
(2 + ε)-SAT is NP-hard

Per Austrin∗ Venkatesan Guruswami† Johan Håstad∗
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Abstract—We prove the following hardness result for a
natural promise variant of the classical CNF-satisfiability
problem: Given a CNF-formula where each clause has width
w and the guarantee that there exists an assignment satisfying
at least g = �w

2
� − 1 literals in each clause, it is NP-hard to

find a satisfying assignment to the formula (that sets at least
one literal to true in each clause). On the other hand, when
g = �w

2
�, it is easy to find a satisfying assignment via simple

generalizations of the algorithms for 2-SAT.
Viewing 2-SAT ∈ P as easiness of SAT when 1-in-2 liter-

als are true in every clause, and NP-hardness of 3-SAT as
intractability of SAT when 1-in-3 literals are true, our result
shows, for any fixed ε > 0, the hardness of finding a satisfying
assignment to instances of “(2 + ε)-SAT” where the density of
satisfied literals in each clause is promised to exceed 1

2+ε
.

We also strengthen the results to prove that given a (2k+1)-
uniform hypergraph that can be 2-colored such that each edge
has perfect balance (at most k + 1 vertices of either color), it
is NP-hard to find a 2-coloring that avoids a monochromatic
edge. In other words, a set system with discrepancy 1 is hard to
distinguish from a set system with worst possible discrepancy.

Keywords-Constraint satisfaction, complexity dichotomy, dis-
crepancy, polymorphisms, probabilistically checkable proofs,
promise problems.

I. INTRODUCTION

One of the first distinctions we learn in complexity theory

is that while 2-SAT can be solved in polynomial time, 3-

SAT is our favorite NP-complete problem. As there are

no integers between 2 and 3 this seems to be a sharp

characterization but a closer inspection shows that a more

fine-grained analysis is possible. One conclusion of the

current paper is that the transition from easy to hard takes

place just after two and not just before three.
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J. Håstad’s was research supported by ERC Advanced Grant 226203,
and was carried out in part while visiting the Simons institute.

Suppose we consider w-CNF formulas where each clause

is of width exactly w and ask for an assignment that satisfies

a literals in each clause. It follows more or less immediately

from the above facts that this problem is NP-hard for a �
w − 2 and solvable in polynomial time when a � w − 1.

Suppose, however, that we make this into a promise problem

and guarantee that there is an assignment that satisfies g
literals in each clause for some g > a. We call the resulting

problem (a, g, w)-SAT. It turns out that (a, g, w)-SAT can be

solved in polynomial time if and only if (a+1, g+1, w+1)-
SAT can be solved in polynomial time (we give the short

proof of this fact in the preliminaries). We can thus focus

on the case a = 1.

Let us start with some easy observations. Starting with a

3-CNF formula we can turn this into a 3g-CNF formula by

taking the union of all g-tuples of clauses. It is easy to see

that if the original formula is satisfiable then we can satisfy

g literals in the produced formula. From this it follows that

(1, g, w)-SAT is NP-hard whenever g � w/3. To the best of

our knowledge, no hardness was known for any g > w/3.

On the algorithmic side it is not difficult to see that the

probabilistic 2-SAT algorithm of Papadimitriou [1] extends

to (1, g, w)-SAT when g � w/2. Using a linear program we

show how to construct an algorithm running in deterministic

polynomial time for the same range.

It turns out that this is all that can be achieved in

polynomial time. The main new result of this paper is to

establish that the problem is NP-hard whenever g < w/2.

In particular, we have the following theorem.

Theorem I.1. For every integer g � 1, (1, g, 2g + 1)-SAT

is NP-hard.

This hardness result is the source of the above claim that

the transition from easy to hard takes place at two. Once the

density of satisfied literals drops strictly below one half, it
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is hard to find a satisfying assignment.1

To establish this result we give a reduction from the Label

Cover problem, the usual starting point for inapproximability

results (even though our results apply only to traditional

constraint satisfaction problems where we want to satisfy

all constraints). Given the current technology of reductions

combining Label Cover with the long code, and the goal of

only establishing hardness of deciding satisfiability, the tech-

nical details of the proof are not difficult. We first prove that

if the clauses produced by the natural dictatorship test are all

satisfied then the corresponding function only depends on a

constant number of inputs. To pass the constraints that go

across two long codes we show that there must be some

consistancy between these important variables and hence

they can be used as labels to satisfy a constant fraction of

the constraints in the Label Cover instance. Note that our

proof method departs from the usual analytic approaches

to analyze dictatorship tests (which seem ill-suited in our

context) and relies on more combinatorial reasoning. The

fact that our proofs are short and self-contained and yet yield

a non-trivial hardness result about such a natural and easy

to state variant of SAT is, in our opinion, one of the main

selling points of this paper.

At first glance it might seem slightly surprising that such a

strong starting point is needed for our NP-hardness result. As

an indication that something non-trivial is going on we give a

proof that there is no standard gadget reduction from 3-SAT

to any or our problems, and in particular not to (1, g, 2g+1)-
SAT. This impossibility result is due to Dominik Scheder,

and extends to show that there is no gadget reduction from

(1, g, 2g + 1)-SAT to (1, g′, 2g′ + 1)-SAT for g′ > g � 1.

One can also consider an approximation problem associ-

ated with (1, g, 2g+1)-SAT, where where we are guaranteed

that there is an assignment that strongly g-satisfies a fraction

c of clauses and the goal is to find an assignment that

satisfies a fraction s of the clauses. Our proof of Theorem I.1

implicitly shows that this problem is hard for c = 1 and

some s = s(g) < 1, thus showing APX-hardness of

(1, g, 2g + 1)-SAT. We observe that an application of the

theorem on “uselessness of predicates” from [3] implies a

strong inapproximability result for this problem (albeit only

for almost satisfiable instances and assuming the Unique

Games conjecture) that shows hardness for c = 1 − ε and

s = 1− 2−(2g+1) + ε for any ε > 0 (see Theorem IV.8).

