

For a box b = 2 − box((A1, C1), (A2, C2), S1, S2),
its tuple of labels, denoted labels(b) is the tu-

ple of labels of the cells ((A1, C1), S1), ((A1, C1), S2),
((A2, C2), S1), ((A2, C2), S2)) in that order. In other words,
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labels(b) = ((S1 � A1)  C1, (S2 � A1)  C1, (S1 � A2) 
C2, (S2 � A2)  C2). We then have

Proposition 20. Tr(B2) equals the number of boxes

b = 2− box((A1, C1), (A2, C2), S1, S2)

such that all the four labels in labels(b) are valid sets in
the support of our design polynomial NWr.

So our problem boils down to counting the number of

boxes in which all the four labels are valid sets in the support

of our polynomial NWr.

A somewhat involved computation (which can be found

in the full version) allows us to bound the number of such

boxes and yields

Tr(B2) ≤ (2k3d) · (d4r+4) ·
max

(
1

dk·k! ·
(
N−2e

�

)
,
(
N−2e
�−e

) · (dk)2).

This means that SurRank(B) may be bounded as

Tr(B)2

Tr(B2)
≥ 1

2k3d
min

((
d
k

)2
dkk!

(
N−e
�

)2(
N−2e

�

) ,

(
N−e
�

)2(
N−2e
�−e

)
)

=
1

dO(1)
min

((
d

k

)2

dkk!

(
N

�

)
,

(
N

�+ e

))

where, the last equality follows from our choice of r, k and

�. This proves our main technical lemma, namely lemma 10.

VII. THE LOWER BOUND FOR GENERAL HOMOGENEOUS

ΣΠΣΠ CIRCUITS.

As hinted in the introduction, the problem of lower bound-

ing the size of general homogeneous ΣΠΣΠ circuits reduces

to proving lower bounds for low support homogeneous

ΣΠΣΠ circuits. We now give some details of this reduction.

Definition 21. For a real number p ∈ (0, 1], define the
distribution Dp on subsets of [N ] obtained by choosing every
element in [N ] independently at random with probability
(1− p). Thus, Dp : 2[N ] �→ (0, 1] and for any R ⊆ [N ] we
have Dp(R) = (1− p)|R| · pN−|R|.

Let NWr be the Nisan-Wigderson design polynomial as

constructed in section V. Let us consider a homogeneous

ΣΠΣΠ-circuit C computing it, i.e. consider any represen-

tation of NWr of the form NWr =
∑

i

∏
j Qij , where

the Qij’s are also homogeneous polynomials. Suppose that

the total number of monomials in the polynomials Qij’s is

bounded by s. Then the following may be verified.

Lemma 22. For any homomorphism σR : F[x] �→ F[x]
we have σR(NWr) =

∑
i

∏
j σR(Qij). For a set R cho-

sen randomly according to Dp, we have: PrR∼Dp
[∃i, j :

σR(Qij) contains a monomial of support more than t] ≤
s · pt.
Choosing the parameters t, p and s: Set t =

√
d,

p = d−ε (for an sufficiently small ε > 0 to be fixed

later), and suppose s < 2
ε
2

√
d log d. Then, PrR∼Dp

[∃i, j :
σR(Qij) contains a monomial of support more than t] <

2−
ε
2

√
d log d � 1.

This means, there are “plenty of” subsets R such

that the circuit C restricted to the variables in R (i.e.

σR(C)) is a t-supported homogeneous depth-4 circuit.

If we can now show that there exists such an R
that also keeps DPSPk,�,e(σR(NWr)) sufficiently close to

min
((

N
k

) · (N� ), ( N
�+e

))
then we are done as before (by our

discussion in Section V-A). The following lemma together

with Lemma 22 show this. The proof is omitted.

Lemma 23. PrR∼Dp
[DPSPk,�,e(σR(NWr)) < pk

dΘ(1) ·
min

((
N
k

) · (N� ), ( N
�+e

))
] < 1

dΘ(1) .

By Lemma 22 and 23, and applying union bound, there

exists a subset R such that σR(C) is a t-supported ho-

mogeneous depth-4 circuit and DPSPk,�,e(σR(NWr)) ≥
pk

dΘ(1) ·min
((

N
k

) · (N� ), ( N
�+e

))
.

If we choose a sufficiently small constant ε then pk =
d−εk is sufficiently large and the top fanin of σR(C) (also the

top fanin of C) is 2Ω(
√
d·logN). Recall that we arrived at this

conclusion assuming that the total sparsity of C, which was

denoted by s, is less than 2ε/2·
√
d·log d. Therefore, overall

we get a lower bound of 2Ω(
√
d·logN) on the size of the

homogeneous depth-4 circuit C computing NWr.

VIII. CONCLUSION

As mentioned in the introduction, proving good enough

lower bounds (specifically 2ω(
√
d·logN)) for homogeneous

depth four formulas yields superpolynomial lower bounds

for general arithmetic circuits. Our lower bound of

2Ω(
√
d·logN) comes temptingly close to this threshold. So

a very natural question would be to improve the exponent.

A more modest aim might be to further understand the power

and limitations of our techniques/complexity measure. With

this intent we formulate a concrete conjecture that might

serve as the goal of such an undertaking.

Conjecture 24. There exist a (family of) homogeneous

polynomial(s) f of degree d in N = dO(1) variables which

can be computed by poly(d)-sized homogeneous circuits of

depth six but for which any homogeneous circuit of depth

four must have superpolynomial (in d) size.
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