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Abstract—Quantum satisfiability is a constraint satisfaction
problem that generalizes classical boolean satisfiability. In the
quantum k-SAT problem, each constraint is specified by a k-
local projector and is satisfied by any state in its nullspace.
Bravyi showed that quantum 2-SAT can be solved efficiently
on a classical computer and that quantum k-SAT with k ≥
4 is QMA1-complete [4]. Quantum 3-SAT was known to be
contained in QMA1 [4], but its computational hardness was
unknown until now. We prove that quantum 3-SAT is QMA1-
hard, and therefore complete for this complexity class.
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I. INTRODUCTION

Bravyi introduced a quantum generalization of k-SAT and

characterized its complexity for k = 2 and k ≥ 4 [4]. In the

quantum k-SAT problem the constraints act on an n-qubit

Hilbert space and we are asked to determine if there is a

state which satisfies all of them. Each constraint is specified

by a k-local1 projector and is satisfied by any state in its

nullspace.

Less is known about quantum k-SAT than is known about

its classical counterpart. Random instances of quantum k-

SAT have been studied by Laumann et. al. as a function of

the clause density α [16], [15]. As in the classical case, it is

conjectured that a satisfiability threshold αc(k) exists, above

which the probability that a random instance is satisfiable

approaches zero as n→∞ and below which this probability

approaches one [16]. Some bounds on this threshold value

have been proven using a quantum version of the Lovász

local lemma [2] and by using graph-theoretic techniques [6]

but only the case k = 2 is fully understood [16], [10]. Other

previous work has focused on quantum satisfiability with

qudit variables of dimension d > 2 [18], [20], [8], [5] or in

restricted geometries [18], [7].

Quantum satisfiability is relevant to the study of

frustration-free Hamiltonians. A frustration-free Hamilto-

nian is a local Hamiltonian (a sum of k-local Hermitian op-

erators for some constant k) with groundstates that minimize

the energy of each local term individually. Such Hamiltoni-

ans naturally arise in the study of quantum error correction

and play a central role in the field of Hamiltonian complexity

[22]. We can view quantum k-SAT as the problem where

1A k-local operator acts nontrivially on at most k qubits and as the
identity on all other qubits.

one is asked to determine if a sum of k-local projectors is

frustration-free, that is to say, if its ground energy is zero.

The computational complexity of quantum k-SAT is natu-

rally compared with that of the k-local Hamiltonian problem,

which can be viewed as the quantum analogue of MAX k-

SAT. In this problem one is given a Hamiltonian which is a

sum of k-local operators, along with constants a, b such that

a < b. One is asked to determine if the ground energy of

the given Hamiltonian is less than a (yes instance) or greater

than b (no instance), promised that one of these conditions

holds. Note that, for yes instances of this problem, a ground

state of the Hamiltonian need not have minimal energy for

each k-local term; such a system can be frustrated. Because

of the possibility of frustration, the k-local Hamiltonian

problem can be computationally more difficult than quantum

k-SAT. Indeed, the k-local Hamiltonian problem is QMA-

complete for k ≥ 2 [12]. On the other hand, our result

that quantum 3-SAT is QMA1-complete shows that these

problems are of comparable difficulty for k ≥ 3 (putting

aside the subtle differences between the definitions of QMA

and QMA1).

In the next Section, we provide the basic definitions,

describe our results in more detail and give an overview of

this extended abstract. Details which are not included here

due to space constraints can be found in the full version [9]

of this paper.

II. DEFINITIONS AND OVERVIEW

We first define the complexity class QMA, or Quantum

Merlin-Arthur. This class gets its name from a scenario

involving Merlin and Arthur, who at the outset are both

given an instance of a promise problem encoded as a bit-

string X . Arthur wishes to know the correct answer to

this problem (which is either yes or no) but his time and

space resources are bounded as polynomial functions of

|X|. Merlin has unbounded computational power and can

easily obtain the correct answer. Merlin wants to convince

Arthur the answer is “yes”, but Arthur doesn’t trust Merlin,

so he asks for proof. Merlin hands over an n-qubit quantum

state |W 〉 (called a witness) that Arthur uses to verify the

claim in the following way. He adjoins some number na
of ancilla qubits each in the state |0〉 to produce |W 〉|0〉⊗na

(the total number n+na of qubits in this state must be upper

bounded by a polynomial in |X|), then applies a polynomial
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sized verification circuit UX and then measures the first

ancilla qubit in the computational basis. If the measurement

outcome is 1, he accepts Merlin’s claim that X is a yes

instance. Arthur’s acceptance probability given the state |W 〉
is therefore

AP (UX , |W 〉) =∥∥∥(I⊗n ⊗ |1〉〈1|(n+1) ⊗ I
⊗(na−1)

)
UX |W 〉|0〉⊗na

∥∥∥2 . (1)

For problems in the class QMA, if Merlin is being truthful

he can convince Arthur with probability at least 2
3 . On the

other hand, if Merlin is lying (i.e., the answer is actually

“no”) then he can only fool Arthur with probability at most
1
3 .

Definition 1 (QMA). A promise problem Lyes ∪ Lno ⊂
{0, 1}∗ is contained in QMA if and only if there exists a

uniform polynomial-size quantum circuit family UX such

that

If X ∈ Lyes there exists a state |W 〉 such that

AP (UX , |W 〉) ≥ 2
3 (completeness).

If X ∈ Lno then AP (UX , |W 〉) ≤ 1
3 for any state |W 〉

(soundness).

Here we have defined QMA with constant completeness
2
3 and soundness 1

3 . Kitaev showed that these parameters

can be amplified: we obtain an equivalent definition with

soundness 2−Ω(|X|α) and completeness 1 − 2−Ω(|X|α) for

any constant α [13] (see also [17], [21]).