Hypergraph discrepancy. A problem closely related to

(a, g, w)-SAT is hypergraph discrepancy. Here, given sets

of size 2g + 1 of elements from a universe, the problem

1This is the sense in which we implied (2 + ε)-SAT is NP-hard in the
paper title, but we should mention here that (2 + ε)-SAT has been used
previously to denote instances of satisfiability containing a mix of 2CNF
and 3CNF clauses, with about ε fraction of clauses being 3CNF [2]. As
the terminology (2 + ε)-SAT is restricted to just the title of this paper, we
hope it does not cause much confusion.

is to color the elements with two colors such that each set

has a good balance of colors. We extend our methods to

prove the following hardness result, showing that systems

of bounded-size sets with smallest possible discrepancy are

NP-hard to distinguish from set systems with worst possible

discrepancy.

Theorem I.2. For g � 1, given a (2g + 1)-uniform hyper-
graph that admits a 2-coloring under which each hyperedge
is evenly balanced (g elements of one color and g + 1 of
the other), it is NP-hard to find a 2-coloring that avoids
creating a monochromatic hyperedge.

The above result implies Theorem I.1 via a simple reduc-

tion: for each hyperedge (x1, x2, . . . , x2g+1) of the hyper-

graph, create two width 2g+1 clauses (x1∨x2∨· · ·∨x2g+1)
and (x1 ∨x2 ∨ · · · ∨x2g+1). But we prove Theorem I.1 first

to illustrate our approach in a simpler setting that allows

negated literals and repeated variables within a clause.

For the case of even-sized sets, i.e., 2g-uniform hyper-

graphs for g � 2, we can get the following statement by

a simple reduction from Theorem I.2 (the first statement

follows by adding a special private element to each set in

the instance, and the second by taking all 2g-element subsets

of each (2g + 1)-sized set in the instance).

Corollary I.3. (i) For g � 2, given a 2g-uniform hypergraph
that admits a 2-coloring under which each hyperedge is
perfectly balanced (has g elements of each color), it is
NP-hard to find a 2-coloring with discrepancy smaller than
(2g − 2) (i.e., with more than one vertex of each color in
every hyperedge).

(ii) For g � 2, given a 2g-uniform hypergraph that admits
a 2-coloring with discrepancy at most 2, it is NP-hard
to find a 2-coloring that avoids creating a monochromatic
hyperedge.

The above statements are best possible in the sense that

if there is a perfectly balanced (discrepancy 0) coloring

of a 2g-uniform hypergraph, then one can efficiently find

a 2-coloring that avoids monochromatic hyperedges. This

follows from the more general statement that (1, g, 2g)-
SAT can be solved in polynomial time (via the reduction

mentioned after Theorem I.2).

For systems with unbounded set size, it is known that

even if there is a coloring with discrepancy 0, it is NP-hard

to find a coloring of discrepancy Ω(
√
N) where N is the

size of the universe [4].

Connection to weak polymorphisms. The crux of our proof

of Theorem I.1 is to show that all “weak polymorphisms”

which map assignments satisfying at least g out of 2g + 1
variables to an assignment satisfying at least one of those

variables depend only on a small number of variables. (For

the proof of Theorem I.2, we make do with a slightly weaker
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statement that allows a small number of exceptional inputs.)

To elucidate the underlying principle governing our hard-

ness results, we show that if the only weak polymorphisms

mapping satisfying assignments of a predicate P to those of

an implied predicate Q are juntas (i.e., depend on a fixed

constant number of variables), than the associated promise

CSP associated with the pair of predicates P,Q (where we

are promised satisfiability according to P and the goal is to

find an assignment satisfying the more lax predicate Q) is

NP-hard. Details of this result can be found in the full paper

[5].

Apart from the inherent interest in the given problems

it is our hope that these new results will be useful as

starting points for reductions to give new inapproximability

results. While the inapproximability of Max-3Lin [6] is a

good starting point for problems where we are counting the

number of satisfied constraints, our new problems might be

good starting points when it is the worst local situation that

governs the quality of a solution. As a small step in this

direction we use our result to improve the inapproximability

result for hereditary discrepancy for matrices from 3/2 to any

number arbitrarily close to 2. Our Theorem I.2 was also used

recently in [7] to show a tight factor 2 inapproximability for

a certain scheduling problem on two machines.

Subsequent work. A natural direction left open by our

work was extending our results to domain size larger than

2. This challenge is better explained in the context of

hypergraph coloring. Let us define a weak �-coloring of a

hypergraph to be a coloring of its vertices with � colors so

that no hyperedge is monochromatic. One way to generalize

Theorem I.2 would be to show hardness of weakly 2-

coloring (k+1)-uniform hypergraphs which are promised to

have a coloring with k colors such that every hyperedge has

vertices of each color2. Proving such a hardness is still open.

However, in a very recent development [8], the following

strong inapproximability result for coloring hypergraphs of

larger uniformity has been shown:

For arbitrary integers g, k, C � 2, given as input a

gk-uniform hypergraph that is promised to have a

k-coloring where each color appears at least (g−1)
times in every hyperedge, it is NP-hard to weakly

C-color the hypergraph.

While this result does not imply Theorem I.2, taking k = 2 it

implies part (ii) of Corollary I.3, and in fact a stronger form

when an arbitrary constant number of colors are allowed

in the soundness case (part (i) also follows by a simple

reduction).

2Note that such a hypergraph surely has a balanced 2-coloring, by
merging � k

2
� colors into one group and the remaining � k

2
� colors into

another group, so such a result will indeed strengthen Theorem I.2. If the
hypergraph is k-uniform (instead of k + 1-uniform), one can efficiently
weakly 2-color it (e.g. via a random walk algorithm similar to the one in
Section VII).

