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Abstract—Fictitious play is a natural dynamic for equi-
librium play in zero-sum games, proposed by Brown [6],
and shown to converge by Robinson [33]. Samuel Karlin
conjectured in 1959 that fictitious play converges at rate
O(t−

1
2 ) with respect to the number of steps t. We disprove

this conjecture by showing that, when the payoff matrix
of the row player is the n × n identity matrix, fictitious
play may converge (for some tie-breaking) at rate as slow
as Ω(t−

1
n ).

I. INTRODUCTION

Von Neumann’s MinMax theorem for two-person

zero-sum games marked the birth of Game Theory [36],

and is intimately related to the development of linear

programming. Given a payoff matrix A, whose ij-th

entry specifies how much the column player playing j
pays the row player playing i, the theorem states that

max
x

min
y

xTAy = min
y

max
x

xTAy,

where x, y range over randomized/mixed strategies for

the row and column player respectively. In other words,

there exists a unique value z ∈ R and a pair of mixed

strategies x̂ and ŷ such that:

min
y

x̂TAy = z = max
x

xTAŷ. (1)

Dantzig and von Neumann observed that the Min-

Max theorem is implied by strong linear programming

duality [10], [2]. Dantzig also provided a candidate

construction for the opposite implication [10], and this

was also established some decades later [1].

Ultimately, the MinMax theorem provides a very sharp

prediction in two-player zero-sum games. It shows that

there is a unique value z and a pair of strategies x̂ and

ŷ such that, by playing x̂ the row player can guarantee

himself expected payoff of z regardless of what strategy

the column player adopts, and such that, by playing ŷ,

the column player can guarantee herself expected payoff

of −z regardless of what strategy the row player adopts.

In particular, (x̂, ŷ) comprise a Nash equilibrium of the
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game, with expected payoff z for the row player and −z
for the column. Moreover, x̂, ŷ and z can be computed in

polynomial time with linear programming. This type of

crisp prediction is rather rare in Game Theory. According

to Aumann, zero-sum games are “one of the few areas

in game theory, and indeed in the social sciences, where

a fairly sharp, unique prediction is made” [3].

Shortly after the proof of the MinMax theorem and

the development of linear programming, G. W. Brown

proposed fictitious play as an iterative procedure for

solving a zero-sum game, or equivalently a linear pro-

gram [6], [7]. The procedure proceeds in steps in which

players choose a pure strategy best response to their

opponent’s empirical mixed strategy up until that step.

Let us describe it a bit more formally (we focus on

the simultaneous version, but our results also hold for

the asynchronous version, where the players’ moves

alternate): At every step t, the row player chooses some

row it and the column player chooses some column jt.
At t = 1, the choices are arbitrary. At t + 1 > 1, the

players calculate the empirical mixed strategies of their

opponents in previous steps, namely1

x(t) =
1

t

∑

τ≤t

eiτ ,

y(t) =
1

t

∑

τ≤t

ejτ .

Then, the row player chooses an arbitrary best response

it+1 to y(t) and the column player chooses an arbitrary

best response jt+1 to x(t), namely

it+1 ∈ argmax
i

{
eTi Ay(t)

}
,

jt+1 ∈ argmin
j

{
x(t)TAej

}
.

(2)

The procedure may be viewed as a natural way through

which two players could interact in a repeated game with

stage game (A,−A). The question is whether the se-

quence (x(t), y(t))t converges to something meaningful.

1We use ei to denote the column vector with i-th component 1 and
all other components 0. The dimension of ei is always implied by the
context; it is m when describing row player strategies and n when
describing column player strategies.
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In an elegant paper shortly after Brown’s, Robinson

showed that the average payoffs of the players in fic-

titious play converge to the value of the game [33]. In

particular, it was shown that

fA(x(t), y(t)) = max
i

eTi Ay(t)−min
j

x(t)Aej

→ 0, as t→∞.

Hence, because minj x(t)Aej ≤ x(t)TAy(t) ≤
maxi e

T
i Ay(t) and minj x(t)Aej ≤ z ≤ maxi e

T
i Ay(t),

it follows that all three quantities converge to the value

of the game z.

Robinson’s proof is an elegant induction argument,

which eliminates one row or one column of A at a

time. Unraveling the induction, one can also deduce

the following bound on the convergence rate of the

procedure:

fA(x(t), y(t)) = O(t−
1

m+n−2 ),

which appears rather slow, compared to the convergence

rate of O(t−
1
2 ) that is typically achieved by no-regret

learning algorithms [13], [26], [8], and the improved

convergence rate of O( log t
t ) of some no-regret learning

algorithms, obtained recently [11], [32]. Indeed, about

ten years after Robinson’s proof and five decades ago,

Samuel Karlin conjectured that the convergence rate of

fictitious play should be O(t−
1
2 ), namely

Conjecture 1 ([23]). Fictitious play converges at rate
O(t−

1
2 ) in all games.