QMA1 is defined in a similar way to QMA with two

modifications. The first is “perfect” completeness – for

X ∈ Lyes, Merlin can convince Arthur with probability

exactly equal to 1. The second difference is that Arthur’s

verification circuit must consist of a sequence of gates from

a fixed universal gate set G. The definition of QMA1 is not

known to be independent of the gate set used. In this paper

we use the standard choice

G = {Ĥ, T,CNOT}, (2)

where Ĥ is the single-qubit Hadamard gate, T =
diag(1, ei

π
4 ) and CNOT is the controlled-NOT gate.

Definition 2 (QMA1). A promise problem Lyes ∪ Lno ⊂
{0, 1}∗ is contained in QMA1 if and only if there exists

a uniform polynomial-size quantum circuit family UX over

the gate set G such that

If X ∈ Lyes there exists a state |W 〉 such that

AP (UX , |W 〉) = 1 (perfect completeness).

If X ∈ Lno then AP (UX , |W 〉) ≤ 1
3 for any state |W 〉

(soundness).

Just as with QMA, the soundness of a QMA1 verification

procedure (taken to be 1
3 in the above) can be amplified so

that it is very close to zero [13].

We think of QMA1 as being very similar to QMA,

although the precise relationship between these two classes

has yet to be determined (see [1], [11], [14] for recent

developments).

Let us now turn our attention to quantum 3-SAT. In this

problem we are given a Hamiltonian

H =
r∑

i=1

Πi

that is a sum of 3-local projectors Πi acting on an n-qubit

Hilbert space. We are promised that either H has ground

state energy zero, or else its ground state energy is greater

than a constant (which we take without loss of generality to

be 1) and we are asked to decide which is the case.

Note that the matrix elements of a projector Πi in an

instance of quantum 3-SAT cannot be specified as arbitrary

complex numbers with unlimited precision. In our definition

of quantum 3-SAT we must constrain the set of allowed

projectors in some way.

In this work we define quantum 3-SAT with a restricted

set of projectors P given below. While quantum 3-SAT

remains in QMA1 for larger classes of projectors, restricting

to a smaller set makes our QMA1-hardness result stronger.

The specific set P that we use arises from technical consid-

erations.

Definition 3. Let P be the set of 3-local projectors Π which

satisfy one of the following two conditions:

1. Every matrix element of Π in the computational basis

has the form

1

4

(
a+ i b+

√
2 c+ i

√
2 d
)

a, b, c, d ∈ Z. (3)

2. There is a 3-qubit unitary U with matrix elements of

the form (3) (in the computational basis) such that UΠU†

is equal to(√
1

3
|000〉 −

√
2

3
|001〉

)(√
1

3
〈000| −

√
2

3
〈001|

)
on 3 of the qubits tensored with the identity on the remaining

qubits.

Definition 4 (Quantum 3-SAT). Given a collection {Πi :
i = 1, . . . , r} ⊂ P of 3-local projectors acting on n qubits,

we are asked to decide if they correspond to a yes instance

or a no instance (promised that one is the case), where

Yes: There exists an n-qubit state |ψ〉 satisfying Πi|ψ〉 =
0 for all i = 1, . . . , r.

No:
∑

i〈ψ|Πi|ψ〉 ≥ 1 for all |ψ〉.
With the definitions given above, we prove that quantum

3-SAT is QMA1-complete. In reference [9] we provide a

proof (following Bravyi [4], [3]) that quantum 3-SAT is

contained in QMA1. Our main result in this paper is QMA1-

hardness of quantum 3-SAT. To prove this, we exhibit an
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efficiently computable mapping from a g-gate, (n + na)-
qubit verification circuit that implements a unitary UX to a

Hamiltonian

HX =
∑
i

Πi,X

which is a sum of Θ(na + g) 3-local projectors Πi,X ∈ P
acting on Θ(n+ na + g) qubits. Moreover, we prove

Theorem 1 (Completeness). HX has ground energy 0 if
and only if there exists |W 〉 such that AP (UX , |W 〉) = 1,

Theorem 2 (Soundness). If AP (UX , |W 〉) ≤ 1
3 for all |W 〉,

then HX has ground energy Ω
(

1
g6

)
.

Note that in our definition of quantum 3-SAT we require

that in the “no” case the ground energy is greater than or

equal to 1, whereas Theorem 2 gives a bound of Ω
(
g−6

)
.

To form an instance of quantum 3-SAT as defined above we

repeat each projector Πi,X in the instance a suitable number

of times (i.e., Θ(g6) times). This shows that any promise

problem in QMA1 can be reduced to quantum 3-SAT. Since

quantum 3-SAT is also contained in QMA1 we have proven

that it is complete for this complexity class.

Our mapping from the verification circuit UX to the

Hamiltonian HX relies on two technical innovations. Like

many previous works in the field of Hamiltonian complexity,

we use a “clock construction”. In this work we introduce a

new one which has some special properties. In Section III

we summarize the relevant properties; details can be found

in the full version [9]. Most previous QMA- or QMA1-

hardness results use a circuit-to-Hamiltonian mapping which

is an immediate and simple application of the clock con-

struction (the standard approach uses a Hilbert space with a

computational register and a clock register). In contrast, in

this work we define a novel circuit-to-Hamiltonian mapping

where the Hamiltonian HX acts on a Hilbert space with

a computational register along with two clock registers. In

Section IV we illustrate the main ideas of this mapping,

and in Section V we define the Hamiltonian HX and prove

Theorem 1. The proof of Theorem 2 is more involved, and

is given in [9].