The proof of the above result in [8] is significantly more

involved than our proofs, relying on analytic machinery

such as invariance principles applied to general correlated

spaces [9], [10] and reverse hypercontractivity, and requiring

a smooth version of Label Cover for the reduction. The

authors of [8] are also able to adapt their techniques to

give an analytic proof of Theorem I.1. Establishing our

main result on discrepancy (Theorem I.2), however, seems

currently out of reach of these analytic methods. Besides, the

main appeal of our work is the novelty of using long code

based reductions in an unusual manner and the simplicity

with which it yields new non-trivial statements about natural

variants of SAT and NOT-ALL-EQUAL-SAT.

Organization. An outline of the paper is as follows. We

start with some definitions and preliminaries in Section II.

As our main contribution is on the hardness side, we discuss

the hardness results first and defer the algorithmic results to

Section VII towards the end of the paper. Before presenting

our hardness result for (1, g, 2g+1)-SAT in Section IV, we

take a brief “polymorphic” detour in Section III, proving

the non-existence of a simple gadget reduction from 3-SAT

to (1, g, 2g + 1)-SAT, and also commenting on the general

principle underlying our hardness result.

We present the extension of our hardness results to

hypergraph discrepancy (Theorem I.2) in Section V, where

we also show how to ensure that all variables appearing in a

constraint are distinct. We give the application to hereditary

discrepancy in Section VI, and finally we end with some

concluding remarks in Section VIII.

II. PRELIMINARIES

We start with some basic definitions.

Definition II.1. A w-SAT formula is a CNF formula where

each clause has width exactly w.

Definition II.2. A w-SAT formula Φ is strongly g-satisfiable
if there is an assignment to the variables such that at least

g literals are true in every clause of Φ.

Definition II.3. For 1 � a � g < w, the (a, g, w)-
SAT promise problem is as follows. The input is a w-SAT

formula Φ and the goal is to accept instances Φ that are

strongly g-satisfiable and reject instances that do not admit

any assignment that strongly a-satisfies Φ.

We have defined the decision version above, and in the

search version we are given a w-SAT formula Φ that is

guaranteed to be strongly g-satisfiable and the goal is to

find an assignment that strongly a-satisfies Φ.

Note that (1, 1, w)-SAT is the usual w-SAT problem. Let

us start with a couple of simple observations.

Observation II.4. There is a polynomial time reduction from
(a, g, w)-SAT to (a, g, w + 1)-SAT
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Proof: For each old clause, create two new clauses

extending it by a variable and its complement.

Proposition II.5. The problems (a, g, w)-SAT and (a +
1, g + 1, w + 1)-SAT are interreducible to each other in
polynomial time. (Thus one of them is polynomial time
solvable iff the other one is.)

Proof: We establish two easy reductions and start with

the obvious one.

If we have an instance of (a, g, w)-SAT, then adding the

same new variable to all clauses gives an instance of (a +
1, g + 1, w + 1)-SAT of the same difficulty.

For the reduction in the other direction, take all subclauses

of size w of each clause of size w+1. It is readily verified

that this gives a correct reduction.

In view of the above proposition we can focus on the case

a = 1, i.e., the problem of finding a satisfying assignment

in a w-CNF formula when we are guaranteed that there is

an assignment that satisfies at least g literals in each clause.

One detail to consider is whether we allow repeated

literals or two literals corresponding to the same variable

in a clause. It turns out that this distinction does not change

the complexity of the problem. While our algorithms apply

directly to the general case, in the hardness results the

requirement to use only distinct literals does create some

slight technical complications. Hence we first give a cleaner

proof of Theorem I.1 where we allow repeated literals, and

then present a full proof of the stronger result for hypergraph

discrepancy, Theorem I.2, in which we ensure that all

variables in a constraint are distinct (i.e., the hypergraph is

(2g + 1)-uniform). We now define the discrepancy problem

underlying Theorem I.2 formally.

Let S be a subset of size 2g+1 of some universe U . We

say that X ⊆ U splits S evenly if |X ∩ S| ∈ {g, g + 1}.
Definition II.6. An instance of the g-DISCREPANCY prob-

lem consists of a collection of sets S1, . . . , Sm ⊂ U each

of size exactly 2g + 1, and the objective is to distinguish

between

Yes: there is an X ⊆ U that splits each Si evenly.

No: for every X ⊆ U , some Si is not split by X at all

(i.e., |X ∩ Si| ∈ {0, 2g + 1}).

Label Cover and Long Codes. Our reductions establishing

hardness results fit in the standard form for Probabilistically

Checkable Proofs (PCPs), commonly used to establish in-

approximability results for maximum constraint satisfaction

problems. In particular our reductions start from label cover

and use the long code encoding of each label.

Definition II.7. An instance Ψ = (U, V,E, {πe : LV →
LU}) of Label Cover consists of a bipartite graph (U, V,E),
label sets LU and LV for U and V , and for each edge e ∈ E

a map πe : LV → LU .

A labeling � is a map that assigns for each u ∈ U a label

�(u) ∈ LU and for each v ∈ V a label �(v) ∈ LV . The

labeling � satisfies an edge e = (u, v) if πe(�(v)) = �(u).

The value of a labeling � is the fraction of edges satisfied

by �, and the value Opt(Ψ) of Ψ is the maximum value of

any labeling.

Theorem II.8 ([11], [12]). For every ε > 0, there are LU ,
LV such that given a Label Cover instance Ψ with label sets
LU and LV it is NP-hard to distinguish between Opt(Ψ) =
1 and Opt(Ψ) � ε.