There is some evidence supporting a convergence rate

of O(t−
1
2 ). As pointed out earlier, a convergence rate

of O(t−
1
2 ) is quite common with dynamics that are

known to converge. Indeed, a close relative of fictitious

play, follow the perturbed leader, is known to achieve

convergence rate of O(t−
1
2 ) [8]. Also, a continuous time

version of fictitious play has been shown to converge in

time O(t−1) [19]. Despite this evidence and the apparent

simplicity of fictitious play, the convergence rate from

Robinson’s proof has remained the state-of-the-art. Our

main result is a counter-example, disproving Karlin’s

conjecture. If In is the n × n identity matrix, we show

the following:

Theorem 1. For every n ≥ 2, fictitious play for In may
converge at rate Θ(t−

1
n ), if ties are broken arbitrarily.

Our counter-example, provided in Section III, con-

structs a valid execution of fictitious play for In such

that the empirical mixed strategies x(t), y(t) of players

satisfy

fIn(x(t), y(t)) = max
i

eTi y(t)−min
j

x(t)ej

= Θ(t−
1
n ) .

Remark 1. It is crucial for our construction that ties in
choosing a best response in (2) can be broken arbitrarily
at each step. This is allowed in Karlin’s formulation
of the conjecture. To distinguish this case from when
ties are broken in some consistent way or randomly, we
will call Karlin’s conjecture with arbitrary tie-breaking
Karlin’s strong conjecture, while that with lexicographic
or random tie-breaking Karlin’s weak conjecture. With
this terminology, Theorem 1 disproves Karlin’s strong
conjecture.

Interestingly, like Robinson’s upper bound argument,

our lower bound also works by induction. We show

that slow fictitious play executions for I2 can be folded

inside fictitious play executions for I3, etc, leading to an

exponentially slow convergence rate for fictitious play

in In. More intuition about the construction is provided

in Section II, and the complete details can be found in

Section III.

While outperformed by modern learning algo-

rithms [8], because of its simplicity, fictitious play was

thought to provide a convincing explanation of Nash

equilibrium play in zero-sum games. According to Luce

and Raiffa “Brown’s results are not only computationally

valuable but also quite illuminating from a substantive

point of view. Imagine a pair of players repeating a

game over and over again. It is plausible that at every

stage a player attempts to exploit his knowledge of his

opponent’s past moves. Even though the game may be

too complicated or too nebulous to be subjected to an

adequate analysis, experience in repeated plays may tend

to a statistical equilibrium whose (time) average return

is approximately equal to the value of the game” [27]. In

this light, our counterexample sheds doubt on the plau-

sibility of fictitious play in explaining Nash equilibrium

behavior. Given our counterexample, it is important to

investigate whether fictitious play in random payoff zero-

sum games satisfies Karlin’s conjecture, or whether some

choice of tie-breaking rule in the definition of fictitious

play makes it satisfy Karlin’s conjecture for all zero-

sum games. We did perform preliminary simulations of

fictitious play with random tie-breaking on our lower

bounding instances, as well as on zero-sum games with

i.i.d. uniform [0, 1] entries, and they suggest a quadratic

rate of convergence. We leave a rigorous study of these

important questions for future work.

a) Related Work: Fictitious play is one of the

most well-studied dynamics in Game Theory, and we

cannot do it justice in a short exposition. We only

mention a few highlights here. As we have already

mentioned, it was proposed by Brown, in a technical

report at RAND corporation [6], and was shown to con-

verge in two-person zero-sum games by Robinson [33].

Miyakawa extended Robinson’s results to two-player
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games with two strategies per player assuming a specific

tie-breaking rule [29], while Shapley constructed a two-

player three-strategy game where fictitious play does not

converge [35]. Since then a lot of research has been

devoted to understanding classes of games where ficti-

tious play converges (e.g. [28], [31], [21], [17], [34], [4])

or does not converge (e.g. [22], [15], [30], [12], [25]).

Surveys can be found in [24], [14], [20]. Other work

has studied the approximation performance of fictitious

play when used as a heuristic to find approximate Nash

equilibria [9], [16].

In two-person zero-sum games, a convergence rate

of O(t−
1

m+n−2 ) is implied by Robinson’s proof, and

S. Karlin conjectured that the convergence rate should

be O(t−
1
2 ), which would match what we know is

achievable by no-regret learning algorithms [8]. Indeed,

Harris showed that a continuous analog of fictitious

play converges in time O(t−1) [19]. On the other hand,

it is shown in [5] that it may take an exponential

number of steps (in the size of the representation of

the game) before any Nash equilibrium action is played

by the players in fictitious play. However, this is not

incompatible with Karlin’s conjecture, since the payoffs

may nevertheless still converge at rate O(t−
1
2 ). In fact, it

is not even prohibited by [5] that the empirical strategies

converge to Nash equilibrium strategies at rate O(t−
1
2 ).