III. A NEW CLOCK CONSTRUCTION

A clock construction is a local Hamiltonian along with

a set of local operators which act on its groundspace in a

certain way. It can be used as a set of building blocks to

define more complicated Hamiltonians while keeping track

of the groundspace.

In this Section we summarize our new clock construction

which is presented in full detail in [9]. This extended abstract

can be understood using only the properties which we now

describe.

For any N ∈ {2, 3, . . . }, we present a Hamiltonian H
(N)
clock

which acts on the Hilbert space of 7N−3 qubits and which is

a sum of 3-local projectors from the set P given in Definition

3. The zero energy groundspace of H
(N)
clock is spanned by

orthonormal states

|Ci〉, i = 1, . . . , N.

Now let Hcomp be a computational register containing some

(arbitrary) number of qubits, and let U be a unitary acting

on this register. We exhibit projectors

hi,i+1(U)

for i = 1, . . . , N − 1, which act on

Hcomp ⊗H(N)
clock .

These are called the transition operators for the clock. They

satisfy (
I⊗Π

(N)
clock

)
hi,i+1(U)

(
I⊗Π

(N)
clock

)
(4)

=
1

8
(I⊗ |Ci〉〈Ci|+ I⊗ |Ci+1〉〈Ci+1|)

−1

8

(
U† ⊗ |Ci〉〈Ci+1|+ U ⊗ |Ci+1〉〈Ci|

)
, (5)

where Π
(N)
clock =

∑N
i=1 |Ci〉〈Ci| projects onto the clock

subspace. The operator hi,i+1(U) is a (k+2)-local projector

where k is the locality of the unitary U . When U is the

identity the projector hi,i+1(1) acts nontrivially only on two

qubits of H(N)
clock and we write

hi,i+1
.
= hi,i+1(I).

Thus, for a single-qubit unitary, hi,i+1(U) is only 3-local

(this is in contrast with the original clock construction due

to Kitaev [13] where the analogous operators are 4-local).

Our circuit-to-Hamiltonian mapping, presented in Sections

IV and V exploits this feature (it is partly inspired by the

railroad switch idea from [19]).

Finally, we also exhibit 1-local (single-qubit) projectors

C≥i and C≤i (6)

for i = 1, . . . , N , whose role is to “pick out” clock states

|Cj〉 with j ≥ i or j ≤ i respectively. They act on the

Hilbert space H(N)
clock and satisfy

Π
(N)
clockC≥iΠ

(N)
clock =

1

2
|Ci〉〈Ci|+

∑
i<j≤N

|Cj〉〈Cj | (7)

Π
(N)
clockC≤iΠ

(N)
clock =

∑
1≤j<i

|Cj〉〈Cj |+ 1

2
|Ci〉〈Ci| (8)

with the understanding that when i = 1 the first term in (8)

is zero and when i = N the second term in (7) is zero.

Only the nullspaces of the operators on the RHS of (7) and

(8) are important for our purposes. In particular, it is not

significant that the |Ci〉〈Ci| terms have different prefactors,

since the (positive) value of these coefficients do not affect

the nullspace.
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IV. HAMILTONIANS ACTING ON TWO CLOCK REGISTERS

We now develop the main ideas behind our circuit-to-

Hamiltonian mapping, using the new clock construction

described in the previous section. A key feature of our

approach is that we use two clock registers, with Hilbert

space

H(N)
clock ⊗H(N)

clock. (9)

Let’s consider some local operators which act on this space.

The Hamiltonians

I⊗H(N)
clock and H

(N)
clock ⊗ I

are both sums of 3-local projectors as discussed in the

previous section. Since C≤i and C≥i are 1-local projectors,

we can form 2-local projectors by taking tensor products,

e.g.,

C≤i ⊗ C≥j .

Similarly, since the operators hk,k+1 are 2-local projectors,

terms such as

hk,k+1 ⊗ C≤i

are 3-local projectors. For convenience and to ease notation

later on, we define the following sum of such terms

S(k,k+2) = C≤k ⊗ C≥(k+2) + hk,k+1 ⊗ C≤(k+1)

+ h(k+1),(k+2) ⊗ C≥(k+1) + C≥(k+2) ⊗ C≤k

+ C≤(k+1) ⊗ hk,k+1 + C≥(k+1) ⊗ h(k+1),(k+2) (10)

for k = 1, . . . , N − 2.
We begin by looking at a simple Hamiltonian which acts

in the Hilbert space (9); this example introduces some nota-

tion and conventions that we use later on. We then consider

two examples where the Hilbert space (9) is tensored with a

computational register. These examples contain the essential

ideas behind our proof that quantum 3-SAT is QMA1-hard.

A. Warm up example

As a warm-up, consider the following Hamiltonian acting

on the space (9) with N = 9:

I⊗H(9)
clock +H

(9)
clock ⊗ I+ S(4,6), (11)

with S(4,6) given by (10). We will see how the zero energy

groundspace of this operator can be represented pictorially.

Recall (from Section III) that H
(9)
clock has 9 orthonormal

zero energy states |Ci〉 for i = 1, . . . , 9. The first two terms

of (11)

I⊗H(9)
clock +H

(9)
clock ⊗ I (12)

therefore have 81 zero energy ground states which we

choose to represent as a set of vertices arranged in a 2D grid,

as shown in Figure 1(a). We adopt the convention that the

vertex in the top left corner has coordinates (i, j) = (1, 1),
the i coordinate increases moving to the right and the j

(a) (b) (c) (d)

Figure 1. The groundspaces of (a) I⊗H
(9)
clock+H

(9)
clock⊗I, (b) I⊗H

(9)
clock+

H
(9)
clock⊗I+C≤4⊗C≥6+C≥6⊗C≤4, (c) I⊗H

(9)
clock+H

(9)
clock⊗I+C≤4⊗

C≥6+C≥6⊗C≤4+h4,5⊗C≤5, and (d) I⊗H
(9)
clock+H

(9)
clock⊗I+S(4,6).