The long code of � ∈ L is a table f : {0, 1}L → {0, 1}
where f(x) = x�. Whenever negation is available in the

CSP for which we try to prove a lower bound we assume

that tables are odd and respect negation (in standard PCP

terminology “are folded”) i.e. that f(¬x) = ¬f(x) where ¬
is a negation operator that works both on bits and strings (by

negating each bit individually). The oddness of f is ensured

by storing, for each pair (x,¬x), only the value f(x) and if

f(¬x) is needed then ¬f(x) is used instead. We note that

this is possible for our results for satisfiability but not for

the hypergraph discrepancy problem which does not allow

negations in the constraints.

We use some standard notation in the paper. We let

ei ∈ {0, 1}n be the unit vector with a one in position i
and use ⊕ to denote exclusive-or. Thus if x ∈ {0, 1}n is

any assignment, x and x⊕ ei differ in exactly coordinate i.

III. A POLYMORPHIC DETOUR

Before proceeding with the actual proof that (1, g, 2g+1)-
SAT is NP-hard let us gather some intuition for the problem

by proving that there is no simple gadget reduction from

standard 3-SAT, and also comment on the polymorphic

principle governing our hardness results (whose detailed

description can be found in the full paper).

Let us first consider the possibility of a gadget reduction

from 3-SAT to (1, 2, 5)-SAT. For each clause, say (x1 ∨
x2∨x3), this hypothetical reduction introduces a number of

auxiliary variables ai (which are particular to this clause)

and forms a number of constraints in the form of clauses of

width 5. This reduction should satisfy:

1) Completeness: for each assignment to x1, x2 and x3

that satisfies the original clause there is an assignment

to the auxiliary variables such that at least two literals

in each new clause are true, and

2) Soundness: if x1, x2, x3 are all set to false, no assign-

ment to the auxiliary variables satisfies all the new

clauses.

We have the following observation by Dominik Scheder

that such a gadget reduction does not exist.
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Proposition III.1. There is no gadget reduction from 3-SAT

to (1, 2, 5)-SAT.

Proof: Consider the three cases when (x1, x2, x3) takes

the values (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. Con-

sider the good assignment to the auxiliary variables in each

of these three cases, satisfying at least two literals in each

created clause. Define a new assignment to the auxiliary

variables as the majority of these three assignments. We

claim that this new assignment satisfies at least one literal

in each created clause even when the xi’s are all false.

To see this, look at a single clause of width 5 and consider

the values of these 5 literals under the three assignments. In

total we have at least 6 satisfied literals. Thus, one of the

five literals is satisfied in two of the three assignments, and

this literal is then satisfied also in the majority assignment.

It is not difficult to see that the proof extends to prove

that there is no gadget reduction from (1, g, 2g + 1)-SAT

to (1, g′, 2g′ + 1)-SAT for g′ > g. We simply take 2g + 1
assignments with g true literals in each such that each literal

is true in g assignments. A majority of these assignments

does the trick as in the above argument.

For readers familiar with the notion of polymorphisms

from the CSP dichotomy theory, we note that what we

have established is that majority of 2g + 1 bits is a type

of “weak polymorphism”. Namely, if each input strongly

g′-satisfies a width (2g′ + 1) clause then the output must

satisfy the clause if g′ > g but not for smaller values

of g′. Moreover if w � 2g then any odd majority is a

polymorphism that takes assignments for width w clause

that is strongly g-satisfying into a satisfying assignment. Our

hardness result for (1, g, 2g + 1)-SAT are based on a proof

that such polymorphisms for w > 2g can only depend on

few variables.

One can consider the (1, g, 2g + 1)-SAT problem as an

instance of a large family of problems parametrized by two

predicates P and Q of the same arity k, with P implying Q.

One is given a large number of k-tuples of literals and the

promise that there is an assignment such that all resulting k-

tuples of bits satisfy P . The task now is to find an assignment

such that the strings instead satisfy Q. It turns out that

the lack of non-trivial polymorphisms on arbitrarily many

variables that take satisfying assignments for P and map it

to satisfying assignments for Q implies that this promise P
vs. Q constraint satisfaction problem is NP-hard. We present

a formal statement and proof of this connection between

non-existence of polymorphisms and intractability in the full

paper.

IV. NP-HARDNESS OF (1, g, 2g + 1)-SAT

We now return to the goal of establishing that (1, g, 2g+
1)-SAT is NP-hard. In what follows we write w = 2g + 1.

In order to simplify the presentation and cleanly convey the

general idea behind the reduction without having to pay too

much attention to technical details, we here allow repeated

literals in each clause. Proving the result without repeated

literals can be done with a little more care, using the same

approach as in Section V, where we prove a stronger result

for the discrepancy problem (Theorem I.2) without allowing

repeated variables in a constraint.

A. A Dictatorship Gadget

First, we construct a dictatorship gadget, which is an

instance defined over 2n variables, viewed as a function

f : {0, 1}n → {0, 1} which is, as discussed in the

preliminaries, assumed to be folded.

The constraints on f are all clauses of the form (f(x1)∨
f(x2) ∨ . . . ∨ f(xw)) where x1, . . . , xw are such that for

each j ∈ [n],
∑w

i=1 xi,j � g. In other words there are at

least g ones in each coordinate.

The completeness of the gadget (stated below) follows by

construction.

Lemma IV.1. If f is a dictatorship function then it strongly
g-satisfies the dictatorship gadget.

The converse of the above lemma is only true in a weaker

sense.

Lemma IV.2. Any assignment f which is odd and satisfies
the dictatorship gadget depends on at most 2g−1 variables.

In fact, this lemma is sharp – as noted in the previous

section, the majority of 2g − 1 variables does satisfy the

gadget. The essential part of the above lemma is contained

in the following claim that we establish first.

Claim IV.3. Suppose f is odd, depends on g different vari-
ables i1, . . . , ig , and satisfies the dictatorship gadget. Then
f(z) = 1 for all inputs z such that zi1 = . . . = zig = 1.