As fictitious play is one of the simplest and most

natural dynamics for learning in games it is widely

used in applications, and has inspired several algorithms

for learning and optimization, including von Neumann’s

variant of fictitious play for linear programming [37], the

regret minimization paradigm [18], and lots of special-

ized algorithms in AI. See [5] for a survey.

II. PRELIMINARIES

Basic Definitions: A two-player zero-sum game can be

represented by an m×n payoff matrix A = (aij), where

m and n are the numbers of pure strategies for the row
player and the column player, respectively. The game is

played when, simultaneously, the row player chooses one

of his m strategies, and the column player chooses one

of her n strategies. If the row player chooses strategy i
and the column player chooses strategy j, then the row

player receives aij from the column player.

The players can randomize their choices of strategies.

A mixed strategy for the row player is an m-vector x,

where xi ≥ 0 and
∑

i xi = 1. Similarly, a mixed strategy

for the column player is an n-vector y, where yj ≥ 0
and

∑
j yj = 1. When the players adopt those mixed

strategies, the row player receives xTAy =
∑

ij aijxiyj
in expectation from the column player.

A min-max equilibrium, or Nash equilibrium, of a

zero-sum game A is a pair of mixed strategies x̂ for

the row player and ŷ for the column player such that

Eq (1) is satisfied.

Dynamic: We already described fictitious play in Sec-

tion I. We now introduce the notion of a dynamic as

a formal way to describe a valid execution of fictitious

play.

For a vector v, let min v and max v denote its minimal

and maximal components. A dynamic as defined in the

next paragraph is a special case of a vector system as

defined in [33] that starts from the zero vectors.

Definition 1. A dynamic (U, V ) for A is a sequence of n-
dimensional row vectors U(0), U(1), . . . and a sequence
of m-dimensional column vectors V (0), V (1), . . . such
that2

U(0) = [0, 0, . . . , 0]T,

V (0) = [0, 0, . . . , 0],

and
U(t+ 1) = U(t) + eTi A,

V (t+ 1) = V (t) +Aej ,

where i and j satisfy the conditions

Vi(t) = maxV (t),

Uj(t) = minU(t).

Just like there can be multiple valid executions of

fictitious play for a matrix A, due to tie-breakings, there

can be multiple possible dynamics for A. In fact, a

dynamic for A corresponds uniquely to an execution of

fictitious play for A, if we identify U(t) and V (t) with

tx(t)TA and tAy(t), respectively. (Recall from Section I

that x(t) and y(t) are the empirical mixed strategies of

the two players for the first t steps.)

In terms of dynamics, Robinson’s argument [33] im-

plies the following: If (U, V ) is a dynamic for an m by

n matrix A, then

maxV (t)−minU(t)

t
= O(t−

1
m+n−2 ).

Karlin’s conjecture [23] amounts to the following: If

(U, V ) is a dynamic for a matrix A, then

maxV (t)−minU(t)

t
= O(t−

1
2 ).

Notice that in both equations above, the constant in O(·)
may depend on A. Lastly, our construction implies that

there exists a dynamic (U, V ) for In such that

maxV (t)−minU(t)

t
= Θ(t−

1
n ),

where the constant in O(·) may depend on n.

2Any vector presented using rectangular brackets is a column vector
by default, unless it is followed by a transpose sign T.
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Outline of our Construction: First notice that, by

Definition 1, a dynamic (U, V ) for In satisfies

U(0) = [0, 0, . . . , 0]T,

V (0) = [0, 0, . . . , 0],

and
U(t+ 1) = U(t) + eTi ,

V (t+ 1) = V (t) + ej ,

where i and j satisfy the conditions

Vi(t) = maxV (t),

Uj(t) = minU(t).

A special property of the dynamics for In is that per-

muting the n components of every vector in a dynamic

for In by a common permutation σ results in another

dynamic for In, because In stays the same when its

rows and columns are both permuted by σ. This property

allows us to combine many distinct cases in our main

proof.

For n = 2, we can directly construct a dynamic for I2
that converges at rate Θ(t−

1
2 ), which we call the main

dynamic for I2 (Figure 2 and Claim 3). At each step

t, ties are simply broken by selecting the strategy that

maximizes the ensuing gap maxV (t)−minU(t).
For n = 3, there is no obvious way to directly

construct a dynamic for I3 that converges at rate Θ(t−
1
3 ).

But, in the first three steps, it is easy to arrive at

U(3) = [1, 1, 1]T,

V (3) = [0, 1, 2].

Aiming for an inductive construction, let’s in fact assume

that, for some P , we can arrive at

U(3P ) = [P, P, P ]T,

V (3P ) = [Q1, Q2, Q3],

where Q1 ≤ Q2 ≤ Q3. For the next few steps, we let

U increase only in its third component, and V only in

its first two components. We can do this as long as the

third component of V , i.e. Q3, remains its largest. Thus,

we get to

U(3P +R) = [P, P, P +R]T,

V (3P +R) = [Q3, Q3, Q3].