In these graphs each connected component is associated with a ground state
of the Hamiltonian.

coordinate increases moving downwards. The vertex with

coordinate (i, j) is associated with the groundstate |Ci〉|Cj〉.
We add S(4,6) to (12) a few terms at a time. First look at

I⊗H(9)
clock +H

(9)
clock ⊗ I+ C≤4 ⊗ C≥6 + C≥6 ⊗ C≤4

which is just the first two terms of S(4,6) added to (12).

Using the expressions (7) and (8) we see that adding this

term assigns an energy penalty to all the states |Ci〉|Cj〉 with

either i ≤ 4 and j ≥ 6 or i ≥ 6 and j ≤ 4. Eliminating the

corresponding vertices from Figure 1(a) we get Figure 1(b).

Now look at the next term which is h4,5 ⊗ C≤5. Using

equations (5) and (8) we get(
Π

(9)
clock ⊗Π

(9)
clock

)
(h4,5 ⊗ C≤5)

(
Π

(9)
clock ⊗Π

(9)
clock

)
=

1

8
(|C4〉 − |C5〉) (〈C4| − 〈C5|)⊗

5∑
j=1

(
1− 1

2
δj,5

)
|Cj〉〈Cj |.

From this we see that states |C4〉|Cj〉 and |C5〉|Cj〉 for j =
1, . . . , 5 are not zero energy states for this term although

their uniform superpositions 1√
2
(|C4〉+ |C5〉) |Cj〉 are. We

represent the groundspace of

I⊗H(9)
clock +H

(9)
clock ⊗ I+ C≤4 ⊗ C≥6

+ C≥6 ⊗ C≤4 + h4,5 ⊗ C≤5 (13)

as the graph in Figure 1(c), where now ground states are in

one-to-one correspondence with the connected components
of the graph. The ground state corresponding to a given

connected component J is the uniform superposition∑
(i,j)∈J

|Ci〉|Cj〉

(up to normalization). The next three terms modify the

picture in a similar way and the groundspace of I⊗H(9)
clock +

H
(9)
clock ⊗ I + S(4,6) is represented as the graph shown in

Figure 1(d).

B. A single-qubit unitary

Next, consider an example with two clock registers with

N = 6 and a computational register containing a single

qubit. The Hilbert space is C
2⊗H(6)

clock⊗H(6)
clock. Let U be a
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N

LK

M
Figure 2. The four groundstates of H

(6)
clock⊗I+I⊗H

(6)
clock+S(1,3)+S(4,6)

are associated with the four connected components of this graph, which we
label K,L,M,N .

(single-qubit) unitary acting on the computational qubit and

define

H1q(U) = I⊗ I⊗H(6)
clock + I⊗H(6)

clock ⊗ I

+ I⊗ S(1,3) + I⊗ S(4,6) +HU , (14)

where

HU = h34(U)⊗ I+ I⊗ I⊗ h34. (15)

Here h34(U) acts nontrivially on the computational qubit

and two qubits of first clock register.

We analyze the groundspace of (14) in two steps. First,

we represent the groundspace of the sum of the first four

terms using a picture, as in the previous example. Then we

consider the action of HU on this space and obtain the zero

energy states for (14).

First, consider

I⊗H(6)
clock +H

(6)
clock ⊗ I+ S(1,3) + S(4,6),

which acts in the space H(6)
clock ⊗H(6)

clock and note (using the

graphical representation discussed in the previous example)

that its nullspace can be represented as Figure 2. In the

Figure we label vertices of the graph as (i, j) with the top

left vertex labeled (1, 1), i increasing to the right and j
increasing downward. A ground state is associated with each

connected component K,L,M,N as shown in the Figure,

given by

|S〉 =
∑

(i,j)∈S
|Ci〉|Cj〉, (16)

where S ∈ {K,L,M,N}. In this paper we will often work

with unnormalized states such as these.

The groundstates of H1q(U) are superpositions of

|z〉|K〉, |z〉|L〉, |z〉|M〉, |z〉|N 〉, z ∈ {0, 1}. (17)

which have zero energy for HU . We solve for them as

follows. First, note that

|z〉|K〉, U |z〉|L〉, |z〉|M〉, U |z〉|N 〉 (18)

for z ∈ {0, 1} span the same space as (17). This basis is

convenient because HU does not connect states with z = 0
to states with z = 1. We evaluate the matrix elements of

HU between these unnormalized states using (5). For each

z ∈ {0, 1}, HU acts as a 4 × 4 matrix within the space

spanned by the four states (18) (since it does not connect

states with different z). This matrix is the same for z = 0
and z = 1 and is given by

1

4

⎛⎜⎜⎝
2 −1 −1 0

−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎞⎟⎟⎠ ,

with the ordering of basis states as in (18). The unique zero

eigenvector of this matrix is the all-ones vector. This means

that the groundspace of H1q(U) is spanned by the two states

|z〉|K〉+ U |z〉|L〉+ |z〉|M〉+ U |z〉|N 〉, z ∈ {0, 1}.
Note that to solve for these zero energy eigenvectors it was

sufficient to consider the matrix elements of HU in the

unnormalized basis (18).

Now considering superpositions of these two states we

see that every state in the groundspace of H1q(U) has the

form

|φ〉|K〉+ U |φ〉|L〉+ |φ〉|M〉+ U |φ〉|N 〉 (19)

for some single-qubit state |φ〉. In this example we view

the state |C1〉|C1〉 (corresponding to the top left vertex in

Figure 2) as the initial state of the two clocks, and we view

the state |C6〉|C6〉 (the bottom right vertex) as the final state.