Proof: Suppose for contradiction that there is an input

z such that f(z) = 0 yet zij = 1 for all j ∈ [g]. Since f
depends on variables i1, . . . , ig , there are inputs x1, . . . , xg

such that for each j ∈ [g]

f(xj) = 1 and f(xj ⊕ eij ) = 0 .

Now consider the clause

f(z) ∨ f(¬x1) ∨ f(x1 ⊕ ei1) ∨ . . . ∨ f(¬xg) ∨ f(xg ⊕ eig ).

Note that this clause might contain repeated literals but this

is allowed at the moment. Clearly, this clause is not satisfied

by f , so if this clause appears in the gadget we have our

desired contradiction. In other words, we have to show that

in each coordinate i ∈ [n] we have at least g ones.

For any coordinate i 
∈ {i1, . . . , ig} we have that coordi-

nate i is 1 in exactly one of {¬xj , xj ⊕ eij}, for a total of
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at least g ones. For the coordinate ij , we have that for all

j′ 
= j, at least one of {¬xj′ , xj′⊕eij′ } has a 1 in coordinate

ij . Furthermore z has a one in coordinate j, for a total of

at least g ones.

It is now easy to prove Lemma IV.2.

Proof of Lemma IV.2: Suppose f depends on 2g distinct

variables i1, . . . , ig, j1, . . . , jg . Let z be an input such that

zi1 = . . . = zig = 1 and zj1 = . . . = zjg = 0. By

Claim IV.3, f(z) = 1 and f(¬z) = 1, contradicting that

f is odd.

B. Reduction from Label Cover

Let Ψ = (U, V,E, {πe : LV → LU}) be a Label Cover

instance. To each vertex u ∈ U we associate a function

fu : {0, 1}LU → {0, 1} intended to be a dictator of the

label �u of u, and similarly fv : {0, 1}LV → {0, 1} for

v ∈ V .

We add the following constraints:

• For each u ∈ U (resp. v ∈ V ), the dictatorship gadget

on fu (resp. fv).

• Fix an edge e = (u, v). Let x1, . . . , xg ∈ {0, 1}LU be

g inputs on the U side and y1, . . . , yg+1 ∈ {0, 1}LV be

g+1 inputs on the V side. If for each l ∈ LV it holds

that
g∑

j=1

xj,πe(l) +

g+1∑

j=1

yj,l � g

we add the constraint

fu(x1) ∨ . . . ∨ fu(xg) ∨ fv(y1) ∨ . . . fv(yg+1)

We also use folding to make sure that each fu (and fv)

is odd.

Call the resulting formula Φ. The completeness is standard

and follows immediately from the construction and the

completeness of the dictatorship gadget.

Lemma IV.4 (Completeness). If Opt(Ψ) = 1 then Φ is
strongly g-satisfiable.

We turn to the more interesting case of soundness.

Lemma IV.5 (Soundness). If Φ is satisfiable then Opt(Ψ) �
1/(2g − 1)2.

Proof: Fix a satisfying assignment {fu}, {fv} to Φ.

By the soundness of the dictatorship gadget (Lemma IV.2)

every fu and fv depends on at most 2g − 1 variables.

For each variable, let Su ⊆ LU (resp. Sv ⊆ LV ) be the

set of variables that fu (resp. fv) depends on and we have

the following claim.

Claim IV.6. For every edge e = (u, v) it holds that πe(Sv)∩
Su 
= ∅.

Proof: Suppose for contradiction that Su∩πe(Sv) = ∅.
Let x1, . . . , xg ∈ {0, 1}LU be g inputs such that fu(xj) =
0 and xj,l′ = 1 for all l′ ∈ LU \ Su, and similarly let

y1, . . . , yg+1 ∈ {0, 1}LV be g+1 inputs such that fv(yj) = 0
and yj,l = 1 for all l ∈ LV \ Sv .

Let us now check that
g∑

j=1

xj,πe(l) +

g+1∑

j=1

yj,l � g ∀ l ∈ LV . (1)

Note that this would imply that fu(x1)∨ . . .∨fu(xg)∨ . . .∨
fv(y1) ∨ . . . fv(yg+1) is a clause in Φ and by construction

it is not satisfied, a contradiction. For l /∈ Sv , (1) holds

because yj,l = 1 for j = 1, 2, . . . , g+1. For l ∈ Sv , we have

πe(l) /∈ Su, and therefore xj,πe(l) = 1 for j = 1, 2, . . . , g,

and (1) again holds.

We now finish the proof of Lemma IV.5. We construct

a random labeling by picking a random label from Su

(resp. Sv) for each variable u ∈ U (resp. v ∈ V ) of

Ψ. For each edge e = (u, v) it follows from the claim

that the probability that e is satisfied by this labeling is
1

|Su|·|Sv| � 1/(2g − 1)2 implying the bound on Opt(Ψ).

To finish the proof of Theorem I.1 we now simply make

sure to start with a Label Cover instance with soundness at

most (2g − 1)−2 and then invoke Theorem II.8.

Remark IV.7. The above proof can also be used to show

that in soundness case, there is no assignment that satisfies

more than 1− γ(g) fraction of clauses, for some γ(g) > 0.

The required soundness for the Label Cover instance can

be achieved with |LU |, |LV | � poly(g), and thus the tables

fu, fv have sizes that only depend on g. As long as most

of the tables fu, fv satisfy all the clauses, the constructed

labeling satisfies enough Label Cover constraints.

C. Inapproximability under the Unique Games conjecture

We now note the following “approximation resistance”

phenomenon associated with almost-satisfiable instances of

(1, g, 2g + 1)-SAT.