The crucial component of our construction are the next

steps, where we let U and V increase only their first

two components, simulating a dynamic for the 2 × 2
subgame induced by the first two strategies of both

players, i.e. I2. (We are able to do this as long as the third

component of U , i.e. P+R, remains its largest.) Since U
and V have equal first and second components at step

3P + R, any initial portion of any dynamic (U ′, V ′)
for I2 can be copied, as long as the components of U ′

remain at most R. Indeed, if we do this, then for all

t the first two components of U(3P + R + t) are P
plus, respectively, the two components of U ′(t), and the

first two components of V (3P + R + t) are Q3 plus,

respectively, the two components of V ′(t).
For a dynamic (U ′, V ′) for I2, suppose that both

components of U ′(t) are at most R, for all t ≤ t0, for

some t0. It can be easily checked that, if we copy this

dynamic in the first two components of our dynamic

(U, V ) for I3 for t0 steps, then the amount by which the

gap for (U, V ) increases, that is, from

maxV (3P +R)−minU(3P +R)

to

maxV (3P +R+ t0)−minU(3P +R+ t0),

is exactly the gap maxV ′(t0)−minU ′(t0) of (U ′, V ′)
at t0.

We have two goals now. The first is to increase the

gap for (U, V ) as much as possible, and the second is

to come back to the pattern we started from (that is, U
has three equal components) so that we can apply the

process again. To achieve our first goal, we want the

gap maxV ′(t0)−minU ′(t0) to be as large as possible,

subject to maxU ′(t0) ≤ R. Naturally, we want (U ′, V ′)
to be the main dynamic for I2, discussed earlier, as this

achieves a rate of convergence of Θ(t−
1
2 ). To achieve

our second goal, we wish that U ′(t0) = [R,R]T, so that

U(3P + R + t0) = [P + R,P + R,P + R]T. Clearly,

we must have t0 = 2R in this case. So, is it true that

U ′(2R) = [R,R]T, if (U ′, V ′) is the main dynamic for

I2?

From (Figure 2/Claim 3), we see that there are indeed

infinitely many T ’s such that U ′(2T ) = [T, T ]T. How-

ever, this is not true for all T . Thus, we can’t exactly take

(U ′, V ′) to be the main dynamic for I2, but will need

a padded version of it. Hence, we define the padding
dynamic for I2 as in Figure 1/Claim 2, which reaches

U ′′(2k) = [k, k]T,

V ′′(2k) = [k − 1, k + 1],

for all k. The dynamic (U ′, V ′) that we copy into (U, V )
first follows the padding dynamic for I2, and then the

main dynamic for I2. By picking the appropriate moment

of transition, we can ensure that (U ′, V ′) still converges

at rate Θ(t−
1
2 ), and U ′(2R) = [R,R]T.

Calculation shows that, if we repeat the process

successively, the dynamic that will be obtained for I3
converges at rate Θ(t−

1
3 ). We call the resulting dynamic

the main dynamic for I3, and deal with n = 4 in similar

fashion, etc, leading to our main theorem.

III. THE COUNTEREXAMPLE

In this section, we disprove Karlin’s conjecture, by

establishing the following.
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Theorem 2. For every n ≥ 2, there exists a dynamic for
In such that for infinitely many T ’s,

maxV (nT )−minU(nT ) = Θ(T
n−1
n ).

Proof of Theorem 2: Theorem 2 follows directly from

Part 1 of the following Lemma (Part 2 is useful for

showing Part 1 by induction):

Lemma 1. Part 1: For every n ≥ 2, there exists a
dynamic for In such that for infinitely many T ’s,

U(nT ) = [T, T, . . . , T ]T,

and

maxV (nT )−minU(nT ) = Θ(T
n−1
n ).

Part 2: For every n ≥ 2 and T ≥ 1, there exists a
dynamic for In such that

U(nT ) = [T, T, . . . , T ]T,

and

maxV (nT )−minU(nT ) = Θ(T
n−1
n ).

In either part, the constant hidden by Θ(·) may depend
on n, but not on T .

Proof of Lemma 1: We prove the lemma by induction

on n. For each n, we prove Part 1 before Part 2.

Base case n = 2: We consider two dynamics for I2,

which we call the padding dynamics. The first steps of

the padding dynamics are illustrated on the left and on

the right respectively of Figure 1. Notice that the strategy

chosen by the row (respectively column) player at each

step is exactly the index of the incremented component

in U (respectively V ).

We claim the following.

Claim 1. The dynamics shown in Figure 1 can be
extended so that the dynamic on the left satisfies

U(2k) = [k, k]T,

V (2k) = [k ± 1, k ∓ 1],
(3)

for odd k ≥ 1, while the dynamic on the right satisfies
(3) for even k ≥ 2. The choice of + or − depends on
the parity of �k2 	.
Proof of Claim 1: To see the claim for the dynamic on

the left, compare U(t), V (t) at steps t = 2 and t = 6.