We interpret (19) as a history state for the computation that

consists of applying U to the state |φ〉.

C. A two-qubit unitary

Now consider an example where N = 9 and the com-

putational register contains two qubits. The Hilbert space is(
C

2
)2 ⊗H(9)

clock ⊗H(9)
clock.

Define

H2q = I⊗ I⊗H(9)
clock + I⊗H(9)

clock ⊗ I

+ I⊗ S(1,3) + I⊗ S(7,9) +HV , (20)

where

HV = Hhorizontal +Hvertical (21)

and Hhorizontal involves transitions of the first clock register

whereas Hvertical involves transitions of the second clock

register. Labeling the first computational (control) qubit a
and the second (target) one b, we define

Hhorizontal = |0〉〈0|a ⊗ h34 ⊗ I+ I⊗ h34 ⊗ C≥7

+ I⊗ h56 ⊗ C≤3 + h45(Bb)⊗ I+ |0〉〈0|a ⊗ h67 ⊗ I

+ I⊗ h67 ⊗ C≥7 + I⊗ h56 ⊗ C≥7, (22)

Hvertical = |1〉〈1|a ⊗ I⊗ h34 + I⊗ C≥7 ⊗ h34
+ I⊗ C≤3 ⊗ h56 + h45(σ

z
b ) + |1〉〈1|a ⊗ I⊗ h67

+ I⊗ C≥7 ⊗ h67 + I⊗ C≥7 ⊗ h56. (23)
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Here the single-qubit unitaries which act on qubit b are

σz =

(
1 0
0 −1

)
and B =

1√
2

(
1 i
i 1

)
. (24)

In (23) the operator h45(σ
z
b ) acts nontrivially on the com-

putational qubit b as well as the second clock register (and

acts as the identity on the first clock register).

Note that H2q is a sum of 3-local projectors. We now

discuss its groundspace.

Look at the first four terms in (20) which act as

I⊗H(9)
clock +H

(9)
clock ⊗ I+ S(1,3) + S(7,9) (25)

on the two clock registers. Using our graphical notation, the

zero energy groundspace of (25) can be represented as the

black graph shown in Figure 3 (a) and (b). A ground state

is associated with each of the 25 connected components

of this graph (as discussed in the Figure caption). Now

adjoining the two-qubit computational register, we get 100

basis vectors for the nullspace of

I⊗ I⊗H(9)
clock + I⊗H(9)

clock⊗ I+ I⊗S(1,3)+ I⊗S(7,9), (26)

four for each connected component. States in the nullspace

of H2q are superpositions of these 100 basis vectors that also

have zero energy for HV , that is to say, zero eigenvectors

of the matrix

〈J2|〈y′|〈x′|HV |x〉|y〉|J1〉 (27)

where J1 and J2 are connected components of the graph

in Figure 3 and x, y, x′, y′ ∈ {0, 1}. (Here |J1〉 and |J2〉
are defined through (16)). One could now proceed to solve

for the nullspace of H2q by explicitly constructing the

matrix elements (27) and analyzing the resulting 100× 100
matrix. However, computing the matrix elements (27) is a

tedious exercise. To save space and time, we take a different

approach here. We provide a Lemma which characterizes

the nullspace of H2q, and we describe a simple way that the

reader can verify our claim.

It will be helpful to use the sets of vertices R0,G0,Y0,B0

and R1,G1,Y1,B1 depicted in Figure 3. For each set we

define an unnormalized state through (16) (now letting S be

any set of vertices). For example,

|Y0〉 = |C2〉|C7〉+ |C3〉|C7〉+ |C4〉|C7〉
+ |C2〉|C8〉+ |C3〉|C8〉+ |C4〉|C8〉.

Note that each of the states

|R0〉, |G0〉, |Y0〉, |B0〉, |R1〉, |G1〉, |Y1〉, |B1〉 (28)

have zero energy for (25). The following Lemma character-

izes the groundspace of H2q.

Lemma 1. The groundspace of H2q is spanned by

|ψxy
V 〉 = |x〉|y〉|Rx〉+ (Q|x〉|y〉) |Gx〉

+
(
Q̃|x〉|y〉)|Yx〉+ (V |x〉|y〉) |Bx〉

R0

G0

B0Y0

(a)

R1

Y1

B1G1
(b)

Figure 3. The black graph (drawn twice for clarity) depicts the

groundspace of I ⊗ H
(9)
clock + H

(9)
clock ⊗ I + S(1,3) + S(7,9). The top

left vertex is labeled (1, 1) and the bottom right vertex (9, 9). Each
connected component corresponds to a ground state, given by the uniform
superposition of states |Ci〉|Cj〉 with (i, j) in the component. In (a) we
have defined sets of vertices R0,G0,Y0,B0 and in (b) we have defined
sets R1,G1,Y1,B1.

for x, y ∈ {0, 1}, where the two-qubit unitaries Q, Q̃, and
V are given by

Q = |0〉〈0| ⊗B + |1〉〈1| ⊗ σz,

Q̃ = |0〉〈0| ⊗ (B†σzB
)
+ |1〉〈1| ⊗ (σzBσz) ,

V = |0〉〈0| ⊗ (σzB) + |1〉〈1| ⊗ (Bσz) , (29)

with the single-qubit unitaries B and σz as in (24).