Theorem IV.8. Let g � 1 be an integer. Assuming the
Unique Games conjecture [13], the following promise prob-
lem is hard for every ε > 0. Given an instance of (2g+1)-
SAT (with no repetitions of variables allowed within a
clause), distinguish between the following two cases:

1) There is an assignment that strongly g-satisfies (1−ε)
of the clauses, and

2) There is no assignment that satisfies a fraction (1 −
2−2g+1 + ε) of the clauses.

Note that we have a gap between the two cases both in

terms of the predicate being imposed on the clauses, and

the fraction of clauses satisfiable according to the respective

predicates. Also, since a random assignment satisfies an
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expected fraction 1 − 2−2g+1 of the clauses, the inap-

proximability factor is tight. The rather standard proof of

Theorem IV.8 appears in the full version of the paper.

V. DISCREPANCY WITH SMALL SETS

The main result of this section is the following theorem,

which is of course just an alternate statement of Theorem I.2.

Theorem V.1. g-DISCREPANCY is NP-hard for every con-
stant g > 1.

The reduction and proof follows along the same lines as

the hardness proof for (1, g, 2g + 1)-SAT in the previous

section, though some modifications in the constructions are

needed since “true” and “false” are now treated symmetri-

cally. Additionally, we shall now deal with the details for

the case when repeated elements are not allowed.

Another distinction from (1, g, 2g + 1)-SAT to g-

DISCREPANCY is that we no longer have the concept of

negated literals and so we can no longer assume that our

long codes are folded. If we allowed repeated elements in

our sets this problem can be solved very simply by adding a

constraint with g copies of f(x) and g+1 copies of f(¬x)
for any x. Since we do not allow repetitions we have to be

slightly more careful.

A. Dictatorship test

Let us start with the dictatorship test for a function

f : {0, 1}n → {0, 1}. This consists of all sets of 2g + 1
(distinct) variables {f(x1), . . . , f(x2g+1)} such that for each

coordinate j ∈ [n] we have g �
∑2g+1

i=1 xi,j � g + 1. We

refer to this as the discrepancy dictatorship gadget.

The completeness of the gadget follows by construction.

Lemma V.2. If f is a dictatorship function then it evenly
splits all sets in the discrepancy dictatorship gadget.

For the soundness, we can no longer conclude that if f
does not leave any set of the gadget monochromatic then f
only depends on a few variables. For instance, if we let f
equal a dictator except at a few points then f depends on

all variables but would split all sets in the gadget. We prove

that this is the only problem, and as a first step we start with

a definition.

Definition V.3. A function f is said to t-depend on variable

i if there are at least t disjoint pairs {xj , xj ⊕ ei}, j ∈ [t],
such that f(xj) 
= f(xj ⊕ ei).

Using this definition, we have the following analogue of

Lemma IV.2.

Lemma V.4. Any function f : {0, 1}n → {0, 1} which does
not leave any set of the discrepancy dictatorship gadget
monochromatic 2g-depends on at most 2g − 1 variables,
provided n > 5g.

Towards proving this, we first note that even though we

can not force f to be folded by means of negated literals,

the dictatorship test forces f to be folded on all but a small

number of bad inputs.

Lemma V.5. If f does not make any set of the discrepancy
dictatorship gadget monochromatic then there are at most
g pairs of inputs {xi,¬xi} such that f(xi) = f(¬xi) = 0,
and at most g pairs {yi,¬yi} such that f(yi) = f(¬yi) = 1.

Proof: Suppose for contradiction that we have g+1 dis-

tinct pairs {x1,¬x1}, . . . , {xg+1,¬xg+1} such that f(xi) =
f(¬xi) = 0. Then f leaves (x1,¬x1, . . . , xg,¬xg, xg+1)
monochromatic and it is straightforward to see that this is

one of allowed tests. The other claim is analogous.

Next we have the following analogue of Claim IV.3,

saying that the value of f can be essentially fixed by some

setting of g variables.

Claim V.6. Suppose f 2g-depends on g different variables
i1, . . . , ig and does not leave any set of the discrepancy dic-
tatorship gadget monochromatic. Then there are constants
c1, . . . , cg ∈ {0, 1} such that f(z) = 1 for all but at most
2g inputs z such that zij = cj for all j ∈ [g].

Proof: We proceed as in the proof of Claim IV.3. For

each j ∈ [g] there are 2g different inputs x satisfying f(x) =
1 and f(x ⊕ eij ) = 0. By Lemma V.5, f(¬x) = 1 on at

most g of these.

It follows that we can choose g distinct inputs x1, . . . , xg

such that f(¬xj) = f(xj ⊕ eij ) = 0 for each j ∈ [g]. Now

let cj = xj,ij . Consider any input z such that zij = cj
for each j ∈ [g] but distinct from the 2g inputs ¬x1, x1 ⊕
ei1 , . . . ,¬xg, xg⊕eig . We claim that {f(z), f(¬x1), f(x1⊕
ei1), . . . , f(¬xg), f(xg ⊕ eig )} is a set in the discrepancy

dictatorship gadget and hence f(z) must equal 1.

To see this, note that in coordinate ij the inputs ¬x1, x1⊕
ei1 , . . . ,¬xg, xg ⊕ eig have g − 1 occurrences of the value

xj,ij and g + 1 occurrences of the value ¬xj,ij , and z
provides one additional occurrence of the value cj = xj,ij

so that this coordinate is balanced. For coordinates outside

i1, . . . , ig the x’s provide an equal number of 0’s and 1’s

and hence the value of z in these coordinates is irrelevant.

Proof of Lemma V.4: The only difference to the proof

of Lemma IV.2 is that we need to make sure to avoid the

up to 4g bad inputs where f is not folded and the at most

2g + 2g choices of z where Claim V.6 does not apply, but

if 2n−2g > 8g such a contradictory z exists.