The two components of U(t) are equal, while the two

components of V (t) differ by 2. So, after exchanging the

strategies 1 ↔ 2, we can repeat the players’ choices at

Steps 3, 4, 5 and 6 in Steps 7, 8, 9 and 10 respectively to

arrive at U(10) = [5, 5]T and V (10) = [4, 6]. And, we

can continue the same way ad infinitum, which proves

the claim for all odd k’s. Similar argument for the

dynamic on the right proves for all even k’s. �

By using either of the padding dynamics for I2 and

exchanging the components as necessary, we see the

following:

Claim 2. For any k ≥ 1, there exists a padding dynamic
for I2 such that

U(2k) = [k, k]T,

V (2k) = [k − 1, k + 1].

Next, we define the main dynamic for I2, whose first

steps are shown in Figure 2 in the appendix. We claim

the following.

Claim 3. The dynamic given in Figure 2 can be extended
so that it satisfies the following for all k ≥ 1:

U(2k(2k − 1))

= [k(2k − 1), k(2k − 1)]T,

V (2k(2k − 1))

= [(k ± 1)(2k − 1), (k ∓ 1)(2k − 1)],

(4)

where the choice of + or − depends on the parity of k.

Proof of Claim 3: This can be easily established by

induction on k. Indeed, Figure 2 establishes the claim

for k = 1, 2, 3. In general, suppose that, for some k:

U(2k(2k − 1))

= [k(2k − 1), k(2k − 1)]T,

V (2k(2k − 1))

= [(k + 1)(2k − 1), (k − 1)(2k − 1)].

Generalizing what is taking place from Step 13
through Step 30 of Figure 2, the dynamic proceeds with

both players playing strategy 1 for one step, the row

player playing strategy 1 and the column player playing

strategy 2 for the next 4k steps, and both players playing

strategy 2 for the next 4k + 1 steps, resulting in

U(2(k + 1)(2(k + 1)− 1))

= [(k + 1)(2(k + 1)− 1), (k + 1)(2(k + 1)− 1)]T,

V (2(k + 1)(2(k + 1)− 1))

= [k(2(k + 1)− 1), (k + 2)(2(k + 1)− 1)].

This establishes the claim for k + 1. The derivation is

similar, if for k Equation (4) is satisfied with ± and ∓
instantiated by − and + respectively. �

Notice that Claim 3 proves Part 1 of Lemma 1 for

n = 2.

Now, for any given T , we construct a dynamic

(U ′, V ′) for I2 that satisfies the conditions in Part 2

of Lemma 1. Let k be the largest integer such that

k(2k−1) ≤ T , and l = T −k(2k−1)+1. Starting with
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U(0) = [0, 0]T, V (0) = [0, 0] U(0) = [0, 0]T, V (0) = [0, 0]

Step 1: row chooses 1 column chooses 2 row chooses 1 column chooses 1

U(1) = [1, 0]T, V (1) = [0, 1] U(1) = [1, 0]T, V (1) = [1, 0]

Step 2: row chooses 2 column chooses 2 row chooses 1 column chooses 2

U(2) = [1, 1]T, V (2) = [0, 2] U(2) = [2, 0]T, V (2) = [1, 1]

Step 3: row chooses 2 column chooses 1 row chooses 2 column chooses 2

U(3) = [1, 2]T, V (3) = [1, 2] U(3) = [2, 1]T, V (3) = [1, 2]

Step 4: row chooses 2 column chooses 1 row chooses 2 column chooses 2

U(4) = [1, 3]T, V (4) = [2, 2] U(4) = [2, 2]T, V (4) = [1, 3]

Step 5: row chooses 1 column chooses 1 row chooses 2 column chooses 1

U(5) = [2, 3]T, V (5) = [3, 2] U(5) = [2, 3]T, V (5) = [2, 3]

Step 6: row chooses 1 column chooses 1 row chooses 2 column chooses 1

U(6) = [3, 3]T, V (6) = [4, 2] U(6) = [2, 4]T, V (6) = [3, 3]

. . . , . . . . . . , . . .

Fig. 1. The padding dynamics for I2.

U ′(0) = [0, 0]T and V ′(0) = [0, 0], we first evolve the

vectors to
U ′(2l) = [l, l]T,

V ′(2l) = [l − 1, l + 1],

as enabled by Claim 2. Because the components of

U ′(2l) and V ′(2l) are exactly l − 1 larger than the

corresponding components of U(2) and V (2) of the main

dynamic for I2, we can further evolve the vectors U ′ and

V ′ for 2k(2k−1)−2 steps, mirroring the players’ choices

from Steps 3 through 2k(2k − 1) in the main dynamic

for I2. Using Claim 3, we arrive at

U ′(2T ) = [T, T ]T,

V ′(2T ) = [T ± (2k − 1), T ∓ (2k − 1)],

which satisfies

maxV ′(2T )−minU ′(2T )
= 2k − 1

= Θ(T
1
2 ).