Note that, since |ψxy
V 〉 has support only on states (28)

of the clock registers, it has zero energy for (26). Using

equations (5), (7), and (8) the reader can verify that each

state |ψxy
V 〉 also has zero energy for HV . It remains to

show that these four states span the groundspace of H2q.
We recommend using a computer to verify this fact. To do

this, one can numerically diagonalize a specific 324 × 324
matrix: the restriction of H2q to the space spanned by

|z1〉|z2〉|Ci〉|Cj〉 with i, j = 1, . . . , 9 and z1, z2 ∈ {0, 1}.
It is easy to compute the matrix elements of H2q in this

basis using equations (5), (7), and (8). We have included in

our arxiv submission [9] an ancillary file (a Matlab script)

which numerically diagonalizes this matrix and confirms that

the states |ψxy
V 〉 span the nullspace of H2q.

Using Lemma 1 we see that any state in the groundspace

of H2q is a superposition∑
x,y∈{0,1}

αxy|ψxy
V 〉 = |φ〉|C1〉|C1〉+|other〉+V |φ〉|C9〉|C9〉,

(30)

where

|φ〉 =
∑

x,y∈{0,1}
αxy|x〉|y〉,

and |other〉 has no support on clock states |C1〉|C1〉 or

|C9〉|C9〉. We view |C1〉|C1〉 as the initial state of the two

clocks and |C9〉|C9〉 as the final state of the two clocks, and

we interpret (30) as a history state for the computation that

consists of applying the two-qubit unitary V from (29) to

the state |φ〉.
Finally, we show that the two-qubit unitary V is an

entangling gate. To see this, note that by multiplying it with
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single-qubit T and Hadamard gates we obtain the CNOT

gate: (
T 2 ⊗ (T 6ĤT 2

))
V = CNOT. (31)

The reader may already see where this is going. In

this Section we exhibited Hamiltonians H1q(U) and H2q

which are sums of 3-local projectors and which have ground

states that can be viewed as history states for any one-

qubit computation and a specific two-qubit computation

respectively. Now we show how to put these ideas together

to make a quantum 3-SAT Hamiltonian that is associated

with a sequence of one- and two-qubit gates.

V. QUANTUM 3-SAT IS QMA1-HARD

In this Section we exhibit the Hamiltonian HX and we

prove Theorem 1. The proof of Theorem 2 is given in the

full version [9] of this paper.

Recall from Section II that we consider a verification

circuit which implements a unitary UX on n+na qubits, na
of which are ancillas initialized to |0〉 at the beginning of

the computation. It is expressed as a product of g gates from

the set {Ĥ, T,CNOT}. We begin by rewriting this circuit in

a canonical form.

Equation (31) expresses the CNOT gate as a product of

Ĥ and T gates and the two-qubit gate V (29). Using this

identity it is possible [9] to efficiently rewrite the given

circuit so that it is a product of Θ(g) gates from the set

{Ĥ, T, V }, with M = Θ(g) single-qubit gates alternating

with M two-qubit V gates:

UX = VaM−1bM−1
UM−1 . . . Va1b1U

1Va0b0U
0, (32)

where each single-qubit gate U0, U2, . . . UM−1 is either Ĥ ,

T or the identity, and where

a0, . . . , aM−1, b0, . . . , bM−1 ∈ [n+ na]

are the labels of the qubits on which the V gates act.

A. The Hamiltonian HX

We define a Hamiltonian HX which we associate with

the verification circuit (32) and which is a sum of 3-local

projectors from the set P in Definition 3. It acts on the

Hilbert space

Hcomp ⊗H(9M+3)
clock ⊗H(9M+3)

clock , (33)

where Hcomp is a computational register containing n+ na

qubits. Note that each of the two clock registers contains

63M + 18 qubits.

First, consider the Hilbert space H(9M+3)
clock ⊗H(9M+3)

clock of

the two clock registers and define the following operator

acting on this space

H
(M)
diag = H

(9M+3)
clock ⊗ I+ I⊗H(9M+3)

clock + S(9M+1,9M+3)

+
M−1∑
j=0

(
S(9j+1,9j+3) + S(9j+4,9j+6)

)
(34)

where S(k,k+2) is defined in (10).

Let us pause for a moment and explain why we consider

this operator. Using the graphical notation developed in

Section IV, the groundspace of (34) can be represented as

the graph drawn in black in Figure 4. For the moment, let

us focus on the graph drawn in black and ignore all other

aspects of the Figure. As described in the caption, a basis for

the groundspace is in 1-1 correspondence with the connected

components of the graph. Note that the graphs from Figures

2 and 3 each appear M times along the diagonal. This

corresponds to the fact that the verification circuit contains

M one-qubit gates and M two-qubit gates V .

We obtain HX by adding terms to I ⊗ H
(M)
diag . We add

terms for each one- and two-qubit gate and we add terms

which check the initial and final state of the computation.

Specifically, let

HX = I⊗H(M)
diag +

M−1∑
j=0

(
Hj

U +Hj
V

)
+Hinit +Hend, (35)

which acts on the Hilbert space (33). Here

Hinit =

na∑
i=1

|1〉〈1|(i+n) ⊗ C≤1 ⊗ C≤1, (36)

Hend = |0〉〈0|(n+1) ⊗ C≥(9M+3) ⊗ C≥(9M+3)

ensure that each of the ancilla qubits is in the |0〉 state when

the clock state is |C1〉|C1〉, and that the first qubit in the

ancilla register is in the state |1〉 when the clock state is

|C9M+3〉|C9M+3〉. The operators

Hj
U = h9j+3,9j+4(U

j)⊗ I+ I⊗ I⊗ h9j+3,9j+4 (37)

are defined by analogy with (15) and involve the single-qubit

unitaries {U j}. We also define

Hj
V = Hj

horizontal +Hj
vertical (38)

by analogy with (21):