B. Reduction from Label Cover

The reduction from Label Cover also proceeds as in

Section IV-B. The main crux is to locate a set consisting

of disjoint variables. To simplify the presentation, we alter
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the reduction somewhat by augmenting each fu and fv with

a set A of auxiliary variables, i.e., fu : {0, 1}LU∪A → {0, 1}
and fv : {0, 1}LV ∪A → {0, 1}. Loosely speaking this is like

creating 2|A| copies of each variable and ensures that there is

an abundance of variables allowing us to easily identify sets

without repeated variables. This is technically not needed –

provided the label sets LU and LV are sufficiently large one

can find sufficiently many distinct variables in the original

reduction.

In the reduction from a label cover instance Ψ, we add the

discrepancy dictatorship gadget on each fu and fv (without

any special treatment of the auxiliary variables). In the edge

constraints we for an edge e = (u, v) the clause

{fu(x1), . . . , fu(xg), fv(y1), . . . fv(yg+1)}
provided g �

∑g
j=1 xj,πe(i) +

∑g+1
j=1 yj,i � g + 1 for each

i ∈ Lv and the xi’s and yi’s are distinct. Note that we do

not have any constraint on the sum of values in the auxiliary

coordinates. Calling the resulting g-DISCREPANCY instance

Φ, we have the following analogue of Lemma IV.5.

Lemma V.7. If there is an assignment to Φ which does not
leave any set monochromatic then Opt(Ψ) � 1/(2g − 1)2,
provided |A| = Ω(log |LV |).

Proof: As in the proof of Lemma IV.5 we take a

satisfying assignment {fu}, {fv} to Φ.

We now choose Su ⊆ LU (resp. Sv ⊆ LV ) to be the set

of non-auxiliary variables that fu (resp. fv) 4g-depends on,

which by Lemma V.4 are at most 2g − 1 variables.

Proceeding as in Lemma IV.5, we now want to re-prove

Claim IV.6, showing that Su intersects πe(Sv) for the new

choices of Su and Sv . Looking at the proof of Claim IV.6,

the new aspects that we need to deal with is that the inputs

x1, . . . , xg, y1, . . . , yg+1 picked there should be distinct, and

we also have the added complication that fu and fv may

depend on variables outside Su and Sv (though only on a

very small number of input strings).

Say that a partial assignment z ∈ {0, 1}Su∪A is good if:

1) zj = b for all j ∈ Su and some b ∈ {0, 1} (i.e., z is

constant on the coordinates of Su)

2) fu is odd on all inputs agreeing with z
3) fu(y) = 0 for all y ∈ {0, 1}LU∪A such that y|Su∪A =

z.

Similarly we say that a partial assignment w ∈ {0, 1}Sv∪A

is good provided the same conditions hold with Su and fu
replaced by Sv and fv .

There are 2|A|+1 partial assignments satisfying the first

condition, and by Lemma V.5 at most g partial assignments

violating the second condition, so we have 2|A|+1−g partial

assignments satisfying the first two conditions.

Since fu does not 4g-depend on any i 
∈ Su∪A, there are

at most 8g|LU | inputs x ∈ {0, 1}LU∪A for which f(x) 
=

f(x⊕ ei) for some i 
∈ Su ∪ A. This implies that there are

2|A|+1− g−8g|LU | partial assignments that satisfy the first

two conditions and fu restricted to z is constant. Since we

have excluded the points where fu is not odd, fu takes the

value 0 on half of the remaining assignments, so there are

at least 2|A| − (g + 8g|LU |)/2 good partial assignments z.

Similarly there are at least 2|A| − (g + 8g|LV |)/2 good

partial assignments w. It follows that if |A| = Ω(log |LV |)
we can choose 2g + 1 distinct good partial assignments

z1, . . . , zg , and w1, . . . , wg+1. See also Figure 1.

Any way of completing these partial assignments

to inputs x1, . . . , xg , y1, . . . , yg+1 such that

{fu(x1), . . . , fu(xg), fv(y1), . . . , fv(yg+1)} is a set

appearing in Φ gives the desired contradiction since fu
(resp. fv) is 0 on the xj’s (resp. yj’s) by construction.

This is easily done: we simply need to make sure that

the number of ones in each column is g or g + 1. The

perhaps only subtle point is that we need to take care with

the coordinates in j ∈ π−1
e (πe(Sv)) (i.e., the j that collide

with some j′ ∈ Sv under πe). This is where we use that the

partial assignments wi are constant on Sv , as we can then

use those constant values for the remaining coordinates in

π−1
e (πe(Sv)).

This concludes the proof that Su intersects πe(Sv) for

each edge (u, v), and the rest of the proof proceeds identi-

cally to Lemma IV.5.

VI. APPLICATION TO HEREDITARY MATRIX

DISCREPANCY

Consider the following problem. Given a matrix A =
(aij) 1 � i � n and 1 � j � m of dimension n × m,

the task is to find signs xi ∈ {−1, 1}, to make any subset

of the columns balanced. To be more precise we want for

any α ⊆ [n], α 
= ∅, the vector bαj =
∑

i∈α xiaij to have

small L∞-norm. The minimum such quantity is called the

hereditary discrepancy.

This problem was considered in [14] where it was proved

to be hard to approximate within a factor 3
2 . It follows more

or less immediately from Theorem V.1 that we can improve

this inapproximability factor to 2g+1
g+1 for any integer g and

thus arbitrarily close to 2. Both the reduction of [14] and here

actually gives a matrix such that either the discrepancy of

A is large (in our case 2g+1) or the hereditary discrepancy

is small (in our case g + 1).