The constant hidden by Θ(·) can obviously be chosen

uniformly for all T . We have thus proved Part 2 of

Lemma 1 for n = 2.

Induction Step: Assume that Lemma 1 is true for a

certain n ≥ 2. To prove it for n+1, we first consider two

padding dynamics for In+1, whose first steps are shown

in Figure 3 (in the appendix). We suppress the step

numbers and strategy choices in the figure, since these

can be easily inferred from the vectors. These dynamics

generalize the padding dynamics for I2 appropriately.

Similarly to Claim 2, we can show the following:

Claim 4. For any k ≥ 1, there exists a padding dynamic
for In+1 such that

U((n+ 1)k) = [k, k, . . . , k]T,

V ((n+ 1)k) = [k − 1, k, . . . , k, k + 1].

Proof of Claim 4: We omit most of the details as the

proof is very similar to that of Claim 2. For example, in

the top dynamic in Figure 3, we see that U reaches both

[1, 1, . . . , 1]T and [3, 3, . . . , 3]T. Since the corresponding

values for V have the same format up to an additive

shift and a permutation of the components, we can repeat

the pattern ad infinitum to prove the cases for odd k’s.

Similarly, the bottom dynamic in Figure 3 deals with

even k’s. �

Next, we define the main dynamic for In+1, which

pieces together parts of various dynamics for In obtained

from the inductive hypothesis. We describe this dynamic

inductively by dividing it into epochs:

1) Initial steps leading to 1st epoch: Starting with

U(0) = [0, . . . , 0]T and V (0) = [0, . . . , 0], we

first evolve the vectors to

U(n+ 1) = [1, 1, . . . , 1]T,

V (n+ 1) = [0, 1, . . . , 1, 2],
(5)

as enabled by Claim 4. We mark those vectors as

the beginning of the 1st epoch.

2) Evolution within an epoch: For i ≥ 1, suppose that

at the beginning of the i-th epoch we satisfy

U((n+ 1)P ) = [P, P, . . . , P ]T,

V ((n+ 1)P ) = [Q1, Q2, . . . , Qn+1].
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Without loss of generality, let us also assume that

Q1 ≤ Q2 ≤ · · · ≤ Qn+1.

Because (n+ 1)P =
∑

j Qj , we have

(n+ 1)(Qn+1 − P ) =
∑

j

(Qn+1 −Qj).

For the next R = (n + 1)(Qn+1 − P ) steps, let

U increase only in its (n+ 1)-th component, and

V increase Qn+1 −Qj times its j-th component,

for all j (the exact order of those increments

doesn’t matter). The process is compatible with the

definition of a dynamic because, in each of those

R steps, the (n + 1)-th component of V remains

maximal in V , and the first n components of U
remain minimal in U . At the end of these steps,

we arrive at

U((n+ 1)Qn+1) = [P, . . . , P, P +R]T,

V ((n+ 1)Qn+1) = [Qn+1, . . . , Qn+1].
(6)

Now, from our inductive hypothesis, there exists a

dynamic (Û , V̂ ) for In such that

Û(nR) = [R, R, . . . , R]T,

V̂ (nR) = [S1, S2, . . . , Sn],

and

max V̂ (nR)−min Û(nR) = Θ(R
n−1
n ),

where the constant hidden by Θ(·) is independent

of R. Starting from (6), for the next nR steps, we

increment only the first n components of U and

V , in a way that mirrors the strategy choices of

the players in the evolution of Û and V̂ , starting

from Û(0) = [0, . . . , 0]T and V̂ (0) = [0, . . . , 0],
until Û(nR) and V̂ (nR). Because the (n + 1)-
th component of V remains minimal in V , we

see that, in each of those nR steps, a maximal

component among the first n components of V is

also a maximal component of the entire vector V .

Similarly, a minimal component among the first

n components of U is also a minimal component

of the entire vector U . Therefore, the process is

compatible with the definition of a dynamic. At

the end of the nR steps, we have

U((n+ 1)(P +R))

= [P +R, . . . , P +R, P +R]T,

V ((n+ 1)(P +R))

= [Qn+1 + S1, . . . , Qn+1 + Sn, Qn+1],

which we mark as the beginning of the (i+ 1)-th
epoch. Notice that the vectors have a format that

allows the induction to continue.

We analyze the convergence rate of the main dynamic

for In+1. For each i, let (n + 1)Ti be the step number

at the beginning of the i-th epoch, and Gi the gap

Gi = maxV ((n+ 1)Ti)−minU((n+ 1)Ti).

Using the P , Q, R, and S notation above, we have the

following relations:

Ti = P,

Ti+1 = P +R,

Gi = Qn+1 − P,

Gi+1 = max
j

(Sj +Qn+1)− (P +R)

= (Qn+1 − P ) + (max V̂ (nR)−min Û(nR))

= (Qn+1 − P ) + Θ(R
n−1
n ),

R = (n+ 1)(Qn+1 − P ).