Hj
horizontal = |0〉〈0|aj ⊗ h9j+6,9j+7 ⊗ I

+ I⊗ h9j+6,9j+7 ⊗ C≥9j+10 + I⊗ h9j+8,9j+9 ⊗ C≤9j+6

+ |0〉〈0|aj ⊗ h9j+9,9j+10 ⊗ I+ I⊗ h9j+9,9j+10 ⊗ C≥9j+10

+ I⊗ h9j+8,9j+9 ⊗ C≥9j+10 + h9j+7,9j+8(Bbj )⊗ I (39)

Hj
vertical = |1〉〈1|aj

⊗ I⊗ h9j+6,9j+7

+ I⊗ C≥9j+10 ⊗ h9j+6,9j+7 + I⊗ C≤9j+6 ⊗ h9j+8,9j+9

+ |1〉〈1|aj
⊗ I⊗ h9j+9,9j+10 + I⊗ C≥9j+10 ⊗ h9j+9,9j+10

+ I⊗ C≥9j+10 ⊗ h9j+8,9j+9 + h9j+7,9j+8(σ
z
bj ). (40)
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K0

L0

M0

L1

M1

MM−1

LM−1

R0
0

G0
0

B0
0Y0

0

R1
0

G1
0

B1
0Y1

0

RM−1
0

GM−1
0

BM−1
0

YM−1
0

Figure 4. A basis for the groundspace of H
(M)
diag is in 1-1 correspondence

with the connected components of the graph drawn in black. The vertices
are labeled (i, j) with the top left vertex labeled (1, 1) and the bottom right
vertex (9M + 3, 9M + 3). The ground state associated with a connected
component J is the uniform superposition

∑
(i,j)∈J |Ci〉|Cj〉.

Note that HX is a sum of 3-local projectors. We show in

[9] that each projector in the sum is of the form given in

Definition 3.

We now characterize the groundspace of HX .

B. The zero energy groundspace of HX (Proof of The-
orem 1)

We now show that a zero-energy ground state of HX ex-

ists if and only if there exists a witness |W 〉 which the origi-

nal verifier UX accepts with certainty. We begin by defining

some sets of vertices in the graph from Figure 4. For each

copy j = 0, . . . ,M−1 of the graph in Figure 3 that appears

in Figure 4, we define sets Rj
0,Gj

0,Yj
0 ,Bj

0, R
j
1,Gj

1,Yj
1 ,Bj

1.

Likewise, for each copy j = 0, . . . ,M − 1 of the graph in

Figure 2 that appears in Figure 4 we define sets Lj ,Mj in

Figure 4, and for the copy with j = 0 (in the top left) we

also define K0 as shown in the Figure. For each of these

sets, we define an associated (unnormalized) state through

(16).

To analyze the groundspace of HX , we add the terms in

equation (35) one at a time, computing the zero energy states

of the resulting operator at each step.

We start with I ⊗ H
(M)
diag , which (as discussed in the

previous Section) has nullspace spanned by states of the

form

|z〉|J 〉 = |z〉
∑

(i,j)∈J
|Ci〉|Cj〉, (41)

where J ⊂ [9M+3]⊗[9M+3] is a connected component of

the graph drawn in black in Figure 4 and z is an (n+ na)-bit

string.

Now consider

I⊗H(M)
diag +

M−1∑
j=0

Hj
V . (42)

As the reader might expect, we are going to use Lemma 1

to solve for the zero energy states. We begin by considering

the action of Hj
V in the basis (41).

Look at the graph in black in Figure 3 and note that there

are M copies of this graph along the diagonal in Figure

4. Each copy j = 0, . . . ,M − 1 contains 25 connected

components J . The operator Hj
V only has support on states

|z〉|J 〉 when J is one of the 25 connected components in

the jth copy. This implies that the matrix element

M−1∑
j=0

〈J2|〈z2|Hj
V |z1〉|J1〉 (43)

is nonzero only when J1 and J2 are both contained in the

same copy j. The matrix with entries (43) is therefore block

diagonal with a nonzero block for each j = 0, . . . ,M − 1.

In addition to these blocks, there are “blocks” of size 1 –

the states

|z〉|K0〉, |z〉|Mj〉, |z〉|Lj〉 (44)

for j = 0, . . . ,M − 1 and z ∈ {0, 1}n+na which have zero

energy for (42). Let us now solve for the zero eigenvectors

of (42) within each nonzero block. The block corresponding

to a given value j is a (2n+na · 25) × (2n+na · 25) matrix

with entries

〈J2|〈z2|Hj
V |z1〉|J1〉,

where J1 and J2 are from the corresponding set of 25

connected components. Recall that Hj
V acts nontrivially

on qubits aj and bj and as the identity on the remaining

2n+na−2 qubits of the first register. Using this fact we

see that the above matrix (the block labeled by j) further

decomposes into 2n+na−2 identical blocks each of which

has size 4 · 25× 4 · 25. Each of these 100× 100 blocks is a

matrix that we have already encountered in Section IV, the

matrix with entries given by (27). Lemma 1 characterizes the

zero energy eigenvectors of this matrix. Applying Lemma 1,

we get zero eigenvectors of (42)
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∑
x,y∈{0,1}

[ (|xy〉〈xy|ajbj

) |z〉|Rj
x〉+

(
Q|xy〉〈xy|ajbj

) |z〉|Gj
x

〉

+
(
Q̃|xy〉〈xy|ajbj

)
|z〉|Yj

x〉+
(
V |xy〉〈xy|ajbj

) |z〉|Bj
x〉
]
.