To see this let A be the incidence matrix of the set system

constructed to prove Theorem V.1. In other words aij =
1 if the ith element appears in set j. A setting of the xi

corresponding to a very balanced 2-coloring gives a witness

that the hereditary discrepancy is at most g + 1 while a

monochromatic set gives that the discrepancy of A is at

least 2g + 1.
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A
Su

Sv

b1 b1

b2 b2

∗z1

z2

w1

w2

w3

b3 b3 b3

b4 b4 b4

b5 b5 b5

πe

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Figure 1. The good partial assignments z1, . . . , zg , w1, . . . , wg+1

VII. ALGORITHMS FOR (1, g, 2g)-SAT

We now present efficient algorithms to find a satisfying

assignment when at least half the literals in each clause are

promised to be true under some assignment.

A. A randomized algorithm

Let us first describe a simple randomized algorithm

closely following Papadimitriou’s algorithm [1] for 2-Sat.

Algorithm 1: Randomized algorithm for (1, g, w)-SAT.

(1) x← arbitrary assignment

(2) while x is not satisfying

(3) Pick (arbitrarily) a falsified clause φ
(4) Flip the value of a randomly chosen literal of φ
(5) return x

The analysis of this algorithm is essentially equivalent

with that of Papadimitriou.

Proposition VII.1. If Φ is a strongly g-satisfiable width-
w CNF formula and w � 2g, then Algorithm 1 finds a
satisfying assignment in O(tn2) steps with probability at
least 1− 2−t.

Proof: Let x∗ be any g-satisfying assignment, and let

xi be the value of x in the i’th iteration of Algorithm 1 and

φi be the clause chosen. Define the random variable Di =
d(xi, x

∗) where d(x, y) is the Hamming distance between

x and y. Clearly, Di+1 −Di = ±1. Furthermore, since x∗

satisfies g literals of φi and it contains at most 2g literals

we have

Pr[Di+1 = Di − 1] � 1/2

so that E[Di+1 − Di|Di] � 0. In other words D1, D2, . . .
describes a random walk starting at some point between 0
and n where each step is unbiased or biased towards 0.

Such a walk hits 0 in n2 steps with constant probability.

The probability that it fails to hit 0 with ctn2 steps is thus

at most 2−t for a suitable chosen constant c.

Note that this algorithm is not affected by the presence

of multiple copies of the same literal within a clause. Also

note that if w < 2g the walk is in fact biased towards 0 and

a satisfying assignment is, with high probability, found in

O(n) steps.

We next present a deterministic algorithm that is based

on linear programming.

B. A deterministic algorithm

There is a very natural linear program connected to a w-

Sat formula. Namely, relax each Boolean variable xi to a

real-valued variable yi which takes values in [0, 1]. In the

formula replace xi by yi and ¬xi by 1− yi and require that

the sum over each clause is at least g. As an example in

(1, 2, 4)-SAT we replace the clause (x1 ∨ x2 ∨ ¬x3 ∨ ¬x4)
by the linear inequality

y1 + y2 + (1− y3) + (1− y4) � 2

This might not seem like a very useful linear program as

yi = 1/2 for all i satisfy all the inequalities when w = 2g,

but forcing a single variable to take the value 0 or 1 does

give useful information. Consider the procedure described in

Algorithm 2 where we let �y� denote the integer closest to

y (we only apply this operation to numbers whose fractional

part is not 1/2 and hence this number is unique). We establish

in the below proposition that the algorithm is indeed correct.

Proposition VII.2. Given a strongly g-satisfiable w-SAT

instance, where w � 2g, Algorithm 2 finds a satisfying
assignment.

Proof: Note first that if w < 2g then in the LP solution

any clause must contain a literal whose value is greater than

1/2 and thus in fact the tentative assignment to xi in line 3

is not needed.
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Algorithm 2: Deterministic algorithm for (1, g, w)-SAT.

(1) repeat
(2) Let xi be some unassigned variable

(3) Choose b ∈ {0, 1} such that the basic LP with yi
forced to b is feasible

(4) if the LP is infeasible for both choices of b
(5) return “Not strongly g-satisfiable”

(6) Let y1, . . . , yn be the LP solution when yi is forced

to b
(7) foreach i such that yi 
= 1

2
(8) Assign xi ← �yi�
(9) Remove all satisfied clauses from the formula

(10) until all variables are assigned

(11) return x

When w = 2g each clause that contains a literal that is not

exactly 1/2 must, in each feasible solution, contain a literal

that is of value strictly greater than 1/2. This implies that if

we assign the value of some variable in a clause then in the

same round we set one of its literals to true and satisfy the

clause. Thus there is no risk of falsifying a clause during this

process. In addition, the clauses that remain after each round

consist only of unassigned variables and thus the remaining

set of clauses still forms a strongly g-satisfiable instance.

VIII. CONCLUSIONS

We have given a sharp classification for a natural promise

version of CNF-Sat. As CNF-Sat is a favorite starting point

for many reductions we hope that this can give improved

results quantitatively in many situations. We gave a rather

modest example in Section VI but we hope there are many

other possibilities.

As we show in the full paper, the non-existence of weak

polymorphisms whose outputs satisfy a weaker predicate Q
than the predicate P obeyed by its inputs implies the hard-
ness of finding a Q-satisfying assignment to a P -satisfiable

CSP instance. It will be extremely interesting to obtain some

results in the converse direction, obtaining algorithms based

on the existence of non-trivial weak polymorphisms, at least

for the case of Boolean predicates P,Q. (We recall that when

P = Q, we know in the Boolean case that the existence of

non-trivial polymorphisms precisely governs the tractability

of the associated CSP.)

Another interesting direction would be to extend the sort

of combinatorial reasoning used in this paper to long code

tests over larger domains. A concrete motivating target

would be to answer the following question (a positive

answer would generalize Theorem I.2): Given a (k + 1)-
uniform hypergraph that admits a k-coloring such that every

hyperedge is polychromatic with all k colors, is it NP-hard

to find a 2-coloring without monchromatic edges?
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