From the above, along with the initial values from (5),

we obtain the following recursive relations:

G1 = 1,

T1 = 1,

Gi+1 = Gi +Θ([(n+ 1)Gi]
n−1
n ),

Ti+1 = Ti + (n+ 1)Gi,

where the constants hidden by the Θ(·)’s depend only

on n+ 1. A simple calculation based on those relations

yields
Gi = Θ(in),

Ti = Θ(in+1),

and so

Gi = Θ(T
n

n+1

i ),

where the constants hidden by the Θ(·)’s depend only

on n+1. Consequently, by considering the beginning of

each of the infinitely many epoches, the main dynamic

for In+1 satisfies Part 1 of Lemma 1 for n+ 1.

We are now ready to construct, for any given T , a

dynamic (U ′, V ′) for In+1 satisfying the conditions in

Part 2. Let k be the largest integer so that Tk ≤ T , and

l = T − Tk + 1. Starting from U ′(0) = [0, . . . , 0]T and

V ′(0) = [0, . . . , 0], we first evolve the vectors to

U ′((n+ 1)l) = [l, l, . . . , l]T,

V ′((n+ 1)l) = [l − 1, l, . . . , l, l + 1],

as enabled by Claim 4. Because the components of

U ′((n+1)l) and V ′((n+1)l) are exactly l−1 larger than

the corresponding components of U(n+1) and V (n+1)
in the main dynamic for In+1 (i.e. the vectors marking

the beginning of the 1st epoch), we can further evolve the

vectors U ′ and V ′ for (n+1)Tk−(n+1) steps, mirroring

the players’ choices in Steps n + 2 through (n + 1)Tk

(i.e. up until the beginning of the k-th epoch) in the main
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dynamic for In+1. The components of U ′((n + 1)T )
and V ′((n + 1)T ) at the end of this process are l − 1
plus the corresponding components of U((n+1)Tk) and

V ((n+ 1)Tk) in the main dynamic for In+1. Thus, we

have

U ′((n+ 1)T ) = [T, T, . . . , T ]T,

and

maxV ′((n+ 1)T )−minU ′((n+ 1)T )

= Gk

= Θ(T
n

n+1

k )

= Θ(T
n

n+1 ).

The constant hidden by the Θ(·)’s can obviously be

chosen uniformly for all T . We have thus proved Part

2 of Lemma 1 for n + 1. By induction, the proof of

Lemma 1 is completed. �

�

Remark 2. Notice that, even though we do not explicitly
state it in Theorem 2, our proof implies something
stronger, namely that for every n ≥ 2, there exists a
dynamic for In such that for all t (as opposed to just
infinitely many t’s):

maxV (t)−minU(t) = Θ(t
n−1
n ).
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APPENDIX

U(0) = [0, 0]T, V (0) = [0, 0]

Step 1: row chooses 1 column chooses 2

U(1) = [1, 0]T, V (1) = [0, 1]

Step 2: row chooses 2 column chooses 2

U(2) = [1, 1]T, V (2) = [0, 2]

Step 3: row chooses 2 column chooses 2

U(3) = [1, 2]T, V (3) = [0, 3]

Step 4: row chooses 2 column chooses 1

U(4) = [1, 3]T, V (4) = [1, 3]

Step 5: row chooses 2 column chooses 1

U(5) = [1, 4]T, V (5) = [2, 3]

Step 6: row chooses 2 column chooses 1

U(6) = [1, 5]T, V (6) = [3, 3]

Step 7: row chooses 2 column chooses 1

U(7) = [1, 6]T, V (7) = [4, 3]

Step 8: row chooses 1 column chooses 1

U(8) = [2, 6]T, V (8) = [5, 3]

. . . , . . .

Step 12: row chooses 1 column chooses 1

U(12) = [6, 6]T, V (12) = [9, 3]

Step 13: row chooses 1 column chooses 1

U(13) = [7, 6]T, V (13) = [10, 3]

Step 14: row chooses 1 column chooses 2

U(14) = [8, 6]T, V (14) = [10, 4]

. . . , . . .

Step 20: row chooses 1 column chooses 2

U(20) = [14, 6]T, V (20) = [10, 10]

Step 21: row chooses 1 column chooses 2

U(21) = [15, 6]T, V (21) = [10, 11]

Step 22: row chooses 2 column chooses 2

U(22) = [15, 7]T, V (22) = [10, 12]

. . . , . . .

Step 30: row chooses 2 column chooses 2

U(30) = [15, 15]T, V (30) = [10, 20]

. . . , . . .

Fig. 2. The main dynamic for I2.
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U(0) = [0, 0, 0, . . . , 0]T, V (0) = [0, 0, 0, . . . , 0]

U(1) = [1, 0, 0, . . . , 0]T, V (1) = [0, 1, 0, . . . , 0]

U(2) = [1, 1, 0, . . . , 0]T, V (2) = [0, 1, 1, . . . , 0]

. . . , . . .