(45)

Here the projector |xy〉〈xy|ajbj acts nontrivially only on

qubits aj and bj of the computational register and z is an

(n+ na)-bit string. Note that since |z〉 is a computational

basis state, only one of the terms in the sum over x, y
is nonzero; we have written the state in this way to ease

understanding later on. Letting z range over all (n+na)-bit

strings and j = 0, . . . ,M − 1, the states (44) and (45) span

the groundspace of (42).

Now consider

I⊗H(M)
diag +

M−1∑
j=0

Hj
V +

M−1∑
j=0

Hj
U . (46)

The third term in (46) couples the ground states of (42).

To solve for the zero energy states of (46), we compute the

action of
M−1∑
j=0

Hj
U (47)

within the groundspace of the first two terms. We now

exhibit a basis for the ground space of (42) in which the

operator (47) has a simple form. Define unitaries O0 = I

and

Ok = Vak−1bk−1
Uk−1Vak−2bk−2

U j−2 . . . U0

for k = 1, . . . ,M − 1 and states

|K0(φ)〉 = |φ〉|K0〉 (48)

|Mj(φ)〉 = Oj |φ〉|Mj〉 |Lj(φ)〉 = U jOj |φ〉|Lj〉,
(49)

and

|ψj
V (φ)〉 =

∑
x,y∈{0,1}

[ (|xy〉〈xy|ajbj

)
U jOj |φ〉|Rj

x〉

+
(
Q|xy〉〈xy|ajbj

)
U jOj |φ〉|Gj

x〉
+
(
Q̃|xy〉〈xy|ajbj

)
U jOj |φ〉|Yj

x〉

+
(
V |xy〉〈xy|ajbj

)
U jOj |φ〉|Bj

x〉
]
. (50)

Here we let |φ〉 range over some (arbitrary) complete or-

thonormal basis Λ for the (n + na) qubit register and j =
0, . . . ,M − 1. The states (48)-(50) (with j = 0, . . . ,M − 1
and |φ〉 ∈ Λ) are linearly independent superpositions of (44)

· · ·K0

L0

M0

ψ1
V

L1

M1

ψ2
V ψM−2

V

LM−1

MM−1

ψM−1
V

Figure 5. The Hamiltonian (47) is block diagonal when written in the basis
(49)-(50). Each of the 2n+na blocks corresponds to a different (n+na)-
qubit state |φ〉 from an orthonormal basis Λ. The matrix for each block is
the same, equal to 1

4
L where L is the Laplacian of this graph, which has

3M + 1 vertices.

and (45) and therefore span the groundspace of (42). Their

normalizations are:

〈K0(φ)|K0(φ)〉 = 7,

〈Mj(φ)|Mj(φ)〉 = 〈Lj(φ)|Lj(φ)〉 = 4, (51)

〈ψj
V (φ)|ψj

V (φ)〉 = 43.

The operator (47) acts on this basis in a simple way. It

only connects states with the same |φ〉 ∈ Λ and is therefore

block diagonal (with 2n+na blocks).

We compute the matrix elements within a block using

equations (37) and (5). For example,

M−1∑
j=0

〈K0(φ)|Hj
U |M0(φ)〉 = 〈K0(φ)| (I⊗ I⊗ h3,4) |M0(φ)〉

= −1

4
.

Continuing in this manner, we compute all matrix elements

of (47) between states (49)-(50). The resulting matrix is

the same for each |φ〉 and is equal to 1
4L where L is the

Laplacian matrix of the graph in Figure 5. The Laplacian

matrix of a connected graph has a unique eigenvector with

eigenvalue zero: the all ones vector. This fact means that for

each |φ〉 ∈ Λ there is a unique zero energy state of (46)

given by the uniform superposition

|Hist(φ)〉 =
1

FM

⎛⎝|K0(φ)〉+
M−1∑
j=0

(
|Lj(φ)〉+ |Mj(φ)〉+ |ψj

V (φ)〉
)⎞⎠ ,

(52)

where we use (51) to compute the normalizing factor

FM =
√
51M + 7. Letting |φ〉 range over all states in the

basis Λ we get a spanning basis for the groundspace of (46).

Moreover, every state in the groundspace of (46) is of the

form |Hist(ψ)〉 for some (n+na)-qubit state |ψ〉, by linearity

of |Hist(ψ)〉.
Now consider the conditions under which a state |Hist(ψ)〉

in the groundspace of (46) also has zero energy for both Hinit

and Hend, the final two terms in (35).
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We have

〈Hist(ψ)|Hinit|Hist(ψ)〉

=
1

(FM )
2 〈K0(ψ)|

na∑
i=1

|1〉〈1|n+i ⊗ C≤1 ⊗ C≤1|K0(ψ)〉

=
1

(FM )
2 〈ψ|〈C1|〈C1|

na∑
i=1

|1〉〈1|n+i ⊗ C≤1 ⊗ C≤1|ψ〉|C1〉|C1〉

=
1

4 (FM )
2 〈ψ|

na∑
i=1

|1〉〈1|n+i|ψ〉,

where in the last line we used (8). This is equal to zero if

and only if |ψ〉 = |W 〉|0〉⊗na for some n-qubit state |W 〉.
Similarly,

〈Hist(ψ)|Hend|Hist(ψ)〉 = 1

4 (FM )
2 〈ψ|U †X (|0〉〈0|n+1)UX |ψ〉,

which is zero if and only if the (n+1)th qubit of UX |ψ〉 is

in the state |1〉 with certainty. We have therefore proven that

HX has a zero energy eigenstate if and only if there exists

an n−qubit state |W 〉 satisfying∥∥∥(I⊗n ⊗ |0〉〈0|(n+1) ⊗ I
⊗(na−1)

)
UX |W 〉|0〉⊗na

∥∥∥2 = 0.

(53)

This establishes Theorem 1.
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