U(n) = [1, 1, 1, . . . , 1, 0]T, V (n) = [0, 1, 1, . . . , 1, 1]

U(n+ 1) = [1, 1, 1, . . . , 1, 1]T, V (n+ 1) = [0, 1, 1, . . . , 1, 2]

U(n+ 2) = [1, 1, 1, . . . , 1, 2]T, V (n+ 2) = [1, 1, 1, . . . , 1, 2]

U(n+ 3) = [1, 1, 1, . . . , 1, 3]T, V (n+ 3) = [2, 1, 1, . . . , 1, 2]

U(n+ 4) = [2, 1, 1, . . . , 1, 3]T, V (n+ 4) = [2, 2, 1, . . . , 1, 2]

. . . , . . .

U(2n+ 2) = [2, 2, 2, . . . , 2, 1, 3]T, V (2n+ 2) = [2, 2, 2, . . . , 2, 2, 2]

U(2n+ 3) = [2, 2, 2, . . . , 2, 2, 3]T, V (2n+ 3) = [2, 2, 2, . . . , 2, 3, 2]

U(2n+ 4) = [2, 2, 2, . . . , 2, 3, 3]T, V (2n+ 4) = [3, 2, 2, . . . , 2, 3, 2]

U(2n+ 5) = [3, 2, 2, . . . , 2, 3, 3]T, V (2n+ 5) = [3, 3, 2, . . . , 2, 3, 2]

. . . , . . .

U(3n+ 2) = [3, 3, 3, . . . , 3, 2, 3, 3]T, V (3n+ 2) = [3, 3, 3, . . . , 3, 3, 3, 2]

U(3n+ 3) = [3, 3, 3, . . . , 3, 3, 3, 3]T, V (3n+ 3) = [3, 3, 3, . . . , 3, 4, 3, 2]

. . . , . . . ,

and

U(0) = [0, 0, 0, . . . , 0]T, V (0) = [0, 0, 0, . . . , 0]

U(1) = [1, 0, 0, . . . , 0]T, V (1) = [1, 0, 0, . . . , 0]

U(2) = [2, 0, 0, . . . , 0]T, V (2) = [1, 1, 0, . . . , 0]

U(3) = [2, 1, 0, . . . , 0]T, V (3) = [1, 1, 1, . . . , 0]

. . . , . . .

U(n+ 1) = [2, 1, 1, . . . , 1, 0]T, V (n+ 1) = [1, 1, 1, . . . , 1, 1]

U(n+ 2) = [2, 1, 1, . . . , 1, 1]T, V (n+ 2) = [1, 1, 1, . . . , 1, 2]

U(n+ 3) = [2, 1, 1, . . . , 1, 2]T, V (n+ 3) = [1, 2, 1, . . . , 1, 2]

U(n+ 4) = [2, 2, 1, . . . , 1, 2]T, V (n+ 4) = [1, 2, 2, . . . , 1, 2]

. . . , . . .

U(2n+ 1) = [2, 2, 2, . . . , 2, 1, 2]T, V (2n+ 1) = [1, 2, 2, . . . , 2, 2]

U(2n+ 2) = [2, 2, 2, . . . , 2, 2, 2]T, V (2n+ 2) = [1, 2, 2, . . . , 2, 3, 2]

U(2n+ 3) = [2, 2, 2, . . . , 2, 3, 2]T, V (2n+ 3) = [2, 2, 2, . . . , 2, 3, 2]

U(2n+ 4) = [2, 2, 2, . . . , 2, 4, 2]T, V (2n+ 4) = [2, 2, 2, . . . , 2, 3, 3]

U(2n+ 5) = [2, 2, 2, . . . , 2, 4, 3]T, V (2n+ 5) = [3, 2, 2, . . . , 2, 3, 3]

. . . , . . .

U(3n+ 3) = [3, 3, 3, . . . , 3, 2, 4, 3]T, V (3n+ 3) = [3, 3, 3, . . . , 3, 3, 3, 3]

U(3n+ 4) = [3, 3, 3, . . . , 3, 3, 4, 3]T, V (3n+ 4) = [3, 3, 3, . . . , 3, 4, 3, 3]

U(3n+ 5) = [3, 3, 3, . . . , 3, 4, 4, 3]T, V (3n+ 5) = [3, 3, 3, . . . , 3, 4, 3, 4]

U(3n+ 6) = [3, 3, 3, . . . , 3, 4, 4, 4]T, V (3n+ 6) = [4, 3, 3, . . . , 3, 4, 3, 4]

. . . , . . .

U(4n+ 3) = [4, 4, 4, . . . , 4, 3, 4, 4, 4]T, V (4n+ 3) = [4, 4, 4, . . . , 4, 4, 4, 3, 4]

U(4n+ 4) = [4, 4, 4, . . . , 4, 4, 4, 4, 4]T, V (4n+ 4) = [4, 4, 4, . . . , 4, 5, 4, 3, 4]

. . . , . . . .

Fig. 3. The padding dynamics for In+1.
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